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ERROR BOUNDS IN METRIC SPACES AND APPLICATION TO
THE PERTURBATION STABILITY OF METRIC REGULARITY∗
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Abstract. This paper was motivated by the need to establish some new characterizations of
the metric regularity of set-valued mappings. Through these new characterizations it was possible
to investigate the global/local perturbation stability of the metric regularity and to extend a result
by Ioffe [Set-Valued Anal., 9 (2001), pp. 101–109] on the perturbation stability of the global metric
regularity when the image space is not necessarily complete. It was also possible to give a charac-
terization of the local metric regularity and to derive a local version of the perturbation stability of
the metric regularity. In this work we also describe an application of this perturbation stability and
give a simple proof of a result on the error bound of 2-regular mappings established by Izmailov and
Solodov [Math. Program., 89 (2001), pp. 413–435] and generalized by He and Sun [Math. Oper.
Res., 30 (2005), pp. 701–717].
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1. Introduction. Let X and Y be metric spaces endowed with metrics both
denoted by d(·, ·). The open ball with center x and radius r > 0 is denoted by B(x, r).
We recall that a set-valued (multivalued) mapping F : X ⇒ Y is a mapping which
assigns to every x ∈ X a subset (possibly empty) F (x) of Y . As usual, we use the
notation gph F := {(x, y) ∈ X × Y : y ∈ F (x)} for the graph of F , Dom F := {x ∈
X : F (x) �= ∅} for the domain of F , and F−1 : Y ⇒ X for the inverse of F . This
inverse (which always exists) is defined by F−1(y) := {x ∈ X : y ∈ F (x)}, y ∈ Y , and
satisfies

(x, y) ∈ gph F ⇐⇒ (y, x) ∈ gph F−1.

It is well known that a large amount of problems, for instance, inequalities and equal-
ities systems, variational inequalities, or systems of optimality conditions, are covered
by the solvability of a generalized equation (in the terminology of Robinson).

For a given y ∈ Y , determine x ∈ X such that y ∈ F (x).
In general F is of the form f + T , where f : X → Y and T : X ⇒ Y . An

important subcase is furnished by variational inequalities, that is, the problem of
finding a solution to the equation y ∈ f(x) + NC(x), where T = NC is the normal-
cone operator. For each x ∈ R

n, the set NC(x) is the normal cone (in the sense of
convex analysis) to a closed convex set C of R

n at x.
A central issue in variational analysis is to investigate the behavior of the set

of solutions of a generalized equation associated to F , that is, the behavior of the
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set F−1(y) when y and/or F itself are perturbed. A key to this is the concept of
metric regularity. Recall that a mapping F is said to be metrically regular on a region
V ⊆ X × Y with modulus τ if there exists a real τ > 0 such that

(1.1) d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ V,

where d(x,C) denotes, as usual, the distance from x to a set C and is defined by
d(x,C) = infz∈C d(x, z), with the convention that d(x, S) = +∞ whenever S is empty.
In the case, for example, of a set-valued mapping F with closed and convex graph, the
Robinson–Ursescu theorem says that F is metrically regular at (x0, y0) if and only if
y0 is an interior point to the range of F , i.e., to Dom F−1.

If relation (1.1) holds for all (x, y) close to a given (x̄, ȳ) ∈ X×Y , then we say that
F is (locally) metrically regular around (x̄, ȳ). According to the long history of metric
regularity there is abundant literature on conditions ensuring this property. This
concept goes back to Lyusternik [29] and Graves [18] in connection to the extension
to nonlinear operators of the celebrated Banach open mapping theorem. For a detailed
account the reader is referred to the works [2, 6, 7, 8, 9, 11, 14, 20, 21, 23, 27, 28, 30,
31, 32, 33, 34, 38, 41] and the references given therein for many theoretical results on
the metric regularity as well as its various applications.

In the present paper, we are concerned with the stability of the metric regularity
with respect to perturbations of F. Historically, it follows from Banach that when F
is a bounded linear operator between two Banach spaces X and Y, if F is surjective,
then all operators G sufficiently close to F have the metric regularity property (or
equivalently, the covering property). This classical result has been extended to the
case of continuously Fréchet differentiable mappings by Lyusternik [29] and Graves [18]
for the local metric regularity and by Dmitruk, Miljiutin, and Osmolovskii [13] for
the global case. In [15] Dontchev, Lewis, and Rockafellar, and [16], Dontchev and
Lewis have studied the case of set-valued mappings under perturbations of a single-
valued mapping; that is, perturbation mappings of the form F (x) + g(x), where F is
a set-valued mapping and g is a single-valued mapping.

Recently, in [22], Ioffe studied the general case when perturbation mappings are
not necessarily expressed in the form F (x)+g(x). He constructed a measure of “closed-
ness” between two set-valued mappings allowing him to significantly extend the clas-
sical result (on the global covering property) of Dmitruk, Miljiutin, and Osmolovskii
to the general case of set-valued mappings.

Inspired by the work of Ioffe [22], our main objective in this paper is to use the
theory of error bounds to study stability of global and/or local metric regularity of
set-valued mappings under a perturbation of F . The approach based on error bounds
to investigate the metric regularity has been recently used by Azé, Corvellec, and
Lucchetti [3] and by Ngai and Théra [35] to study implicit multifunctions in smooth
spaces. Especially in the survey paper by Azé [2], it was shown that this approach
is powerful to provide a unified theory of the metric regularity. The organization of
this paper is as follows. In section 2, we prove new characterizations of the global/
local error bound in complete metric spaces. Using this result, we derive in section 3
a new criterion assuring the metric regularity. Based on this criterion, we extend the
result by Ioffe [22] on the perturbation stability of global metric regularity when the
image space is not necessarily complete. We establish in section 4 a characterization
of the local metric regularity. Based on this characterization, we derive the local
version of the perturbation stability of metric regularity. As an application, we use
this perturbation stability result to give a simple proof of a result on error bounds of
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2-regular mappings established by Izmailov and Solodov [24] and extended by He and
Sun [19].

2. Error bound in complete metric spaces. Let X be a metric space. Let
f : X → R ∪ {+∞} be a given function. As usual, domf := {x ∈ X : f(x) < +∞}
denotes the domain of f . We set

(2.1) S := {x ∈ X : f(x) ≤ 0}.

We use the symbol [f(x)]+ to denote max(f(x), 0). We shall say that the system (2.1)
admits an error bound if there exists a real c > 0 such that

(2.2) d(x, S) ≤ c
[
f(x)]+ for all x ∈ X.

For x0 ∈ S, we shall say that the system (2.1) has an error bound at x0 when there
exist real c > 0 and ε > 0 such that relation (2.2) is satisfied for all x around x0, i.e.,
in an open ball B(x0, ε) with center x0 and radius ε.

Several conditions using subdifferential operators or directional derivatives and
ensuring the error bound in Banach spaces have been established, for example, in [10,
26, 37, 35, 40]. Recently, Azé [1] and Azé and Corvellec [5] have used the so-called
strong slope introduced by De Giorgi, Marino, and Tosques in [12] to prove criteria
for error bounds in complete metric spaces.

The following result, whose proof is strictly based on the Ekeland variational
principle [17], gives an estimation for the distance d(x̄, S) from a given point x̄ outside
of S to the set S in complete metric spaces. Such an estimation using the Fréchet
subdifferential in Asplund spaces has been established in [36].

Theorem 2.1. Let X be a complete metric space, and let f : X → R∪ {+∞} be
a lower semicontinuous function and x̄ /∈ S. Then, setting

(2.3) m(x̄) := inf

{
sup

y∈X,y �=x

f(x) − [f(y)]+
d(x, y)

:
d(x, x̄) < d(x̄, S)
f(x) ≤ f(x̄)

}
,

one has

(2.4) m(x̄)d(x̄, S) ≤ f(x̄).

Here and in what follows the convention 0.(+∞) = 0 is used.
Proof. As the conclusion holds trivially if f(x̄) = +∞, let us suppose that x̄ ∈

domf . If S = ∅, then, obviously, applying the Ekeland variational principle, one
obtains m(x̄) = 0. Hence, the conclusion follows from the convention 0.(+∞) = 0.
Now, assume that S �= ∅ and consider the function g : X → R ∪ {+∞} defined by
g(x) = [f(x)]+. Let ε ∈ (0, 1) be given. Obviously, since infx∈X g(x) = 0, we can write

g(x̄) = inf
x∈X

g(x) +
g(x̄)

(1 − ε)d(x̄, S)
(1 − ε)d(x̄, S).

By virtue of the Ekeland variational principle [17], we can select z ∈ X satisfying
d(z, x̄) ≤ (1 − ε)d(x̄, S) and f(z) = g(z) ≤ g(x̄) = f(x̄) such that the function

g(·) +
g(x̄)

(1 − ε)d(x̄, S)
d(·, z)
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attains a minimum at z. That is,

(2.5) [f(x)]+ +
f(x̄)

(1 − ε)d(x̄, S)
d(x, z) ≥ f(z) for all x ∈ X.

Since d(z, x̄) < d(x̄, S), thanks to the definition of m(x̄), just select a point y ∈ X, y �=
z such that

f(z) − [f(y)]+
d(z, y)

≥ m(x̄) − ε.

Therefore, from (2.5), we obtain

f(x̄)

(1 − ε)d(x̄, S)
≥ f(z) − [f(y)]+

d(z, y)
≥ m(x̄) − ε.

Taking the limit as ε goes to zero we obtain (2.4), establishing the proof.
The following corollary of Theorem 2.1 gives characterizations of the error bound.
Corollary 2.2. Let X be a complete metric space, and let f : X → R ∪ {+∞}

be a lower semicontinuous function. Let τ ∈ (0,+∞); r ∈ (0,+∞] be given. Consider
the following statements.

(i) d(x, S) ≤ τ [f(x)]+ for all x ∈ X with f(x) < r.
(ii) For each x ∈ X \ S with f(x) < r and for any ε > 0, there exists z ∈ X such

that

(2.6) 0 < d(x, z) < (τ + ε)(f(x) − [f(z)]+).

(iii) For each x ∈ X \ S with f(x) < r and for any ε > 0, there exists z ∈ X with
f(z) ≥ 0 such that (2.6) holds.

(iv) For each x ∈ X \ S with f(x) < r and for any ε > 0, there exists z ∈ X with
f(z) > 0 such that (2.6) holds.

Then, one has (i) ⇔ (ii) ⇐ (iii) ⇐ (iv). In addition, if X is a Banach space and
f is a continuous function, then all of the statements are equivalent.

Proof. The implications (iv) ⇒ (iii) ⇒ (ii) are obvious. (ii) ⇒ (i) follows directly
from Theorem 2.1.

Let x ∈ X \ S with f(x) < r, and let ε > 0 be given. For (i) ⇒ (ii), take z ∈ S
such that d(x, z) < (1+ε/τ)d(x, S). Then, obviously, one has d(x, z) ≤ (τ +ε)(f(x)−
[f(z)]+).

Now let X be a Banach space and f be a continuous function. For (ii) ⇒ (iii), let
z ∈ X such that (2.6) is satisfied. When f(z) ≤ 0; since f(x) > 0 and the function f
is continuous, we can find y ∈ [x, z] := {tx + (1 − t)z : t ∈ [0, 1]} such that f(y) = 0.
Hence,

0 < d(x, y) ≤ d(x, z) < (τ + ε)f(x) = (τ + ε)(f(x) − f(y)).

Finally, for (iii) ⇒ (iv), let z ∈ X with f(z) ≥ 0 satisfying (2.6). If f(z) > 0,
then the conclusion obviously holds. Suppose that f(z) = 0. Let A ⊆ R be defined by
A = {t ∈ [0, 1] : f(tx+(1− t)z) ≤ 0}. Since A is nonempty, closed, and bounded in R,
we may define maxA := t0 with t0 ∈ [0, 1). For each t ∈ (t0, 1) if yt := tx + (1 − t)z,
then f(yt) > 0. Pick a real δ > 0 such that 1−t0

1−δ(τ+ε) < 1. Noticing that f(yt0) = 0

and using the continuity of f , we can find t1 ∈ (t0, 1) such that f(yt) < δd(x, z) for
all t ∈ (t0, t1). Then for all t ∈ (t0, t1), one has

d(x, yt) = (1 − t)d(x, z) < (1 − t)(τ + ε)f(x)

< (1 − t)(τ + ε)(f(x) − f(yt)) + (1 − t)(τ + ε)δd(x, z).
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Thus,

d(x, yt) <
(1 − t)(τ + ε)

1 − δ(τ + ε)
(f(x) − f(yt)) < (τ + ε)(f(x) − f(yt)),

which completes the proof.
Note that (iv) ⇒ (i) has been established by Wu and Ye in [40]. Similarly, we

also obtain characterizations for the local error bound.
Corollary 2.3. Let X be a complete metric space, and let f : X → R ∪ {+∞}

be a lower semicontinuous function. Let x̄ ∈ S, τ ∈ (0,+∞) and η ∈ (0,+∞) be given.
Consider the following statements.

(i) d(x, S) ≤ τ [f(x)]+ for all x ∈ B(x̄, η/2).
(ii) For each x ∈ B(x̄, η) \ S and for any ε > 0, there exists z ∈ X such that

(2.7) 0 < d(x, z) < (τ + ε)(f(x) − [f(z)]+).

(iii) For each x ∈ B(x̄, η) \ S and for any ε > 0, there exists z ∈ X with f(z) ≥ 0
such that (2.7) holds.

(iv) For each x ∈ B(x̄, η) \ S and for any ε > 0, there exists z ∈ X with f(z) > 0
such that (2.7) holds.

Then, one has (iv) ⇒ (iii) ⇒ (ii) ⇒ (i). Conversely, if (i) holds, then (ii) holds
with η/2 instead of η. In addition, if X is a Banach space and f is a continuous
function, then the three statements (ii), (iii), and (iv) are equivalent.

Recall from [12, 5, 4] that the strong slope |∇f |(x) of a lower semicontinuous
function f at x ∈ domf is the quantity defined by |∇f |(x) = 0 if x is a local minimum
of f, otherwise,

|∇f |(x) = lim sup
y→x

f(x) − f(y)

d(x, y)
.

For x /∈ domf, we set |∇f |(x) = +∞. Obviously, for all x̄ /∈ S, one has

m(x̄) ≥ inf{|∇f |(x) : d(x, x̄) < d(x̄, S), f(x) ≤ f(x̄)}.

Therefore, Theorem 2.1 implies directly the following result, which is also a corollary
of Theorem 2.1 in Azé and Corvellec [5].

Corollary 2.4 (see [5, Theorem 2.1]). Let X be a complete metric space and
let f : X → R ∪ {+∞} be a lower semicontinuous function. Let τ ∈ (0,+∞) and
r ∈ (0,+∞] be given. If there exists m > 0 such that |∇f |(x) ≥ m for all x ∈ X \ S
with f(x) < r, then

md(x, S) ≤ [f(x)]+ for all x ∈ X; f(x) < r.

Let a real γ > 0 be given. By noting that for all x ∈ X with f(x) > 0, |∇fγ |(x) =
γfγ−1(x)|∇f |(x), one obtains the following error bound with exponent γ.

Corollary 2.5. Let X be a complete metric space, and let f : X → R ∪ {+∞}
be a lower semicontinuous function. If there exists m > 0 such that

γfγ−1(x)|∇f |(x) ≥ m for all x ∈ X \ S with f(x) < r,

then

md(x, S) ≤ [f(x)]γ+ for all x ∈ X; f(x) < r.



6 HUYNH VAN NGAI AND MICHEL THÉRA

3. Perturbation stability of global metric regularity. Let X, Y be metric
spaces and F : X ⇒ Y be a set-valued mapping. First, let us recall the notion of
metric regularity (see, for example, [22, 21]).

Definition 3.1. Let V ⊆ X × Y be a given subset of X × Y. The mapping F is
said to be metrically regular on V with modulus τ > 0 if

(3.1) d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ V.

It is worth pointing out that (see [22]) F is metrically regular with modulus τ if
and only if F covers on V with a constant not smaller than a = τ−1. By the notion
of covering we mean that for any t > 0 and any triplet (x, y, v) such that

(x, y) ∈ V, y �= v ∈ F (x), d(y, v) < t,

there exists u ∈ X such that y ∈ F (u) and ad(u, x) ≤ t.

The following theorem gives a characterization of the metric regularity on a subset
V of the form

V = V (F,R) = {(x, y) ∈ X × Y : d(y, F (x)) < R},

where R ∈ (0,+∞].

In what follows, we make use of the lower semicontinuous envelope (x, y) �→
ϕ(x, y) of the function (x, y) �→ d(y, F (x)), i.e., for each (x, y) ∈ X × Y,

ϕ(x, y) := lim inf
(u,v)→(x,y)

d(v, F (u)) = lim inf
u→x

d(y, F (u)).

Theorem 3.2. Let X be a complete metric space, and let Y be a metric space,
(which is not necessarily complete). Let F : X ⇒ Y be a set-valued mapping with a
closed graph and V := V (F,R) for some R ∈ (0,+∞]. Then the following statements
are equivalent:

(i) For all (x, y) ∈ V, one has

d(x, F−1(y)) ≤ τd(y, F (x)).

(ii) Let (x, y) ∈ X × Y with y /∈ F (x); ϕ(x, y) < R and let ε > 0. Then for every
sequence {xn}n∈N ⊆ X converging to x, there exists a sequence {un}n∈N ⊆ X
with limn→∞ d(un, x) > 0 such that

(3.2) lim sup
n→∞

d(y, F (xn)) − d(y, F (un))

d(xn, un)
>

1

τ + ε
.

(iii) Let (x, y) ∈ X × Y with y /∈ F (x); ϕ(x, y) < R and let ε > 0. Then, for every
sequence {xn}n∈N ⊆ X converging to x with

lim
n→∞

d(y, F (xn)) = lim inf
u→x

d(y, F (u)),

there exists a sequence {un}n∈N ⊆ X with limn→∞ d(un, x) > 0 such that
(3.2) holds.

Proof. (ii) ⇒ (iii) is obvious. For (i) ⇒ (ii), take some ε > 0 and (x, y) ∈ X × Y
with y /∈ F (x); ϕ(x, y) < R. Let {xn}n∈N ⊆ X be a sequence converging to x. We
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consider the following two cases.
Case 1. lim supn→∞ d(y, F (xn)) < R. Since gph F is closed when n is suffi-

ciently large, say n ≥ n0, hence, y /∈ F (xn) and, moreover, d(y, F (xn)) < R.
Hence d(xn, F

−1(y)) ≤ τd(y, F (xn)). For each integer n, pick un ∈ F−1(y) such
that d(xn, un) < (1 + ε/τ)d(xn, F

−1(y)). By relabeling if necessary, we can assume
that lim d(x, un) exists. Then using the closedness of gph F , we have lim d(x, un) > 0
and for all n ≥ n0,

d(xn, un) < (1 + ε/τ)d(xn, F
−1(y)) ≤ (τ + ε)

[
d(y, F (xn)) − d(y, F (un))

]
.

This shows that (3.2) holds.
Case 2. lim supn→∞ d(y, F (xn)) ≥ R. Let {zn}n∈N ⊆ X be a sequence converging

to x such that

lim
n→∞

d(y, F (zn)) = ϕ(x, y)(< R).

By using the argument of Case 1 applied to {zn}n∈N instead of {xn}n∈N, we can find
a sequence {un}n∈N with lim d(x, un) > 0 and some n0 ∈ N such that for all n ≥ n0,
one has

d(zn, un) ≤ (τ + ε)
[
d(y, F (zn)) − d(y, F (un))

]
.

Hence

lim sup
n→∞

d(y, F (xn)) − d(y, F (un))

d(xn, un)
≥ lim sup

n→∞

d(y, F (zn)) − d(y, F (un))

d(xn, un)

>
1

τ + ε
lim sup
n→∞

d(zn, un)

d(xn, un)
=

1

τ + ε
.

Thus, relation (3.2) holds.
Let us prove (iii) ⇒ (i). Let (x, y) �→ ϕ(x, y) denote the lower semicontinuous

envelope of the function (x, y) �→ d(y, F (x)). Then, 0 ≤ ϕ(x, y) ≤ d(y, F (x)) for all
(x, y) ∈ X×Y. Observe that for each y ∈ Y, F−1(y) = {x ∈ X : ϕ(x, y) = 0}. Indeed,
let (x, y) ∈ X × Y. Obviously, if x ∈ F−1(y), then ϕ(x, y) = 0. Conversely, suppose
ϕ(x, y) = 0. There exists a sequence {xn}n∈N with limit x such that d(y, F (xn))
converges to 0. Then, we can find a sequence {zn}n∈N ⊆ Y such that zn ∈ F (xn) and
d(y, zn) → 0. Since the graph of F is closed, then (x, y) ∈ gph F, i.e., x ∈ F−1(y).
From this and by virtue of Corollary 2.2, it suffices to show that for each (x, y) ∈ X×Y,
with y /∈ F (x); ϕ(x, y) < R and for any ε ∈ (0, 1) there exists u ∈ X with u �= x such
that

d(x, u) ≤ (τ + ε)(ϕ(x, y) − ϕ(u, y)).

To see this, let {xn}n∈N ⊆ X be a sequence with limit x and d(y, F (xn)) → ϕ(x, y)
as n → ∞. Then (xn, y) ∈ V and xn /∈ F−1(y) when n is sufficiently large, say
n ≥ n0. Let {un}n∈N be a sequence of elements in X satisfying (3.2) with respect to
the sequence {xn}n∈N. Pick δ ∈ (0, lim d(un, x)). Then there exists an index n1 ≥ n0

such that for all n ≥ n1, one has d(xn, un) ≥ δ; d(xn, x) < εδ;

d(y, F (xn)) < ϕ(x, y) +
ε

τ + ε
d(xn, un)

and

d(xn, un) < (τ + ε)(d(y, F (xn)) − d(y, F (un))).
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Hence,

d(xn, un) < (1 − ε)−1(τ + ε)(ϕ(x, y) − ϕ(un, y)).

It follows that for n ≥ n1,

d(x, un) ≤ (1 + ε)d(xn, un) < (1 − ε)−1(τ + ε)(1 + ε)(ϕ(x, y) − ϕ(un, y)).

As ε ∈ (0, 1) is arbitrary, the proof is complete.
Based on Theorem 3.2, we can now prove an extension of a result by Ioffe [22,

Theorem 2] on perturbation stability of metric regularity. Precisely, we extend Ioffe’s
result to the case where the image space Y is not necessarily complete. It is worth
noting that the following proof is more simple than the one given in [22] that is based
on a criterion of metric regularity [22, Theorem 6] which depends heavily on the
completeness of Y.

Let X be a metric space and Y be a normed linear space. Let F,Φ : X ⇒ Y
be two set-valued mappings. For (x, r) ∈ X × (0,+∞), let us denote the following
quantity introduced by Ioffe [22] by

(3.3) σF,Φ(x, r) := sup
η∈Φ(x)

inf
v∈F (x)

sup
d(u,x)<r,w∈F (u)

inf
ξ∈Φ(u)

‖η − v + w − ξ‖.

Note that when Φ(x) := F (x) + G(x), where G : X ⇒ Y is a set-valued mapping,
then (see [22])
(3.4)
σF,Φ(x, r) ≤ sup

d(x,u)<r

e(G(x), G(u)) := sup
d(x,u)<r

sup
y∈G(x)

d(y,G(u)) for all (x, u) ∈ X×X.

Theorem 3.3. Let X be a complete metric space and Y be a normed linear
space. Let F,Φ : X ⇒ Y be set-valued mappings with closed graphs. Suppose that F
is metrically regular on V (F,R) for some R ∈ (0,+∞] with modulus τ > 0. If there
exists λ ∈ (0, τ−1) such that

(3.5) σF,Φ(x, r) ≤ λr for all x ∈ X, r ∈ (0, τR),

then Φ is metrically regular on V (Φ,R) with modulus (τ−1 − λ)−1.
Proof. It suffices to show that statement (iii) in Theorem 3.2 is verified. Indeed,

let (x, y) ∈ X × Y with y /∈ Φ(x); lim infu→x d(y, Φ(u)) < R. Let {xn}n∈N ⊆ X be
a sequence converging to x with limn→∞ d(y, Φ(xn)) = lim infu→x d(y, Φ(u)). Then
(xn, y) ∈ V (Φ,R) and y /∈ Φ(xn) for large n, say n ≥ n0. For each n ≥ n0, let
δn ∈ (0, ε) sufficiently small such that (1+ δn)d(y, Φ(xn)) < R and δn → 0 as n → ∞.
Take ηn ∈ Φ(xn) such that

‖y − ηn‖ < (1 + δn)d(y, Φ(xn)).

Set rn = (1 + δn)τd(y, Φ(xn))(< τR). By (3.5), we can find vn ∈ F (xn) such that

(3.6) sup
d(u,xn)<rn,w∈F (u)

inf
ξ∈Φ(u)

‖ηn − vn + w − ξ‖ < (1 + δn)λrn.

Setting zn := y − ηn + vn, then, obviously, (xn, zn) ∈ V (F,R). Moreover, since as-
sumption F is metrically regular on V (F,R) with modulus τ, one has

d(xn, F
−1(zn)) ≤ τd(zn, F (xn)) ≤ τ‖zn−vn‖ = τ‖y−ηn‖ < (1+δn)τd(y, Φ(xn)) := rn.
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Therefore, there exists un ∈ F−1(zn) such that d(xn, un) < rn. Hence, relation (3.6)
implies that

inf
ξ∈Φ(un)

‖ηn − vn + zn − ξ‖ < (1 + δn)λrn,

that is, d(y, Φ(un)) < (1 + δn)λrn. It follows that

lim sup
n→∞

d(y, Φ(un)) ≤ λτ lim inf
u→x

d(y, Φ(u)) < lim inf
u→x

d(y, Φ(u)),

and, consequently, lim infn→∞ d(un, xn) > 0. Moreover,

d(y, Φ(xn)) − d(y, Φ(un)) > rn[(1 + δn)−1τ−1 − (1 + δn)λ]

> d(xn, un)[(1 + δn)−1τ−1 − (1 + δn)λ].

By letting n → ∞, we obtain

lim sup
n→∞

d(y, Φ(xn)) − d(y, Φ(un))

d(xn, un)
≥ τ−1 − λ.

This completes the proof.
Recall that a set-valued mapping G : X ⇒ Y is said to be Lipschitz on X with a

constant λ > 0 if

(3.7) e(G(x), G(u)) ≤ λd(x, u) for all (x, u) ∈ X ×X,

where, e(G(x), G(u)) = supy∈G(x) d(y,G(u)). If for some x̄ ∈ X (3.7) holds for all
(x, u) ∈ B(x̄, δ)×B(x̄, δ) for some δ > 0, then we say that G is Lipschitzian around x̄.

By relation (3.4), Theorem 3.3 yields the following corollary (see [22, Corollary 3]).
Corollary 3.4. Let X be a complete metric space, and let Y be a normed linear

space. Let F,G : X ⇒ Y be set-valued mappings such that both F and Φ := F + G
have closed graphs. Suppose that F is metrically regular on V (F,R) with modulus
τ > 0 and G is Lipschitz on X with constant λ ∈ (0, τ−1). Then, Φ is metrically
regular on V (Φ,R) with modulus (τ−1 − λ)−1.

4. Perturbation stability of local metric regularity. In this section, we
consider the local case of perturbation stability of metric regularity. Let (x̄, ȳ) ∈
gph F. The mapping F is said to be metrically regular at x̄ with respect to ȳ with
modulus τ ∈ (0,+∞) if there exist neighborhoods U of x̄ and V of ȳ such that

(4.1) d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ U × V.

First, we prove a characterization of the local metric regularity, which is a local version
of Theorem 3.2. Similar to section 2, let ϕ(·, ·) denote the lower semicontionuous
envelope function of the mapping d(·, F (·)).

Theorem 4.1. Let X be a complete metric space, and let Y be a metric space.
Let F : X ⇒ Y be a set-valued mapping with a closed graph, and let (x̄, ȳ) ∈ gph F
and τ ∈ (0,+∞) be given. Then the following statements are equivalent:

(i) There exists a neighborhood U × V ⊆ X × Y of (x̄, ȳ) and such that

d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ U × V ;
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(ii) There exists a neighborhood U × V ⊆ X × Y of (x̄, ȳ) such that for any
(x, y) ∈ U × V with y /∈ F (x), any ε > 0, and any sequence {xn}n∈N ⊆ X
converging to x with

lim sup
n→∞

d(y, F (xn)) ≤ d(y, F (x)),

there exists a sequence {un}n∈N ⊆ X with limn→∞ d(un, x) > 0 such that

(4.2) lim sup
n→∞

d(y, F (xn)) − d(y, F (un))

d(xn, un)
>

1

τ + ε
.

(iii) There exist a neighborhood U × V ⊆ X × Y of (x̄, ȳ) and a real γ ∈ (0,+∞)
such that for any (x, y) ∈ U × V with y /∈ F (x) and ϕ(x, y) < γ and any
ε > 0, then for any sequence {xn}n∈N ⊆ X converging to x with

lim
n→∞

d(y, F (xn)) = lim inf
u→x

d(y, F (u)),

we can find a sequence {un}n∈N ⊆ X with limn→∞ d(un, x) > 0 such that
(4.2) holds.

Proof. (ii) ⇒ (iii) is obvious, while (i) ⇒ (ii) is similar to the proof of the
respective implication in Theorem 3.2. It remains to prove (iii) ⇒ (i). Let us remind
the reader that

ϕ(x, y) = lim inf
u→x

d(y, F (u)), (x, y) ∈ X × Y.

Then, for all y ∈ Y, F−1(y) = {x ∈ X : ϕ(x, y) = 0}. Let U ×V := B(x̄, α)×B(ȳ, β)
and τ, γ as in (iii). Let ε ∈ (0, τ/2) be given and set δ = min{α, α

6(τ+2ε) , β, γ/4}. If y

is fixed in B(ȳ, δ), then

ϕ(x̄, y) ≤ d(y, F (x̄)) ≤ d(y, ȳ) < δ.

Hence

ϕ(x̄, y) ≤ inf
x∈X

ϕ(x, y) + δ.

By virtue of the Ekeland variational principle [17] (applied to the function x �→
ϕ(x, y)), we can select z ∈ X satisfying d(x̄, z) ≤ δ(τ +2ε) and ϕ(z, y) ≤ ϕ(x̄, y)(< δ)
such that

ϕ(z, y) ≤ ϕ(x, y) +
1

τ + 2ε
d(x, z) for all x ∈ X.

It follows that for any sequence {zn}n∈N ⊆ X converging to z with

lim
n→∞

d(y, F (zn)) = lim inf
u→z

d(y, F (u)),

for all {un}n∈N ⊆ X with limn→∞ d(un, z) > 0, one always has

lim sup
n→∞

d(y, F (zn)) − d(y, F (un))

d(zn, un)
≤ lim sup

n→∞

ϕ(z, y) − ϕ(un, y)

d(z, un)
≤ 1

τ + 2ε
<

1

τ + ε
.

Therefore, by assumption we must have z ∈ F−1(y). Consequently, B(x̄, 2δτ) ∩
F−1(y) �= ∅.
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Now take (x, y) ∈ B(x̄, 2δτ) ×B(ȳ, δ). We distinguish two cases.

Case 1. d(y, F (x)) ≥ γ. Since B(x̄, 2δτ) ∩ F−1(y) �= ∅, then

(4.3) d(x, F−1(y)) ≤ d(x, x̄) + d(x̄, F−1(y)) < 2δτ + 2δτ = 4δτ ≤ τd(y, F (x)).

Case 2. d(y, F (x)) < γ. Let z ∈ X with d(x, z) < d(x, F−1(y)); ϕ(z, y) ≤ ϕ(x, y).
One has

d(z, x̄) ≤ d(z, x) + d(x, x̄) ≤ d(x̄, F−1(y)) + 2d(x, x̄) < 6δτ.

Thus, z ∈ B(x, α). Let {zn}n∈N ⊆ X be an arbitrary sequence converging to z with

lim
n→∞

d(y, F (zn)) = ϕ(z, y)(< γ).

According to (iii), we can find a sequence {un}n∈N ⊆ X with limn→∞ d(un, z) > 0
such that

lim sup
n→∞

d(y, F (zn)) − d(y, F (un))

d(zn, un)
>

1

τ + ε
.

It follows that

(4.4) lim sup
n→∞

ϕ(z, y) − ϕ(un, y)

d(z, un)
>

1

τ + ε
.

Consequently,

m(x) := inf

{
sup

u∈X,u �=z

ϕ(z, y) − ϕ(u, y)

d(z, u)
:

d(z, x) < d(x, F−1(y))
ϕ(z, y) ≤ ϕ(x, y)

}
>

1

τ + ε
.

By virtue of Theorem 2.1 and as ε is arbitrarily small, we obtain

d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ B(x̄, 2δτ) ×B(ȳ, δ),

where δ = min{α, ατ−1/6, β, γ/4}. The proof is complete.

Remark 4.2. (i) In [16], Dontchev and Lewis have established a characteriza-
tion of the local metric regularity under the assumptions that the function (x, y) �→
d(x, F (y)) is locally lower semicontinuous (and both X,Y are complete). Note that,
when this condition is satisfied, Theorem 4.1 yields directly Lemma 1.7 in [16].

(ii) When both X,Y are complete metric spaces, a characterization using the
strong slope has been established by Azé–Corvellec in [5, Theorem 5.3].

Remark 4.3. Obviously, (i), (ii), (iii) are equivalent to the following:

(iv) There exist a neighborhood U × V ⊆ X × Y of (x̄, ȳ) and a real τ ∈ (0,+∞)
such that for any (x, y) ∈ V with y /∈ F (x) and any ε > 0, then for all
sequences {xn}n∈N ⊆ X converging to x with

lim
n→∞

d(y, F (xn)) = lim inf
u→x

d(y, F (u)),

there exists a sequence {un}n∈N ⊆ X with limn→∞ d(un, x) > 0 such that
(4.2) holds.
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Now let X be a complete metric space, and let Y be a normed linear space. Let
F,Φ : X ⇒ Y be set-valued mappings and (x̄, ȳ) ∈ gph F ∩ gph Φ be given. To study
the perturbation stability of local metric regularity, instead of σF,Φ(x, r) used in the
global case, we will use the following quantity:
(4.5)
σF,Φ(x, t1, t2, r) := sup

η∈Φ(x)∩B(ȳ,t1)

inf
v∈F (x)∩B(ȳ,t2)

sup
d(u,x)<r,w∈F (u)

inf
ξ∈Φ(u)

‖η − v + w − ξ‖,

with x ∈ X; t1, t2, r ∈ (0,+∞).
Theorem 4.4. Let X be a complete metric space and Y be a normed linear

space. Let F,Φ : X ⇒ Y be set-valued mappings with closed graphs. Let (x̄, ȳ) ∈
gph F ∩ gph Φ be given. Suppose that there exist reals α, β > 0 and τ > 0 such that

(4.6) d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ B(x̄, α) ×B(ȳ, β).

If there exist positive reals t1, t2, s, λ, δ with t2 < (0, β), λ ∈ (0, τ−1) such that

(4.7) σF,Φ(x, t1, t2, r) ≤ λr for all x ∈ B(x̄, δ), r ∈ (0, s),

then Φ is metrically regular around x̄ with respect to ȳ with modulus (τ−1 − λ)−1.
Proof. It suffices to show that statement (iii) of Theorem 4.1 applies to the

mapping Φ around (x̄, ȳ). Set

γ = min{t1/2, β − t2, δτ
−1, sτ−1}; a := min{α, δ}; b := min{β, t1 − γ}.

Let (x, y) ∈ B(x̄, a) × B(ȳ, b) with y /∈ Φ(x) and lim infu→x d(y, Φ(u)) < γ. Let
{xn}n∈N be a sequence in X such that d(xn, x) → 0 and d(y, Φ(xn)) → lim infu→x

d(y, Φ(u)). Without loss of generality, we can assume that xn ∈ B(x̄, a) and d(y, Φ(xn))
< γ for all n ∈ N. Pick a sequence {εn}n∈N of positive reals converging to zero and
satisfying (1 + εn)d(y, Φ(xn)) < γ for all n ∈ N. For each integer n take ηn ∈ Φ(xn)
such that

(4.8) ‖y − ηn‖ < (1 + εn)d(y, Φ(xn)).

Then,

‖ηn − ȳ‖ ≤ ‖ηn − y‖ + ‖y − ȳ‖ < γ + b ≤ t1.

If rn := (1 + εn)τd(y, Φ(xn)), then rn ∈ (0, s). Therefore by (4.7), for each n there
exists vn ∈ F (xn) ∩B(ȳ, t2) such that

(4.9) sup
d(u,x)<rn,w∈F (u)

inf
ξ∈Φ(u)

‖ηn − vn + w − ξ‖ < (1 + εn)λrn.

Set zn := y − ηn + vn. Then

‖zn − ȳ‖ ≤ ‖y − ηn‖ + ‖vn − ȳ‖ < γ + t2 ≤ β,

that is, zn ∈ B(ȳ, β). According to relation (4.6), we can select un ∈ F−1(zn) such
that

d(xn, un) ≤ (1 + εn)τd(zn, F (xn)) ≤ (1 + εn)τ‖zn − vn‖
< (1 + εn)τd(y, Φ(xn)) := rn < τγ ≤ s.
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Therefore, by (4.9),

inf
ξ∈Φ(un)

‖ηn − vn + zn − ξ‖ < (1 + εn)λrn,

i.e., d(y, Φ(un)) < (1 + εn)λrn. Next, similar to the argument developed in the proof
of Theorem 3.3, we obtain limn→∞ d(x, un) > 0 and that

lim sup
n→∞

d(y, Φ(xn)) − d(y, Φ(un))

d(xn, un)
> τ−1 − λ.

By virtue of Theorem 4.1 (and its proof), we derive

d(x, Φ−1(y)) ≤ τd(y, Φ(x)) for all (x, y) ∈ B(x̄, 2cτ) ×B(ȳ, c),

where c = min{a, aτ−1/6, b, γ/4}. This completes the proof.
The following corollary generalizes a result established by Dontchev, Lewis, and

Rockafellar [15, Theorem 3.3].
Corollary 4.5. Let X be a complete metric space, and let Y be a normed linear

space. Let F,G : X ⇒ Y be set-valued mappings such that both F and Φ := F + G
have closed graphs. Let (x̄, ȳ) ∈ gph F and suppose that G is single-valued at x̄ with
G(x̄) := z̄. If F is metrically regular at x̄ with respect to ȳ with modulus τ > 0 and G
is locally Lipschitz around x̄ with constant λ ∈ (0, τ−1), then Φ is metrically regular
at x̄ with respect to ȳ + z̄ with modulus (τ−1 − λ)−1.

Proof. By translation, if necessary, without loss of generality, we can assume that
G(x̄) = 0. That is, (x̄, ȳ) ∈ gph F ∩ gph Φ. Let α, β > 0 such that

d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ B(x̄, α) ×B(ȳ, β).

Let δ ∈ (0, βλ−1/4) be such that G is Lipschitz on B(x̄, δ) with constant λ, i.e.,

sup
y∈G(x)

inf
u∈G(u)

‖y − u‖ ≤ λd(x, u) for all x, u ∈ B(x̄, δ).

By considering u := x̄, we get supy∈G(x) ‖y‖ ≤ λd(x, x̄) < λδ for all x ∈ B(x̄, δ).
Take x ∈ B(x̄, δ/2) and r ∈ (0, δ/2). For any η := η1 + y ∈ Φ(x) ∩ B(ȳ, β/4), with
η1 ∈ F (x), y ∈ G(x), then

‖η1 − ȳ‖ ≤ ‖y‖ + ‖η − ȳ‖ < λδ + β/4 < β/2.

Hence, η1 ∈ F (x) ∩ B(ȳ, β/2) and by virtue of the definition of σF,Φ(x, β/4, β/2, r),
we obtain

σF,Φ(x, β/4, β/2, r) ≤ sup
y∈G(x)

sup
d(u,x)<r,w∈F (u)

inf
ξ∈Φ(u)

‖y + w − ξ‖

≤ sup
y∈G(x)

sup
d(u,x)<r

inf
p∈G(u)

‖y − p‖ ≤ λr.

Thus, all assumptions of Theorem 4.4 are satisfied with t1 = β/4; t2 = β/2; and
s = δ/2. This shows that Φ is metrically regular around x̄ with respect to ȳ with
modulus (τ−1 − λ)−1.

Remark 4.6. From the proofs of Theorem 4.4 and the preceding corollary, we
see that if F is globally metrically regular (that is, α = β = +∞ in Theorem 4.5) with
modulus τ, then there exists a constant c > 0 depending only on τ such that for any



14 HUYNH VAN NGAI AND MICHEL THÉRA

locally Lipschitzian mapping G : X ⇒ Y on B(x̄, δ) with constant λ ∈ (0, τ−1) and
G(x̄) := z̄, one has

d(x, Φ−1(y)) ≤ d(y, Φ(x)) for all (x, y) ∈ B(x̄, 2cτδ) ×B(ȳ + z̄, cδ),

where Φ := F + G.
Next, we give the following perturbation stability result using the quantity σF,Φ

(x, r) as in the global perturbation stability (section 3), but with an additional suitable
condition.

Theorem 4.7. Let X be a complete metric space and Y be a normed linear space.
Let F,Φ : X ⇒ Y be set-valued mapping with closed graphs. Let (x̄, ȳ) ∈ gph F and
(x̄, z̄) ∈ gph Φ be given. Suppose that F is metrically regular with modulus τ > 0 and
that the following two conditions are satisfied.

(i) There exist positive reals s, λ, δ with λ ∈ (0, τ−1) such that

(4.10) σF,Φ(x, , r) ≤ λr for all x ∈ B(x̄, δ), r ∈ (0, s);

(ii) limx→x̄ e(F (x)− ȳ, Φ(x)− z̄) = 0, where e(F (x)− ȳ, Φ(x)− z̄) = supu∈F (x)−ȳ

d(u, Φ(x) − z̄).
Then Φ is metrically regular around x̄ with respect to z̄ with modulus (τ−1 − λ)−1.

Proof. By translation, considering Φ + ȳ − z̄ instead of Φ, we can assume that
z̄ = ȳ. Let α, β > 0 such that

d(x, F−1(y)) ≤ τd(y, F (x)) for all (x, y) ∈ B(x̄, α) ×B(ȳ, β).

By (ii), we can find δ1 ∈ (0, δ/2) such that

(4.11) e(F (x), Φ(x)) < β/4 for all x ∈ B(x̄, δ1).

Set

γ = min{δ1/2, β/4, sτ−1, βα−1/4}; a = min{α, δ1/2}; b = β/4.

Similar to the proof of Theorem 4.4, it suffices to show that statement (iii) of Theorem
4.1 is satisfied for the mapping Φ around (x̄, ȳ). Indeed, let (x, y) ∈ B(x̄, a) ×B(ȳ, b)
with y /∈ Φ(x) and d(y, Φ(x)) < γ. Let {xn}n∈N; {εn}n∈N; {rn}n∈N; {ηn}n∈N; {vn}n∈N;
{zn}n∈N as in the proof of Theorem 4.4. Then, by relations (4.10) and (4.11), one has

‖ηn − vn‖ < sup
d(u,x)<rn,w∈F (u)

inf
ξ∈Φ(u)

‖w − ξ‖ + (1 + εn)λrn < β/4 + β/4 = β/2.

Consequently, zn := y − ηn + vn ∈ B(ȳ, β). We conclude as in the proof of Theorem
4.4.

Noticing that if G : X ⇒ Y is locally Lipschitz around x̄, then (ii) holds trivially
for Φ := F + G. We obtain the following corollary, where, the assumption that G is
single-valued at x̄ in Corollary 4.5 can be removed.

Corollary 4.8. Let X be a complete metric space, and let Y be a normed linear
space. Let F,G : X ⇒ Y be set-valued mappings such that both F and Φ := F+G have
closed graphs. Let (x̄, ȳ) ∈ gph F and z̄ ∈ G(x̄). If F is metrically regular at x̄ with
respect to ȳ with modulus τ > 0 and G is locally Lipschitz around x̄ with constant
λ ∈ (0, τ−1), then Φ is metrically regular at x̄ with respect to ȳ + z̄ with modulus
(τ−1 − λ)−1.
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In [24, Theorem 1], Izmailov and Solodov established an error bound for so-called
strongly 2-regular mappings for which the classical regular condition is not satisfied.
Then, this result has been extended by He and Sun [19, Theorems 3.1, 4.2] to the
case of cone inclusion constraints. Such proofs are based on the set-valued contraction
mapping principle. To end this paper, we use Theorem 4.4 to generalize Theorem 1
in [24] and Theorem 4.2 in [19].

Let X be a Banach space, and let Y be a normed linear space. Let f : X → Y
be a given mapping and K ⊆ Y be a closed convex cone. Consider the following
inclusion:

(4.12) S := {x ∈ X : f(x) ∈ K}.

Let x̄ ∈ S be given. As in [24, 19], we make use of the following hypotheses:
(H1) f is continuously differentiable on a neighborhood V of x̄ in X.
(H2) Denote by Y1 ⊆ Y the closed subspace spanned by f ′(x̄)(X) −K. Then we

suppose that Y1 has a closed complementary subspace Y2 in Y (which is not the case
in general).

Let P and Q denote the projectors from Y onto Y2 and Y1, respectively.
(H3) Pf ′ : V → L(X,Y ) is Lipschitzian on V with Lipschitz constant L.
(H4) Pf ′ is B-directionally differentiable at x̄ with derivative (Pf ′)′(x̄, ·), i.e.,

Pf ′(x̄ + h) = Pf ′(x̄) + (Pf ′)′(x̄, h) + o(‖h‖), h ∈ V − x̄.

For h ∈ X, set

F (h)(u) = f ′(x̄)(u) + (Pf ′)′(x̄, h)(u); F (h,K)(u) := (F (h))(u) −K, u ∈ X,

‖F (h,K)−1‖ := sup
y∈Y,‖y‖=1

d(0, F (h,K)−1(y)).

Corollary 4.9. Suppose that assumptions (H1)–(H4) are satisfied. Let K1 and
K2 be two closed convex cones such that K1 +K2 = K. If there exists ν > 0 such that

(4.13) sup{‖F (h,K)−1‖ : h ∈ Tν ; ‖h‖ = 1} := μ < +∞,

where Tν = {h ∈ X : d(f ′(x̄)(h),K1) ≤ ν, d((Pf ′)′(x̄, h)h,K2) ≤ ν}, then there exist
τ > 0, δ > 0 such that

d(x, S) ≤ τ
[
d(Q(f(x) − f(x̄),K1) + ‖x− x̄‖−1d(P (f(x) − f(x̄)),K2)

]
for all x ∈ B(x̄, δ) \ {x̄}.(4.14)

In the proof, we make use of the following lemmas.
Lemma 4.10 (Izmailov–Solodov [24, Lemma 1]). Suppose that the assumptions

(H1)–(H3) are fulfilled. Then for any ε > 0 there exists δ > 0 such that

‖Q(f(x) − f(x̄)) − f ′(x̄)(x− x̄)‖ ≤ ε‖x− x̄‖ for all x ∈ B(x̄, δ).

In addition, assume that Pf ′ is B-directionally differentiable at x̄ with respect to a
cone C, i.e., for all h ∈ C, Pf ′ has a directional derivative at x̄ with respect to every
h ∈ C and

Pf ′(x̄ + h) = Pf ′(x̄) + (Pf ′)′(x̄, h) + o(‖h‖), h ∈ (V − x̄) ∩ C,
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then one has ∥∥∥∥P (f(x) − f(x̄)) − 1

2
(Pf ′)′(x̄, x− x̄)(x− x̄)

∥∥∥∥
≤ ε‖x− x̄‖2 for all x ∈ B(x̄, δ) ∩ (x̄ + C).

The following lemma is a refinement of Lemma 2 in [24].
Lemma 4.11. Suppose that the hypotheses (H1)–(H3) are verified. Then for any

ε, γ > 0, there exists δ > 0 such that B(x̄, (1 + γ)δ) ⊆ V and for all x ∈ B(x̄, δ), all
u, v ∈ B(0, γ‖x− x̄‖), one has

‖Q(f(x + u) − f(x + v)) − f ′(x̄)(u− v)‖ ≤ ε‖u− v‖.

In addition, assume that Pf ′ is B-directionally differentiable at x̄ with respect to a
cone C; then one has

‖P (f(x + u) − f(x + v)) − (Pf ′)′(x̄, x− x̄)(u− v)‖ ≤ (ε + Lγ)‖x− x̄‖‖u− v‖

for all x ∈ B(x̄, δ) ∩ (x̄ + C), and all u, v ∈ B(0, γ‖x− x̄‖).
Proof. Let ε, γ > 0 be given. Let δ > 0 such that B(x̄, (1 + γ)δ) ⊆ V and

‖Qf ′(x) −Qf ′(x̄)‖ + ‖Pf ′(x) − Pf ′(x̄)‖ < ε for all x ∈ B(x̄, (1 + γ)δ).

Let x ∈ B(x̄, δ), u, v ∈ B(0, γ‖x− x̄‖). By virtue of the mean value theorem (M.V.T),
there exists θ ∈ [0, 1] such that

Q(f(x + u) − f(x + v)) = Qf ′(z)(u− v), with z := x + θu + (1 − θ)v.

Hence,

‖Q(f(x + u) − f(x + v)) −Qf ′(x̄)(u− v)‖ = ‖Qf ′(z) −Qf ′(x̄)‖‖u− v‖ ≤ ε‖u− v‖.

For the second part, in addition, let δ > 0 such that

(4.15) ‖Pf ′(x̄ + th) − Pf ′(x̄) − t(Pf ′)′(x̄, h)‖ < εt, h ∈ (V − x̄) ∩ C, t ∈ [0, δ].

Let x ∈ B(x̄, δ), u, v ∈ B(0, γ‖x − x̄‖) be given. As above, by (M.V.T), noting that
Pf ′ is Lipschitzian on V, one has

‖P (f(x + u) − f(x + v)) − Pf ′(x)(u− v)‖ ≤ Lγ‖x− x̄‖‖u− v‖.

On the other hand, by (4.15), note that Pf ′(x̄) = 0,

‖Pf ′(x)(u− v) − (Pf ′)′(x̄, x− x̄)(u− v)‖ ≤ ε‖x− x̄‖‖u− v‖.

Combining this inequality and the previous inequality, we derive the conclusion.
Proof of Corollary 4.9. By Lemmas 4.10 and 4.11, for any ε with 0 < ε <

min{μ−1/2, ν/2}, there exist δ, γ > 0 such that B(x̄, (1 + γ)δ) ⊆ V and for all
x ∈ B(x̄, δ), all u, v ∈ B(0, γ‖x− x̄‖), one has

‖Q(f(x) − f(x̄)) − f ′(x̄)(x− x̄)‖ ≤ ε‖x− x̄‖,

‖P (f(x) − f(x̄)) − 1

2
(Pf ′)′(x̄)(x− x̄)(x− x̄)‖ ≤ ε‖x− x̄‖2(4.16)

‖Q(f(x + u) − f(x + v)) − f ′(x̄)(u− v)‖ ≤ ε‖u− v‖,(4.17)



ERROR BOUNDS IN METRIC SPACES 17

and

(4.18) ‖P (f(x + u) − f(x + v)) − (Pf ′)′(x̄, x− x̄)(u− v)‖ ≤ ε‖x− x̄‖‖u− v‖.

Let x ∈ B(x̄, δ) \ {x̄} and set h = (x− x̄)/‖x− x̄‖. We distinguish the following two
cases.

Case 1. h /∈ Tν . By (4.16), one obviously derives

d(Q(f(x) − f(x̄)),K1) ≥ ‖x− x̄‖
(
d(f ′(x̄)(h),K1) − ε

)
,

‖x− x̄‖−1d(P (f(x) − f(x̄)),K2) ≥ ‖x− x̄‖
(

1

2
d((Pf ′)′(x̄, h)h,K2) − ε

)
.

Hence

d(Q(f(x) − f(x̄)),K1) + ‖x− x̄‖−1d(P (f(x) − f(x̄)),K2)

≥ (ν/2 − ε)‖x− x̄‖ ≥ (ν/2 − ε)d(x, S).

Case 2. h ∈ Tν . Let g : X → Y and Φ : X ⇒ Y defined by, u ∈ X,

g(u) := Q(f(x + u) − f(x̄)) + ‖x− x̄‖−1P (f(x + u) − f(x̄)) − F (h)(u), and

Φ(u) = F (h,K)(u) + g(u).

One has

‖g(u) − g(v)‖ ≤ ‖P (f(x + u) − f(x + v)) − (Pf ′)′(x̄, x− x̄)(u− v)‖
+ ‖x− x̄‖−1‖P (f(x + u) − f(x + v)) − (Pf ′)′(x̄, x− x̄)(u− v)‖.

Then by relations (4.17) and (4.18), g is Lipschitz on B(0, γ‖x − x̄‖) with constant
2ε. Note that F (h,K)(·) is a closed convex process, since (4.13) and by virtue of
Theorem 1 in [39] due to Robinson, F (h,K) is (globally) metrically regular with
modulus μ. Therefore, by Corollary 4.5, Φ is metrically regular around 0 with respect
to g(0) = Q(f(x) − f(x̄)) + ‖x − x̄‖−1P (f(x) − f(x̄)) with modulus (μ−1 − 2ε)−1.
Moreover, according to Remark 4.6, there exists a constant c > 0 depending only on
μ such that

d(u, Φ−1(y)) ≤ (μ−1 − 2ε)−1d(y, Φ(u)) for all (u, y) ∈ B(0, 2cτγ‖x− x̄‖)
×B(g(0), cγ‖x− x̄‖).(4.19)

Hence, if d(0, Φ(0)) = d(g(0),K) ≥ cγ‖x− x̄‖, then

d(Q(f(x) − f(x̄)),K1) + ‖x− x̄‖−1d(P (f(x) − f(x̄)),K2) ≥ d(g(0),K) ≥ cγd(x, S);

otherwise, taking a sequence {zn}n∈N ⊆ K with limn→∞ ‖g(0) − zn‖ = d(g(0),K),
one has (note that x + Φ−1(zn) ⊆ S)

d(x, S) ≤ lim inf d(0, Φ−1(zn)) ≤ (μ−1 − 2ε)−1 lim inf d(zn, Φ(0))

= (μ−1 − 2ε)−1d(g(0),K).

Consequently, one obtains

d(x, S) ≤ (μ−1 − 2ε)−1
(
d(Q(f(x) − f(x̄)),K1) + ‖x− x̄‖−1d(P (f(x) − f(x̄)),K2)

)
.
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Combining the two cases, we establish the proof.
In [25], Izmailov and Solodov have established a locally covering property at a

point of so-called 2-regular mappings. We next give a new simple proof of that result,
which is based on Corollary 4.5.

Corollary 4.12 (see [25, Theorem 4.1]). Let X, Y be Banach spaces. Suppose
that the assumptions (H1)–(H3) hold with K = {0} and that the mapping Pf ′(·) has
a directional derivative at the point x̄ in a direction h ∈ X with ‖h‖ = 1, satisfying
f ′(x̄)(h) = 0 and (Pf ′)′(x̄, h)(h) = 0. If the mapping f is 2-regular at x̄ with respect
to h, i.e., the continuous linear mapping

u �→ F (h)(u) := f ′(x̄)(u) + (Pf ′)′(x̄, h)(u)

from X to Y is surjective, then there exist a neighborhood W of f(x̄) in Y and a
constant C > 0 such that

d(x̄, f−1(y)) ≤ C‖f(x̄) − y)‖1/2 for all y ∈ W.

Proof. We can assume f(x̄) = 0 without loss of generality. Since F (h)(·) is
surjective, then by the open mapping principle,

M := sup{d(0, F (h)−1(y)) : y ∈ Y, ‖y‖ = 1} < +∞.

For each t > 0, set xt := x + th. Using Lemmas 4.10 and 4.11, for any ε, γ > 0 with
2ε + Lγ ∈ (0,M−1), we can find δ ∈ (0, 1) such that B(x̄, (1 + γ)δ) ⊆ V and that for
all t ∈ (0, δ), all u, v ∈ B(0, γt), one has

‖Q(f(xt))‖ ≤ εt, ‖P (f(xt))‖ ≤ εt2(4.20)

‖Q(f(xt + u) − f(xt + v)) − f ′(x̄)(u− v)‖ ≤ ε‖u− v‖,(4.21)

and

(4.22) ‖P (f(xt + u) − f(xt + v)) − t(Pf ′)′(x̄, h)(u− v)‖ ≤ (ε + Lγ)t‖u− v‖.
Similar to the proof of Case 2 in Corollary 4.9, defining gt : X → Y and Φt : X → Y
by

gt(u) := Q(f(xt + u)) + t−1P (f(xt + u)) − F (h)(u)

and

Φt(u) = F (h)(u) + gt(u) = Q(f(xt + u)) + t−1P (f(xt + u)),

there exists a constant c > 0 depending only on M such that

d(u, Φ−1
t (y)) ≤ (M−1 − 2ε− Lγ)−1‖y − Φt(u)‖

for all (u, y) ∈ B(0, 2cτγt) ×B(gt(0), cγt).(4.23)

Therefore, we obtain (for τ = (M−1 − 2ε− Lγ)−1)

d(0, Φ−1
t (y) = d(xt, f

−1(y))

≤ τ
[
‖Q(f(xt) − y)‖ + t−1‖P (f(xt) − y)‖

]
for all y ∈ B(gt(0), cγt).

Take ε ∈ (0,M−1/2) such that ε < cγ/2. From (4.20) it yields ‖gt(0)‖ ≤ 2εt. Set
η := min{δ, cγ − 2ε}2. Now let y ∈ B(0, η) and take t = ‖y‖1/2. Then, obviously,
y ∈ B(gt(0), cγt). Hence, from (4.23), we obtain

d(x̄, f−1(y)) ≤ d(xt, f
−1(y)) + t ≤ τ(‖Q(f(xt) − y)‖ + t−1‖P (f(xt) − y)‖) + t

≤ τ(‖Qy‖ + t−1‖Py‖) + 2εt + t ≤ τ(‖y‖ + 2(ε + 1)‖y‖1/2),

establishing the proof.
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[4] D. Azé and J.-N. Corvellec, On the sensitivity analysis of Hoffman constants for systems
of linear inequalities, SIAM J. Optim., 12 (2002), pp. 913–927.
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BRANCH-AND-CUT FOR THE MAXIMUM FEASIBLE
SUBSYSTEM PROBLEM∗

MARC E. PFETSCH†

Abstract. This paper presents a branch-and-cut algorithm for the NP-hard maximum feasible
subsystem problem: For a given infeasible linear inequality system, determine a feasible subsystem
containing as many inequalities as possible. The complementary problem, where one has to remove
as few inequalities as possible in order to make the system feasible, can be formulated as a set
covering problem. The rows of this formulation correspond to irreducible infeasible subsystems,
which can be exponentially many. It turns out that the main issue of a branch-and-cut algorithm for
the maximum feasible subsystem problem (Max FS) is to efficiently find such infeasible subsystems.
We present three heuristics for the corresponding NP-hard separation problem and discuss cutting
planes from the literature, such as set covering cuts of Balas and Ng, Gomory cuts, and {0, 1

2
}-

cuts. Furthermore, we compare a heuristic of Chinneck and a simple greedy algorithm. The main
contribution of this paper is an extensive computational study on a variety of instances arising in a
number of applications.

Key words. infeasible linear inequality system, irreducible infeasible subsystem (IIS), maximum
feasible subsystem problem, minimum IIS-cover, branch-and-cut
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1. Introduction. In the maximum feasible subsystem problem (Max FS), we
are given an infeasible linear inequality system Σ : {Ax ≤ b}, with A ∈ R

m×n,
b ∈ R

m, and have to find a feasible subsystem containing as many inequalities as pos-
sible. This NP-hard combinatorial optimization problem has a number of interesting
applications in a wide range of fields, for instance, in linear programming [29, 31, 36],
statistical discriminant analysis and machine learning [4, 19, 43], telecommunications
[54], and computational biology [61]. Additional applications and a survey can be
found in [4] and [5], respectively.

The complementary problem of Max FS amounts to removing as few inequalities
of Σ as possible so that the resulting system is feasible. To achieve feasibility, one has
to remove at least one inequality from each irreducible infeasible subsystem (IIS), i.e.,
an infeasible subsystem of Σ for which every proper subsystem is feasible. Introducing
a binary variable yi for each inequality of Σ, the complementary problem can be
formulated as a set covering problem and is therefore called Min IIS Cover:

(1)

min
∑m

i=1 yi

such that
∑

i∈I yi ≥ 1 for all IISs I,

y ∈ {0, 1}m.

Since the number of IISs can be exponential in the size of the system Σ (see
Chakravarti [28] and Pfetsch [53]), IISs have to be generated dynamically in order to
solve this formulation of Min IIS Cover efficiently.
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Clearly, the set of all inequalities not contained in a solution of Max FS form
a solution of Min IIS Cover and vice versa. Hence, these two problems are
equivalent when solving to optimality and are both strongly NP-hard; see Johnson
and Preparata [39], Sankaran [58], and Chakravarti [28]. In terms of approximabil-
ity, however, they differ: Max FS does not admit a polynomial-time approximation
scheme, unless P = NP, but there exists a 2-approximation; see Amaldi and Kann [9].
Min IIS Cover is harder to approximate: Unless P = NP, it cannot be approximated
in polynomial time within any constant factor; see Amaldi and Kann [10].

In this paper, we present a branch-and-cut approach for Max FS via formu-
lation (1) for Min IIS Cover. A key issue of this approach is to find violated
IIS-inequalities, i.e., the inequalities arising from IISs in (1). The corresponding sep-
aration problem is NP-hard, and we present three heuristics for it (see section 3.2).
Two of these methods generate either a feasible solution for Min IIS Cover or a
(hopefully violated) IIS-inequality. As long as no feasible solution has been gener-
ated, the process is iterated, which often produces many useful IIS-inequalities. The
additional benefit is reasonably good primal solutions, which can be improved by
a simple greedy algorithm. This combination leads to an effective primal heuristic.
Additionally, we examine the application of inequalities of Balas and Ng [18] for set
covering problems, {0, 1

2}-cuts, and Gomory cuts.
The emphasis of this paper is on an extensive computational study of the branch-

and-cut implementation. Our aim is to show the potential and the limits of such
an approach by performing tests on three problem sets: random infeasible inequality
systems (section 4.2), problems arising in digital video broadcasting (section 4.3), and
classification problems (section 4.4).

The theoretical foundation for our approach appears in Amaldi, Pfetsch, and
Trotter [12], where algorithmic and geometric questions concerning IISs are studied
and the feasible subsystem polytope is investigated. (The polyhedral results carry
over to the polytope for Min IIS Cover by a simple affine transformation.) The
work presented here is an improved version of part of the author’s Ph.D. thesis [53].

In the literature to date, only two exact approaches towards Min IIS Cover

have appeared. Parker and Ryan [52] discuss an iterative approach that generates
IISs in each step and then solves an integer program. This approach turns out to be
impractical for harder instances. Codato and Fischetti [33] present a branch-and-cut
algorithm for Min IIS Cover in a more general context. We discuss these approaches
in more detail in the next section. Our algorithm improves upon both methods and
is currently the best available exact approach (see section 4).

The outline of this paper is as follows. In section 2 we review solution approaches
for Max FS. In section 3 we describe the main ingredients of our branch-and-cut
implementation. We discuss a way to check the feasibility of solutions for Min IIS

Cover, three methods to separate IIS-inequalities, primal heuristics, preprocessing,
branching, inequalities by Balas and Ng, and other used cutting planes. In section 4
we extensively test the implementation on the abovementioned problem sets. We close
with some conclusions in section 5.

We use the following notation. We define [n] := {1, . . . , n} for n ∈ N and typeset
vectors in bold font. For a set S ⊆ [n] and a vector x ∈ R

n, define

x(S) =
∑
i∈S

xi .

The support of a vector x ∈ R
n is supp(x) := {i ∈ [n] : xi �= 0}. By 1l we denote a

vector of all 1’s of appropriate dimension.
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2. Alternative solution approaches. In this section we give a short overview
of solution approaches for Max FS and Min IIS Cover.

In the context of linear programming, attention was first devoted to the problem
of identifying IISs with a small and possibly minimum number of inequalities (see
Greenberg and Murphy [36], Chinneck [30], and Chinneck and Dravnieks [32]). The
goal is to help the modeler resolve infeasibility of large linear programs (LPs). Since
minimum cardinality covers of IISs reveal essential information about infeasibility of
the model and are often smaller than IISs, emphasis has shifted towards their iden-
tification. Chinneck [29, 31] developed extended greedy heuristics for Max FS/Min

IIS Cover and provided computational results; see section 4.4.
For the application of Min IIS Cover to classification problems (see section 4.4),

several heuristics were proposed, based on nonlinear programming formulations of
Max FS (Bennett and Bredensteiner [19], Bennett and Mangasarian [20], and Man-
gasarian [43]).

An exact integer programming approach for Min IIS Cover appeared in Parker
and Ryan [52] and Parker [51]. Their idea is to consider the formulation in (1)
with a partial list of IISs. If there exist IISs that are not covered by a solution to
this formulation, they are added and the process is iterated. Otherwise, an optimal
solution to Min IIS Cover is found. Parker and Ryan discuss several methods
of generating IISs at each step and consider heuristics for solving the set covering
problem (only the last instance has to be solved exactly).

We reimplemented a basic version of their algorithm, where the set covering prob-
lems are solved to optimality. This implementation turned out to be inferior to our
branch-and-cut implementation: It could not solve within one hour instances solved
by our branch-and-cut approach within a few minutes. We therefore refrained from
performing further experiments.

There is a straightforward mixed integer programming formulation for Min IIS

Cover containing a binary variable with a “big-M” for each of the inequalities of Σ,
so that an inequality is relaxed when the corresponding binary variable is 1. This for-
mulation has the typical numerical problems of big-M formulations and is in general
inefficient for Max FS; see Parker [51]. If there are fixed bounds on the variables,
however, one can obtain a tight formulation. This leads to a quite efficient approach;
see Rossi, Sassano, and Smriglio [54] and Codato and Fischetti [33]. In fact, Codato
and Fischetti propose a general way of removing the “big-M” from this type of for-
mulation and apply it to classification instances. In this context, it leads to the
formulation (1), and their solution method is, in fact, a branch-and-cut method for
Min IIS Cover, independent from our approach. Computational results show that
their approach is faster compared to the big-M formulation. In section 4.4 we compare
our implementation with their approach.

Versions of the classical relaxation method of Agmon [3] and Motzkin and Schoen-
berg [47] for solving linear inequality systems can be applied to minimize the sum of
violations in infeasible linear inequality systems. Randomized variants of this method
were proposed by Amaldi [4] to solve Max FS. Amaldi and Hauser [8] and Amaldi,
Belotti, and Hauser [6] establish probabilistic convergence guarantees to an optimal
solution of Max FS under appropriate conditions. Computational results for digital
video broadcasting data, classification instances, and huge systems arising in compu-
tational biology are given in [6].

Amaldi, Bruglieri, and Casale [7] propose a two-step heuristic in which first a
linearization of an exact bilinear formulation of Max FS is used to derive a feasible
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subsystem. In the second step, a reduced problem is solved to optimality in order to
identify inequalities that can be added to the first system while preserving feasibility.
This turns out to be competitive with respect to the method of Codato and Fischetti
and an integer programming solver applied to the “big-M” formulation for the whole
system.

3. Ingredients for branch-and-cut. In the following we assume that the
reader is familiar with the branch-and-cut approach. More information can be found
in Nemhauser and Wolsey [48], Padberg and Rinaldi [50], Thienel [60], and Caprara
and Fischetti [26]. A description and computational study of Gomory cuts is given in
Balas et al. [17].

Recall that we are given the infeasible system Σ : {Ax ≤ b}, where A ∈ R
m×n and

b ∈ R
m. Depending on the application, mandatory variable bounds can be present;

i.e., these bounds may not be removed for obtaining a feasible system (see sections 4.3
and 4.4). This can easily be dealt with in the branch-and-cut approach. Furthermore,
weighted versions of Min IIS Cover are easy to handle, too.

Without loss of generality we can restrict attention to inequality systems in the
form of Σ: Clearly, bounds on variables and “greater or equal” inequalities can be
transformed to this format. Equations can be replaced by a pair of opposing inequal-
ities. Since any point satisfies at least one inequality out of each pair, an optimal
solution to the new instance contains m∗ + mE inequalities if and only if an optimal
solution to the original instance with m∗ linear relations exists; here mE is the number
of equations. Thus, from a computational point of view, it suffices to handle systems
in the form of Σ. Polyhedral results for the two cases, however, may differ; see [12, 53]
for more information.

To simplify notation, we identify an inequality of Σ with its index. Then S(Σ) :=
[m] is the set of constraints of Σ. With this notation, I ⊆ S(Σ) is an IIS of Σ if and
only if all proper subsets of I are feasible. We call a set C ⊆ S(Σ) an IIS-cover if it
intersects every IIS of Σ.

In the rest of this section we give a more detailed account of the main aspects of
our implementation: the recognition problem for IIS-covers, the separation problem of
IIS-inequalities, pool handling, primal heuristics, preprocessing, branching, and other
cutting planes.

3.1. Recognition problem for IIS-covers. We consider the following funda-
mental problem: Given a subset C ⊆ S(Σ), check whether it is an IIS-cover and if this
is not the case, generate a witness, i.e., an IIS which is not covered. Our approach is
based on the following theorem.

Theorem 1 (Gleeson and Ryan [35]). Let Σ : {Ax ≤ b} be an infeasible system.
Then the IISs of Σ are in one-to-one correspondence with the supports of the vertices
of the polyhedron

P (Σ) := {y ∈ R
m : yTA = 0, yTb = −1, y ≥ 0 }.

Note that the vertices of P (Σ) are uniquely defined by their supports. This theorem
is strongly related to the Farkas lemma, which states that P (Σ) �= ∅ if and only if Σ
is infeasible; see, e.g., Schrijver [59]. The polyhedron P (Σ) is called the alternative
polyhedron of Σ.

To apply Theorem 1, we define for S ⊆ S(Σ) the polyhedron

PS(Σ) := {y ∈ P (Σ) : yi = 0, i ∈ S },
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which might be empty. We need the following fact.
Lemma 2 (Parker and Ryan [52]). The set C ⊆ S(Σ) is an IIS-cover if and only

if PC(Σ) = ∅.
Proof. The system defining P (Σ), in which all variables indexed by C are removed,

has no solution if and only if PC(Σ) = ∅. By the Farkas lemma, the former is the
case if and only if Σ with inequalities indexed by C removed is feasible, i.e., C is an
IIS-cover.

Recognizing whether C ⊆ S(Σ) is an IIS-cover is now easy: If PC(Σ) = ∅, by
Lemma 2, C is an IIS-cover. Otherwise, let v be a vertex of PC(Σ). Then we have
supp(v) ∩ C = ∅, showing that supp(v) is an IIS that is uncovered (by Theorem 1).
This provides a polynomial-time algorithm for the problem, since finding a vertex of a
polyhedron can be done in polynomial time; see Grötschel, Lovász, and Schrijver [37].
Note that by Theorem 1 and Lemma 2, PC(Σ) always has a vertex if it is nonempty.

This recognition test in fact suffices for a rudimentary branch-and-cut algorithm,
since we can now test feasibility of a vector y ∈ {0, 1}m for (1) by testing whether
supp(y) is an IIS-cover.

3.2. Separation of IIS-inequalities. IIS-inequalities play a prominent role in
the formulation (1) for Min IIS Cover. In fact, it can be shown that the inequality
arising from the IIS I defines a facet of the polytope

PIISC = conv{y ∈ {0, 1}m : y(S) ≥ 1 for all IISs S },

as long as |I| > 1; see Amaldi, Pfetsch, and Trotter [12]. Therefore, the following
separation problem for IIS-inequalities is crucial: Given a vector y∗ ∈ [0, 1]m, check
whether there exists an IIS I so that its corresponding inequality is violated by y∗,
i.e., y∗(I) < 1. The recognition problem for IIS-covers is a special case, where y∗ is
the incidence vector of the set to be tested. In the general case, however, we have the
following.

Proposition 3 (Amaldi, Pfetsch, and Trotter [12]). The separation problem for
IIS-inequalities is NP-hard.

In this section, we therefore present three heuristics for the separation problem.
All of these heuristics may fail to produce a violated IIS-inequality.

The heuristics build on the following reformulation of the separation problem:
Compute

(2) λ := min{y∗(S) : S = supp(v), v vertex of P (Σ) }.

If λ < 1, by Theorem 1, supp(v) provides an IIS whose IIS-inequality is violated;
otherwise no such IIS exists (we define λ = ∞ if P (Σ) = ∅).

3.2.1. Method 1: “Single.” The first quite intuitive idea for separating an
IIS-inequality, already used by Parker and Ryan [52], is to approximate (2) by the
following LP:

min{ (y∗)Tp : p ∈ P (Σ) }.

A vertex solution provides an IIS, whose corresponding inequality is not necessarily
violated, but in practice often is.

This method generates only one IIS at a time. We also experimented with solving
the above LP by the simplex algorithm and then testing whether the support of each
vertex on the path to the optimum is an IIS whose inequality is violated. In our
experiments this variant was inefficient and will not be considered further.
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3.2.2. Method 2: “Extend.” We extend Method 1 as follows. Let S be the
support of y∗. Applying Lemma 2, we can check whether S is an IIS-cover by finding
a vertex solution of

min{ (y∗)Tp : p ∈ PS(Σ) }

if one exists. If the LP is feasible, the result gives us a vertex which corresponds to
an IIS; otherwise we found an IIS-cover, i.e., a primal solution for Min IIS Cover.

This approach can be iterated when S is not an IIS-cover. Let I be the IIS
obtained in this case. We enlarge S greedily by an element of I and iterate. In our
implementation, we choose an element of I that is contained in the maximal number
of IISs we have found so far. At termination this yields an IIS-cover. This procedure
is related to a primal heuristic proposed by Ryan [57].

The IISs found by this approach have several nice properties. First, the new IISs
are different from all IISs that were known before the run if the current solution y∗ of
the LP-relaxation satisfies y∗(I) ≥ 1 for each previously found IIS I. This follows since
at least one element of each I is contained in S, and hence I cannot be generated
again. Second, the corresponding inequalities are always violated, since they have
empty intersection with S ⊇ supp(y∗); i.e., y∗(I) = 0 < 1 for each produced IIS I.
Third, by construction of the set S, the generated IISs are pairwise different.

This method turns out to be quite effective for generating many violated IIS-
inequalities. Furthermore, we obtain a primal solution in each run, which can be
improved to very good solutions; see section 3.4. When the current LP-relaxation
contains many cuts, however, the support of y∗ tends to be large and often is already
an IIS-cover or close to one, and the method cannot produce new IISs; this often
happens in the deeper regions of the branch-and-bound tree. This might even be
desirable, since this saves time for high depths. Nevertheless, this situation can be
changed, as indicated by the next method.

3.2.3. Method 3: “Round.” The idea of Method 2 can be further extended
by using the fact that an arbitrary set S can be used at the start. In the extension,
we choose α ∈ [0, 1] and initially let S := {i : y∗i ≥ α}. In the implementation we
start with α = 0.1 and then increase α by 0.1 until S is not an IIS-cover (in this case
the above procedure is started). We terminate with a failure if α exceeds 0.6.

The fact that S is smaller for larger α has two effects: First, the number of steps
needed to greedily obtain an IIS-cover is larger, and hence the number of generated
IISs is increased. Second, the method also computes IISs in the deeper regions of the
tree.

Again, in each step an IIS is generated, which is not covered by S, except in
the last step where we obtain an IIS-cover. In contrast to the method “extend,” the
generated IISs are not necessarily new, and their corresponding inequalities may not
be violated by y∗.

3.3. Pool for IIS-inequalities. The above three methods tend to produce
many IISs, which we store in a pool. It turns out that the best performance of
the algorithm is achieved by checking the pool for violated inequalities in every node
of the tree. Of course, the pool should be as small as possible without losing impor-
tant inequalities. Therefore, the pool is equipped with an aging mechanism which
removes IISs whose inequality has not been active for some time.

The computational results presented in section 4 indicate that only a small frac-
tion of the total number of IISs needs to be generated by our branch-and-cut imple-
mentation; indeed, for larger problems there are far too many IISs to be enumerated
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completely (cf. Table 2 in section 4.2). Hence, the size of the pool can be rela-
tively small.

3.4. Primal heuristics. Chinneck [31] proposed a greedy heuristic for Min IIS

Cover, which we use as an initial primal heuristic. The basic tool is a so-called elastic
LP in which the inequalities Σ : {Ax ≤ b} are relaxed by adding slack variables and
the sum of violations is minimized:

min 1lTs

s.t. Ax− s ≤ b,

s ≥ 0.

Starting with S = ∅, in each iteration S ⊆ S(Σ) is enlarged by an inequality that
yields the largest drop in the elastic LP objective if its objective coefficient is set to 0.
The method stops once the objective is 0, i.e., S is a Min IIS Cover. To speed
up the solution, in each iteration only inequalities from a candidate set are checked.
Chinneck proposes a measure based on the violation and dual variables to generate
the candidate set. We refer to [31] for details.

For a heuristic running in the tree, we use a primal heuristic that greedily de-
creases the size of a given IIS-cover until a minimal one is obtained. We start this
heuristic from IIS-covers produced by the separation methods in section 3.2, if avail-
able (otherwise we use a simple rounding heuristic). We start with C being an IIS-
cover to be improved. We consider each element from C in the order of increasing
fractional value of the current LP-solution y∗. We remove an element if the remaining
set is an IIS-cover (which is checked by the method in section 3.1).

3.5. Preprocessing. In a preprocessing step we search for small IISs. Such
small IISs are of interest since their corresponding IIS-inequalities provide “strong”
cuts and are hard to find by other methods.

We first check for IISs of cardinality one, e.g., 0x ≤ −1. Then we check for IISs
that involve one inequality and bounds on the variables (if present). Such IISs often
occur when variable bounds are mandatory; see, e.g., section 4.4. In this case, a single
inequality might be infeasible with the bounds and counts as an IIS. Furthermore,
we look for IISs of cardinality two, which are easy to find by comparing their normal
vectors and right-hand sides. Identifying other types of IISs would require higher
computational effort.

3.6. Branching. As a branching rule, we apply reliability branching, introduced
by Achterberg, Koch, and Martin [2]. It performs strong branching on a subset of the
variables, which are chosen based on their so-called pseudocosts during branching. If
in strong branching one of the child nodes turns out to be infeasible, the corresponding
variable is fixed to the complementary value; if both children are infeasible, the current
node can be pruned.

We also experimented with constraint branching rules. For instance, we used the
well-known rule of Ryan and Foster [56]. This rule was superior to a simple variable
branching, but inferior to reliability branching both in terms of computation time and
the number of branch-and-bound nodes. We therefore selected reliability branching
for all tests.

3.7. Inequalities for set covering. Many facet-defining inequalities for the
set covering polytope have been investigated; see Ceria, Nobili, and Sassano [27] and
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Borndörfer [22]. However, few (problem-specific) polynomial-time separable inequali-
ties for set covering are known. For many classes of inequalities the complexity status
is unknown, but is likely to be NP-hard.

We experimented with the aggregated cycle cuts of Borndörfer and Weismantel
[23, 24]. Unfortunately, on our test problems their separation heuristic almost never
found a violated inequality. Furthermore, it remains an interesting open problem to
identify problem-specific inequalities for Min IIS Cover.

A class of inequalities for set covering that we use in our implementation were
proposed by Balas and Ng [18]. To describe these inequalities, consider the set covering
polytope PSC(D) = conv{y ∈ {0, 1}m : Dy ≥ 1l}, where D = (dij) ∈ {0, 1}k×m.
Assume aTy ≥ β, with a ∈ Z

m and β ∈ Z, defines a facet of PSC(D). It is well
known that if β > 0, then a ≥ 0, and if β = 1, then a is a row of D (see, e.g., [18]).

Balas and Ng showed that for every facet defining inequality aTy ≥ 2 with a ∈ Z
n,

there exists a set S ⊆ [k] such that a = aS , where

aSj =

⎧⎪⎪⎨
⎪⎪⎩

0 if dij = 0 for all i ∈ S,

2 if dij = 1 for all i ∈ S,

1 otherwise

for j = 1, . . . ,m.

These inequalities can also be obtained by a Chvátal–Gomory rounding procedure.
Furthermore, Balas and Ng discuss conditions under which aSTy ≥ 2 defines a facet
of PSC(D).

The separation problem for the above inequalities is NP-hard; see Amaldi and
Pfetsch [11]. However, when the size of S is fixed, the separation problem can be
solved in polynomial time by enumeration. In our implementation we enumerate
sets S of cardinality three and check whether the inequalities aSTy ≥ 2 are violated
by the current LP-solution. Note that sets S of cardinality two are uninteresting,
since in this case aSTy ≥ 2 is the sum of two IIS-inequalities and hence is never
violated if the IIS-inequalities are satisfied.

Additionally, we try to strengthen these cuts: If an inequality is violated, we
greedily enlarge the set S as long as the violation of the resulting inequality increases.
See section 4 for computational results.

3.8. General purpose inequalities. In our computational experiments we
used Gomory (mixed integer) cuts as implemented in SCIP (see section 4); see the
books of Nemhauser and Wolsey [48] or Schrijver [59] for a description.

Further, we used {0, 1
2}-cuts introduced by Caprara and Fischetti [25]. Codato

and Fischetti [33] identified these cuts as important for solving Min IIS Cover.
We implemented these cuts along the lines of Hansen, Labbé, and Schindl [38]. See
also Andreello, Caprara, and Fischetti [13] for a computational study of {0, 1

2}-cuts.
Note that in our implementation {0, 1

2}-cuts are produced only for set covering and
nonnegativity inequalities; in particular, they do not depend on {0, 1

2}-cuts produced
earlier.

We also experimented with mixed integer rounding cuts (CMIR) (see Marchand
and Wolsey [44]) and strengthened Chvátal–Gomory cuts (see Letchford and Lodi
[42]) as they are implemented in SCIP. The results were, however, discouraging, and
we therefore do not present them.

4. Computational results. In this section we discuss computational results
of our branch-and-cut implementation for Min IIS Cover. The algorithm was im-
plemented in C++ and uses version 0.90 of the framework SCIP by Achterberg [1].
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CPLEX 10.11 is used as the basic LP solver. The computations were performed on
a 3.4 GHz Pentium 4 machine with 3 GB of main memory and 1 MB cache running
Linux. All instances used in the following can be obtained from the web page [45].

We use best-first search as a node selection scheme and the branching rule ex-
plained in section 3.6. All separation routines are called only every tenth level of the
tree, except that the pool of IIS-inequalities is checked in every node of the tree. In
nodes in which cuts are separated, we proceed until no more violated cuts can be
found. SCIP chooses among the generated cuts according to an orthogonality mea-
sure; see, for instance, Andreello, Caprara, and Fischetti [13]. We perform reduced
cost fixing at every node of the tree.

Before presenting computational results, we want to discuss the influence of the
limited precision used for solving LPs. The basic question that has to be repeatedly
answered in our context is whether a given system is infeasible or not. Today’s
LP solvers are tuned towards quickly finding an optimal solution of a feasible LP.
Sometimes their bases are not really optimal, but this has only a negligible effect
on the objective function value; see Koch [41]. When checking infeasibility, however,
small errors can lead to completely wrong decisions. The answer depends on the
particular instance, the solution method of the LP solver, its parameters, e.g., the
precision (usually around 10−6), and often also the preprocessing and starting basis.
Being aware of the possibility that we might produce wrong results, as a safeguard,
we confirmed that the final solution is really an IIS-cover for the original system.

Currently, using exact LP solvers, like the ones included in lrs [15] or cdd [34]
is computationally too expensive. In the future, codes that use dynamically adjusted
precision might help; see Applegate et al. [14].

4.1. The Netlib problems. The Netlib library [49] contains a well-known set
of 29 infeasible linear inequality systems. We do not report results on these data since
these instances all can be solved within seconds, except for numerical difficulties with
the problem gran. They were also solved to optimality by Parker [51] and Parker and
Ryan [52]; for more computational results on these problems, see Chinneck [31] and
Pfetsch [53].

4.2. Random problems. We consider random inequality systems to compare
different cut strategies in the branch-and-cut implementation. We used difficult ran-
dom instances that nevertheless can be solved within approximately one hour of com-
putation time. In contrast, the instances discussed in the following sections vary
highly in size and complexity: Most are either solved within seconds or cannot be
solved to optimality in reasonable time.

The infeasible random inequality systems are generated as follows: Each coeffi-
cient and the right-hand side were chosen to be a random integer in the range −100
to 100. We generated five instances for each of the combinations (5, 100), (10, 80),
(15, 80), (20, 90), (25, 90), where the first component is the dimension n of the space
and the second one is the number m of inequalities. Each system turned out to be
infeasible (this almost always happens as soon as m > 2 · n; see Motzkin [46]) and
is almost completely dense. Note that all the instances in the following sections are
dense as well.

In Theorem 1, the alternative polyhedra of these random systems are nondegen-
erate with high probability. It is currently unknown whether Max FS and Min IIS

Cover restricted to such systems are NP-hard.
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Table 1

Results of the branch-and-cut algorithm on random inequality systems for different IIS sepa-
ration strategies. The numbers are averages over five instances of each size. The last line gives the
averages over each column.

Single Extend Round
n m Nodes Time IISs Nodes Time IISs Nodes Time IISs

5 100 70473.0 1050.64 8781.0 120371.4 1808.71 5281.4 16913.8 564.44 11034.8
10 80 167970.8 1226.45 10298.4 174302.6 1689.26 8450.4 79086.6 996.51 14491.8
15 80 214004.0 1509.72 53419.8 255933.0 1984.60 44825.8 106119.0 1465.16 62151.0
20 90 50029.0 276.05 22354.8 59117.8 337.11 15869.0 28699.0 317.22 23418.0
25 90 169868.2 1185.81 99728.6 243568.6 1534.17 80400.4 77147.0 1235.41 155331.4

∅: 134469.0 1049.73 38916.5 170658.7 1470.77 30965.4 61593.1 915.75 53285.4

We first compare the three different strategies to separate IIS-inequalities of sec-
tion 3.2. Table 1 provides a comparison of methods “single” (section 3.2.1), “extend”
(section 3.2.2), and “round” (section 3.2.3). Columns labeled “nodes” give the av-
erage number of nodes in the branch-and-bound tree, those labeled “time” are the
average CPU times in seconds, and those labeled “IISs” give the average number of
IISs found during the optimization; here averages are taken over the five instances of
each size. To eliminate the influence of primal heuristics we initialized all runs with
the optimal solution.

Among the three IIS-inequality separation versions, method “round” outperforms
methods “single” and “extend” in the number of nodes and in the total computation
time, although method “single” is sometimes a bit faster. Method “round” also gen-
erates the highest number of IISs. Based on this result, we decided to use method
“round” in the following experiments.

Table 2 shows the total number of IISs and the number of IISs found by method
“round” for small random instances generated in the same manner as above. By The-
orem 1, the IISs correspond to vertices of the alternative polyhedron. We enumerated
the vertices with lrs [15]. Since the alternative polyhedra are nondegenerate, the
IISs can be generated in time polynomial in the input and output size; see Avis and
Fukuda [16]. Note that for general polyhedra this is not possible unless P = NP; see
Khachiyan et al. [40].

We could not enumerate or count the IISs for larger instances. From Table 2,
however, it can be expected that the total number of IISs for the instances used in
Table 1 is much higher. We conclude that the branch-and-cut implementation needs
only a small part of the total set of IISs (the number of IISs for instance (5, 70) is
two orders of magnitudes larger than the average number of IISs found by any of the
variants in Table 1).

Table 2

The number of IISs found by method “round” for random problems and the total number of IISs.

n m Found Total

5 30 11 1986
5 40 101 44816
5 50 520 204833
5 60 526 614853
5 70 453 1818718
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Table 3

Results of the branch-and-cut algorithm on random inequality systems for different cut gener-
ation strategies; all variants use method “round” as a basis. Given are the average values over all
25 instances.

Type Nodes Time Root # BaNg # Gom. #{0, 1
2
}

round 61593.1 915.75 6.54 0.0 0.0 0.0
BaNg 58796.4 1054.39 6.80 6134.0 0.0 0.0
Gom. 58434.7 1164.56 7.00 0.0 10440.6 0.0
{0, 1

2
} 61479.1 957.37 6.54 0.0 0.0 43.0

BaNg & Gom. 57911.9 1298.49 7.22 6955.3 10234.8 0.0
BaNg & {0, 1

2
} 60197.0 1080.89 6.78 5738.6 0.0 31.0

Gom. & {0, 1
2
} 58852.8 1158.42 7.01 0.0 10441.2 56.8

all 60092.7 1365.63 7.19 6699.5 10335.6 46.2

Table 3 lists computational results for all combinations of method “round” with
Balas/Ng cuts (BaNg), Gomory cuts (Gom.), and {0, 1

2}-cuts. The values are averages
over all 25 instances. Column “root” gives the dual bound after the root node. The
last three columns list the number of cuts found for the respective methods. Again,
we initialize the algorithms with the optimal solution. All cuts are separated every
ten levels of the tree.

The studied combinations on average reduce the number of nodes with respect
to the method “round” alone; the best combination in this respect are Balas/Ng
and Gomory cuts. Furthermore, all combinations, except {0, 1

2}-cuts, improve the
root dual bound with respect to the basic version. The studied methods, however,
increase the CPU time needed. The main slowdown comes from the fact that the
intermediate LPs become harder to solve. The corresponding separation times are
acceptable, however. The average separation times for the version that uses all three
methods are 1.8% (BaNg), 17.0% (Gomory), 1.0% ({0, 1

2}). We conclude that the
basic version “round” alone is fastest on random systems.

Table 4 shows average results for method “round” on random instances with
m = 80 inequalities. It can be observed that the optimal values of the random
problems tend to decrease when increasing the dimension. This often makes the
problems more tractable. But of course, the solution of the intermediate LPs over the
alternative polyhedron is more time consuming.

4.3. Digital video broadcasting problems. In this section we present results
for problems arising in an application of Max FS in telecommunications, which is
described by Rossi, Sassano, and Smriglio [54]. Here, to plan the digital video broad-
casting (DVB) network of Italy, transmitters have to be placed and their emission

Table 4

Results of method “round” for random instances with m = 80 inequalities. Column “Opt” gives
the average optimal solution values. All entries are averages over five instances.

n Nodes Time IISs Root Opt

5 2029.4 32.26 3527.8 12.23 21.8
10 79086.6 996.51 14491.8 6.88 15.8
15 106119.0 1465.16 62151.0 4.56 11.8
20 7408.0 56.18 5743.4 2.69 5.8
25 16472.6 132.79 20884.0 2.43 6.8

∅: 42223.1 536.58 21359.6 5.76 12.4
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Table 5

Results for the DVB instances in section 4.3 with method “round.” The column labeled “ [6]”
lists the names of the instances as used in Amaldi, Belotti, and Hauser [6].

Name [6] m Nodes Time IISs Root Dual Best Gap

dvb1 dvb2 1044 503 103.6 3064 166.4 174.0 174 0.0
mfs UHF P4 1 dvb1 642 1 2.3 86 104.0 104.0 104 0.0
mfs UHF P4 3 dvb3 1717 539 599.72 5414 174.2 183.0 183 0.0
mfs UHF P4 4 – 1174 68049 196514.41 1002912 90.3 115.2 124 7.6

frequency and power have to be chosen as to maximize the area coverage, subject
to quality constraints. A subproblem of this can be modeled as a linear inequality
system. Interference of the signals leads to areas where the digital signal cannot be
received, resulting in an infeasible system. Maximizing the total weight of satisfied
inequalities then amounts to maximizing the area coverage.

Linearizing the model leads to numerically challenging problems. The coefficients
take values between 10−11 and 1011, and the resulting LPs are very instable. We
tackled the problems by scaling the original instances before starting the branch-and-
cut algorithm. This helps but nevertheless leaves hard problems. Without scaling,
however, the algorithm terminated early with a completely wrong solution.

We could compute optimal solutions for the smallest instances used in Amaldi,
Belotti, and Hauser [6] and Amaldi, Bruglieri, and Casale [7]; see Table 5. Here,
column “dual” gives the final lower bound, “best” denotes the value of the best
primal solution obtained (i.e., the primal bound), and “gap” is the gap between
the dual bound and primal bound in percent, i.e., (best − dual)/dual · 100.0. The
dimension of these instances is always 487, and the variable bounds (0 ≤ x ≤ 1) are
mandatory. We separate {0, 1

2}-cuts every 10th level of the tree. Our primal heuristic
of section 3.4 is run every 40th level. Note that these instances can be solved faster
using the “big-M” formulation (resulting in the same optimal solution values); see
[6, 7].

4.4. Classification problems. One of the historically first applications of Min

IIS Cover is the design of linear classifiers; see Amaldi [4], Mangasarian [43], Bennett
and Bredensteiner [19], and Rubin [55].

In this application, one is given m points p1, . . . ,pm in R
N , each belonging to

one of two possible classes P1 and P2; i.e., P1 and P2 partition the set {p1, . . . ,pm}.
Each of the N components of the points stores a measurement of an attribute (or
feature) relevant for the concrete application. The goal is to strictly separate these
points in R

N by an oriented hyperplane defined by aTx ≤ β, with a ∈ R
N and β ∈ R.

The points in P1 should satisfy the inequality aTx < β, and the points in P2 should
satisfy aTx > β. Hence, we are looking for (a, β) ∈ R

n, with n := N + 1, so that the
number of misclassified points

|{p ∈ P1 : aTp ≥ β}| + |{p ∈ P2 : aTp ≤ β}|

is minimized. This minimization is performed in order to maximize the chance that
a new point can be correctly classified. Note that with this formulation points in
{x : aTx = β} are counted twice (the models can be modified to eliminate this).

In the following we will discuss two equivalent ways to model this problem via
Min IIS Cover and present computational results for different data sets. In the first
model no bounds on the variables are present, while in the second all variables are
bounded except one.
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For the first model we use variables (a, β) ∈ R
n and the following inequalities:

pTa− β

{
< 0 if p ∈ P1

> 0 if p ∈ P2

for each p ∈ {p1, . . . ,pm}.

Since (a, β) are unbounded we can scale them to obtain

pTa− β

{
≤ −1 if p ∈ P1

≥ 1 if p ∈ P2

for each p ∈ {p1, . . . ,pm}.

Of course, any other positive value instead of 1 can be taken in order to obtain a
numerically more stable system.

The second model is due to Rubin [55]. It uses variables a ∈ R
N and β, γ ∈ R in

the following system:

pTa− β + γ ≤ 0 if p ∈ P1,

pTa− β − γ ≥ 0 if p ∈ P2,

−1l ≤ a ≤ 1l,

γ ≥ 0.001.

Hence, the coefficients of the normal vector a are bounded to lie within the interval
[−1, 1], while β is unbounded. Of course, the lower bound 0.001 for γ can be replaced
by any suitably small positive number. For instances arising from this model the
variable bounds are mandatory.

Note that in both models it might happen that the systems are feasible, i.e., the
points are completely separable (in which case we need only solve one LP).

In our first test we use the first model and classification data from the UCI
Repository of Machine Learning Databases (Blake and Merz [21]). The problem
characteristics are given in Table 6. For some instances we had to remove incomplete
data sets. A complete description of the instances is available at the UCI Repository.

Table 6

Characteristics of the classification instances. Column “N” lists the number of attributes. The
column labeled “m�” gives the number of original data sets and column “m” gives the number of
data sets remaining after removing incomplete ones. The rightmost column gives additional notes,
e.g., the name of the instance in the UCI database.

Name N m m� Notes

breast-cancer 9 683 699 breast-cancer-wisconsin
bupa 6 345 345 liver-disorders
echo 8 61 132 echocardiogram
glass 9 214 214 type 2 vs. others
heart 13 297 303 heart-disease (Cleveland)
ionosphere 34 351 351
iris.1 4 150 150 Versicolor vs. others
iris.2 4 150 150 Virginica vs. others
new-thyroid 5 215 215 normal vs. others
pima 8 768 768 Pima-indians-diabetes
tic-tac-toe 9 958 958
wpbc 32 194 198 Wisconsin breast-cancer database
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Table 7

Results of the branch-and-cut algorithm for the classification instances.

Name Nodes Time IISs Root Dual Best Gap Chi

breast-cancer 313 2.88 359 7.2 11.0 11 0.0 11
bupa 9669 18000.11 179562 43.2 59.6 83 39.3 83
echo 2 0.05 89 6.0 6.0 6 0.0 6
glass 36859 18000.00 99833 18.5 32.7 36 10.0 41
heart 51274 18000.02 122000 12.8 23.5 29 23.6 30
ionosphere 2465 38.59 3967 2.4 6.0 6 0.0 6
iris.1 845 12.45 623 19.1 25.0 25 0.0 25
iris.2 1 0.01 2 0.0 1.0 1 0.0 1
new-thyroid 2 0.09 147 11.0 11.0 11 0.0 11
pima 1522 18000.18 64166 68.2 75.6 148 95.7 148
tic-tac-toe 50691 5167.03 19850 60.9 86.0 86 0.0 93
wpbc 56657 18000.00 739494 3.5 8.7 13 48.7 13

Most of these twelve instances are also used by Chinneck [31] for testing his heuristic
for Max FS/Min IIS Cover.

Table 7 lists the results of the branch-and-cut implementation on these instances
with method “round” of section 3.2.3. The computation time was limited to five hours
(18000 sec.). The columns have the same meaning as in sections 4.2 and 4.3.

Column “Chi” gives results obtained by the heuristic of Chinneck (see section 3.4);
its running times are negligible and therefore not listed. Our implementation found the
same solutions as Chinneck [31], except for the instances glass and wpbc, for which
Chinneck obtained solutions of size 39 and 10, respectively. Our primal heuristic de-
scribed in section 3.4 is run every tenth level. It could improve the initial solutions for
models glass, heart, and tic-tac-toe. We conclude that the heuristic of Chinneck
generates very good starting solutions, while our primal heuristic sometimes helps to
find better solutions.

The results of Table 7 show that most instances are quite hard to solve and about
half of them could not be solved within the time bound of five hours. Because of their
size, only few nodes could be processed.

We also conducted experiments with the same data but using the second model
instead of the first. Intuitively this should result in better numerical properties of the
LPs that have to be solved during the algorithm. The results are, however, comparable
to the ones shown in Table 7, and we therefore do not present them here.

Table 8 compares the gaps of the different cut strategies. The table displays only
instances for which the optimal solutions could not be found within five hours. It turns

Table 8

Classification problems: Comparison of the gaps of different variants of cutting planes. Only
instances for which a positive gap remains after five hours are shown. The notation is as in Table 3.
The last line contains the averages over each column.

BaNg BaNg Gom.
Name Round BaNg Gom. {0, 1

2
} Gom. {0, 1

2
} {0, 1

2
} all

bupa 39.3 46.7 40.0 41.9 44.0 45.0 41.5 45.5
glass 10.0 12.7 10.0 10.6 12.2 12.7 9.8 12.4
heart 23.6 23.8 22.6 24.2 25.4 25.2 27.8 26.0
pima 95.7 101.8 95.0 98.6 103.2 101.4 94.1 105.4
wpbc 48.7 47.8 44.6 49.8 49.0 49.0 45.6 50.5

∅: 43.5 46.6 42.4 45.0 46.7 46.7 43.8 48.0
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out that all variants find the same final primal solutions, although at different times
during the computation. Note that this actually compares the interplay of cutting
strategies and our primal heuristic. On the average, the smallest gaps are produced
by taking Gomory cuts, then method “round,” Gomory and {0, 1

2}-cuts, {0, 1
2}-cuts

alone, Balas/Ng cuts, Balas/Ng cuts and Gomory cuts, Balas/Ng cuts and {0, 1
2}-

cuts, and finally all cuts together. The main reason why all cuts together produce the
worst results (on average) is that this combination could explore the fewest number of
nodes. We conclude that the additional cutting planes do not yield a big improvement
over method “round” alone. Although Gomory cuts produce the smallest gaps, the
studied cutting planes do not seem to be crucial for solving these instances.

Our second test set consists of data from Codato and Fischetti [33] and uses
the second model. The data again originate from the UCI Repository of Machine
Learning Databases, but are preprocessed in a way we could not reconstruct. Hence,
the results for these instances and the instances of Table 6 may not be compa-
rable (there are three instances which seem to arise from the same original data:
breast-cancer ↔ breast-cancer-2, iris.1 ↔ iris-150, wpbc ↔ WPBC194). In-
stances Breast-Cancer-2 and Breast-Cancer-400 seem to be different from those
used in Codato and Fischetti [33].

Table 9 shows the results of method “round” on these instances. The notation
is as in Table 3. Note that here the dimension is n = N + 2, because we use the
second model. Most of the instances could be solved within a few seconds. This
is the first time that the complete set could be solved to optimality: No optimal
solution to the harder instances (Flags-169, Horse-colic-185, Horse-colic-253,
and Solar-flare-1066) was previously available. Our implementation solves all
instances except these four in under a minute. Although we worked on a faster
computer, it nevertheless seems fair to say that our code considerably improves upon
the results of Codato and Fischetti [33].

5. Conclusions. In this paper we described a branch-and-cut implementation
for the Max FS/Min IIS Cover problem, which is the best exact method cur-
rently available. The findings of the extensive computational results can be roughly
summarized as follows: With respect to the implementation, the best cutting plane
strategy is to find as many (violated) IIS-inequalities as possible. Additionally ap-
plying Balas/Ng, Gomory, or {0, 1

2}-cuts does not significantly help to improve the
performance: On random instances they do not improve the running time, but usually
help to reduce the number of nodes. Gomory cuts only slightly help to reduce the
gaps for classification instances, and the other cuts do not improve the gap.

With respect to the problem data, the considered instances vary greatly in their
properties and difficulty. Depending on the particular data, quite large instances can
be solved to optimality, but there are also relatively small instances which turn out
to be extremely hard to solve. As shown by the DVB problems, one has to be careful
with numerically instable instances.

An interesting open issue is the existence of problem-specific cutting planes and
whether they can be efficiently separated. Another question is whether other valid
inequalities for the set covering problem could help improve the performance of the
implementation.
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SCIP implementation and Edoardo Amaldi and Les Trotter for helpful discussions.
Furthermore, he thanks Edoardo Amaldi and Pietro Belotti for providing the DVB
instances of section 4.3, and Gianni Codato and Matteo Fischetti for the data used
in section 4.4.
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Table 9

Classification problems: Results of the branch-and-cut algorithm for the problems of Codato
and Fischetti with method “round.”

Name n m Nodes Time IISs Root Opt

Balloons-76 7 76 1 0.02 59 10.0 10
BCW-367 12 367 110 0.97 252 5.5 8
BCW-683 12 683 71 1.70 235 6.8 10
Breast-Cancer-2 11 683 352 2.21 322 7.0 11
Breast-Cancer-400 20 400 2 0.08 116 24.0 24
Bridges-132 14 132 299 3.44 1563 20.2 23
BusVan-437 20 437 237 1.72 353 3.0 6
BusVan-445 20 445 605 5.53 750 3.3 8
BusVan-447 20 447 2334 37.65 4187 4.4 10
BV-OS-282 20 282 214 1.39 338 3.0 6
BV-OS-376 20 376 969 12.03 1361 4.2 9
Chorales-107 8 107 951 9.57 1187 21.4 27
Chorales-116 8 116 1022 19.85 1981 17.2 24
Chorales-134 8 134 1198 50.99 4008 20.8 30
Credit-300 17 300 13 0.93 222 5.9 8
Flag-169 31 169 7621 209.63 17276 3.5 9
Glass-163 12 163 15 0.64 158 10.9 13
Horse-Colic-151 28 151 231 2.25 540 2.2 5
Horse-Colic-185 28 183 69155 886.10 61414 3.6 10
Horse-Colic-253 28 253 273389 7938.84 308862 4.8 13
House-Votes84-435 18 435 56 0.68 200 4.0 6
Iris-150 7 150 1017 6.58 1011 11.7 18
Lymphography-142 20 142 21 0.24 131 2.9 5
Mech-analysis-107 10 107 1 0.04 83 7.0 7
Mech-analysis-137 9 137 757 5.83 890 11.6 18
Mech-analysis-152 10 152 900 32.05 3042 13.0 21
Monks-tr-115 8 115 917 16.24 1570 20.9 27
Monks-tr-122 8 122 4 0.45 267 11.2 13
Monks-tr-124 8 124 489 5.91 1187 18.1 24
Opel-Saab-76 20 76 1111 9.28 1756 2.9 7
Opel-Saab-80 20 80 241 2.01 512 3.0 6
Opel-Saab-83 20 83 2113 25.05 3904 3.2 8
Opel-Saab-84 20 84 572 7.06 1318 3.3 7
Pb-gr-txt-198 12 198 147 1.09 267 7.7 11
Pb-hl-pict-277 12 277 178 1.61 314 6.7 10
Pb-pict-txt-444 12 444 2 0.12 79 7.0 7
Postoperative-88 10 88 1 0.12 209 16.0 16
Solar-flare-323 14 323 3 0.71 478 37.2 38
Solar-flare-1066 14 1066 2292 787.64 14960 227.3 243
Water-treat-206 40 206 41 1.43 204 1.7 4
Water-treat-213 40 213 288 8.04 845 2.2 5
WPBC-194 36 194 172 3.21 468 2.2 5
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1. Introduction. Consider the following convex program:

min
x∈Rn

f(x)

s.t. Ax = a,

fi(x) ≤ 0, i ∈ Î = {1, 2, . . . , θ},

(1)

where f, fi, i = 1, 2, . . . , θ, are smooth and convex on R
n, and where A ∈ R

m×n with
rank(A) = m and 0 < m < n.

It is known that many practical problems can be converted to problem (1) above.
For instance, some recently studied multistage stochastic programming models can
be formulated as (1). See [19, Chapter 1] for the detailed modeling in this regard.

Let F := {x ∈ R
n : fi(x) ≤ 0, i ∈ Î}. In many circumstances, particularly

in multistage stochastic programming, f and F are separable, while the constraint
Ax = a is nonseparable. Thus, we seek to relax the constraint Ax = a using the
Lagrangian dual of problem (1) as follows:

min{ϕ(v) | v ∈ R
m},(2)
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where

ϕ(v) = sup{−f(x) + vT (Ax− a) | x ∈ F}.(3)

In these circumstances, the subproblem in (3) is separable, and then is solvable
through the well-developed parallel algorithms. This makes the evaluation of ϕ much
easier in general. However, an obstacle in solving problem (2) is that the function ϕ
is nondifferentiable. To overcome this and noticing that the underlying function ϕ is
convex on R

m, we then use the well-known regularization of Moreau [14] and Yosida
[23] to convert (2) into a smooth problem as follows:

min{η(v) | v ∈ R
m},(4)

where η is the Moreau–Yosida regularization of ϕ as defined below,

η(v) = min
w∈Rm

{
ϕ(w) +

1

2
||w − v||2M

}
, v ∈ R

m,(5)

M is a symmetric positive definite m×m matrix, and ‖v‖2
M = vTMv for any v ∈ R

m.
It is well known that the set of minimizers of problem (4) is exactly the set of

minimizers of (2). It can be shown that η is continuously differentiable and that
its gradient g = ∇η is globally Lipschitz continuous with modulus ||M ||. For the
properties of the Moreau–Yosida regularization, the reader is referred to [8, 7]. For
the problem discussed in the present paper, there are some advantages of using the
Moreau–Yosida regularization, as given next.

Fukushima and Qi [7] have shown that superlinear convergence can be guaranteed
by using approximate solutions of the problem (5) to construct search directions for
minimizing η. While finding an exact solution for a nonsmooth function ϕ is difficult,
the computation of an approximate solution is relatively easier. We can, e.g., consider
a parameterized function ϕ(w, μ), where ϕ(w, μ) → ϕ(w) as μ → 0 and ϕ(w, μ) is
smooth for any μ > 0 as in the case of the barrier function method. This method
was utilized for solving multistage stochastic nonlinear problems recently in [24], in
which the underlying stochastic problem was formulated as problem (1). For any
prescribed accuracy, we can now choose an appropriate μ > 0 such that the minimizer
of ϕ(w, μ) + (1/2)‖w − v‖2

M is a desirable approximate solution to (5).
It is interesting that both the parameterized function ϕ(·, μ) and the regular-

ized function η (without parameter) are used to smooth the nonsmooth function ϕ.
However, they function in different ways and have different properties: the former
is successful in global convergence, while the latter can speed up local convergence.
Incorporating the parameterizations into the Moreau–Yosida regularization can be a
way to combine advantages in both approaches.

Besides the parameterizations mentioned above, there are many other methods
for computing approximate minimizers of ϕ. Each of these methods can be incorpo-
rated into the Moreau–Yosida regularization, giving rise to an enhanced method for
minimizing the nonsmooth function ϕ. Hence establishing the theoretical framework
of the Moreau–Yosida regularization can benefit a variety of algorithms.

For the problem under consideration, one of the most important properties about
the Moreau–Yosida regularization is the semismoothness of the gradient of the regular-
ized function, which has played a key role in establishing the superlinear convergence
of the generalized Newton method for nonsmooth convex problems by combining the
Moreau–Yosida regularization scheme in (5) [7].
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The concept of semismooth functions, an important subclass of Lipschitz func-
tions, was first introduced by Mifflin [12]. In order to study the superlinear conver-
gence of Newton method for solving nondifferentiable equations, Qi and Sun [16] ex-
tended the definition of semismoothness to vector-valued functions. After the work of
Qi and Sun, semismoothness was extensively used to establish superlinear/quadratic
convergence of Newton’s method for solving the convex best interpolation problem
[4, 5], nondifferentiable equations in which the underlying functions are slant differ-
entiable functions [1], and complementarity problems and variational inequalities [6],
for instance.

In this paper, we will focus on a special case of semismooth functions, piecewise
Ck functions, which is a large class of locally Lipschitz continuous functions, found
in most practical problems [20, 17]. In the past few years, many people have studied
the piecewise smoothness of nonsmooth functions and designed algorithms based on
Newton’s method for solving the associated nonsmooth equations or nonlinear opti-
mization problems. For example, the analysis was mainly focused on the concept of
piecewise Ck functions in [10, 13, 21], where the authors have considered properties
of g for some specific classes of ϕ. Specifically, Sun and Han [21] showed the semis-
moothness of g if ϕ is the maximum of several twice continuously differentiable convex
functions under a constant rank constraint qualification (CRCQ). Later, Meng and
Hao [10] derived the same result for the case of unconstrained problem (1) with the
objective function f being a piecewise C2 function under a weaker sequential constant
rank constraint qualification. In [13], Mifflin, Qi, and Sun investigated the case where
ϕ is piecewise C2 which is a generalization of the maximum of convex C2 functions
under a so-called affine independence preserving constraint qualification (AIPCQ).

Having motivated the importance of the notions of semismoothness and the
Moreau–Yosida regularization in nonsmooth analysis, in this paper we will investi-
gate properties of the Lagrangian-dual function ϕ and the gradient of its Moreau–
Yosida regularization η. Further, studying the properties of Lagrangian-dual function
ϕ has its own interest as well; see [22] and the references therein, for instance. Since
piecewise smooth functions as a special class of semismooth functions possess more
enjoyable properties than semismooth functions [12, 16, 17, 20], we will concentrate on
the study of piecewise smoothness of ϕ and the gradient g of the regularized function
η in the context. We have adopted two different methods in analyzing properties of
g. In terms of the first method, the main tool used in this study is based on Propo-
sition 1 (see section 2), which was established by Mifflin, Qi, and Sun [13] using the
notion of piecewise smoothness. We will first study the piecewise smoothness of ϕ.
This property will then be used to show the semismoothness of g. For the problem
with the linear objective function f(x) = cTx, we can show that the function ϕ is
piecewise C2 and satisfies AIPCQ, and thus g is semismooth by Proposition 1 if all
fi’s are affine functions or all ∇2fi’s are positive definite. We also present an exam-
ple whose region F is defined by a linear constraint and a strictly convex constraint.
In this example, the function ϕ is, surprisingly, not piecewise C2, and, equally sur-
prisingly, the gradient g of the regularization of ϕ is still semismooth. For general
convex objective functions f and constraint functions fj , it is completely unknown
how smooth ϕ and g should be. This issue is considered by analyzing some special
cases where the objective function possesses a positive definite Hessian. The second
method is mainly based on the metric projection operator under the structure of the
epigraph of the Lagrangian-dual function. Using the projection mapping, the study of
the properties of g is equivalently converted to the study of the properties of solutions
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to a system of nonsmooth equations. The analysis is basically based on the framework
established by Meng, Sun, and Zhao [11] recently. The results obtained complement
and enrich the framework of piecewise smooth functions [20, 17] and also enhance the
recent results on the Moreau–Yosida regularization [11].

Another topic of interest is the study of the duality of the original problem (1).
It is well known that the duality theory is a fundamental issue in optimization both
theoretically and numerically. For problem (1) with a linear objective, we derive
an interesting result regarding the original problem and the Fenchel conjugate of
Moreau–Yosida regularization of its Lagrangian-dual function, characterizing a rela-
tionship between the conjugate and the Lagrangian-dual. This provides a new way to
look at the Lagrangian-dual and the Moreau–Yosida regularization. We believe that
the established results complement the dual theory in optimization, particularly the
theory of Magnanti [9] to some extent.

The rest of the paper is organized as follows. In section 2, basic definitions and
properties are collected. The analysis of problems with the linear objective functions
covers the next two sections. Section 3 investigates the piecewise smoothness of the
function ϕ. Section 4 studies the semismoothness of the gradient g and the conjugate
of the Moreau–Yosida regularization. Illustrative examples are presented in sections 3
and 4. Section 5 discusses the case of general convex objective functions. Section 6
concludes.

2. Preliminaries. In this section, we briefly recall some concepts, such as semis-
moothness, piecewise smoothness, and AIPCQ, which will be used in the rest of this
paper.

It is known that the regularized function η is a continuously differentiable convex
function defined on R

m, even though ϕ may be nondifferentiable. The gradient of η
at v (see [8]) is

g(v) ≡ ∇η(v) = M(v − p(v)), v ∈ R
m,(6)

where p(v) represents the unique solution of the minimization problem in (5). In
order to use Newton method or modified Newton’s methods for solving (4), it is
important to study the Hessian of η, i.e., the Jacobian of g. Note that, in general,
g may not be differentiable. To extend the definition of Jacobian to certain classes
of nonsmooth functions, Qi and Sun [16] introduced the definition of semismoothness
[12] for vector-valued functions. See [16] for details.

A remarkable feature of semismoothness is that superlinear or quadratic con-
vergence of a generalized Newton method for solving nonsmooth equations can be
obtained under the assumption of semismoothness. See [7, 15, 16] for the relevant
discussions. Note that in general a direct verification of semismoothness is difficult.
Some equivalent definitions of semismooth functions and further studies on semis-
moothness can be found in [11, 15] and the references therein. As for the underlying
Lagrangian dual function ϕ, it has a special feature; i.e., ϕ is piecewise smooth. We
shall make use of this special feature to investigate the semismoothness of g in the
subsequent analysis. We now give a definition of piecewise smooth functions below,
which is slightly different from the one given in [20].

Definition 1. A continuous function ψ : R
n → R

l is said to be a piecewise Ck

function on a set D ⊆ R
n if there exist a finite index set I = {1, . . . , q}, closed sets

D1, . . . , Dq, open sets U1, . . . , Uq (or relatively open with respect to the affine hull of
D), and functions ψ1, . . . , ψq such that

(i) D ⊆ ∪q
j=1Dj and Dj ⊆ Uj for each j ∈ I,
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(ii) ψj ∈ Ck(Uj) for each j ∈ I,
(iii) ψ(u) = ψj(u) for any u ∈ D ∩Dj and each j ∈ I.

We refer to {(Dj , Uj , ψj)}j∈I as a representation of ψ.
Remark 1. If the closure of D is contained by every Uj , then Definition 1 can

simply be stated as follows. A continuous function ψ is a piecewise Ck function on
the set D ⊆ R

n if there exists a finite set of functions ψj ∈ Ck(Uj) for j = 1, . . . , q
such that for any u ∈ D, ψ(u) ∈ {ψ1(u), . . . , ψq(u)}.

Note that for the Moreau–Yosida regularization of a piecewise smooth function to
be smooth, the pieces ψj must be joined together properly. Mifflin, Qi, and Sun [13]
introduced the following constraint qualification—AIPCQ. For any u ∈ D, we write

I(u) = {i ∈ I : u ∈ Di}.

Definition 2. The AIPCQ is said to hold for a piecewise smooth function ψ at
u if for every subset K ⊆ I(u) for which there exists a sequence {uk} with {uk} → u,
K ⊆ I(uk), and the vectors {(

∇ψi(u
k)

1

)
: i ∈ K

}
(7)

being linearly independent, it follows that the vectors{(
∇ψi(u)

1

)
: i ∈ K

}
(8)

are linearly independent.
Remark 2. The set I(u) defined in this paper and the corresponding set in [13],

denoted by I ′(u), are slightly different. In [13], they define

I ′(u) = {j ∈ I : ψj(u) = ψ(u)}.

Since u ∈ Dj implies ψj(u) = ψ(u), we have I(u) ⊆ I ′(u). For u ∈ Uj \Dj , ψj(u) can
be set to any value (as long as ψj ∈ Ck(Uj)); hence we can assume, without loss of
generality, that ψj(u) �= ψ(u) for all u ∈ Uj \Dj . Under this assumption,

I(u) = I ′(u) ∀u ∈ D.

By virtue of the AIPCQ, Mifflin, Qi, and Sun [13] derived the following result,
which will be used in the analysis of this paper.

Proposition 1. Suppose that the convex function ϕ is piecewise C2 on R
m and

that the AIPCQ holds at the proximal point p(v) for a given v ∈ R
m. Then there

exists an open neighborhood N (v) about v such that the gradient g of the function η,
the Moreau–Yosida regularization of ϕ, is piecewise C1 (smooth) on N (v). Hence g
is semismooth at v.

3. Piecewise smoothness of ϕ. In this section, we will study the piecewise
smoothness of the Lagrangian-dual function ϕ for the case f(x) = cTx in (3), which
is defined by

ϕ(v) = sup{−cTx + vT (Ax− a) | x ∈ F}.(9)

The piecewise smoothness is an important characteristic of the Lagrangian-dual
function ϕ. The investigation of this characteristic is helpful to optimization methods
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which use the Lagrangian dual. Hence the results in this section are significant in
their own right. In the next section, the piecewise smoothness of ϕ will then be used
to prove the semismoothness of the gradient of the Moreau–Yosida regularization.
Denote

Ω := {u = AT v − c : v ∈ R
m}.

Clearly, Ω is an m-dimensional affine set in R
n since rank(A) = m. We make the

following assumptions throughout the paper.
Assumption 1. c �∈ {AT s : s ∈ R

m}.
Assumption 2. fi ∈ C2(Rn) for all i ∈ Î.
Assumption 3. F �= ∅ and Ω ∩ Fb �= ∅.
Here, Fb denotes the barrier cone of the convex set F defined by

Fb = {y ∈ R
n | ∃ β ∈ R such that yTx ≤ β ∀ x ∈ F}.

Remark 3. If c = AT s for some s ∈ R
m, then Ax = a implies cTx = sTAx = sTa.

This means that any feasible solution of (1) is an optimal solution. Assumption 1
should rule out this degenerate case. Assumption 1 can also be written as 0 /∈ Ω.
Assumption 2 is a natural assumption of smoothness. The motivation of Assumption 3
is to guarantee the properness of the function ϕ, as shown by Lemma 1 below.

Define ζ, the support function of F in R
n, as follows

ζ(u) = δ∗(u | F) := sup{〈u, x〉 | x ∈ F}, u ∈ R
n.(10)

Then the Lagrangian-dual function ϕ defined in (9) can be rewritten as

ϕ(v) = ζ(AT v − c) − aT v.(11)

We now define some notation which will be used in the paper.
(i) Q is said to be a facet of F if there exists an index subset IQ ⊂ Î such that

Q = {x ∈ F : fi(x) = 0, ∀i ∈ IQ}. IQ is referred to as the index set of the facet Q.
(ii) For a convex function h : R

s → R̄ = R ∪ {+∞}, the domain of h, denoted by
domh, is defined by domh := {z ∈ R

s : h(z) < +∞}.
Lemma 1. The Lagrangian-dual function ϕ is a proper convex function on R

m if
and only if Assumption 3 holds. One also has

domϕ = {v ∈ R
m | AT v − c ∈ Fb}.

Proof. It is evident that ϕ(v) can never be −∞ if F �= ∅, and if F = ∅, then
ϕ ≡ −∞.

By (11), we have

domϕ = {v ∈ R
m | AT v − c ∈ domζ}.

Hence, domϕ �= ∅ if and only if Ω ∩ domζ �= ∅. Since ζ is the support function of F ,
it is easy to see that

domζ = Fb.

Therefore, the second condition in Assumption 3 is a necessary and sufficient condition
for domϕ �= ∅.
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Proposition 2. If ζ is piecewise C2 on a set D ⊆ R
n \ {0}, then ϕ is piecewise

C2 on the set E := {v : AT v − c ∈ D} ⊆ R
m under Assumption 1.

Proof. Since ζ is piecewise C2, there exist closed sets Di, open sets Ui, and
functions ζi ∈ C2(Ui), i ∈ l, where l is a finite index set, which satisfy Definition 1.
Let

ϕi(v) := ζi(A
T v − c) − aT v, Ei := {v : AT v − c ∈ Di}, Vi := {v : AT v − c ∈ Ui}.

Then it is evident that ϕi ∈ C2(Vi), Ei is closed, and Vi is open. Furthermore,
ϕi(i ∈ l) satisfy (i)–(iii) in Definition 1. Hence ϕ is a piecewise C2 function.

Proposition 3. Suppose that fi is an affine function on R
n for every i ∈ Î. Then

the function ϕ defined in (9) is a piecewise C2 function on its domain. Especially, ϕ
is piecewise affine on its domain.

Proof. By Proposition 2, it suffices to show that ζ is piecewise C2 on Ω ∩ domζ.
According to the remark after Definition 1, it suffices to show that there exist twice
continuously differentiable functions ζj on R

n(= Uj), j ∈ Ĵ a finite index set, such
that for any u ∈ Ω∩ domζ

ζ(u) ∈ {ζj(u) : j ∈ Ĵ}.(12)

It is known that the polyhedral F can be represented by its vertices {x1, . . . , xp} and
extreme rays {r1, . . . , rq} in the form

F =

{
x =

p∑
i=1

αixi +

q∑
i=1

λiri : αi ≥ 0,

p∑
i=1

αi = 1, λi ≥ 0

}
.

Define

F̄ =

{
x =

p∑
i=1

αixi +

q∑
i=1

λiri : αi ≥ 0,

p∑
i=1

αi = 1, 0 ≤ λi ≤ 1

}
.

We claim that, for any u ∈ domζ, sup{uTx : x ∈ F} = sup{uTx : x ∈ F̄}.
Assume by contradiction that there exist a u ∈ domζ and a x̄ ∈ F \ F̄ such that
uT x̄ > sup{uTx : x ∈ F̄}. Denote J := {i : λi > 1}, where the λi’s are the coefficients
in the representation of x̄. Let x̂ ∈ F̄ be defined by the same representation of x̄ except
for changing the λi, i ∈ J , to 1. Then x̄− x̂ =

∑
i∈J(λi − 1)ri. Since x̂ ∈ F̄ , we have

uT x̂ < uT x̄, i.e., ∑
i∈J

(λi − 1)uT ri > 0.

Thus there exists at least an ī ∈ J with uT rī > 0. For any fixed x0 ∈ F and any λ ≥ 0,
x0 + λrī ∈ F . Thus ζ(u) ≥ uTx0 + λuT rī → +∞ as λ → +∞, which contradicts the
fact u ∈ domζ. This shows that for any u ∈ domζ

ζ(u) = sup{uTx | x ∈ F̄}.

Note that F̄ is a bounded polytope. Without loss of generality, let {x̄1, . . . , x̄k}
be all vertices of F̄ , and define ζj(u) = x̄T

j u. Then ζj ∈ C2(Rn) (here Uj = R
n). For

any u ∈ Ω ∩ domζ, because u �= 0 by Assumption 1, the set of maximizers of ζ(u)
must contain at least a vertex, say x̄j , of F̄ . It follows that

ζ(u) = x̄T
j u = ζj(u),
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which shows (12). Thus, ζ(u) is piecewise C2 on its domain. Evidently, ζ(u) is also
piecewise affine on its domain, and so is ϕ.

Next, we consider the case where all ∇2fi (i ∈ Î) are positive definite. Our
analysis will proceed as follows. For each facet Q (of any dimension) of F , we will
define an open set U and a C2 function on U . Roughly speaking, we first define a
mapping from x-space to an open set in u-space (actually the mapping is defined on
enlarged spaces), prove that this mapping is bijective, and then use the inverse of this
mapping to define a function on the open set in u-space. For any facet Q of F with
the index set IQ, we define

W :=

⎧⎨
⎩(x, λ) ∈ R

n × R
|IQ| : fi(x) = 0, i ∈ IQ,

∑
i∈IQ

λi∇2fi(x) � 0

⎫⎬
⎭ ,(13)

where B � 0 means that the matrix B is symmetric positive definite,

U :=

⎧⎨
⎩u =

∑
i∈IQ

λi∇fi(x) ∈ R
n : (x, λ) ∈ W

⎫⎬
⎭ .(14)

Note that for (x, λ) ∈ W , x is not required to be in Q. Actually, x need not be in F .
Without loss of generality, let IQ = {1, . . . , k}. Denote f̃ = (f1, . . . , fk)

T , and define
a mapping Γ : R

n × R
k → R

n+k by

Γ(x, λ) :=

( ∑k
i=1 λi∇fi(x)

f̃(x)

)
.(15)

Note that the Karush–Kuhn–Tucker (KKT) conditions for problem (10) can be
written as

Γ(x, λ) = (u; 0).

The following lemma plays a fundamental role in our analysis.
Lemma 2. Let W, U be defined by (13), (14), respectively. Suppose that for

any x ∈ R
n all ∇2fi(x) (i ∈ IQ) are positive definite and {∇fi(x)}i∈IQ are linearly

independent. Then (i) U is an open set in R
n; and (ii) there exists a continuously

differentiable bijective mapping ξ = (ξx, ξλ) : U → W such that for all u ∈ U ,
Γ(ξx(u), ξλ(u)) = (u; 0); i.e., ξ is the inverse mapping of Γ restricted on U .

Proof. (i) For any (x̄, λ̄) ∈ W , let (ū; v̄) = Γ(x̄, λ̄). Then ū =
∑k

j=1 λ̄j∇fj(x̄)
and v̄ = 0. In the following, we seek to show that ū is an interior point of U . Let
us denote ∇f̃ := (∇f1, . . . ,∇fk) ∈ R

n×k. Then, ∇f̃(x) has full column rank, i.e.,
rank(∇f̃(x)) = k, by assumption. By the continuity of ∇2fi, i ∈ Î, there exists a

neighborhood of (x̄, λ̄), denoted by Nx, such that
∑k

i=1 λi∇2fi(x) � 0 for all (x, λ) ∈
Nx. Thus, the Jacobian of Γ,

∇Γ(x, λ) =

( ∑k
i=1 λi∇2fi(x) ∇f̃(x)

∇f̃(x)T 0

)
,

is nonsingular on Nx. By the inverse function theorem, there exists a neighborhood
of (ū, v̄), denoted by Nu, such that there exists an inverse mapping Ψ of Γ defined on
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Nu, and for any (u, v) ∈ Nu, Ψ(u, v) ∈ Nx and Γ(Ψ(u, v)) = (u; v). In particular, for
any (u, v) ∈ Nu with v = v̄ = 0, (x, λ) = Ψ(u, 0) satisfies

u =

k∑
i=1

λi∇fi(x), f̃(x) = 0,

k∑
i=1

λi∇2fi(x) � 0.(16)

This implies (x, λ) ∈ W and thus u ∈ U for all (u, 0) ∈ Nu. Since U0 := {u : (u, 0) ∈
Nu} is an open set in R

n, and ū ∈ U0 ⊂ U , ū is an interior point of U . Thus U is
open.

(ii) Since the Jacobian ∇Γ(x, λ) is nonsingular and continuous on the entire set
W and since Γ maps W onto U × {0}, the inverse mapping Ψ of Γ defined in (i) is a
continuously differentiable bijective mapping from U×{0} onto W . Define a mapping
ξ : U → W by ξ(u) = Ψ(u, 0). Then ξ is continuously differentiable and bijective, and
Γ(ξ(u)) = (u; 0).

As a consequence of Lemma 2, we obtain the following result.
Lemma 3. Let ζQ(u) = uT ξx(u), where ξx is defined in Lemma 2. Then ζQ ∈

C2(U), and for any u ∈ U

∇ζQ(u) = ξx(u).(17)

Proof. From Lemma 2 and the first equation of Γ(ξ(u)) = (u; 0), it follows that

u =
∑
i∈IQ

ξλi
(u)∇fi(ξx(u)).

Thus,

∇ζQ(u) = ξx(u) + ∇ξx(u)u

= ξx(u) + ∇ξx(u)
∑

i∈IQ
ξλi(u)∇fi(ξx(u))

= ξx(u) +
∑

i∈IQ
ξλi

(u)∇ξx(u)∇fi(ξx(u)).

According to the second equation in Γ(ξ(u)) = (u; 0), we have fi(ξx(u)) = 0 for all
u ∈ U and i ∈ IQ. Differentiating these functions, we obtain ∇ξx(u)∇fi(ξx(u)) = 0
for all i ∈ IQ. Hence, ∑

i∈IQ

ξλi(u)∇ξx(u)∇fi(ξx(u)) = 0.

Thus, it follows that

∇ζQ(u) = ξx(u).

By Lemma 2, ξx(u) is continuously differentiable on U . Therefore, ζQ is twice contin-
uously differentiable on U .

The following proposition is one of the main results in this paper, showing the
piecewise smoothness of the function ϕ.

Proposition 4. For ϕ defined by (9), suppose that, for all i ∈ Î, ∇2fi(x) are
positive definite, and for any facet Q of F with the index set IQ, {∇fi(x)}i∈IQ are
linearly independent. Then ϕ is piecewise C2 on its domain.

Proof. Let us first consider the function ζ defined by (10) on the set D, where
D = Ω ∩ domζ. Let {Q1, . . . , Qq} be the set of all facets of F . Let Wi, Ui, and ξi be
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defined in (13), (14), and Lemma 2 for the facet Qi = {x ∈ F : fl(x) = 0, l ∈ Ii}.
Define

Di := Ω ∩
{
u =

∑
l∈Ii

λl∇fl(x) : x ∈ Qi, λl ≥ 0

}
,(18)

which is evidently a closed set. By Lemma 2, Ui is open. Define ζi(u) := uT ξix(u).
In what follows, we show that (i), (ii), and (iii) in Definition 1 hold.

(i) For any u ∈ riD, by [18, Theorem 23.4 and Corollary 23.5.3], there exists an
optimal solution x∗ to problem (10), which together with a Lagrangian multiplier λ̄∗

satisfies the KKT conditions:

u =
∑θ

i=1 λ̄
∗
i∇fi(x

∗),

λ̄∗
i ≥ 0,

fi(x
∗) ≤ 0,

λ̄∗
i fi(x

∗) = 0, i = 1, 2, . . . , θ.

(19)

Because u �= 0 by Assumption 1, x∗ must lie on some facets of F . Let Qj = {x ∈
F : fi(x) = 0, i ∈ Ij } be the smallest facet at x∗. By “smallest” we mean that for
any i �∈ Ij , fi(x

∗) �= 0. Then λ̄∗
i = 0 for all i �∈ Ij . Let λ∗ denote the subvector

of λ̄∗ consisting of components in Ij . Then u =
∑

i∈Ij
λ∗
i∇fi(x

∗), which together

with λ∗ ≥ 0 and x∗ ∈ Qj implies u ∈ Dj . This shows that riD ⊆ ∪q
i=1Di. Thereby,

D ⊆ ∪q
i=1Di since each Di is closed.

For any u ∈ Dj , let x̄ ∈ Qj and λ̄ ≥ 0 represent u as in (18). λ̄ �= 0, since u �= 0
by Assumption 1. This implies that

∑
i∈Ij

λ̄i∇2fi(x̄) � 0, since all ∇2fi are positive

definite. Thus (x̄, λ̄) ∈ Wj and u ∈ Uj . This shows Dj ⊆ Uj .
(ii) By Lemma 3, ζi ∈ C2(Ui) for i = 1, . . . , q.
(iii) For any u ∈ D ∩Dj , let x̄ ∈ Qj and λ̄ ≥ 0 represent u as in (18). Let λ̄∗ be

defined by λ̄∗
i = λ̄i for i ∈ Ij and λ̄∗

i = 0 for i �∈ Ij . Then (x̄, λ̄∗) satisfies the KKT
conditions (19). Thus ζ(u) = uT x̄. On the other hand, the second part of (i) shows
that (x̄, λ̄) ∈ Wj . Using the relation in (18), we have (u; 0) = Γj(x̄, λ̄), where Γj is the
mapping defined in (15). Since ξj is the inverse of Γj restricted on Uj , ξj(u) = (x̄, λ̄).
By definition, we have

ζj(u) = uT ξjx(u) = uT x̄.

Thus ζ(u) = ζj(u) for any u ∈ D ∩Dj .
The above shows that ζ is piecewise C2 on D(= Ω ∩ domζ). By virtue of Propo-

sition 2, ϕ is piecewise C2 on its domain.
Remark 4. In Propositions 3 and 4 we conclude that ϕ is piecewise C2 convex

under the assumption that the constraints for F are either all linear or all have
positive definite Hessian matrices. A natural question arises: Can ϕ be piecewise C2

for more general F? The following example considers an F which is defined by a
linear constraint and a strictly convex constraint with a positive definite Hessian, and
gives a negative answer to the above question.

Example 1. Let

ϕ(v) = sup{−cTx + vT (Ax− a) | x ∈ F},
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where

A =

(
1 0 0
0 1 0

)
, c = (0, 0,−1)T , a = (0, 0)T ,

and

F = {x ∈ R
3 : x2

1 + x2
2 + x2

3 − 1 ≤ 0, x3 ≤ 0}.

Since F is bounded, Fb = R
3 and domϕ = R

2. One can verify that Assumptions 1,
2, and 3 are satisfied. It is easy to see that

ϕ(v) = sup{(v1, v2, 1)Tx | x ∈ F},

and that the maximizer is x = (v1/‖v‖, v2/‖v‖, 0)T if v �= 0 and is any point on
F ∩ {(x1, x2, x3) | x3 = 0} if v = 0. It follows that

ϕ(v) =
√
v2
1 + v2

2 .

Obviously, ϕ is smooth at any point v �= 0. So for any nonzero v ∈ R
2, the gradient

and the Hessian of ϕ can be written as

∇ϕ(v) =

(
v1/

√
v2
1 + v2

2

v2/
√
v2
1 + v2

2

)
,

∇2ϕ(v) =

(
v2
2/(v

2
1 + v2

2)3/2 −v1v2/(v
2
1 + v2

2)3/2

−v1v2/(v
2
1 + v2

2)3/2 v2
1/(v

2
1 + v2

2)3/2

)
.

It is evident that ∇2ϕ(v) is unbounded as v → 0 (v �= 0), (either ∂2ϕ(v)
∂v2

1
→ ∞ if

|v1| ≤ |v2|, or ∂2ϕ(v)
∂v2

2
→ ∞ if |v1| ≥ |v2|).

To show ϕ is not piecewise C2 on its domain R
2, let (Ej , Vj , ϕj) be any piece

representing ϕ in a neighborhood of v = 0, namely, 0 ∈ Ej ⊂ Vj and ϕj is a function
on Vj satisfying ϕj(v) = ϕ(v) for all v ∈ Ej . Since ∇2ϕj(v) = ∇2ϕ(v) wherever ϕ is
twice differentiable, we have ∇2ϕj(v) → ∞ as v → 0 (Ej � v �= 0). Since the origin
is an interior point of Vj , ϕj �∈ C2(Vj). Therefore, ϕ is not a piecewise C2 function
on its domain.

4. Semismoothness of the gradient of η and its conjugate. In this section,
we will study the semismoothness of the gradient of the Moreau–Yosida regulariza-
tion of ϕ as discussed in section 3, where f(x) = cTx. We will also investigate the
properties of the conjugate of η and explore its relations with the original problem.

4.1. Semismoothness of the gradient of η. Our study on the semismooth-
ness of g is based on the theory established by Mifflin, Qi, and Sun [13]. In their paper,
they assume that ϕ is piecewise C2 convex on the whole space R

m, i.e., domϕ = R
m.

We follow this assumption in this section. By Lemma 1, domϕ = R
m if and only

if Ω ⊂ Fb. Therefore, we make the following assumption in this section to replace
Assumption 3.

Assumption 4. F �= ∅ and Ω ⊂ Fb.
To show the semismoothness of g, we shall first show that ϕ defined in (3) satisfies

AIPCQ in the following two cases: (i) all fi are affine, and (ii) all fi possess positive
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definite Hessian matrices. Suppose that ϕ(v) is a piecewise smooth function with the
representation {(Ei, Vi, ϕi)}i∈I . For any v ∈ R

m, define

I(v) := {i ∈ I : v ∈ Ei}.

Lemma 4. Suppose for every i ∈ Î that fi is an affine function on R
n. Then

for the piecewise affine function ϕ(v) defined by (9), the AIPCQ holds at every v on
R

m.
Proof. Suppose that ϕ is represented by {ϕi}i∈I , where ϕi(v) = βT

i v − αi. For
any w ∈ R

m and any index set K ⊆ I(w),{(
∇ϕi(w)

1

)
: i ∈ K

}
=

{(
βi

1

)
: i ∈ K

}

is a set of constant vectors. Therefore the AIPCQ holds at any v ∈ R
m.

Now we consider the case that the set F is defined by all convex functions fj
with positive definite Hessian matrices. In the proof of Proposition 4, we have defined
a representation {(Dj , Uj , ζj)}j∈I of ζ. This representation induces a representation
{(Ej , Vj , ϕj)}j∈I of ϕ as defined in the proof of Proposition 2; we will use these
notations below.

Because the value of ϕj(v), v ∈ Vj \ Ej , does not affect the representation of ϕ,
it therefore can be set to any value. For simplicity, in what follows, we assume that

ϕj(v) �= ϕ(v) ∀j ∈ I, v ∈ Vj \ Ej(20)

(see also Remark 2).
Lemma 5. Suppose that the conditions of Proposition 4 are satisfied. Let {(Ej ,

Vj , ϕj)}j∈I be a representation of ϕ. Then, for any v ∈ domϕ and any i, j ∈ I,
∇ϕi(v) = ∇ϕj(v) if ϕi(v) = ϕj(v) = ϕ(v).

Proof. It suffices to show that for any u ∈ Ω ∩ domζ and any i, j ∈ I, ∇ζi(u) =
∇ζj(u) if ζi(u) = ζj(u) = ζ(u), where {(Dj , Uj , ζj)}j∈I is the corresponding repre-
sentation of ζ. Let u ∈ Ui and ξi : Ui → Wi be defined as in Lemma 2. If we
can show that ζi(u) = ζ(u) implies that ξix(u) is indeed the unique maximizer x∗ of
problem (9) for the given u, then the fact ∇ζi(u) = ξix(u) (Lemma 3) leads readily
to ∇ζi(u) = x∗ = ∇ζj(u), provided that ζi(u) = ζj(u) = ζ(u).

Now, if ζi(u) = ζ(u), then (20) (applying to ζ) and u ∈ Ui imply u ∈ Di. By
definition of (18), x = ξix(u) ∈ Qi ⊂ F ; i.e., ξix(u) is a feasible solution of problem
(9). So, uT ξix(u) = ζi(u) = ζ(u) implies that ξix(u) is a unique optimal solution x∗

of problem (9) for a given u.
The above lemma actually holds true for ϕ with domϕ �= R

m. This lemma will
be used to prove Lemma 6. In addition to it, we obtain a property of the function ϕ
as a by-product, namely, ϕ is indeed differentiable on the relative interior of domϕ,
because the subdifferential ∂ϕ(v) at any point v ∈ ri(domϕ) is a singleton.

Lemma 6. Suppose that the conditions of Proposition 4 are satisfied. Then, for
the piecewise C2 function ϕ, the AIPCQ holds at each v ∈ R

m.
Proof. Let v ∈ R

m and K ⊆ I(v). If |K| = 1, the vectors in the set in (8) are
evidently linearly independent (actually, the set is a singleton). So the conditions for
AIPCQ are satisfied. If |K| ≥ 2, then for any w �= v with K ⊆ I(w) and for any
i �= j ∈ K, ϕi(w) = ϕj(w) = ϕ(w) implies that ∇ϕi(w) = ∇ϕj(w) by Lemma 5.
Thus the set of vectors in (7) can never be linearly independent. This means that the
conditions for AIPCQ hold automatically.
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From the piecewise C2 smoothness of ϕ shown in section 3 and the qualification
AIPCQ verified in this section, we have the semismoothness of g, as stated below.

Proposition 5. Let ϕ be defined by (9). Suppose that Assumptions 1, 2, and 4
are satisfied. Suppose that fi, i ∈ Î, are either all affine or all possess positive definite
Hessian matrices. In the latter case suppose that for any facet Q of F with the index
set IQ, {∇fi(x)}i∈IQ are linearly independent. Then the gradient g(v)(= ∇η(v)) of
the Moreau–Yosida regularization η is piecewise smooth, and thereby semismooth, on
R

m.
Proof. The proof follows directly from Propositions 1, 3, and 4, and Lemmas 4

and 6.
Remark 5. The above proposition shows that g is semismooth if constraints defin-

ing F either are all linear or all possess positive definite Hessian matrices. In Exam-
ple 1 of section 3, we found that, for some simple mixed constraints, the Lagrangian-
dual function ϕ is not piecewise C2. Actually, the second-order derivatives of ϕ tend
to infinity at some point. Since the semismoothness of g is closely related to the piece-
wise C2 smoothness of ϕ, we might expect that for this example g is not semismooth
either. However, the gradient g of the Moreau–Yosida regularization of this function
ϕ is semismooth, as shown below.

Example 2 (Example 1 (continued)). It is known that ϕ(v) =
√

v2
1 + v2

2 . For
convenience in description we set M = I, so we have

η(v) = min

{√
w2

1 + w2
2 +

1

2
‖w − v‖2 | w ∈ R

2

}
.

It is easy to verify that, for ‖v‖ ≤ 1,

η(v) = (v2
1 + v2

2)/2, p(v) = (0, 0)T ,

and for ‖v‖ ≥ 1,

η(v) =
√

v2
1 + v2

2 − 1/2, p(v) = (1 − 1/‖v‖)v.

Let V̂1 = {v ∈ R
2 : ‖v‖ ≤ 1} and V̂2 = {v ∈ R

2 : ‖v‖ ≥ 1}. By (6), it suffices to study
the semismoothness of p. For v ∈ intV̂1, the Jacobian of p is

J(p(v)) =

(
0 0
0 0

)
,(21)

and for v ∈ intV̂2,

J(p(v)) =

(
1 − v2

2/‖v‖3 v1v2/‖v‖3

v1v2/‖v‖3 1 − v2
1/‖v‖3

)
.(22)

From the Jacobian of p above, we can see that p is smooth on the interior of V̂i

(i = 1, 2). Thus we need only to investigate the semismoothness of p on the region
where the two sets meet, namely, {v ∈ R

2 : ‖v‖ = 1}. Let v̄ = (v̄1, v̄2)
T be any

point on this region; we will show that p is semismooth at v̄. By the definition of
semismoothness [16], it suffices to show that

lim
h′→h,t→0+

{V h′ : V ∈ ∂p(v̄ + th′)}(23)
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exists for any h ∈ R
2. Let S1(v̄) = {h ∈ R

2 : hT v̄ < 0}, S2(v̄) = {h ∈ R
2 : hT v̄ > 0},

S3(v̄) = {h ∈ R
2 : hT v̄ = 0}. Write v′ = v̄+th′. Then ‖v′‖2 = ‖v̄‖2+2tv̄Th′+t2‖h′‖2.

If h ∈ S1(v̄) or h ∈ S2(v̄), then for any sufficiently small t > 0 and h′ close to h,
v′ ∈ intV̂1 or v′ ∈ intV̂2. It is evident that the limit in (23) exists.

If h ∈ S3(v̄), then for any sufficiently small t > 0 and h′ close to h there are the
following three cases: if ‖v′‖ < 1, we have

lim
h′→h,t→0+

V h′ = lim
h′→h,t→0+

(
0 0
0 0

)(
h′

1

h′
2

)
=

(
0
0

)
.(24)

If ‖v′‖ > 1, we have

lim
h′→h,t→0+

V h′ = lim
h′→h,t→0+

(
1 − v′2

2
/‖v′‖3 v′1v

′
2/‖v′‖3

v′1v
′
2/‖v′‖3 1 − v′1

2
/‖v′‖3

)(
h′

1

h′
2

)

= lim
h′→h,t→0+

(
(1 − v′2

2
/‖v′‖3)h′

1 + (v′1v
′
2/‖v′‖3)h′

2

(v′1v
′
2/‖v′‖3)h′

1 + (1 − v′1
2
/‖v′‖3)h′

2

)
.(25)

Since

limh′→h,t→0+[(1 − v′2
2
/‖v′‖3)h′

1 + (v′1v
′
2/‖v′‖3)h′

2]

= (1 − v̄2
2/‖v̄‖3)h1 + (v̄1v̄2/‖v̄‖3)h2 = (1 − v̄2

2)h1 + v̄1v̄2h2

= v̄2
1h1 + v̄1v̄2h2 = v̄1(h1v̄1 + h2v̄2) = 0,

and similarly, limh′→h,t→0+[(v′1v
′
2/‖v′‖3)h′

1 +(1−v′1
2
/‖v′‖3)h′

2] = 0, by (24), we have

lim
h′→h,t→0+

V h′ = (0, 0)T .(26)

Hence, V h′ tends to the same limit in these two cases by (24) and (26).
If ‖v′‖ = 1, by the definition of the generalized Jacobian, V is a convex combi-

nation of the Jacobians in (21) and (22) (with v replaced by v′). Thus, V h′ tends to
the same limit, namely 0, as the above two cases.

Thereby, the limit in (23) exists if h ∈ S3(v̄). The above shows that p is semi-
smooth on R

2. Therefore, g is semismooth on R
2 as well.

4.2. Conjugate of the Moreau–Yosida regularization. In this subsection,
we investigate the relationship between the original problem with the linear objective
and the Fenchel conjugate of Moreau–Yosida regularization of its Lagrangian-dual
function.

First, recall the notion of Fenchel conjugate. Let φ be a real-valued convex func-
tion on R

l. The Fenchel conjugate, denoted by φ∗, of φ is defined by (see [18])

φ∗(x) := sup{〈x∗, x〉 − φ(x) | x∗ ∈ R
l} ∀x ∈ R

l.

Note that η, the Moreau–Yosida regularization of ϕ defined in (9), can be rewritten
as

η(v) = (π1�π2)(v) := inf{π1(v − w) + π2(w) : w ∈ R
m}, v ∈ R

m,(27)

where “�” denotes the infimal convolution operation [18], π1(v) := 1
2
‖v‖2

M , π2(v) :=
ϕ(v), as defined in (9). Evidently, both π1 and π2 are proper convex functions; then
by [18, Theorem 5.4], η is a convex function.



LAGRANGIAN-DUAL FUNCTIONS AND REGULARIZATION 53

Using the conjugate operator, it is not hard to derive that

π∗
1(v) = 1

2
‖v‖2

M−1 ∀ v ∈ R
m.

Hence, we have domπ∗
1 = R

m. Thereby, it follows from [8, Corollary 2.1.3] that

η∗(v) = π∗
1(v) + π∗

2(v) ∀ v ∈ R
m.

Next, we study the conjugate of π2. To ease notation, we define a mapping
A : R

m → R
n by

A(v) = AT v − c.

Then we have

δ∗(AT v − c | F) = ζ ◦ A(v), v ∈ R
m,

where ζ is defined in (10). Since domζ = Fb, so ζ ◦ A is a closed convex function on
R

m under Assumption 3. Thus, by [18, Theorem 16.3], it follows that

(ζ ◦ A)∗(v) = cl inf
x∈Rn

{ζ∗(x) − 〈−c, x〉 | Ax = v}.

Since F is closed, we then have

(ζ ◦ A)∗(v) = cl inf
x∈Rn

{(δ∗(x | F))∗ + 〈c, x〉 | Ax = v}

= cl inf
x∈Rn

{δ(x | F) + 〈c, x〉 | Ax = v}

= cl inf{〈c, x〉 | Ax = v, x ∈ F}.

On the other hand, by definition of conjugate, we have

π∗
2(v) = sup{〈v + a, v′〉 − sup{〈AT v′ − c, x〉 | x ∈ F} | v′ ∈ domπ2}

= sup{〈v + a, v′ − ζ ◦ A(v′)〉 | v′ ∈ domπ2}

= sup{〈v + a, v′ − ζ ◦ A(v′)〉 | v′ ∈ dom(ζ ◦ A)}

= (ζ ◦ A)∗(v + a).

Thus, we obtain the conjugate of π2 as follows:

π∗
2(v) = cl inf{〈c, x〉 | Ax = v + a, x ∈ F}.

We now derive an interesting result on the conjugate of Moreau–Yosida regular-
ization of the Lagrangian-dual function as follows.

Proposition 6. Assume Ω ∩ Fb �= ∅. Then, for any v ∈ R
m,

cl inf{〈c, x〉 | Ax− a = v, x ∈ F}

= η∗(v) − 1
2
‖v‖2

M−1 .

From Proposition 6, we can see that the optimal value function of the underlying
parametric optimization problem can be represented by the conjugate function of
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the regularized dual function of the (unperturbed) original problem, together with a
quadratic function in terms of the perturbation parameter v. Note that the expression
is taken under the closure and infimal operations on the set of objective values due to
the fact that the minimum of the set of objective values of the corresponding feasible
points might not exist in general.

Next we investigate under which situations these two operations can be replaced
by the usual minimization operator so as to simplify the analysis on conventional min-
imization problems. We need the following assumption in the rest of this subsection.

Assumption 5. Ω ∩ riFb �= ∅.
Note that under Assumption 5 and by virtue of [8, Theorem 2.2.3], we have

(ζ ◦ A)∗(v) = min{〈c, x〉 | Ax = v, x ∈ F} ∀ v ∈ dom(ζ ◦ A)∗.

Let (Pv) denote the perturbed problem

min
x∈Rn

〈c, x〉

s.t. Ax− a = v,

x ∈ F ,

where v serves as the perturbation parameter. We refer to the original problem
(1) where the objective function is taken as an affine function, denoted by (P0), to
the unperturbed problem. We denote the optimal value function of (Pv) by fval(v).
Accordingly, fval(0) denotes the optimal value of the original problem (1) or (P0).

Then, we derive the following result immediately by virtue of Proposition 6.
Proposition 7. Suppose that Assumption 5 holds. Then

fval(v) = η∗(v) − 1
2
‖v‖2

M−1

for any v ∈ dom(ζ ◦ A)∗ − a.
Note that the above result enhances Proposition 6. It provides a new and interest-

ing characteristic of convex conjugates in perturbation analysis. Note that the result
is valid only if the parameter v belongs to the set dom(ζ ◦ A)∗ − a. Also, this result
has a potential role in studying sensitivity analysis and some stochastic programs,
both theoretically and numerically.

The next immediate question is about the nonemptiness of the domain of (ζ ◦A)∗.
Consider the case when the original problem (P0) is bounded below; by definition, it
follows that

(ζ ◦ A)∗(a)

= min{〈c, x〉 | Ax = a, x ∈ F} < ∞.

Thus, a ∈ dom(ζ ◦A)∗. This implies that dom(ζ ◦A)∗ is nonempty, and so is dom(ζ ◦
A)∗ − a.

Before ending this section, we derive the following result based on the above
arguments.

Proposition 8. Suppose that the original problem, namely,

min
x∈Rn

〈c, x〉

s.t. Ax = a,

fi(x) ≤ 0, i ∈ Î = {1, . . . , θ},
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is bounded below. Then, dom(h ◦ A)∗ �= ∅ and a ∈ dom(h ◦ A)∗.
Furthermore, let {vk} be a sequence in dom(h ◦ A)∗ − a satisfying vk → 0 as

k → ∞; then

lim
vk→0

η∗(vk) = lim
vk→0

(
fval(v

k) + 1
2
‖vk‖2

M−1

)
= fval(0) = min{〈c, x〉 | Ax− a = 0, x ∈ F}.

Remark 6. Note that Assumption 4 used in section 4.1 is obviously stronger
than Assumption 5. In other words, the former implies the latter, but not vice versa.
Hence, the results obtained in Propositions 6–8 will be valid under Assumption 4. In
Proposition 8, we assume that problem (P0) is bounded below. This assumption is
natural and reasonable in optimization. Proposition 8 tells us that the optimal value
of the unperturbed optimization problem (the original problem) can be achieved by
solving a sequence of the conjugates which corresponds to the perturbed problems,
in which affine equality constraints are perturbed on the right-hand side, and setting
the perturbation parameters driven to zero. This result helps us to better understand
the conjugate and Lagrange dual, and it might serve to study multistage stochastic
nonlinear convex programs.

Also, this kind of perturbation problem is closely related to the perturbation
problems discussed in [3]. In [9], Magnanti showed the equivalence between Fenchel
dual and Lagrangian dual problems where the convex conjugate was employed. We
believe that the results established in this subsection complement his theory to some
extent. In addition, note that η is originally obtained from the Moreau–Yosida regu-
larization by relaxing the original problem using the Lagrangian dual. Its conjugate
η∗, as shown in Propositions 6–8, is related to the parametric (or perturbed) prob-
lem of the original problem. From this observation, we see that the perturbation
analysis and Lagrangian dual are closely linked under the conjugate operation and
Moreau–Yosida regularization. Besides the usual optimization methods, it also pro-
vides another possible option for solving some optimization problems, i.e., by solving
the induced conjugate.

5. General convex objectives functions. In this section, we investigate the
piecewise smoothness and semismoothness of the Lagrangian-dual function ϕ and the
gradient g for the case of the general convex objective functions in (1). We will also
provide an alternative way to study the semismoothness of the gradient g based on
the structure of the epigraph of ϕ.

5.1. Convex objective functions with positive definite Hessian. We now
discuss the case for the general convex objective functions in (1). Consider the fol-
lowing Lagrangian-dual function ϕ in (3):

ϕ(v) = sup{−f(x) + vT (Ax− a) | x ∈ F}.

When analyzing the piecewise smoothness of ϕ in section 3, we frequently use the
fact that the optimal solutions of problem (9) lie on the boundary (or facets) of the
set F . This fact is guaranteed by Assumption 1, namely u = AT v − c �= 0, for the
linear objective function f(x) = cTx. For nonlinear objective functions, Assumption 1
cannot be made. Thus, multiple optimal solutions of problem (3) may appear in the
interior of F , and the piecewise C2 smoothness of ϕ may probably be destroyed. This
conjecture is confirmed by the following example where ∇2ϕ is unbounded in some
area, and thus ϕ is not piecewise C2.
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Example 3. Let

f(x) =

{
0 if ρ ≤ 1,

(ρ− 1)4 if ρ > 1,

where x ∈ R
2 and ρ =

√
x2

1 + x2
2, and let

A =
(

1 1
)
, a = 0, F = {x ∈ R

2 : x2
1 + x2

2 ≤ 4}.

Obviously, f(x) is convex and twice continuously differentiable on R
2. After some

manipulations we obtain

ϕ(v) =
√

2|v| + (3/4)|v|4/3

for v in a neighborhood of zero, namely N = {v ∈ R : |v| < 2
√

2}. Since F is
bounded, the effective domain of ϕ is the whole space R. On R \ N , the function ϕ
has a different form. For our purpose, the investigation of ϕ within N suffices. Thus
we do not elaborate ϕ outside N . For any 0 �= v ∈ N , the first- and second-order
derivatives of ϕ are

ϕ′(v) =
√

2 sign(v) + v1/3, ϕ′′(v) = (1/3)v−2/3.

Now for any nonzero v → 0, we have ϕ′′(v) → ∞. Using the same arguments as in
Example 1, we can see that ϕ cannot be piecewise C2 in the neighborhood N .

This example shows that we cannot extend the results in sections 3 and 4 to
problems with arbitrary convex objective functions. However, if the objective function
f(x) possesses a positive definite Hessian, we can obtain results similar to those in
sections 3 and 4. Also, in this case, the constraints need not be strictly convex.

Proposition 9. Let ϕ be defined by (3), where f and fi, i ∈ Î, are C2 convex
functions on R

n. Suppose that the Hessian of f is positive definite, and for any facet Q
of F with the index set IQ and for any x ∈ Q, {∇fi(x)}i∈IQ are linearly independent.
Suppose also that F is nonempty and bounded. Then the Lagrangian-dual function ϕ
is piecewise C2, and the gradient g of the Moreau–Yosida regularization η is piecewise
smooth, and thereby semismooth, on R

m.
Proof. Similar to the analysis in section 3, we shall construct a piece corresponding

to each facet of F . There is one major difference we should highlight. For the
problem with a nonlinear objective function, maximizers of the problem (3) can lie
on the boundary as well as in the interior of F , while in the case of linear objective
functions, Assumption 1 prohibits interior maximizers. Thus, in the present case, an
additional piece corresponding to the interior of F is needed.

Here we define the function ζ slightly differently from the approach in (10):

ζ(u) = sup{uTx− f(x) | x ∈ F}.(28)

Then ϕ(v) = ζ(AT v) − aT v. For each facet Q (on the boundary) of F , we still
construct a piece by a slightly different definition:

W :=

⎧⎨
⎩(x, λ) ∈ R

n × R
|IQ| : fi(x) = 0, i ∈ IQ, ∇2f(x) +

∑
i∈IQ

λi∇2fi(x) � 0

⎫⎬
⎭ ,

U :=

⎧⎨
⎩u = ∇f(x) +

∑
i∈IQ

λi∇fi(x) ∈ R
n : (x, λ) ∈ W

⎫⎬
⎭ ,
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and

Γ(x, λ) :=

(
∇f(x) +

∑
i∈IQ

λi∇fi(x)

f̃(x)

)
.

Then the result of Lemma 2 can be analogously proved, and a piece can be constructed.
In addition, a piece corresponding the interior of F will be constructed as follows.

Since ∇2f(x) � 0, for any u ∈ R
n,

∇f(x) = u

has a unique solution, denoted by ξ0x(u). In other words, ξ0x(u) is the unique maxi-
mizer of the unconstrained problem

max
x∈Rn

{uTx− f(x)}.

Now, this piece is defined by U0 = R
n, ζ0(u) = uT ξ0x(u)−f(ξ0x(u)), and D0 = clDint,

where Dint = {u | ξ0x(u) ∈ intF}. For any u ∈ Dint, since the unique maximizer
ξ0x(u) of the objective function uTx − f(x) is in the interior of the set F , ξ0x(u) is
the optimal solution to the constrained problem (28), too. Thus

ζ(u) = uT ξ0x(u) − f(ξ0x(u)) = ζ0(u).(29)

Since ζ and ζ0 are continuous, thus ζ(u) = ζ0(u) also holds for all u ∈ D0. It is also
easy to verify that

∇ζ0(u) = ξ0x(u) ∀u ∈ U0.(30)

Now an analogue of the proof of Proposition 4 is valid to prove the piecewise-C2

smoothness of ζ with the representation {(D0, U0, ζ0), (D1, U1, ζ2), . . . , (Dq, Uq, ζq)}.
(The only difference is that now the nonnegative vector λ̄ need not be nonzero since
u �= 0 is not assumed. Still, ∇2f(x) +

∑
λ̄i∇2fi(x) � 0 because ∇2f(x) � 0. This

implies that the Jacobian of Γ is invertible.) Therefore, ϕ is piecewise C2 on its
domain.

The proof of the piecewise smoothness of g follows from Lemmas 5 and 6 and
Proposition 5. The proofs of Lemmas 5 and 6 do not directly rely on Assumption 1,
and thus they can be extended without changing to the representation {(E0, V0, ϕ0),
(E1, V1, ϕ1), . . . , (Eq, Vq, ϕq)} of the Lagrangian-dual function ϕ of the present prob-
lem.

5.2. Piecewise smoothness under the structure of the epigraph. In this
subsection, we investigate the piecewise smoothness and the semismoothness of g
using a different approach. In the analysis we will employ the piecewise smoothness
or the semismoothness of the metric projection mapping under the structure of the
epigraph of the underlying function. Our analysis is based on the framework of [11].

Recently, Meng, Sun, and Zhao [11] investigated the Moreau–Yosida regulariza-
tion of a lower semicontinuous convex function, γ : Z → R ∪ {+∞}, and derived
the semismoothness of the solution to the Moreau–Yosida regularization under the
structure of the epigraph of γ. Here, Z is a finite dimensional vector space equipped
with a scalar product, and the Moreau–Yosida regularization of γ is defined in the
form of

γ̂ε(u) := min
{
γ(z) + ε

2 〈u− z, u− z〉
}

s.t. z ∈ Z,
(31)
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where ε is a positive number. Let Υ be the epigraph of γ; i.e., Υ := epi(γ) = {(u, t) ∈
Z × R | t ≥ γ(u)}. Noticing that Υ is a closed convex set, problem (31) then can be
written as

min
{

1
ε t + 1

2 〈u− z, u− z〉
}

s.t. (z, t) ∈ Υ.
(32)

For any closed convex set D of Z and z ∈ Z, let ΠD(z) denote the metric projection
of z onto D, namely,

ΠD(z) := argmin
{

1
2
‖d− z‖2 | d ∈ D

}
.

Let (z(u), t(u)) be the unique optimal solution of (32), where t(u) := γ(z(u)). Define
the mapping H by

H(z, t, u) :=

(
z
t

)
− ΠΥ(G(z, t, u)),

where G(z, t, u) := (uT t− 1/ε)T . Then, it follows from [11] that

H(z(u), t(u), u) = 0, G(z(u), t(u), u) /∈ Υ ∀ u ∈ Z.

The following proposition is taken from [11, Theorem 4].
Proposition 10. For u0 ∈ Z, let z0 := z(u0) and t0 := γ(z(u0)). Then,

(z(·), t(·)) is semismooth at u0 if ΠΥ(G(z0, t0, u0))z ∈ int(domγ) and ΠΥ(·) is semis-
mooth at G(z0, t0, u0).

Here we consider the case where M = λI in the Moreau–Yosida regularization
as defined in (5), where I is the identity matrix of R

m×m and λ > 0. For v ∈ R
m,

let w(v) denote the unique solution of (5), s(v) := ϕ(w(v)), and epi(ϕ) denote the
epigraph of ϕ. Evidently, (w(v), s(v)) is the unique solution of

min
{

1
λs + 1

2
〈v − w, v − w〉

}
s.t. (w, s) ∈ epi(ϕ),

which is a reformulation of (5). Note that

g(v) = ∇η(v) = λ(v − w(v)).

Hence to study the semismoothness of g, we need only to study the properties of w(·).
Set

Φ(w, s, v) :=

(
w
s

)
−
(

w − v

1/λ

)
=

(
v

s− 1/λ

)
.

According to Proposition 10 and following the arguments as in [11], we then have the
following result.

Proposition 11. For v̄ ∈ R
m, let w̄ := w(v̄), s̄ := ϕ(w(v̄)). Suppose that

Πepi(ϕ)(Φ(w̄, s̄, v̄))w ∈ int(domϕ) and Πepi(ϕ)(·) is semismooth at Φ(w̄, s̄, v̄). Then
(w(·), s(·)) is semismooth at v̄. Thereby, g is semismooth at v̄.

Furthermore, if ϕ is finite valued everywhere and Πepi(ϕ)(·) is semismooth on
R

m × R, then g is semismooth on R
m.
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Similar to the mapping H above, we define a mapping Ξ corresponding to the
regularization (5),

Ξ(w, s, v) :=

(
w
s

)
− Πepi(ϕ)(Φ(w, s, v)).

Thus, for any v ∈ R
m

Ξ(w(v), s(v), v) = 0.(33)

We now obtain the following result concerning the piecewise smoothness of g.
Proposition 12. Let v̄ ∈ R

m. Suppose that (i) Πepi(ϕ)(Φ(w̄, s̄, v̄))w ∈ int(domϕ),

and (ii) Πepi(ϕ)(·) is piecewise Ck on a neighborhood N1 of (v̄, ϕ(w(v̄))− 1/λ), where

w̄ = w(v̄) and s̄ = ϕ(w(v̄)). Then, (w(·), s(·)) is piecewise Ck on a neighborhood
N2 of v̄. Thereby, g is piecewise Ck on N2. In particular, g is semismooth on a
neighborhood of v̄.

Proof. Define a mapping ℵ : R
m × R × R

m → R
m × R × R

m by

ℵ(w, s, v) =

(
Ξ(w, s, v)

v − v̄

)
.

By assumption, since Πepi(ϕ)(·) is piecewise Ck on N1, it is easy to see that ℵ(·)
is piecewise Ck on some neighborhood of (w̄, s̄, v̄), and

ℵ(w̄, s̄, v̄) = 0.(34)

Next, we show that every matrix in ∂ℵ(w̄, s̄, v̄) is nonsingular [2]. To do so, it is
not hard to see that we only need to show the nonsingularity of π(w,s)∂Ξ(w̄, s̄, v̄). For
any V ∈ π(w,s)∂Ξ(w̄, s̄, v̄), it follows that there exists W ∈ ∂Πepi(ϕ)(Φ(w̄, s̄, v̄)) such
that

V = Im+1 −W

(
Im+1 −

[
Im 0

0 0

])
,

where W is a convex combination of some finitely many matrices in ∂BΠepi(ϕ)(Φ(w̄,
s̄, v̄)). Suppose Wi ∈ ∂BΠepi(ϕ)(Φ(w̄, s̄, v̄)) and λi ≥ 0, i = 1, . . . , ν, satisfying∑ν

i=1 λi = 1, such that W =
∑ν

i=1 λiWi, where each Wi is in the form of Wi =

[ Ui αi

αT
i βi

] with Ui ∈ R
m×m, αi ∈ R

m, and βi ≥ 0. Thus,

W =

[ ∑ν
i=1 λiUi

∑ν
i=1 λiαi∑ν

i=1 λiα
T
i

∑ν
i=1 λiβi

]
.

To ease the notation, we write W = [ U α

αT β
]. Then, by [11, Proposition 3], there

exists �i ∈ (0, 1), i = 1, . . . , ν, such that

0 ≤ βi ≤ �i < 1 ∀ i.

Hence,

0 ≤ β < 1.(35)
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Then, we have

V = Im+1 −
[

U α

αT β

](
Im+1 −

[
Im 0

0 0

])

= Im+1 −
[

U α

αT β

] [
0 0
0 1

]

= Im+1 −
[

0 α
0 β

]
=

[
Im −α

0 1 − β

]
.

This together with (35) implies that detV = 1− β > 0 for any V ∈ π(w,s)∂Ξ(w̄, s̄, v̄).
So, Ξ(w, s, v) is coherently oriented with respect to w and s at (w̄, s̄, v̄) [17, 20].
Thereby, π(w,s)∂Ξ(w̄, s̄, v̄) is nonsingular, and so is ∂ℵ(w̄, s̄, v̄). Then, by [15, The-
orem 6], ℵ is a locally Lipschitz homeomorphism near (w̄, s̄, v̄), and sgn detV =
ind(ℵ, (w̄, s̄, v̄)) = ±1 for any V ∈ ∂Bℵ(w̄, s̄, v̄). Further, noticing that ℵ(·) is co-
herently oriented at (w̄, s̄, v̄) and is piecewise Ck on a neighborhood of (w̄, s̄, v̄), then
by [17, Theorem 5], it follows that ℵ is a PCk-homeomorphism near (w̄, s̄, v̄). Thus,
the desired results follow immediately. This completes the proof.

Remark 7. The condition Πepi(ϕ)(Φ(w̄, s̄, v̄))w ∈ int(domϕ) in Proposition 12
holds automatically if ϕ is finite valued everywhere. The obtained results complement
and enrich the framework of piecewise smooth functions [20, 17], and also enhance
the recent results on the Moreau–Yosida regularization [11].

6. Conclusion. The Lagrangian dual is widely used for large-scale problems.
A significant feature of the Lagrangian-dual function ϕ is the piecewise smoothness,
which is studied in this paper and employed in the analysis of the Moreau–Yosida reg-
ularization of ϕ. We investigate the semismoothness of the gradient g of the Moreau–
Yosida regularization of ϕ, which plays a key role in the superlinear or quadratic con-
vergence analysis of generalized Newton methods for solving nonsmooth equations. As
to problem (1) with the linear objective function, we show that the Lagrangian-dual
function ϕ is piecewise C2 and the gradient g is piecewise smooth and thereby semis-
mooth if the inequality constraints in (1) either are all affine or all possess positive
definite Hessian matrices. An example with an affine constraint and a strictly convex
constraint is constructed. We find that the Lagrangian-dual function of this problem
is not piecewise C2, and that the gradient g of its Moreau–Yosida regularization is
still semismooth. However, whether or not g is semismooth for general mixed affine
and strictly convex constraints is still left unanswered. We also investigate problem
(1) with a convex objective function. We show with an example that ϕ may not be
piecewise C2 for the problem with a general convex objective function. For problem
(1) with an objective function which possesses a positive definite Hessian, ϕ and g
can again be shown to be piecewise C2 and semismooth, respectively. We have also
provided an alternative way to study the semismoothness/piecewise smoothness of g
under the structure of the epigraph of the Lagrangian dual function using the projec-
tion operator. For problem (1) with a linear objective, we have also established an
interesting result characterizing the relations between the original problem and the
Fenchel conjugate of the regularization of the Lagrangian dual problem. For future
research, we will examine under which conditions the projection mapping over the
epigraph of the Lagrangian-dual function ϕ is piecewise smooth or semismooth.
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LINEAR REGULARITY FOR A COLLECTION OF SUBSMOOTH
SETS IN BANACH SPACES∗
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Abstract. Using variational analysis, we study the linear regularity for a collection of finitely
many closed sets. In particular, we extend duality characterizations of the linear regularity for a col-
lection of finitely many closed convex sets to the possibly nonconvex setting. Moreover, the sharpest
linear regularity constant can also be dually represented under the subsmoothness assumption.
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1. Introduction. Linear regularity is a well-known notion in mathematical pro-
gramming and approximation theory. In particular, it plays a key role in establishing
a linear convergence rate of iterates generated by the cyclic projection algorithm for
finding the projection from a point to the intersection of finitely many closed convex
sets (see [3] and references therein).

In this paper, we study the linear regularity of a collection {A1, . . . , An} of finitely
many closed sets in a Banach space X. Here we say that the collection is locally
linearly regular at a ∈

⋂n
i=1 Ai (resp., linearly regular) if there exists τ ∈ (0, +∞)

such that

d

(
x,

n⋂
i=1

Ai

)
≤ τ

n∑
i=1

d(x,Ai) for all x close to a(1.1)

(
resp., d

(
x,

n⋂
i=1

Ai

)
≤ τ

n∑
i=1

d(x,Ai) for all x ∈ X

)
.

Linear regularity has been well studied by many authors in the case when each Ai

is a closed convex set (see [2, 3, 4, 5, 18, 25] and references therein). In 1972, Jameson
[12] established a dual characterization for the linear regularity of a collection of two
closed convex cones. Pang [21] and Lewis and Pang [15] provided necessary conditions
for the linear regularity of a collection of finitely many closed convex sets in terms
of the normal cone. Afterwards, Bauschke, Borwein, and Li [4] established some
sufficient conditions in the same line. Recently, it was proved (cf. [2, 20, 25]) that
if {A1, . . . , An} is a collection of closed convex sets in a Banach space X, then the
following statements are equivalent:
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(C1) {A1, . . . , An} is linearly regular.
(C2) There exists τ ∈ (0, +∞) such that

N

(
n⋂

i=1

Ai, x

)
∩BX∗ ⊂ τ

n∑
i=1

N(Ai, x) ∩BX∗ for all x ∈
n⋂

i=1

Ai,

where X∗ denotes the dual space of X and BX∗ denotes the closed unit ball of X∗.
(C3) There exists τ ∈ (0, +∞) such that for any x ∈

⋂n
i=1 Ai,

(SC) N

(
n⋂

i=1

Ai, x

)
=

n∑
i=1

N(Ai, x)

and

inf

{
n∑

i=1

‖x∗
i ‖ : x∗

i ∈ N(Ai, x) and x∗ =

n∑
i=1

x∗
i

}
≤ τ‖x∗‖ ∀x∗ ∈ N

(
n⋂

i=1

Ai, x

)
.

In the terminology of Deutsch, Li, and Ward [11], (SC) means that the collection
has the strong conical hull intersection property (strong CHIP) at x, which has been
extensively studied in variational analysis (cf. [4, 5, 10, 11, 16]).

In this paper, we will study the nonconvex case. In view of the fact that a
collection {A1, . . . , An} of closed convex sets is linearly regular with a constant τ if
and only if {A1, . . . , An} is locally linearly regular at each a ∈ bd(

⋂n
i=1 Ai) with the

same constant, it is natural to adopt the local version when one considers a collection
of closed sets. While the equivalences among (C1), (C2), and (C3) are no longer valid
if one drops the convexity assumption of some Ai, a natural substitute of convexity in
this respect is the subsmoothness, a notion recently introduced and studied by Aussel,
Daniilidis, and Thibault [1], which is a generalization of the well-known notion of the
prox-regularity (cf. [6, 7, 9, 23, 24] and references therein).

In section 2, we recall some notions in variational analysis and provide some prop-
erties of the subsmoothness. In section 3, as an application of the Ekeland variational
principle, we provide a kind of approximate projection result for a closed set, which
is very useful for our analysis. In section 4, in terms of the subsmoothness and the
approximate projection result, we establish sufficient and/or necessary conditions for
the local linear regularity of a collection of finitely many subsmooth sets, and extend
the equivalences among (C1), (C2), and (C3) to the nonconvex case. Moreover, the
constants τ satisfying (1.1) are represented quantitatively by duality formulas.

2. Subsmoothness of a closed set. First we provide some notions in varia-
tional analysis. For a closed subset A of a Banach space X and a ∈ A, let Tc(A, a)
and T (A, a) denote respectively the Clarke tangent cone and the contingent cone of
A at a, which are respectively defined by

Tc(A, a) = lim inf
x

A→a,t→0+

A− x

t
and T (A, a) = lim sup

t→0+

A− a

t
,

where x
A→ a means that x → a with x ∈ A. Thus, v ∈ Tc(A, a) if and only if, for

each sequence {an} in A converging to a and each sequence {tn} in (0, ∞) decreasing
to 0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for
all n, while v ∈ T (A, a) if and only if there exist a sequence {vn} converging to v and
a sequence {tn} in (0, ∞) decreasing to 0 such that a + tnvn ∈ A for all n.
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We denote by Nc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ Tc(A, a)}.

For ε ≥ 0 and a ∈ A, the nonempty set

N̂ε(A, a) :=

{
x∗ ∈ X∗ : lim sup

x
A→a

〈x∗, x− a〉
‖x− a‖ ≤ ε

}

is called the set of Fréchet ε-normals of A at a. When ε = 0, N̂ε(A, a) is a convex
cone which is called the Fréchet normal cone of A at a and is denoted by N̂(A, a).

Let N(A, a) denote the limiting normal cone of A at a, that is,

N(A, a) = lim sup
x

A→a,ε→0+

N̂ε(A, x).

Thus, x∗ ∈ N(A, a) if and only if there exists a sequence {(xn, εn, x
∗
n)} in A×R+×X∗

such that (xn, εn) → (a, 0), x∗
n

w∗
→ x∗, and x∗

n ∈ N̂εn(A, xn) for each n. It is known
that

N̂(A, a) ⊂ N(A, a) ⊂ Nc(A, a)

(cf. [17] and [18]).
If A is convex, then Tc(A, a) = T (A, a) and

Nc(A, a) = N̂(A, a) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 〈x∗, a〉 for all x ∈ A}.

Recall that a Banach space X is called an Asplund space if every continuous
convex function on X is Fréchet differentiable at each point of a dense subset of X.
It is well known (cf. [22]) that X is an Asplund space if and only if every separable
subspace of X has a separable dual space. In particular, every reflexive Banach space
is an Asplund space. When X is an Asplund space, Mordukhovich and Shao [18]
proved that

Nc(A, a) = cl∗(co(N(A, a))) and N(A, a) = lim sup
x

A→a

N̂(A, x),(2.1)

where cl∗(·) denotes the closure with respect to the weak∗ topology w∗.
Recall that a closed set A in X is said to be prox-regular at a ∈ A if there exist

σ, r > 0 such that

〈x∗ − u∗, x− u〉 ≥ −σ‖x− u‖2

whenever x, u ∈ A∩B(a, r), x∗ ∈ Nc(A, x)∩BX∗ , and u∗ ∈ Nc(A, u)∩BX∗ . Readers
can find some interesting properties of the prox-regularity in [23] and [24].

As a generalization of the prox-regularity, Aussel, Daniilidis, and Thibault [1] in-
troduced and studied the subsmoothness. A closed set A in X is said to be subsmooth
at a ∈ A if for any ε > 0 there exists r > 0 such that

〈x∗ − u∗, x− u〉 ≥ −ε‖x− u‖(2.2)

whenever x, u ∈ A ∩B(a, r), x∗ ∈ Nc(A, x) ∩BX∗ , and u∗ ∈ Nc(A, u) ∩BX∗ .
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Taking x∗ = 0, (2.2) reduces to 〈u∗, x−u〉 ≤ ε‖x−u‖. On the other hand, noting
that 〈x∗−u∗, x−u〉 ≥ −2ε‖x−u‖ if 〈x∗, u−x〉 ≤ ε‖x−u‖ and 〈u∗, x−u〉 ≤ ε‖x−u‖,
it follows that A is subsmooth at a ∈ A if and only if for any ε > 0 there exists r > 0
such that

〈u∗, x− u〉 ≤ ε‖x− u‖ for all x ∈ A ∩B(u, r)(2.3)

whenever u ∈ A ∩B(a, r) and u∗ ∈ Nc(A, u) ∩BX∗ . Thus, for any ε > 0 there exists
r > 0 such that

Nc(A, u) ⊂ N̂ε(A, u) for all u ∈ A ∩B(a, r),

provided that A is subsmooth at a. Hence

subsmoothness of A at a =⇒ Nc(A, a) = N̂(A, a).(2.4)

Usually, A is said to be Clarke regular at a if Nc(A, a) = N̂(A, a).

It is known (cf. [17, Corollary 1.96]) that N̂(A, u)∩BX∗ = ∂̂d(·, A)(u) for u ∈ A,

where ∂̂ denotes the Fréchet subdifferential. Hence x∗ ∈ N̂(A, u)∩BX∗ if and only if
for any ε > 0 there exists r > 0 such that

〈x∗, x− u〉 ≤ d(x,A) + ε‖x− u‖ for all x ∈ B(u, r).(2.5)

The following proposition shows that a strengthened condition similar to (2.5)
provides a characterization of the subsmoothness.

Proposition 2.1. Let A be a closed subset of X. Then A is subsmooth at a ∈ A
if and only if for any ε > 0 there exists r > 0 such that

〈u∗, x− u〉 ≤ d(x,A) + ε‖x− u‖ for all x ∈ B(a, r)(2.6)

whenever u ∈ A ∩B(a, r) and u∗ ∈ Nc(A, u) ∩BX∗ .
Proof. Since d(x,A) = 0 for all x ∈ A, (2.6) implies (2.3). Hence, the sufficiency

part holds. Conversely, suppose that A is subsmooth at a ∈ A. Let ε > 0 and take
r > 0 such that

〈u∗, z − u〉 ≤ ε

2
‖z − u‖ for all z ∈ A ∩B(a, 2r)(2.7)

whenever u ∈ A∩B(a, r) and u∗ ∈ Nc(A, u)∩BX∗ . Let x ∈ B(a, r), u ∈ A∩B(a, r),
and u∗ ∈ Nc(A, u)∩BX∗ . Then d(x,A) ≤ ‖x− a‖ < r. Thus, there exists a sequence
{un} in A∩B(x, r) such that ‖x−un‖ → d(x,A). Hence ‖un−a‖ ≤ ‖un−x‖+‖x−a‖ <
2r. It follows from (2.7) that

〈u∗, x− u〉 = 〈u∗, x− un〉 + 〈u∗, un − u〉
≤ ‖x− un‖ +

ε

2
‖un − u‖

≤ ‖x− un‖ +
ε

2
(‖un − x‖ + ‖x− u‖).

Letting n → ∞, one has

〈u∗, x− u〉 ≤ d(x,A) +
ε

2
(d(x,A) + ‖x− u‖) ≤ d(x,A) + ε‖x− u‖.

This shows that the necessity part holds. The proof is completed.
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Proposition 2.2. Let X,Y be Banach spaces, Ω be a closed convex subset of Y ,
and g : X → Y be a continuously differentiable function. Let a ∈ g−1(Ω) and suppose
that g′(a) is surjective, where g′(a) denotes the derivative of g at a. Then there exists
a neighborhood U of a such that g−1(Ω) is subsmooth at each point of g−1(Ω) ∩ U .

Proof. Since g′(a) is surjective, there exists l > 0 such that 2lBY ⊂ g′(a)(BX).
Since x �→ g′(x) is continuous, it follows that there exists r > 0 such that

lBY ⊂ g′(x)(BX) for all x ∈ B(a, r).(2.8)

We first establish the following inclusion:

Nc(g
−1(Ω), u) ⊂ g′(u)∗(N(Ω, g(u))) for all u ∈ g−1(Ω) ∩B(a, r).(2.9)

Suppose to the contrary that there exists u ∈ g−1(Ω) ∩B(a, r) such that

x∗ ∈ Nc(g
−1(Ω), u) \ g′(u)∗(N(Ω, g(u))).(2.10)

Since the adjoint operator g′(u)∗ is weak∗-weak∗ continuous and g′(u) is surjective
(by (2.8)), g′(u)∗(N(Ω, g(u))) ∩ BX∗ is weakly∗ closed. This and the Krein–Smulian
theorem imply that g′(u)∗(N(Ω, g(u))) is weakly∗ closed. By (2.10) and the separation
theorem, there exists h0 ∈ X such that

〈x∗, h0〉 > sup{〈g′(u)∗(y∗), h0〉 : y∗ ∈ N(Ω, g(u))}
= sup{〈y∗, g′(u)(h0)〉 : y∗ ∈ N(Ω, g(u))}.

It follows from the convexity of Ω that 〈x∗, h0〉 > 0 and g′(u)(h0) ∈ Tc(Ω, g(u)). Take
an arbitrary sequence {xn} in g−1(Ω) converging to u, and an arbitrary sequence {tn}
in (0, +∞) decreasing to 0. Then g(xn)

Ω→ g(u), and hence there exists a sequence
yn → g′(u)(h0) such that g(xn) + tnyn ∈ Ω for all n. Since g is continuously differen-
tiable, (2.8) and the Lyusternik–Graves theorem (cf. [20, Theorem 1.57]) imply that

d(xn + tnh0, g
−1(g(xn) + tnyn)) ≤ L‖g(xn + tnh0) − g(xn) − tnyn‖(2.11)

for some L ∈ (0, +∞) and all n large enough. Noting that

g(xn + tnh0) − g(xn) = g′(u)(tnh0) + o(tn),

it follows that for each n large enough there exists x̃n ∈ X such that

x̃n ∈ g−1(g(xn) + tnyn) ⊂ g−1(Ω)

and

‖xn + tnh0 − x̃n‖ ≤ 2L(tn‖g′(u)(h0) − yn‖ + ‖o(tn)‖).

This and yn → g′(u)(h0) imply that hn := x̃n−xn

tn
→ h0 and xn+tnhn = x̃n ∈ g−1(Ω).

This shows that h0 ∈ Tc(g
−1(Ω), u), which is not possible because x∗ ∈ Nc(g

−1(Ω), u)
and 〈x∗, h0〉 > 0. This shows that (2.9) holds. Let z ∈ g−1(Ω) ∩ B(a, r

2 ) and ε > 0.
Then there exists δ ∈ (0, r

2 ) such that

‖g′(u1) − g′(u2)‖ <
lε

2
for any u1, u2 ∈ B(z, 2δ).(2.12)
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Let u ∈ g−1(Ω) ∩B(z, δ) and u∗ ∈ Nc(g
−1(Ω), u) ∩BX∗ . Then, by (2.9), there exists

y∗ ∈ N(Ω, g(u)) such that u∗ = (g′(u))∗(y∗). Take y ∈ BY such that ‖y∗‖ ≤ 2〈y∗, y〉.
By (2.8), there exists v ∈ BX such that ly = g′(u)(v). Hence,

l‖y∗‖ ≤ 2〈y∗, g′(u)(v)〉 = 2〈u∗, v〉 ≤ 2.

By the convexity of Ω, one has

〈y∗, g(x) − g(u)〉 ≤ 0 for all x ∈ g−1(Ω).

Noting that

〈u∗, x− u〉 = 〈(g′(u))∗(y∗), x− u〉 = 〈y∗, g′(u)(x− u)〉,

it follows that for any x ∈ g−1(Ω) ∩B(u, δ),

〈u∗, x− u〉 ≤ 〈y∗, g′(u)(x− u) − (g(x) − g(u))〉

≤ 2

l
‖g(x) − g(u) − g′(u)(x− u)‖

≤ 2

l
‖g′(u + θ(x− u)) − g′(u)‖‖x− u‖,

where θ ∈ (0, 1). Since ‖u+ θ(x− u)− z‖ ≤ ‖u− z‖+ θ‖x− u‖ < 2δ, it follows from
(2.12) that

〈u∗, x− u〉 ≤ ε‖x− u‖ for any x ∈ g−1(Ω) ∩B(z, δ).

Therefore, g−1(Ω) is subsmooth at z. The proof is complete.
We don’t know whether Proposition 2.2 holds if the continuous differentiability

of g on X is weakened to the strict differentiability of g at a.
The following Proposition 2.3 demonstrates an interesting fact that, in an Asplund

space, the subsmoothness on an open subset of A can be described in terms of the
Fréchet normal cone (rather than the Clarke normal cone). To do this, we need the
following lemma.

Lemma 2.1. Let A be a closed subset of X and a ∈ A. Suppose that for any
ε > 0 there exists r > 0 such that

〈u∗, x− a〉 ≤ ε‖x− a‖ for all x ∈ A ∩B(a, r), for all u∗ ∈ N̂(A, a) ∩BX∗ .(2.13)

Then N̂(A, a) is weak∗ closed.
Proof. Let ε be an arbitrary number in (0, +∞) and take r > 0 such that (2.13)

holds. Since N̂(A, a) is convex, by the Krein–Smulian theorem it suffices to show that
N̂(A, a) ∩ BX∗ is weakly∗ closed. Let {u∗

j} be a net in N̂(A, a) ∩ BX∗ convergent
to x∗ ∈ X∗ with respect to the weak∗ topology. Then, x∗ ∈ BX∗ (because BX∗

is weakly∗ closed) and 〈u∗
j , x〉 → 〈x∗, x〉 for all x ∈ X. It follows from (2.13) that

〈x∗, x − a〉 ≤ ε‖x − a‖ for all x ∈ A ∩ B(a, r). This and the arbitrariness of ε imply
that x∗ ∈ N̂(A, a). Hence x∗ ∈ N̂(A, a) ∩ BX∗ . This shows that N̂(A, a) ∩ BX∗ is
weakly∗ closed. The proof is complete.

Proposition 2.3. Let A be a closed subset of X, and U be an open subset of X.
Suppose that X is an Asplund space. Then A is subsmooth at each point of A ∩ U
if and only if for any z ∈ A ∩ U and ε > 0 there exists r > 0 such that (2.3) holds
whenever u ∈ bd(A) ∩B(z, r) and u∗ ∈ N̂(A, u) ∩BX∗ .
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Proof. Since N̂(A, x) ⊂ Nc(A, x) for all x ∈ A, the necessity part is clear. For the
sufficiency part, we need only show that Nc(A, z) = N̂(A, z) for any z ∈ A ∩ U . Let
z ∈ A ∩ U and z∗ ∈ N(A, z). Since X is an Asplund space, there exists a sequence
{(un, u

∗
n)} in X ×X∗ such that

un
A→ z, u∗

n
w∗
→ z∗, and u∗

n ∈ N̂(A, un).

Hence, there exists M ∈ (0, +∞) such that each ‖u∗
n‖ < M . For any ε > 0, take

r > 0 such that (2.3) holds for any u ∈ B(z, r) ∩ bd(A) and u∗ ∈ N̂(A, u) ∩ BX∗ .
Without loss of generality, we assume that un ∈ B(z, r) for all n. It follows from (2.3)
that 〈

u∗
n

M
,x− un

〉
≤ ε‖x− un‖ for all x ∈ B(un, r) ∩A.

Letting n → ∞, one has〈
z∗

M
,x− z

〉
≤ ε‖x− z‖ for all x ∈ B(z, r) ∩A.

This implies that lim sup
x

A→z

〈z∗,x−z〉
‖x−z‖ ≤ 0, and so z∗ ∈ N̂(A, z). Hence, N(A, z) ⊂

N̂(A, z). Since the converse inclusion automatically holds, N(A, z) = N̂(A, z). Since
X is an Asplund space, it follows from (2.1) that Nc(A, z) = cl∗(co(N̂(A, z))). Noting
that N̂(A, z) is a convex cone, this means that Nc(A, z) = cl∗(N̂(A, z)). It follows
from Lemma 2.1 that Nc(A, z) = N̂(A, z). The proof is complete.

A natural question is: Can the open set U in Proposition 2.3 be replaced by a
singleton {a} with a ∈ A? That is, is A subsmooth at a given point a of A if for
any ε > 0 there exists r > 0 such that (2.3) holds whenever u ∈ bd(A) ∩B(a, r) and
u∗ ∈ N̂(A, u) ∩BX∗?

While we don’t have the answer to this question, we can prove the following result
similar to the proof of Proposition 2.3.

Proposition 2.4. Let X be an Asplund space, A be a closed subset of X, and
a ∈ A. Then the following two statements are equivalent:

(i) For any ε > 0 there exists r > 0 such that (2.3) holds whenever u ∈ A∩B(a, r)
and u∗ ∈ N(A, u) ∩BX∗ .

(ii) For any ε > 0 there exists r > 0 such that (2.3) holds whenever u ∈ A∩B(a, r)
and u∗ ∈ N̂(A, u) ∩BX∗ .

Remark 2.1. Let X, A, and a be as in Proposition 2.4. Then A is Clarke regular at
a when (ii) of Proposition 2.4 holds. Indeed, by Proposition 2.4, N(A, a) = N̂(A, a).
It follows from (2.1) that

Nc(A, a) = cl∗(co(N̂(A, a))) = cl∗(N̂(A, a)).

This and Lemma 2.1 show that A is Clarke regular at a.

3. Approximate projection theorem in Banach spaces. Using the
Bronstead–Rockafellar theorem, it was proved in [19] that if A is a closed convex
nonempty subset of a Banach space X and x ∈ X \ A, then for any γ ∈ (0, 1) there
exist a ∈ bd(A) and a∗ ∈ N(A, a) with ‖a∗‖ = 1 such that

γ‖x− a‖ < min{d(x,A), 〈a∗, x− a〉}.(3.1)



LINEAR REGULARITY FOR A COLLECTION OF SETS 69

By virtue of the well-known Ekeland variational principle, we provide below a
nonconvex generalization of the above projection result, which will play a key role in
the proofs of our main results in section 4.

Theorem 3.1. Let X be a Banach space (resp., Asplund space) and A be a closed
nonempty subset of X. Let γ ∈ (0, 1). Then for any x �∈ A there exist a ∈ bd(A) and
a∗ ∈ Nc(A, a) (resp., a∗ ∈ N̂(A, a)) with ‖a∗‖ = 1 such that (3.1) holds.

Proof. First suppose that X is an Asplund space. Let x ∈ X\A. Then d(x,A) > 0.
Let ε ∈ (0, +∞) be such that

ε <
(1 − γ

1
2 )d(x,A)

4 + (2 + 2γ
1
2 )d(x,A)

,(3.2)

and take z0 ∈ A such that ‖z0 − z‖ < d(x,A) + ε. Let φ(z) := ‖z − x‖+ δA(z) for all
z ∈ X. Then φ is a proper lower semicontinuous function and φ(z0) < infz∈X φ(z)+ε.
By the Ekeland variational principle, there exists z̄ ∈ A such that φ(z̄) ≤ φ(z0) and
φ(z̄) ≤ φ(z) + ε‖z − z̄‖ for all z ∈ X. Hence

‖z̄ − x‖ < d(x,A) + ε,(3.3)

and the continuous convex function f(z) := ‖z − x‖ + ε‖z − z̄‖ attains its global
minimum over A at z̄. Noting that ε < d(x,A), it follows from [17, Theorem 2.33]
that there exist z1, a ∈ B(z̄, ε) such that

z1 �= x, a ∈ A, and 0 ∈ ∂f(z1) + N̂(A, a) + εBX∗ ,

where ∂ denotes the subdifferential in the sense of convex analysis. Hence there exist
z∗1 , z

∗
2 ∈ X∗ such that

‖z∗1‖ = 1, ‖z∗2‖ < 2ε, 〈z∗1 , z1 − x〉 = ‖z1 − x‖, and − z∗1 + z∗2 ∈ N̂(A, a).

It follows from (3.3) that ‖x− a‖ < d(x,A) + 2ε. This and (3.2) imply that

γ
1
2 ‖x− a‖ < d(x,A).(3.4)

Let a∗ :=
−z∗

1+z∗
2

‖−z∗
1+z∗

2‖
. Then, a∗ ∈ N̂(A, a) and so a ∈ bd(A). Note that

〈a∗, x− a〉 =
〈z∗1 , z1 − x〉 + 〈z∗1 , a− z1〉 + 〈z∗2 , x− a〉

‖ − z∗1 + z∗2‖

≥ ‖z1 − x‖ − 2ε− 2ε‖x− a‖
1 + 2ε

≥ (1 − 2ε)‖x− a‖ − 4ε

1 + 2ε

≥ (1 − 2ε)d(x,A) − 4ε

1 + 2ε
.

This and (3.2) imply that γ
1
2 d(x,A) < 〈a∗, x − a〉. It follows from (3.4) and γ ∈

(0, 1) that (3.1) holds. When X is a general Banach space, the conclusion can be
similarly proved (with [8, Corollary, p. 52] replacing [17, Theorem 2.33]). The proof
is complete.

Remark 3.1. When X is a general Banach space, the Clarke normal cone in
Theorem 3.1 cannot be replaced by the Fréchet normal cone. Indeed, take X to be
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a non-Asplund space (e.g., let X := l1). Then, by [17, Corollary 2.21], there exists a
proper closed nonempty subset A of X such that N̂(A, a) = {0} for any a ∈ bd(A).
It follows that for any x ∈ X \ A there does not exist a ∈ bd(A) and a∗ ∈ N̂(A, a)
with ‖a∗‖ = 1 such that (3.1) holds.

Remark 3.2. In general, in Theorem 3.1 one cannot take γ = 1 even when A is a
closed convex set. For example, let X be a nonreflexive Banach space. Then, by the
James theorem there exists x∗ ∈ X∗ with ‖x∗‖ = 1 such that

〈x∗, z〉 < 1 for all z ∈ BX .(3.5)

Let A := {x ∈ X : 〈x∗, x〉 ≤ 1}. We claim that 〈a∗, x−a〉 < ‖x−a‖ for any x ∈ X\A,
any a ∈ A, and any a∗ ∈ N(A, a) with ‖a∗‖ = 1. Indeed, suppose to the contrary
that there exist x0 ∈ X \ A, a0 ∈ A, and a∗0 ∈ N(A, a0) with ‖a∗0‖ = 1 such that
〈a∗0, x0 − a0〉 = ‖x0 − a0‖. Then a0 ∈ bd(A); that is, 〈x∗, a0〉 = 1. By the definition
of A, it is clear that N(A, a0) = R+x

∗ and so a∗0 = x∗. Hence 〈x∗, x0−a0

‖x0−a0‖ 〉 = 1,

contradicting (3.5).

4. Main results. In this section, we establish some relationships concerning the
local linear regularity of a collection of closed sets in a Banach space. The following
proposition, which can be proved by Theorem 3.1 and convex analysis techniques,
provides a relationship between the local linear regularity and the linear regularity
for a collection of finitely many closed convex sets.

Proposition 4.1. Let X be a Banach space and C1, . . . , Cn be closed convex
subsets of X such that

⋂n
i=1 Ci �= ∅. Then {C1, . . . , Cn} is linearly regular if and only

if there exists τ ∈ (0, +∞) such that {C1, . . . , Cn} is locally linearly regular at each
point of bd(

⋂n
i=1 Ci) with the same constant τ .

In view of Proposition 4.1, we see that it is pertinent to study the local linear
regularity for a collection of nonconvex closed sets. For convenience, let us fix some
notation. Let {A1, . . . , An} be a collection of closed sets in a Banach space X with
intersection A containing a:

a ∈ A :=

n⋂
i=1

Ai.

The modulus of the linear regularity of the collection {A1, . . . , An} at a is denoted by
η(A; a) and defined by

η(A; a) := inf{τ > 0 : (1.1) holds}.

Thus, η(A; a) < +∞ if and only if {A1, . . . , An} is locally linearly regular at a.
We will provide necessary and/or sufficient conditions for the local linear reg-

ularity and establish formulas for the modulus η(A; a). Let τ, δ ∈ (0, +∞). For
convenience of presenting our results, we list the following inclusions:

N̂(A, u) ∩BX∗ ⊂ τ

n∑
i=1

Nc(Ai, u) ∩BX∗ for all u ∈ A ∩B(a, δ),(4.1)

Nc(A, u) ∩BX∗ ⊂ τ

n∑
i=1

Nc(Ai, u) ∩BX∗ for all u ∈ A ∩B(a, δ).(4.2)

In terms of these two inclusions, we define the following quantities:

βf
c (δ) := inf{τ > 0 : (4.1) holds} and βc(δ) := inf{τ > 0 : (4.2) holds}.
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Theorem 4.1. Let X be a Banach space. Then

lim
δ→0+

βf
c (δ) ≤ η(A; a).(4.3)

If each Ai is subsmooth at a, then

lim
δ→0+

βc(δ) ≥ η(A; a).(4.4)

Consequently, if each Ai is subsmooth at a and if A is Clarke regular at all its points
close to a, then

η(A; a) = lim
δ→0+

βf
c (δ).(4.5)

Proof. If η(A; a) = +∞, then (4.3) holds trivially. Next assume that η(A; a) < ∞.
Let τ ∈ (η(A; a), +∞). Then there exists δ0 > 0 such that

d(x,A) ≤ τ
n∑

i=1

d(x,Ai) for all x ∈ B(a, δ0).(4.6)

Let u ∈ A∩B(a, δ0
2 ) and x∗ ∈ N̂(A, u)∩BX∗ . Let k be an arbitrary natural number.

Then there exists r ∈ (0, δ0
2 ) such that (2.5) holds with ε = 1

k . Noting that B(u, r) ⊂
B(a, δ0), it follows from (4.6) that

〈x∗, x− u〉 ≤ τ

n∑
i=1

d(x,Ai) +
1

k
‖x− u‖ for all x ∈ B(u, r).

This and [8, Proposition 2.3.3] imply that there exist u∗
k,i ∈ X∗ and x∗

k ∈ 1
kBX∗

(i = 1, . . . , n) such that

u∗
k,i ∈ ∂cd(·, Ai)(u) ⊂ Nc(Ai, u) ∩BX∗ and x∗ = τ

n∑
i=1

u∗
k,i − x∗

k,

where ∂c denotes the Clarke subdifferential. Since BX∗ is weakly∗ compact and
Nc(A, x) is weakly∗ closed, without loss of generality (consider generalized subse-

quences if necessary) we assume that u∗
k,i

w∗
−→ u∗

i ∈ Nc(Ai, u) ∩ BX∗ as k → ∞.
Hence

x∗ = τ

n∑
i=1

u∗
i ∈ τ

n∑
i=1

Nc(Ai, u) ∩BX∗ .

This shows that (4.1) holds for any δ ∈ (0, δ0
2 ), and so limδ→0+ βf

c (δ) ≤ τ . Letting
τ → η(A; a), it follows that (4.3) holds.

Now suppose that each Ai is subsmooth at a. Since (4.4) holds trivially if
limδ→0+ βc(δ) = +∞, we assume that limδ→0+ βc(δ) < +∞. Let τ be an arbitrary
number in (limδ→0+ βc(δ), +∞). Then there exists δ > 0 such that (4.2) holds. Con-
sider any ε ∈ (0, 1

2 ) with τε < 1. By Proposition 2.1 there exists δ1 ∈ (0, δ) such
that

〈x∗
i , x− ai〉 ≤ d(x,Ai) +

ε

n
‖x− ai‖ for all x ∈ B(a, δ1)(4.7)
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whenever ai ∈ Ai ∩ B(a, δ1), x
∗
i ∈ Nc(Ai, ai) ∩ BX∗ , and i = 1, . . . , n. Let r := δ1

2

and x ∈ B(a, r) \ A. Then d(x,A) ≤ ‖x− a‖ < r. Let γ ∈ (max{d(x,A)
r , τε}, 1). By

Theorem 3.1, there exist z ∈ bd(A) and x∗ ∈ Nc(A, z) with ‖x∗‖ = 1 such that

〈x∗, x− z〉 ≥ γ‖x− z‖(4.8)

and γ‖x− z‖ ≤ d(x,A). Thus, ‖x− z‖ ≤ d(x,A)
γ < r. Hence

‖z − a‖ ≤ ‖z − x‖ + ‖x− a‖ < 2r = δ1 < δ.

It follows from (4.2) that there exists x∗
i ∈ Nc(Ai, z)∩BX∗ such that x∗ = τ

∑n
i=1 x

∗
i .

By (4.7), one has

〈x∗, x− z〉 = τ

n∑
i=1

〈x∗
i , x− z〉 ≤ τ

n∑
i=1

(
d(x,Ai) +

ε

n
‖x− z‖

)
.

This and (4.8) imply that (γ − τε)‖x− z‖ ≤ τ
∑n

i=1 d(x,Ai) and hence

d(x,A) ≤ τ

γ − τε

n∑
i=1

d(x,Ai)

(because z ∈ A). Therefore, η(A; a) ≤ τ
γ−τε . It follows that (4.4) holds by letting

γ → 1−, ε → 0+, and τ → limδ→0+ βc(δ). The last assertion of the theorem is obvious
and this completes the proof.

The following example shows that if the subsmoothness assumption is dropped
in Theorem 4.1, then inequality (4.4) is not necessarily true even when X is finite
dimensional.

Example 4.1. Let X = R2, A1 = {(s, t) ∈ R2 : st ≤ 0}, and

A2 = {(s, t) ∈ R2
+ : (s− 1)2 + t2 ≤ 1 and s2 + (t− 1)2 ≤ 1}.

By the definition of the Clarke tangent cone, it is easy to verify that Tc(A1, (0, 0)) =
{(0, 0)}. This means that Nc(A1, (0, 0)) = X∗. Hence

Nc(A1 ∩A2, (0, 0)) ∩BX∗ ⊂ Nc(A1, (0, 0)) ∩BX∗ + Nc(A2, (0, 0)) ∩BX∗ .

On the other hand, for every natural number k, let xk = ( 1
k , (

2
k − 1

k2 )
1
2 ). Noting that

A1 ∩A2 = {(0, 0)}, it is easy to verify that

d(xk, A1 ∩A2) =

(
2

k

) 1
2

, d(xk, A1) =
1

k
and d(xk, A2) = 0.

Hence, d(xk,A1∩A2)
d(xk,A1)+d(xk,A2)

= (2k)
1
2 → +∞. This shows that {A1, A2} is not locally

linearly regular at (0, 0).
The following proposition shows that the last assertion of Theorem 4.1 remains

true even if the Clarke regularity assumption on the intersection A is dropped, pro-
vided that X is an Asplund space, but we don’t know if this is also so for a general
Banach space.

Proposition 4.2. Let X be an Asplund space and each Ai be subsmooth at a.
Then (4.5) holds.
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Applying the Asplund space version of Theorem 3.1, by virtue of Theorem 4.1
together with the obvious modification of the proof of inequality (4.4), one can obtain
the proof of Proposition 4.2.

The following result (together with Theorem 4.1) implies that, under the local
linear regularity assumption, the subsmoothness and Clarke regularity of each Ai

imply the subsmoothness and Clarke regularity of the intersection A.
Proposition 4.3. Let X be an Asplund space and limδ→0+ βf

c (δ) < +∞. Sup-
pose that each Ai is Clarke regular at all points of A close to a. Then A is Clarke
regular at all points of A close to a. If, in addition, each Ai is subsmooth at a, then
A is subsmooth at a.

Proof. Take δ > 0 such that each Ai is Clarke regular at each point of A∩B(a, δ).
Then

Nc(Ai, u) = N̂(Ai, u) for all u ∈ A ∩B(a, δ).(4.9)

Considering smaller δ if necessary, one can find τ ∈ (limδ→0+ βf
c (δ), +∞) such that

(4.1) holds. We claim that

Nc(A, u) = N̂(A, u) for all u ∈ A ∩B(a, δ).(4.10)

Let u ∈ A ∩ B(a, δ) and u∗ ∈ N(A, u). By (2.1), there exists a sequence {(uk, u
∗
k)}

in (A ∩ B(a, δ)) × X∗ such that uk → u and u∗
k

w∗
→ u∗ with u∗

k ∈ N̂(A, uk) for all
k. It follows that {u∗

k} is bounded. Without loss of generality, we assume that each
u∗
k ∈ BX∗ (if necessary, replace (u∗

k, u
∗) by (γu∗

k, γu
∗) with small a constant γ > 0).

By (4.1), there exist u∗
k(i) ∈ Nc(Ai, uk) ∩ BX∗ such that u∗

k = τ
∑n

i=1 u
∗
k(i). We can

also assume that

u∗
k(i)

w∗
→ u∗(i) ∈ N(Ai, u) ∩BX∗ , i = 1, . . . , n(4.11)

(passing to subsequences if necessary). Hence, u∗ = τ
∑n

i=1 u
∗(i). On the other hand,

by the definition of the Fréchet normal cone it is easy to verify that

n∑
i=1

N̂(Ai, u) ⊂ N̂(A, u) for all u ∈ A.(4.12)

It follows from (4.9) and (4.11) that u∗ ∈ N̂(A, u). Therefore, N(A, u) ⊂ N̂(A, u),
and so N(A, u) = N̂(A, u). Since N̂(A, u) is a convex cone, this and (2.1) imply that
Nc(A, u) = cl∗(N̂(A, u)). Thus, to prove (4.10), it suffices to show that N̂(A, u)∩BX∗

is weakly∗ closed (by the Krein–Smulian theorem). Let {x∗
α} be a net in N̂(A, u)∩BX∗

convergent to x∗ ∈ X∗ with respect to the weak∗ topology. Then x∗ ∈ BX∗ (because
BX∗ is weakly∗ compact). By (4.1), there exist x∗

α(i) ∈ Nc(Ai, u)∩BX∗ (i = 1, . . . , n)
such that x∗

α = τ
∑n

i=1 x
∗
α(i). Since every Clarke normal cone Nc(Ai, u) is weakly∗

closed, we can assume that x∗
α(i)w∗

→ x∗(i) ∈ Nc(Ai, u) ∩ BX∗ (passing to a subnet
if necessary). Hence x∗ = τ

∑n
i=1 x

∗(i). It follows from (4.9) and (4.12) that x∗ ∈
N̂(A, u) ∩BX∗ . This shows that N̂(A, u) ∩BX∗ is weakly∗ closed.

Next suppose that each Ai is subsmooth at a. Then, for any ε > 0 there exists
r ∈ (0, δ) such that

〈u∗, x− u〉 ≤ ε‖x− u‖
nτ

for all x ∈ Ai ∩B(u, r)(4.13)
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whenever u ∈ Ai ∩ B(a, r) and u∗ ∈ Nc(Ai, u) ∩ BX∗ . Let u ∈ A ∩ B(a, r) and
u∗ ∈ Nc(A, u) ∩ BX∗ . Then, by 0 < r < δ, (4.1), and (4.10), there exists u∗

i ∈
Nc(Ai, u) ∩BX∗ such that u∗ = τ

∑n
i=1 u

∗
i . It follows from (4.13) that

〈u∗, x− u〉 = τ

n∑
i=1

〈u∗
i , x− u〉 ≤ ε‖x− u‖ for all x ∈ A ∩B(u, r).

This shows that A is subsmooth at a. The proof is complete.
We don’t know whether Proposition 4.3 can be extended to the Banach space

setting. The difficulty lies in the fact that the two equalities in (2.1) (which are
essential in our present proof of the proposition) are no longer valid for a general
Banach space.

In view of Proposition 4.1, the following corollary can be regarded as a nonconvex
extension of the equivalences among (C1), (C2), and (C3) mentioned in section 1 (note
that a closed convex set is Clarke regular and subsmooth at all its points).

Corollary 4.1. Let a ∈ A and consider the following statements:
(i) {A1, . . . , An} is locally linearly regular at a.
(ii) There exist τ, δ ∈ (0, +∞) such that (4.1) holds.
(iii) There exist τ, δ ∈ (0, +∞) such that (4.2) holds.
(iv) There exist τ, δ ∈ (0, +∞) such that for any u ∈ A ∩B(a, δ),

(∗) inf

{
n∑

i=1

‖x∗
i ‖ :

n∑
i=1

x∗
i = x∗ and x∗

i ∈ N(Ai, u)

}
≤ τ‖x∗‖ for all x∗ ∈ N(A, u).

Then, the following statements hold:
(1) (i)⇒(ii) always holds.
(2) (iii)⇒(i) holds if each Ai is subsmooth at a.
(3) (i)–(iv) are equivalent if each Ai is subsmooth and A is Clarke regular at all

points of A close to a.
(4) (i)⇔(ii) holds if each Ai is subsmooth at a and X is an Asplund space.
Proof. By Theorem 4.1 and Proposition 4.2, we need only show that (iii) and

(iv) are equivalent under the assumption in (3). By the subsmoothness and regularity
assumptions, there exists δ0 ∈ (0, +∞) such that

N̂(A, u) = Nc(A, u) and N(Ai, u) = Nc(Ai, u) for all u ∈ A ∩B(a, δ0).(4.14)

Suppose that there exist τ > 0 and δ ∈ (0, δ0) such that (4.2) holds. Let u ∈
A ∩ B(a, δ) and x∗ ∈ N(A, u) \ {0}. Then, by (4.2) and (4.14), there exists x∗

i ∈
N(Ai, u) ∩ BX∗ such that x∗

‖x∗‖ = τ
∑n

i=1 x
∗
i . Letting z∗i = τ‖x∗‖x∗

i , it follows that

z∗i ∈ N(Ai, u), x∗ =
∑n

i=1 z
∗
i , and

∑n
i=1 ‖z∗i ‖ ≤ nτ‖x∗‖. Hence,

inf

{
n∑

i=1

‖x∗
i ‖ :

n∑
i=1

x∗
i = x∗ and x∗

i ∈ N(Ai, u)

}
≤ nτ‖x∗‖.

This shows that (iii)⇒(iv) holds.
Conversely, suppose that there exist τ > 0 and δ ∈ (0, δ0) such that (∗) holds for

any u ∈ A∩B(a, δ). Let u ∈ A∩B(a, δ) and x∗ ∈ Nc(A, u)∩BX∗ . By (∗) and (4.14),
for every natural number k there exist x∗

i (k) ∈ Nc(Ai, u) such that

x∗ =

n∑
i=1

x∗
i (k) and

n∑
i=1

‖x∗
i (k)‖ ≤

(
τ +

1

k

)
‖x∗‖ ≤ τ +

1

k
.(4.15)
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Since (τ + 1)BX∗ is weakly∗ compact and each N(Ai, u) is weakly∗ closed, we can

assume that x∗
i (k)

w∗
→ x∗

i ∈ N(Ai, u) as k → ∞ (passing to a generalized subsequence
if necessary). It follows from (4.15) that x∗ =

∑n
i=1 x

∗
i and

∑n
i=1 ‖x∗

i ‖ ≤ τ (because
the dual norm of X∗ is lower semicontinuous with respect to the weak∗ topology).
Therefore, x∗

i ∈ τ(Nc(Ai, u) ∩ BX∗) and x∗ ∈ τ
∑n

i=1 Nc(Ai, u) ∩ BX∗ . Hence, (4.2)
holds. This shows that (iv)⇒(iii) holds. The proof is complete.

Under the assumption in (3) of Corollary 4.1, (4.2) implies that

(SC) N(A, u) =

n∑
i=1

N(Ai, u)

for all u ∈ A close to a. In the case when each Ai is convex, (SC) and (∗) mean that
{A1, . . . , An} has strong conical hull intersection property (strong CHIP) at u and
{N(A1, u), . . . , N(An, u)} has property (G), respectively. These two properties have
been well studied in convex analysis (see [2, 4, 5, 11] and references therein).

The following corollary is immediate from Propositions 2.2 and 4.3, Theorem 4.1,
and Corollary 4.1.

Corollary 4.2. Let X,Y be Banach spaces and fi : X → Y be a continuously
differentiable function (i = 1, . . . , n). Let Ci be a closed convex subset of Y and
Ai := f−1

i (Ci) (i = 1, . . . , n). Let a ∈ A, and suppose that each f ′
i(a) is surjective.

Then the following statements hold:
(1) (i)⇒(ii) holds.
(2) (iii) implies any one of (i)–(iv).
(3) If X is an Asplund space, then (i)—(iv) are equivalent.

Where (i)–(iv) are as in Corollary 4.1.
Recently, Kruger [13, 14] studied a different kind of regularity of {A1, . . . , An} at a

defined by 0 < limρ→0+
1
ρ sup{r ≥ 0 :

⋂n
i=1(Ai−ai)∩(a+ρBX) �= ∅, for all ai ∈ rBX}.
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RELAXATION-BASED BOUNDS FOR SEMI-INFINITE PROGRAMS∗
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Abstract. Finite formulations are presented for the calculation of lower and upper bounds on
the optimal solution value of semi-infinite programs (SIPs) involving smooth, potentially nonconvex
objective function and constraints. The lower bounding problem is obtained by a formulation that
combines the first- and second-order KKT necessary conditions of the lower-level problem with a
discretization of the parameter set. The resulting mathematical program with equilibrium constraints
(MPEC) is a relaxation of the original SIP and furnishes valid lower bounds. If the parameter set
is subdivided, the optimal solution value of the lower bounding problem converges to the optimal
solution value of the SIP. The upper bounding problem is based on convex and linear relaxations
of the lower-level problem resulting in a restriction of the SIP. If the parameter set is subdivided,
the constructed relaxations converge to the original lower-level program. The existence of SIP Slater
points ensures convergence of the upper bounding problems to the optimal solution value of the SIP.
Several alternatives for the upper bounding problem are presented and discussed. Numerical results
are presented for a number of test problems from the literature.

Key words. SIP, MPEC, KKT, nonconvex, global optimization, convex relaxation, linearization
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1. Introduction. Semi-infinite programs (SIPs) are optimization problems that
involve a finite number of decision variables subject to an infinite number of con-
straints. We consider SIPs of the form

f∗ = min
x

f(x)

s.t. g(x,p) ≤ 0 ∀p ∈ P ⊂ R
np ,(1.1)

x ∈ X ⊂ R
nx ,

without any convexity/concavity assumptions and with |P | ≤ +∞. Regular inequal-
ity and equality constraints would not change anything significant in the proposed
bounding methods and are only omitted for simplicity.

The infinite number of constraints of similar functional form that arise in SIP
typically originate from design problems that impose either a constraint for any given
point in time or for every point in a geometric region. SIPs are encountered in diverse
scientific and engineering applications such as Chebyshev approximation, including
the design of digital and FIR filters [24, 34], optimal control systems [38], neural
networks [33], kinetic model reduction [11, 36], robust optimization [9], the design of
water and air pollution control models [23], and the design of adaptive array processors
[28].

Traditional algorithms for nonlinear SIPs can be categorized as either discretiza-
tion or local-reduction methods [41]. In discretization approaches [14, 25, 37, 43, 49,
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58] a sequence of subproblems is solved in which the objective function of (1.1) is
minimized subject to a subset of the constraints indexed by the finite set PD ⊂ P ,
which is generated from a uniform or adaptive grid on P . Under the assumptions that
the resulting finite nonlinear programs (NLPs) are solved to global optimality, the dis-
cretization is exhaustive, and the cardinality of the set PD tends to infinity, it can be
shown that the accumulation points of discretization algorithms are global minima of
the original SIP [14, 58]. In local reduction methods, a local solution of the SIP is
also found by solving a sequence of finite NLPs. However, in contrast to discretization
methods, the finite subset of constraints is not generated from a grid on the parameter
set P , but rather from finding implicitly all the local maxima p̄(x) of g(x, ·) on P
for each x ∈ X. Under relatively strong assumptions on the problem structure, the
set of local maxima is finite, and the SIP can, at least conceptually, be reduced to
an equivalent finite problem. The accumulation points of local-reduction algorithms
are local minima of the original SIP. Based on this reduction principle, a number of
exact penalty and Lagrangian approaches have been suggested [16, 17, 39, 50]. Dis-
cretization and local-reduction-based methods generate approximations of local and
global minima of nonconvex SIPs. On finite termination, these approximations are
not guaranteed to be feasible points of the original SIP. For more thorough reviews of
applications and algorithmic contributions in semi-infinite programming, the reader
is referred to [23, 26, 40, 41, 55, 57].

An alternative to considering a finite subset of the constraints is to reformulate
(1.1) as the following nonsmooth problem:

min
x∈X

f(x)

s.t. gU (x) ≡ max
p∈P

g(x,p) ≤ 0.(1.2)

The superscript U denotes the (exact) upper bound of g(x, ·) on P . To determine
feasibility of a candidate point x̄ ∈ X, the lower-level or inner problem must be solved
to global optimality,

(1.3) gU (x̄) = max
p∈P

g(x̄,p).

Obviously, if gU (x̄) ≤ 0, then x̄ is feasible in (1.1); otherwise it is not. Recently, a
method to generate guaranteed feasible points for SIP was proposed by Bhattacharjee
and coworkers [12, 13]. Assuming that the host set X is compact and P is an interval,
the functions f and g(·,p) are continuously differentiable on an open set containing
X for all p ∈ P , g(x, ·) is continuous on P for all x ∈ X, and there exist SIP
Slater points arbitrarily close to all global minima, the method generates guaranteed
feasible points and an ε-optimal estimate of the global solution of the SIP on finite
termination. To generate these feasible points, interval arithmetic [32, 42] is used to
construct an interval extension of the constraining function g(x, ·) with respect to the
parameter set P , i.e., an interval-valued function G : X → IR : x 	→ [GL(x), GU (x)]
satisfying in particular

gU (x) ≤ GU (x) ∀x ∈ X,

where IR is the set of all intervals in R. For each x ∈ X, GU (x) is a valid upper
bound for gU (x) and thus a relaxation of the inner problem (1.3); see also section 3.
Therefore, the following interval constrained reformulation (ICR) is a valid restriction
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of (1.1):

min
x∈X

f(x)

s.t. GU (x) ≤ 0.

Under subdivision of the parameter set P , it can be shown [12, 13] that GU (x) con-
verges to gU (x), and therefore the ICR provides feasible points with objective function
value arbitrarily close to the global solution value of the SIP.

In a work concurrent with this paper, Floudas and Stein [19] propose an alterna-
tive relaxation of (1.3) and thus a valid restriction of (1.1) furnishing feasible points.
Their method relies on constructing a concave relaxation of the constraining function
g on the parameter set P using the αBB method [4], replacing the resulting con-
vex lower-level problem with its necessary and sufficient KKT conditions and solving
the resulting mathematical program with equilibrium constraints (MPEC) with NCP
functions.

In this paper we propose finite formulations that generate lower and upper bounds
on the optimal objective value of (1.1). Generating upper and lower bounds is not
only a necessary subproblem in algorithms such as the one by Bhattacharjee et al. [13]
for the global solution of SIPs, but also a useful problem in its own right. Generating
a feasible point and an associated upper bound to the optimal objective value of SIPs
is, for instance, used in kinetic model reduction [36]. A lower bound can be used for
a conservative estimate of the distance of the obtained upper bound from the optimal
solution value.

For the lower bounding problem we use a combination of the first- and second-
order KKT necessary conditions in conjunction with a discretization of the parameter
set. For the upper bounding problem we extend the idea from [12, 13] of relaxing the
lower-level problem (1.3) in order to restrict the outer problem and thus find guar-
anteed feasible points. For relaxation of the lower-level problem we employ convex
and linear relaxation techniques. In section 2 we present definitions and assumptions
needed in the subsequent sections. In section 3 we provide a brief introduction to
interval methods and convex relaxation techniques and discuss restrictions and re-
laxations of SIPs. In section 4 we combine and extend ideas from the literature to
create a KKT-based lower bounding problem that is formulated and solved as a mixed-
integer nonlinear program (MINLP). In section 5 we introduce relaxation-based upper
bounding problems that are formulated using either αBB or McCormick’s techniques
and solved using either a KKT-based (MPEC) or a linearization approach. In section
6 we provide numerical results for the proposed bounding formulations applied to
literature examples and comment on their relative performance. Finally, in section
7 we provide conclusions and suggestions for future work in both semi-infinite and
generalized semi-infinite programs (GSIP). GSIPs differ from SIPs in that the host
set for p in the lower-level problem depends on x; see, e.g., [47].

2. Definitions and assumptions. In this section we present the assumptions
required for construction of the bounding problems proposed in what follows. Note
that for the sake of simplicity we do not present the weakest assumptions possible.

Assumption 1 (host sets). The host sets X ⊂ R
nx , P ⊂ R

np are Cartesian
products of (compact) intervals; i.e., for all variables and parameters explicit bounds
are known (X = [xL,xU ] and P = [pL,pU ]).

The set of vertices of P is denoted Pe. Based on Assumption 1,

Pe =
{
p ∈ P : pj ∈ {pLj , pUj }, ∀j = 1, . . . , np

}
,
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and the cardinality of Pe is given by |Pe| = 2np .
Assumption 2 (basic properties of functions). The functions f : X → R and

g : X × P → R are twice continuously differentiable on some open set containing X
and X×P , respectively. Moreover, the constraint g is a factorable composite function
[30] of univariate functions with known convex underestimating and overestimating
functions.

By gpj
: X × P → R we denote the partial derivative of g with respect to pj .

Similarly by gxj : X × P → R we denote the partial derivative of g with respect to
xj . For nonsmooth relaxations we will make use of subgradients, as follows:

Definition 2.1 (subgradient). Let Z ⊂ R
nz be a nonempty convex set and

h : Z → R be concave. A vector d ∈ Z is called a subgradient of h at z̄ ∈ Z if

h(z) ≤ h(z̄) + dT(z − z̄) ∀z ∈ Z.

The definition for convex functions is analogous, with the direction of the in-
equality reversed. Existence of subgradients on the interior of Z is guaranteed, and
for differentiable functions the unique subgradient is the gradient [10].

Noting that under Assumptions 1 and 2 the SIP (1.1) is equivalent to the nons-
mooth problem (1.2), the following definition is motivated.

Definition 2.2 (lower-level program). For a fixed x ∈ X we denote

max
p

g(x,p)

s.t. pL ≤ p ≤ pU(2.1)

the inner program or lower-level program and gU (x) its optimal objective value.
Definition 2.3 (relaxation of functions). Given a convex set C ⊂ R

nz and a
function h : C → R, a convex function hu : C → R is a convex relaxation (or convex
underestimator) of h on C if

hu(z) ≤ h(z) ∀z ∈ C,

and a concave function ho : C → R is a concave relaxation (or concave overestimator)
of h on C if

ho(z) ≥ h(z) ∀z ∈ C.

The convex envelope h̄u : C → R of h on C is a convex relaxation of h on C such
that for any convex relaxation hu of h on C

hu(z) ≤ h̄u(z) ∀z ∈ C.

Similarly, the concave envelope h̄o : C → R of h on C is a concave relaxation of h
on C such that for any concave relaxation ho of h on C

h̄o(z) ≤ ho(z) ∀z ∈ C.

Definition 2.4 (relaxation of programs). Let ZD, ZE ⊂ R
nz , and consider the

optimization problems

inf
z∈ZD

fD(z) and inf
z∈ZE

fE(z).
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If ZD ⊂ ZE and fE(z) ≤ fD(z) ∀z ∈ ZD, the optimization problem infz∈ZE fE(z)
is said to be a relaxation of infz∈ZD fD(z). Similarly, the optimization problem
infz∈ZD fD(z) is said to be a restriction of infz∈ZE fE(z) [22].

A direct consequence of relaxations/restrictions is that for the programs in the
above definition, infz∈ZE fE(z) ≤ infz∈ZD fD(x). For maximization problems the
above inequalities are reversed.

Definition 2.5 (convex program). The minimization problem infz∈Z f(z) is
called convex if Z ⊂ R

nz is convex and f is convex on Z. Similarly the maximization
problem supz∈Z f(z) is called convex if Z ⊂ R

nz is convex and f is concave on Z.
Definition 2.6 (convex relaxation of programs). Let ZD, ZE ⊂ R

nz . The
optimization problem infz∈ZE fE(z) is a convex relaxation of infz∈ZD fD(z) if it is a
convex program and a relaxation of infz∈ZD fD(z).

Definition 2.7 (diameter of a set). Let Z ⊂ R
nz . The diameter of Z, denoted

w(Z), is the maximal distance between two points in Z:

w(Z) = sup
z1,z2∈Z

||z1 − z2||.

Definition 2.8 (subdivision). A subdivision of the set P is a finite collection
of subsets P i ⊂ P with index set I such that

P =
⋃
τ∈I

Pτ and int (Pτ1) ∩ int (Pτ2) = ∅ ∀τ1, τ2 ∈ I : τ1 = τ2.

A subdivision of P with index set I2 is a refinement of the subdivision with index set
I1 if for all τ2 ∈ I2 there exists τ1 ∈ I1 such that Pτ2 ⊂ Pτ1 and for some τ2 ∈ I2 there
exists τ1 ∈ I1 such that Pτ2 ⊂ Pτ1 and Pτ2 = Pτ1 . A sequence of refined subdivisions
with index sets I1, I2, . . . , Ik is called exhaustive if for k → ∞ for all τk ∈ Ik the
diameter of the set corresponding to τk vanishes, w(Pτk) → 0.

Note that unlike partitions in a branch-and-bound procedure, in a subdivision no
subsets Pτ of the host set P are fathomed.

3. Background. In both the lower and upper bounding problems, techniques
from interval arithmetic and from convex, concave, and linear relaxations of mathe-
matical programs are employed. Therefore, to aid in the understanding of the bound-
ing procedures, we provide some brief background on these concepts.

3.1. Interval extensions. Consider a continuous function h : Z → R, where Z
is an nz-dimensional interval defined as

Z = [zL1 , z
U
1 ] × · · · × [zLnz

, zUnz
] = [zL, zU ].

The image of Z under h is denoted by the scalar interval h̄(Z) = [hL(Z), hU (Z)].
Consider also an interval-valued function H : Z → IR : Y 	→ [HL(Y ), HU (Y )]. H is
an inclusion function for h over Z if the following relation holds:

[hL(Y ), hU (Y )] = h̄(Y ) ⊂ H(Y ) = [HL(Y ), HU (Y )] ∀Y ∈ IR
nz : Y ⊂ Z.

The natural interval extension is an example of such an inclusion function. It is derived
by replacing each variable zi with the corresponding interval [zLi , z

U
i ], decomposing

the resulting expression into compositions of elementary operations (multiplication,
addition, etc.) and intrinsic functions (exponential, exponentiation, monomial, log-
arithmic, etc.), and evaluating them using the rules of interval arithmetic [32, 42].
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The tightness of inclusion functions can be quantified using the Hausdorff metric
q(h̄(Z), H(Z)), which is defined as

q(h̄(Z), H(Z)) = max(|hL(Z) −HL(Z)|, |hU (Z) −HU (Z)|).

An inclusion function is convergent with a convergence order β if constants γ ≥ 0 and
δ ≥ 0 exist such that

q(h̄(Y ), H(Y )) ≤ γw(Y )β ,

w(H(Y )) ≤ δw(Y )β ,

for each Y ∈ IR
nz : Y ⊂ Z. Note that in general the constants γ, δ depend on the

function h and the host set Z.
If subdivision of Z is employed and convergent inclusion functions are taken for

each of the resulting subintervals, a tighter estimate of the image of Z under h is
obtained. Assuming that the subdivision of Z is given by a collection of nondegenerate
intervals Zk for some finite m, i.e., Z =

⋃m
k=1 Z

k, the range of the inclusion is defined
as

Hm(Z) =

[
min
k

HL(Zk),max
k

HU (Zk)

]
= [HL

m(Z), HU
m(Z)].

It can be shown that the following relationship holds:

h̄(Z) ⊂ Hm(Z) ⊂ H(Z) ⇔ [hL(Z), hU (Z)] ⊂ [HL
m(Z), HU

m(Z)] ⊂ [HL(Z), HU (Z)].

Finally, if the subdivision of Z is exhaustive, then the bounds from the inclusion
functions converge to the bounds of the true range of the function

lim
m→∞

HL
m(Z) = hL(Z) and lim

m→∞
HU

m(Z) = hU (Z).

Natural interval extensions have a first-order convergence rate, while Taylor models
(standard or optimally centered forms) have a second-order convergence rate [6] but
are typically more expensive to evaluate. For a thorough discussion, the reader is
referred to the literature, e.g., [6, 32]. Furthermore, it should be noted that interval
methods can be automated; see, e.g., [53, 54].

3.2. Convex relaxation. Most deterministic global optimization algorithms,
such as spatial branch-and-bound and outer approximation, rely on the construction
of convex relaxations. Given a box-constrained NLP

max
z

h(z)

s.t. z ∈ [zL, zU ] ≡ Z ⊂ R
nz(3.1)

with a nonconcave objective function h(z), the goal is to construct a convex maxi-
mization problem, i.e., a program with convex constraints and a concave objective
function, whose optimal objective value overestimates the optimal solution value of
(3.1). Convex and concave envelopes or tight relaxations are known for a variety of
simple nonlinear terms [46, 3, 52], and this allows the construction of convex and
concave relaxations for a quite general class of functions through several methods
[30, 4, 46, 21]. All the methods proposed in the literature essentially rely on a few
key ideas and elements. McCormick’s results [30] allow the construction of convex
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and concave relaxations of functions defined by recursive compositions of elementary
operations and intrinsic functions. Floudas and coworkers [2, 3, 5] have proposed
convex relaxations for arbitrary twice continuously differentiable functions by the
addition of a simple, sufficiently negative function that is known to be convex; con-
cave relaxations are handled similarly. Both approaches can also introduce auxiliary
variables and constraints. Smith and Pantelides [46] formalized the use of auxiliary
variables, while Gatzke, Tolsma, and Barton [21] demonstrated how these methods
can be combined and automated. Tawarmalani and Sahinidis [52, 51] proposed to fur-
ther relax the convex relaxations via linearization to take advantage of the scalability
and reliability of linear programming (LP) solvers. Wang and Chang [56] proposed
piecewise-affine relaxations based on linearization. While many combinations of the
above ideas are conceivable, we consider three extreme cases of convex relaxation that
are of particular interest for the relaxation of the lower-level program.

3.2.1. Nonsmooth concave overestimation. The first alternative we con-
sider is to construct a concave relaxation of the objective function in (3.1) by suc-
cessively applying McCormick’s composition theorem, without the introduction of
auxiliary variables and constraints. McCormick [30] presents convex and concave
relaxations of a function

ht(z) = T (t(z)) + U(u(z))V (v(z)),

where T,U, V : R → R are continuous and t, u, v : Z → R are continuous on Z.
Assuming that convex and concave relaxations are known for all functions (t, u, v
and T,U, V ), and bounds are known for the ranges of the inner functions (t, u, v),
McCormick’s composition result provides convex and concave relaxations for ht on Z.

Consider, for instance, T (t(z)) and let tu and to be convex and concave relaxations
of t on Z. Let further t(z) ∈ [tL, tU ] for all z ∈ Z, and Tu, T o be convex and
concave relaxations of T on [tL, tU ]. Let, finally, wmin ∈ arg minw∈[tL,tU ] T

u(w) and
wmax ∈ arg maxw∈[tL,tU ] T

o(w). Then

Tu (mid{tu(z), to(z), wmin}) ,
T o (mid{tu(z), to(z), wmax})

are respectively a convex and concave relaxation of the composite function T (t) on
Z. For the product of two functions see Appendix B.

Recursive application of McCormick’s result allows the derivation of convex and
concave relaxations for complicated expressions termed factorable expressions. As-
suming that the objective function h in (3.1) is factorable, we denote ho,mc : Z → R

the concave relaxation constructed by the recursive application of the composition
theorem. Since ho,mc(z) ≥ h(z) for all z ∈ Z, the optimal objective value of

(3.2) max
z∈Z

ho,mc(z)

overestimates the optimal objective value of (3.1). While convex, (3.2) is not necessar-
ily smooth, and therefore standard optimization techniques relying on the satisfaction
of KKT conditions are not applicable in general. Since it is box-constrained, the lin-
earization (using subgradients) at an arbitrary interior point z̄ ∈ int(Z) results in a
linear program which is a further relaxation (and trivially smooth),

max
z∈Z

ho,mc,lin(z),
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where ho,mc,lin(z) = h(z̄) + dT(z− z̄) for some subgradient d. While the existence of
subgradients is guaranteed, obtaining them within the McCormick relaxation requires
some development. The reader is referred to [8] for this development. Note also that
a subgradient is guaranteed to exist even at boundary points under mild assumptions,
e.g., differentiability of the univariate intrinsic functions on their domains.

3.2.2. Smooth concave overestimation without auxiliary variables. The
second alternative we consider is based on the ideas of αBB relaxation by Adjiman and
coworkers [4, 3, 1] and γBB relaxation by Akrotirianakis and Floudas [5]. To avoid
the introduction of auxiliary variables and constraints, which add complications, we
deviate from the framework presented in these references. Instead of splitting the
nonlinear objective h into the sum of concave terms, special nonconcave terms, and
general nonconcave terms, we apply the relaxation to the original function. Note also
that we consider the simplest variant of uniform diagonal shift of the Hessian matrix.

Since univariate quadratic terms are convex,

ho,α(z) = h(z) + α

nz∑
i=1

(zi − zLi )(zUi − zi)

is concave for sufficiently large values of α. Moreover, for any z ∈ Z,

ho,α(z) ≥ h(z) ∀α ≥ 0.

The smallest possible value for α is obtained by finding the largest eigenvalue of the
Hessian matrix on Z, i.e., by the global solution of a nonconvex optimization problem.
Instead, Adjiman et al. [3] have proposed efficient methods for overestimating α. One
such method is the application of Gerschgorin’s theorem and estimating

1

2
max
z∈Z

max
i

max

⎧⎨
⎩0, Hii(z) +

∑
j �=i

|Hij(z)|

⎫⎬
⎭

using interval arithmetic on the Hessian matrix. Note that Hij = ∂2h
∂zi∂zj

.

Since ho,α(z) ≥ h(z) for all z ∈ Z and all α ≥ 0, the optimal objective value of

(3.3) max
z∈Z

ho,α(z)

overestimates the optimal objective value of (3.1). The formulated relaxation (3.3) is
a box-constrained maximization problem with a smooth concave objective function.
The polyhedral feasible set along with the concavity of the objective function make the
first-order KKT conditions necessary and sufficient for a global maximum. Standard,
gradient-based optimization algorithms can reliably solve (3.3). Finally, since (3.3)
is box-constrained, the linearization at an arbitrary point z̄ ∈ Z results in a linear
program which is a further relaxation.

The application of γBB relaxation [5] is analogous. In this method, relaxation is
achieved by the addition of exponential terms,

ho,γ(z) = h(z) +

nz∑
i=1

(
1 − eγi(zi−zL

i )
)(

1 − eγi(z
U
i −zi)

)
.
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3.2.3. Smooth concave overestimation with auxiliary variables. The third
alternative we consider is the introduction of auxiliary variables w and constraints as
described in [21]. First, a factorable representation of the nonconcave function h is
developed, introducing a new variable wi for each distinct factor. Subsequently, the
bounds for the auxiliary variables w are propagated via natural interval extensions
from the bounds on z and the auxiliary variables already introduced. At the next step
an equivalent equality constrained program is generated by introducing the definition
of each factor as an equality constraint and replacing each occurrence of a nonconvex
function with the relevant factor. Then, each nonlinear equality constraint is rewrit-
ten as a pair of inequalities. Finally, the inequalities are relaxed by relaxing each
nonlinear expression; if the (smooth) convex and concave envelopes (or tight relax-
ations) of a nonlinear expression are known, these are introduced; otherwise convex
and concave relaxations are computed by the αBB or γBB method. Nonsmoothness
in an envelope can be represented by multiple smooth convex inequalities (e.g., the
bilinear case). Sums of linear terms are also replaced by new variables wi along with
a linear equality constraint.

In the special case that the objective function contains additive univariate convex
terms, these terms can be directly overestimated by the secant without auxiliary
variables. Similarly, additive concave terms in the objective are left unchanged. The
resulting program is

max
z,w

ho,ex(z,w)

s.t. tui (z,w) − wj ≤ 0, i ∈ Iuj , j = 1, . . . , nw,

wj − toi (z,w) ≤ 0, i ∈ Ioj , j = 1, . . . , nw,

tl(z,w) = 0,(3.4)

z ∈ Z,

w ∈ [wL,wU ] ⊂ R
nw ,

where tl, tu, and to denote affine, convex, and concave functions, respectively, and
the objective function ho,ex is concave. The (possibly empty) finite index sets Iuj
and Ioj represent the multiple smooth convex inequalities. By construction, the opti-
mal solution value of (3.4) overestimates the optimal solution value of (3.1). It is a
convex program with linear equality constraints and differentiable convex inequality
constraints. Due to convexity, the KKT conditions are sufficient for a global mini-
mum, and we employ this for the upper bounding procedure. The number of auxiliary
variables and constraints introduced depends on the problem size and on the problem
structure. Since it is bounded by a multiple of the number of factors in the McCormick
factorization, it is typically a small multiple of the number of variables.

The existence of a Slater point provides a constraint qualification [10, p. 325], and
in this case the first-order KKT conditions are also necessary for a local and global
minimum. While typically the existence of a Slater point is expected, to the best of
our knowledge it has not been proved in general for this type of convex relaxations.

Note that since the procedure described here is analogous to the procedure used
when constructing natural interval extensions, which in turn are used to calculate
bounds for the auxiliary variables, the relaxation provided by (3.4) is expected to
be at least as tight as the natural interval extension of h over Z. Moreover, by the
introduction of auxiliary variables the relaxations can furnish tighter relaxations than
the ones furnished by McCormick’s composition theorem without auxiliary variables
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[51, p. 128].
A further relaxation of (3.4) can be performed via linearization of the objective

function and the constraints [51]. A weaker linear relaxation can be obtained by
removing all nonlinear constraints. Finally, an even weaker linear relaxation is gener-
ated by removing all constraints but the variable bounds to obtain a box-constrained
program.

3.3. Restrictions/relaxations of SIP. Recall that SIPs can be interpreted as
the nonsmooth program (1.2). A restriction of the lower-level program (1.3), pointwise
in x, leads to an underestimation of the optimal solution value gU (x). Therefore, the
constraint gU (x) ≤ 0 is relaxed. Similarly, a relaxation of the lower-level program
(1.3), pointwise in x, leads to an overestimation of the optimal solution value gU (x),
and the constraint gU (x) ≤ 0 is restricted. In other words, a restriction of the lower-
level program results in a relaxation of the SIP, and similarly a relaxation of the
lower-level program results in a restriction of the SIP.

To be of practical significance, the restrictions and relaxations of the lower-level
program have to be valid for the entire set X. Discretization methods replace the host
set P with a finite set PD ⊂ P , uniformly in x. This is a restriction of the lower-level
program, since its feasible set is replaced by a subset and results in a relaxation of
the SIP. If the resulting NLP is solved to global optimality, a lower bound to the SIP
is obtained. On the other hand, the ICR proposal of Bhattacharjee and coworkers
[12, 13] does not alter the feasible set of the lower-level program, but overestimates
the objective function of the lower-level program pointwise in x. This overestimation
leads to a relaxation of the lower-level program and a restriction of the SIP. Any
feasible point of the resulting NLP gives an upper bound to the SIP. Similarly, the
work by Floudas and Stein [19] and our proposed upper bounds are based on a convex
relaxation of the lower-level program resulting in a restriction of the SIP.

4. KKT-based lower bound. In single-level optimization lower bounds are
typically obtained by the solution of a convex relaxation. As discussed in the intro-
duction, a well established relaxation of SIPs is obtained by replacing the infinite set P
with a finite subset PD. Stein and Still [48] solve GSIP with a convex lower-level pro-
gram satisfying a constraint qualification via an equivalent representation as a MPEC
and remark that under nonconvexity this approach would give a lower bound. Here
we combine these two ideas. We also propose a simple method for calculating bounds
on the KKT multipliers which, depending on the solution method employed for the
lower bounding problem, are either helpful or required [31]. Finally, we propose a sim-
ple method of employing (partially) the second-order KKT necessary conditions. The
formulated lower bounding problem is computationally more expensive than either
of the two known ideas. However, the lower bound furnished is at least as tight as
either of the existing ones, since the solution obtained simultaneously satisfies both
conditions. Moreover, numerical examples in section 6 show that the lower bound
proposed may even be tighter than either of the two existing ideas.

A valid relaxation of the constraint“p is a global maximum of the lower-level
program” is the constraint “p is a local maximum of the lower-level program.” By
Assumption 2, for each x ∈ X the function g(x, ·) is differentiable on some open set
containing P , and therefore by linearity of the constraints in the lower-level program
(2.1) the KKT conditions are necessary for a local maximum. The solution value of
the following MPEC, for which the parameters p and the KKT multipliers μ have
been added to the set of variables, provides a valid lower bound for (1.1):
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fLBD = min
x,p,μ

f(x)

s.t. − gpj (x,p) + μj − μnp+j = 0, j = 1, . . . , np,

μj(pj − pUj ) = 0, j = 1, . . . , np,

μnp+j(−pj + pLj ) = 0, j = 1, . . . , np,(4.1)

g(x,p) ≤ 0,

g(x, p̂) ≤ 0 ∀p̂ ∈ PD,

0 ≤ μj ≤ μmax
j , j = 1, . . . , 2np,

x ∈ X, p ∈ P.

Recall that gpj denotes the partial derivative of g with respect to pj . To obtain a valid
lower bound for (1.1) the above MPEC must be solved to global optimality. Another
alternative is to further relax (4.1).

Recall that replacing the infinite set P with the finite subset PD is a restriction
of the lower-level program, and therefore a relaxation of the SIP. On the other hand,
the addition of the parameters and KKT multipliers to the variable list is a relaxation
of the optimality constraint in the lower-level program. The necessity of the KKT
conditions ensures that the introduced constraints are feasible. The promise of this
relaxation is that when P is subdivided and the subdivisions are successively refined in
an exhaustive manner, for some τ , the only KKT points in Pτ will be global maxima
of the lower-level program for the obtained x̄; see also the subsection devoted to
convergence.

The multiplier bounds μmax need not be exact. Finite bounds are needed for some
of the solution methods employed for (4.1) as well as the reformulation via integer
programming used in this paper, and tighter bounds will typically accelerate the
solution of (4.1). However, if the bounds on the KKT multipliers are underestimated,
the lower bounding problem may be invalid (by excluding some feasible x), irrespective
of the algorithm used to solve (4.1).

4.1. Bounds on the KKT multipliers. In the following we discuss how to
obtain the bounds μmax for the KKT multipliers μ in the lower bounding problem
(4.1).

Proposition 4.1 (multiplier bounds). Valid upper bounds for the KKT multi-
pliers μ in (4.1) are given by

μmax
j = max

x∈X,p∈P,pj=pU
j

gpj (x,p) , j = 1, . . . , np,(4.2)

μmax
np+j =− min

x∈X,p∈P,pj=pL
j

gpj (x,p) , j = 1, . . . , np.(4.3)

Proof. Consider an arbitrary but fixed index j ∈ {1, 2, . . . , np}. The KKT multi-
pliers μj ≥ 0 and μnp+j ≥ 0 must satisfy the stationarity and complementary slackness
conditions

−gpj
(x,p) + μj − μnp+j = 0,(4.4)

μj(pj − pUj ) = 0,(4.5)

μnp+j(−pj + pLj ) = 0.(4.6)

Note first that for pj ∈ (pLj , p
U
j ) we obtain μj = 0 from (4.5) and μnp+j = 0 from

(4.6). In the following we therefore consider only pj ∈ {pLj , pUj }.



88 A. MITSOS, P. LEMONIDIS, C. L. LEE, AND P. I. BARTON

For pj = pUj we obtain μnp+j = 0 from (4.6), and since any μj satisfies (4.5), μj

is calculated by (4.4) as

μj = gpj
(x,p) .

Therefore, the largest value that μj can take is given by the maximum of the partial
derivative gpj over X and P , constrained by pj = pUj ,

μmax
j = max

x∈X,p∈P,pj=pU
j

gpj (x,p) .

Similarly for pj = pLj we obtain μj = 0 from (4.5), and since any μnp+j satisfies
(4.6), μnp+j is calculated by (4.4) as

μnp+j = −gpj (x,p) .

Therefore the largest value that μnp+j can take is given by the maximum of the
negative partial derivative −gpj

over X and P such that pj = pLj ,

μmax
np+j = max

x∈X,p∈P,pj=pL
j

(−gpj (x,p)) = − min
x∈X,p∈P,pj=pL

j

gpj (x,p) .

Note that in the optimization problems (4.2), (4.3), pj is fixed and is used only
as a dummy variable. In general, solving the above optimization programs is expen-
sive, and we therefore propose to overestimate the bounds by interval extensions over
X × P (with pj fixed). When nonpositive values are obtained for the bounds, i.e.,
when the partial derivative gpj is nonpositive for pj = pUj or nonnegative for pj = pLj ,
the corresponding variable and the complementary slackness conditions can be elimi-
nated. In a branch-and-bound procedure such as the one proposed by Bhattacharjee
et al. [13], where the host set of X is branched and the host set P subdivided, this
elimination criterion is likely to be valid in some subsets of X and P .

4.2. Implementation with integer variables. Due to the complementary
slackness conditions, (4.1) violates the Mangasarian–Fromowitz constraint qualifica-
tion (MFCQ) [48] and is difficult to solve [7]. Stein and Still [48] solve their MPEC
by regularizing the complementary slackness conditions via NCP functions and solv-
ing a sequence of regularized NLPs. Each of these NLPs is an approximation to
(4.1), but it can be easily verified that it provides a valid lower bound. In the limit
(4.1) is solved. General-purpose global NLP solvers such as BARON [44] obtain lower
bounds on (4.1) by constructing convex relaxations of the equality constraints as pairs
of inequalities. To ensure convergence, bounds on the KKT multipliers are needed.
Fortuny-Amat and McCarl [20] reformulate the complementary slackness conditions
of the inner program in a class of bilevel programs using integer variables and the big-
M formulation to obtain an MINLP. To do so bounds are needed for the multipliers,
as well as for the constraints. In the special case of SIP, since the lower-level problem
contains only box constraints, bounds on the constraints are readily available, and the
big-M reformulation is particularly simple. Moreover, due to the simple structure of
the lower-level program the KKT multipliers can be eliminated. Let yj be an integer
variable used to indicate whether pj = pUj ; i.e., let yj = 0 imply pj < pUj and yj = 1

imply pj = pUj . Similarly, let ynp+j be an integer variable used to indicate whether

pj = pLj ; i.e., let ynp+j = 0 imply pj > pLj and ynp+j = 1 imply pj = pLj . We claim
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that MPEC (4.1) is equivalent to the following MINLP:

fLBD =min
x,p,y

f(x)

s.t. gpj
(x,p) ≤ yjμ

max
j , j = 1, . . . , np,

pUj − pj ≤
(
pUj − pLj

)
(1 − yj), j = 1, . . . , np,

−gpj
(x,p) ≤ ynp+jμ

max
np+j , j = 1, . . . , np,

pj − pLj ≤
(
pUj − pLj

) (
1 − ynp+j

)
, j = 1, . . . , np,(4.7)

yj + ynp+j ≤ 1, j = 1, . . . , np,

g(x,p) ≤ 0

g(x, p̂) ≤ 0 ∀p̂ ∈ PD,

y ∈ {0, 1}2np ,

x ∈ X, p ∈ P,

where μmax are calculated by (4.2), (4.3). The reason we employ this reformulation
is because the use of binary variables allows more flexibility, such as the introduction
of second-order KKT conditions.

Note that if (4.2) furnishes μmax
j ≤ 0, then yj is eliminated, and the two inequal-

ities containing yj are replaced by gpj (x,p) ≤ 0. Similarly, if (4.3) gives μmax
np+j ≤ 0,

then ynp+j is eliminated, and the two inequalities containing ynp+j are replaced by
gpj

(x,p) ≥ 0. It is very simple to verify the validity of these eliminations.
Proposition 4.2 (validity of MPEC formulation). If values for μmax are cal-

culated by (4.2), (4.3), then MPEC (4.1) is equivalent to (4.7).
Proof. The two problems have the same objective function, which depends only

on the original variables x, and therefore it suffices to show that the projection of
the feasible sets on X is the same. Note also that both formulations contain the
constraints from the discretization of P , namely g(x, p̂) ≤ 0, for all p̂ ∈ PD, and we
can ignore these.

1. x̄ is feasible in (4.1) ⇒ x̄ is feasible in (4.7).
Let x̄ be feasible in (4.1). Therefore, there exist μ̄, p̄ such that (x̄, p̄, μ̄)
satisfy the constraints of (4.1). We will show that there also exists ȳ such
that (x̄, p̄, ȳ) is feasible in (4.7). For an arbitrary but fixed j ∈ {1, 2, . . . , np}
consider the following cases:
(a) p̄j ∈ (pLj , p

U
j ). From the complementary slackness conditions we ob-

tain μ̄j = μ̄np+j = 0, and therefore from the stationarity condition
gpj (x̄, p̄) = 0. Pick now ȳj = ȳnp+j = 0. The first five constraints of
(4.7) become

gpj
(x̄, p̄) ≤ 0,

pUj − p̄j ≤
(
pUj − pLj

)
,

gpj (x̄, p̄) ≥ 0,

p̄j − pLj ≤
(
pUj − pLj

)
,

0 + 0 ≤ 1,

and are clearly satisfied.
(b) p̄j = pUj . From the complementary slackness condition we obtain μ̄np+j =

0, and therefore from the stationarity condition gpj (x̄, p̄) ≥ 0. Pick now
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ȳj = 1, ȳnp+j = 0. The first five constraints of (4.7) become

gpj (x̄, p̄) ≤ μmax
j ,

0 ≤ 0,

gpj
(x̄, p̄) ≥ 0,

pUj − pLj ≤
(
pUj − pLj

)
,

1 + 0 ≤ 1,

and are satisfied; recall also the calculation of μmax
j from (4.2).

(c) p̄j = pLj . This case is analogous to the previous case.
Since we also have g(x̄, p̄) ≤ 0, the desired result is shown.

2. x̄ is feasible in (4.7) ⇒ x̄ is feasible in (4.1) . Let x̄ be feasible in (4.7).
Therefore, there exist ȳ, p̄ such that (x̄, p̄, ȳ) satisfy the constraints of (4.7).
We will show that there also exists μ̄, such that (x̄, p̄, μ̄) is feasible in (4.1).
For an arbitrary but fixed j ∈ {1, 2, . . . , np} consider the following cases:
(a) p̄j ∈ (pLj , p

U
j ). The constraint pUj − p̄j ≤

(
pUj − pLj

)
(1 − ȳj) directly

gives ȳj = 0, and therefore we obtain gpj (x̄, p̄) ≤ 0. Similarly we obtain
ȳnp+j = 0 and gpj (x̄, p̄) ≥ 0. We therefore have gpj (x̄, p̄) = 0. Pick
μ̄j = μ̄np+j = 0 and note that the first three constraints of (4.1) are
satisfied.

(b) p̄j = pUj . Similarly to the previous case we obtain ȳnp+j = 0 and
gpj (x̄, p̄) ≥ 0. Pick μ̄j = gpj (x̄, p̄) and μ̄np+j = 0 and note that the
first three constraints of (4.1) are satisfied.

(c) p̄j = pLj . This case is analogous to the previous case.
Since we also have g(x̄, p̄) ≤ 0, the desired result is shown.

4.3. Second-order conditions. Typically, some infeasible points x̄ have a lower
objective value than the optimal objective value f(x̄) < f∗, for otherwise (1.1) is essen-
tially unconstrained. Moreover, while for these points maxp∈P g(x̄,p) > 0, it is possi-
ble that minp∈P g(x̄,p) ≤ 0. Therefore, since the parameters are added to the variable
list, the solution of (4.1) tends to furnish such points x̄ along with points p̄ which are
stationary points (e.g., unconstrained minima) of the lower-level program, because
for the given x̄ these are the least restrictive for the constraint g(x̄,p) ≤ 0. The
second-order KKT conditions can partially alleviate this phenomenon. The second-
order constraint qualification is trivially satisfied for the box-constrained lower-level
problem. Instead of the full second-order conditions we propose a simple necessary
check, by requiring that the second derivative with respect to each parameter be non-
positive unless this parameter is at one of its bounds. With the use of the binary
variables described above, this condition can be formulated as

gpjpj (x,p) ≤ (yj + ynp+j) g
max
pjpj

, j = 1, . . . , np,

where gmax
pjpj

is an upper bound for the second derivative gpjpj on X ×P . Similarly to
the bounds on the KKT multipliers, it suffices to take a bound satisfying

gmax
pjpj

≥ max
x∈X,p∈P,pj∈{pL

j ,pU
j }

gpjpj (x,p) .

This bound can be calculated by interval extensions on X × P . Note that a negative
bound is acceptable here.
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4.4. Validity and convergence of lower bounding problem. In discretiza-
tion approaches, tightening of the lower bounds can be achieved by gradually in-
creasing the cardinality of the finite set of parameters considered, i.e., increasing
the number of constraints. Methods for efficient convergence of the proposed lower
bounding problem to the optimal solution value of the SIP are outside the scope of
this paper, and here we only briefly discuss basic convergence properties. We will
show that a subdivision of P leads to convergence of the lower bound.

Suppose that the host set P is subdivided into a collection of subsets Pτ ⊂ P
with index set I, satisfying Pτ = [pL

τ ,p
U
τ ]. We now require matrices of variables P

and Y whose columns are indexed by the set I, i.e., for τ ∈ I the vectors pτ ∈ Pτ

and yτ ∈ {0, 1}2np represent columns of P and Y, respectively. The lower bounding
problem (4.7) with the inclusion of the second-order conditions now becomes

f I,LBD = min
x,P,Y

f(x)

s.t. gpj,τ (x,pτ ) ≤ yj,τμ
max
j,τ , j = 1, . . . , np, τ ∈ I,

pUj,τ − pj,τ ≤
(
pUj,τ − pLj,τ

)
(1 − yj,τ ), j = 1, . . . , np, τ ∈ I,

−gpj (x,pτ ) ≤ ynp+j,τμ
max
np+j,τ , j = 1, . . . , np, τ ∈ I,

pj,τ − pLj,τ ≤
(
pUj,τ − pLj,τ

) (
1 − ynp+j,τ

)
, j = 1, . . . , np, τ ∈ I,

yj,τ + ynp+j,τ ≤ 1, j = 1, . . . , np, τ ∈ I,(4.8)

gpjpj (x,pτ ) ≤ (yj,τ + ynp+j,τ ) g
max
pjpj ,τ , j = 1, . . . , np, τ ∈ I,

g(x,pτ ) ≤ 0, τ ∈ I,

g(x, p̂) ≤ 0 ∀p̂ ∈ PD,

Y ∈ {0, 1}2np×|I|,

pτ ∈ Pτ , τ ∈ I,

x ∈ X.

Note that, to ensure the existence of a KKT point in each subset Pτ , it is necessary
to use the interior bounds in the KKT conditions (pUj,τ as opposed to pUj ).

Proposition 4.3 (validity of the lower bounding problem). The optimal solution
value f I,LBD obtained by (4.8) is a valid lower bound to the optimal objective value
of SIP (1.1), or (4.8) is a relaxation of (1.1).

Proof. Since the objective function in (4.8) is the same as in (1.1), it suffices to
show that if a point x̄ is feasible in (1.1), then it is feasible in (4.8). This is done by
showing that one can pick points P̄, Ȳ satisfying the constraints.

Let x̄ be feasible in (1.1); i.e., g(x̄,p) ≤ 0 for all p ∈ P . Since PD ⊂ P , we obtain
directly g(x̄, p̂) ≤ 0 for all p̂ ∈ PD. For each τ ∈ I, pick p̄τ ∈ arg maxpτ∈Pτ g(x̄,pτ ).
Since Pτ ⊂ P , we directly obtain p̄τ ∈ P and therefore g(x̄, p̄τ ) ≤ 0. Since each
program maxpτ∈Pτ

g(x̄,pτ ) is box-constrained, it satisfies the linear constraint quali-
fication, and the first and second-order KKT conditions are necessary for a maximum.
As a consequence, in analogy to the proof of Proposition 4.2, one can pick ȳτ that
satisfy the first six constraints of (4.8).

Proposition 4.4 (convergence of lower bounding problem). Consider a sequence
of successively refined subdivisions with index set Ik. Consider the relaxation of (4.8)
(with PD = ∅ and without the KKT necessary conditions),
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fLBD,k =min
x,P

f(x)

s.t. g(x,pτ ) ≤ 0, τ ∈ Ik,(4.9)

pτ ∈ Pτ , τ ∈ Ik,

x ∈ X.

If the subdivision is exhaustive, then for k → ∞, fLBD,k → f∗.
Note that since the subdivision is refined, essentially an implicit discretization is

defined, and convergence results for discretizations are well known, e.g., [41]. There-
fore the proof of Proposition 4.4 is based on the proof of Theorem 2.8 of [41].

Proof. Since the subdivision is successively refined, the sequence of lower bounds
obtained is nondecreasing. Moreover, by Proposition 4.3 we have fLBD,k ≤ f∗.
Therefore, fLBD,k converges for k → ∞. Denote its limit f lim and note that f lim ≤
f∗.

Since X is compact, a subsequence xki which converges to xlim,i with f(xlim,i) =
f lim exists. Note now that the solution of (4.9) furnishes pki

τ for each xki satisfying
g(xki ,pki

τ ) ≤ 0 for all τ ∈ Ik Since the subdivision is exhaustive, for ki large enough
and some τ the points pki

τ are arbitrarily close to points in arg maxp∈P g(xlim,i,p).
The continuity of g therefore implies gU (xlim,i) ≤ 0, or xlim,i is feasible for the original
SIP. Therefore, f lim ≥ f∗.

5. Upper bounding problems. The basic principle of our upper bounding
proposals is the same as that of Bhattacharjee and coworkers [12, 13], namely that
a relaxation of the lower-level program leads to a restriction of the semi-infinite con-
straint and thus a restriction of the SIP. Here, instead of using an inclusion function
based on interval analysis, we employ convex relaxations and/or linear relaxations.
First, we extend the convex relaxations to the parametric case. Subsequently, we
describe the alternatives and then discuss some basic convergence properties.

5.1. Parametric concave relaxations. We are interested in constructing a
concave relaxation of the lower-level program maxp∈P g(x,p) for each x ∈ X and
hence a parametric concave relaxation. Procedures for parametric relaxations are not
available in the literature in the extent needed for our upper bounding proposals.
Relaxations have been used in parametric optimization, but the focus has been on
LP-relaxations of parametric mixed integer linear programs; see, e.g., Ohtake and
Nishida [35]. In nonlinear programming, convex relaxations have been applied to
the right-hand side case, e.g., [18], in which the dependence on the parameter is
very simple. Relaxations have also been constructed for optimization with dynamic
systems embedded, e.g., [45], where the role of the integration variable is similar to a
parameter, but the focus is different than what is needed here.

5.1.1. Nonsmooth concave relaxation. Here we extend the procedure de-
scribed in section 3.2.1 for concave relaxation and linearization, using the composition
results of McCormick, to the parametric case. In particular we need to describe how
concave relaxations on P can be calculated for joint terms in x and p. By Assump-
tion 2, the constraint g can be decomposed in such a way that all joint terms are of
the form

vj(x,p) = t(x) + u(x)vi(x,p),

where, for vi, convex and concave relaxations (vui (x, ·), voi (x, ·)) as well as bounds
(vLi (x), vUi (x)) are known on P for each x ∈ X. The convex and concave relaxations
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of vj(x, ·) on P are given by

vuj (x,p) = min{t(x) + u(x)vui (x,p), t(x) + u(x)voi (x,p)},
voj (x,p) = max{t(x) + u(x)vui (x,p), t(x) + u(x)voi (x,p)},

and the bounds of vj(x, ·) on P are given by

vLj (x,p) = min{t(x) + u(x)vLi (x,p), t(x) + u(x)vUi (x,p)},
vUj (x,p) = max{t(x) + u(x)vLi (x,p), t(x) + u(x)vUi (x,p)}.

By recursive application any factorable function can be handled, generally with a nest-
ing of min and max statements. Note at this point the similarity to the ICR proposal
by Bhattacharjee, Green, and Barton [12]. Note also that propagating subgradients
from vi to vj is straightforward and constructing linearizations poses no significant
challenge over the NLP case considered in [8].

Example 5.1. Consider a simple SIP for which x ∈ [−1, 1], p ∈ [−1, 1], f = −x,

and g = ex p2 − 1. The feasible set is easily calculated to be x ≤ 0, and therefore the
optimal solution value is 0 at x = 0. A factorable representation of g(x, p) is given by

v1 = p2,

v2 = x v1,

v3 = ev2 − 1.

Since p2 is convex, its convex envelope on P is given by vu1 = p2, and its concave
envelope on P is given by vo1 = 1; its bounds are given by vL1 = 0 and vU1 = 1.
For the term v2 we obtain convex and concave envelopes as vu2 = min{xvu1 , xvo1} and
vo2 = max{xvu1 , xvo1}. Its bounds are given by vL2 = min{x · 0, x · 1} = min{0, x}
and vU2 = max{0, x}. For the term v3 we need to invoke McCormick’s composition
theorem. The exponential function ez is convex, and therefore its concave envelope

is given by the secant T o = ez
L

+ z−zL

zU−zL (ez
U − ez

L

), and the convex envelope is
given by the function itself Tu = ez. Moreover, the exponential function is monotone
increasing, and therefore arg minz∈[zL,zU ] e

z = {zL} and arg maxz∈[zL,zU ] e
z = {zU}.

Therefore, mid{vu2 , vo2, wmin} = vu2 and mid{vu2 , vo2, wmax} = vo2. By McCormick’s
composition theorem,

ev
u
2 − 1 = emin{xp2,x} − 1

is a convex underestimator of g(x, ·) on P and

ev
L
2 +

vo2 − vL2
vU2 − vL2

(
ev

U
2 − ev

L
2

)
− 1

= emin{0,x} +
max{xp2, x} − min{0, x}
max{0, x} − min{0, x}

(
emax{0,x} − emin{0,x}

)
− 1

is a concave overestimator of g(x, ·) on P .

5.1.2. Smooth concave relaxations without auxiliary variables. We now
consider the extension of the smooth overestimation of the lower-level program via the
addition of known concave terms; compare section 3.2.2. Without loss of generality
we consider the αBB relaxations, which is also handled in [19]. Use of the γBB
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relaxations is analogous. The αBB overestimation go,α(x, ·) of g(x, ·) on P is given
by

go,α(x,p) = g(x,p) + α

np∑
i=1

(pi − pLi )(pUi − pi).

For sufficiently large values of α, the overestimating function go,α(x, ·) is partially
concave on P for each x ∈ X.

In principle α can be taken as a function of x, but since no closed form for
the calculation of α exists in general and introducing an x-dependence may lead to
nonsmooth constraints with respect to x, we refrain from doing this. Instead we
obtain α via interval extensions of the eigenvalue estimates of the Hessian matrix on
X ×P . This overestimation guarantees the desired concavity with the drawback that
the relaxations are weaker than necessary. The relaxed lower-level program

max
p∈P

go,α(x,p)

is a box-constrained maximization program with a smooth concave objective func-
tion. Note that for convergence of go,α to g it is sufficient to subdivide P , without
partitioning X. Within a branch-and-bound procedure, it is advisable, though, to
recalculate α for each node, since this accelerates convergence.

Example 5.2. Recall Example 5.1. The second derivative of g with respect to p
is given by (2x+ 4x2p2)exp

2

. Calculating the natural interval extension of the second
derivative on X × P gives 6e. A concave overestimator of g(x, ·) on P is therefore
given by

ex p2 − 1 + 3e(p + 1)(1 − p) = ex p2 − 1 + 3e(1 − p2).

5.1.3. Smooth concave relaxation with auxiliary variables. We now con-
sider the alternative of introducing auxiliary variables and constraints; compare also
section 3.2.3. This is similar to the nonsmooth concave relaxation. By Assumption 2,
g can be decomposed in such a way that the joint terms are of the form

t(x) + u(x)wi,

where wi is a previously introduced variable (or a parameter pi). If such terms directly
appear as a summand in g, no relaxation is needed. Otherwise a new variable wj is
introduced along with a linear equality constraint

wj = t(x) + u(x)wi.

The bounds on this new auxiliary variable can in principle be calculated as functions
of x. Since our final goal is a smooth program with respect to x we calculate the
bounds on this auxiliary variable by taking natural interval extensions with respect
to both p and x. In general this is a further relaxation.

For instance, the term xipj would be replaced by a new variable wk ∈ [wL
k , w

U
k ] and

a constraint wk = xipj , where the variable bounds are given by wL
k = min{xL

i p
L
j , x

L
i p

U
j ,

xU
i p

L
j , x

U
i p

U
j } and wU

k = max{xL
i p

L
j , x

L
i p

U
j , x

U
i p

L
j , x

U
i p

U
j }.

To obtain a compact presentation we augment the parameters p with the auxiliary
variables and denote these p̃ ∈ P̃ ⊂ R

np̃ . Also, we lump the box and auxiliary
constraints into inequality constraints formed from the functions u : X×R

np̃ → R
nu .
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The presence of linear equalities is omitted for simplicity. The relaxed lower-level
program is then given by

max
p̃∈R

np̃
go,ex(x, p̃)

s.t. u(x, p̃) ≤ 0.(5.1)

The resulting restriction of (1.1),

fUBD,ex
gsip = min

x∈X
f(x)

s.t. go,ex(x, p̃) ≤ 0 ∀p̃ ∈ R
np̃ : u(x, p̃) ≤ 0,

is a GSIP. By construction, for all x ∈ X there exists a p̃ such that u(x, p̃) ≤ 0 and
the GSIP can be reformulated to a bilevel program [47].

Example 5.3. Recall Example 5.1 and the factorable presentation of g = ex p2 −1.
The nonlinear term p2 is replaced by an auxiliary variable p̃2 ∈ [0, 1] along with two
convex inequality constraints

p̃2
1 − p̃2 ≤ 0,

p̃2 − 1 ≤ 0.

The joint term xp̃2 is replaced by a new auxiliary variable p̃3 ∈ [0, 1] (bounds inciden-
tally exact) along with a linear (in p̃) equality constraint

p̃3 − xp̃2 = 0.

The exponential term ep̃3 is convex and can be overestimated by the secant

ep̃
L
3 +

p̃3 − p̃L3
p̃U3 − p̃L3

(
ep̃

U
3 − ep̃

L
3

)
= e0 +

p̃3 − 0

1 − 0

(
e1 − e0

)
= 1 + p̃3(e− 1).

Since the exponential term directly appears in g, no additional auxiliary variable is
introduced. The concave relaxation of the lower-level program is given by

max
p̃

p̃3(e− 1)

s.t. p̃2
1 − p̃2 ≤ 0,

p̃2 − 1 ≤ 0,

p̃3 − xp̃2 = 0,

p̃ ∈ [−1, 1] × [0, 1] × [0, 1].

5.2. KKT-based upper bound. In the following we describe how to obtain
an upper bound from the solution of an MPEC. The first step in obtaining the upper
bound is to construct a relaxation of (2.1), i.e., a maximization problem with con-
straints that are partially convex on p ∈ P for each x ∈ X and an objective function
that is partially concave on p ∈ P for each x ∈ X and overestimates g(x, ·) on P .
This relaxation of the lower-level program results in a restriction of the SIP.

The next step is to replace the resulting SIP with an MPEC similar to the one
described for the lower bounding problem. A basic requirement for this transformation
is differentiability of the relaxed lower-level program, and therefore only the smooth
relaxations described in section 5.1 are applicable. Moreover, for the MPEC to be a
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valid restriction, the KKT conditions need to be sufficient only for a global maximum.
This is ensured by the (partial) convexity of the programs. Note that necessity of
the KKT conditions is not required. If the relaxed lower-level program attains its
maximum only at points that are not KKT points, the MPEC will be infeasible. A
local solution of the formulated MPEC is a valid upper bound to the original SIP.
Therefore, unlike the lower bounding problem, obtaining rigorous bounds on the KKT
multipliers is not necessary (it is still helpful). If the bounds on the KKT multipliers
are underestimated, the upper bounding problem is further restricted and therefore
remains valid, but may be rendered infeasible.

Proposition 5.1 (validity of KKT-based upper bounding problem). Consider a
(generalized) SIP whose lower-level program is a relaxation of the lower-level program
(1.1) for each x ∈ X and as such has a nonempty feasible set for each x ∈ X. Suppose
that for each x ∈ X the first-order KKT conditions are sufficient for a global maximum
of the lower-level program. Construct an MPEC with x, p, and the KKT multipliers
of the relaxed lower-level program μ as variables, the same objective function as (1.1),
the constraint

go(x,p) ≤ 0,

along with the constraints of the lower-level program and its first-order KKT condi-
tions, and a finite bound on the KKT multipliers

μj ≤ μmax
j .

If x̄, p̄, μ̄ is a feasible point of this MPEC, then x̄ is a feasible point of (1.1).
Proof. Any feasible point x̄, p̄, μ̄ of the constructed MPEC is also feasible in

the MPEC without the bounds on the KKT multipliers. Since the first-order KKT
conditions are sufficient for a global maximum of the lower-level program, p̄ is a global
maximum of the lower-level program for x = x̄. The constraint go(x̄, p̄) ≤ 0 therefore
ensures that the optimal solution value of the relaxed lower-level program satisfies
go,U (x̄) ≤ 0. Therefore, because go is a concave overestimator, also the optimal
solution value of the original lower-level program satisfies gU (x̄) ≤ 0, or x is feasible
in (1.1). Finally, adding an upper bound on the on the KKT multipliers is a third
restriction.

At this point a comparison with the interval inclusion approach by Bhattachar-
jee and coworkers [12, 13] is warranted. The MPEC problems typically have many
more additional variables and constraints than the ICR and therefore are significantly
harder to solve. Moreover, the stationarity and complementary slackness constraints
are equality constraints, and state-of-the-art finitely terminating algorithms guaran-
tee the feasibility of nonlinear equality constrained problems only within a tolerance.
In some cases (see below) it can be shown that despite this approximation the gen-
erated points are guaranteed feasible in (1.1). On the other hand, typically, convex
relaxations are tighter than interval extensions. As a consequence the proposed upper
bounds will typically be tighter than those furnished by the ICR.

5.2.1. Smooth concave overestimation without auxiliary variables. We
now consider a KKT-based upper bound based on the αBB method; such a bound
has also been proposed in Floudas and Stein [19], and here we present some additional
concepts, namely how to obtain bounds on the KKT multipliers and how to estimate
the maximal constraint violation. As described in section 5.1.2, the smooth relaxation
of the lower-level program via αBB results in a box-constrained maximization program
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with a smooth concave objective function. Therefore, the first-order KKT conditions
are necessary and sufficient for a global maximum and

fUBD,α = min
x,p,μ

f(x)

s.t. − go,αpj
(x,p) + μj − μnp+j = 0, j = 1, . . . , np,

μj(pj − pUj ) = 0, j = 1, . . . , np,

μnp+j(−pj + pLj ) = 0, j = 1, . . . , np,(5.2)

go,α(x,p) ≤ 0,

0 ≤ μj ≤ μmax
j , j = 1, . . . , 2np,

x ∈ X, p ∈ P,

is equivalent to the restricted SIP for sufficiently large μmax. Note that the number
of variables in (5.2) is equal to the original number of variables nx plus up to three
times the number of parameters (3np). In addition to the box constraints there are
up to 3np equality constraints and one (most likely nonconvex) inequality constraint.
Similar to the lower bounding problem, a reformulation to an MINLP is possible by
introducing binary variables and eliminating the KKT multipliers.

The calculation of bounds on the KKT multipliers is equivalent to (4.2), (4.3),
replacing g with go,α. We first note that

go,αpj
(x,p) = gpj (x,p) + α(pUj − pj) − α(pj − pLj ).

Therefore

max
x∈X,p∈P,pj=pU

j

go,αpj
(x,p) = −α(pUj − pLj ) + max

x∈X,p∈P,pj=pU
j

gpj
(x,p) ,

max
x∈X,p∈P,pj=pL

j

−go,αpj
(x,p) = max

x∈X,p∈P,pj=pL
j

−
(
gpj (x,p) − α(pUj − pLj )

)
= α(pUj − pLj ) − min

x∈X,p∈P,pj=pL
j

gpj
(x,p) .

Similar to the lower bounding problem, whenever a bound is nonpositive (function
monotone) the corresponding variable and complementary slackness conditions are
eliminated. For the γBB relaxation [5] the derivatives of the underestimating terms
with respect to pj are variable-dependent, but, evaluated at the variable bounds, they

are given by γ(eγ(pU
j −pL

j )−1) for pj = pLj and γ(1−eγ(pU
j −pL

j )) for pj = pUj . Therefore,
the calculation of bounds on the KKT multipliers is analogous.

As stated above, typical finitely terminating NLP solvers only approximate equal-
ity constraints. We will show that the feasibility of the points furnished can be easily
verified, or the extent of constraint violation estimated.

Proposition 5.2 (maximal constraint violation). Consider x̄ ∈ X, p̄ ∈ P , and
μ̄ ≥ 0 such that (x̄, p̄, μ̄) is an approximate feasible point of (5.2) in the sense of
εtol-violation of the equality constraints

| − go,αpj
(x̄, p̄) + μ̄j − μ̄np+j | ≤ εtol, j = 1, . . . , np,(5.3)

|μ̄j(p̄j − pUj )| ≤ εtol, j = 1, . . . , np,(5.4)

|μ̄np+j(−p̄j + pLj )| ≤ εtol, j = 1, . . . , np,(5.5)

go,α(x̄, p̄) ≤ 0.
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Then x̄ is an approximately feasible point of (1.1) in the sense

gU (x̄) ≡ max
p∈P

g(x̄,p) ≤ εtol

np∑
j=1

(1 + pUj − pLj ).

Proof. Since go,α is a concave overestimator of g for each x̄ we have

(5.6) gU (x̄) ≤ go,α,U (x̄) ≡ max
p∈P

go,α(x̄,p).

Since go,α is partially concave on the convex set P we obtain [10, p. 675]

go,α(x̄,p) ≤ go,α(x̄, p̄) +

np∑
j=1

go,αpj
(x̄, p̄)(pj − p̄j) ∀p ∈ P,

and therefore also

go,α,U (x̄) ≤ max
p∈P

⎛
⎝go,α(x̄, p̄) +

np∑
j=1

go,αpj
(x̄, p̄)(pj − p̄j)

⎞
⎠ .

The maximum of the above sum over P is attained at a vertex of P , and therefore

(5.7) go,α,U (x̄) ≤ go,α(x̄, p̄) +

np∑
j=1

max
{
go,αpj

(x̄, p̄)(pUj − p̄j), g
o,α
pj

(x̄, p̄)(pLj − p̄j)
}
.

Since μ̄ ≥ 0 from (5.3) we obtain

|go,αpj
(x̄, p̄)| ≤ μ̄j + εtol,

|go,αpj
(x̄, p̄)| ≤ μ̄np+j + εtol,

and therefore by (5.4), (5.5)

|go,αpj
(x̄, p̄)(pUj − p̄j)| ≤ εtol(1 + pUj − p̄j) ≤ εtol(1 + pUj − pLj ),

|go,αpj
(x̄, p̄)(pLj − p̄j)| ≤ εtol(1 + p̄j − pLj ) ≤ εtol(1 + pUj − pLj ).

Combining the above inequalities with (5.6) and (5.7), we obtain the desired
result.

A practical way of ensuring that the points furnished by (5.2) are indeed feasible
is to replace the constraint go,α(x,p) ≤ 0 with go,α(x,p) ≤ −εtol

∑np

j=1(1 + pUj − pLj ).
Note that this is a further restriction, and therefore again a valid upper bound is
obtained.

5.2.2. Concave overestimation with auxiliary variables. We now consider
the alternative of introducing auxiliary variables and constraints, (cf. section 5.1.3),
which resulted in a lower-level program of the type (5.1). By convexity, the KKT
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conditions are sufficient for a global maximum of the lower-level program and

fUBD,ex = min
x,p̃,μ

f(x)

s.t. −∇p̃g
o,ex(x, p̃) + μT∇p̃u(x, p̃) = 0,

μjuj(x, p̃) = 0, j = 1, . . . , nu,

go,ex(x, p̃) ≤ 0,(5.8)

u(x, p̃) ≤ 0,

μmin
j ≤ μj ≤ μmax

j , j = 1, . . . , nu,

x ∈ X, p̃ ∈ R
np̃ ,

provides a valid upper bound of (1.1), where for inequality constraints μmin
j = 0.

Recall that the number of variables in the lower-level problem np̃ and the number
of KKT multipliers nu depend on the number and type of factors in the factorable
representation. Here a reformulation as an MINLP is possible by the introduction of
binary variables, but elimination of the KKT multipliers does not seem possible in
general.

At this point a discussion of potential disadvantages of (5.8) is warranted. The
KKT conditions may not be necessary for problems of the type (5.1) since it has not
been shown that the formulated constraints satisfy some constraint qualification (see
also section 3.2.3). Moreover, obtaining valid upper bounds on the KKT multipliers is
not always possible, so replacing the restricted SIP with an MPEC may be a further
restriction and render the upper bounding program infeasible. To ensure convergence
of the upper bounding problem this issue has to be addressed. Finally, through the
introduction of extra variables, providing tight bounds on the maximal constraint
violation seems intractable.

Example 5.4. Recall Example 5.1 and the relaxed lower-level program constructed
in Example 5.3. The following MPEC is obtained as the upper bounding problem:

min
x,p̃,μ

−x

s.t. 2μ1p̃1 + μ4 − μ5 = 0,

−μ1 + μ2 − xμ3 + μ6 − μ7 = 0,

−(e− 1) + μ3 + μ8 − μ9 = 0,

μ1(p̃
2
1 − p̃2) = 0,

μ2(p̃2 − 1) = 0,

μ3(p̃3 − xp̃2) = 0,

μ4(p̃1 − 1) = 0,

μ5(−1 − p̃1) = 0,

μ6(p̃2 − 1) = 0,

μ7(−p̃2) = 0,

μ8(p̃3 − 1) = 0,

μ9(−p̃2) = 0,

p̃3(e− 1) ≤ 0,

p̃2
1 − p̃2 ≤ 0,

p̃2 − 1 ≤ 0,

p̃3 − xp̃2 = 0,



100 A. MITSOS, P. LEMONIDIS, C. L. LEE, AND P. I. BARTON

μ3 ∈ [μmin
3 , μmax

3 ],

μj ∈ [0, μmax
j ], j = 1, . . . , 9 : j = 3,

x ∈ [−1, 1],

p̃ ∈ [−1, 1] × [0, 1] × [0, 1].

5.3. Linearization-based upper bound. Similar to the MPEC-based upper
bounds, the first step in the linearization-based upper bounds is to construct a convex
relaxation of the lower-level program and thus a restriction of (1.1):

min
x∈X

f(x)

s.t. go(x,p) ≤ 0 ∀p ∈ P,

where go : X × P → R is partially concave on P for each x ∈ X and go(x,p)
overestimates g(x,p). Note that for the approach involving auxiliary variables a
somewhat different treatment is needed, and this is described in section 5.3.3.

The second step further restricts the generated SIP by linearizing at an arbitrary
interior point p̄ ∈ int(P ), pointwise in X, and creating the following SIP:

min
x∈X

f(x)

s.t. go,lin(x,p) ≤ 0 ∀p ∈ P,(5.9)

where go,lin(x,p) ≡ go(x, p̄) +
∑np

j=1 g
o
pj

(x, p̄)(pj − p̄j). Here gpj
denotes a partial

derivative or, with an abuse of notation, subgradient. An equivalent nonsmooth
reformulation of (5.9) is the following problem:

min
x∈X

f(x)

s.t. max
p∈P

go,lin(x,p) ≤ 0.(5.10)

Since go,lin is affine in p, the maximum of go,lin(x, ·) on P will be attained at one of
the vertices Pe of P for each x in X. Therefore an equivalent finite representation of
(5.10) is

min
x∈X

f(x)

s.t. go,lin(x,p) ≤ 0 ∀p ∈ Pe.(5.11)

While for any p̄ ∈ P the formulated finite NLP (5.11) is a valid restriction of (1.1),
the choice of p̄ greatly affects the strength of the generated upper bounds. Compared
to the MPEC-based upper bound, this linearization approach presents the inherent
advantage that it avoids the use of equality constraints (complementarity and sta-
tionarity conditions), and any feasible point of (5.11) is guaranteed feasible for (1.1).
On the other hand, the MPEC approach introduces a polynomial (in the number of
inner variables or in the number of inner variables and nonconvex terms) number of
constraints, whereas the linearization approach introduces a potentially exponential
number of constraints. Moreover, the linearization approach produces bounds that
are at best as tight as the MPEC-based ones, assuming that both problems are solved
to global optimality.
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If either of the two following relationships holds for variable pj ,

max
x∈X

gopj
(x, p̄) ≤ 0,

min
x∈X

gopj
(x, p̄) ≥ 0,

the number of constraints can be reduced. The following procedure describes how to
obtain the (sufficient) subset of extreme points Pe∗ that needs to be considered in
problem (5.11):

• Initialize Pe∗ := Pe.
• FOR j = 1, . . . , np DO

– IF maxx∈X gopj
(x, p̄) ≤ 0 THEN Pe∗ := {p ∈ Pe∗ : pj = pLj }

ELSE IF minx∈X gopj
(x, p̄) ≥ 0 THEN Pe∗ := {p ∈ Pe∗ : pj = pUj }.

END
Evaluating the above optimization programs is expensive, and we propose to estimate
them using interval extensions.

5.3.1. Smooth concave overestimation without auxiliary variables. Re-
call that the concave relaxation of g on P using αBB techniques has the form

go,α(x,p) = g(x,p) + α

np∑
j=1

(pj − pLj )(pUj − pj),

and the linearized approximation of the αBB concave relaxation around a point p̄ ∈ P
is

go,α,lin(x,p) = go,α(x, p̄) +

np∑
j=1

gpj (x, p̄)(pj − p̄j) + α

np∑
j=1

(−2p̄j + pLj + pUj )(pj − p̄j).

Therefore, the αBB-based linearized upper bounding problem is of the form

min
x∈X

f(x)

s.t. go,α,lin(x,p) ≤ 0 ∀p ∈ Pe∗ ,

where Pe∗ is calculated by the following procedure:
• Initialize Pe∗ := Pe.
• FOR j = 1, . . . , np DO

– IF maxx∈X gpj (x, p̄) ≤ α(2p̄j −pLj −pUj ) THEN Pe∗ := {p ∈ Pe∗ : pj =

pLj }
ELSE IF minx∈X gpj

(x, p̄) ≥ α(2p̄j − pLj − pUj ) THEN Pe∗ := {p ∈
Pe∗ : pj = pUj }.

END
Again we propose to estimate the above optimization problems by interval extensions.

5.3.2. Nonsmooth concave overestimation without auxiliary variables.
Similar to the aforementioned technique, the goal of this method is to introduce a
concave overestimator of the constraint g with respect to the inner variables p using
the McCormick technique, and then to linearize the resulting expression around an
arbitrary point p̄ ∈ P .

As described in section 5.1.1 and demonstrated in Example 5.1, the value of x can
influence the functional form of the convex and concave overestimators. Therefore,
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the linearized constraint go,mc,lin(·,p) ≤ 0 evaluated at the vertices of the parameter
set p ∈ Pe is typically nonsmooth with respect to x. This is very similar to the
ICR by Bhattacharjee, Green, and Barton [12], and we propose to work around the
nonsmoothness in the same way, namely to use both constraints for each min /max
statement resulting from a joint term in x and p. This is a further restriction and as
such provides a valid upper bound. For nested min /max statements the number of
constraints becomes exponential in the number min /max statements. Alternatives
such as the MINLP reformulation in [12] are also possible.

Similar to the linearization of the smooth concave overestimation, the set of
vertices at which the constraints are evaluated can be reduced if the subgradients
go,mc(x, ·) at p̄ have positive or negative elements for all x ∈ X.

Example 5.5. Recall Example 5.1. Linearizing the McCormick relaxation at p̄ = 0
gives

emin{0,x} +
max{x, 0} − min{0, x}
max{0, x} − min{0, x}

(
emax{0,x} − emin{0,x}

)
− 1

= emax{0,x} − 1 = max{e0, ex} − 1 = max{1, ex} − 1 = max{0, ex − 1}.

Introducing the constraint max{0, ex − 1} ≤ 0 would give a nonsmooth NLP, and we
instead use two constraints corresponding to x ≥ 0 and x ≤ 0. In principle these
constraints are evaluated at the vertices of P , but since the subgradient at p̄ = 0 is
given by 0, the constraints are introduced only for one parameter value. The resulting
single-level program is

min
x∈[−1,1]

−x

s.t. 0 ≤ 0,

ex − 1 ≤ 0.

Incidentally, the above NLP is convex and has the same feasible set as the original
program and therefore the same optimal solution point and value.

5.3.3. Smooth concave overestimation with auxiliary variables. A method
to create a valid upper bound for (1.1) based on smooth concave overestimation of
g(x, ·) using auxiliary variables was presented in section 5.2.2. Recall that the follow-
ing GSIP is a restriction of (1.1):

min
x∈X

f(x)

s.t. go,ex(x, p̃) ≤ 0 ∀p̃ ∈ R
np̃ : u(x, p̃) ≤ 0,(5.12)

where the parameters p̃ contain the original parameters p and auxiliary parameters
representing expressions of the variables and parameters. Bounds on the auxiliary
parameters are propagated through interval extensions. The linearization approaches
require that the set of parameter vertices be easily calculated, which is not the case
here. Therefore, a further restriction of (5.12) is obtained by dropping the lower-level
constraints with the exception of the bound constraints

min
x∈X

f(x)

s.t. go,ex(x, p̃) ≤ 0 ∀p̃ ∈ P̃ ,(5.13)
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and therefore further relaxing the lower-level program and thus further restricting
(5.12). Taking into consideration that go,ex(x, ·) is partially concave on P̃ for each
x ∈ X and similar to the linearization approaches already presented, the following
linearization of (5.13) around an arbitrary point p̄ ∈ P̃ furnishes an upper bound for
(1.1):

min
x∈X

f(x)

s.t. go,ex(x, p̄) +

np̃∑
j=1

go,expj
(x, p̄)(p̃j − p̄j) ≤ 0 ∀p̃ ∈ P̃e,

where P̃e denotes the set of vertices of P̃ . Recall that the set of vertices considered
can be reduced if the functions can be demonstrated to be monotone with respect to
some parameters.

5.4. Relaxation over X and P . The upper bounding methodologies that have
been presented so far rely on creating a function go that is partially concave with
respect to the parameters p pointwise for each x ∈ X. Another way of creating a
valid overestimator of g is to construct a jointly concave function go,j on X × P , i.e.,
with respect to both the variables x and the parameters p, using either McCormick
or αBB concave relaxation methods, that satisfies

go,j(x,p) ≥ g(x,p) ∀(x,p) ∈ X × P.

Then, the following SIP is a restriction of (1.1):

min
x∈X

f(x)

s.t. go,j(x,p)≤ 0 ∀p ∈ P.(5.14)

Note that for convergence both host sets (X and P ) need to be refined.

5.4.1. Linearization. Similar to the linearization approaches that have been
presented so far, and since go,j is concave on X × P , we can linearize (5.14) around
an arbitrary interior point (x̄, p̄) ∈ int(X × P ) to obtain the following restriction of
(1.1):

min
x∈X

f(x)(5.15)

s.t. go,j(x̄, p̄) +

nx∑
j=1

go,jxj
(x̄, p̄)(xj − x̄j) +

np∑
j=1

go,jpj
(x̄, p̄)(pj − p̄j) ≤ 0 ∀p ∈ Pe,

where gxj and gpj denote partial derivatives or, with an abuse of notation, subgradi-
ents. By the separability and linearity of the constraint in (5.16), a single inequality
constraint is needed; i.e., Pe can be replaced by a single point p∗ calculated by the
following procedure:

• FOR j = 1, . . . , np DO
– IF go,jpj

(x̄, p̄) ≤ 0 THEN p∗j = pLj ELSE p∗j = pUj .
END

Indeed, by construction of p∗ for each j = 1, . . . , np, we have

max
p∈P

go,jpj
(x̄, p̄)(pj − p̄j) = max

p∈P e
go,jpj

(x̄, p̄)(pj − p̄j) = go,jpj
(x̄, p̄)(p∗j − p̄j).
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Therefore, we also obtain for each x ∈ X

max
p∈P

go,j(x̄, p̄) +

nx∑
j=1

go,jxj
(x̄, p̄)(xj − x̄j) +

np∑
j=1

go,jpj
(x̄, p̄)(pj − p̄j)

= max
p∈P e

go,j(x̄, p̄) +

nx∑
j=1

go,jxj
(x̄, p̄)(xj − x̄j) +

np∑
j=1

go,jpj
(x̄, p̄)(pj − p̄j)

= go,j(x̄, p̄) +

nx∑
j=1

go,jxj
(x̄, p̄)(xj − x̄j) +

np∑
j=1

go,jpj
(x̄, p̄)(p∗j − p̄j).

Therefore the following NLP with a single linear inequality constraint,

min
x∈X

f(x)

s.t. go,j(x̄, p̄) +

nx∑
j=1

go,jxj
(x̄, p̄)(xj − x̄j) +

np∑
j=1

go,jpj
(x̄, p̄)(p∗j − p̄j) ≤ 0,

provides a valid upper bound for (1.1).
This approach will obviously furnish looser upper bounds than the ones produced

by the MPEC and linearization approaches that rely on the concave overestimation of
g only with respect to the parameters p. However, a single linear inequality is required,
compared to the polynomial or exponential number of nonlinear constraints. Again,
the choice of p̄ greatly affects the tightness of the proposed upper bound.

5.4.2. MPEC formulation. Similar to the MPEC approach that was described
in section 5.2, a possible bounding problem is to replace the lower-level problem of
(5.14) with its equivalent KKT conditions and solve the resulting problem to obtain an
upper bound. Although this method would produce valid upper bounds, there are two
distinct drawbacks compared to the MPEC approach that relies on concave relaxation
of g only with respect to p. First, the process of creating a concave overestimator of
g on X × P will replace convex and nonconvex, with respect to x, terms by concave
ones which does not seem to simplify the solution of the resulting problem. Secondly,
the generated relaxation will be weaker. Note that, even using αBB techniques, the
value of α would be greater than or equal to the value of α that corresponds to the
concave relaxation only on P because the Hessian increases in size. In conclusion,
this method does not seem to produce either tighter bounds or simpler constraint
expressions and will, therefore, not be analyzed further.

5.5. Convergence of upper bounding problems. The various alternatives
described restrict the SIP (1.1) by overestimating the function g(x, ·) pointwise in X.
In the nonsmooth interpretation of SIP (1.2) the parametric optimal solution value
of the lower-level program gU (x) is overestimated, obtaining

min
x∈X

f(x)

s.t. go,U (x) ≤ 0,

with go,U (x) ≥ gU (x). As described in section 3, this relaxation of the lower-level
program leads to a restriction of the SIP. In general, this restriction excludes some
feasible points and may even render the upper bounding problem infeasible. To ensure
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that the upper bound converges to the optimal solution value, a subdivision of the
parameter host set P , as in [13], is deemed necessary. As in the lower bounding prob-
lem, for the subdivision additional variables and/or constraints will be introduced.
Methods for efficient convergence are outside the scope of this paper, and here we
only briefly discuss basic convergence properties.

Similarly to the ICR of Bhattacharjee and coworkers [12, 13] and the proposal by
Floudas and Stein [19], an exhaustive subdivision of the parameter set P leads to a
pointwise convergence of go,U to gU . Therefore, points x̄ satisfying maxp∈P g(x̄,p) <
0, i.e., SIP Slater points, become feasible in the upper bounding problems for a suffi-
ciently fine subdivision. As a consequence, if the upper bounding problems are solved
to global optimality and SIP Slater points exist arbitrarily close to a global minimum
of (1.1), the upper bound converges to the optimal solution value.

6. Implementation and numerical results.

6.1. Implementation. The proposed lower and upper bounding problems po-
tentially contain nonconvex objective function and/or constraints. Aiming to obtain
the best possible bounds, we solve all the problems globally with BARON version 7.5
[44], available through GAMS version 22.1 [15], on a 64-bit Xeon 3.2GHz processor
running Linux 2.6.13.

As is typical in NLP and MINLP solvers, BARON allows the violation of inequal-
ity and equality tolerances by a positive tolerance. For the lower bounding problem
this is a further relaxation and thus of no concern, but it is a limitation for the upper
bounding problems involving equality constraints. Note that the inequality constraint
g(x,p) ≤ 0 can be further restricted to g(x,p) ≤ −ε, for an ε equal to the constraint
violation of the NLP solver, and therefore does not pose a significant problem. To
obtain good estimates we set the smallest possible value (10−9) for the relevant toler-
ances (conttol, boxtol, inttol). The absolute and relative termination criteria,
i.e., the difference between the lower and upper bounds in the subproblems, are set
to 10−4. Our previous numerical experiments with similar programs have shown slow
convergence for problems involving third-order monomials, e.g., x3, and for consis-
tency purposes we systematically encode third-order monomials as a product of a
square and a linear term, e.g., x2 x, and fourth-order monomials as the product of
two squares, e.g., x2 x2.

The complementary slackness conditions in the lower bounding problem are for-
mulated using the big-M formulation, since binary variables are needed for the second-
order conditions. In the upper bounding problem the complementary slackness con-
ditions are left as nonlinear equations. For the discretization approach in the lower
bounding problems we follow the heuristic in [13] and define the discretization set PD

as the upper right endpoints, i.e., PD = {pU}. For the linearizations the midpoint of
P is used.

Since the problems considered are relatively small, for the αBB relaxations we
obtain the smallest possible α through the solution of a global optimization problem.
This is done in the spirit of obtaining the tightest possible bounds. On the other
hand, the bounds on the KKT multipliers and the second derivatives are estimated
using the natural interval extensions capabilities of DAEPACK [53, 54]. For the
MPEC-based upper bound using relaxation with extra variables, the upper bound
for the KKT multipliers is set to 103. Note that overestimating the bounds for the
multipliers typically increases the computational requirements (in CPU seconds) to
solve the problems.
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Table 6.1

Numerical results.

Problem Lower bounds Upper bounds
label f∗ PD KKT-1 KKT-2 PD+KKT 5.2.1 5.2.2 5.3.1 5.3.2 5.3.3 5.4 ICR
2 0.194 0.16 0.08 0.16 0.16 +∞ 0.194 +∞ 0.28 0.194 50.58 0.38
5 4.30 3.54 3.72 3.72 3.84 20.2 4.32 27.7 4.64 4.32 7890 4.72
6 97.2 86.26 97.2 97.2 97.2 +∞ 97.2 +∞ 306 97.2 +∞ 97.2
7 1.00 0.0556 1.00 1.00 1.00 86.1 1.00 +∞ 1.60 1.00 +∞ 1.00
8 2.44 -7.14 -8.17 -8.17 -4.16 +∞ 3.13 +∞ 4.20 3.13 +∞ 7.39
9 -12 -53.3 -53.3 -53.3 -53.3 +∞ -12.0 +∞ -12.0 -12.0 +∞ -12.0
N 0.00 -1.00 0.00 0.00 0.00 +∞ 0.00 +∞ 0.00 0.00 +∞ 0.00

Table 6.2

Computational requirements.

Problem CPU time (s) lower bounds CPU time (s) upper bounds
label PD KKT-1 KKT-2 PD+KKT 5.2.1 5.2.2 5.3.1 5.3.2 5.3.3 5.4 ICR
2 0.03 0.13 0.2 0.05 0.01 0.48 0.01 0.02 0.02 0.01 0.01
5 0.02 0.12 0.11 0.06 0.13 0.54 0.02 0.02 0.02 0.01 0.01
6 0.03 0.06 0.05 0.03 0.05 0.67 0.01 0.03 0.04 0.01 0.04
7 0.02 0.76 0.82 0.36 0.28 0.18 (121) 0.01 0.02 0.02 0.01 0.02
8 0.01 0.35 0.56 0.16 0.07 0.01 (273) 0.01 0.02 0.02 0.01 0.01
9 0.01 0.03 0.02 0.05 3.30 0.41 (1000) 0.01 0.01 0.01 0.01 0.01
N 0.01 0.06 0.05 0.07 0.01 0.04 0.01 0.01 0.02 0.01 0.01

6.2. Numerical results. As a test set we use the well-established problems by
Watson [57], summarized in Appendix A. Since BARON and DAEPACK currently do
not support trigonometric functions, we only use those examples that do not involve
trigonometric functions. For all problems we used x ∈ [−10, 10]nx .

Tables 6.1 and 6.2 respectively contain the computational requirement as re-
ported by BARON (through the GAMS attribute resusd) and the bounding values
obtained. No distinction is made for times below 0.01s. In three cases (all KKT-
based upper bounding problems) we distinguish between the time to find the optimal
solution value and to confirm it (number in brackets) because the two computational
requirements differ dramatically. The first column (label) has the label of the prob-
lem, while the column labeled f∗ contains the best known solution for the problem.
The following four columns show the results from the lower bounding problems. PD

denotes discretization, KKT-1 results by applying the necessary first-order KKT con-
ditions, KKT-2 by applying the necessary first- and second-order KKT conditions,
and PD+KKT by combining the necessary first- and second-order KKT conditions
with discretization. The next six columns contain the upper bounds obtained by our
upper bounding proposals, labeled by the corresponding sections. The final column
(ICR) is the interval constrained reformulation by Bhattacharjee, Green, and Barton
[12]. To ensure that we have comparable solution times we reproduced the ICR from
[12]. In Table 6.1 the best lower and upper bounds for each problem are highlighted
by a bold font.

6.3. Conclusions from numerical experiments. The proposed lower and
upper bounding problems bracket the optimal solution value quite successfully. Fur-
thermore, the bounds furnished are often exact, and in some cases both the upper and
the lower bounds are exact. The computational requirement for obtaining upper and
lower bounds is quite low for the small-scale problems considered; note that for the
case of a KKT-based upper bound with extra variables, the computational require-
ment for confirming the global solution is quite high for three problems involving two
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parameters. Recall also from sections 4.4 and 5.5 and [12, 13, 19] that subdivision
methods would tighten the bounds in the cases for which they are not exact.

The combination of discretization and KKT conditions produces tighter lower
bounds than either of the methods taken alone. Moreover, the additional constraints
accelerate convergence compared to when only the KKT conditions are used. Similarly
the addition of the second-order consideration can help accelerate convergence and/or
furnish a tighter bound.

As expected, the KKT-based upper bounds using extra variables (section 5.2.2)
can be significantly tighter than the ICR-based, at the expense of a higher compu-
tational cost. Surprisingly, the linearization-based bounds using auxiliary variables
(section 5.3.3) produced bounds as tight as the ones based on the KKT conditions;
we believe that this is due to the problem structure. The bounds based on smooth
relaxation without extra variables (sections 5.2.1 and 5.3.1) are relatively weak. We
want to again point out that we deviated from the αBB relaxation described by Ad-
jiman and Floudas [4] and considered the constraint as a whole. Note finally that the
number of parameters in the problems considered is small (np ∈ {1, 2}), and therefore
the effect of the exponential number of constraints in the linearization (sections 5.3.1,
5.3.2, and 5.3.3) is not apparent.

7. Conclusions and future work. We consider SIPs that involve nonconvex
functions and present lower and upper bounding problems. For the lower bounding
problem we combine and extend literature ideas based on discretization and the nec-
essary KKT conditions of the lower-level program. The upper bounding problem is
constructed based on a convex relaxation of the lower-level program which results in
a restriction of the SIP, similarly to the ICR of Bhattacharjee and coworkers [12, 13].
The resulting lower-level programs are replaced by the sufficient KKT conditions or
further relaxed by linearization. The proposed upper bounding methodology is more
expensive than ICR, but often leads to tighter upper bounds. What the method
of choice is will most likely depend on the problem size and structure. Therefore
further experimentation with a large set of problems of various sizes is of interest.
To that extent an automation of the convex relaxation such as the one proposed by
Gatzke, Tolsma, and Barton [21] is deemed necessary. Furthermore, the comparison
of different solvers is also of interest.

Many of the ideas proposed can be refined, such as the second-order check for
the lower bound, which, currently, is relatively weak. Another example is to produce
good heuristics for the parameter values around which to linearize. A third example
is that for the αBB method we calculated α uniformly over X by taking interval
extensions on X × P ; instead it would be interesting to consider a method similar
to what we developed for the McCormick relaxations, and calculate different α for
different subsets of X.

We considered global solution of all bounding problems, which is computationally
expensive. For the lower bounding problem a further convex relaxation could be solved
with a local solver. For the upper bounding problem local methods could be applied,
but these may fail. For implementation within a branch-and-bound framework for the
global solution of SIP there is a trade-off between expensive and tight versus cheap
and loose bounds. A promising heuristic is to solve these problems with a global
solver such as BARON [44] and a loose termination criterion.

It seems very promising to combine some of the ideas presented. A simple combi-
nation is to periodically employ the tighter and more expensive bounding problems.
A more elaborate combination is to use a KKT-based upper bounding problem but
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solve the resulting MPEC only approximately to obtain a point x̄ and an estimate for
the corresponding optimal solution of the relaxed lower-level problem p̄. Then the
feasibility of x̄ can be probed by linearizing the concave lower-level problem around
p̄. This approach is difficult to implement with black-box NLP solvers, but could be
easily implemented in a framework such as the NCP approach by Floudas and Stein
[19]. The promise of the combination is that an approximate solution of the MPEC
will provide a point p̄ which is suitable for linearization.

In this paper we consider a single semi-infinite constraint. An interesting ex-
tension is to consider many semi-infinite constraints, for which several alternatives
for extending our proposals could be applied. One possibility is to consider many
lower-level programs by the introduction of as many sets of parameters pi as there
are constraints. Another alternative is to introduce an SOS-1 set of binary variables

y ∈ {0, 1}ng ,

ng∑
i=1

yi = 1, yj = 1 ⇔ gi(x,p) ≥ max
i

gi(x,p),

where ng is the number of constraints. Then a logical constraint

(yj = 1) ⇒ p is a KKT point of gj

can be implemented.
In this paper we assumed that the parameter host set is explicitly given as a

box. An interesting extension is to consider general host sets. Another interesting
extension is to generalized semi-infinite constraints. In a forthcoming publication [27]
we analyze which of the proposed methods can be extended to GSIP and provide
numerical results from an extensive test set.

In discretization approaches tightening of lower bounds can be achieved by gradu-
ally increasing the cardinality of the finite set of parameters considered, and therefore
increasing the number of constraints [13]. Bhattacharjee et al. [13] employed a sub-
division approach to tighten the upper bound, which also leads to an increase in the
number of constraints. For our proposed lower and upper bounding problems a subdi-
vision of P is also deemed necessary for convergence, and this will lead to an increase
in the number of constraints. Moreover, for the bounding problems based on MPEC,
an increase in the number of variables is also expected, making the solution of the
MPEC increasingly expensive for finer subdivisions. A possible heuristic is to include
the KKT-based upper bound only for a subset of the sets P i and to use the interval
extensions for the rest.

Appendix A. Test set. For consistency purposes we use the problem labels of
Watson [57].

2.

P = [0, 1],

f(x) =
1

3
x2

1 + x2
2 +

1

2
x1,

g(x, p) = (1 − x2
1 p

2)2 − x1 p
2 − x2

2 + x2.

5.

P = [0, 1],

f(x) = ex1 + ex2 + ex3 ,

g(x, p) =
1

1 + p2
− x1 − x2 p− x3 p

2.
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6.

P = [0, 1],

f(x) = (x1 − 2x2 + 5x2
2 − x2

2 x2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2,

g(x, p) = x2
1 + 2x2 p

2 + ex1+x2 − ep.

Note that in [12] the exponent is missing in the first term of the objective
function.

7.

P = [0, 1]2,

f(x) = x2
1 + x2

2 + x2
3,

g(x,p) = x1 (p1 + p2
2 + 1) + x2 (p1 p2 − p2

2) + x3 (p1 p2 + p2
2 + p2) + 1.

8.

P = [0, 1]2,

f(x) = x1 +
1

2
x2 +

1

2
x3 +

1

3
x4 +

1

4
x5 +

1

3
x6,

g(x,p) = ep
2
1+p2

2 − x1 − x2 p1 − x3 p2 − x4 p
2
1 − x5 p1 p2 − x6 p

2
2.

Note that presumably in Watson’s collection [57] the coefficient of x4 in the
objective function is mistyped. This is suggested by the optimal solution
value reported in [57] and by the symmetry of the problem with respect to
the variables x4 and x6.

9.

P = [−1, 1]2,

f(x) = −4x1 −
2

3
(x4 + x6),

g(x,p) = x1 + x2 p1 + x3 p2 + x4 p
2
1 + x5 p1 p2 + x6 p

2
2 − 3 − (p1 − p2)

2 (p1 + p2)
2.

N.

P = [−1, 1],

f(x) = x2,

g(x, p) = 2x2
1 p

2 − p4 + x2
1 − x2.

Appendix B. McCormick relaxations of the product of two functions.
In this section we will show the convex and concave relaxations for a product of two
functions g1(z)g2(z) on Z ⊂ R

nz ; compare also the treatment of trilinear terms in
[29].

Assume that there exist convex functions gu1 and gu2 and concave functions go1 and
go2 that satisfy

gu1 (z) ≤ g1(z) ≤ go1(z) ∀z ∈ Z,

gu2 (z) ≤ g2(z) ≤ go2(z) ∀z ∈ Z.
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Furthermore, let GL
1 , G

U
1 , G

L
2 , G

U
2 satisfy

GL
1 ≤ g1(z) ≤ GU

1 ∀z ∈ Z,

GL
2 ≤ g2(z) ≤ GU

2 ∀z ∈ Z.

Then using the following definitions,

α1(z) =

{
GL

2 g
u
1 (z) if GL

2 ≥ 0,

GL
2 g

o
1(z) otherwise,

α2(z) =

{
GL

1 g
u
2 (z) if GL

1 ≥ 0,

GL
1 g

o
2(z) otherwise,

β1(z) =

{
GU

2 g
u
1 (z) if GU

2 ≥ 0,

GU
2 g

o
1(z) otherwise,

β2(z) =

{
GU

1 g
u
2 (z) if GU

1 ≥ 0,

GU
1 g

o
2(z) otherwise,

γ1(z) =

{
GL

2 g
u
1 (z) if GL

2 ≤ 0,

GL
2 g

o
1(z) otherwise,

γ2(z) =

{
GU

1 g
u
2 (z) if GU

1 ≤ 0,

GU
1 g

o
2(z) otherwise,

δ1(z) =

{
GU

2 g
u
1 (z) if GU

2 ≤ 0,

GU
2 g

o
1(z) otherwise,

δ2(z) =

{
GL

1 g
u
2 (z) if GL

1 ≤ 0,

GL
1 g

o
2(z) otherwise,

valid convex and concave (gu and go) relaxations of g on Z are given by

gu(z) ≥ max{α1(z) + α2(z) −GL
1 G

L
2 , β1(z) + β2(z) −GU

1 G
U
2 },

go(z) ≤ min{γ1(z) + γ2(z) −GU
1 G

L
2 , δ1(z) + δ2(z) −GL

1 G
U
2 }.
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Abstract. A first order affine scaling method and two mth order affine scaling methods for
solving monotone linear complementarity problems (LCPs) are presented. All three methods produce
iterates in a wide neighborhood of the central path. The first order method has O(nL2(lognL2)
(log lognL2)) iteration complexity. If the LCP admits a strict complementary solution, then both the
duality gap and the iteration sequence converge superlinearly with Q-order two. If m = Ω(log(

√
nL)),

then both higher order methods have O(
√
n)L iteration complexity. The Q-order of convergence of

one of the methods is (m + 1) for problems that admit a strict complementarity solution, while the
Q-order of convergence of the other method is (m + 1)/2 for general monotone LCPs.
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1. Introduction. The primal-dual affine scaling direction plays a special role
in the theory and practice of interior point methods. It turns out that the search
direction used by most primal-dual interior point methods is a convex combination
(1 − γ)w + γw of the primal-dual affine scaling method w and the centering direction
w (see the monographs [35, 48, 49]). Optimality is improved along the affine scaling
direction, while centrality is improved on the centering direction. The first interior
point method of this type was proposed, in the context of linear programming (LP),
by Kojima, Mizuno, and Yoshise [15]. They proved that the algorithm had O(nL)
iteration complexity, the same as Karmarkar’s algorithm [12]. Shortly after that,
they improved the algorithm and generalized it for monotone linear complementarity
problems (LCP) [14]. The improved algorithm has O(

√
nL) iteration complexity. This

iteration complexity was first obtained by Renegar [34] for an interior point method
that follows the primal central path of LP, and it remains the best iteration complexity
known to date. The algorithm of [14] follows the primal-dual central path. Starting
with a point z0 ∈ N2(α) in a (small) neighborhood of the primal-dual central path,
the algorithm takes at each iteration a unit step along the direction (1 − γ)w + γw,
where γ = 1−α/ ((1 − α)

√
n ), producing a sequence of iterates

(
zk
)

that remains in
N2(α). A similar algorithm was independently proposed and investigated by Monteiro
and Adler for LP [21], and for quadratic programming (QP) [22].

While the algorithms mentioned above attain the best known iteration complexity,
their practical performance is not satisfactory because they generate points in a small
neighborhood of the central path and use a fixed stepsize (of one) along a direction that
is dominated by the centering direction. In order to alleviate some of these problems,
Kojima, Mizuno, and Yoshise [16] proposed a potential reduction algorithm for LCPs
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with O(
√
nL) iteration complexity. The search direction is of the same type with

γ = 1/ (1 +
√
n ). However, instead of taking a fixed stepsize along this direction, a

line search is performed in order to ensure that the iterates remain strictly feasible, and
that the Tanabe–Todd–Ye potential function [43, 44] is reduced by a fixed constant
at each iteration.

Although the potential reduction method of [16] is more flexible than the short
step path following methods of [14, 21, 22], it cannot attain superlinear convergence
since its search direction has a fixed centering component. There are basically three
ways to obtain superlinear convergence: to take γ = 0 every second step, to use a
sequence of γ’s that converges to zero, or to take γ = 0 at every step. The methods
from the first category are called predictor-corrector methods, while the methods from
the last category are called affine scaling methods and form the subject of the present
paper.

Zhang, Tapia, and Dennis [52] gave sufficient conditions for a class of interior point
methods to produce a sequence of iterates with duality gap converging superlinearly
to zero. However, no example of an algorithm satisfying those conditions and having
polynomial complexity was given. The results of [52] were generalized for LCP in [53].
The first interior point method having both polynomial complexity and superlinear
convergence was the predictor-corrector method of Mizuno, Todd, and Ye (MTY).
This method was proposed for LP in [20], where it was shown to have O(

√
nL) iter-

ation complexity. Shortly after that, Ye et al. [51] proved that the duality gap of the
iterates produced by MTY converges quadratically to zero. MTY was generalized to
LCP in [11], and the resulting algorithm was proved to have O(

√
nL) iteration com-

plexity under general conditions, and superlinear convergence under the assumption
that the LCP has a (perhaps not unique) strictly complementary condition (i.e., the
LCP is nondegenerate) and the iteration sequence converges. From [3] it follows that
the latter assumption always holds. Subsequently, Ye and Anstreicher [50] proved
that MTY converges quadratically, assuming only that the LCP is nondegenerate.
The nondegeneracy assumption is not restrictive, since according to [24] a large class
of interior point methods, which contains MTY, can have only linear convergence if
this assumption is violated.

The largest step path following method (LSPF) determines γ at each iteration
such that the duality gap is minimized under the constraint that the point obtained
by taking a unit step along the search direction (1 − γ)w + γw remains in N2(α).
McShane [17] proved that LSPF has O(

√
nL) iteration complexity for general (mono-

tone) LCPs and superlinear convergence under the assumption that the LCP is non-
degenerate and the iteration sequence converges. The superlinear convergence is a
consequence of the fact that the γ’s converge to zero. Gonzaga [6] proved superlinear
convergence assuming only nondegeneracy and showed that, with the addition of a
computationally trivial safeguard, LSPF achieves Q-quadratic convergence. We men-
tion that the convergence of the iteration sequence generated by LSPF follows from
the general results of Bonnans and Gonzaga [3].

It took considerable effort to obtain superlinear convergence results for poten-
tial reduction algorithms. One of the first results of this type was obtained for LP
by Tunçel [46]. His algorithm uses a direction of the form (1 − γ)w + γw, where
γ converges to zero at the same rate as the duality gap. The stepsize along this
direction is obtained by minimizing a special, nonsmooth, potential function. The
algorithm has O(nL) iteration complexity for general LPs and Q-quadratic conver-
gence of the duality gap under the assumption that the LP is nondegenerate. This
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assumption is rather strong since it implies that the Jacobian of the corresponding
LCP is nonsingular at the solution. This strong restriction was removed by Tütüncü
[47], who proposed a potential reduction method with O(nL) iteration complexity
and Q-quadratic convergence of both the duality gap and the iteration sequence for
general LPs. The search direction is the reduced Newton direction of a multiplicative
variant of the Tanabe–Todd–Ye potential function, which is not exactly of the form
(1 − γ)w + γw, but it is shown that it asymptotically approaches the affine scaling
direction, thus ensuring superlinear convergence. The algorithm uses the largest step-
size along this direction such that the feasibility of the iterates is maintained and the
original Tanabe–Todd–Ye potential function is reduced by a fixed quantity at each
iteration.

All the superlinear convergence results mentioned above are obtained either for
LP, which always has a strictly complementary solution, or for LCPs that admit such
a solution. As mentioned before, a large class of first order interior point methods
cannot have superlinear convergence without this assumption [24]. In order to obtain
superlinear convergence for degenerate LCPs one has to either use nonstandard inte-
rior point methods or to consider higher order methods. The first approach was first
taken by Mizuno [18], who used the so-called step variant of the Tapia indicator [5]
to identify the variables that are not strictly complementary, and modified the MTY
algorithm in order to accelerate the convergence to zero of those variables. Mizuno’s
result was refined in [33, 32]. The drawback of this approach is that it needs the
estimation of the partition of the optimal face in order to achieve superlinear con-
vergence. The second approach was taken by Sturm [42], who constructed a second
order MTY-type algorithm that has O(

√
nL) iteration complexity and Q-superlinear

convergence of order 1.5 for degenerate LCPs. By using mth order derivatives, Stoer,
Wechs, and Mizuno [41] constructed higher order MTY-type algorithms with Q-order
m + 1 for nondegenerate LCPs and (m + 1)/2 for degenerate LCPs. The complexity
of the predictor-corrector algorithm for degenerate LCPs from [41] is analyzed in [38].
It follows that for monotone LCPs with feasible starting points the algorithm has
O(

√
nL) iteration complexity.
The path following interior point algorithms described in the paragraph above

use a small neighborhood of the central path. However, extensive numerical experi-
ments show convincingly that predictor-corrector methods perform better when using
large neighborhoods of the central path. Predictor-corrector methods of MTY type
are more difficult to develop and analyze in such neighborhoods, since the correctors
are rather inefficient there. For example, it is known that one needs O(n) corrector
steps in order to reduce the δ∞ proximity measure by a factor of .5 (see [2]). There-
fore a straightforward generalization of the MTY algorithm would have O(n1.5L)
iteration complexity. Gonzaga [7] proposed an interior point method in the N∞(α)
neighborhood of the central path, where a predictor is followed by an a priori un-
known number of correctors, with O(nL)-iteration complexity [7]. No superlinear
convergence results are known for this algorithm. An interior point method for LP,
acting in a large neighborhood of the central path defined by a self-regular prox-
imity measure, with O(

√
nL log n) iteration complexity and superlinear convergence,

was proposed in [26]. The first order predictor-corrector method from [30] uses the
wide N−

∞(α) neighborhood, takes one predictor followed by exactly one corrector at
each iteration, and has O(nL) iteration complexity for general monotone LCPs and
Q-quadratic convergence for nondegenerate LCPs. The mth order predictor-corrector
methods of [30] also use the N−

∞(α) neighborhood, and their Q-order of convergence
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is m + 1 for nondegenerate LCPs and (m + 1)/2 for degenerate LCPs. If m = nω,
for some ω > 0, then they have O(

√
nL) iteration complexity. We note that the mth

order method uses two matrix factorizations and m backsolves per iteration, so that if
ω < 1, then the computational cost per iteration is dominated by the cost of the two
matrix factorizations. The results of [30] were generalized for sufficient LCPs in [31].
An mth order interior point algorithm for sufficient linear complementarity problems
in the N−

∞(α) neighborhood, that requires only one matrix factorization and m back-
solves per iteration, was proposed by Stoer [37]. The Q-order of convergence is m
for nondegenerate problems. The algorithm is modified in [36] so that its asymptotic
Q-order of convergence is m+1 for nondegenerate LCPs and (m+1)/2 for degenerate
LCPs. No complexity results have been proved for the algorithms in [36, 37].

Primal-dual affine scaling methods use the pure primal-dual affine scaling method
at each iteration. The first method of this type was proposed by Monteiro, Adler,
and Resende [23]. Their algorithm takes a small fixed step (of length 1/(nL)) along
this direction and has O(nL2) iteration complexity. Because of the fixed stepsize, the
duality gap is reduced only by a factor of (1 − 1/(nL)) at each iteration, and therefore
the algorithm cannot be superlinearly convergent. Moreover, only the first nL2 iter-
ates are guaranteed to be feasible, so that the algorithm may not produce an infinite
sequence. In the same paper, Monteiro, Adler, and Resende [23] propose an mth order

affine scaling method for QP with O(n
m+1
2m L

m+1
2m ) iteration complexity. They again

use a small fixed stepsize (depending on n,m, and L) so that the algorithm cannot
have superlinear convergence. In order to overcome the inherent inefficiency caused
by the use of a fixed stepsize, Mizuno and Nagasawa [19] proposed an affine scaling
method for LP, where at each iteration the stepsize is determined by a line search that
ensures the feasibility of the iterates and the fact that the Tanabe–Todd–Ye potential
function remains bounded. By choosing the parameter defining the potential func-
tion equal to 1/L, they obtain O(nL2) iteration complexity. However, no superlinear
convergence results are obtained. Tunçel [45] analyzes a variant of this affine scaling
where Tunçel’s potential function [46] is used instead of the Tanabe–Todd–Ye poten-
tial function. The iteration complexity of the resulting algorithm is again O(nL2)
when the parameter δ defining this potential function is equal to 1/(2L). The first
affine scaling method with polynomial complexity and superlinear convergence was
obtained, to our knowledge, by Monteiro and Wright [25] for LCPs. The stepsize
along the affine scaling direction is obtained in such a way that the iterates are fea-
sible and remain in neighborhood of the central path depending on two parameters
η and δ. This neighborhood, which is closely related to Tunçel’s potential function,
is relatively narrow for large values of the duality gap, but it widens considerably
as the duality gap approaches zero. It is shown that by choosing δ = Θ(1/L), one
obtains O(nL2) iteration complexity for monotone LCPs. It is shown that if the LCP
has a strictly complementary solution, then the Q-order of convergence of the duality
gap is 2 − δξ, where ξ = 1 for skew-symmetric problems and ξ = 2 otherwise. As a
byproduct Monteiro and Wright show that Tunçel’s affine scaling method [45] for LP
has Q-order 2 − δ.

We note that the primal-dual affine scaling direction considered in this paper is
sometime called the classical primal-dual affine scaling direction, in order to distin-
guish it from the so-called Dikin primal-dual affine scaling direction considered by
Jansen, Roos, and Terlaky [8] for LP and generalized for LCP in [9]. The correspond-
ing Dikin-type primal-dual affine scaling algorithms have O(nL) iteration complexity.
By using an mth order Dikin primal-dual affine scaling direction, Jansen et al. [10]
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have obtained an algorithm with O(n
m+1
2m L) iteration complexity. Unlike the algo-

rithms from [8, 9], which used a small fixed stepsize, the algorithm from [10] may
take a larger stepsize, which is determined at each iteration such that the new point
remains in the N∞(α) neighborhood of the central path. No superlinear results have
been proved for Dikin-type primal-dual affine scaling algorithms. In fact, since the
Dikin primal-dual affine scaling direction contains an important centering component,
no superlinear convergence is expected for such algorithms.

In the present paper we present an affine scaling algorithm that uses the N−
∞(α)

neighborhood of the central path. It has O(nL2φ(nL2)) iteration complexity for gen-
eral monotone LCPs, where φ(t) = (log t)(log log t). If the LCP admits a strictly
complementary solution, then the duality gap converges Q-superlinearly to zero and
the iteration sequence converges Q-superlinearly to a strictly complementary solu-
tion. The Q-orders of convergence of both sequences are equal to two. We also

present two mth order affine scaling methods having O((
√
nL)

m+1
m (φ (

√
nL))

1
m ) it-

eration complexity for monotone LCPs. By taking m = Ω (log (
√
nL)), we obtain

O(
√
nL) iteration complexity, the best iteration complexity known so far for LP, QP,

and monotone LCP. We note that both algorithms use one matrix factorization and
m backsolves per iteration. This requires O(n3 + mn2) arithmetic operations per
iteration. Therefore if log (

√
nL) � n, then the cost of an iteration is dominated by

the cost of the matrix factorization.
If the LCP admits a strictly complementary solution, then the iterates produced

by the first algorithm converge Q-superlinearly to a strictly complementary solution,
and the corresponding duality gaps converge Q-superlinearly to zero. The Q-orders
of convergence of both sequences are equal to m + 1. If m ≥ 2, then the second al-
gorithm produces a sequence of iterates that converges Q-superlinearly to a maximal
complementarity solution, even for degenerate LCPs, with Q-order (m + 1)/2. The
sequence of duality gaps converges Q-superlinearly to zero with the same Q-order.
To our knowledge this is the first affine scaling method acting in the N−

∞(α) neigh-
borhood of the central path that has O(

√
nL) iteration complexity and Q-superlinear

convergence in the absence of strict complementarity.
Conventions. We denote by N the set of all nonnegative integers. R, R+, R++

denote the sets of real, nonnegative real, and positive real numbers, respectively.
For any real number κ, � κ � denotes the smallest integer greater than or equal to κ.
Given a vector x, the corresponding upper case symbol denotes, as usual, the diagonal
matrix X defined by the vector. The symbol e represents the vector of all ones, with
dimension given by the context.

We denote componentwise operations on vectors by the usual notation for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will
denote the vectors with components uivi, ui/vi, etc. This notation is consistent
as long as componentwise operations always have precedence in relation to matrix
operations. Note that uv ≡ Uv, and if A is a matrix, then Auv ≡ AUv, but in general
A(uv) 	= (Au)v. Also if f is a scalar function and v is a vector, then f(v) denotes the
vector with components f(vi). For example, if v ∈ R

n
+ and λ ∈ R, then

√
v denotes

the vector with components
√
vi, and λ−v denotes the vector with components λ−vi.

Traditionally the vector λ − v is written as λe − v, where e is the vector of all ones.
Inequalities are to be understood in a similar fashion. For example, if v ∈ R

n, then
v ≥ 3 means that vi ≥ 3, i = 1, . . . , n. Traditionally this is written as v ≥ 3 e. If ‖.‖
is a vector norm on R

n and A is a matrix, then the operator norm induced by ‖.‖ is
defined by ‖A‖ = max{‖Ax‖ ; ‖x‖ = 1}. As a particular case we note that if U is the
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diagonal matrix defined by the vector u, then ‖U ‖2=‖u ‖∞.
We frequently use the O(·) and Ω(·) notation to express asymptotic relationships

between functions. The most common usage will be associated with a sequence {xk}
of vectors and a sequence {τk} of positive real numbers. In this case xk = O(τk)
means that there is a constant K (dependent on problem data) such that for every
k ∈ N,

∥∥xk
∥∥ ≤ Kτk. Similarly, if xk > 0, xk = Ω(τk) means that (xk)−1 = O(1/τk).

If we have both xk = O(τk) and xk = Ω(τk), we write xk = Θ(τk).
If x, s ∈ R

n, then the vector z ∈ R
2n obtained by concatenating x and s is denoted

by z = �x, s � =
[
xT , sT

]T
, and the mean value of xs is denoted by μ(z) = xT s

n .

2. The linear complementarity problem and its central path.

2.1. The horizontal linear complementarity problem. Given two matrices
Q,R ∈ R

n×n and a vector b ∈ R
n, the horizontal linear complementarity problem

(HLCP) consists of finding a pair of vectors z = �x, s � such that

xs = 0,

Qx + Rs = b,

x, s ≥ 0.

(2.1)

The standard (monotone) LCP is obtained by taking R = −I and Q positive semidef-
inite. There are other formulations of the LCP as well but, as shown in [1], all popular
formulations are equivalent, and the behavior of a large class of interior point methods
is identical on those formulations, so that it is sufficient to prove results for only one of
the formulations. We have chosen HLCP because of its symmetry. The LP problem,
and the QP problem, can be formulated as HLCPs. Therefore, the HLCP provides a
convenient general framework for studying interior point methods.

Throughout this paper we assume that the HLCP is monotone, in the sense that

Qu + Rv = 0 implies uT v ≥ 0 for any u, v ∈ R
n .

This condition is satisfied if the HLCP is a reformulation of a QP [4]. If the HLCP is
a reformulation of an LP, then the following stronger condition holds,

Qu + Rv = 0 implies uT v = 0 for any u, v ∈ R
n ,

and HLCP is called skew-symmetric in this case. The following proposition contains
two simple properties of a monotone HLCP.

Proposition 2.1. If HLCP is monotone, then the n× 2n-matrix (Q,R) has full
rank, and

(uT v + uT v)2 ≤ 4
(
uT v

) (
u T v

)
∀�u, v �, �u , v � ∈ Ker(Q,R) .

Proof. The full rank property follows from [3]. If Qu + Rv = Qu + Rv = 0, then
Q(u + λu) + R(v + λv) = 0 for any λ ∈ R, so that

0 ≤ (u + λu)T (v + λv) = uT v + λ(uT v + uT v) + λ2uT v ∀λ ∈ R .

Since the right-hand side above is a nonnegative quadratic function in λ, its discrim-
inant must be nonpositive, which proves the second part of the proposition.

In the skew-symmetric case we can often obtain sharper estimates, due to the
following consequence of Proposition 2.1.
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Corollary 2.2. If HLCP is skew-symmetric, then uT v+uT v = 0 for all u, v, u, v
satisfying Qu + Rv = Qu + Rv = 0.

Let us denote the set of all feasible points of HLCP by

F = {z = �x, s � ∈ R
2n
+ : Qx + Rs = b},

and the solution set (or the optimal face) of HLCP by

F∗ = {z∗ = �x∗, s∗ � ∈ F : x∗s∗ = 0}.

The structure of F∗ is very important in the analysis of interior point methods. Let
us define three subsets B, N , and J of the index set {1, . . . , n} by

B = {i = 1, . . . , n |x∗
i > 0 for at least one �x∗, s∗ � ∈ F∗},

N = {i = 1, . . . , n | s∗i > 0 for at least one �x∗, s∗ � ∈ F∗},

J = {i = 1, . . . , n |x∗
i = s∗i = 0 ∀�x∗, s∗ � ∈ F∗}.

One can prove that B, N , and J form a partition of {1, . . . , n} and that there exists
a solution �x∗, s∗ � ∈ F∗ such that x∗

B > 0 and s∗N > 0. Such a solution is called a
maximal complementarity solution, since one can prove that, for any �x∗, s∗ � ∈ F∗,
x∗
i > 0 ⇒ i ∈ B and s∗j > 0 ⇒ j ∈ N . If the solution of the HLCP is unique, then it

is a maximal complementarity solution. Otherwise it can be shown that the relative
interior of F∗ is composed of maximal complementarity solutions.

If the set J is empty, then a maximal complementarity solution is called a strictly
complementary solution. Let us denote by Fc the set of all such solutions, i.e.,

Fc = {z∗ = �x∗, s∗ � ∈ F∗ : x∗ + s∗ > 0} .

We say that the HLCP is nondegenerate if it has a strictly complementary solution.
If the set J is nonempty, then we say that the HLCP is degenerate.

The set

F0 = F
⋂

R
2n
++

is called the set of strictly feasible points, or the set of interior points.

2.2. The central path and its analyticity. It is known (see [13]) that if F0

is nonempty, then for any vector p ∈ R
n
++ and any parameter τ > 0 the nonlinear

system

xs = τp,

Qx + Rs = b
(2.2)

has a unique positive solution z(τ, p) = �x(τ, p), s(τ, p) �. For a fixed p, the curve

C(p) = {z(τ, p) : τ > 0}

is called the weighted central path of the HLCP with weight vector p. It turns out
that if the HLCP is nondegenerate, then z(τ, p) is an analytic function in τ > 0 and
p > 0, which has an analytic continuation at τ = 0. In case the HLCP is degenerate,
then z(τ, p) is analytic in ρ =

√
τ , which also has an analytic continuation at ρ = 0.
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Moreover, all the derivatives of z are bounded on any compact set contained in the
domain of analyticity of z. More precisely, the following results follow from the more
general results of [39, 40].

Theorem 2.3. If HLCP is monotone and F0 is nonempty, then (2.2) has a
unique positive solution z(τ, p) = �x(τ, p), s(τ, p) � for any (τ, p) ∈ R

n+1
++ , and the

following properties hold:
A. If the HLCP is nondegenerate, then z(τ, p) can be analytically extended to an

open neighborhood of R+×R
n
++, and for any compact set K ⊂ R+×R

n
++ and

any integer i ∈ N there are constants c(K, i) such that∥∥∥∥ ∂iz(τ, p)

∂τ i

∥∥∥∥
2

≤ c(K, i) ∀(τ, p) ∈ K, i = 0, 1, 2, . . . .

B. If the HLCP is degenerate, then z(ρ, p) := z(ρ2, p) can be analytically extended
to an open neighborhood of R+×R

n
++, and for any compact set K ⊂ R+×R

n
++

and any integer i ∈ N there are constants c(K, i) such that∥∥∥∥ ∂iz(ρ, p)

∂ρi

∥∥∥∥
2

≤ c(K, i) ∀(τ, p) ∈ K, i = 0, 1, 2, . . . .

If p = e, the vector of all ones, then C = C(e) is simply called the central path of
the HLCP. The distance of a point z ∈ F to the central path C can be quantified by
different proximity measures. The following proximity measures have been extensively
used in the interior point literature:

δ2(z) :=

∥∥∥∥ xs

μ(z)
− e

∥∥∥∥
2

, δ∞(z) :=

∥∥∥∥ xs

μ(z)
− e

∥∥∥∥
∞

, δ−∞(z) :=

∥∥∥∥∥
[

xs

μ(z)
− e

]− ∥∥∥∥∥
∞

,

where [v]− denotes the negative part of the vector v, i.e., [v]− = −max{−v, 0}.
By using the above proximity measures, we can define the following neighborhoods

of the central path:

N2(η) = {z ∈ F0 : δ2(z) ≤ η } ,

N∞(η) = {z ∈ F0 : δ∞(z) ≤ η } ,

N−
∞(η) = {z ∈ F0 : δ−∞(z) ≤ η } ,

where 0 < η < 1 is a given parameter. We have

C ⊂ N2(η) ⊂ N∞(η) ⊂ N−
∞(η), lim

η↓0
N−

∞(η) = C, lim
η↑1

N−
∞(η) = F .(2.3)

3. The first order affine scaling method.

3.1. The algorithm. In the remainder of this paper we will work with N−
∞(η).

We note that this neighborhood can be written under the form

N−
∞(η) = D(1 − η), where D(β) = {z ∈ F0 : xs ≥ βμ(z) } .

At each step of our algorithm we are given a point z = �x, s � ∈ D(β), and we compute
the affine scaling direction w = �u, v � by solving the following linear system:{

su + xv = −xs,

Qu + Rv = 0.
(3.1)



122 FLORIAN A. POTRA

This search direction coincides, up to a scalar factor, with the first derivative to central
path z(τ, p) that passes through p = xs/μ at τ = μ. Indeed, by differentiating (2.2),
we obtain {

s(τ, p) ∂
∂τ x(τ, p) + x(τ, p) ∂

∂τ s(τ, p) = xs
μ ,

Q ∂
∂τ x(τ, p) + R ∂

∂τ s(τ, p) = 0.
(3.2)

Given that x(μ, p) = x and s(μ, p) = s, we obtain

u = −μ
∂

∂τ
x(τ, p) , v = −μ

∂

∂τ
s(τ, p) .(3.3)

It turns out that the duality gap has the fastest local decrease along this direction.
Indeed if we denote by

z(θ) = z + θw(3.4)

a point along this direction, we have

x(θ)s(θ) = (x + θu)(s + θv) = (1 − θ)xs + θ2uv,

μ(θ) =
(x + θu)T (s + θv)

n
= (1 − θ)μ + θ2u

T v

n
.(3.5)

In the skew-symmetric case we have uT v = 0, while in the monotone case, according
to Lemma 3.1, we have 0 ≤ uT v ≤ .25nμ, so that we can write

μ(θ) ≤ (1 − θ + .25θ2)μ ≤ (1 − .5θ)2μ , μ′(θ) ≤ (.5θ − 1)μ .(3.6)

Given that μ(θ) is decreasing on the interval [0, 2], we compute the steplength θ as

θ = max
{
θ̂ ∈ [0, 1] : z(θ) ∈ D(β+) ∀θ ∈ [0, θ̂ ]

}
,(3.7)

where

β+ = β − α.(3.8)

We obtain thus a new point satisfying

z+ = z(θ ) ∈ D(β+),(3.9)

and the process can be repeated. The initial value for β is β , and the α’s are chosen
as the terms of a monotone sequence of nonnegative numbers satisfying the following
two conditions:

∞∑
k=0

αk ≤ β − β ,

∞∑
k=0

√
αk = ∞.

This ensures the global convergence of the algorithm. In order to obtain good poly-
nomial complexity we have chosen

αk =
ν(β − β)

(exp(1) + k + 1) log1+ν(exp(1) + k + 1)
, k = 0, 1, . . . ,(3.10)
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where 0 < ν ≤ 1 is a given parameter. For this choice we have

∞∑
k=0

αk < ν(β − β)

∫ ∞

e

dt

t log1+ν t
= β − β ,

and, as we will see in the next section,

K∑
k=0

√
αk = Ω

( √
K

log
1+ν
2 K

)
.

We end this section by formally defining our iterative procedure, as follows.
Algorithm 1. Given real parameters 0 < β < β < 1, 0 < ν ≤ 1, and a vector

z0 ∈ D(β ) :
Set k ← 0 , β0 ← β and consider the sequence (3.10);
repeat

Set z ← zk , α ← αk , β ← βk , β+ ← β − α ;
Compute direction w = �u, v � by solving (3.1);

Compute steplength θ from (3.7);
Compute z+ from (3.9);

Set θk ← θ , zk+1 ← z+ , μk+1 ← μ(z+) , βk+1 ← β+;
Set k ← k + 1.

continue

3.2. Technical results. In order to analyze Algorithm 1 we need to establish
some properties of the solution of a linear system of the form

{
su + xv = a,

Qu + Rv = 0.
(3.11)

By using the notation

D = X−1/2S1/2 ,(3.12)

this system can be written as

{
Du + D−1v = (xs)−1/2a,

QD−1(Du) + RD(D−1v) = 0.
(3.13)

Since the pair (QD−1, RD) is monotone, one can easily prove the following results
(see, for example, [29, Lemma 3.1]).

Lemma 3.1. If HLCP is monotone, then for any z = �x, s � ∈ R
2n
++ and any

a ∈ R
n the linear system (3.11) has a unique solution w = �u, v �, and the following

properties are satisfied:

(i) ‖Du ‖2
2 +

∥∥D−1v
∥∥2

2
≤
∥∥ (xs)−1/2a

∥∥2

2
;

(ii) ‖uv − uT v
n e‖2 ≤ ‖uv ‖2 ≤ 1

2
√

2

∥∥ (xs)−1/2a
∥∥2

2
;

(iii) ‖uv ‖∞ ≤ 1
4

∥∥ (xs)−1/2a
∥∥2

2
;

(iv) uT v ≤ 1
4

∥∥ (xs)−1/2a
∥∥2

2
.
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The proof of global convergence of Algorithm 1 requires explicit lower bounds for

the series
∑K−1

k=0 α
1/(m+1)
k for K sufficiently large. Given that

K−1∑
k=0

α
1

m+1

k >
(
ν(β − β)

) 1
m+1

∫ K+exp(1)+1

exp(1)+1

dt

t
1

m+1 log
1+ν
m+1 t

,(3.14)

it remains to find an explicit lower bound depending on K of the integral appearing
on the right-hand-side of the above inequality. To this effect we will use the following
results.

Lemma 3.2. Let f and g be two continuous, nonnegative, and nonincreasing real
functions defined on the interval [γ, δ]. If f is convex, then∫ δ

γ

f(t)g(t)dt ≥ f

(
γ + δ

2

)∫ δ

γ

g(t)dt .

Proof. Let us define ζ = (γ + δ)/2. From the convexity of f it follows that f has
lateral derivatives f ′(ζ − 0) ≤ f ′(ζ + 0) ≤ 0 at ζ and that

f(t) ≥ f(ζ) + m(t− ζ) ∀m ∈ [f ′(ζ − 0), f ′(ζ + 0)] , ∀t ∈ [γ, δ] .

Since g is nonnegative and nonincreasing we deduce that

f(t)g(t) ≥ f(ζ)g(t) + mg(ζ)(t− ζ) ∀m ∈ [f ′(ζ − 0), f ′(ζ + 0)] , ∀t ∈ [γ, δ] ,

and the statement of our lemma follows by fixing m and taking the integral with
respect to t of both sides of the above inequality.

Corollary 3.3. If 0 < ω < 1, η > 0, and ς ≥ 2γ > 2, then∫ γ+ς

γ

dt

tω logη t
≥ ς1−ω

logη ς
·

Proof. Given that the function t → log−η(t) is convex for t > 1, we can apply
Lemma 3.2 to obtain∫ γ+ς

γ

dt

tω logη t
≥ (γ + ς)1−ω − γ1−ω

(1 − ω) logη(γ + .5ς)
≥ (γ + ς)1−ω − γ1−ω

(1 − ω) logη ς
·

Therefore it remains to prove that

(γ + ς)1−ω − γ1−ω ≥ (1 − ω)ς1−ω .

Dividing both sides of the above inequality by ς1−ω and denoting σ = γ/ς, τ = 1−ω,
this reduces to proving that

φ(τ, σ) := (1 + σ)τ − στ − τ ≥ 0 , ∀τ ∈ [0, 1] ∀σ ∈ [0, .5] .

Since

∂φ

∂σ
= τ

(
(1 + σ)τ−1 − στ−1

)
≤ 0,

we deduce that

φ(τ, σ) ≥ ψ(τ) := φ(τ, .5) ∀τ ∈ [0, 1] , ∀σ ∈ [0, .5] .



PRIMAL-DUAL AFFINE SCALING 125

We have

ψ(τ) = 1.5τ − .5τ − τ , ψ(0) = 0 , ψ(1) = 0,

ψ′(τ) = 1.5τ log 1.5 − .5τ log .5 − 1 , ψ′(0) > 0 , ψ′(1) < 0,

ψ′′(τ) = 1.5τ log2 1.5 − .5τ log2 .5 , ψ′′(0) < 0 , ψ′′(1) > 0,

ψ′′′(τ) = 1.5τ log3 1.5 − .5τ log3 .5 > 0 , ∀τ ∈ [0, 1] .

The positivity of ψ′′′ implies that ψ′′ has a unique zero τ2 ∈ [0, 1], which in turn shows
that ψ′ is decreasing on [0, τ2] and increasing on [τ2, 1]. Hence ψ′ has a unique zero
τ1 ∈ [0, τ2]. This shows that ψ increases on [0, τ1] and decreases on [τ1, 1]. Therefore
ψ is positive on (0, 1).

Using this corollary together with the following lemma, we will be able to obtain
explicit upper bounds on the number of steps required by Algorithm 1 to reduce the
duality gap below any desired tolerance.

Lemma 3.4. The function h : [exp(1),∞) → [exp(1),∞) given by h(t) = t/ log t
is increasing and bijective, and its inverse h−1 : [exp(1),∞) → [exp(1),∞) satisfies
the inequalities

t log t < h−1(t) < t

(
1 +

log log t

log t− 1

)
log t < 2t log t ∀t ∈ (e,∞) .

Proof. The first part of the lemma follows immediately from the fact that

h′(t) =
log t− 1

log2 t
> 0 ∀t ∈ (e,∞) .

In order to prove the second part we denote by l and u the lower and upper bounds
above and show that h(l) < t < h(u). We have obviously

h(l) =
t log t

log(t log t)
=

t log t

log t + log log t
< t ,

which proves the first inequality. Finally, by using the inequality log(1 + α) < α, we
obtain

h(u) =
t
(
1 + log log t

log t−1

)
log t

log(t log t) + log
(
1 + log log t

log t−1

) >
t
(
1 + log log t

log t−1

)
log t

log t + log log t + log log t
log t−1

= t .

Corollary 3.5. If σ > exp(1) , ν > 0 , m > 0 , then

τ ≥
(

2

(
1 +

1 + ν

m + 1
log

1 + ν

m

)
m + 1

m
log σ

) 1+ν
m

σ
m+1
m implies

τ
m

m+1

log
1+ν
m+1 τ

≥ σ .

Proof. By noticing that

τ
m

m+1

log
1+ν
m+1 τ

=

(
τ

m
1+ν

1+ν
m log τ

m
1+ν

) 1+ν
m+1

,
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we can write the last inequality in the statement of Corollary 3.5 under the equivalent
form

τ
m

1+ν

log τ
m

1+ν
≥ (1 + ν)σ

m+1
1+ν

m
.

According to Lemma 3.4 this inequality is satisfied if

τ ≥
(

2(1 + ν)σ
m+1
1+ν

m
log

(1 + ν)σ
m+1
1+ν

m

) 1+ν
m

=: rhs .

The right-hand side of the above inequality can be majorized as follows:

rhs =

(
2(1 + ν)

m

) 1+ν
m

σ
m+1
m

(
log

(1 + ν)σ
m+1
1+ν

m

) 1+ν
m

=

(
2(1 + ν)

m

) 1+ν
m

σ
m+1
m

((
1 +

log 1+ν
m

log σ
m+1
1+ν

)
log σ

m+1
1+ν

) 1+ν
m

≤
(

2(1 + ν)

m

) 1+ν
m

σ
m+1
m

((
1 +

1 + ν

m + 1
log

1 + ν

m

)
log σ

m+1
1+ν

) 1+ν
m

=

(
2(1 + ν)

m

) 1+ν
m

σ
m+1
m

((
1 +

1 + ν

m + 1
log

1 + ν

m

)
m + 1

1 + ν
log σ

) 1+ν
m

=

(
2

(
1 +

1 + ν

m + 1
log

1 + ν

m

)
m + 1

m
log σ

) 1+ν
m

σ
m+1
m ,

which proves the corollary.
Lemma 3.6. The function g : [exp(exp(1)),∞) → [exp(exp(1)),∞) given by

g(t) = t/ log log t is increasing and bijective, and its inverse satisfies

t log log t < g−1(t) < t

(
1 +

log log log t

(log log t) log t− 1

)
log log t < 2.072 t log log t .

Proof. The first part of the lemma follows immediately from the fact that

g′(t) =
−1 + (log log t) log t

(log log t)2 log t
> 0 ∀t ∈ (5.8313,∞) .

In order to prove the second part we denote by l and u the lower and upper bounds
above and show that g(l) < t < g(u). We have obviously

g(l) =
t log log t

log log(t log log t)
=

t log log t

log log t + log log log t
< t ,
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which proves the first inequality. By using the inequality log(1 + α) < α, we obtain

g(u) =
t
(
1 + log log log t

(log log t) log t−1

)
log log t

log
(
log t + log log log t + log

(
1 + log log log t

(log log t) log t−1

))

>
t
(
1 + log log log t

(log log t) log t−1

)
log log t

log
(
log t + (log log log t)

(
1 + 1

(log log t) log t−1

))

>
t
(
1 + log log log t

(log log t) log t−1

)
log log t

log log t + log log log t
log t

(log log t) log t
(log log t) log t−1

= t .

Finally, it is easily checked that

max
t≥exp(exp(1))

log log log t

(log log t) log t− 1
< 0.072 .

3.3. Polynomial complexity. In the next theorem we show that Algorithm 1
is well defined, and we give bounds on the decrease of the duality gap at each iteration.

Theorem 3.7. If HLCP is monotone, then Algorithm 1 is well defined and
produces a sequence of points

(
zk
)∞
k=0

, with zk ∈ D(βk) ⊂ D(β). If n ≥ 5, then the
following relations hold:

θk ≥
√

2αk/n , μk+1 ≤
(
1 −

√
αk/n

)
μk , k = 0, 1, . . . ,

μk ≤ μ0 exp

⎛
⎝−

√
ν
(
β − β

)
k

n log1+ν k

⎞
⎠ , k = 8, 9, . . . .

Proof. The relation zk ∈ D(βk) is ensured by the line search (3.7). Now let
z ∈ D(β) be given, and define

p =
xs

μ
, q =

uv

μ
.

From our hypothesis and from Lemma 3.1 it follows that

p ≥ βe , ‖ q ‖∞ ≤ n

4
,

∥∥ q − (eT q/n)e
∥∥

2
≤ ‖ q ‖2 ≤ n

2
√

2
,

uT v

μ
= eT q ≤ n

4
.

Using (3.5) and (3.6), we deduce that

x(θ)s(θ)

μ(θ)
=

(1 − θ)p + θ2q

1 − θ + (eT q/n)θ2

=
(1 − θ)p + β(eT q/n)θ2e + βθ2(q − (eT q/n)e) + (1 − β)θ2q

1 − θ + (eT q/n)θ2

≥ βe−
∥∥β(q − (eT q/n)e) + (1 − β)q

∥∥
2
θ2

1 − θ
e

≥ βe− ‖ q ‖2 θ
2

1 − θ
e .(3.15)
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If n ≥ 5, then
√

2α/n ≤
√

2α0/5 < 1−1/
√

2 for any values of the parameters defining
our algorithm, and in this case we can easily verify that

‖ q ‖2 θ
2

1 − θ
≤ nθ2

(1 − θ)2
√

2
≤ α ∀θ ∈ [0,

√
2α/n ] .

It follows that θ ≥
√

2α/n, and therefore

μ+ = μ
(
θ
)
≤ μ

(√
2α/n

)
≤
(
1 −

√
2α/n + .5α/n

)
μ

≤
(
1 −

(
1 − .25

√
2α0/5

)√
2α/n

)
μ <

(
1 −

√
α/n

)
μ .

Hence we have proved that

μj+1 ≤
(

1 −
√
αj/n

)
μj , j = 0, 1, . . . .

By repeatedly applying the above inequality, we deduce that

μk ≤ μ0

k−1∏
j=0

(
1 −

√
αj/n

)
.

Using the inequality log(1− t) < −t, (3.14), k ≥ 8 > 2(exp(1)+1), and Corollary 3.3,
we obtain

log

(
μk

μ0

)
≤

k−1∑
j=0

log

(
1 −

√
αj/n

)
≤ −

k−1∑
j=0

√
αj/n ≤ −

√
ν
(
β − β

)
k

n log1+ν k
,

which completes the proof of our theorem.
In the following corollary we give an explicit upper bound for the number of

iterations required by Algorithm 1 to obtain a solution of the HLCP with prescribed
accuracy. More precisely, given any ε > 0, we have to find an upper bound for the
number

Kε := min
{
K : xk T sk ≤ ε ∀k ≥ K

}
.(3.16)

The upper bound will depend on n and

Lε := log

(
x0T s0

ε

)
.(3.17)

Corollary 3.8. If nL2
ε > exp(2)/

(
ν(β − β)

)
, then

Kε ≤
⌈

71+ν

ν(β − β)
nL2

ε log1+ν
(
nL2

ε

)⌉
.

Proof. From Theorem 3.7 we deduce that xk T sk ≤ ε for any K with the property

K1/2

log(1+ν)/2 K
≥ σ :=

(
ν(β − β)

)−1/2 √
nLε .
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Since σ > exp(1), we can use Corollary 3.5 to show that

Kε ≤ Kε := (4 (1 + log 2) log σ)
1+ν

σ2,

and the statement of our corollary follows by noticing that

4 (1 + log 2) log σ = 2 (1 + log 2)
(
log

(
nL2

ε

)
− log

(
ν(β − β)

))
≤ 4 (1 + log 2)

(
log

(
nL2

ε

)
− 1

)
< 4 (1 + log 2) log

(
nL2

ε

)
< 7 log

(
nL2

ε

)
.

If ν is a positive constant independent of n and Lε, then Algorithm 1 is indepen-
dent of the dimension of the problem and the stopping criterion xk T sk ≤ ε. However,
by letting ν depend on n and Lε, we can slightly improve the computational complex-
ity.

Corollary 3.9. If

nL2
ε ≥ max

{
exp (exp(1)) ,

2.072 exp(2)

β − β
log log

(
exp(2)

β − β

)}
,

and we take ν = (log log(nL2
ε))

−1 in Algorithm 1, then

Kε ≤
⌈

134

β − β
nL2

ε log
(
nL2

ε

)
log log

(
nL2

ε

)⌉
.

Proof. From Lemma 3.6 we deduce that nL2
ε ≥ exp(2)/(ν(β − β)), and Corol-

lary 3.8 can be applied. The desired result follows immediately by noticing that
logν(nL2

ε) = exp(1) and 71+ν exp(1) ≤ 49 exp(1) < 134.
We note that although for ν = (log log(nLε))

−1 Algorithm 1 depends on ε, it will
produce an (infinite) sequence zk ∈ D(β) with limk→∞ μk = 0. As we mentioned in
the introduction, this is not the case with the primal-dual affine-scaling algorithm of
Monteiro, Adler, and Resende [23]. Given a starting point z0 ∈ C on the central path
and a tolerance ε > 0, their algorithm produces a finite sequence of points

(
zk
)

by
taking at each iteration a fixed stepsize θε = 1/ (n�logLε�), i.e.,

zk+1 = zk + θεw
k, k = 0, 1, . . . ,Kε :=

�n logLε�
θε

.

It is shown that zk ∈ N∞(αk), with αk < nKεθ
2
ε = 1 , k = 0, 1, . . . ,Kε, which implies

the feasibility of zk for k ≤ Kε. However, the positivity of zk is no longer guaranteed
for k > Kε, so that the algorithm is not defined for k > Kε. Since the algorithm
of [23] uses a fixed (and small) steplength it cannot have superlinear convergence.
Moreover since this algorithm produces only a finite sequence, we cannot even talk
about its order of convergence. In contrast, in the next subsection we will show that
the Q-order of convergence of Algorithm 1 is two.

3.4. Superlinear convergence. The main ingredient in the proof of superlinear
convergence is provided by the following lemma, which is easily obtained by applying
Theorem 2.3 with

K = K(β, μ ) =
{
(τ, p) : 0 ≤ τ ≤ μ , eT p = n , p ≥ β e

}
(3.18)

and (3.3).
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Lemma 3.10. If HLCP 2.1 is monotone and has a strictly complementary solu-
tion, then for any β ∈ (0, 1) and any μ > 0 there is constant c = c(β, μ ) such that
the affine-scaling direction given by (3.1) satisfies

‖u ‖2 ≤ c μ , ‖ v ‖2 ≤ c μ ∀z ∈
{
�x, s � ∈ D(β) : μ =

xT s

n
≤ μ

}
.

In the next theorem we prove that under the strict complementarity assumption
the sequence (μk) converges to zero with Q-order 2. We recall that the Q-order of a
sequence of positive numbers (ηk) that converges to zero is defined as

Q (ηk) = sup {ω ∈ (1,∞) : ∃Γ ∈ R++ , ∀k ∈ N , ηk+1 ≤ Γηωk } .

It is known (see [27]) that for ω > 1 we have ω = Q (ηk) if and only if

ω = lim inf
log ηk+1

log ηk
.

Theorem 3.11. If HLCP is monotone and has a strictly complementary solu-
tion, then the sequence

(
zk
)

produced by Algorithm 1 converges Q-superlinearly to a
strictly complementary solution z∗ ∈ Fc, and the sequence of the corresponding com-
plementarity gaps (μk) converges Q-superlinearly to zero. Moreover, the Q-orders of
convergence of these sequences satisfy Q

(
zk
)

= Q (μk) ≥ 2.
Proof. From Theorem 3.7 it follows that (τk, p

k) := (μk, (x
ksk)/μk) ∈ K(β, μ0)

∀k ≥ 0, so that by using Lemma 3.10 we deduce that there is a constant c = c(β, μ0)
such that

‖u ‖2 ≤ c μ , ‖ v ‖2 ≤ c μ at each iteration k = 0, 1, . . . .(3.19)

For k sufficiently large we have μ = μk < 1, so that logμk < 0, and by using
Theorem 3.7, we obtain

0 ≤ logαk

logμk
≤

log
(
ν
(
β − β

))
− log

(
(k + exp(1) + 1) log1+ν (k + exp(1) + 1)

)
logμ0 −

√
ν(β−β)k
n log1+ν k

.

It follows that limk→∞
logαk

log μk
= 0, which implies limk→∞

μk

αk
= 0, so that for k suffi-

ciently large we have μ = μk < αkc
−2 = αc−2. By using (3.15) and the notation from

the proof of Theorem 3.7,

0 < θ < 1 and
‖ q ‖2 θ

2

1 − θ
≤ α imply z(θ) ∈ D (β+) .

Given that

‖ q ‖2 θ
2

1 − θ
≤ ‖u ‖2 ‖ v ‖2 θ

2

(1 − θ)μ
≤ c2μθ2

1 − θ
≤ α ∀θ ∈

(
0, 1 − c2μ

α

)
,

it follows that θ ≥ 1 − c2μ
α , and therefore

μ+ = μ
(
θ
)
≤ μ

(
1 − c2μ

α

)
≤ c2μ2

α
+

uT v

n
≤
(

1

α
+

1

n

)
c2μ2 ≤ 2c2

α
μ2 .
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By taking logarithms we obtain

logμ+

logμ
≥ 2 +

log
(
2c2

)
logμ

− logα

logμ
.

Since the right-hand side of the above inequality tends to zero as k → ∞, we de-
duce that lim inf log μk+1

log μk
≥ 2. Hence Q (μk) ≥ 2. On the other hand, we have∥∥ zk+1 − zk

∥∥
2
≤
∥∥wk

∥∥
2
≤

√
2cμk, and by applying Theorem 2 of [28], we deduce the

convergence of the sequence
(
zk
)

to a strictly complementary solution z∗ ∈ Fc and

the fact that Q
(
zk
)

= Q (μk).

4. Higher order affine scaling methods.

4.1. The higher order affine scaling directions. The higher order affine
scaling directions to be considered in this section are related to the higher order
derivatives of the central path. As we have seen in section 2, the central path
z(τ, p) = �x(τ, p), s(τ, p) � passing through a positive vector p ∈ R

n
++ is analytic

in τ if HLCP has a strictly complementary solution, and in ρ =
√
τ in the general

case. By repeatedly differentiating the equations of the central path,

x(τ, p)s(τ, p) = τp,

Qx(τ, p) + Rs(τ, p) = b,
(4.1)

with respect to τ , we obtain{
s(τ, p) ∂

∂τ x(τ, p) + x(τ, p) ∂
∂τ s(τ, p) = p,

Q ∂
∂τ x(τ, p) + R ∂

∂τ s(τ, p) = 0,⎧⎪⎨
⎪⎩

s(τ, p) ∂i

∂τ ix(τ, p) + x(τ, p) ∂i

∂τ i s(τ, p) = −
∑i−1

j=1

(
i
j

)
∂j

∂τj x(τ, p) ∂i−j

∂τ i−j s(τ, p),

Q ∂i

∂τ ix(τ, p) + R ∂i

∂τ i s(τ, p) = 0,

i = 2, 3, . . . .

If we reparameterize the central path equations in terms of ρ =
√
τ , then the deriva-

tives with respect to ρ of z(ρ, p) = �x (ρ, p), s (ρ, p) � := z(ρ2, p) are given by{
s (ρ, p) ∂

∂ρx (ρ, p) + x (ρ, p) ∂
∂ρs (ρ, p) = 2ρp,

Q ∂
∂ρx (ρ, p) + R ∂

∂ρs (ρ, p) = 0,

{
s (ρ, p) ∂2

∂ρ2x (ρ, p) + x (ρ, p) ∂2

∂ρ2 s (ρ, p) = 2p− 2 ∂
∂ρx (ρ, p) ∂

∂ρs (ρ, p),

Q ∂2

∂ρ2x (ρ, p) + R ∂2

∂ρ2 s (ρ, p) = 0,⎧⎪⎨
⎪⎩

s (ρ, p) ∂i

∂ρix (ρ, p) + x (ρ, p) ∂i

∂ρi s (ρ, p) = −
∑i−1

j=1

(
i
j

)
∂j

∂ρj x (ρ, p) ∂i−j

∂ρi−j s (ρ, p),

Q ∂i

∂ρix (ρ, p) + R ∂i

∂ρi s (ρ, p) = 0,

i = 3, 4, . . . .

If HLCP is a reformulation of an LP problem, then it is known that it has a strictly
complementary solution. In general it is very difficult to establish whether HLCP has
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a strictly complementary solution. However, if this is the case, the algorithm should
take advantage of this information. In order to treat the two cases in a unified manner
we define

ϑ =

{
0 if HLCP is known to be nondegenerate,

1 otherwise.
(4.2)

At each step of our higher order affine-scaling interior point method we have a point
z = �x, s � ∈ D(β), and we consider the vectors

wi = �ui, vi � :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)iμi

i! � ∂i

∂τ ix(τ, p), ∂i

∂τ i s(τ, p) �∣∣∣∣∣∣∣
p = xs

μ ,

τ = μ,

if ϑ = 0,

(−1)iμi/2

i! � ∂i

∂ρix (ρ, p), ∂i

∂ρi s (ρ, p) �∣∣∣∣∣∣∣
p = xs

μ ,

ρ =
√
μ,

if ϑ = 1.

(4.3)

4.2. The higher order algorithm. It is easily seen that the vectors (4.3) can
be obtained by solving the following m systems of linear equations:

{
su1 + xv1 = −(1 + ϑ)xs,

Qu1 + Rv1 = 0,

{
su2 + xv2 = ϑxs− u1v1,

Qu2 + Rv2 = 0,
(4.4)

{
sui + xvi = −

∑i−1
j=1 u

jvi−j ,

Qui + Rvi = 0,
i = 3, . . . ,m.

The m linear systems above have the same matrix, so that their numerical solution
requires only one matrix factorization and m backsolves. This involves O(n3) +
mO(n2) arithmetic operations.

We note that for ϑ = 0, w1 = �u1, v1 � is just the affine scaling direction consid-
ered in section 3.

Given the vectors wi = �ui, vi � defined by (4.4), we consider the polynomial

z(θ) = z +

m∑
i=1

wiθi ,(4.5)

which represents the mth order Taylor expansion around θ = 0 of the function θ →
z ((1 − θ)μ, xs/μ) in case ϑ = 0, and of the function θ → z (

√
(1 − θ)μ, xs/μ) in case

ϑ = 1.
We have z(0) = z ∈ D(β) and define

θ̌ = sup
{
θ̃ ∈ (0, 1] : z(θ) ∈ D(β+) ,∀ θ ∈ [0, θ̃]

}
,(4.6)
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where β+ is given by (3.8). From (4.4)–(4.5) we deduce that

x(θ)s(θ) = (1 − θ)1+ϑxs +

2m∑
i=m+1

θihi ,

μ(θ) = (1 − θ)1+ϑμ +

2m∑
i=m+1

θi(eThi/n) ,

where hi =

m∑
j=i−m

ujvi−j .(4.7)

Therefore the computation of (4.6) involves the solution of a system of polynomial
inequalities of order 2m in θ. Good lower bounds of the exact solution can be obtained
by a line search procedure. In what follows we will give simple lower bounds that will
be used in the proof of global convergence.

Given θ̌ or a suitable convenient lower bound, we compute

θ = argmin
{
μ(θ) : θ ∈ [ 0, θ̌ ]

}
(4.8)

and obtain a new point

z+ = z(θ ) .(4.9)

We have z+ ∈ D(β+) by construction, and the process can be repeated. Our higher
order affine-scaling method is thus defined by the following iterative procedure.

Algorithm 2. Given real parameters 0 < β < β < 1, 0 < ν ≤ 1, integer m ≥ 2,

Boolean variable ϑ ∈ {0, 1}, and a vector z0 ∈ D(β ) :

Set k ← 0 , β0 ← β and consider the sequence (3.10);
repeat

Set z ← zk , α ← αk , β ← βk;
Compute w1, . . . , wm by solving (4.4);
Set β+ = β − α;

Compute steplength θ from (4.6), (4.8);
Compute z+ from (4.9);

Set θk ← θ , zk+1 ← z+ , μk+1 ← μ(z+) , βk+1 ← β+;
Set k ← k + 1.

continue

4.3. Global convergence. The computational complexity of Algorithm 2 is the
same for ϑ = 0 and ϑ = 1. One could eventually obtain slightly better constants if
ϑ = 0 and/or if HLCP is skew-symmetric, but in what follows we will obtain bounds
in the monotone case that are independent of ϑ.

Lemma 4.1. If HLCP is monotone and if z = �x, s � ∈ D(β), then the vectors
hi defined by (4.4), (4.7) satisfy

∥∥hi
∥∥

2
≤ 2βμ

i

(
4
√

n/β
)i

,
∣∣eThi

∣∣ ≤ βμ

i

(
4
√
n/β

)i

,

i = m + 1, . . . , 2m.
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Proof. First let us prove that the quantities ηi :=
∥∥Dui + D−1vi

∥∥
2

satisfy

√
‖Dui ‖2

2 + ‖D−1vi ‖2
2 ≤ ηi ≤ 2α i

√
βμ

(
1 + ϑ

2

√
n/β

)i

,

i = 1, 2, . . . ,m ,

where the sequence

α i :=
1

i

(
2i− 2
i− 1

)
≤ 1

i
4i

satisfies the following recurrence scheme:

α 1 = 1, α i =

i−1∑
j=1

α j α i−j .

The first part of the inequality follows immediately, since by using (4.4) and the
monotony of the HLCP, we deduce that ui T vi ≥ 0. Hence

∥∥Dui + D−1vi
∥∥2

2
=
∥∥Dui

∥∥2

2
+ 2ui T vi +

∥∥D−1vi
∥∥2

2
≥
∥∥Dui

∥∥2

2
+
∥∥D−1vi

∥∥2

2
.

By multiplying the first equations of (4.4) with (xs)−1/2, we obtain

Du1 + D−1v1 = −(1 + ϑ)(xs)1/2,

Du2 + D−1v2 = ϑ(xs)1/2 − (xs)−1/2u1v1,

Dui + D−1vi = −(xs)−1/2
i−1∑
j=1

DujD−1vi−j , i = 3, . . . ,m .

Because z ∈ D(β) we have (xs)−1/2 ≤ 1/
√
βμ, and, using Lemma 3.1, we deduce that

η1 = (1 + ϑ)
√
nμ ,

η2
2 = ϑ2nμ− 2ϑu1T v1 +

∥∥∥ (xs)−1/2u1v1
∥∥∥2

2
≤ ϑ2nμ +

∥∥u1v1
∥∥2

2

βμ

≤ ϑ2nμ +
η4
1

8βμ
≤ ϑ2nμ +

(1 + ϑ)4n2μ

8β
<

(1 + ϑ)4n2μ

4β
,

ηi ≤
1√
βμ

i−1∑
j=1

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
, i = 3, . . . ,m .

Since∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
+
∥∥Dui−j

∥∥
2

∥∥D−1vj
∥∥

2

≤
(∥∥Duj

∥∥2

2
+
∥∥D−1vj

∥∥2

2

)1/2 (∥∥Dui−j
∥∥2

2
+
∥∥D−1vi−j

∥∥2

2

)1/2

≤ ηj ηi−j ,
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we obtain

ηi ≤
1

2
√
βμ

i−1∑
j=1

ηj ηi−j , i = 3, . . . ,m .

The required inequalities are then proved by mathematical induction (see [55, 54]).
The upper bound for

∥∥hi
∥∥

2
, i = m+1,m+2, . . . , 2m, can be obtained by writing

∥∥hi
∥∥

2
≤

m∑
j=i−m

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
≤

i−1∑
j=1

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2

=
1

2

i−1∑
j=1

(∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
+
∥∥Dui−j

∥∥
2

∥∥D−1vj
∥∥

2

)

≤ 1

2

i−1∑
j=1

√
‖Duj ‖2

2 + ‖D−1vj ‖2
2

√
‖Dui−j ‖2

2 + ‖D−1vi−j ‖2
2

≤ 1

2

i−1∑
j=1

ηj ηi−j ≤ 2βμ

(
1 + ϑ

2

√
n/β

)i i−1∑
j=1

α j α i−j

= 2βμ

(
1 + ϑ

2

√
n/β

)i

α i ≤
2βμ

i

(
2(1 + ϑ)

√
n/β

)i

≤ 2βμ

i

(
4
√
n/β

)i

.

Finally by using Proposition 2.1 and Lemma 3.1 (iv), we have

∣∣eThi
∣∣ =

∣∣∣∣∣∣
m∑

j=i−m

uj T vi−j

∣∣∣∣∣∣ ≤
1

2

i−1∑
j=1

∣∣uj T vi−j + ui−j T vj
∣∣

≤
i−1∑
j=1

√
uj T vj

√
ui−j T vi−j ≤ 1

4

i−1∑
j=1

ηj ηi−j ≤ βμ

(
1 + ϑ

2

√
n/β

)i i−1∑
j=1

α j α i−j

= βμ

(
1 + ϑ

2

√
n/β

)i

α i ≤
βμ

i

(
2(1 + ϑ)

√
n/β

)i

≤ βμ

i

(
4
√
n/β

)i

.

In the following lemma we give a lower bound for the maximum stepsize along
the higher order direction.

Lemma 4.2. If HLCP is monotone, z ∈ D(β), and n ≥ 5, then the maximum
stepsize θ̌ defined in (4.6) satisfies the following inequality:

θ̌ ≥ θ̂ :=
β

m−1
2(m+1)

4
√
n

(α
2

) 1
m+1

,

and

μ
(
θ̂
)
≤
(
1 − θ̂/2

)
μ .
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Proof. We have z(θ) ∈ D(β+) if and only if x(θ)s(θ) − (β − α)μ(θ)e ≥ 0. Using
the fact that z = z(0) ∈ D(β), we can write

x(θ)s(θ) − (β − α)μ(θ)e

= (1 − θ)1+ϑxs +

2m∑
i=m+1

θihi − (β − α)

(
(1 − θ)1+ϑμ +

1

n

2m∑
i=m+1

θieThi

)
e

≥ (1 − θ)1+ϑβμe +

2m∑
i=m+1

θihi − (β − α)

(
(1 − θ)1+ϑμ +

2m∑
i=m+1

θi
eThi

n

)
e

= (1 − θ)1+ϑαμe +

2m∑
i=m+1

θihi − (β − α)

2m∑
i=m+1

θi
eThi

n
e

= (1 − θ)1+ϑαμe + (β − α)

2m∑
i=m+1

θi
(
hi − eThi

n
e

)
+ (1 − β + α)

2m∑
i=m+1

θihi

≥ (1 − θ)1+ϑαμe−
2m∑

i=m+1

θi
∥∥hi

∥∥
2
e .

Therefore,

z ∈ D(β) and

2m∑
i=m+1

θi
∥∥hi

∥∥
2
≤ (1 − θ)1+ϑαμ imply z(θ) ∈ D(β − α) .(4.10)

From Lemma 4.1 it follows that

2m∑
i=m+1

θi
∥∥hi

∥∥
2
≤ 2βμ

2m∑
i=m+1

1

i

(
4θ
√

n/β
)i

.

For any t ∈ (0, 1] we have

2m∑
i=m+1

ti

i
≤ tm+1

2m∑
i=m+1

1

i
< tm+1

∫ 2m

m

du

u
= tm+1 log 2 < .7 tm+1 .

Hence,

θ ≤ t
√
β

4
√
n

and t ≤ 1 imply

2m∑
i=m+1

θi
∥∥hi

∥∥
2
≤ 1.4βμtm+1 .

On the other hand if n ≥ 5, then

θ ≤ t
√
β

4
√
n

and t ≤ 1 imply (1 − θ)1+ϑ ≥
(

1 − t
√
β

4
√
n

)1+ϑ

≥
(

1 − 1

4
√

5

)2

> .7.

By taking t = (α/(2β))1/(m+1), we deduce that if n ≥ 5, then

z(θ) ∈ D(β − α) ∀θ ∈
[
0, θ̂

]
,
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which proves that θ̌ ≥ θ̂. Taking again t = (α/(2β))1/(m+1), we have θ̂ = t
√
β

4
√
n
, so

that we can write

μ(θ̂)

μ
=
(
1 − θ̂

)1+ϑ

+

2m∑
i=m+1

θ̂
i eThi

nμ
≤ 1 − θ̂ +

β

n

2m∑
i=m+1

ti

i

< 1 − t
√
β

4
√
n

+
.7βtm+1

n
= 1 − t

√
β

4
√
n

(
1 − 2.8

√
βtm√
n

)
.

Using the definition of t, n ≥ 5, 0 < ν ≤ 1, and the fact that

α ≤ α0 =
ν(β − β)

(exp(1) + 1) log1+ν(exp(1) + 1)
<

1

(exp(1) + 1) log2(exp(1) + 1)
,

we obtain

2.8
√
βtm√
n

≤ 2.8
√
β√

5

(
α

2β

) m
m+1

≤ 2.8
√
β√

5

(
α

2β

) 1
2

≤ 2
√
α√
5

≤ 2
√
α0√
5

<
1

2
.

It follows that μ(θ̂) < (1 − t
√
β

8
√
n
)μ , which completes the proof.

Theorem 4.3. If HLCP is monotone, then Algorithm 2 is well defined and
produces a sequence of points

(
zk
)∞
k=0

, with zk ∈ D(βk) ⊂ D(β). If n ≥ 5, then the
following relations hold:

μk+1 ≤
(
1 − θ̂k/2

)
μk , θ̂k ≥

β
m−1

2(m+1)

4
√
n

(αk

2

) 1
m+1

, k = 0, 1, . . . ,

μk ≤ μ0 exp

(
− κν

1
m+1 k

m
m+1

√
n log

1+ν
m+1 k

)
, κ :=

β
1
6
(
β − β

) 1
3

2
10
3

, k = 8, 9, . . . .

Proof. We have zk ∈ D(βk) by construction and μk+1 ≤ (1 − θ̂k/2 )μk by virtue
of Lemma 4.2. It follows that

μk ≤ μ0

k−1∏
j=0

(
1 − θ̂j/2

)
,

and by using the inequality log(1 − t) < −t, (3.14), k ≥ 8, and Corollary 3.3, we
obtain

log

(
μk

μ0

)
≤

k−1∑
j=0

log
(
1 − θ̂j/2

)
≤ −1

2

k−1∑
j=0

θ̂j ≤ −
β

m−1
2(m+1)

8
√
n

k−1∑
j=0

(αj

2

) 1
m+1

< −
β

m−1
2(m+1)

(
ν(β − β)

) 1
m+1 k

m
m+1

23+ 1
m+1

√
n log

1+ν
m+1 k

≤ −
β

1
6
(
β − β

) 1
3 ν

1
m+1 k

m
m+1

2
10
3
√
n log

1+ν
m+1 k

,

which completes the proof of our theorem.
In the next corollary we give an upper bound for the maximum number of iter-

ations, Kε, required by Algorithm 2 to obtain an approximate solution of the HLCP
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with duality gap ε (see (3.16)). The upper bound is given in terms of the constants
ν, β , β,m defining Algorithm 2, the dimension n, and the quantity Lε from (3.17)
which depends on ε and the starting point.

Corollary 4.4. If
√
nLε ≥ (κν

1
m+1 )−1 exp(1), then

Kε ≤
⌈

6
1+ν
m

κ
m+1
m ν

1
m

(√
nLε

)m+1
m log

1+ν
m
(√

nLε

)⌉
.

Proof. From Theorem 4.3 we deduce that xk T sk ≤ ε for any K with the property

K
m

m+1

log
1+ν
m+1 K

≥ σ :=
(
κν

1
m+1

)−1 √
nLε .

According to Corollary 3.5 it follows that

Kε ≤ Kε :=

(
2

(
1 +

1 + ν

m + 1
log

1 + ν

m

)
m + 1

m
log σ

) 1+ν
m

σ
m+1
m .

By noticing that under our hypothesis 1 + ν ≤ 2 ≤ m, 0 < κ < 1, we obtain

σ ≥
(
κν

1
m+1

)−2

exp(1) > exp(1) ,

log σ = log
(√

nLε

)
+ log

((
κν

1
m+1

)−1
)

< log
(√

nLε

)
+ log

((
κν

1
m+1

)−1

exp(1)

)
≤ 2 log

(√
nLε

)
,

Kε ≤ (3 log σ)
1+ν
m σ

m+1
m ≤

(
6 log

(√
nLε

)) 1+ν
m σ

m+1
m

≤ 6
1+ν
m

κ
m+1
m ν

1
m

(√
nLε

)m+1
m log

1+ν
m
(√

nLε

)
.

If ν is a positive constant independent of n and Lε, then Algorithm 1 is indepen-
dent of the dimension of the problem and the stopping criterion xk T sk ≤ ε. However,
by letting ν depend on n and Lε, we can slightly improve the computational complex-
ity.

Corollary 4.5. If

√
nLε ≥ max

{
exp (exp(1)) ,

2.072 exp(1)

κ
log log

(
exp(1)

κ

)}
,

and if we take ν = (log log(
√
nLε))

−1 in Algorithm 2, then

Kε ≤
⌈

36
1
m exp(1/m)

κ
m+1
m

(√
nLε

)m+1
m

(
log

(√
nLε

)
log log

(√
nLε

)) 1
m

⌉
.
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Proof. Using Lemma 3.6, we deduce that

√
nLε

log
1
m log(

√
nLε)

≥
√
nLε

log log(
√
nLε)

≥ exp(1)

κ
,

which shows that Corollary 4.4 can be applied for our choice of ν. By noticing that
log

ν
m (

√
nLε) = exp(1/m) and 61+ν ≤ 62 = 36, we obtain the desired result.

Corollary 4.6. Assume that

√
nLε ≥ max

{
exp (exp(1)) ,

2.072 exp(1)

κ
log log

(
exp(1)

κ

)}
,

and consider Algorithm 2 with ν = (log log(
√
nLε))

−1. Then the following implica-
tions hold:

m ≥ log log log(
√
nLε) ⇒ Kε ≤

⌈
36

1
m exp(1 + 1/m)

κ
m+1
m

(√
nLε

)m+1
m log

1
m
(√

nLε

)⌉
,

m ≥ log log(
√
nLε) ⇒ Kε ≤

⌈
36

1
m exp(2 + 1/m)

κ
m+1
m

(√
nLε

)m+1
m

⌉
,

m ≥ log(
√
nLε) ⇒ Kε ≤

⌈
36

1
m exp(3 + 1/m)

κ
m+1
m

√
nLε

⌉
.

4.4. Higher order convergence. As seen in the previous subsection, the com-
putational complexity of Algorithm 2 is basically the same for ϑ = 1 and ϑ = 0.
By contrast its asymptotic convergence properties depend on ϑ. In what follows we
show that Algorithm 2 with ϑ = 1 is superlinearly convergent for general problems.
However, if the problem is known to have a strictly complementary solution, it is
advantageous to take ϑ = 0 in order to obtain a higher order of convergence.

Lemma 4.7. Assume HLCP is monotone, and consider the linear systems (4.4),
where we take ϑ = 1 for general problems and ϑ = 0 for problems that are known
to have a strictly complementary solution. Then for any β ∈ (0, 1), any μ > 0,
and any integer m ≥ 2, there is constant c = c(β, μ ,m) such that the solution
u1, v1, . . . , um, vm of (4.4) satisfies

∥∥ui
∥∥

2
≤ c μ

i
1+ϑ ,

∥∥ vi ∥∥
2
≤ c μ

i
1+ϑ ∀z ∈

{
�x, s � ∈ D(β) : μ =

xT s

n
≤ μ

}
.

Proof. Use (4.3) and apply Theorem 2.3 with K given by (3.18).
Theorem 4.8. Assume that HLCP is monotone, and consider Algorithm 2, where

we take ϑ = 1 for general problems and ϑ = 0 for problems that are known to have a
strictly complementary solution. Then the sequence

(
zk
)

produced by this algorithm
converges Q-superlinearly to a maximal complementary solution z∗ ∈ Fc, and the
sequence of the corresponding complementarity gaps (μk) converges Q-superlinearly
to zero. Moreover, the Q-orders of convergence of these sequences satisfy

Q
(
zk
)

= Q (μk) ≥
m + 1

1 + ϑ
.
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Proof. Since we are analyzing asymptotic properties we may assume μk < 1. By
using Theorem 4.3, we obtain

0 ≤ logαk

logμk
≤

log
(
ν
(
β − β

))
− log

(
(k + exp(1) + 1) log1+ν (k + exp(1) + 1)

)
logμ0 − κν

1
m+1 k

m
m+1

√
n log

1+ν
m+1 k

.

It follows that limk→∞
logαk

log μk
= 0, which implies

lim
k→∞

μ
m−ϑ
1+ϑ

k

αk
= 0 .

From Theorem 4.3 it follows that (τk, p
k) :=

(
μk,

(
xksk

)
/μk

)
∈ K

(
β, μ0

)
∀k ≥ 0, so

that by using Lemma 4.7, we deduce that there is a constant c = c
(
β, μ0,m

)
such

that ∥∥ui
∥∥

2
≤ c μ

i
1+ϑ ,

∥∥ vi ∥∥
2
≤ c μ

i
1+ϑ at each iteration k = 0, 1, . . . .(4.11)

From (4.7) it follows that

∥∥hi
∥∥

2
≤

m∑
j=i−m

∥∥uj
∥∥

2

∥∥ vi−j
∥∥

2
≤ mc2μ

i
1+ϑ .

For k sufficiently large we have μ
1

1+ϑ ≤ 1/2, so that

2m∑
i=m+1

θi
∥∥hi

∥∥
2
≤

2m∑
i=m+1

∥∥hi
∥∥

2
≤ mc2μ

m+1
1+ϑ

m−1∑
i=0

μ
i

1+ϑ ≤ 2mc2μ
m+1
1+ϑ = c μ

m+1
1+ϑ ,

with c := 2mc2 . For k sufficiently large we have (c /α)μ
m−ϑ
1+ϑ < 1, and therefore

2m∑
i=m+1

θi
∥∥hi

∥∥
2
≤ (1 − θ)1+ϑαμ ∀θ ∈

[
0, θ̂

]
, θ̂ = 1 − (c /α)

1
1+ϑ μ

m−ϑ

(1+ϑ)2 .

According to (4.6) and (4.10) we have θ̌ ≥ θ̂ , so that by using (4.8) we obtain

μ+ = μ
(
θ
)
≤ μ

(
θ̂
)

= (1 − θ̂ )1+ϑμ +

2m∑
i=m+1

θ̂ i(eThi/n)

≤ (1 − θ̂ )1+ϑμ +
1√
n

2m∑
i=m+1

θ̂ i
∥∥hi

∥∥
2
≤ (1 − θ̂ )1+ϑ

(
1 +

α√
n

)
μ

≤ c

(
1

α
+

1√
n

)
μ

m+1
1+ϑ ≤ 2c

α
μ

m+1
1+ϑ .

By taking logarithms we obtain

logμ+

logμ
≥ m + 1

1 + ϑ
+

log (2c )

logμ
− logα

logμ
.
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Since the right-hand side of the above inequality tends to zero as k → ∞, we deduce
that

Q (μk) = lim inf
logμk+1

logμk
≥ m + 1

1 + ϑ
.

For k sufficiently large we have (cμ)
1

1+ϑ < 1− 1/
√

2, so that by using Lemma 4.7, we
obtain

∥∥z+ − z
∥∥

2
≤

m∑
i=1

∥∥wi
∥∥

2
≤

√
2

m∑
i=1

(cμ)
i

1+ϑ =
√

2
(cμ)

1
1+ϑ − (cμ)

m+1
1+ϑ

1 − (cμ)
1

1+ϑ

≤ 2(cμ)
1

1+ϑ .

Finally, by applying Theorem 2 of [28], we deduce the convergence of the sequence(
zk
)

to a maximal complementary solution z∗ ∈ F∗ and the fact that Q
(
zk
)

=
Q (μk).
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Abstract. By using dual cones and their properties, we establish a fundamental dual character-
ization and scalarization for Benson proper efficient points without any additional assumption on the
ordering cone. From this, we obtain several scalarization theorems and Lagrange multiplier theorems
for Benson proper minimizers of optimization problems with nearly cone-subconvexlike set-valued
maps. The related known results are improved, and some new criteria for checking Benson proper
efficiency are deduced.
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1. Introduction. One of the most important problems in vector optimization
is to find efficient points of sets. However, some efficient points exhibit certain ab-
normal properties. In order to get rid of such anomalous efficient points, Kuhn and
Tucker [12] and Geoffrion [4] introduced the concept of proper efficiency. Since then,
a number of different definitions of proper efficiency have been introduced and investi-
gated. Benson [1] introduced a definition of proper efficiency for vector optimization,
which has already been shown to have many desirable properties. There have been
significant studies on Benson proper efficiency in vector optimization of vector-valued
maps and set-valued maps. For example, under the assumption that the ordering
cone has a weakly compact base, Song [21, 22] established a number of interesting
criteria for checking Benson proper efficient solutions of vector optimization prob-
lems with weakened convex and nonconvex set-valued maps. Chen and Rong [2] and
Li [13] characterized the Benson proper efficiency for generalized cone-subconvexlike
vector-valued maps and cone-subconvexlike set-valued maps, respectively, in terms
of scalarization, Lagrange multiplier, saddle point criterion, and duality under the
assumption that the ordering cone is locally compact (or, equivalently, the ordering
cone has a compact base). Gasimov [3] considered nonconvex optimization problems
in normed spaces ordered by convex cones with bounded bases and characterized
the Benson proper efficient points as minimal points of some type of cone-monotone
functions. Hernández, Jiménez, and Novo [8] introduced Benson vectorial proper ef-
ficiency and proved scalarization theorems for the Benson vectorial proper efficiency
in optimization problems with some algebraic type of cone-subconvexlike set-valued
maps. Recently, Yang, Li, and Wang [24], Sach [19], and Xu and Liu [23] considered
a more extensive class of set-valued maps, i.e., nearly cone-subconvexlike set-valued
maps, and presented, respectively, scalarization theorems, saddle point theorems, and
Lagrange multiplier theorems for vector optimization problems with such set-valued
maps. We observe that in [24, 19, 23] the assumption that the ordering cone has a
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compact base or a weakly compact base is also exploited. In this paper, by using
the theory of dual cones and the theory of polars (see [11]), we show a fundamen-
tal dual characterization and scalarization for Benson proper efficient points without
any additional assumption on the ordering cone. From this, we deduce some special
scalarization theorems of Benson proper efficiency under various assumptions on the
ordering cone or on the underlying space. Applying these results to vector optimiza-
tion, we obtain scalarization theorems and Lagrange multiplier theorems for Benson
proper minimizers of optimization problems with nearly cone-subconvexlike set-valued
maps. The related known theorems are improved, and some new versions for checking
Benson proper efficiency are deduced. The paper is organized as follows. In section 2,
we characterize the solidness of dual cones in the various polar topologies on dual
spaces and give the representations of the interiors of dual cones, which are useful
for the scalarization of proper efficiency. In section 3, by using the polarity of cones
(see [11]), we give a fundamental dual characterization and scalarization theorem for
Benson proper efficient points of a given set, where we need only to assume that the
ordering cone is a closed convex cone. From this, we deduce some particular scalar-
ization theorems of Benson proper efficiency under various additional assumptions.
In particular, we show that our method is also valid for dealing with Benson vectorial
proper efficiency. In section 4, applying the results in section 3, we obtain several
scalarization theorems for Benson proper minimizers in vector optimization problems
with nearly cone-subconvexlike set-valued maps. Finally in section 5, we deduce some
Lagrange multiplier theorems.

2. The interior of a dual cone. In order to give the scalarization of Benson
proper efficiency, we need to study dual cones and their properties. Dual cones have
been studied in many different settings; see, e.g., [20, 10, 6, 7, 16] and their references.
We shall characterize the solidness of dual cones and give the representations of the
interiors of dual cones in the different polar topologies on duals. First we present
some notations (see, e.g., [9, 11, 18, 20]).

In this paper, we always assume, unless stated otherwise, that Y is a real locally
convex Hausdorff topological vector space (denoted by l.c.s.), Y # is its algebraic
dual, and Y ∗ is its topological dual. For any nonempty set A ⊂ Y , intA and clA
denote its topological interior and its closure in Y , respectively. Also, co(A) and
Γ(A) denote the convex hull and the absolutely convex hull of A, respectively. The set
{f ∈ Y ∗ : |f(a)| ≤ 1 ∀a ∈ A}, denoted by A◦, is called the absolute polar of A taken
in Y ∗; the set {f ∈ Y ∗ : f(a) ≤ 1 ∀a ∈ A}, denoted by Ar, is called the real polar
of A taken in Y ∗. Besides, A+ and A− denote the set {f ∈ Y ∗ : f(a) ≥ 0 ∀a ∈ A}
and the set {f ∈ Y ∗ : f(a) ≤ 0 ∀a ∈ A}, respectively. Mutually, for any nonempty
set A′ ⊂ Y ∗, we may define the absolute polar and the real polar of A′ taken in Y as
follows: A′◦ = {y ∈ Y : |f(y)| ≤ 1 ∀f ∈ A′} and A′r = {y ∈ Y : f(y) ≤ 1 ∀f ∈ A′}.
A nonempty set C ⊂ Y is said to be a cone if λc ∈ C for any c ∈ C and any λ ≥ 0
and a convex cone if in addition C + C ⊂ C. A cone C is said to be pointed if
C ∩ (−C) = {0}. Here 0 denotes the zero vector of the vector space Y . For a convex
cone C in Y , the dual cone of C is defined as

C+ := {f ∈ Y ∗ : f(c) ≥ 0 ∀c ∈ C}.

The quasi interior of C+ is defined as

C+i := {f ∈ Y ∗ : f(c) > 0 ∀c ∈ C\{0}}.
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A convex cone C with intC �= ∅ is said to be a solid cone. A convex subset B of a
convex cone C is said to be a base of C if 0 �∈ cl(B) and C = cone(B), where cone(B)
denotes the cone generated by B, i.e., cone(B) := [0,∞)B = {λb : λ ≥ 0, b ∈ B}.
Obviously, a convex cone with a base is pointed. Moreover, a convex cone C has a
base if and only if C+i �= ∅. For a base B of C, we define Bst to be the set

{f ∈ Y ∗ : there exists δ > 0 such that f(b) ≥ δ > 0 ∀b ∈ B}.

For any l.c.s. Y , we have an abundance of possible ways of introducing a locally
convex topology on the dual Y ∗. If M is any total saturated class of bounded subsets
of Y (see [9, 11, 20]), the topology of uniform convergence on the sets M of M is
a locally convex topology on Y ∗. We denote it by TM. Obviously {M◦ : M ∈ M}
is a 0-neighborhood base in (Y ∗, TM). Particularly, we denote the topologies on
Y ∗ of uniform convergence on bounded subsets, weakly compact (absolutely) convex
subsets, and finite subsets of Y by β(Y ∗, Y ), τ(Y ∗, Y ), and σ(Y ∗, Y ), which are called
the strong topology, Mackey topology, and weak topology, respectively.

Lemma 2.1. Let Y be an l.c.s. and C ⊂ Y be a convex cone. If there exists a
locally convex topology T on Y ∗ such that intT C

+ �= ∅, where intT C
+ denotes the

interior of C+ in (Y ∗, T ), then intT C
+ ⊂ C+i.

Proof. Take any f ∈ intT C
+, and then there exists an absolutely convex 0-neigh-

borhood W in (Y ∗, T ) such that f+W ⊂ C+. For any c ∈ C\{0}, there exists g ∈ Y ∗

such that g(c) < 0. Since W is absorbing in Y ∗, there exists ε > 0 such that εg ∈ W .
Thus

f + εg ∈ f + W ⊂ C+.

Hence

(f + εg)(c) ≥ 0 and f(c) ≥ −εg(c) > 0.

That is, f ∈ C+i.
Theorem 2.1. Let Y be an l.c.s. and C ⊂ Y be a convex cone. Then intTMC+ �=

∅ if and only if C has a base B ∈ M. In this case, intTMC+ = Bst.
Proof. (i) Let C have a base B ∈ M. Then B is convex, 0 �∈ cl(B), and

C = cone(B). By the Hahn–Banach separation theorem, there exists f ∈ Y ∗ and
δ > 0 such that

0 < δ ≤ f(b) ∀b ∈ B.

Take any fixed ε with 0 < ε < δ. Since B ∈ M, εB◦ is a 0-neighborhood in (Y ∗, TM).
For any g ∈ εB◦, we have (f + g)(b) ≥ δ − ε > 0 for all b ∈ B, which implies that
f + g ∈ C+. That is, f + εB◦ ⊂ C+. Thus, f ∈ intTMC+ and intTMC+ �= ∅.

(ii) Conversely, assume that intTMC+ �= ∅. Then there exists f ∈ intTMC+. By
Lemma 2.1, f ∈ C+i. Moreover, there exists M ∈ M such that f + M◦ = f −M◦ ⊂
C+. Let B := (f = 1) ∩ C, where (f = 1) denotes the set {y ∈ Y : f(y) = 1}.
Clearly, B is a base of C. For any b ∈ B and any g ∈ M◦, we have (f − g)(b) ≥ 0.
Thus g(b) ≤ f(b) = 1 for all b ∈ B, for all g ∈ M◦. Since M◦ is circled, we have
|g(b)| ≤ 1 for all b ∈ B, for all g ∈ M◦. From this, B ⊂ M◦◦ = cl Γ(M). Since M is
saturated, cl Γ(M) ∈ M, and hence B ∈ M. Thus we have shown that C has a base
B ∈ M.

(iii) Assume that intTMC+ �= ∅ or, equivalently, C has a base B ∈ M. We are
going to prove that intTMC+ = Bst. Let f ∈ Bst. Then there exists δ > 0 such that
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f(b) ≥ δ for all b ∈ B. Take ε such that 0 < ε < δ. Then f + εB◦ ⊂ C+. Obviously
εB◦ is a 0-neighborhood in (Y ∗, TM) and f ∈ intTMC+. Conversely, let f ∈ intTMC+.
Then there exists M ∈ M such that f − M◦ ⊂ C+. Since B is a base of C, there
exist g ∈ Y ∗ and δ > 0 such that g(b) ≥ δ > 0 for all b ∈ B. Observe that M◦ is
absorbing in Y ∗, and there exists ε > 0 such that εg ∈ M◦. Thus f − εg ∈ C+. From
this, we obtain

(f − εg)(b) ≥ 0 ∀b ∈ B.

Hence

f(b) ≥ εg(b) ≥ εδ > 0 ∀b ∈ B.

That is, f ∈ Bst.
In the following we denote by intτC

+ and intβC
+ the interior of C+ in (Y ∗,

τ(Y ∗, Y )) and in (Y ∗, β(Y ∗, Y )), respectively. By Theorem 2.1, we immediately ob-
tain the following corollaries.

Corollary 2.1 (refer to [10, Theorem 3.8.6] and [16, Theorem 2.3]). Let Y be
an l.c.s. and C ⊂ Y be a convex cone. Then intτC

+ �= ∅, i.e., C+ is a solid cone in
(Y ∗, τ(Y ∗, Y )), if and only if C has a relatively weakly compact base B. In this case,
intτC

+ = Bst.
Remark 2.1. Let C ⊂ Y be a closed convex cone. Then intτC

+ �= ∅ if and only
if C has a weakly compact base. In this case, intτC

+ = Bst = C+i.
Corollary 2.2 (refer to [16, Theorem 2.2]). Let Y be an l.c.s. and C ⊂ Y be a

convex cone. Then intβC
+ �= ∅ if and only if C has a bounded base B. In this case,

intβC
+ = Bst.

3. Dual characterization and scalarization for Benson proper efficiency.
Let Y be an l.c.s. and C ⊂ Y be a convex cone, and then C can specify a partial
order in Y as follows:

for x, y ∈ Y, x ≤c y if and only if y − x ∈ C.

It is clear that the partial order “≤c” satisfies the following properties:
(i) x ≤c x;
(ii) if x ≤c y and y ≤c z, then x ≤c z.

If the ordering cone C is pointed, then the partial order also satisfies the following:
(iii) if x ≤c y and y ≤c x, then x = y.
Moreover, if we assume that the ordering cone C is closed, then we have: if

xδ → x0 and every xδ ≤ y, then x0 ≤ y.
Let A be a nonempty subset of Y and a point ȳ ∈ A. Then ȳ ∈ A is called an

efficient point of A with respect to the ordering cone C, denoted by ȳ ∈ Min[A,C], if
(A − ȳ) ∩ (−C) = {0}. A point ȳ ∈ A is called a Benson proper efficient point (see
[1]) of A with respect to the ordering cone C, denoted by ȳ ∈ PMin[A,C], if

cl cone(A + C − ȳ) ∩ (−C) = {0}.

Obviously, PMin[A,C] ⊂ Min[A,C]. Also, we observe that, if there exists a nonempty
subset A of Y such that PMin[A,C] �= ∅, then C must be pointed. First we give the
following general dual characterization and scalarization for Benson proper efficiency.

Theorem 3.1. Let C ⊂ Y be a closed convex cone, ȳ ∈ A ⊂ Y , and coA denote
the convex hull of A. Then the following statements are equivalent:

(i) ȳ ∈ PMin[coA,C];
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(ii) (C+ − C+ ∩ (A − ȳ)+) is dense in (Y ∗, T ), where T is any locally convex
topology on Y ∗ which is compatible with the dual pair 〈Y ∗, Y 〉 (i.e., (Y ∗, T )∗ = Y );

(iii) for any weakly compact convex set K ⊂ C and 0 �∈ K, there exists f ∈
C+ ∩Kst such that f(A) ≥ f(ȳ);

(iv) for any c ∈ C, c �= 0, there exists f ∈ C+ such that f(c) > 0 and f(A) ≥
f(ȳ).

Proof. (i)⇒(ii): ȳ ∈ PMin[coA,C] means that

cl cone(C + co(A) − ȳ) ∩ (−C) = {0}.(1)

By the theorem of bipolars, (1) is equivalent to

[cl cone(C + co(A) − ȳ) ∩ (−C)]r = Y ∗.(2)

By the theory of polars (see [11, p. 247]),

[cl cone(C + co(A) − ȳ) ∩ (−C)]r = clT co((C + co(A) − ȳ)− ∪ C+)

= clT (−C+ ∩ (co(A) − ȳ)+ + C+)

= clT (C+ − C+ ∩ (A− ȳ)+).

Combining this with (2), we have

clT (C+ − C+ ∩ (A− ȳ)+) = Y ∗, i.e., C+ − C+ ∩ (A− ȳ)+ is dense in (Y ∗, T ).

(ii)⇒(iii): Let K be a weakly compact convex subset of C and 0 �∈ K. By
Theorem 2.1, Kst = intτ (cone(K))+ �= ∅. By (ii), we have

(C+ ∩ (A− ȳ)+ − C+) ∩Kst �= ∅.

Hence there exist f ∈ C+ ∩ (A − ȳ)+ and g ∈ C+ such that f − g ∈ Kst; i.e., there
exists δ > 0 such that (f − g)(K) ≥ δ > 0. From this we know that f ∈ Kst.
Obviously f ∈ C+ ∩Kst and f(A) ≥ f(ȳ).

(iii)⇒(iv): It is obvious.
(iv)⇒(i): Assume that ȳ �∈ PMin[coA,C]; then there exists

z ∈ cl cone(C + coA− ȳ) ∩ (−C) and z �= 0.

Clearly −z ∈ C and −z �= 0. By (iv), there exists f ∈ C+ ∩ (A − ȳ)+ such that
f(−z) > 0, i.e., f(z) < 0. On the other hand, since z ∈ cl cone(C + coA − ȳ) and
f ∈ C+ ∩ (A− ȳ)+ = C+ ∩ (coA− ȳ)+ ⊂ [cone(C + coA− ȳ)]+, we have f(z) ≥ 0, a
contradiction!

From Theorem 3.1 we can deduce some particular scalarization theorem for Ben-
son proper efficiency.

Theorem 3.2. Let C ⊂ Y be a closed convex cone and ȳ ∈ A ⊂ Y . If there
exists a locally convex topology T on Y ∗ such that (Y ∗, T )∗ = Y and intT C

+ �= ∅,
then the following statements are equivalent:

(i) ȳ ∈ PMin[coA,C];
(ii) there exists f ∈ intT C

+ such that f(A) ≥ f(ȳ);
(iii) there exists f ∈ C+i such that f(A) ≥ f(ȳ).
Proof. (i)⇒(ii): Since ȳ ∈ PMin[coA,C], by Theorem 3.1,

C+ − C+ ∩ (A− ȳ)+ is dense in (Y ∗, T ).
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By the assumption that intT C
+ �= ∅, we have

(C+ − C+ ∩ (A− ȳ)+) ∩ (−intT C
+) �= ∅.

That is, there exists g ∈ C+, f ∈ C+∩(A−ȳ)+, and h ∈ intT C
+ such that g−f = −h.

Thus

f = g + h ∈ C+ + intT C
+ = intT C

+ and f(A) ≥ f(ȳ).

(ii)⇒(iii): By Lemma 2.1, intT C
+ ⊂ C+i. Hence the implication is obvious.

(iii)⇒(i): Assume that there exists f ∈ C+i such that f(A) ≥ f(ȳ). Since
f ∈ C+i ⊂ C+ and f(A− ȳ) ≥ 0, we have f(C + coA− ȳ) ≥ 0 and hence

f(cl cone(C + coA− ȳ)) ≥ 0.(3)

On the other hand, f(C) ≥ 0 and hence

f(−C) ≤ 0.(4)

Let z ∈ cl cone(C + coA− ȳ) ∩ (−C), and then by (3) and (4) we have f(z) ≥ 0 and
f(z) ≤ 0, which leads to f(z) = 0. Since −z ∈ C, f(−z) = 0, and f ∈ C+i, we
conclude that −z = 0 and hence z = 0. Thus we have shown that

cl cone(C + coA− ȳ) ∩ (−C) = {0}.

Corollary 3.1. Let C ⊂ Y be a closed convex cone with a weakly compact base
B and ȳ ∈ A ⊂ Y . Then the following statements are equivalent:

(i) ȳ ∈ PMin[coA,C];
(ii) there exists f ∈ Bst such that f(A) ≥ f(ȳ);
(iii) there exists f ∈ C+i such that f(A) ≥ f(ȳ).
Proof. The result follows immediately from Corollary 2.1, Remark 2.1, and The-

orem 3.2.
Corollary 3.2 (refer to [24, Theorem 6.2]). Let C ⊂ Y be a closed convex cone

with a compact base B and ȳ ∈ A ⊂ Y . Then the statements (i), (ii), and (iii) in
Corollary 3.1 are equivalent.

As we know, every compact set is weakly compact, but a weakly compact set
may be noncompact. In fact, the closed unit ball (or its translation) in an infinite-
dimensional reflexive Banach space is weakly compact and not compact. Hence Corol-
lary 3.1 contains and improves Corollary 3.2. In the following we construct a closed
convex pointed cone C having a base B with the following properties: intC = ∅, B is
weakly compact, B is not compact, and int(C+) �= ∅.

Example 3.1. As in [14, p. 326], a matrix A = (aj.k)j, k∈N of nonnegative numbers
is called a Köthe matrix if A satisfies the following conditions:

(i) for each j ∈ N , there exists a k ∈ N such that aj,k > 0;
(ii) aj,k ≤ aj,k+1 for all j, k ∈ N .

Now let A = (aj,k)j,k∈N be a given Köthe matrix such that
(C1) a2j, k < 1

j a2j, k+1, for all j, k ∈ N ;

(C2) a2j−1, k = a2j−1, k+1.
For 1 < p < ∞, we define

λp(A) :=

⎧⎪⎨
⎪⎩x = (xj)j∈N ∈ RN : |x‖k :=

⎛
⎝ ∞∑

j=1

|xjaj,k|p
⎞
⎠

1
p

< ∞ ∀k ∈ N

⎫⎪⎬
⎪⎭ .
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Then λp(A) is a reflexive Fréchet space (see [14, Lemma 27.1 and Proposition 27.3]).
By condition (C1) we see that the topology induced by ‖ ‖k+1 is strictly finer than one
induced by ‖ ‖k, and hence we conclude that λp(A) is not normable. By condition
(C2) and [14, Theorem 27.9], we know that λp(A) is not a Montel space. Here a
reflexive l.c.s. in which every closed bounded set is compact is called a Montel space
(see, e.g., [20, p. 141]). Thus there exists a closed convex bounded set B in λp(A)
which is not compact. Without loss of generality, we may assume that 0 �∈ B. Since
λp(A) is reflexive, we know that B is weakly compact. Let C := cone(B). Then C is a
closed convex pointed cone, and C has a weakly compact base B which is noncompact.
Moreover, we assert that intC = ∅. If not, then intC �= ∅, with C having a bounded
base B, will imply that λp(A) is normable, contradicting condition (C1). Finally,
since B is weakly compact, by Corollary 2.1 we know that intτ (C

+) �= ∅ (certainly,
we also have intβC

+ �= ∅).
When Y is a separable normed space, we can obtain a scalarization result for

Benson proper efficient points without any restriction on the ordering cone.
Corollary 3.3 (see [5, Theorem 3.2]). Let (Y, ‖ ‖) be a separable normed space,

C ⊂ Y be a closed convex pointed cone, and ȳ ∈ A ⊂ Y . Then ȳ ∈ PMin[coA,C] if
and only if there exists f ∈ C+i such that f(A) ≥ f(ȳ).

Proof. Assume that ȳ ∈ PMin[coA,C]. Then by Theorem 3.1, for any c ∈ C, c �=
0, there exists f ∈ C+ ∩ (A − ȳ)+ such that f(c) > 0. Put f̄ = f/‖f‖. Then
f̄ ∈ U◦∩C+∩ (A− ȳ)+ and f̄(c) > 0, where U denotes the closed unit ball in (Y, ‖ ‖).
Since (Y, ‖ ‖) is separable, U◦∩C+∩ (A− ȳ)+ with the topology induced by σ(Y ∗, Y )
is a compact metric space and hence is separable. Let {f1, f2, . . .} be a countable
dense subset of U◦ ∩ C+ ∩ (A− ȳ)+. Then for any c ∈ C, c �= 0, there exists n ∈ N
such that fn(c) > 0. Since {f1, f2, . . .} ⊂ U◦ and U is absorbing, we may define

f(x) =
∞∑

n=1

1

2n
fn(x), x ∈ Y.

Then f ∈ U◦ ∩ C+ ∩ (A− ȳ)+ and for all c ∈ C\{0}, f(c) > 0. Clearly f ∈ C+i and
f(A) ≥ f(ȳ).

Conversely, assume that there exists f ∈ C+i such that f(A) ≥ f(ȳ). Then as
shown in the proof of (iii)⇒(i) in Theorem 3.1, we can deduce that ȳ ∈
PMin[coA,C].

Remark 3.1. In fact, by using the theory of strictly extreme points and strictly
exposed points (see [17]), we see that every closed convex pointed cone in separable
normed spaces automatically has a base.

Next we try to give another class of scalarization results for Benson proper effi-
ciency. A closed convex cone C in Y is said to have a countable weakly compact base if
there exists a base B of C such that B = ∪∞

n=1Kn, where every Kn is a weakly compact
convex set. As in [15, p. 249], an l.c.s. Y is said to have the countable neighborhood
property (denoted by c.n.p.) if, given any sequence {Un}n∈N of 0-neighborhoods in
Y , there are αn > 0 such that U := ∩∞

n=1αnUn is a 0-neighborhood in Y . We know
that every (DF)-space has the c.n.p. (see [15, p. 249]). The class of (DF)-space was
introduced by Grothendieck (see [20, p. 154]). It comprises all of the strong duals of
metrizable locally convex spaces and all normed spaces; for details, see [9, 11, 14, 20].
Now we introduce a weaker property, the weak countable neighborhood property, as
follows: an l.c.s. Y is said to have the weak countable neighborhood property (de-
noted by w.c.n.p.) if, given any sequence {fn}n∈N in Y ∗, there are αn > 0 such that
U := ∩∞

n=1αnf
◦
n is a 0-neighborhood in (Y, τ(Y, Y ∗)). Here f◦

n denotes the polar of
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the singleton {fn}, i.e., f◦
n = {y ∈ Y : |f(y)| ≤ 1}. Obviously, the c.n.p. implies the

w.c.n.p., and the w.c.n.p. is duality invariant. Also, we observe that an l.c.s. Y has the
w.c.n.p. if and only if for every sequence {fn}n∈N in Y ∗ there are λn > 0 such that the
closed (absolutely) convex hull of {λnfn}n∈N in (Y ∗, σ(Y ∗, Y )) is σ(Y ∗, Y )-compact.

Example 3.2 (a closed convex pointed cone with a countable weakly compact
base and without any bounded base). Let X := (l1, ‖ ‖1) and Y = X∗ = l∞ with the
Mackey topology τ(l∞, l1). Let C = {y = (ηn) ∈ l∞ : ηn ≥ 0 ∀n ∈ N}. Then clearly
C is a convex pointed cone. Let en ∈ l1 denote the sequence whose only nonzero term
is a 1 in the nth place. Then C = ∩∞

n=1{y ∈ l∞ : 〈y, en〉 ≥ 0}, as the intersection
of the closed sets {y ∈ l∞ : 〈y, en〉 ≥ 0}, is closed in Y . Thus, C is a closed convex
pointed cone in Y . We shall see that C has no bounded base, but it has a countable
weakly compact base. If C has a bounded base, then by Corollary 2.2, intβC

+ �= ∅.
Clearly, C+ = {x = (ξn) ∈ l1 : ξn ≥ 0 ∀n ∈ N}. Let x = (ξn) ∈ intβC

+. Then there
exists ε > 0 such that x+ εU ⊂ C+, where U denotes the closed unit ball in (l1, ‖ ‖1),
i.e., U = {x ∈ l1 : ‖x‖1 ≤ 1}. Since ξn → 0, we may take n large enough such
that 0 ≤ ξn < ε. Thus, ξn − ε < 0, and hence x − εen �∈ C+, which contradicts that
x+εU ⊂ C+. This shows that C has not any bounded base. Take fixed x′ = (ξ′n) ∈ l1,
with every ξ′n > 0, and let B := {y = (ηn) ∈ C : 〈y, x′〉 =

∑∞
n=1 ξ

′
nηn = 1}. Then

B is a base of C. We observe that B = ∪∞
n=1(B ∩ nU◦), where every B ∩ nU◦ is

σ(l∞, l1)-compact, i.e., σ(Y, Y ∗)-compact. That is, B is a countable weakly compact
base of C.

Example 3.3 (an l.c.s. has the w.c.n.p. but does not have the c.n.p.). Let (Y, T )
be an infinite dimensional l.c.s. such that the strong dual (Y ∗, β(Y ∗, Y )) is a com-
plete metrizable l.c.s. For any sequence {fn}n∈N in Y ∗, there are λn > 0 such that
λnfn → 0 in (Y ∗, β(Y ∗, Y )). Since (Y ∗, β(Y ∗, Y )) is complete and metrizable, the
closed convex hull of {λnfn}n∈N is compact in (Y ∗, β(Y ∗, Y )) and hence compact in
(Y ∗, σ(Y ∗, Y )). Thus (Y, T ) has the w.c.n.p. From this we know that (Y, σ(Y, Y ∗))
has the w.c.n.p. However, we shall see that (Y, σ(Y, Y ∗)) does not have the c.n.p.
Assume the contrary. Let {fn}n∈N ⊂ Y ∗ be a countable infinite set whose mem-
bers are linearly independent. Then there exist αn > 0 such that ∩∞

n=1αnf
◦
n is a

0-neighborhood in (Y, σ(Y, Y ∗)), where f◦
n denotes the polar of the singleton {fn}.

Hence there exists ε > 0 such that

ε
m⋂
i=1

g◦i =

n⋂
i=1

(|gi| ≤ ε) ⊂
∞⋂

n=1

αnf
◦
n.

Taking polars in the two sides of the above containment, we obtain(
ε

m⋂
i=1

g◦i

)◦

⊃
( ∞⋂

n=1

αnf
◦
n

)◦

.

By using the theory of polars (see [11, p. 247]), we have

1

ε
cl Γ

(
m⋃
i=1

g◦◦i

)
⊃ cl Γ

( ∞⋃
n=1

1

αn
f◦◦
n

)
.

From this,

∞⋃
n=1

1

αn
fn ⊂ 1

ε
Γ({g1, g2, . . . , gm}).
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This contradicts the assumption that the set {fn : n ∈ N} is linearly independent.
Corollary 3.4. Let Y be an l.c.s. with the w.c.n.p. and C ⊂ Y be a closed

convex cone with a countable weakly compact base B. Then ȳ ∈ PMin[coA,C] if and
only if there exists f ∈ C+i such that f(A) ≥ f(ȳ).

Proof. We need only to give the proof of one direction. We assume that B =
∪∞
n=1Kn, where every Kn is a weakly compact set. Let ȳ ∈ PMin[coA,C]. By

Theorem 3.1, for every Kn ⊂ C, there exists fn ∈ C+ and δn > 0 such that fn(Kn) ≥
δn and fn(A) ≥ fn(ȳ). Since Y has the w.c.n.p., there are λn > 0 such that the closed
convex hull of {λnfn}n∈N in (Y ∗, σ(Y ∗, Y )) is σ(Y ∗, Y )-compact. From this, we can
deduce that

∞∑
n=1

1

2n
λnfn is convergent in (Y ∗, σ(Y ∗, Y )).

Let f :=
∑∞

n=1
1
2nλnfn. Then f ∈ Y ∗ and f(B) > 0 for all b ∈ B. Clearly, f ∈ C+i

and f(A) ≥ f(ȳ).
Corollary 3.5. Let (X, d) be a Fréchet space (i.e., a complete metrizable l.c.s.)

and Y = X∗ with a locally convex topology T such that (Y, T )∗ = X. Let C ⊂ Y be a
closed convex cone with a base B. Then ȳ ∈ Pmin[coA,C] if and only if there exists
f ∈ C+i such that f(A) ≥ f(ȳ).

Proof. Since (Y ∗, β(Y ∗, Y )) = (X, d) is a complete metrizable l.c.s., as shown
in Example 3.3, we know that Y has the w.c.n.p. On the other hand, let U1 ⊃
U2 ⊃ · · · be a base of 0-neighborhoods in (X, d), and then Y = ∪∞

n=1nU◦
n. Thus

B = ∪∞
n=1(nU◦

n ∩ B) = ∪∞
n=1Kn, where Kn := nU◦

n ∩ B is σ(X∗, X)-compact, i.e.,
σ(Y, Y ∗)-compact. Applying Corollary 3.4, we conclude that ȳ ∈ PMin[coA,C] if and
only if there exists f ∈ C+i such that f(A) ≥ f(ȳ).

By using Corollary 3.5, we immediately obtain the following.
Corollary 3.6. Let Y be a semireflexive (DF)-space (particularly, let Y be

a reflexive Banach space). Let C ⊂ Y be a closed convex cone with a base. Then
ȳ ∈ PMin[coA,C] if and only if there exists f ∈ C+i such that f(A) ≥ f(ȳ).

Remark 3.2. Even for reflexive Banach spaces, we cannot expect to obtain the
result as for separable normed spaces (see Corollary 3.3), since in such spaces there
might exist a closed convex pointed cone without any base.

Example 3.4 (see [11, p. 137]). Let A be an uncountable index set of cardinality
d, and let x = (ξα)α∈A be a vector with d coordinates, of which at most countably
many are nonzero. For 1 < p < ∞, define

‖x‖p =

(∑
α∈A

|ξα|p
) 1

p

.

Let lpd denote the space {x = (ξα)α∈A : ‖x‖p < ∞} with the norm ‖ ‖p. Then lpd is a
Banach space with the dual lqd, where 1

p + 1
q = 1. Obviously lpd is a reflexive Banach

space. Put C := {x = (ξα) ∈ lpd : ξα ≥ 0 ∀α ∈ A}. Then C is a closed convex pointed
cone in lpd. However, C has no bases. If not, there exists f = (ηα)α∈A ∈ (lpd)

∗ ∼= lqd
such that f ∈ C+i. Particularly, for every α ∈ A, f(eα) > 0, i.e., ηα > 0. But this is
impossible since at most countably many ηα are nonzero.

Remark 3.3. Yang, Li, and Wang [24] introduced nearly C-subconvexlike set-
valued maps, and Sach [19] introduced nearly C-subconvexlike sets. Let Y be an l.c.s.
and ȳ ∈ A ⊂ Y . The set A is said to be nearly C-subconvexlike at ȳ if cl cone(A−ȳ+C)
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is convex. In this case, cl cone(A − ȳ + C) = cl cone(coA − ȳ + C), and hence the
statement ȳ ∈ PMin[coA,C] in Theorems 3.1 and 3.2 and Corollaries 3.1, 3.2, 3.3,
3.4, 3.5, and 3.6 can be replaced by ȳ ∈ PMin[A,C].

In [8], Hernández, Jiménez, and Novo introduced and studied the Benson-vectorial
proper efficiency in real linear spaces. We shall see that our method (for example,
Theorem 3.2) also can be applied to the scalarization of Benson-vectorial proper
efficiency. As in [8], let Y be a real linear space and A ⊂ Y be nonempty. The
core (algebraic interior) and the intrinsic core (relatively algebraic interior) of A are
defined, respectively, as follows:

cor(A) = {y ∈ A : ∀v ∈ Y, ∃t > 0, ∀α ∈ [0, t], y + αv ∈ A},

icr(A) = {y ∈ A : ∀v ∈ span[A−A], ∃t > 0, ∀α ∈ [0, t], y + αv ∈ A}.

The vectorial closure of A is defined as follows:

vcl(A) = {y ∈ Y ; ∃v ∈ Y, ∀t > 0, ∃α ∈ (0, t], y + αv ∈ A}.

If A is convex, then y ∈ vcl(A) if and only if there exists a ∈ A such that [a, y) ⊂ A.
A set A is said to be vectorially closed if A = vcl(A). If Y is endowed with the finest
locally convex topology γ (which is also called convex core topology), then (Y, γ)∗ =
Y #; i.e., every linear functional on (Y, γ) is continuous (see [18, pp. 22 and 43]). Let
C be a convex cone in Y . Then in this case we have

C+ = {f ∈ Y # : f(c) ≥ 0 ∀c ∈ C};

C+i = {f ∈ Y # : f(c) > 0 ∀c ∈ C\{0}}.

We need the following two lemmas.
Lemma 3.1. If B ⊂ Y is convex and icr(B) �= ∅, then vcl(B) = clγ(B).
Proof. Obviously, vcl(B) ⊂ clγ(B). Conversely, assume that x �∈ vcl(B), and we

shall see that x �∈ clγ(B). For convenience, we assume that x = 0. Take any fixed
x0 ∈ icr(B). Then [x0, 0) �⊂ B. Hence there exists λ, 0 < λ < 1, such that λx0 �∈ B
and certainly λx0 �∈ icr(B). By the separation theorem in real linear spaces, there
exists f ∈ Y # such that f(icr(B)) < f(λx0). Particularly, we have

f(x0) < f(λx0) = λ f(x0).

From this, we conclude that f(x0) < 0. Thus

f(icr(B)) < λf(x0) < 0,

which implies that f(B) ≤ λ f(x0) < 0 and hence 0 �∈ clγ(B).
Lemma 3.2. If cor(C+) �= ∅, then cor(C+) = intσ(C+) = intτ (C

+) =
intβ(C+). Here intσ(C+), intτ (C

+), and intβ(C+) denote, respectively, the interi-
ors of C+ in (Y #, σ(Y #, Y )), (Y #, τ(Y #, Y )), and (Y #, β(Y #, Y )).

Proof. Let f ∈ cor(C+). Then there exists an absolutely convex absorbing
set W in Y # such that f + W ⊂ C+. Since C+ is σ(Y #, Y )-closed, we have f +
clσ(W ) ⊂ C+, where clσ(W ) denotes the closure of W in (Y #, σ(Y #, Y )). In fact,
on Y #, the topologies β(Y #, Y ), τ(Y #, Y ), and σ(Y #, Y ) coincide, and they are
barrelled spaces (see [18, pp. 64 and 75]). Thus the barrel clσ(W ) is a 0-neighborhood
in (Y #, σ(Y #, σ(Y #, Y )) and f ∈ intσC

+. The converse containment intσ(C+) ⊂
cor(C+) is obvious.
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As in [8], a point ȳ ∈ A is called a Benson-vectorial proper efficient point of A
with respect to the convex cone C, denoted by ȳ ∈ PVMin[A,C], if vcl[cone(A− ȳ +
C)]∩ (−C) = {0}. Now we can give a scalarization result for Benson-vectorial proper
efficient points.

Corollary 3.7. Let Y be a real linear space, C ⊂ Y be a vectorially closed cone
with cor(C+) �= ∅, and ȳ ∈ A ⊂ Y . Moreover, assume that icr[cone(A− ȳ)+icr(C)] �=
∅. Then the following statements are equivalent:

(i) ȳ ∈ PVMin[coA,C];
(ii) there exists f ∈ cor(C+) such that f(A) ≥ f(ȳ);
(iii) there exists f ∈ C+i such that f(A) ≥ f(ȳ).
In particular, if cone(A− ȳ) + icr(C) is convex, then statement (i) can be replaced

by the following:
(i)′ ȳ ∈ PVMin[A,C].
Proof. (i)⇒(ii): Since icr[cone(A− ȳ)+icr(C)] �= ∅, we know that icr[cone(coA−

ȳ) + icr(C)] �= ∅. Clearly, cone(coA− ȳ) + icr(C) is convex. By Lemma 3.1 we have

vcl[cone(coA− ȳ) + icr(C)] = clγ [cone(coA− ȳ) + icr(C)] = clγ [cone(coA− ȳ) +C].

On the other hand, cor(C+) �= ∅ implies that icr(C) �= ∅. Furthermore, C is convex
and C = vcl(C). By Lemma 3.1 we have clγ(C) = vcl(C) = C and C is γ-closed.
Thus statement (i) becomes

clγ [cone(coA− ȳ + C)] ∩ (−C) = {0},

where C is a closed convex pointed cone in (Y, γ). That is, ȳ ∈ A is a Benson
proper efficient point of coA with respect to C in (Y, γ). By Lemma 3.2, we have
intσ(C+) = cor(C+) �= ∅. Observing that the topological dual of (Y #, σ(Y #, Y )) is
Y , we can apply Theorem 3.2 and conclude that there exists f ∈ cor(C+) such that
f(A) ≥ f(ȳ).

(ii)⇒ (iii): It is obvious.
(iii)⇒ (i): If not, there exists c0 ∈ C, c0 �= 0, such that

−c0 ∈ vcl[cone(coA− ȳ + C)].

Since f ∈ C+i, we have f(c0) > 0, and so f(−c0) < 0. On the other hand, f ∈ C+

and f(A) ≥ f(ȳ) imply that

f(vcl[cone(coA− ȳ + C)]) ≥ 0,

so f(−c0) ≥ 0, a contradiction!
Moreover, if cone(A− ȳ) + icr(C) is convex, then

cone(A− ȳ) + cir(C) = cone(coA− ȳ) + icr(C).

Hence we have PVMin[coA,C] = PVMin[A,C], and statement (i) can be replaced
by (i)

′
.

By Corollary 3.7, we can deduce the scalarization results in [8]. As in [8], let X be
a nonempty set, Y be a real linear space, C ⊂ Y be an ordering cone, and F : X → 2Y

be a set-valued map. Consider the following unconstrained optimization problem:
(P) C − MinF (x), subject to x ∈ X.
A pair (x̄, ȳ) ∈ X × Y is said to be a Benson-vectorial proper minimizer of (P) if

ȳ ∈ F (x̄) and ȳ ∈ PVMin[F (X), C], i.e.,

vcl[cone(F (X) − ȳ + C)] ∩ (−C) = {0}.
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If icr(C) �= ∅, then a set-valued map F : X → 2Y is said to be relatively solid
C-subconvexlike on X (see [8]) if the following conditions are satisfied:

(i) F (X) + icr(C) is convex,
(ii) icr[F (X) + icr(C)] �= ∅.
Substituting A in Corollary 3.7 by F (X), we immediately obtain the following

scalarization result (see [8, Theorems 4 and 5 and Corollary 2]).
Corollary 3.8. Let C be a vectorially closed convex cone and cor(C+) �= ∅. Let

F be a relatively solid C-subconvexlike on X. Then (x̄, ȳ) is a Benson-vectorial proper
minimizer of (P) if and only if there exists f ∈ C+i such that f(F (X)) ≥ f(ȳ).

4. Benson proper minimizers in vector optimization problems with set-
valued maps. In the following, we assume that X is a nonempty set, Y and Z are
l.c.s., and C ⊂ Y and D ⊂ Z are closed convex cones. Let F : X → 2Y and
G : X → 2Z be set-valued maps with nonempty values.

Consider the following constrained vector optimization problem with set-valued
maps:

(VP) C − Min F (x)
s.t. G(x) ∩ (−D) �= ∅, x ∈ X.

Denote the feasible set of (VP) by

Γ = {x ∈ X : G(x) ∩ (−D) �= ∅}

and the image of Γ under F by

F (Γ) =
⋃
x∈Γ

F (x).

Li [13] introduced the concept of Benson proper efficiency for set-valued vector
optimization problems as follows.

Definition 4.1. A point x̄ ∈ Γ is called a Benson properly efficient solution of
(VP) if

F (x̄) ∩ PMin[F (Γ), C] �= ∅.

A point (x̄, ȳ) is called a Benson proper minimizer of (VP) if

ȳ ∈ F (x̄) ∩ PMin[F (Γ), C].

In recent years, much attention has been paid to generalized convexity of set-
valued maps. Let us recall some notions (see [24]).

A set-valued map F is said to be C-convexlike on Γ if F (Γ) + C is convex, to
be C-subconvexlike on Γ if F (Γ) + intC is convex, and to be nearly C-convexlike
on Γ if cl(F (Γ) + C) is convex. Recently, a new generalized convexity for set-
valued maps, called near C-subconvexlikeness, was introduced in [24]. A set-valued
map F is said to be nearly C-subconvexlike on Γ if cl cone(F (Γ) + C) is convex.
We know that C-convexlikeness⇒C-subconvexlikeness (when intC �= ∅)⇒near C-
convexlikeness⇒near C-subconvexlikeness, and none of the converses is true (see
[24]). Hence near C-subconvexlikeness is the weakest convexity among the above four
kinds of generalized convexity. Also, we observe that the former three kinds of gen-
eralized convexity are invariant by translations. Using the results in section 3, we
can easily obtain the following scalarization theorems for Benson proper efficiency in
optimization problems with nearly C-subconvexlike objectives.
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Theorem 4.1. Let x̄ ∈ Γ, ȳ ∈ F (x̄), and F − ȳ be nearly C-subconvexlike on
Γ. The point (x̄, ȳ) is a Benson proper minimizer of (VP) if and only if, for any
weakly compact convex set K ⊂ C and 0 �∈ K, there exists f ∈ C+ ∩ Kst such that
f(F (Γ)) ≥ f(ȳ).

Proof. Clearly, F−ȳ being nearly C-subconvexlike on Γ means that cl cone(F (Γ)−
ȳ + C) is convex. By taking A = F (Γ) in Theorem 3.1 (and in Remark 3.3) we
immediately obtain the result.

Similarly, from Theorem 3.2 and Corollaries 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 we can
obtain the following scalarization results. In the following, we always assume that
x̄ ∈ Γ, ȳ ∈ F (x̄), and F − ȳ is nearly C-subconvexlike on Γ.

Theorem 4.2. Let the ordering cone C ⊂ Y satisfy intT C
+ �= ∅, where T is any

locally convex topology on Y ∗ compatible with the dual pair 〈Y, Y ∗〉. Then (x̄, ȳ) is a
Benson proper minimizer of (VP) if and only if there exists f ∈ C+i (or f ∈ intT C

+)
such that f(F (Γ)) ≥ f(ȳ).

Corollary 4.1. Let the ordering cone C ⊂ Y have a weakly compact base B.
Then (x̄, ȳ) is a Benson proper minimizer of (VP) if and only if there exists f ∈ C+i

(or f ∈ Bst) such that f(F (Γ)) ≥ f(ȳ).
Remark 4.1. Under the assumption that the ordering cone C has a compact

base (equivalently, C is locally compact), Li [13, Theorem 4.2] and Cheng and Rong
[2, Theorem 4.1], respectively, established the scalarization theorems on the Benson
proper minimizer of (VP) with C-subconvexlike set-valued maps and with generalized
C-subconvexlike vector-valued maps. Under the assumption that the ordering cone
C is locally compact and under the assumption that F − ȳ is nearly C-subconvexlike,
Yang, Li, and Wang [24, Theorem 6.2] gave the scalarization theorem on the Benson
proper minimizer of (VP). Since C-subconvexlikeness for set-valued maps is invariant
by translations and it implies near C-subconvexlikeness, and since a vector-valued map
may be regarded as a special set-valued map, Theorems 4.1 and 4.2 and Corollary 4.1
generalize and improve [13, Theorem 4.2] and [2, Theorem 4.1]. Moreover, it is easy
to see that our results also generalize and improve [24, Theorem 6.2] (please refer to
Example 3.1).

Corollary 4.2 (see [5, Theorem 3.2]). Let (Y, ‖ ‖) be a separable normed space
and C ⊂ Y be a closed convex pointed cone. Then (x̄, ȳ) is a Benson proper minimizer
of (VP) if and only if there exists f ∈ C+i such that f(F (Γ)) ≥ f(ȳ).

Corollary 4.3. Let Y be an l.c.s. with the w.c.n.p. and C ⊂ Y be a closed
convex cone with a countable weakly compact base B. Then (x̄, ȳ) is a Benson proper
minimizer of (VP) if and only if there exists f ∈ C+i such that f(F (Γ)) ≥ f(ȳ).

Corollary 4.4. Let Y be the dual of a Fréchet space (E, d) and Y have a locally
convex topology compatible with the dual pair 〈E, Y 〉. Let C ⊂ Y be a closed convex
cone with a base. Then (x̄, ȳ) is a Benson proper minimizer of (VP) if and only if
there exists f ∈ C+i such that f(F (Γ)) ≥ f(ȳ).

Corollary 4.5. Let Y be a semireflexive (DF)-space (particularly, a reflexive
Banach space) and C ⊂ Y be a closed convex cone with a base. Then (x̄, ȳ) is a Benson
proper minimizer of (VP) if and only if there exists f ∈ C+i such that f(F (Γ)) ≥
f(ȳ).

5. Lagrange multipliers. In this section, under the weaker assumption we
present two Lagrange multiplier theorems which show that a Benson proper minimizer
of the constrained set-valued vector optimization problem (VP) is exactly a Benson
proper minimizer for an appropriate unconstrained set-valued vector optimization
problem. Let L(Z, Y ) (respectively, L(Z, Y )) be the set of all linear maps (respectively,
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continuous linear maps) from Z to Y . Also, T ∈ L(Z, Y ) (respectively, T ∈ L(Z, Y ))
is said to be nonnegative with respect to the cones C and D, denoted by T ∈ L+(Z, Y )
(respectively, T ∈ L+(Z, Y )), if T (C) ⊂ D. We say that (VP) satisfies the generalized
Slater constraint qualification if there exists x′ ∈ X such that G(x′) ∩ (−intD) �= ∅
(see, e.g., [13, Definition 2.2]). Here we introduce its extension as follows.

Definition 5.1. We say that (VP) satisfies the conelike generalized Slater con-
straint qualification if

cl[Λ(G(X))] ∩ (−intD) �= ∅,

where Λ(G(X)) denotes the set {
∑n

i=1 λizi : n ∈ N, λi ≥ 0, zi ∈ G(X), i =
1, 2, . . . , n}.

Remark 5.1. Since

cl[Λ(G(X))] ∩ (−intD) ⊂ cl[Λ(G(X)) ∩ (−intD)],

the condition that cl[Λ(G(X))] ∩ (−intD) �= ∅ in Definition 5.1 is equivalent to
Λ(G(X)) ∩ (−intD) �= ∅.

We easily see that the above condition is strictly weaker than the generalized
Slater constraint qualification.

Example 5.1. Let X = {(x1, x2) ∈ R2 : x1 ≤ 0, x2 ≤ 0, 1 ≤ x2
1 + x2

2 ≤ 4},
Z = R2, and D ⊂ Z be the cone{

(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0,

√
3

3
x1 ≤ x2 ≤

√
3x1

}
.

Define a set-valued map G : X → 2Z as follows:

(x1, x2) → G((x1, x2))

=

{
{(ρx1, 0) : ρ ≥ 0} if (x1, x2) ∈ X ∩ {(x1, x2) ∈ R2 :

√
3x1 < x2 <

√
3

3 x1};
{(x1, x2)} if (x1, x2) ∈ X\{(x1, x2) ∈ R2 :

√
3x1 < x2 <

√
3

3 x1}.

Obviously, for any (x1, x2) ∈ X,

G((x1, x2)) ∩ (−intD) = ∅.

But

−Λ(G(X)) ∩ (−intD) �= ∅.

This shows that the set-valued map G does not satisfy the generalized Slater constraint
qualification, but it satisfies the conelike generalized Slater constraint qualification.

The following Theorems 5.1, 5.2, and 5.3 improve and extend [13, Theorems 5.1
and 5.2], [2, Theorem 5.1], and [23, Theorem 3.1].

Theorem 5.1. Let Y and Z be l.c.s., C ⊂ Y be a closed convex pointed cone, D ⊂
Z be a convex cone with nonempty interior, x̄ ∈ Γ, and ȳ ∈ F (x̄). Furthermore, let
(F−ȳ, G) be nearly C×D-subconvexlike on X and (VP) satisfy the conelike generalized
Slater constraint qualification. If there exists f ∈ C+i such that f(F (Γ)) ≥ f(ȳ), then
there exists T ∈ L+(Z, Y ) such that

T (G(x̄) ∩ (−D)) = {0} and ȳ ∈ PMin[(F + TG)(X), C].
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Proof. Set B := (f = 1)∩C. Then B is a base of C. By the hypothesis, f ∈ C+i

and f(F (Γ) − ȳ) ≥ 0, so f(cl cone(F (Γ) − ȳ + C)) ≥ 0. Also, clearly f(−B) = {−1}.
Let V be an absolutely convex 0-neighborhood in Y , with V ⊂ {y ∈ Y : |f(y)| < 1

4}.
Then

(cl cone(F (Γ) − ȳ + C) + V ) ∩ −(B + V ) = ∅.(5)

From (5), V ∩ (−B − V ) = ∅, and hence 0 �∈ cl(B + V ). Thus B + V is a base of
cone(B+V ), and clearly cone(B+V ), and has nonempty interior. Denote cone(B+V )
by CV (B). We assert that

cone((F − ȳ, G)(X)) ∩ (−intCV (B),−intD) = ∅.(6)

First we observe that any element of cone((F − ȳ, G)(X)) may be written in the
following form:

α(y − ȳ, z) ∈ Y × Z, where α ≥ 0, y ∈ F (x), z ∈ G(x), x ∈ X.

We show (6) according to the following two cases.
Case 1. If x ∈ Γ, then α(y − ȳ) ∈ cone(F (Γ) − ȳ). Combining this with (5), we

can deduce that

α(y − ȳ) �∈ −intCV (B).

Hence

α(y − ȳ, z) �∈ (−intCV (B),−intD).

Case 2. If x �∈ Γ, then G(x) ∩ (−D) = ∅. Since z ∈ G(x), we have z �∈ −D and
αz �∈ −intD. Hence we also have

α(y − ȳ, z) �∈ (−intCV (B),−intD).

Thus we have shown (6). From this, we have

(cone((F − ȳ, G)(X)) + (C,D)) ∩ (−intCV (B),−intD) = ∅.

Noting that (−intCV (B),−intD) is open in Y × Z, we conclude that

cl[cone((F − ȳ, G)(X)) + (C,D)] ∩ (−intCV (B),−intD) = ∅.(7)

By the assumption that (F − ȳ, G) is nearly C × D-subconvexlike on X, we know
that cl[cone((F − ȳ, G)(X)) + (C,D)] is a closed convex set, which does not intersect
the open convex set (−intCV (B),−intD) in Y ×Z. By the Hahn–Banach separation
theorem, there exists (ϕ,ψ) ∈ (Y × Z)∗ = Y ∗ × Z∗, (ϕ,ψ) �= (0, 0), such that

(ϕ,ψ)(cone((F − ȳ, G)(X)) + (C,D)) ≥ 0 > (ϕ,ψ)(−intCV (B),−intD)

= ϕ(−intCV (B)) + ψ(−intD).

From this, we have

ϕ(F (x) − ȳ) + ψ(G(x)) ≥ 0 ∀x ∈ X,(8)

ϕ ∈ (CV (B))+,(9)
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and

ψ ∈ D+.(10)

Since x̄ ∈ Γ, we have G(x̄)∩ (−D) �= ∅. Take any z̄ ∈ G(x̄)∩ (−D). By (10) we have

ψ(z̄) ≤ 0.(11)

By taking x = x̄ in (8), we obtain

ϕ(F (x̄) − ȳ) + ψ(G(x̄)) ≥ 0.

Since ȳ ∈ F (x̄) and z̄ ∈ G(x̄), we have

ψ(z̄) ≥ 0.(12)

Combining (11) and (12), we have ψ(z̄) = 0, and hence

ψ(G(x̄) ∩ (−D)) = {0}.(13)

Next we show that ϕ �= 0. If not, we assume that ϕ = 0. Then ψ ∈ D+\{0}. From
(8) and ϕ = 0, we have

ψ(G(X)) ≥ 0.(14)

On the other hand, (VP) satisfies the conelike generalized Slater constraint qualifica-
tion, so

Λ(G(X)) ∩ (−intD) �= ∅.

That is, there exist n ∈ N, λi ≥ 0, and zi ∈ G(X) for i = 1, 2, . . . , n such that∑n
i=1 λizi ∈ −intD. Since ψ ∈ D+\{0}, we have

n∑
i=1

λiψ(zi) = ψ

(
n∑

i=1

λizi

)
< 0.

Thus there exists some i, 1 ≤ i ≤ n, such that ψ(zi) < 0, where zi ∈ G(X). This
contradicts (14). Therefore, ϕ �= 0 and ϕ ∈ (CV (B))+\{0}. From this, we know that
ϕ(B + V ) ≥ 0, and hence there exists δ > 0 such that ϕ(B) ≥ δ > 0, so ϕ ∈ Bst.
Obviously, there exists c̄ ∈ C = cone(B) such that ϕ(c̄) = 1. Define T ∈ L(Z, Y ) as
follows:

T (z) = ψ(z) c̄ ∀z ∈ Z.(15)

Since ψ(D) ≥ 0 and c̄ ∈ C, we have

T (D) ⊂ C, i.e., T ∈ L+(Z, Y ).

By (13) and the definition of T , we have

T (G(x̄) ∩ (−D)) = ψ(G(x̄) ∩ (−D)) c̄ = {0}.

For any x ∈ X, any y ∈ F (x), and any z ∈ G(x), we have

ϕ(y − ȳ + Tz) = ϕ(y − ȳ) + ϕ(Tz)

= ϕ(y − ȳ) + ϕ(ψ(z)c̄)

= ϕ(y − ȳ) + ψ(z) ≥ 0,

(16)
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where the final inequality is due to (8). By (16) and ϕ ∈ Bst ⊂ C+i, we have

ϕ(cl cone((F + TG)(X) − ȳ + C)) ≥ 0.(17)

On the other hand,

ϕ(−C\{0}) < 0.(18)

Combining (17) and (18), we conclude that

cl cone((F + TG)(X) − ȳ + C) ∩ (−C) = {0}.

That is,

ȳ ∈ PMin[(F + TG)(X), C].

Thus we complete the proof.
Theorem 5.2. Let F : X → 2Y and G : X → 2Z be set-valued maps and C ⊂ Y

and D ⊂ Z be convex cones. Let Γ = {x ∈ X : G(x) ∩ (−D) �= ∅}, x̄ ∈ Γ, and
ȳ ∈ F (x̄). If there exists T ∈ L+(Z, Y ) such that ȳ ∈ PMin[(F + TG)(X), C], then
ȳ ∈ PMin[F (Γ), C].

Proof. For any x ∈ Γ, there exists zx ∈ G(x) ∩ (−D). Since T (−D) ⊂ −C, we
have Tzx ∈ −C. Thus

{0} ⊂ Tzx + C ⊂ TG(x) + C.

From this,

F (x) − ȳ ⊂ F (x) − ȳ + TG(x) + C ∀x ∈ Γ.

That is,

F (Γ) − ȳ ⊂ (F + TG)(Γ) + C − ȳ

⊂ (F + TG)(X) + C − ȳ.

Since C is a convex cone, it is easy to see that

F (Γ) − ȳ + C ⊂ (F + TG)(X) + C − ȳ

and certainly

cl cone(F (Γ) − ȳ + C) ⊂ cl cone((F + TG)(X) + C − ȳ).(19)

By the assumption that ȳ ∈ PMin[(F + TG)(X), C], we have

cl cone((F + TG)(X) + C − ȳ) ∩ (−C) = {0}.

Combining this with (19), we conclude that

cl cone(F (Γ) − ȳ + C) ∩ (−C) = {0}, that is, ȳ ∈ PMin[F (Γ), C].

Here it is not necessary that T be continuous. Also, we need not assume that
0 ∈ TG(x̄) in advance. Please compare this result with [13, Theorem 5.2]. Combining
Theorems 5.1 and 5.2 and the results in section 4, we obtain the following.
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Theorem 5.3. Let x̄ ∈ Γ, ȳ ∈ F (x̄), F − ȳ be nearly C-subconvexlike on Γ, (F −
ȳ, G) be nearly C ×D-subconvexlike on X, and (VP) satisfy the conelike generalized
Slater constraint qualification. Assume that one of the following conditions is satisfied:

(i) the ordering cone C ⊂ Y has a weakly compact base (or a compact base);

(ii) Y is a separable normed space;

(iii) Y is an l.c.s. with the w.c.n.p., and C has a countable weakly compact base;

(iv) Y is the dual of a Fréchet space E, endowed with a locally convex topology
compatible with the dual pair 〈E, Y 〉, and the ordering cone C has a base;

(v) Y is a semireflexive (DF)-space (particularly, Y is a reflexive Banach space),
and the ordering cone C has a base.

Then (x̄, ȳ) is a Benson proper minimizer of (VP) if and only if there exists
T ∈ L+(Z, Y ) such that

T (G(x̄) ∩ (−D)) = {0} and ȳ ∈ PMin[(F + TG)(X), C].
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Abstract. For an inequality system defined by an infinite family of proper convex functions, we
introduce some new notions of constraint qualifications in terms of the epigraphs of the conjugates of
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1. Introduction. Many problems in optimization and approximation theory can
be recast into one of the following two types: one is a system of convex inequalities

(1.1) gi(x) ≤ 0 for each i ∈ I,

and the other is a minimization problem

(1.2)
Minimize f(x),

s.t. x ∈ C, gi(x) ≤ 0, i ∈ I,

where C is a convex set, not necessarily closed. Many authors have studied these two
problems with various degrees of generality imposed on the index set I, the family of
functions {gi : i ∈ I}, or on the underlying space; see, for example, [4, 5, 6, 13, 14,
15, 16, 17, 18, 19, 21, 23, 29, 30, 31, 32, 33, 34, 35, 36] and references therein.

A special case of (1.1) occurs when each gi is the indicator function of a closed
convex set Ci; that is, one considers a family of closed convex sets {Ci : i ∈ I}. In [13],
Deutsch, Li, and Ward introduced the notion of the strong conical hull intersection
property (the strong CHIP) for a family of finitely many closed convex sets in a Hilbert
space in connection with the reformulation of some best approximation problems.
Their work was recently extended in [32, 34] to the setting of a normed linear space
with I being an infinite set.

For the case when {gi : i ∈ I} is a finite family of continuous convex functions on a
finite dimensional vector space, the notion of basic constraint qualification (BCQ) was
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introduced by Hiriart-Urrutty and Lemarechal (see [19]). The notion was extended to
cover the case of an infinite family of continuous convex functions with a continuous
sup-function supi∈I gi by Li, Nahak, and Singer (see [36]), who also studied many
aspects of the BCQ in relation to other constraint qualifications. Recall from [32,33,36]
that the inequality system (1.1) is said to satisfy the BCQ at x ∈ S := {x ∈ X :
gi(x) ≤ 0, i ∈ I} if

NS(x) = cone
⋃

i∈I(x)

∂ gi(x)

(see the next section for notation and definitions). The concept of a BCQ relative to
C was introduced in [31, 32, 33] in order to take care of the abstract constraint set C.
In these papers, under some continuity assumption such as the one used in [36], the
system (1.1) with the family {δC ; gi, i ∈ I} was considered in place of {gi : i ∈ I}.

Constraint qualifications involving epigraphs (first introduced in [8,9]) have been
extensively used by many authors (see, for example, [4, 5, 6, 7, 8, 9, 10, 15, 16, 24, 25,
26, 27, 28, 29, 35]). Particularly in connection with the study of a conic programming
problem (see Example 2.1 below), Jeyakumar and coworkers [25, 26, 29] and Boţ and
Wanka [7] studied several new constraint qualifications (such as what they called the
condition (C*) and the CCCQ; see [26, 29] for their definitions). Inspired by these
works as well as that of Dinh, Goberna, and López in [15] (especially with regard to the
new optimality conditions for (1.2)), we define the following concept: the inequality
system (1.1) is said to have the conical epigraph hull property (conical EHP) if

(1.3) epiσS = cone
⋃
i∈I

epi g∗i ,

where S = {x : gi(x) ≤ 0 ∀i ∈ I}. In particular, (1.3) reduces to the sum of epigraph
constraint qualification (SECQ) introduced in [35] if gi = δCi

for some family of closed
convex sets {Ci : i ∈ I}. We show that by suitably choosing the family {gi : i ∈ I},
the conical EHP reduces to the closed cone constraint qualification (CCCQ) defined
in [7, 26]. In section 4, we derive some relationships between the EHP, the BCQ,
and the Pshenichyni–Levin–Valadier property (PLV property). We also give some
applications involving the strong CHIP and the convex Farkas–Minkowski systems
(studied by Li, Nahak, and Singer in [36]).

In this paper, we consider (1.2) under minimal assumptions: f is a proper convex
lower semicontinuous function and {gi : i ∈ I} is a family of proper convex functions
(not necessarily lower semicontinuous) defined on a locally convex Hausdorff topolog-
ical vector space X with proper sup-function, where I is an arbitrary index set. The
last three sections of this paper are on applications of results obtained in section 4.
An optimality condition (of Lagrange type) for (1.2) is established in section 5, and
as a consequence we provide an improved version of [16, Theorem 3] on a charac-
terization of minimizers for the problem (1.2); our argument differs from [16] and
allows us to treat the case when each gi is not necessarily lower semicontinuous. In
particular, our results here cover the interesting conic programming case in which
the feasible solution set is not necessarily closed (as the involved functions are not
necessarily lower semicontinuous). Several known results in the conic programming
problem (see [24,26,29]) are extended/improved in section 6. Finally, we study a best
approximation problem in section 7.

2. Notation and preliminary results. The notation used in the present paper
is standard (cf. [11, 19, 40]). In particular, we assume throughout the whole paper
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(unless otherwise specified) that X is a real locally convex Hausdorff topological vector
space, and we let X∗ denote the dual space of X, whereas 〈x∗, x〉 denotes the value of
a functional x∗ in X∗ at x ∈ X, i.e., 〈x∗, x〉 = x∗(x). Let A be a set in X. The interior
(resp., closure, convex hull, convex cone hull, linear hull, affine hull, boundary) of A
is denoted by intA (resp., A, coA, coneA, spanA, aff A, bdA). The positive polar
cone A⊕ and the negative polar cone A� are defined respectively by

A⊕ := {x∗ ∈ X∗ : 〈x∗, z〉 ≥ 0 ∀z ∈ A}

and

A� := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0 ∀z ∈ A}.

The normal cone of A at z0 ∈ A is denoted by NA(z0) and is defined by NA(z0) =
(A−z0)

�. The indicator function δA and the support function σA of A are respectively
defined by

δA(x) :=

{
0, x ∈ A,

∞, otherwise,

and

σA(x∗) := sup
x∈A

〈x∗, x〉 for each x∗ ∈ X∗.

Let f and g be proper functions respectively defined on X and X∗. Let f∗, g∗ denote
their conjugate functions, that is,

f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X} for each x∗ ∈ X∗,

g∗(x) := sup{〈x∗, x〉 − g(x∗) : x∗ ∈ X∗} for each x ∈ X.

The epigraph of a function f on X is denoted by epi f and defined by

epi f := {(x, r) ∈ X × R : f(x) ≤ r}.

For a proper convex function f , the subdifferential of f at x ∈ X, denoted by ∂f(x),
is defined by

∂f(x) := {x∗ ∈ X∗ : f(x) + 〈x∗, y − x〉 ≤ f(y) for each y ∈ X}.

Moreover, the Young’s equality holds (cf. [40, Theorem 2.4.2(iii)]):

(2.1) f(x) + f∗(x∗) = 〈x∗, x〉 if and only if x∗ ∈ ∂f(x).

In particular,

(2.2) (x∗, 〈x∗, x〉 − f(x)) ∈ epi f∗ for each x∗ ∈ ∂ f(x).

We also define

im ∂f := {y∗ ∈ X∗ : y∗ ∈ ∂f(x) for some x ∈ X}

and

dom ∂f := {x ∈ X : ∂f(x) 	= ∅}.



166 CHONG LI, K. F. NG, AND T. K. PONG

For a convex subset A of X, the following statements are standard and easily
verified:

σA = δ∗A, NA(x) = ∂δA(x) for each x ∈ A,(2.3)

σA(x∗) = 〈x∗, x〉 ⇔ x∗ ∈ NA(x) ⇐⇒ (x∗, 〈x∗, x〉) ∈ epiσA for each (x, x∗) ∈ A×X∗.
(2.4)

Moreover, for each (x∗, α) ∈ X∗ × R,

(2.5) (x∗, α) ∈ epi σA ⇐⇒ 〈x∗, x〉 ≤ α for each x ∈ A.

Let {Ai : i ∈ J} be a family of subsets of X containing the origin. The set∑
i∈J Ai is defined by

∑
i∈J

Ai =

{ {∑
i∈J0

ai : ai ∈ Ai, ∅ 	= J0 ⊆ J being finite
}

if J 	= ∅,
{0} if J = ∅.

In the remainder of this paper, let {gi : i ∈ I} denote a family of proper convex
functions on X, where I is an index set. Let G denote the sup-function of {gi : i ∈ I},
that is,

G(x) := sup{gi(x) : i ∈ I} for each x ∈ X.

We always assume that the sup-function is proper. Let S denote the solution set of
the inequality system (1.1) defined by {gi : i ∈ I}, that is,

S := {x : gi(x) ≤ 0 ∀ i ∈ I} = {x : G(x) ≤ 0}.

For each x ∈ X, we define

I(x) = {i ∈ I : gi(x) = G(x) = 0}

and

Ĩ(x) := {i ∈ I : gi(x) = G(x)}.

The consideration of optimization problem (1.2) abounds in the literature. We
end this section with one such example (which will be discussed in detail in section 6).
Consider the following conic programming problem that has been studied in [6] and
has also been studied in [2, 7, 24, 25, 26, 27, 28, 29] for the special case when X,Z
are Banach spaces and g : X → Z is K-convex continuous.

Example 2.1. Suppose that X,Z are locally convex Hausdorff topological vector
spaces, C ⊆ X is a convex set, and K ⊆ Z is a closed convex cone. Define an order
on Z by saying that y ≤K x if y − x ∈ −K. We attach a greatest element ∞ with
respect to ≤K and denote Z• := Z ∪ {+∞}. The following operations are defined on
Z•: for any z ∈ Z, z + ∞ = ∞ + z = ∞ and t∞ = ∞ for all t ≥ 0.

Consider the following conic programming problem:

(2.6)
Minimize f(x),

s.t. x ∈ C, g(x) ∈ −K,
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where f : X → R ∪ {+∞} is a proper convex lower semicontinuous function and
g : X → Z• is K-convex in the sense that for every u, v ∈ X and every t ∈ [0, 1],

g(tu + (1 − t)v) ≤K tg(u) + (1 − t)g(v)

(see [2, 5, 6, 22,25]). As in [5], we define for each λ ∈ K⊕

(2.7) (λg)(x) :=

{
〈λ, g(x)〉 if x ∈ dom g,

+∞ otherwise,

where dom g := {x ∈ X : g(x) ∈ Z}. It is easy to see that g is K-convex if and only
if (λg)(·) : X → R ∪ {+∞} is a convex function for each λ ∈ K⊕. The problem (2.6)
can be equivalently stated as

Minimize f(x),

s. t. δC(x) ≤ 0, (λg)(x) ≤ 0 for each λ ∈ K⊕.

Thus (2.6) can be viewed as an example of (1.2) by letting I = K⊕ ∪{i0} with i0 /∈ I
and

(2.8) gi0 = δC , gλ = λg for each λ ∈ K⊕.

3. The BCQ. We begin with the following definitions adopted from [32, 36].
In the remainder, we shall adopt the convention that coneA = {0} when A is an
empty set.

Definition 3.1. Let C be a convex set in X. The family {gi : i ∈ I} is said to
satisfy

(i) the PLV property at x ∈ X if

(3.1) ∂ G(x) = co
⋃

i∈Ĩ(x)

∂ gi(x);

(ii) the BCQ at x ∈ S if

(3.2) NS(x) = cone
⋃

i∈I(x)

∂ gi(x);

(ii′) the BCQ relative to C at x ∈ C ∩ S if

(3.3) NC∩S(x) = NC(x) + cone
⋃

i∈I(x)

∂ gi(x);

(iii) the PLV property (resp., the BCQ, the BCQ relative to C) if (3.1) (resp., (3.2),
(3.3)) holds for each x ∈ X (resp., x ∈ S, x ∈ C ∩ S).

Remark 3.1. In [16, Definition 2] (under the assumption that each gi is lower semi-
continuous), the property that the family {gi : i ∈ I} satisfies the BCQ relative to C
was also described as the system {δC ; gi, i ∈ I} being locally Farkas–Minkowski(FM).

A relationship between the notions (ii) and (ii)′ in Definition 3.1 is shown in the
following proposition.

Proposition 3.1. Consider a convex set C and x ∈ C ∩ S. Then the family
{gi : i ∈ I} satisfies the BCQ relative to C at x if and only if the family {δC ; gi, i ∈ I}
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satisfies the BCQ at x. Consequently, the family {gi : i ∈ I} satisfies the BCQ relative
to C if and only if the family {δC ; gi, i ∈ I} satisfies the BCQ.

Proof. Take j /∈ I and set gj := δC . Writing J := I∪{j}, the family {δC ; gi, i ∈ I}
becomes {gi : i ∈ J} such that C ∩ S = {y ∈ X : gi(y) ≤ 0 ∀i ∈ J} and
J(x) = {j} ∪ I(x), where for x ∈ C ∩ S,

J(x) :=

{
i ∈ J : gi(x) = max

{
sup
i∈I

gi(x), δC(x)

}
= 0

}
.

Then by (2.3),

NC(x) + cone
⋃

i∈I(x)

∂ gi(x) = cone
⋃

i∈J(x)

∂ gi(x).

Thus the first assertion follows. The second follows immediately from the first.
Remark 3.2.

(i) We have

(3.4) ∂ G(x) ⊇ co
⋃

i∈Ĩ(x)

∂ gi(x) for each x ∈ X.

Indeed, let i ∈ Ĩ(x) and y∗ ∈ ∂ gi(x). Then gi(x) = G(x). Since y∗ ∈ ∂gi(x) and
gi is proper, gi(x) 	= +∞. Now it follows that

(3.5) 〈y∗, y − x〉 ≤ gi(y) − gi(x) ≤ G(y) −G(x) for each y ∈ X.

This shows that y∗ ∈ ∂ G(x), and so (3.4) is proved. Thus, the family {gi : i ∈ I}
has the PLV property at x ∈ X if and only if

(3.6) ∂ G(x) ⊆ co
⋃

i∈Ĩ(x)

∂ gi(x).

Hence, the family {gi : i ∈ I} has the PLV property if and only if (3.6) holds
for each x ∈ dom ∂ G.

(ii) If i ∈ I(x) and y∗ ∈ ∂ g(x), then G(x) = 0. It follows from (3.5) that y∗ ∈ NS(x).
Thus

(3.7) NS(x) ⊇ cone
⋃

i∈I(x)

∂ gi(x) for each x ∈ S.

Therefore, the family {gi : i ∈ I} satisfies the BCQ at x ∈ S if and only if

(3.8) NS(x) ⊆ cone
⋃

i∈I(x)

∂ gi(x).

(iii) Note that if x ∈ intS, then NS(x) = {0}. Recalling our convention cone ∅ = {0}
(see Definition 3.1(ii)), it follows from (3.7) that

{0} = NS(x) = cone
⋃

i∈I(x)

∂ gi(x) for each x ∈ intS.

Hence, the family {gi : i ∈ I} satisfies the BCQ if and only if (3.8) holds for
each x ∈ S\intS.
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(iv) Applying parts (ii) and (iii) to the family of functions {δC ; gi, i ∈ I} in place of
{gi : i ∈ I} and invoking Proposition 3.1, we obtain that the family {gi : i ∈ I}
satisfies the BCQ relative to C at x if and only if we have

(3.9) NC∩S(x) ⊆ NC(x) + cone
⋃

i∈I(x)

∂ gi(x),

and that the family {gi : i ∈ I} satisfies the BCQ relative to C if and only if
(3.9) holds for each x ∈ (C ∩ S)\int (C ∩ S).

Recall from [13, 32, 34] that a family of convex sets {Ci : i ∈ I} is said to have
the strong conical hull intersection property (the strong CHIP) at x ∈

⋂
i∈I Ci if

(3.10) N⋂
i∈I Ci

(x) =
∑
i∈I

NCi
(x).

If (3.10) holds for every x ∈
⋂

i∈I Ci, then we say that the family has the strong
CHIP.

Proposition 3.2. Let x ∈ C ∩ S, and suppose that the family {gi : i ∈ I}
satisfies the BCQ at x. Then {C, S} has the strong CHIP at x if and only if the
family {gi : i ∈ I} satisfies the BCQ relative to C at x.

Proof. By the given assumption, (3.2) holds. Hence we have the following
equivalences:

{C, S} has the strong CHIP at x

⇔ NC∩S(x) = NC(x) + NS(x)

⇔ NC∩S(x) = NC(x) + cone
⋃

i∈I(x)

∂ gi(x)

⇔ {gi : i ∈ I} satisfies the BCQ relative to C at x.

Recall from [21] that the inequality system f ≤ 0 satisfies the weak BCQ at
x ∈ Sf\intSf if

(3.11) NSf
(x) ⊆ cone ∂ f(x) + Ndom f (x),

where Sf := {x ∈ X : f(x) ≤ 0}. The following proposition describes a relationship
between the BCQ and the weak BCQ .

Proposition 3.3. Let f be a proper convex function on X and x ∈ Sf\intSf .
Then the family {f, δdom f} satisfies the BCQ at x if and only if the inequality system
f ≤ 0 satisfies the weak BCQ at x.

Proof. Write g1 = f and g2 = δdom f . If x satisfies, in addition, that f(x) < 0,
then both the necessary condition and the sufficient condition in the statement of the
proposition are satisfied. In fact, since x /∈ intSf , [21, Lemma 2.2] states that

NSf
(x) = Ndom f (x).

Consequently (3.11) holds, and the family {f, δdom f} satisfies the BCQ at x because
of (2.3) and I(x) = {2} (as f(x) < 0).



170 CHONG LI, K. F. NG, AND T. K. PONG

Therefore, to complete our proof we need only consider the case when f(x) = 0.
For this case note that I(x) = {1, 2}. Thus, by (2.3), the family {f, δdom f} satisfies
the BCQ at x if and only if

(3.12) NSf
(x) = cone ∂ f(x) + Ndom f (x).

Since the inclusion NSf
(x) ⊇ cone ∂ f(x) + Ndom f (x) holds trivially (thanks to

f(x) = 0 and Remark 3.2(ii) as applied to {f, δdom f}), (3.11) and (3.12) are equiva-
lent. This completes the proof.

4. The epigraph hull property. Recall that the meaning of {gi : i ∈ I}, G,
X, S, and I has been specified in section 2. The sup-function G is sometimes denoted
by supi∈I gi. Recall also that we always assume that G is proper.

Definition 4.1. The family {gi : i ∈ I} is said to have the following:
(i) the convex EHP if

(4.1) epi

(
sup
i∈I

gi

)∗
= co

⋃
i∈I

epi g∗i ;

(ii) the conical EHP if

(4.2) epiσS = cone
⋃
i∈I

epi g∗i .

Remark 4.1. It is routine to show that

epi

(
sup
i∈I

gi

)∗
⊇ co

⋃
i∈I

epi g∗i and epiσS ⊇ cone
⋃
i∈I

epi g∗i .

Thus the family has the convex EHP (resp., conical EHP) if and only if

epi

(
sup
i∈I

gi

)∗
⊆ co

⋃
i∈I

epi g∗i , (resp., epiσS ⊆ cone
⋃
i∈I

epi g∗i .)

Results in the following proposition are known: for (i) see [35] and for (ii) see
[16,23,30]. Recall that we have assumed that supi∈I gi is proper.

Proposition 4.1. Suppose in addition that each gi is lower semicontinuous.
Then the following assertions regarding epigraphs hold:

(i)

(4.3) epi

(
sup
i∈I

gi

)∗
= co

⋃
i∈I

epi g∗i

w∗

.

(ii)

(4.4) epiσS = epi δ∗S = cone
⋃
i∈I

epi g∗i

w∗

if S is nonempty.

Corollary 4.1. Let {gi : i ∈ I} be as in the preceding proposition. Then the
following assertions are valid:

(i) {gi : i ∈ I} has the convex EHP if and only if

co
⋃
i∈I

epi g∗i is w∗-closed;
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(ii) {gi : i ∈ I} has the conical EHP if and only if

cone
⋃
i∈I

epi g∗i is w∗-closed,

provided that S 	= ∅.
Proof. Since G = supi∈I gi is proper, (4.3) holds. Thus (i) is seen to hold.

Similarly, (ii) holds by (4.4), provided that S 	= ∅.
Remark 4.2. In [16, Definition 1] and [17, Definition 3.1] (under the assumption

that each gi is lower semicontinuous), the system {δC ; gi, i ∈ I} is said to be FM if

epiσC + cone
⋃
i∈I

epi g∗i is w∗-closed.

Letting i0 /∈ I and writing gi0 := δC , one sees that {δC ; gi, i ∈ I} being FM is
equivalent to {gi, i ∈ I ∪ {i0}} having conical EHP.

The following example shows that the lower semicontinuity assumption for {gi :
i ∈ I} cannot be dropped in Proposition 4.1. In other words, Corollary 4.1 fails
without a lower semicontinuity assumption on {gi : i ∈ I}.

Example 4.1. Consider the real Hilbert space l2 of square-summable series, and
let Ω+ be the convex subset defined by

Ω+ := {x ∈ l2 : xi ≥ 0 ∀i ∈ N, xi 	= 0 for at most finitely many i},

where xi denotes the ith coordinate of x. Let I = {t ∈ R : t > 0}, and define a family
{gt : t ∈ I} of proper convex functions by

gt(x) :=

{
−t

∑∞
i=1 ixi if x ∈ Ω+,

+∞ otherwise,
for each t ∈ I.

Note in particular that gt(·) ≤ 0 on dom gt, dom gt = Ω+, and {x : gt(x) ≤ 0} = Ω+

for each t ∈ I. Thus S :=
⋂

t∈I{x : gt(x) ≤ 0} = Ω+.
Let y := (1, 1

2 , . . . ,
1
n , . . . ) and yn := (1, 1

2 , . . . ,
1
n , 0, . . . ) for each natural number

n. Then y ∈ l2\Ω+ and yn ∈ Ω+ for each n. Furthermore, one has that yn → y and

lim gt(yn) = lim
n→∞

−nt = −∞ < gt(y) = +∞ for each t ∈ I

(so each gt is not lower semicontinuous); consequently, gt(y) = −∞, where gt denotes
the closure of the function gt (cf. [40, p. 62]). Since g∗t = gt

∗ by [40, Theorem 2.3.1(iv)],
we see that

g∗t (x
∗) = gt

∗(x∗) ≥ 〈x∗, y〉 − gt(y) = +∞ for each x∗ ∈ l2 and t ∈ I.

Thus

epi g∗t = ∅ for each t ∈ I.

On the other hand, (supt∈I gt)
∗ = σΩ+ , which is proper since Ω+ 	= ∅. Hence the

lower semicontinuity assumption in Proposition 4.1 cannot be dropped.
Proposition 4.2. The family {gi, δdom gi : i ∈ I} has the conical EHP if and

only if the family {tgi, δdom gi : i ∈ I, t > 0} has the convex EHP.
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Proof. By definition, the family {gi, δdom gi : i ∈ I} has the conical EHP if and
only if

(4.5) epiσS = cone
⋃
i∈I

(epi g∗i ∪ epiσdom gi) ,

while the family {tgi, δdom gi : i ∈ I, t > 0} has the convex EHP if and only if

(4.6) epiσS = co
⋃
i∈I

[⋃
t>0

epi (tgi)
∗ ∪ epiσdom gi

]
,

thanks to the easily checked equality δS = supt>0,i∈I tgi. It suffices to prove that
the sets on the right-hand side of (4.5) and of (4.6) are equal. To do this, recall
from [40, Theorem 2.3.1(v)] that (tG)∗(x∗) = tG∗(x

∗

t ) for each t > 0 and x∗ ∈ X∗. It
follows that

epi (tgi)
∗ = t epi g∗i for each i ∈ I and t > 0.

Since epiσdom gi is a cone, it follows that

co
⋃
i∈I

[⋃
t>0

epi (tgi)
∗ ∪ epiσdom gi

]
= co

⋃
i∈I

[⋃
t>0

t epi g∗i ∪ epiσdom gi

]

= co
⋃
i∈I

⋃
t>0

t (epi g∗i ∪ epiσdom gi)

= co
⋃
i∈I

⋃
t≥0

t (epi g∗i ∪ epiσdom gi)

= cone
⋃
i∈I

(epi g∗i ∪ epiσdom gi) ,

where the third equality holds because (0, 0) ∈ epiσdom gi for each i ∈ I. This
completes the proof.

Remark 4.3. The first part of the second conclusion of the following theorem
was also independently obtained in [16, Corollary 2] for the special case when gi were
assumed to be lower semicontinuous.

Theorem 4.1. The following assertions are valid:

(i) If the family {gi : i ∈ I} has the convex EHP, then it has the PLV property.
The converse implication also holds if domG∗ ⊆ im ∂ G.

(ii) Suppose S 	= ∅. If the family {gi : i ∈ I} has the conical EHP, then it satisfies
the BCQ. The converse implication also holds if domσS ⊆ im ∂ δS.

Proof. (i) Suppose that the family {gi : i ∈ I} has the convex EHP. By
Remark 3.2(i), it suffices to show that (3.6) holds for each x ∈ dom ∂ G. Take
x∗ ∈ ∂ G(x). By (2.2), (x∗, 〈x∗, x〉 − G(x)) ∈ epiG∗. Now (4.1) implies that
(x∗, 〈x∗, x〉 −G(x)) can be represented as

(x∗, 〈x∗, x〉 −G(x)) =
∑
i∈J

λi(x
∗
i , αi),
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for some finite subset J ⊆ I, (x∗
i , αi) ∈ epi g∗i , i ∈ J , and 0 < λi ≤ 1 with

∑
i∈J λi = 1.

This implies

〈x∗, x〉 −G(x) =
∑
i∈J

λiαi ≥
∑
i∈J

λig
∗
i (x

∗
i ) ≥

∑
i∈J

λi(〈x∗
i , x〉 − gi(x)).(4.7)

The equalities hold throughout (4.7) because 〈x∗, x〉 =
∑

i∈J λi〈x∗
i , x〉 and gi(x) ≤

G(x) for each i. As λi 	= 0 for each i ∈ J , it follows that gi(x) = G(x) and
g∗i (x

∗
i ) = 〈x∗

i , x〉 − gi(x) for each i ∈ J . Thus J ⊆ Ĩ(x) and x∗
i ∈ ∂ gi(x) for i ∈ J ,

thanks to (2.1). Hence

x∗ =
∑

i∈Ĩ(x)

λix
∗
i ∈ co

⋃
i∈Ĩ(x)

∂ gi(x);

i.e., the family {gi : i ∈ I} has the PLV property. This proves the first part of (i).
Now we assume domG∗ ⊆ im ∂ G and prove the converse implication. In view of

Remark 4.1, we need to show only that

(4.8) epiG∗ ⊆ co
⋃
i∈I

epi g∗i .

Take (y∗, α) ∈ epiG∗. Then y∗ ∈ domG∗, and by assumption there exists x ∈ X such
that y∗ ∈ ∂ G(x). Now (3.1) implies that y∗ can be represented as

y∗ =
∑
i∈J

λiy
∗
i

for some finite subset J ⊆ Ĩ(x), y∗i ∈ ∂ gi(x) for each i ∈ J , and 0 < λi ≤ 1 with∑
i∈J λi = 1. Note that, for each i ∈ J , 〈y∗i , x〉 −G(x) = g∗i (y

∗
i ) because y∗i ∈ ∂ gi(x)

and G(x) = gi(x). Since

α ≥ 〈y∗, x〉 −G(x) =
∑
i∈J

λi(〈y∗i , x〉 − gi(x)),

there exists a set {αi : i ∈ J} of real numbers such that

α =
∑
i∈J

λiαi and g∗i (y
∗
i ) = 〈y∗i , x〉 − gi(x) ≤ αi for each j ∈ J.

This implies that (y∗i , αi) ∈ epi g∗i for each i and thus (y∗, α) ∈ co
⋃

i∈I epi g∗i . Hence
(4.8) is proved.

(ii) Suppose that the family has the conical EHP. We wish to show that it satisfies
the BCQ, that is, to show that (3.8) holds for each x ∈ S\intS (see Remark 3.2(iii)).
Take x ∈ S\intS and x∗ ∈ NS(x). Since the set on the right-hand side of (3.8)
contains the origin, we assume without loss of generality that x∗ 	= 0. By (2.4),
(x∗, 〈x∗, x〉) ∈ epiσS . Now (4.2) implies that (x∗, 〈x∗, x〉) can be represented as

(x∗, 〈x∗, x〉) =
∑
i∈J

λi(x
∗
i , αi),

for some finite subset J ⊆ I, (x∗
i , αi) ∈ epi g∗i , λi > 0, i ∈ J . Then we have

〈x∗, x〉 =
∑
i∈J

λiαi ≥
∑
i∈J

λig
∗
i (x

∗
i ) ≥

∑
i∈J

λi(〈x∗
i , x〉 − gi(x)).(4.9)

Since 〈x∗, x〉 =
∑

i∈J λi〈x∗
i , x〉 and gi(x) ≤ 0 for each i ∈ J , the equalities in (4.9)

hold throughout. Since λi 	= 0 for each i ∈ J , we obtain that for each i ∈ J

(4.10) gi(x) = 0
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and

(4.11) g∗i (x
∗
i ) = 〈x∗

i , x〉.

It follows from (4.10) that J ⊆ I(x). Also, summing up (4.10) and (4.11), we obtain
for each i ∈ J that

g∗i (x
∗
i ) + gi(x) = 〈x∗

i , x〉,

which, by (2.1), is equivalent to x∗
i ∈ ∂gi(x). Thus we have

x∗ =
∑
i∈J

λix
∗
i ∈ cone

⋃
i∈I(x)

∂ gi(x).

Therefore the family {gi : i ∈ I} satisfies the BCQ.

We now turn to the converse implication. Assume domσS ⊆ im ∂ δS . In view of
Remark 4.1, we need to show only that

(4.12) epiσS ⊆ cone
⋃
i∈I

epi g∗i .

Take (y∗, α) ∈ epiσS . Since (0, 0) clearly belongs to the right-hand side of (4.12), we
assume without loss of generality that (y∗, α) 	= (0, 0). Now, since y∗ ∈ domσS ⊆
im ∂ δS , there exists x0 ∈ S such that y∗ ∈ ∂ δS(x0) = NS(x0) by (2.3). The definition
of BCQ implies that y∗ can be expressed as

y∗ =
∑
i∈J

λiy
∗
i

for some finite subset J ⊆ I(x0), y
∗
i ∈ ∂ gi(x0), and λi ≥ 0 for each i ∈ J . Note that,

for each i ∈ J , 〈y∗i , x0〉 = g∗i (y
∗
i ) because y∗i ∈ ∂ gi(x0) and gi(x0) = G(x0) = 0. On

the other hand, since α ≥ 〈y∗, x0〉 =
∑

i∈J λi〈y∗i , x0〉, there exists a set {αi : i ∈ J}
of real numbers such that

α =
∑
i∈J

λiαi and g∗i (y
∗
i ) = 〈y∗i , x0〉 ≤ αi for each i ∈ J.

This implies that (y∗i , αi) ∈ epi g∗i for each i and thus (y∗, α) ∈ cone
⋃

i∈I epi g∗i . Hence
(4.12) is proved.

Recall from [35] that a family of convex sets {Ci : i ∈ I} in X with nonempty
intersection satisfies the sum of epigraphs constraint qualification (SECQ) if

(4.13) epiσ⋂
i∈I Ci

=
∑
i∈I

epiσCi
.

The following proposition is on the relationships between the strong CHIP, the SECQ
for a family of convex sets, and the conical EHP for the family consisting of the
corresponding indicator functions.
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Proposition 4.3. Let {Ci : i ∈ I} be a family of convex sets in X with nonempty
intersection. Then the following assertions are valid:

(i) The family {Ci : i ∈ I} has the strong CHIP if and only if the family of functions
{δCi : i ∈ I} has the BCQ.

(ii) The family {Ci : i ∈ I} satisfies the SECQ if and only if the family of functions
{δCi

: i ∈ I} has the conical EHP.
Proof. Consider the family of functions {δCi

: i ∈ I}, i.e., gi := δCi
for each i ∈ I.

Then,

S :=

{
x : sup

i∈I
δCi(x) ≤ 0

}
= {x : δ⋂

i∈I Ci
(x) ≤ 0} =

⋂
i∈I

Ci 	= ∅.

Also, G(x) := supi∈I δCi(x) = δ⋂
i∈I Ci

(x) and G(x) = 0 for each x ∈ S. Moreover,

since δCi(x) = 0 for each x ∈ S and each i ∈ I, it follows that I(x) = I for each x ∈ S.
(i) For each x ∈ S, we have from (2.3) that

cone
⋃

i∈I(x)

∂ δCi(x) = cone
⋃
i∈I

∂ δCi(x) = cone
⋃
i∈I

NCi
(x)

=
∑
i∈I

coneNCi
(x) =

∑
i∈I

NCi
(x).

Therefore, when {δCi : i ∈ I} replaces {gi : i ∈ I}, we see that (3.2) and (3.10) are
equivalent, and so (i) is proved.

(ii) Note that each epiσCi
is a cone, and so

cone
⋃
i∈I

epiσCi =
∑
i∈I

cone (epiσCi) =
∑
i∈I

epiσCi .

Therefore, when {δCi : i ∈ I} replaces {gi : i ∈ I}, we see that (4.2) and (4.13) are
equivalent, and so (ii) is proved.

Corollary 4.2 (see [35]). Let {Ci : i ∈ I} be a family of convex sets in X with
nonempty intersection. If the family satisfies the SECQ, then it has the strong CHIP.
The converse implication also holds if domσS ⊆ im ∂ δS, where S =

⋂
i∈I Ci.

Proof. The corollary follows from Proposition 4.3 and Theorem 4.1(ii) (applied
to the family of functions {δCi

: i ∈ I} in place of {gi : i ∈ I}).
Adopting a definition given in [36, Definition 5.3] originally in a more restrictive

case, we say that a linear inequality

(4.14) 〈a∗, x〉 ≤ b

(where a∗ ∈ X∗ and b ∈ R) is a consequence relation of (1.1) if every x ∈ S satisfies
(4.14). Moreover, the system (1.1) is said to be a convex FM system if every linear
consequence relation of the system (1.1) is also a consequence relation of some finite
subsystem of it. The following result was independently obtained in [16, Proposition 1]
under the additional assumption that each gi is lower semicontinuous.

Proposition 4.4. Suppose that S 	= ∅ and that the family {gi : i ∈ I} has the
conical EHP. Then the system (1.1) is a convex FM system.

Proof. Let a∗ ∈ X∗ and b ∈ R be such that 〈a∗, x〉 ≤ b for each x ∈ S. This
means that

(a∗, b) ∈ epiσS ,
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thanks to (2.5). Since the family {gi : i ∈ I} has the conical EHP, it follows from
(4.2) that

(a∗, b) ∈ cone
⋃
i∈I

epi g∗i .

Thus, there exists a finite subset J ⊆ I such that

(a∗, b) ∈ cone
⋃
i∈J

epi g∗i ⊆ epiσSJ
,

where SJ := {x ∈ X : gi(x) ≤ 0 ∀i ∈ J}, and the inclusion follows from Remark 4.1.
Again by (2.5), one has 〈a∗, x〉 ≤ b for each x ∈ SJ . This completes the proof.

The following corollary was proved by Li, Nahak, and Singer in [36, Proposition 5.4]
under the additional assumptions that X = R

n, S is compact, and each gi is con-
tinuous. (Recall that if S is a weakly compact convex set and X is a normed linear
space, then domσS ⊆ im ∂δS ; see [35, Proposition 3.1].) A similar result was obtained
in [16, Proposition 3], in which they assumed the family of lower semicontinuous func-
tions to have BCQ at a point z and deduced that every linear consequence relation
(4.14) of the system (1.1) with b = 〈a∗z〉 is a consequence relation of some finite
subsystem of it.

Corollary 4.3. Suppose that S 	= ∅ and that the family {gi : i ∈ I} satisfies the
BCQ. Suppose further that domσS ⊆ im ∂ δS. Then (1.1) is a convex FM system.

Proof. By Theorem 4.1(ii), the assumptions imply that the family {gi : i ∈ I}
has the conical EHP. Hence the conclusion follows from Proposition 4.4.

5. Optimality conditions. Let X be a locally convex Hausdorff topological
vector space as before. We use Γ(X) to denote the class of all proper convex lower
semicontinuous functions on X as in [40]. For a subset of X, we define

FA := {f ∈ Γ(X) : dom f ∩A 	= ∅, epiσA + epi f∗ is w∗-closed}.

Since epiσA = epiσA for any convex set A,

(5.1) f ∈ FA ⇔ f ∈ FA.

It is known from [4, Theorem 3.2] that if f ∈ FA and closed convex set A are such
that epiσA + epi f∗ is w∗-closed, then the subdifferential sum formula holds:

f ∈ FA ⇒ ∂ (f + δA)(x) = ∂ f(x) + ∂ δA(x) for each x ∈ A ∩ dom f.

Thus, (5.1) entails that

(5.2) f ∈ FA ⇒ ∂ (f + δA)(x) = ∂ f(x) + ∂ δA(x) for each x ∈ A ∩ dom f.

As in [40], let Λ(X) denote the class of all proper convex functions on X. Let
f ∈ Λ(X), and recall that the meanings of {gi : i ∈ I}, G, X, S, and I have been
specified in section 2 and that we always assume that G is proper. We consider the
following minimization problem:

(5.3)
Minimize f(x),

s.t. gi(x) ≤ 0, i ∈ I.
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Clearly, x ∈ S is a minimizer of (5.3) if and only if it is a minimizer of (5.4) defined
as follows:

(5.4)
Minimize f(x),

s.t. x ∈ S.

The following theorem gives a characterization for a feasible point x to be a
minimizer. Note in particular that it improves a result in [16, Theorem 4] as far as
the lower semicontinuity of the functions gi is relaxed. See also [6] for other related
results. For h ∈ Λ(X), let conth denote the set of all points at each of which h is
continuous, that is,

conth := {x ∈ X : h is continuous at x}.

Theorem 5.1. Let x be a feasible point of (5.3). Then the following statements
are equivalent:

(i) The family {gi : i ∈ I} satisfies the BCQ at x.
(ii) For each f ∈ FS, x is a minimizer of (5.4) with S in place of S if and only if

there exist a finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J , such that

(5.5) 0 ∈ ∂ f(x) +
∑
i∈J

λi∂ gi(x).

(iii) For any f ∈ Λ(X) such that cont f ∩ S 	= ∅, x is a minimizer of (5.4) if and
only if there exist a finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J , such that (5.5)
holds.

(iv) For each continuous linear functional f , x is a minimizer of (5.4) if and only if
there exist a finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J , such that (5.5) holds.

Proof. Recall a well-known result in convex analysis (cf. [40, Theorem 2.5.7]) that
if f ∈ Λ(X) and A is a convex subset, then

(5.6) x minimizes f on A ⇐⇒ x minimizes (f + δA) on X ⇐⇒ 0 ∈ ∂(f + δA)(x).

We now first prove (i)⇒(ii). Fix f ∈ FS . By (5.2), we have

(5.7) ∂ (f + δS)(x) = ∂ f(x) + ∂ δS(x) for each x ∈ S ∩ dom f.

By (2.3), we know further that

(5.8) ∂ δS(x) = NS(x) = NS(x) for each x ∈ S.

Thus by (5.6), (5.7), and (5.8), the assumption (i) implies the following equivalences:

x minimizes f on S ⇐⇒ 0 ∈ ∂ f(x) + NS(x) ⇐⇒ 0 ∈ ∂ f(x) + cone
⋃

i∈I(x)

∂ gi(x).

The implication (i)⇒(ii) is now clear.
Next, we prove (i)⇒(iii). Let f ∈ Λ(X) be such that cont f ∩ S 	= ∅. Then [40,

Theorem 2.8.7(iii)] states that

(5.9) ∂ (f + δS)(x) = ∂ f(x) + ∂ δS(x) for each x ∈ S ∩ dom f.

Thus the implication (i)⇒(iii) is seen to hold by (5.6) and (5.9).
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To show the implication (ii)⇒(iv), let f be a continuous linear functional on X.
Then infx∈S f(x) = infx∈S f(x) and f ∈ FS by [15, Remark 5.6]. The latter condition
is equivalent to f ∈ FS , thanks to (5.1). Since x ∈ S, the implication (ii)⇒(iv) is
clear.

The implication (iii)⇒(iv) is immediate.
Finally, we turn to the proof of (iv)⇒(i). We need to show that (3.8) holds for

x = x. Let y∗ ∈ NS(x). Then x is a minimizer of the following optimization problem:

Minimize −〈y∗, x〉,

s.t. x ∈ S.

By (iv), there exist a finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J , such that

0 ∈ −y∗ +
∑
i∈J

λi∂ gi(x).

Thus

y∗ ∈
∑
i∈J

λi∂ gi(x) ⊆ cone
⋃

i∈I(x)

∂ gi(x).

Therefore x satisfies (3.8), as required. This completes the proof.
Let A be a convex set in X and a ∈ A. In the literature there are several

unequivalent conditions on “the relative interior” of A such as

(5.10) a ∈ U ∩ aff A ⊆ A

and

(5.11) a ∈ U ∩ aff A ⊆ A,

where U is a neighborhood of a. For example, (5.10) was considered in [3, 20] and
(5.11) in [2, 40]. As (5.11) is not needed for our present study, we will follow the
terminology of [3, 20] to say that a is in the relative interior of A and denoted by
a ∈ riA if there exists a neighborhood of a such that (5.10) holds.

Remark 5.1. If 0 ∈ riA and x0 ∈ A, then tx0 ∈ riA for each t ∈ [0, 1). To see this,
consider the Minkowski functional pA(x) := inf{λ : λ−1x ∈ A} for each x ∈ spanA.
By considering A and A as subsets of spanA, we have riA = {x ∈ spanA : pA(x) < 1}
and A = {x ∈ spanA : pA(x) ≤ 1} (cf. [40, Proposition 1.1.1(ii)]). Since pA(x0) ≤ 1,
we have pA(tx0) = tpA(x0) < 1 for each t ∈ [0, 1). Thus tx0 ∈ riA, as required.

For f ∈ Λ(X), define

contAf = {x ∈ dom f ∩ aff A : f |aff A is continuous at x}.

Remark 5.2. If 0 ∈ contA f and x0 ∈ dom f ∩ spanA, then tx0 ∈ contA f for all
t ∈ [0, 1). To see this, consider dom f ∩ spanA as a subset of spanA; in particular,
0 ∈ contA f ⊆ int (dom f ∩ spanA). Since x0 ∈ dom f ∩ spanA, it follows that
tx0 ∈ int (dom f ∩ spanA) for all t ∈ [0, 1). Consequently, by the convexity of f ,
tx0 ∈ contA f for all t ∈ [0, 1) thanks to [40, Theorem 2.2.9] because f |spanA is
continuous at 0.

Lemma 5.1. Consider the problem (5.4), and let f ∈ Λ(X). Suppose that

(5.12) (dom f ∩ riS) ∪ (S ∩ contSf) 	= ∅.



CONSTRAINT QUALIFICATIONS FOR INEQUALITY SYSTEMS 179

Then

(5.13) inf
x∈S

f(x) = inf
x∈S

f(x).

Proof. By (5.12), we assume without loss of generality that

0 ∈ (dom f ∩ riS) ∪ (S ∩ contSf).

Let λ > infx∈S f(x) and take x0 ∈ S such that λ > f(x0). To show (5.13) it suffices
to show that λ > infx∈S f(x). By the convexity we have

(5.14) f(tx0) ≤ tf(x0) + (1 − t)f(0) for each t ∈ [0, 1].

Letting t ↑ 1 in (5.14), we obtain

(5.15) lim sup
t→1−

f(tx0) ≤ lim
t→1−

[tf(x0) + (1 − t)f(0)] = f(x0) < λ.

This and Remark 5.1 imply that infx∈S f(x) ≤ f(x0) if 0 ∈ riS (so tx0 ∈ riS for each
t ∈ [0, 1)). It remains to consider the case when 0 ∈ S∩contSf . But then Remark 5.2
entails that tx0 is a continuity point of f |spanS if t ∈ [0, 1). Noting tx0 ∈ S, it follows
from (5.15) that f(xt) < λ for xt ∈ S close enough to tx0, provided that t < 1 is
sufficiently near to 1. Therefore infx∈S f(x) < λ in any case. This completes the
proof.

Remark 5.3. For two convex sets A,C in a Banach space X, recall from [34] that
an a ∈ A belongs to rintaff CA if a ∈ B(a, ε) ∩ aff C ⊆ A for some ε > 0. Note that if
X is a Banach space and f ∈ Γ(X), then

(5.16) rintaff Sdom f ⊆ contS f.

To see this we assume without loss of generality that 0 ∈ S. Then aff S = spanS is a
Banach space. Since f |aff S ∈ Γ(aff S), (5.16) follows from [40, Theorem 2.2.20].

Corollary 5.1. Under the assumption of Theorem 5.1, for any x ∈ S, the
following statements are equivalent:

(i) The family {gi : i ∈ I} satisfies the BCQ at x.
(ii′) For each f ∈ FS satisfying (5.12), x is a minimizer of (5.4) if and only if

there exist a finite subset J ⊆ I(x) and λi ≥ 0, i ∈ J , such that (5.5) holds.
Proof. Suppose that (i) holds. Then Theorem 5.1(ii) holds. Let f ∈ FS sat-

isfy (5.12). Then infx∈S f(x) = infx∈S f(x) by Lemma 5.1. Since x ∈ S, applying
Theorem 5.1(ii) to this f , (ii′) is seen to hold. Conversely, suppose that (ii′) holds.
Then part (iv) (and so part (i)) of Theorem 5.1 holds because any continuous linear
functional f on X belongs to FS (by [15, Remark 5.6] and (5.1)) and satisfies (5.12)
(since dom f = X). The proof is complete.

The following result was proved in [15, Theorem 5.5] under the additional
assumption that each gi is continuous, which was recently extended in [16, Theorem 3]
to the setting that some gi are allowed to be merely lower semicontinuous.

Corollary 5.2. Suppose that f ∈ FS and that the family {gi : i ∈ I} has
the conical EHP. Assume that either S is closed or the condition (5.12) is satisfied.
Let x ∈ S. Then x is a minimizer of (5.4) if and only if there exist a finite subset
J ⊆ I(x) and λi ≥ 0, i ∈ J , such that

0 ∈ ∂ f(x) +
∑
i∈J

λi∂ gi(x).
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Proof. Since the family {gi : i ∈ I} has the conical EHP, it has the BCQ at x by
Theorem 4.1(ii). Moreover, (5.13) holds by the assumptions and Lemma 5.1. Since
x ∈ S it follows that x is a minimizer of (5.4) if and only if x is a minimizer of (5.4)
but with S in place of S. Thus the corollary follows from the implication (i)⇒(ii) in
Theorem 5.1.

The following example shows that (5.13) and the related corollaries may fail if
the assumption (5.12) is dropped.

Example 5.1. Define S := {(x, y) ∈ R
2 : x ≥ 0}\{(0, y) ∈ R

2 : y < 1} and

f(x, y) :=

{
y2

2 if x = 0,

+∞ otherwise.

Then f is proper convex lower semicontinuous, S is convex, and S = {(x, y) ∈ R
2 :

x ≥ 0}. Note that in this case dom f = {(0, y) ∈ R
2 : y ∈ R}, which is disjoint from

the set riS = intS = {(x, y) ∈ R
2 : x > 0}. It is easy to see that inf(x,y)∈S f(x, y) =

f(0, 1) = 1
2 but inf(x,y)∈S f(x, y) = f(0, 0) = 0. Thus (5.13) fails.

Next we wish to show that f ∈ FS . To do this, note first that for each (x, y) ∈ R
2

f∗(x, y) = sup{〈(u, v), (x, y)〉 − f(u, v) : (u, v) ∈ dom f} =
y2

2
,

and that

σS(x, y) = sup
u≥0,v∈R

〈(u, v), (x, y)〉 =

{
0 if x ≤ 0 and y = 0,

+∞ otherwise.

It is easy to see by the definition that

epi f∗ =

{
(x, y, r) ∈ R

3 :
y2

2
≤ r

}
and epiσS = {(x, 0, r) ∈ R

3 : x ≤ 0, r ≥ 0}.

Therefore, epi f∗ + epiσS = epi f∗. This implies that epi f∗ + epiσS is weak∗-closed.
Since f is proper and dom f ∩ S 	= ∅, we see that f ∈ FS .

Now, note that (0, 1) is the minimizer of the following problem:

Minimize f(x, y),

s.t. δS(x, y) ≤ 0.

Note also that ∂ f(0, 1) = {(x, 1) : x ∈ R} and that NS(0, 1) = {λ(−1, 0) : λ ≥ 0}.
Hence the optimality condition (0, 0) ∈ ∂ f(0, 1) + NS(0, 1) fails even though f ∈ FS

and the family {δS} has the BCQ property.

6. Applications to conic programming. We continue our study of the conic
programming problem with notation as explained in Example 2.1. It can be checked
in a straightforward manner that the following facts are true. They are known when
g is continuous on X; see [24,30]. Some related results can be founded in [17].

Fact 6.1. cone
⋃

λ∈K⊕ epi (λg)∗ =
⋃

λ∈K⊕ epi (λg)∗.
Fact 6.2. cone

⋃
λ∈K⊕ ∂(λg)(x) =

⋃
λ∈K⊕ ∂(λg)(x) for each x ∈ X.

Fact 6.3. cone
⋃

λ∈K⊕

λg(x)=0

∂(λg)(x) =
⋃

λ∈K⊕

λg(x)=0

∂(λg)(x) = Ng(x)0 for each x ∈ X,

where Ng(x)0 is defined by

Ng(x)0 :=

{
u∗ ∈ X∗ : (u∗, u∗(x)) ∈

⋃
λ∈K⊕

epi (λg)∗

}
.
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Generalizing the corresponding notions in [24, 26, 29] to suit our present non-
continuous situation, we make the following definitions (it is routine to see that the
notions in the following definition coincide with corresponding ones in [24, 26, 29] in
the case when g : X → Z is continuous).

Definition 6.1. For g, C,K as in Example 2.1, we say that

(i) the condition (C∗) holds if the family {λg : λ ∈ K⊕} has the conical EHP;
(ii) the closed cone constraint qualification (CCCQ) holds if the family {δC , λg : λ ∈

K⊕} has the conical EHP;
(iii) the pair {C, g−1(−K)} has the sharpened strong CHIP at x ∈ C ∩ g−1(−K) if

NC∩g−1(−K)(x) = NC(x) + Ng(x)0.

The following notion of K-lower semicontinuity was introduced in [37] and ex-
tended in [1, 12] for functions g : X → Z•. It was also considered in [5].

Definition 6.2. For g,K as in Example 2.1, the function g is said to be K-lower
semicontinuous at x0 ∈ X if for each neighborhood V of zero in Z and any b ∈ Z with
b ≤K g(x0) there exists a neighborhood U of zero in X such that

(6.1) g(x0 + U) ⊆ b + V + K ∪ {∞}.

Clearly, if g : X → Z is continuous, then g is K-convex lower semicontinuous.
Below we give an example of a function that is K-convex lower semicontinuous but
not continuous.

Example 6.1. Let X = l1 and Z = l1 respectively under the l∞-norm ‖·‖∞ and the
l1-norm ‖·‖1, and let g denote the identity map from X into Z. Then g has the desired
properties (that g is not continuous is well known). To see this, let us fix a nonzero
element c ∈ X, and let K denote its kernel in Z, that is, K := {z ∈ Z : 〈c, z〉 = 0}.
By a well-known result (cf. [39, p. 24]), the distance to each z ∈ Z from the closed
subspace K satisfies the so-called Ascoli formula,

d(z,K) =
|〈c, z〉|
‖c‖∞

for each z ∈ Z,

and it follows that

d(z,K) ≤ α‖z‖∞ for each z ∈ Z,

where α := ‖c‖1

‖c‖∞
; in particular we have

d(g(x),K) ≤ α‖g(x)‖∞ for each x ∈ X.

This implies that g is K-lower semicontinuous at x0 := 0 (for ε > 0 and V = {z ∈ Z :
‖z‖1 < ε}, and (6.1) holds with U = {x ∈ X : ‖x‖∞ < ε

α}). By the linearity of g, we
conclude that g is K-lower semicontinuous on the whole X.

Proposition 6.1. Let g,K be as in Example 2.1. Suppose that g is K-lower
semicontinuous and that dom g is closed. Then for each λ ∈ K⊕, λg is lower semi-
continuous.

Proof. Let λ ∈ K⊕\{0}, and let x0 ∈ X. To show the lower semicontinuity of λg
at x0, we assume without loss of generality that x0 ∈ dom g (thanks to the assumption
that dom g is closed). Let ε > 0. By the continuity of λ, take a neighborhood V of zero
in Z such that |λ(v)| < ε for each v ∈ V . By definition of K-lower semicontinuity,
there exists a neighborhood U of x0 in X such that (6.1) holds. Let u ∈ x0 + U .
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By (6.1), there exist v1 ∈ V and k ∈ K ∪ {∞} such that g(u) = g(x0) + v1 + k. For
the case when k ∈ K, we have

λg(x0) = 〈λ, g(x0)〉 ≤ 〈λ, g(u) − v1〉 < λg(u) + ε.

For the case when k = ∞, one has g(u) = ∞, i.e., u /∈ dom g. Thus, it follows from
definition that λg(x0) − ε < λg(u) = ∞. Therefore, λg is lower semicontinuous at
x0.

Example 6.2 below shows that the converse of Proposition 6.1 is not true.
Example 6.2. Let X = L2[0, 1] and Z = L2[0, 1] respectively under the ‖ · ‖1-

norm and ‖ · ‖2-norm. Let K = {0}, and let Z• := Z ∪ {+∞} as in Example 2.1. Let
D = {x ∈ X : ‖x‖2 ≤ 1}, and let g(x) = x + δD(x). Then g is not continuous on D
(as there exists a sequence {xn} in X such that each ‖xn‖2 = 1 but ‖xn‖1 = 1

n ; for
example, let xn = nχ[0,1/n2] be the characteristic function of the interval [0, 1/n2]),
and so g is not {0}-lower semicontinuous.

Let λ ∈ Z∗ = {0}⊕. We claim that λg is lower semicontinuous. Let r ∈ R and let

Ar := {x ∈ X : λg(x) ≤ r}.

It suffices to show that Ar is closed in X. To do this, let x ∈ X and {xn} be a sequence
in Ar such that ‖xn − x‖1 → 0. By an elementary result in Lebesgue theory (see [38,
Proposition 18, p. 95]), there exists a subsequence {xnk

} convergent to x almost
everywhere. By Fatou’s lemma and the fact that Ar ⊆ D (by (2.7)), it follows that

∫ 1

0

|x|2dt ≤ lim inf
k

∫ 1

0

|xnk
|2dt ≤ 1,

and thus x ∈ D. Let ε > 0. Since λ ∈ L2[0, 1], there exists a simple function h such
that ‖λ − h‖2 < ε. Noting ‖x − xn‖2 ≤ 2 (as x, xn ∈ D), it follows from the Hölder
inequality that

λg(x) − λg(xn) = 〈λ, x− xn〉 = 〈λ− h, x− xn〉 + 〈h, x− xn〉

≤ 2ε + ‖h‖∞‖x− xn‖1 → 2ε.

This implies that

λg(x) ≤ lim inf
n

λg(xn) + 2ε ≤ r + 2ε,

and hence that λg(x) ≤ r as ε > 0 is arbitrary. Therefore x ∈ Ar and Ar is closed, as
we wished to show.

By Fact 6.1, Corollary 4.1, and Proposition 6.1, the following remark is obvious.
Remark 6.1. Let g, C,K be as in Example 2.1. Suppose in addition that g is

K-lower semicontinuous and that dom g is closed. Then the condition (C*) holds if
and only if

⋃
λ∈K⊕ epi (λg)∗ is w∗-closed;

more generally, the CCCQ holds if and only if

epiσC +
⋃

λ∈K⊕ epi (λg)∗ is w∗-closed.
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(Thus, conditions (C*) and CCCQ defined in Definition 6.1 agree with the ones
defined in [26,29] for the continuous case.)

Corollary 6.1. The following equivalence holds for any x ∈ C ∩ g−1(−K):

The family {δC , λg : λ ∈ K⊕} satisfies the BCQ at x

⇔ {C, g−1(−K)} has the sharpened strong CHIP at x.

Proof. Note first that {x : δC(x) ≤ 0, λg(x) ≤ 0, λ ∈ K⊕} = C∩g−1(−K). Hence
the family {δC , λg : λ ∈ K⊕} satisfies the BCQ at x if and only if

NC∩g−1(−K)(x) = NC(x) + cone
⋃

λ∈K⊕

λg(x)=0

∂(λg)(x),

which is equivalent to saying that {C, g−1(−K)} has the sharpened strong CHIP at
x, by Fact 6.3.

The next two corollaries were respectively proved in [24, Propositions 3.3 and 3.4]
under the additional assumption that g is continuous.

Corollary 6.2. If g, C,K are as in Example 2.1 and the CCCQ holds, then

(6.2) NC∩g−1(−K)(x) = NC(x) +
⋃

λ∈K⊕

λg(x)=0

∂ (λg)(x) for each x ∈ C ∩ g−1(−K);

that is, {C, g−1(−K)} has the sharpened strong CHIP at each point in C ∩ g−1(−K).
In particular, if the condition (C∗) holds, then

(6.3) Ng−1(−K)(x) =
⋃

λ∈K⊕

λg(x)=0

∂ (λg)(x) for each x ∈ g−1(−K).

Proof. We need prove only the first assertion. Define I := K⊕ ∪ {i0}, i0 /∈ K⊕,
and consider {gi : i ∈ I} as defined in (2.8). Then S := {x : gi(x) ≤ 0} is exactly
C ∩ g−1(−K), and the active index set I(x) is exactly {i0} ∪ {λ ∈ K⊕ : λg(x) = 0}.
Thus (6.2) simply means that the family {gi : i ∈ I} has the BCQ, and hence the
result follows from Remark 6.1 and Theorem 4.1.

Corollary 6.3. If g, C,K are as in Example 2.1 and the condition (C∗) holds,
then for each x ∈ C ∩ g−1(−K) the family {C, g−1(−K)} satisfies the strong CHIP
at x if and only if it satisfies the sharpened strong CHIP at x.

Proof. By the given assumption, (6.3) holds; that is, Ng−1(−K)(x) = Ng(x)0
for each x ∈ g−1(−K). Consequently, the following equivalence holds for each x ∈
C ∩ g−1(−K):

NC∩g−1(−K)(x) = NC(x) + Ng−1(−K)(x) ⇔ NC∩g−1(−K)(x) = NC(x) + Ng(x)0.

Thus the result is clear.

7. Applications to best approximation theory. Let us recall from [14] that
for a system of finitely many closed convex sets {D,Ci : i ∈ I} in a Hilbert space,
where Ci = {x ∈ X : 〈ai, x〉 ≤ bi} for some ai ∈ X and bi ∈ R, i ∈ I, the following
statements are equivalent for each x0 ∈ D ∩

⋂
i∈I Ci:

(i) {D,Ci : i ∈ I} has the strong CHIP at each x0.



184 CHONG LI, K. F. NG, AND T. K. PONG

(ii) For each x ∈ X, PD∩
⋂

i∈I Ci
(x) = x0 if and only if there exists a finite set I0 ⊆ I

such that PD(x−
∑

i∈I0
ai) = x0,

where PA(x) denotes the projection of the point x onto a convex set A. This important
result has been extended in many aspects. For example, [32] discussed an extension
to the case of an infinite system, and [31] discussed a family of functions in place of
that of closed convex sets.

Recall that for a Banach space X and its dual X∗, the duality map Φ : X ⇒ X∗

is defined by Φ(x) := {x∗ : ‖x‖2 = ‖x∗‖2 = 〈x∗, x〉} (cf. [40, section 3.7]). Let
{gi : i ∈ I}, X, C, S, and I be as in section 2.

Theorem 7.1. Suppose that X is a Banach space, and let x0 ∈ C ∩S. Consider
the following statements:

(i) {δC ; gi, i ∈ I} satisfies the BCQ at x0.
(ii) For each x ∈ X, x0 ∈ PC∩S(x) if and only if

(7.1) Φ(x− x0) ∩

⎛
⎝NC(x0) + cone

⋃
i∈I(x0)

∂ gi(x0)

⎞
⎠ 	= ∅.

Then (i)⇒(ii). If we further assume that X is reflexive and smooth, then (ii)⇔(i).
Proof. We regard the family {δC ; gi, i ∈ I} as {gj : j ∈ J} by letting J = I∪{i+}

and gj := δC , where i+ /∈ I. It follows that

J(x0) :=

{
j ∈ J : gj(x0) = max

{
sup
i∈I

gi(x0), δC(x0)

}}
= {i+} ∪ I(x0).

Suppose that (i) holds and let x ∈ X. Note that x0 ∈ PC∩S(x) if and only if x0

minimizes the function 1
2‖·−x‖2 over the set {x : δC(x) = 0, gi(x) ≤ 0 ∀i ∈ I}. Since

Φ(x − x0) = −∂ ( 1
2‖ · −x‖2)(x0) (cf. [40, p. 230]) and since the family {gj : j ∈ J}

satisfies the BCQ at x0, it follows from (2.3) and Theorem 5.1(iii) that x0 ∈ PC∩S(x)
if and only if

Φ(x− x0) ∩

⎛
⎝NC(x0) + cone

⋃
i∈I(x0)

∂ gi(x0)

⎞
⎠

= Φ(x− x0) ∩

⎛
⎝cone

⋃
j∈J(x0)

∂ gj(x0)

⎞
⎠ 	= ∅.

Thus (ii) holds.
Now we assume in addition that X is reflexive and smooth, and turn to proving

(ii)⇒(i). By (3.9), we need to show that

(7.2) NC∩S(x0) ⊆ NC(x0) + cone
⋃

i∈I(x0)

∂ gi(x0).

To do this, take y∗ ∈ NC∩S(x0). By the given assumptions, Φ is bijective (cf. [40,
Theorem 3.7.2(vi) and p. 230]). Thus there exists u = Φ−1(y∗), and it follows that
x0 ∈ PC∩S(x0 + u) by a well-known result (cf. [40, Corollary 3.8.5]). Therefore, by
(ii), (7.1) holds with x = x0 + u. Thus we obtain from (7.1) that

y∗ = Φ(x0 + u− x0) ∈ NC(x0) + cone
⋃

i∈I(x0)

∂ gi(x0).
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This shows that (7.2) holds, as required. This completes the proof.
Corollary 7.1. Suppose that X in Theorem 7.1 is a Hilbert space, and let

x0 ∈ C ∩ S. Then the following statements are equivalent:
(i) {δC ; gi, i ∈ I} satisfies the BCQ at x0.
(ii) For each x ∈ X, x0 = PC∩S(x) if and only if

(7.3) x− x0 ∈ NC(x0) + cone
⋃

i∈I(x0)

∂ gi(x0).

(iii) For each x ∈ X, x0 = PC∩S(x) if and only if there exist finite subset J ⊆ I(x0),
λi ≥ 0, ui ∈ ∂ gi(x0), i ∈ J , such that

x0 = PC

(
x−

∑
i∈J

λiui

)
.

Proof. The equivalence of (ii) and (iii) is standard in Hilbert spaces. The equiva-
lence of (i) and (ii) follows from Theorem 7.1, since (7.1) and (7.3) are now identical
(because Φ is the identity map for Hilbert spaces)

Corollary 7.2. Suppose in Corollary 7.1 that the family {δC ; gi, i ∈ I} has
the conical EHP. Then for each x ∈ X and x0 ∈ C ∩ S, PC∩S(x) = x0 if and only if
there exist a finite set I0 ⊆ I(x0), xi ∈ ∂ gi(x), and λi ≥ 0 for each i ∈ I0 such that
PC(x−

∑
i∈I0

λixi) = x0.
Proof. Since the family {δC ; gi, i ∈ I} has the conical EHP, it satisfies the BCQ

by Theorem 4.1(ii). The result now follows from Corollary 7.1.
For the next two corollaries, let g, C, and K be as in Example 2.1. These two

corollaries were established, respectively, in [28] and [29] but under the additional
assumption that g is continuous.

Corollary 7.3. Suppose that X is a Hilbert space, and let x0 ∈ C ∩ g−1(−K).
Then the following statements are equivalent:

(i) {δC , λg : λ ∈ K⊕} satisfies the BCQ at x0.
(ii) The pair {C, g−1(−K)} has the sharpened strong CHIP at x0, that is,

NC∩g−1(−K)(x0) = NC(x0) +
⋃

λ∈K⊕

λg(x0)=0

∂ (λg)(x0).

(iii) For each x ∈ X, x0 = PC∩g−1(−K)(x) if and only if x0 = PC(x − l) for some
l ∈

⋃
λ∈K⊕

λg(x0)=0

∂ (λg)(x0).

Proof. By Fact 6.3 and Remark 6.1, (i)⇔(ii). The equivalence (i)⇔(iii) follows
from Corollary 7.1 as applied to I := K⊕ and gλ := λg (so I(x0) = {λ ∈ K⊕ :
λg(x0) = 0}).

Corollary 7.4. Suppose that X is a Hilbert space and that (C∗) holds. Let
x0 ∈ C ∩ g−1(−K) and x ∈ X. Assume that {C, g−1(−K)} has the strong CHIP at
x0. Then the following statements are equivalent:

(i) x0 = PC∩g−1(−K)(x).
(ii) x0 = PC(x− l) for some l ∈

⋃
λ∈K⊕

λg(x0)=0

∂ (λg)(x0).

Proof. By Corollary 6.3, the given assumptions imply that {C, g−1(−K)} has the
sharpened strong CHIP at x0. By the implication (ii)⇒(iii) in the preceding corollary,
the result is now clear.
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[7] R. I. Boţ and G. Wanka, An alternative formulation for a new closed cone constraint
qualification, Nonlinear Anal., 64 (2006), pp. 1367–1381.

[8] R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone inter-
section formula, Proc. Amer. Math. Soc., 133 (2005), pp. 1741–1748.

[9] R. S. Burachik and V. Jeyakumar, A new geometric condition for Fenchel’s duality in
infinite dimensional spaces, Math. Program., 104 (2005), pp. 229–233.

[10] R. S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum
formula with applications, J. Convex Anal., 12 (2005), pp. 279–290.

[11] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
[12] C. Combari, M. Laghdir, and L. Thibault, Sous-différentiels de foncitions convexes com-
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[16] N. Dinh, M. A. Goberna, M. A. López, and T. Q. Son, New Farkas-type constraint qual-
ification in convex semi-infinite programming, ESAIM Control Optim. Calc. Var., 13
(2007), pp. 580–597.

[17] M. A. Goberna, V. Jeyakumar, and M. A. López, Necessary and sufficient conditions
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[40] C. Zǎlinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ,
2002.



SIAM J. OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 188–210

MULTIOBJECTIVE OPTIMIZATION THROUGH
A SERIES OF SINGLE-OBJECTIVE FORMULATIONS∗
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Abstract. This work deals with bound constrained multiobjective optimization (MOP) of
nonsmooth functions for problems where the structure of the objective functions either cannot be
exploited, or are absent. Typical situations arise when the functions are computed as the result of a
computer simulation. We first present definitions and optimality conditions as well as two families
of single-objective formulations of MOP. Next, we propose a new algorithm called BiMads for the
biobjective optimization (BOP) problem (i.e., MOP with two objective functions). The property
that Pareto points may be ordered in BOP and not in MOP is exploited by our algorithm. BiMads

generates an approximation of the Pareto front by solving a series of single-objective formulations
of BOP. These single-objective problems are solved using the recent Mads (mesh adaptive direct
search) algorithm for nonsmooth optimization. The Pareto front approximation is shown to satisfy
some first order necessary optimality conditions based on the Clarke calculus. Finally, BiMads

is tested on problems from the literature designed to illustrate specific difficulties encountered in
biobjective optimization, such as a nonconvex or disjoint Pareto front, local Pareto fronts, or a
nonuniform Pareto front.

Key words. biobjective programming problem, multiobjective programming problem, mesh
adaptive direct search algorithms (Mads), convergence analysis
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1. Introduction. In many real-world problems, decisions depend on multiple
and conflicting criteria. For example, in portfolio management, two criteria are usu-
ally considered: the return of the portfolio and its volatility risk [22]. There is usually
no unique solution that is simultaneously optimal for all criteria, multiobjective op-
timization (MOP) aims at identifying the best trade-offs between these criteria. In
this paper, we consider multiobjective programming under bound constraints, which
may be stated as

MOP : min
x∈X

F (x) = (f1(x), f2(x), . . . , fp(x))

with

F : R
n → R

p and X = {x ∈ R
n : a ≤ x ≤ b},

where n is the number of variables, p is the number of objective functions, and a ∈
(R ∪ {−∞})n and b ∈ (R ∪ {+∞})n are bound vectors. Throughout this paper, X
is assumed to be full dimensional, i.e., a < b componentwise. The solution of MOP
consists of the set of best trade-off points selected according to the Pareto dominance
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relation presented in section 2.1. The image under the mapping F of these points is
called the Pareto front.

In this paper, we present an algorithm that generates an approximation of the
Pareto front by only using function values. We are interested in problems in which the
structure of the objective functions is either absent, unreliable, or cannot be exploited.
A typical example is when the evaluation of F requires a computer simulation, i.e.,
the value F (x) is only returned after a long series of computer operations. Some
examples in single-objective optimization of such blackbox problems are detailed in
[1, 5, 7, 19, 23].

The method proposed in this work is called BiMads as it is designed to ap-
proximate the Pareto front of a biobjective optimization problem (BOP) by using the
recent Mads (mesh adaptive direct search) algorithm [4]. BiMads essentially solves
a series of bound-constrained single-objective formulations of BOP using Mads with
increasingly stringent stopping criteria. The series of formulations is constructed in
a way to attempt a uniform coverage of the Pareto front, even in the case where the
Pareto front is nonconvex or disjoint.

This paper is organized as follows. A brief overview of multiobjective optimization
and some methods from the literature are presented in section 2. Some necessary
optimality conditions that make use of the Clarke calculus [8] are also presented.
Two classes of single-objective formulations are introduced in section 3: the single-
objective normalized formulation and the single-objective product formulation. Then,
the algorithm BiMads is detailed in section 4 for solving BOP. Finally, in section 5,
BiMads is tested on problems from the literature [15] designed to underline specific
difficulties encountered in biobjective optimization, such as a nonconvex or disjoint
Pareto front, local Pareto fronts, or a nonuniform Pareto front. A new performance
measure is proposed. It provides an indication of the coverage of the Pareto front by
the set of points produced by the algorithm.

2. Multiobjective optimization. This section summarizes some key notions
in multiobjective optimization such as Pareto dominance and solution approaches
from the literature.

2.1. Pareto dominance. Comparison of optimal solutions requires an order
relation, called dominance relation, between the different points [26]. Several domi-
nance relations such as the Geoffrion’s dominance [18] and the lexicographical domi-
nance [16] have been proposed. The most commonly used relies on Pareto dominance
shown below.

Definition 2.1. Let u, v ∈ X be two decision vectors. We define the following:
• u � v (u weakly dominates v) if and only if fi(u) ≤ fi(v) for all i ∈

{1, 2, . . . , p}.
• u ≺ v (u dominates v) if and only if u � v and fj(u) < fj(v) for at least one

j ∈ {1, 2, . . . , p}.
• u ∼ v (u is indifferent to v) if and only if u does not dominate v and v does

not dominate u.
Definition 2.1 is illustrated in Figure 2.1 for a biobjective problem in which X ⊂

R
3. The feasible region X is projected on the objective space; the image of X under

the mapping F is denoted by Y ⊆ R
p, and is delimited by the curve in the right part

of the figure.
Figure 2.1 also highlights three zones in the objective space, relative to the feasible

point x1 ∈ X. The dominated zone is the set of points which are dominated by x1.
The dominance zone is the set of points that dominate x1. The indifference zone is
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Fig. 2.1. Pareto dominance illustrated on a biobjective problem with 3 variables.

the set of points which are indifferent to x1. In Figure 2.1, x1 dominates x2 but is
dominated by x3 and indifferent to x4, i.e., x3 ≺ x1 ≺ x2 and x1 ∼ x4. Furthermore,
x4 is also indifferent to both x2 and x3, i.e., x2 ∼ x4 ∼ x3.

The above dominance relation provides an optimality definition for multiobjective
programming. We distinguish between local and global Pareto optimality.

Definition 2.2. A point x∗ ∈ X is said to be globally Pareto optimal if and only
if there is no x ∈ X such that x ≺ x∗. If x∗ is globally Pareto optimal, then F (x∗) is
called globally efficient.

Some computational methods do not guarantee global optimality but ensure at
best local optimality, as shown below.

Definition 2.3. A point x̃ ∈ X is said to be locally Pareto optimal if and only
if there exits some ε > 0 and σ > 0 for which the set {x ∈ Bε(x̃) ∩ X : x ≺
x̃ and F (x) ∈ Bσ(F (x̃))} is empty, where Bε(x̃) denotes an open ball around x̃ of
radius ε and Bσ(F (x̃)) denotes an open ball around F (x̃) of radius σ. If x̃ is locally
Pareto optimal, then F (x̃) is called locally efficient.

The two notions are illustrated in Figure 2.2. The point x̃ ∈ X is locally Pareto
optimal while all points that map to the boundary of Y in the shaded area are globally
Pareto optimal. Pareto optimality will henceforth refer to global Pareto optimality
unless noted otherwise. The set of globally Pareto optimal points is called globally
Pareto optimal set and denoted by XP . The image under the mapping F of XP
defines the solution set of the multiobjective problem. This set is called the global
Pareto front or simply the Pareto front and is denoted by YP ∈ R

p. The image of a
set of locally Pareto optimal points is called a local Pareto front.

Figure 2.2 also depicts two important points in the objective space. The ideal
point � ∈ (R ∪ −∞)p is defined as the vector whose components are the individual
minima of each objective function

� =

(
min
x∈X

f1(x), min
x∈X

f2(x), . . . , min
x∈X

fp(x)

)T

.

The nadir point u ∈ (R ∪ ∞)p is defined as the vector whose components are the



MULTIOBJECTIVE OPTIMIZATION 191

�f2

�
f1

Y

�

�

�
u

�
F (x̃)

Fig. 2.2. Pareto front and ideal and nadir points of a biobjective problem.

individual maxima in the Pareto front of each objective function

u =

(
max
x∈XP

f1(x), max
x∈XP

f2(x)T , . . . , max
x∈XP

fp(x)

)T

.

2.2. Classes of methods for MOP. Several methods have been proposed for
multiobjective optimization. There are some exact methods for linear multiobjective
optimization [6, 2]. In the nonlinear case, several heuristic methods generate a set of
points YL that gives an approximation YP of the Pareto front. A survey of heuristic
approaches may be found in [17].

Two natural strategies arise when developing heuristics for MOP [28]. One strat-
egy consists of making sure that the algorithm generates trial points whose images
rapidly converge to some point of the Pareto front YP . The second strategy is to spread
out these approximations of Pareto points so that they achieve a well-distributed non-
dominated set YL.

We next discuss different classes of methods for MOP. A first class of methods
consists of reformulating MOP into a series of single-objective programs by aggregat-
ing the objective functions. Three methods of this class are presented as follows: A
linear weighting method, an approximation to some reference point, and a weighted
geometric mean approach. We also briefly discuss the normal-boundary intersection
algorithm (NBI) [14].

Linear weighting method. The linear weighting method (LWM) [9] consists
of converting the MOP into a single-objective optimization problem by minimizing a
convex combination of objectives

LWM : min
x∈X

p∑
i=1

wifi(x),

where wi ≥ 0 for i = 1, 2, . . . , p are weights such that
∑p

i=1 wi = 1. Any optimal
solution of LWM is Pareto optimal for MOP. Hence, solving LC for different weight
combinations produces a subset of Pareto solutions. A well-known difficulty of this
method is that it cannot generate any point in the nonconvex part of the Pareto front
YP as illustrated in Figure 2.3. No value of the weights w1 and w2 can lead an algo-
rithm on the optimization problem LWM to any point near the efficient point F (x∗),
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Fig. 2.3. The linear weighting method may only generate a subset of the Pareto front.

and the only points of the Pareto front that can be generated are those belonging
to the shaded areas in Figure 2.3. These shaded areas are significantly smaller than
those of Figure 2.2, delimiting the Pareto front.

A second difficulty with the linear weighting method is that the same point may
be found by several weight combinations, as illustrated by F (x′) in Figure 2.3.

These two difficulties are such that the main drawback with the linear weighting
method is the lack of uniformity of the Pareto front approximation distribution.

Approximation to a reference point. This method consists of finding a fea-
sible solution x ∈ X such that F (x) is close to some reference point r ∈ R

p [26, 27].
Often, the ideal point defined in section 2.1 is used as the reference point, i.e., r = �.
The problem is formulated as follows:

PIr : min
x∈X

‖F (x) − r‖q =

( p∑
i=1

|fi(x) − ri|q
)1/q

,

where ‖.‖q is the q-norm with 1 ≤ q ≤ ∞. The method using ‖.‖2 norm is illustrated
in Figure 2.4 for a biobjective problem. Solving PIr with different reference points
produces a set of points which approximates the Pareto front. In Figure 2.4, the
method applied with � as a reference point generates an efficient point F (x∗). As
opposed to the weighting method, the approximation to the reference point may
generate points in the nonconvex part of the Pareto front. However, it may generate
nonefficient points, as illustrated in Figure 2.4 by the generation of F (x) from the
reference point r.

Weighted geometric mean and NBI approaches. The weighted geometric
mean approach consists of converting the MOP to a single-objective optimization
problem by maximizing the weighted geometric mean of differences between the com-
ponents of the nadir point u defined in section 2.1 and the objective functions

WGMP :
max

x

p∏
i=1

(ui − fi(x))λi

s.t. fi(x) ≤ ui, for i = 1, 2, . . . , p,
x ∈ X,
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Fig. 2.4. The approximation to a reference point may lead to a nonefficient point.

where λi > 0 for i = 1, 2, . . . , p. Lootsma, Athan, and Papalambros [21] show that if
all objective functions f1, f2, . . . , fp are convex, then a solution of WGMP is Pareto
optimal. A difficulty with this approach is that the resulting problem WGMP now
contains p general constraints instead of only bound constraints. This approach has
some similarities to what we propose in section 3, but we do not add any supplemen-
tary constraints.

The NBI approach of Das [13] produces an approximation of the Pareto front by
solving a series of single-objective optimization problems NBIβ , in which an additional
equality constraints tying the objective function values are added:

NBIβ :

max
x,t

t

s.t. φβ + tn̂ = F (x)
x ∈ X,

where β are barycentric coordinates, φβ represents a point in the convex hull of
individual minima (CHIM), and n̂ denotes the unit vector normal to the CHIM sim-
plex, pointing towards origin. Solution of NBIβ is the intersection of the normal to
CHIM and the boundary of Y closest to the origin. Solving NBIβ for various values
of β gives an approximation of the Pareto front. This approach may be impracticable
in the blackbox optimization context.

2.3. Necessary optimality conditions for multiobjective optimization.
This section contains necessary optimality conditions for multiobjective optimization
that extend the first order optimality condition for single-objective optimization. The
convergence analysis makes use of the Clarke calculus [8] for nonsmooth functions. For
a locally Lipschitz function f : R

n → R, Clarke [8] defines the generalized directional
derivative of f evaluated at x̃ ∈ X in the tangent direction v ∈ R

n as

f◦(x̃; v) = lim sup
y→x̃, t↓0

f(y + tv) − f(y)

t
.(2.1)

A point x̃ ∈ X is said to be a Clarke stationary point of f over the bound constraints
domain X if the generalized derivative is nonnegative for any direction in the tangent
cone TX(x̃), to X at x̃. The generalized gradient is defined to be the set ∂f(x̂) = {s ∈
R

n : f◦(x̂; v) ≥ vT s for all v ∈ R
n}.
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The following theorem presents a necessary condition for Pareto optimality of
(MOP) analogue to optimality conditions for set-valued functions [11] rewritten with
our notation.

Theorem 2.4. Let fi be Lipschitz near x̃ ∈ X, i = 1, 2, . . . , p. If x̃ is locally
Pareto optimal, then for any d in the tangent cone TX(x̃) there exists ĵ ∈ {1, 2, . . . , p}
for which

f◦
ĵ (x̃; d) ≥ 0.

Assuming strict differentiability [20] of each objective functions fi at x̃ ∈ X,
for i = 1, 2, . . . , p leads to the following corollary [17]. Strict differentiability of fi
at x̃ is just the requirement that the generalized gradient is a singleton, i.e., that
∂fi(x̃) = {∇f(x̃)} in addition to the requirement that fi is Lipschitz near x̃. F is
called strictly differentiable at x̃ ∈ X if fi are strictly differentiable x̃ for i = 1, 2, . . . , p.

Corollary 2.5. Let F be strictly differentiable at x̃ ∈ X. If x̃ is locally Pareto
optimal, then for any d in the tangent cone TX(x̃) there exists some ĵ ∈ {1, 2, . . . , p}
such that ∇fĵ(x̃)T d ≥ 0. The point x̃ is called a KKT-properly efficient solution
for MOP.

3. Single-objective formulations of multiobjective optimization. We pro-
pose to solve MOP through a series of single-objective optimization problems. Each
single-objective optimization problem relies on a reference point r in the objective
space R

p and must satisfy the requirements presented in the following definition.
Definition 3.1. Consider the single-objective optimization problem:

Rr : min
x∈X

ψr(x) with ψr(x) = φr(f1(x), f2(x), . . . , fp(x)),

where φr : R
p → R is parameterized with respect to some reference point r ∈ R

p. Then
Rr is called a single-objective formulation at r of MOP if the following conditions hold:

• If F is Lipschitz near some x̃ ∈ X, then ψr is also Lipschitz near x̃ ∈ X.
• If F is Lipschitz near some x̃ ∈ X with F (x̃) < r componentwise, and if

d ∈ TX(x̃) is such that f◦
i (x̃; d) < 0 for i = 1, 2, . . . , p, then ψ◦

r (x̃; d) < 0.
The first condition ensures that the formulation preserves local Lipschitz continu-

ity while the second involves Clarke descent directions for all fi’s and ψr. Assuming
more smoothness on the function φr leads to the following theorem.

Theorem 3.2. Let Rr be a single-objective formulation at r ∈ R
p of MOP. If F

and ψr are strictly differentiable at some x̃ ∈ X with F (x̃) < r componentwise, and
if d ∈ TX(x̃) is such that ∇fi(x̃)T d < 0 for i = 1, 2, . . . , p, then ∇ψr(x̃)T d < 0.

Proof. Strict differentiability of φr and F at x̃ ensures strict differentiability of
ψr at x̃ with ∇ψr(x̃)T d = ψ◦

r (x̃; d). It follows from the second condition of Definition
3.1 that ∇φr(x̃)T d < 0 if ∇fi(x̃)T d = f◦

i (x̃; d) < 0 for i = 1, 2, . . . , p.
The next two subsections introduce two single-objective formulations: the single-

objective normalized formulation and the single-objective product formulation. Both
formulations are similar to the weighted geometric mean approach described in sec-
tion 2.2 but have the advantage of not introducing nonlinear constraints to the bound-
constrained domain X.

3.1. Single-objective normalized formulation. Let r ∈ R
p be a reference

point in the objective space and s ∈ R
p be a positive scaling factor. The single-

objective normalized formulation is defined as

R̂r : min
x∈X

ψ̂r with ψ̂r(x) = φ̂r(f1(x), f2(x), . . . , fp(x)) = max
i∈{1,2,...,p}

fi(x) − ri
si

.
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Fig. 3.1. Level sets in objective space of the single-objective normalized formulation R̂r for a
BOP.

Level sets of the function φ̂r in the objective function space are represented by hori-
zontal and vertical lines in Figure 3.1 for a BOP.

The next theorem shows that R̂r is a single-objective formulation of MOP.
Theorem 3.3. R̂r is a single-objective formulation at r of MOP in the sense of

Definition 3.1.

Proof. Let F be Lipschitz near x ∈ X. Now, choose j ∈ argmaxi∈{1,2,...,p}
fi(x)−ri

si

and for some y ∈ X, let k ∈ argmaxi∈{1,2,...,p}
fi(y)−ri

si
. It follows that

|ψ̂r(x) − ψ̂r(y)| =

⎧⎪⎨
⎪⎩

fj(x)−rj
sj

− fk(y)−rk
sk

≤ fj(x)−rj
sj

− fj(y)−rj
sj

=
fj(x)−fj(y)

sj

or
fk(y)−rk

sk
− fj(x)−rj

sj
≤ fk(y)−rk

sk
− fk(x)−rk

sk
= fk(y)−fk(x)

sk
.

Hence, |ψ̂r(x) − ψ̂r(y)| ≤ maxi∈{1,2,...,p}
|fi(x)−fi(y)|

si
≤ max(λ1,λ2,...,λp)

min(s1,s2,...,sp) ‖x − y‖, where

λi denotes the Lipschitz constant of fi for i = 1, 2, . . . , p. The second condition of
Definition 3.1 follows directly from [8, Proposition 2.3.12].

Based on the R̂r formulation, the next proposition gives a necessary condition for
a Pareto optimal solution for MOP.

Proposition 3.4. If there exists some vectors r ∈ R
p and s ∈ R

p
+ such that x̃ is

the unique optimal solution of R̂r, then x̃ is Pareto optimal for MOP.
Proof. Let x̃ the unique optimal solution of R̂r and x ∈ X, x �= x̃. Then

ψ̂(x̃) < ψ̂(x) and, consequently, there exists some index j ∈ {1, 2, . . . , p} for which
fj(x̃)−rj

sj
<

fj(x)−rj
sj

. It follows that fj(x̃) < fj(x) and thus x does not dominate x̃.

Hence, x̃ is Pareto optimal.
The same argument ensures that a unique local optimal solution of (R̂r) is locally

Pareto optimal.

3.2. Single-objective product formulation. Let r ∈ R
p be a reference point

in the objective space. The single-objective product formulation is defined as

R̃r : min
x∈X

ψ̃r with ψ̂r(x) = φ̃r(f1(x), f2(x), . . . , fp(x)) = −
p∏

i=1

((ri − fi(x))+)2,
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where (ri−fi(x))+ = max{ri−fi(x), 0} for i = 1, 2, . . . , p. An advantage of R̃r over R̂r

is that the function of p variables φ̃r is continuously differentiable in the entire space,
and therefore, the formulation preserves the differentiability of the original problem.
More precisely, if F (x) is continuously differentiable near x̃ ∈ X, then ψ̃r will also
be continuously differentiable near x̃ ∈ X; and if F (x) is strictly differentiable near
x̃ ∈ X, then ψ̃r will also be strictly differentiable near x̃ ∈ X.

R̃r is obtained from WGMP presented in section 2.2 with λk = 2 for k = 1, 2, . . . , p
by treating the additional constraints introduced by WGMP in the objective function.
The level sets of the R̃r formulation for a biobjective problem are depicted by thin
curves in Figure 3.2. The level set R̃r = 0 consists of the entire shaded region.

The next theorem shows that R̃r is a single-objective formulation of MOP.
Theorem 3.5. R̃r is a single-objective formulation at r of MOP in the sense of

Definition 3.1.
Proof. Let F be Lipschitz near x ∈ X. ψ̃r is Lipschitz near x as product of

Lipschitz functions is also Lipschitz.
To prove the second condition of Definition 3.1, we first compute the generalized

directional derivative of ψ̃r evaluated at x̃ ∈ X satisfying F (x̃) < r, componentwise,
in some tangent direction d ∈ TX(x̃). In order to simplify the presentation, let us
define the function ci(x) = ri−fi(x) for i = 1, 2, . . . , p. It follows from [8, Proposition
2.3.13] that

ψ̃◦
r (x̃; d) ≤ −2

p∑
i=1

(
(ci(x̃; d)+)◦(ci(x̃)+)

∏
j 	=i

(cj(x̃)+)2
)

= − 2

p∑
i=1

(
c◦i (x̃; d)(ci(x̃)+)

∏
j 	=i

(cj(x̃)+)2
)
.

Since, c◦i (x̃; d) = −f◦
i (x̃; d), we have

ψ̃◦
r (x̃; d) ≤

p∑
i=1

(
f◦
i (x̃; d)((ri − fi(x̃))+)

∏
j 	=i

((rj − fj(x̃))+)2
)
.

It follows that if f◦
i (x̃; d) < 0 for i = 1, 2, . . . , p, then ψ̃◦

r (x̃; d) < 0.

�f2

�
f1

φ̃r<0

φ̃r<0

φ̃r=0

r•

Fig. 3.2. Level sets in objective space of the single-objective product formulation R̃r for a BOP.
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Based on the R̃r formulation, the next proposition shows that an optimal solution
of R̃r with nonzero value is Pareto optimal.

Proposition 3.6. If there exists a vector r ∈ R
p such that x̃ is an optimal

solution of R̃r with ψ̃r(x̃) < 0, then x̃ is Pareto optimal for MOP.
Proof. Assume that x ∈ X satisfies x ≺ x̃. Therefore, fi(x) ≤ fi(x̃) for i ∈

{1, 2, . . . , p} with at least one strict inequality. It follows that ψ̃r(x) < ψ̃r(x̃) < 0,
which contradicts the optimality of x̃ for the R̃r formulation.

The same argument can be given to prove that a local optimal of R̃r with nonzero
value is locally Pareto optimal.

4. A new algorithm for biobjective programming. This section focuses on
the biobjective optimization problem BOP. BOP is the only instance of MOP that
possesses an ordering property of the Pareto front. Based on this ordering property
and on the aggregation approach presented in section 3, a new algorithm BiMads is
proposed to solve BOP. BiMads essentially generates a sequence of single-objective
formulations of BOP and solves them sequentially using the Mads algorithm [4] with
increasingly stringent stopping criteria.

This section is divided as follows. An overview of the Mads algorithm is given
in section 4.1 and BiMads is presented in section 4.2. Convergence and uniformity
analysis of BiMads are proposed in section 4.3.

4.1. The MADS algorithm for single-objective optimization. Mads [4]
is a direct search method for the minimization of a nonsmooth function f : R

n →
R ∪ {+∞} under general constraints x ∈ Ω �= ∅ ⊆ R

n. Mads is a generalization
of Torczon’s [25] pattern search algorithms. Pattern search algorithms rely on a
fixed finite set of directions to explore the space of variables and the convergence
analysis [3] is confined to these directions. Mads overcomes this limitation by allowing
an infinite set of directions. We next summarize the main steps of Mads. The
following definitions are from [4]. (The reader is invited to consult [4] for the specific
details of this method.)

Mads is an iterative algorithm that attempts at each iteration to improve the
current incumbent value (i.e., the best feasible objective function value found so far)
by evaluating f on some trial points that lie on the current mesh.

Definition 4.1. At iteration k, the current mesh is defined to be the following
union:

Mk =
⋃

x∈Sk

{x + Δm
k Dz : z ∈ N

nD},

where Sk is the set of points where the objective function f had been evaluated by the
start of iteration k.

The mesh is constructed from a finite set of nD directions D ⊂ R
n scaled by

a positive mesh size parameter Δm
k ∈ R+. Each iteration of Mads consists of two

steps. The first, called the search step, allows evaluation of f at any finite number
of feasible mesh points to get eventually a better incumbent. Then the second step,
called the poll, is invoked. The poll step consists of a local exploration of the space
of optimization variables. The set of trial points considered during the poll is called
Mads frame and is denoted by Pk. Pk is constructed using a current incumbent solu-
tion xk (called the frame center) and the poll and mesh size parameters Δp

k and Δm
k

to obtain a positive spanning set of directions Dk. A formal definition of Mads frame
Pk is given below.
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Definition 4.2. At iteration k, the Mads frame is defined to be the set

Pk = {xk + Δm
k d : d ∈ Dk} ⊂ Mk,

where Dk is a positive spanning set such that 0 �∈ Dk and for each d ∈ Dk,
• d can be written as a nonnegative integer combination of the directions in D:
d = Du for some vector u ∈ N

nDk that may depend on the iteration number
k,

• the distance from the frame center xk to a frame point xk + Δm
k d ∈ Pk

is bounded above by a constant times the poll size parameter: Δm
k ‖d‖ ≤

Δp
k max{‖d′‖ : d′ ∈ D},

• limits (as defined in Coope and Price [10]) of the normalized sets Dk ={
d

‖d‖ : d ∈ Dk

}
are positive spanning sets.

If the value of f at a trial feasible point x is less than the current incumbent
value, then x is called an improved mesh point, and the iteration is called a successful
iteration. The next iteration will be initiated with the newly found incumbent solution
and with a mesh size parameter equal to or larger than the previous one. When
the iteration fails in generating an improved mesh point, the mesh size parameter
is reduced to increase the mesh resolution in order to allow the evaluation of f at
trial points closer to the incumbent solution. The Mads algorithm is stated formally
below.

A general Mads algorithm

• Initialization: Let x0 ∈ Ω, Δm
0 ≤ Δp

0, D satisfy the requirements given in [4].
Set the iteration counter k ← 0.

• Search and poll step: Perform the search and possibly the poll steps (or
only part of them) until an improved mesh point xk+1 is found on the mesh Mk

(see Definition 4.1).

– Optional search: Evaluate f on a finite subset of trial points on the mesh
Mk.

– Local poll: Evaluate f on the frame Pk (see Definition 4.2).

• Parameter update: Update Δm
k+1 according to [4].

Set k ← k + 1 and go back to the search and poll step.

The Mads convergence analysis ensures that some optimality conditions hold at
a limit point x̂ which is the limit of mesh local optimizers on meshes that get infinitely
fine. A hierarchy of convergence results based on local smoothness of f and Ω near x̂
is developed in [4]. In particular, if f is Lipschitz near x̂, then f◦(x̂; d) ≥ 0 for every
d ∈ TH

Ω (x̂), where TH
Ω (x̂) denotes the hypertangent cone [24] to Ω at x̂.

Our new algorithm uses Mads as a tool to solve single-objective blackbox opti-
mization problems.

4.2. The BIMADS algorithm for biobjective optimization. The general
scheme of BiMads is presented in Figure 4.1, and is more fully described in the fol-
lowing paragraphs. BiMads is an iterative algorithm that constructs sets of points
that approximate the Pareto optimal set XP . At each iteration, the set of nondom-
inated points (with respect to all points generated so far) is denoted by XL. The
image under the mapping F of XL is denoted by YL ∈ R

p. YL gives an approximation
of the Pareto front YP .

At the initialization step, the algorithm solves the two single-objective problems:

min
x∈X

f1(x) and min
x∈X

f2(x)(4.1)



MULTIOBJECTIVE OPTIMIZATION 199

Initialization:

• Apply the Mads algorithm from x0 to solve minx∈X f1(x) and
minx∈X f2(x).

• Let XL = {x1, x2, . . . , xJ} be an ordered list of pairwise nondominated
points such that f1(x

1) < f1(x
2) < · · · < f1(x

J) and f2(x
1) > f2(x

2)
> · · · > f2(x

J).
Initialize the weight w(x) = 0 for all x ∈ X and, let δ > 0.

Main iterations: Repeat
• Reference point determination:

− If J > 2, let ĵ ∈ argmaxj=2,...,J−1δ
j = ||F (xj)−F (xj−1)||2+||F (xj)−F (xj+1)||2

w(xj)+1 ,

and define the reference point r = (f1(x
ĵ+1), f2(x

ĵ−1)).
− If J = 2, let xĵ = x2, define the reference point r = (f1(x

2), f2(x
1)), and

set δĵ = ||F (x2)−F (x1)||2
w(x2)+1 .

− If J = 1, let xĵ = x1, δĵ = δ
w(xĵ)+1

and apply the Mads algorithm

from xĵ to solve minx∈X f1(x) and minx∈X f2(x). Terminate Mads when
the mesh size parameter Δm drops below Δ(δĵ) = O(δĵ) and continue to
the step Update XL.

• Single-objective formulation minimization:

Solve a single-objective formulation Rr using the Mads algorithm from
starting point xĵ. Terminate Mads when the mesh size parameter Δm

drops below Δ(δĵ) = O(δĵ) or if a maximal number of objective evaluations
is attained.

• Update XL:

Add to XL all nondominated points found in the current iteration, remove
dominated points from XL, and order the resulting list of points.
Increase weights: w(xĵ) ← w(xĵ) + 1 for each x ∈ XL.

Fig. 4.1. Scheme of the BiMads algorithm for the biobjective programming.

using the Mads algorithm from a user-defined starting point x0 ∈ X. A first list XL
of nondominated points is obtained from the set of all trial mesh points generated
by the two runs of Mads. The cardinality of this set is denoted by J . The sets
XL and YL are sorted in ascending order of f1 value. The ordering property gives a
simple way to measure the gaps between nondominated points by evaluating Euclidean
distances between successive solutions in YL. This strategy allows the evaluation of the
solutions coverage along YL in order to determine a reference point. Note that solving
problems with more than two objective functions requires the use of other techniques
to measure the coverage in the absence of ordering property. Alternatively, a recursive
application of BiMads could be considered. In future work, we aim at studying the
different alternatives and selecting the best one. Each iteration of BiMads consists
of three steps. First, the ordered list YL is used to identify a reference point r in the
space of objectives. If J > 2, the strategy considers the weighted sum δj of squared
distances from each nondominated point F (xj) ∈ YL to its predecessor F (xj−1) and
successor F (xj+1) for j = 2, 3, . . . , J − 1. Hence, a point F (xĵ) is identified from the
list YL that maximizes the measure δj . If J = 2, xĵ is set to x2, the reference point
r is set to (f1(x

2), f2(x
1)), and δĵ is set to be equal to the weighted squared distance

between the two nondominated points. The weights are updated in a way to reduce
frequent definitions of r around the same point by increasing w(xj) by one at the end
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of the iteration. If J = 1, i.e., if a single point x1 dominates all others generated so
far, then the algorithm solves again the two single-objective problems (4.1).

Two measures of the uniformity distribution are introduced:

• the coverage measure c̃ = max
j=1,...,J

δj and

• the weighted coverage measure c̃w = max
j=1,...,J

δj

w(xj)+1 .

A small value of the coverage measure indicates that the Pareto front approximation
does not contain large gaps.

The left part of Figure 4.2 illustrates the reference point r selection when J > 2.
The symbol “·” is used for points generated by BiMads in the objective space, the
symbol “∗” is used for nondominated points found by the algorithm.

The second step of the iteration consists of solving the single-objective formula-
tion Rr using the Mads algorithm. The image of the trial points produced by this
algorithm will most likely lie in the dominance zone with respect to r. The right
part of Figure 4.2 illustrates some trial points generated by Mads. Each run of
Mads terminates when the mesh size parameter Δm drops below Δ(δĵ) = O(δĵ) or if
a maximal number of objective evaluations is attained.

Finally, at the end of each iteration the set of nondominated points XL is updated.
New nondominated points are added and dominated ones are removed. The new set
is represented in Figure 4.2 by stars.

These three steps are iterated by BiMads. In practice, termination is either set
to a fixed number of iterations, or when δĵ drops below a predetermined threshold.
Observe that other single-objective optimization algorithms could be applied for solv-
ing Rr. Nevertheless, we choose Mads to solve the single-objective formulation since
it is designed for blackbox optimization problems, which corresponds to the prac-
tical problems that we plan to solve in future works and is still providing rigorous
convergence analysis for these blackbox problems.

4.3. Convergence analysis. In this section, the quality of points produced by
BiMads is studied and convergence results for BiMads are presented. We will make
the standard assumptions of blackbox optimization that all trial points generated
by the algorithm lie in a bounded set. The following theorem shows that BiMads

produces points satisfying the necessary optimality conditions for biobjective opti-

�f2

�
f1

Y∗F (x1)
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∗F (xJ )
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�f2
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Y∗F (x1)
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Single-objective minimization.

Fig. 4.2. An iteration of BiMads.
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mization presented in section 2.3 when the objective functions are Lipschitz. We
denote by Rr a single-objective formulation of BOP at some reference point r ∈ R

p,
as defined in Definition 3.1.

Theorem 4.3. Let f1 and f2 be Lipschitz near a limit point x̂ ∈ X generated
by Mads applied to a single-objective formulation Rr of BOP at some reference point
r ∈ R

p, then

for any d ∈ TX(x̂), there exists j ∈ {1, 2} such that f◦
j (x̂; d) ≥ 0,

where TX(x̂) is the tangent cone at x̂.
Proof. The solution x̂ produced by Mads is a stationary point of Rr on X [4],

i.e., for all d ∈ TX(x̂), R◦
r(x̂, d) ≥ 0. The second condition appearing in the definition

of single-objective formulation in subsection 3.1 ensures that for any d ∈ TX(x̂), there
exists an index j ∈ {1, 2} for which f◦

j (x̂; d) ≥ 0.
A corollary to this result is derived when f1 and f2 are strictly differentiable at x̂.
Corollary 4.4. Let f1, f2, and ψr be strictly differentiable at a limit x̂ ∈ X gen-

erated by Mads applied to a single-objective formulation Rr of BOP at some reference
point r ∈ R

p, then x̂ is KKT-properly efficient solution of BOP :

for any d ∈ TX(x̂), there exists j ∈ {1, 2} such that ∇fj(x̂)T d ≥ 0,

where TX(x̂) is the tangent cone at x̂.
Proof. Let d ∈ TX(x̂). According to [4], x̂ is a KKT stationary point of Rr on X.

Hence, ∇ψr(x̂)T d ≥ 0. The contraposition of Theorem 3.2 ensures that there exists
j ∈ {1, 2} such that ∇fj(x̂)T d ≥ 0.

In addition to convergence analysis, an analysis of uniformity of solutions dis-
tribution in YL may be derived. The uniformity analysis makes use of the weighted
coverage measure c̃w introduced in section 4.2. We introduce the index η to represent
the BiMads iteration number. The next theorem shows that the c̃ηw goes to zero with
an infinite number of Mads runs.

Theorem 4.5. The weighted coverage measure c̃ηw of the pairwise nondominated
points list Y η

L found at Mads run η satisfies limη→∞ c̃ηw = 0.
Proof. By contradiction, suppose that there exists some scalar L > 0 for which

cηw > L for all iterations η > 0. Therefore, we get δĵ
η ≥ δĵ

η

w(ĵη)+1 > L for all itera-

tions η > 0. Furthermore, since each run η of Mads terminates when the mesh size
parameter Δm drops below Δ(δĵ

η

) = O(δĵ
η

), it follows that

(4.2) there exists δ > 0 : Δη
k ≥ δ for all iterations k and for all runs η,

where Δη
k is the mesh size at iteration k for the Mads run number η. Moreover, since

the feasible set X is bounded, there exists δ̄ > 0 such that Δη
k ≤ δ̄ for all η > 0

and k > 0. Let xη
0 be the starting point of run η. We want to show that under the

aforementioned assumptions, all trial points lie on a mesh which is independent of the
run and iteration numbers.
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Consider xη0

k0
the k0th trial point generated in run η0. According to [4], we have

xη0

k0
= xη0

0 + D

k0−1∑
i=0

Δη0

i zη0

i ,

where D is the set of nD ∈ N directions satisfying the requirements in [4], zη0

i ∈ N
nD ,

and Δη0

i is the mesh size at iteration i of the Mads run η0. The starting point xη0

0

was generated as η1th trial point of a prior run 0 ≤ η1 < η0. Indeed, from xη0

k0
, we

can construct the finite series of points

xη0

k0
, xη0

0 = xη1

k1
, xη1

0 = xη2

k2
, . . . , x

ηp

0 = x0
kp+1

, x0
0,

such that η0 > η1 > · · · > ηp > 0 are decreasing integers and xηl

kl
was generated at

run ηl from the starting point xηl

0 . This starting point was generated as the ηl+1th
trial point of run ηl+1, i.e., xηl

0 = x
ηl+1

kl+1
. x

ηp

0 was generated as the kp+1th trial point
of the first run. With this notation, we get that for l = 1, 2, . . . , p,

xηl

kl
= xηl

0 + D

kl−1∑
i=0

Δηl

i zηl

i ,

where zηl

i ∈ N. Therefore, we get

xη0

k0
= xη0

0 + D

k0−1∑
i=0

Δη0

i zη0

i

= xη1

k1
+ D

k0−1∑
i=0

Δη0

i zη0

i

= xη1

0 + D

(
k0−1∑
i=0

Δη0

i zη0

i +

k1−1∑
i=0

Δη1

i zη1

i

)

= xη2

k2
+ D

(
k0−1∑
i=0

Δη0

i zη0

i +

k1−1∑
i=0

Δη1

i zη1

i

)

. . .

= x0
0 + D

(
p+1∑
l=0

kl−1∑
i=0

Δηl

i zηl

i

)
.

Torczon’s [25] showed that if Δηl

i are multiple of integer powers of some rational
number (which is the case in the present algorithm since Δη

0 are identical for all runs
η), and if all iterates lie in a bounded set, and if (4.2) holds, then xη0

k0
belongs to

a mesh that depends on D, δ, δ̄. Thus Torczon’s proof shows that xη0

k0
belongs to

a mesh that is independent of the iteration and run numbers. Consequently, there
exists a point selected infinitely many times by BiMads around which to refine Y η

L
without varying δĵ

η

value. Hence, w(ĵη) → ∞ and thus cηw → 0. This contradicts the
assumption that cηw is bounded below by L > 0.

5. Numerical results on test problems. The behavior of BiMads is evalu-
ated using test problems from Deb [15]. The functions of these biobjective problems
are constructed in such a way that

f1(x) = f1(x1, x2, . . . , xm) and

f2(x) = g(xm+1, xm+2, . . . , xn)h(f1(x1, x2, . . . , xm), g(xm+1, xm+2, . . . , xn)).
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The function f1 depends on m variables x1, x2, . . . , xm with m < n and f2 is a function
of n variables. The function g depends on n−m variables xm+1, xm+2, . . . , xn which
do not appear in the function f1; h is a function of the function values f1 and g.

Difficulties in test problems are introduced by choosing appropriate functions f1,
g, and h [15]:

• Convexity and discontinuity in the Pareto front is handled by the function h.
• Convergence to the true Pareto front is handled by the function g.
• Diversity in the Pareto front is handled by the function f1.

The test problems that we consider are defined through specific choices of f1, g, and h.
The algorithm is coded in C++ and uses the NOMAD 0.6 [12] implementation

of Mads as a subroutine to solve each single-objective formulation. The point x0 =
(0.51, 0.51) is used as a starting point to initialize the algorithm, and the initial mesh
is set to 0.01. Two termination criteria are selected for each run of Mads on the
single-objective formulations:

• Poll size termination: the run ends when the mesh size parameter Δm drops

below δĵ

1000 , where δĵ is defined in Figure 4.1.
• Truth evaluations termination: the run ends after 50 evaluations of the refor-

mulated objective function unless indicated explicitly.
In our numerical experiments, BiMads generates either 10 or 30 single-objective
formulations, and therefore, calls Mads 10 or 30 times. This strategy generates at
most 500 and 1500 evaluations of objective function, respectively.

For each test problem, a figure containing four graphs is presented: two of them
for each single-objective formulations, and two of them for the runs involving 10 or
30 calls to Mads.

Each graph represents the function values of all trial points generated by BiMads

using the “·” symbol. The symbol “∗” is used for nondominated points found by the
algorithm. The curves represent the global and local Pareto fronts, or the boundary
of the image Y of X. For each series of experiments, the quality of the approximation
YL provided by the algorithm BiMads is discussed according to the two key issues
presented in section 2: convergence of solutions to the Pareto curve YP and uniformity
of the solutions distribution in YL. The coverage measure c̃ introduced in (4.2) is
displayed for each test problems.

5.1. Convex and nonconvex of Pareto fronts. Convexity of Pareto front is
affected by the function h. Deb [15] proposes the following function:

(5.1) h(f1, g) =

{
1 −( f1

g )α if f1 ≤ g,

0 otherwise.

The parameter α controls the shape of the Pareto front. The Pareto front is
nonconvex if α > 1 and convex otherwise. Note that the global Pareto solutions are
obtained at the global minimum of the function g. We consider the following functions
for g and f1:

g(x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 − 3 exp

(
−x2 − 0.2

0.02

)2

if 0 ≤ x2 ≤ 0.4,

4 − 2 exp

(
−x2 − 0.7

0.2

)2

if 0.4 ≤ x2 ≤ 1,

f1(x1) = 4x1,

where both x1 and x2 ∈ [0, 1].
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Three series of tests are generated with different values of α. In the first test, the
global Pareto front is convex. In the second one, the global Pareto front is nonconvex.
Finally, in the third test, the global Pareto front is convex but the local Pareto front
is nonconvex.

Convex global Pareto front. By setting α to 0.25 in problem (5.1), we obtain a
biobjective problem with the convex global Pareto front. Results obtained by applying
BiMads with 10 runs of Mads and 30 runs of Mads are illustrated in Figure 5.1.
The figure shows that all nondominated points YL found by BiMads belong to the
global Pareto curve YP for all series of test. Furthermore, the figure suggests that
BiMads achieves a well distributed and well spread nondominated points in the global
Pareto front for each formulation.

Nonconvex global Pareto front. By setting α to 4 in problem (5.1), we ob-
tain a biobjective problem with nonconvex global Pareto front. Results obtained by
applying BiMads with 10 runs of Mads and 30 runs of Mads are shown in Fig-
ure 5.2. Except for the first test corresponding to results of BiMads with 10 runs of
Mads applied to single-objective normalized formulation, all tests generate nondom-
inated solutions YL in the global Pareto front YP . A well spread Pareto solutions is
obtained using 30 runs of Mads.

Nonconvex local optimal front and convex global front. We set α =
0.25 + 3.75(g(x2) − 1) [15] in problem (5.1). The resulting problem is hard to solve
for algorithms that exploit the shape of the Pareto curve [15]. Results obtained by
applying BiMads with 10 runs of Mads and 30 runs of Mads are shown in Figure 5.3.
Using 10 runs of Mads, BiMads generates a set of nondominated points YL close to
the Pareto curve YP . The approximation quality is better using the single-objective
product formulation. Using 30 runs of Mads, all nondominated points found by
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f1 f1

f2 f2

f2 f2

R̂r with 10 runs of Mads R̂r with 30 runs of Mads

R̃r with 10 runs of Mads R̃r with 30 runs of Mads

446 evaluations c̃ = 6.6 × 10−3

440 evaluations c̃ = 5.2 × 10−3

1446 evaluations c̃ = 1.0 × 10−3

1446 evaluations c̃ = 6.0 × 10−4

Fig. 5.1. Convex global Pareto front: BiMads with 10 and 30 optimization runs of Mads.
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f1 f1

f1 f1

f2 f2

f2 f2

R̂r with 10 runs of Mads R̂r with 30 runs of Mads

R̃r with 10 runs of Mads R̃r with 30 runs of Mads

423 evaluations c̃ = 2.1 × 10−1

439 evaluations c̃ = 3.1 × 10−2

1408 evaluations c̃ = 2.2 × 10−3

1439 evaluations c̃ = 1.9 × 10−3

Fig. 5.2. Nonconvex global Pareto front: BiMads with 10 and 30 optimization runs of Mads.

f1 f1

f1 f1

f2 f2

f2 f2

R̂r with 10 runs of Mads R̂r with 30 runs of Mads

R̃r with 10 runs of Mads R̃r with 30 runs of Mads

375 evaluations c̃ = 7.5 × 10−1

446 evaluations c̃ = 1.7 × 10−2

1367 evaluations c̃ = 1.3 × 10−3

1446 evaluations c̃ = 8.5 × 10−4

Fig. 5.3. Nonconvex local optimal front and convex global front: BiMads with 10 and 30
optimization runs of Mads.
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f1 f1

f1 f1

f2 f2

f2 f2

R̂r with 10 runs of Mads R̂r with 30 runs of Mads

R̃r with 10 runs of Mads R̃r with 30 runs of Mads

436 evaluations c̃ = 5.0 × 10−2

445 evaluations c̃ = 5.5 × 10−2

1383 evaluations c̃ = 3.9 × 10−2

1394 evaluations c̃ = 3.9 × 10−2

Fig. 5.4. Discontinuous global front: BiMads with 10 and 30 optimization runs of Mads.

BiMads lie on the global Pareto curve, i.e., YL ⊂ YP . The nondominated points YL
are well spread among the Pareto curve.

5.2. Discontinuous Pareto front. Deb [15] proposes a family of test problems
in which the Pareto front is discontinuous:

h(f1, g) = 1 −
(
f1

g

)α

− f1

g sin(2πqf1),

f1(x1) = x1,
g(x2) = 1 + 10x2,

where x1, x2 ∈ [0, 1], α > 0, and q is the number of discontinuous regions. We use
the same values for α and q as in [15], i.e., α = 2 and q = 4. Results obtained by
applying BiMads with 10 and 30 runs of Mads are shown in Figure 5.4.

Figure 5.4 shows that BiMads generates nondominated solutions YL in all four
discontinuous Pareto regions. The solutions YL are well distributed among the Pareto
curve YP . Table 5.1 displays the coverage measure c̃ for each of the four disjoint
regions. The table also reports the mean value μ and standard deviation σ of c̃
over these regions. Moreover, using 30 optimization runs of Mads, results obtained
by applying R̃r formulation are slightly better than those obtained by applying R̂r

formulation.

5.3. Biased search space. In order to make the convergence to the Pareto
front more problematic, Deb [15] proposes the following function g:

g(x2) = 1 + xγ
2 ,
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Table 5.1

Coverage measure c̃ of each discontinuous Pareto region.

c̃ R̂r formulation
Region 1 2 3 4 μ σ

10 runs .0078 .0039 .0098 .0433 .0162 .0182
30 runs .0100 .0054 .0040 .0025 .0054 .0032

c̃ R̃r formulation
Region 1 2 3 4 μ σ

10 runs .0076 .0033 .0091 .0552 .0188 .0243
30 runs .0012 .0030 .0029 .0059 .0032 .0019
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R̂r with 10 runs of Mads R̂r with 30 runs of Mads R̂r with 500 runs of Mads

R̃r with 10 runs of Mads R̃r with 30 runs of Mads R̃r with 500 runs of Mads

449 evaluations c̃ = 4.1 × 10−2 1449 evaluations c̃ = 2.9 × 10−3 48458 evaluations c̃ = 1.0 × 10−5

449 evaluations c̃ = 2.9 × 10−2 1449 evaluations c̃ = 2.5 × 10−3 40021 evaluations c̃ = 5.1 × 10−5

Fig. 5.5. Biased search: BiMads with 10, 30, and 500 optimization runs of Mads.

where γ is a real parameter that controls the biasness in the search space. To complete
the illustrative example, the following functions for f1 and h are used [15]:

f1(x1) = x1,

h(f1, g) = 1 −
(
f1

g

)2

.

Results obtained for γ = 0.25 by applying BiMads with 10 and 30 runs of Mads are
shown in the top part of Figure 5.5. The nondominated solutions found by the
algorithm approach the global Pareto curve; but no solution lies on the Pareto curve.
Deb [15] observes that if γ < 1, then the density of solutions increases by moving away
from the Pareto front. Hence, by randomly generating 50,000 solutions for γ = 0.25,
not even one solution lies near the Pareto optimal front [15]. For comparison purposes,
the maximal number of function evaluations was raised to 50,000 (i.e., the number of
runs of Mads was increased to 500 and the maximal number of function evaluations
was raised to 100 for each run). Results are shown in the bottom of Figure 5.5. By
increasing the objective evaluations number, all nondominated points YL found by
BiMads lie on the global Pareto front YP . The points are well spread along YP .

5.4. Nonuniformly represented Pareto front. Nonuniformity of solution
along the Pareto front is achieved by choosing a nonlinear function for f1. An example
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f1 f1

f1 f1

f2 f2

f2 f2

R̂r with 10 runs of Mads R̂r with 30 runs of Mads

R̃r with 10 runs of Mads R̃r with 30 runs of Mads

473 evaluations c̃ = 4.8 × 10−3

445 evaluations c̃ = 5.4 × 10−3

1383 evaluations c̃ = 2.3 × 10−4

1394 evaluations c̃ = 3.2 × 10−4

Fig. 5.6. Nonuniformly represented Pareto front: BiMads with 10 and 30 optimization runs of
Mads.

is given in [15] with the following functions:

f1(x1) = 1 − exp(−4x1) sin4(5πx1),

h(f1, g) =

{
1 − ( f1

g )4 if f1 ≤ g,

0 otherwise,

g(x2) =

⎧⎨
⎩

4 − 3 exp(−x2−0.2
0.02 )2 if 0 ≤ x2 ≤ 0.4,

4 − 2 exp(−x2−0.7
0.2 )2 if 0.4 ≤ x2 ≤ 1.

Using 500 uniformly-spaced points in x1, Deb [15] shows that the corresponding
Pareto curve is biased for solutions for which f1 value is near 1: most of the generated
solutions have the function value f1 = 1. Thereby, solutions cluster around f1 = 1
values. Results obtained by applying BiMads with 10 and 30 runs of Mads are shown
in Figure 5.6. BiMads overcomes the bias around f1 = 1 values. Both methods find
well spread nondominated solutions YL belonging to the Pareto curve YP . With 30
iterations run, the Pareto solutions are more uniformly distributed.

6. Discussion. We proposed a new solution approach for MOP ensuring some
first-order necessary optimality conditions for nonsmooth functions. In addition to
the convergence analysis, a new analysis of uniformity is proposed. Our new algo-
rithm BiMads for biobjective optimization BOP was presented and applied to six
problems from the literature designed to highlight some intrinsic difficulties of BOP.
The algorithm performance is evaluated by studying the quality of solution set in
terms of proximity to the Pareto front and uniformity of solutions distribution.

Results for all test problems are summarized in Table 6.1. The entries of Table 6.1
are mean value μ and standard deviation σ of the coverage measure c̃ over the six
test problems.
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Table 6.1

Coverage measure c̃ for test problems.

c̃ R̂r formulation R̃r formulation
Runs μ σ μ σ

10 runs .1714 .349 .0177 .0105
30 runs .0025 .002 .0017 .0013

Table 6.1 shows that the uniformity of Pareto solutions distribution is sensitive
to the number of runs and the formulation adopted. The best results are obtained by
applying 30 runs of Mads using the R̃r formulation. This may be in part due to the
fact that R̃r does not introduce additional nonsmoothness as R̂r does.

In future work, we plan to apply BiMads to larger and nonsmooth real engineer-
ing problems. We also plan to study the case where blackbox constraints are present.
A simple way to do so would be to treat the constraints by the barrier approach to
reject all infeasible points as done by Mads. However, the convergence analysis would
not be trivial for nonsmooth functions. Another aspect that we wish to study is the
use of parallelism in the biobjective framework, and the extension to problems with
more than two objective functions.
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Abstract. A result on the existence and uniqueness of metric projection for certain sets is
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1. Introduction. In the present paper we deal with the classical problem of
convexity of Chebyshev sets: we are going to present a conjecture, aimed at the
construction of a nonconvex Chebyshev set in a Hilbert space. First, let us introduce
some definitions and results which we are going to employ.

In what follows, we follow the surveys by Vlasov [10] and Balaganskĭı and Vlasov
[2]; we also refer the reader to a recent paper by Cobzaş [3] for a state-of-the-art
description of the theory. Let X be a (real) Banach space, M be a subset of X: for
every x ∈ X, we define the distance from x to M as

d(x,M) := inf
y∈M

‖x− y‖.

Also, we define the metric projection onto M as the set-valued function PM : X → 2M

mapping x ∈ X into the (possibly empty) set

PM (x) := {y ∈ M : ‖x− y‖ = d(x,M)}.

Definition 1. A subset M of X is a Chebyshev set if PM (x) is a singleton for
every x ∈ X.

An important family of Chebyshev sets, in certain Banach spaces, is that of convex
closed sets, as the following classical result proves (in the form of a characterization).

Theorem 1 (see [10, Theorem 0.6]). The following are equivalent:
• X is strictly convex and reflexive;
• every convex closed subset of X is Chebyshev.

Obviously, every Chebyshev set in a Banach space is closed, but it is not known,
in general, whether a Chebyshev set is necessarily convex. So, the following question
is a natural one and represents one of the most celebrated and challenging open prob-
lems in the theory of best approximation: does a class of Banach spaces containing
nonconvex Chebyshev sets exist?

For strictly convex, smooth, finite-dimensional spaces, the answer is negative,
as proved by Efimov and Stechkin in [5]. However, the problem is still open in the
case of infinite-dimensional Banach spaces. Note that completeness is a fundamental
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assumption here: for instance, Johnson in [7] has proved the existence of a nonconvex
Chebyshev set in a pre-Hilbert space with infinite dimension.

A partial answer is known under a twofold restriction, that is, for the case of
approximatively compact Chebyshev sets in uniformly convex, smooth spaces. We
will rapidly overview this result, since it will be useful in what follows. Let us give
the following definition.

Definition 2. Let M be a subset of X, x be a point of X: a minimizing se-
quence in M for x is a sequence {yn} in M such that ‖x − yn‖ → d(x,M). M is
approximatively compact if, for every x ∈ X, each minimizing sequence in M for x
admits a subsequence {ynk

} converging to an element of M .
We note that, in the above framework, the limit of {ynk

} lies in PM (x). Under
such restrictions, Efimov and Stechkin proved in [6] the following result.

Theorem 2. Let X be a uniformly convex, smooth Banach space, and M be a
Chebyshev set in X. Then, the following are equivalent:

• M is convex;
• M is approximatively compact;
• M is sequentially weakly closed.

We observe that, whenever M is a Chebyshev set, approximative compactness is
equivalent to the following property for all x ∈ X:

(S) each minimizing sequence in M for x converges to an element of M .
Obviously, the limit of each minimizing sequence in M for x is the unique point of
PM (x).

In particular, we are interested in the problem of convexity of Chebyshev sets in
Hilbert spaces, which was studied by Asplund in [1]. In [8], Klee put forward the
conjecture that, in an infinite-dimensional Hilbert space, nonconvex Chebyshev sets
do exist. To support his conjecture, he proposed the following example: in the Hilbert
space �2, let

K :=

{
{xn} ∈ �2 :

∞∑
n=1

nx2
n < 1

}

and define

M :=
{
{xn} ∈ �2 : d({xn},K) ≥ 1

}
;

then M is not convex and, for every {xn} /∈ K, PM ({xn}) is a singleton, while for
{xn} ∈ K, PM ({xn}) = ∅.

Our approach is similar to that of Klee, though set in a more general framework.
It is based on the following result (see section 2 for the proof).

Theorem 3. Let X be a Hilbert space, C be a nonempty subset of X, K be the
closed convex hull of C, and x0 ∈ X \K. Then, for all real t > 0, denoting

Mt := {y ∈ X : d(y, C) ≥ t} ,

the set PMt
(x0) is a singleton, towards which each minimizing sequence in Mt for x0

converges.
In connection with the above result, we present a conjecture.
Conjecture 1. There exist a Hilbert space X, a subset C of X, and a real

number t > 0 such that the set Mt satisfies the following conditions:
(A1) Mt is not convex;
(A2) for every x lying in the closed convex hull of C, PMt

(x) is a singleton.
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Our motivation is the following: suppose X, C, and t comply with Conjecture 1;
then, due to Theorem 3, Mt would be a nonconvex Chebyshev set in X.

We believe that our conjecture is likely to be proved, as, due to the definition of
Mt, condition (A1) is very easy to fulfill (the same is not true for condition (A2), of
course). Also, we observe that, by Theorem 2, if Conjecture 1 is true, then Mt cannot
be approximatively compact (or, equivalently, sequentially weakly closed): that is,
since condition (S) holds for all x /∈ K, there must be at least one point x ∈ K and a
minimizing sequence in Mt for x which does not converge.

Our result relies on the general method introduced by Ricceri in [9], where some
minimization problems, related to C1 functionals with locally Lipschitz derivative, are
studied following a new approach based on a classical saddle point theorem, which we
recall here in a form suitable to our purposes.

Theorem 4 (see [11, Theorem 49.A]). Let Λ be a compact real interval, and
Φ : X × Λ → R be a function such that

• Φ(·, λ) is continuous and convex for all λ ∈ Λ;
• Φ(x, ·) is continuous and concave for all x ∈ X;
• there exists λ0 ∈ Λ such that Φ(·, λ0) is coercive.

Then there exists a pair (x̄, λ̄) ∈ X × Λ such that

Φ(x̄, λ̄) = min
x∈X

Φ(x, λ̄) = max
λ∈Λ

Φ(x̄, λ).

2. The results. Our first step is the following general result.
Theorem 5. Let X be a Hilbert space, C be a nonempty subset of X, x0 ∈ X,

and for all λ ∈ [0, 1] let Iλ : X → R be defined by

Iλ(x) = ‖x− x0‖2 − λd2(x,C).

Moreover, assume the following condition:
(D) x0 is not a global minimizer of the functional I1.

Then there exists a positive τ ∈ R ∪ {+∞}, τ > d(x0, C) such that for all t ∈
]d(x0, C), τ [, denoting

Mt := {y ∈ X : d(y, C) ≥ t} ,

the set PMt(x0) is a singleton, towards which each minimizing sequence in Mt for x0

converges.
Proof. First we prove that the functional I1 is convex: indeed, it can be ex-

pressed as

I1(x) = sup
y∈C

[
2〈y − x0, x〉 + ‖x0‖2 − ‖y‖2

]
,

so it is convex as the supremum of a family of convex functions. From this, it readily
follows that Iλ is strictly convex for all λ ∈ [0, 1[.

We denote by Q the set of global minimizers of I1, and we put

(2.1) ρ := d(x0, Q) (ρ = +∞ if Q = ∅) ,

so by condition (D), since Q is closed, we have ρ > 0. Then we set

τ := sup
x∈B(x0,ρ)

d(x,C) (τ = +∞ if ρ = +∞) .
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It is easily seen that

τ > d(x0, C).

Indeed, clearly τ ≥ d(x0, C); moreover, assuming τ = d(x0, C), for all x ∈ B(x0, ρ)
we would have

I1(x) = ‖x− x0‖2 − d2(x,C) ≥ −d2(x0, C) = I1(x0),

so x0 would be a local minimizer of the convex functional I1, which, in turn, would
imply x0 ∈ Q, against condition (D).

Choose an arbitrary t ∈ ]d(x0, C), τ [. We observe that d(x0,Mt) ∈ ]0, ρ[: indeed,
d(x0,Mt) > 0 as x0 /∈ Mt and the latter is a closed set; on the other hand, d(x0,Mt) <
ρ since, as t < τ , there exists x ∈ B(x0, ρ) ∩Mt, so

d(x0,Mt) ≤ ‖x0 − x‖ < ρ.

We are going to apply Theorem 4 with Λ = [0, 1] and

Φ(x, λ) = ‖x− x0‖2 + λ
(
t2 − d2(x,C)

)
.

Such a function complies with all the hypotheses of Theorem 4 (with an arbitrary
λ0 ∈ [0, 1[), and hence there exists a pair (x̄, λ̄) ∈ X × Λ satisfying

‖x̄− x0‖2 + λ̄
(
t2 − d2(x̄, C)

)
= inf

x∈X

[
‖x− x0‖2 − λ̄d2(x,C)

]
+ λ̄t2(2.2)

= ‖x̄− x0‖2 + sup
λ∈Λ

[
λ
(
t2 − d2(x̄, C)

)]
.

The above equality has very important consequences for the proof. First we prove
that

(2.3) d(x̄, C) ≤ t.

Arguing by contradiction, we suppose d(x̄, C) > t: then, from (2.2) it would follow
that λ̄ = 0, which, in turn, would imply x̄ = x0 and so d(x̄, C) < t, against our
assumption. Then we prove that

(2.4) λ̄ < 1.

Again, we argue by contradiction and assume λ̄ = 1: hence, from (2.2) we would
deduce that x̄ ∈ Q, so by (2.1), ‖x̄ − x0‖ ≥ ρ; the latter inequality, together with
(2.3), yields

I1(x̄) ≥ ρ2 − t2.

Recalling that t < τ , we note that there exists y ∈ B(x0, ρ) such that d(y, C) > t
and so

I1(y) < ρ2 − t2,

against the fact that x̄ ∈ Q. Now we can improve (2.3) and get

(2.5) d(x̄, C) = t
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(in particular, x̄ ∈ Mt). Indeed, if d(x̄, C) < t, from (2.2) it would follow that λ̄ = 1,
against (2.4).

Now we are in a position to prove our assertion. With this aim in mind, we
observe that, by (2.2), x̄ is a global minimizer of the functional Iλ̄; moreover, by
(2.4), Iλ̄ is strictly convex, continuous, and coercive, so x̄ is its only minimizer, and
every sequence {xn} in X, such that Iλ̄(xn) → Iλ̄(x̄), weakly converges to x̄ (see [4,
Example 8, p. 3]).

We now prove that PMt
(x0) = {x̄}, that is, that for every y ∈ Mt, y = x̄, we have

‖y − x0‖ > ‖x̄− x0‖. Indeed, by what has been argued above, Iλ̄(y) > Iλ̄(x̄), which,
by (2.5), implies

‖y − x0‖2 > ‖x̄− x0‖2 + λ̄
(
d2(y, C) − t2

)
≥ ‖x̄− x0‖2.

Finally, we prove that condition (S) holds for the point x0, that is, that every sequence
{yn} in Mt such that ‖yn − x0‖ → ‖x̄− x0‖ converges to x̄. Indeed, for all n ∈ N we
have

Iλ̄(yn) ≤ ‖yn − x0‖2 − λ̄t2,

and the right-hand side tends to Iλ̄(x̄), so, by what has been stated above, {yn}
weakly converges to x̄; then, by well-known results, the weak convergence implies the
strong convergence. Thus, the proof is complete.

Our thesis, in the language of optimization theory, can be expressed by saying
that, for every t ∈ ]d(x0, C), τ [, the problem of minimizing on Mt the distance from
x0 is Tykhonov well posed (see [4]).

Remark 1. Under the same assumptions as in Theorem 5, an analogous result is
achieved for the set

Nt := {y ∈ X : d(y, C) = t}

for all t ∈ ]d(x0, C), τ [.
Our main hypothesis, namely condition (D), is indeed very general. In particular,

it is fulfilled whenever x0 does not belong to the closed convex hull of C. Thus,
Theorem 3 is easily deduced from Theorem 5, as follows.

Proof of Theorem 3. Let us fix t > 0; then one of the following cases occurs:
• If d(x0, C) ≥ t, then x0 ∈ Mt, so obviously PMt(x0) = {x0}, and each

minimizing sequence in Mt for x0 tends to x0.
• If d(x0, C) < t, then we apply Theorem 5. With this aim in mind, we prove

that the functional I1 is unbounded from below. Indeed, since x0 /∈ K, we
can apply the separation theorem in its strongest form, assuring the existence
of an element ȳ ∈ X, ȳ = 0, and of a positive ε such that

〈ȳ, x〉 ≤ 〈ȳ, x0〉 − ε for all x ∈ K.

For all μ > 0 we get

I1(x0 + μȳ) = ‖μȳ‖2 − inf
x∈C

‖x0 + μȳ − x‖2

= sup
x∈C

(
−‖x0 − x‖2 + 2μ〈ȳ, x− x0〉

)
≤ −d2(x0, C) − 2με,
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so clearly

lim
μ→+∞

I1(x0 + μȳ) = −∞.

Thus, the set Q is empty: in particular, condition (D) is fulfilled. The thesis
of Theorem 5 follows, with τ = +∞, which concludes the proof.

Acknowledgment. We would like to thank the anonymous referees for useful
comments and suggestions.
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Abstract. We give some new regularity conditions for Fenchel duality in separated locally
convex vector spaces, written in terms of the notion of quasi interior and quasi-relative interior,
respectively. We provide also an example of a convex optimization problem for which the classical
generalized interior-point conditions given so far in the literature cannot be applied, while the one
given by us is applicable. By using a technique developed by Magnanti, we derive some duality results
for the optimization problem with cone constraints and its Lagrange dual problem, and we show
that a duality result recently given in the literature for this pair of problems has self-contradictory
assumptions.
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1. Introduction. Usually there is a so-called duality gap between the optimal
objective values of a primal convex optimization problem and its dual problem. A
challenge in convex analysis is to give sufficient conditions which guarantee strong
duality, the situation when the optimal objective values of the two problems are equal
and the dual problem has an optimal solution. Several generalized interior-point con-
ditions were given in the past in order to eliminate the above-mentioned duality gap.
Along the classical interior, some generalized interior notions were used, such as the
core [14], the intrinsic core [9], or the strong quasi-relative interior [2], in order to give
regularity conditions which guarantee strong duality. For an overview of these condi-
tions we invite the reader to consult [8], [16] (see also [17] for more on this subject).

Unfortunately, for infinite-dimensional convex optimization problems, also in prac-
tice, it can happen that the duality results given in the past cannot be applied because,
for instance, the interior of the set involved in the regularity condition is empty. This
is the case, for example, when we deal with the positive cones

lp+ = {x = (xn)n∈N ∈ lp : xn ≥ 0 ∀n ∈ N}

and

Lp
+(T, μ) = {u ∈ Lp(T, μ) : u(t) ≥ 0, a.e.}

of the spaces lp and Lp(T, μ), respectively, where (T, μ) is a σ-finite measure space
and p ∈ [1,∞). Moreover, also the strong quasi-relative interior (which is the weakest
generalized interior notion from the one mentioned above) of these cones is empty. For
this reason, for a convex set, Borwein and Lewis introduced the notion of the quasi-
relative interior [3], which generalizes all of the above-mentioned interior notions.
They proved that the quasi-relative interiors of lp+ and Lp

+(T, μ) are nonempty.
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In this paper, we start by considering the primal optimization problem with the
objective function being the sum of two proper convex functions defined on a separated
locally convex vector space, to which we attach its Fenchel dual problem, stated in
terms of the conjugates of the two functions. We give a new regularity condition
for Fenchel duality based on the notion of the quasi-relative interior of a convex set
using a separation theorem given by Cammaroto and Di Bella in [4]. Further, two
stronger regularity conditions are also given. We provide an appropriate example for
which our duality results are applicable, while the other generalized interior-point
conditions given in the past fail, justifying the theory developed in this paper. Then
we state duality results for the case when the objective function of the primal problem
is the sum of a proper convex function with the composition of another proper convex
function with a continuous linear operator. Let us notice that for this case Borwein
and Lewis in [3] also gave some conditions by means of the quasi-relative interior,
but they considered a more restrictive case, namely, that the codomain of the linear
operator is finite-dimensional. We consider the more general case, when both of the
spaces are infinite-dimensional.

In 1974 Magnanti proved that “Fenchel and Lagrange duality are equivalent” in
the sense that the classical Fenchel duality result can be deduced from the classical La-
grange duality result, and vice versa (see [13]). By using this technique we derive some
Lagrange duality results for the convex optimization problem with cone constraints,
written in terms of the quasi-relative interior. Let us notice that another condition for
Lagrange duality, stated also in terms of the quasi-relative interior, was given recently
by Cammaroto and Di Bella in [4]. We show that this result has self-contradictory
assumptions. Let us mention that also in [11] some regularity conditions, in terms of
the quasi-relative interior, have been introduced. However, most of these conditions
require the interior of a cone to be nonempty, and this fails for many optimization
problems as we pointed out above.

The paper is structured as follows. In the next section we give some definitions
and results which will be used later in the paper. Section 3 is devoted to the theory
of Fenchel duality. We give here the announced regularity conditions written in terms
of the quasi-relative interior. By using an idea due to Magnanti we derive in section
4 some duality results for the optimization problem with cone constraints and its
Lagrange dual problem.

2. Preliminary notions and results. Consider X, a separated locally convex
vector space, and X∗, its topological dual space. We denote by 〈x∗, x〉 the value of
the linear continuous functional x∗ ∈ X∗ at x ∈ X. Further, let idX : X → X,
idX(x) = x, for all x ∈ X, be the identity function of X. The indicator function of
C ⊆ X, denoted by δC , is defined as δC : X → R = R ∪ {±∞},

δC(x) =

{
0 if x ∈ C,
+∞ otherwise.

For a function f : X → R we denote by dom(f) = {x ∈ X : f(x) < +∞} its
domain and by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. We call f

proper if dom(f) �= ∅ and f(x) > −∞ for all x ∈ X. We also denote by êpi(f) =
{(x, r) ∈ X × R : (x,−r) ∈ epi(f)} the symmetric of epi(f) with respect to the x-
axis. For a given real number α, f − α : X → R is, as usual, the function defined
by (f − α)(x) = f(x) − α for all x ∈ X. Given two functions f : M1 → M2

and g : N1 → N2, where M1,M2, N1, N2 are nonempty sets, we define the function
f × g : M1 ×N1 → M2 ×N2 by f × g(m,n) = (f(m), g(n)) for all (m,n) ∈ M1 ×N1.
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The Fenchel–Moreau conjugate of f is the function f∗ : X∗ → R defined by

f∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)} ∀x∗ ∈ X∗.

For a subset C of X we denote by coC, aff C, clC, and intC its convex hull, affine
hull, closure, and interior, respectively. The set coneC :=

⋃
λ≥0 λC is the cone

generated by C. The following property, the proof of which we omit since it presents
no difficulty, will be used throughout the paper: If C is convex, then

(1) cone co(C ∪ {0}) = coneC.

The normal cone of C at x ∈ C is defined as NC(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤
0, ∀y ∈ C}.

Definition 2.1 (see [3]). Let C be a convex subset of X. The quasi-relative
interior of C is the set

qriC = {x ∈ C : cl cone(C − x) is a linear subspace of X}.

We give the following useful characterization of the quasi-relative interior of a
convex set.

Proposition 2.2 (see [3]). Let C be a convex subset of X and x ∈ C. Then
x ∈ qriC if and only if NC(x) is a linear subspace of X∗.

In the following we consider another interior notion for a convex set, which is
close to the one of the quasi-relative interior.

Definition 2.3. Let C be a convex subset of X. The quasi interior of C is the
set

qiC = {x ∈ C : cl cone(C − x) = X}.

The following characterization of the quasi interior of a convex set was given in
[6], where the space X was considered a reflexive Banach space. One can prove that
this property is true even in a separated locally convex vector space.

Proposition 2.4. Let C be a convex subset of X and x ∈ C. Then x ∈ qiC if
and only if NC(x) = {0}.

Proof. Assume first that x ∈ qiC, and take an arbitrary element x∗ ∈ NC(x).
One can easily see that 〈x∗, z〉 ≤ 0 for all z ∈ cl cone(C − x). Thus 〈x∗, z〉 ≤ 0 for all
z ∈ X, which is nothing else than x∗ = 0.

In order to prove the opposite implication we consider an arbitrary x̄ ∈ X and
prove that x̄ ∈ cl cone(C − x). By assuming the contrary, by a separation theorem
(see, for instance, Theorem 1.1.5 in [17]), one has that there exists x∗ ∈ X∗ \ {0} and
α ∈ R such that

〈x∗, z〉 < α < 〈x∗, x̄〉 ∀z ∈ cl cone(C − x).

Let y ∈ C be fixed. For all λ > 0 it holds that 〈x∗, y − x〉 < 1
λα, and this implies

that 〈x∗, y − x〉 ≤ 0. As this inequality is true for every arbitrary y ∈ C, we obtain
that x∗ ∈ NC(x). But this leads to a contradiction, and in this way the conclusion
follows.

It follows from the definitions above that qiC ⊆ qriC and qri{x} = {x} for all
x ∈ X. Moreover, if qiC �= ∅, then qiC = qriC. Although this property is given
in [12] in the case of a real normed space, it holds also in an arbitrary separated
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locally convex vector space, as follows by the properties given above. If X is a finite-
dimensional space, then qiC = intC (cf. [12]) and qriC = riC (cf. [3]), where riC is
the relative interior of C.

Useful properties of the quasi-relative interior are listed below. For the proof of
(i)–(viii) we refer to [1] and [3].

Proposition 2.5. Let us consider C and D two convex subsets of X, x ∈ X,
and α ∈ R. Then:

(i) qriC + qriD ⊆ qri(C + D);
(ii) qri(C ×D) = qriC × qriD;
(iii) qri(C − x) = qriC − x;
(iv) qri(αC) = α qriC;
(v) t qriC + (1 − t)C ⊆ qriC, ∀t ∈ (0, 1], and hence qriC is a convex set;
(vi) if C is an affine set, then qriC = C;
(vii) qri(qriC) = qriC.

If qriC �= ∅, then:
(viii) cl qriC = clC;
(ix) cl cone qriC = cl coneC.
Proof. (ix) The inclusion cl cone qriC ⊆ cl coneC is obvious. We prove that

coneC ⊆ cl cone qriC. Consider x ∈ coneC arbitrary. There exist λ ≥ 0 and c ∈ C
such that x = λc. Take x0 ∈ qriC. By applying property (v) we get tx0 + (1 − t)c ∈
qriC for all t ∈ (0, 1], so λtx0 + (1 − t)x = λ(tx0 + (1 − t)c) ∈ cone qriC for all
t ∈ (0, 1]. By passing to the limit as t ↘ 0 we obtain x ∈ cl cone qriC, and hence the
desired conclusion follows.

The next lemma plays an important role in this paper.
Lemma 2.6. Let A and B be nonempty convex subsets of X such that qriA∩B �=

∅. If 0 ∈ qi(A−A), then 0 ∈ qi(A−B).
Proof. Take x ∈ qriA∩B, and let x∗ ∈ NA−B(0) be arbitrary. We get 〈x∗, a−b〉 ≤

0, for all a ∈ A, for all b ∈ B. This implies that

(2) 〈x∗, a− x〉 ≤ 0 ∀a ∈ A,

that is, x∗ ∈ NA(x). As x ∈ qriA, NA(x) is a linear subspace of X∗, and hence
−x∗ ∈ NA(x), which is nothing else than

(3) 〈x∗, x− a〉 ≤ 0 ∀a ∈ A.

The relations (2) and (3) give us 〈x∗, a′−a′′〉 ≤ 0, for all a′, a′′ ∈ A, so x∗ ∈ NA−A(0).
Since 0 ∈ qi(A−A) we have NA−A(0) = {0} (cf. Proposition 2.4), and we get x∗ = 0.
As x∗ was arbitrary chosen we obtain NA−B(0) = {0}, and, by using again Proposition
2.4, the conclusion follows.

Next we give useful separation theorems in terms of the notion of the quasi-relative
interior.

Theorem 2.7. Let C be a convex subset of X and x0 ∈ C. If x0 �∈ qriC, then
there exists x∗ ∈ X∗, x∗ �= 0, such that

〈x∗, x〉 ≤ 〈x∗, x0〉 ∀x ∈ C.

Vice versa, if there exists x∗ ∈ X∗, x∗ �= 0, such that

〈x∗, x〉 ≤ 〈x∗, x0〉 ∀x ∈ C

and

0 ∈ qi(C − C),

then x0 �∈ qriC.
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Proof. Suppose that x0 �∈ qriC. According to Proposition 2.2, NC(x0) is not a
linear subspace of X∗, and hence there exists x∗ ∈ NC(x0), x

∗ �= 0. By using the
definition of the normal cone, we get that 〈x∗, x〉 ≤ 〈x∗, x0〉 for all x ∈ C.

Conversely, assume that there exists x∗ ∈ X∗, x∗ �= 0, such that 〈x∗, x〉 ≤ 〈x∗, x0〉
for all x ∈ C and 0 ∈ qi(C − C). We obtain

(4) 〈x∗, x− x0〉 ≤ 0 ∀x ∈ C,

that is, x∗ ∈ NC(x0). If we suppose that x0 ∈ qriC, then NC(x0) is a linear subspace
of X∗, and hence −x∗ ∈ NC(x0). By combining this with (4) we get 〈x∗, x− x0〉 = 0
for all x ∈ C. The last relation implies 〈x∗, x〉 = 0 for all x ∈ C − C, and from here
one has further that 〈x∗, x〉 = 0 for all x ∈ cl cone(C − C) = X. But this can be the
case just if x∗ = 0, which is a contradiction. In conclusion, x0 �∈ qriC.

Remark 2.8. In [5], [6] a similar separation theorem in the case when X is a real
normed space is given. For the second part of the above theorem the authors require
that the following condition must be fulfilled:

cl(TC(x0) − TC(x0)) = X,

where

TC(x0) =
{
y ∈ X : y = lim

n→∞
λn(xn − x0), λn > 0 ∀n ∈ N,

xn ∈ C ∀n ∈ N and lim
n→∞

xn = x0

}
is called the contingent cone to C at x0 ∈ C. In general, we have the following
inclusion: TC(x0) ⊆ cl cone(C−x0). If the set C is convex, then TC(x0) = cl cone(C−
x0) (cf. [10]). As cl(clE + clF ) = cl(E + F ), for arbitrary sets E,F in X and
coneA − coneA = cone(A − A), if A is a convex subset of X such that 0 ∈ A, the
condition cl(TC(x0)−TC(x0)) = X can be reformulated as follows: cl cone(C−C) = X
or, equivalently, 0 ∈ qi(C − C). Indeed, we have

cl[cl cone(C − x0) − cl cone(C − x0)] = X ⇔ cl[cone(C − x0) − cone(C − x0)] = X

⇔ cl cone(C − C) = X ⇔ 0 ∈ qi(C − C).

This means that Theorem 2.7 is a generalization to the case of separated locally
convex vector spaces of the separation theorem given in [5], [6] in the framework of
real normed spaces.

The condition x0 ∈ C in Theorem 2.7 is essential (see [6]). However, if x0 is
an arbitrary element of X, we can also give a separation theorem by using the fol-
lowing result due to Cammaroto and Di Bella (Theorem 2.1 in [4]). The mentioned
authors use this theorem in order to prove their strong duality result (Theorem 2.2
in [4]). Unfortunately, as we will show in section 4, this result has self-contradictory
assumptions.

Theorem 2.9 (see [4]). Let S and T be nonempty convex subsets of X with
qriS �= ∅, qriT �= ∅, and such that cl cone(qriS−qriT ) is not a linear subspace of X.
Then there exists x∗ ∈ X∗, x∗ �= 0, such that 〈x∗, s〉 ≤ 〈x∗, t〉 for all s ∈ S, t ∈ T .

The following result is a direct consequence of Theorem 2.9.
Corollary 2.10. Let C be a convex subset of X such that qriC �= ∅ and

cl cone(C − x0) is not a linear subspace of X, where x0 ∈ X. Then there exists
x∗ ∈ X∗, x∗ �= 0, such that 〈x∗, x〉 ≤ 〈x∗, x0〉 for all x ∈ C.

Proof. We take, in Theorem 2.9, S := C and T := {x0}. Then we apply Proposi-
tion 2.5 (iii) and (ix) to obtain the conclusion.
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3. Fenchel duality. In this section we give some new Fenchel duality results
stated in terms of the quasi interior and quasi-relative interior, respectively.

Consider the convex optimization problem

(PF ) inf
x∈X

{f(x) + g(x)},

where X is a separated locally convex vector space and f, g : X → R are proper
convex functions such that dom(f)∩ dom(g) �= ∅. The Fenchel dual problem to (PF )
is the followiing:

(DF ) sup
x∗∈X∗

{−f∗(−x∗) − g∗(x∗)}.

We denote by v(PF ) and v(DF ) the optimal objective values of the primal and the
dual problem, respectively. Weak duality always holds; that is, v(DF ) ≤ v(PF ). For
strong duality, the case when v(PF ) = v(DF ) and (DF ) has an optimal solution,
several generalized interior-point regularity conditions were given in the literature. In
order to recall them we need the following generalized interior notions. For a convex
subset C of X we have:

• coreC := {x ∈ C : cone(C − x) = X}, the core of C [14], [17];
• icrC := {x ∈ C : cone(C − x) is a linear subspace}, the intrinsic core of C

[1], [9], [17];
• sqriC := {x ∈ C : cone(C − x) is a closed linear subspace}, the strong quasi-

relative interior of C [2], [17].
We have the following inclusions:

coreC ⊆ sqriC ⊆ qriC and coreC ⊆ qiC ⊆ qriC.

If X if finite-dimensional, then qriC = sqriC = icrC = riC [3], [8] and coreC =
qiC = intC [12], [14].

Consider now the following regularity conditions:
(i) 0 ∈ int(dom(f) − dom(g));
(ii) 0 ∈ core(dom(f) − dom(g)) (cf. [14]);
(iii) 0 ∈ icr(dom(f)−dom(g)) and aff(dom(f)−dom(g)) is a closed linear subspace

(cf. [8]);
(iv) 0 ∈ sqri(dom(f) − dom(g)) (cf. [15]).
Let us notice that all of these conditions guarantee strong duality if we suppose

the additional hypotheses that the functions f and g are lower semicontinuous and
X is a Fréchet space. Between the above conditions we have the following relation:
(i) ⇒ (ii) ⇒ (iii) ⇔ (iv) [8].

Trying to give a similar regularity condition for strong duality by means of the
notion of the quasi-relative interior of a convex set, a natural question arises: Is
the condition 0 ∈ qri(dom(f) − dom(g)) sufficient for strong duality? The following
example (which can be found in [8]) gives us a negative answer, and this means that we
need additional assumptions in order to guarantee Fenchel duality (see Theorem 3.5).

Example 3.1. As in [8], we consider X = l2, the Hilbert space consisting of all
sequences x = (xn)n∈N such that

∑∞
n=1 x

2
n < ∞. Consider also the sets

C = {x ∈ l2 : x2n−1 + x2n = 0 ∀n ∈ N},

S = {x ∈ l2 : x2n + x2n+1 = 0 ∀n ∈ N}.
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The sets C and S are closed linear subspaces of l2 and C ∩ S = {0}. Define the
functions f, g : l2 → R by f = δC and g(x) = x1 if x ∈ S and +∞ otherwise. One
can see that f and g are proper, convex, and lower semicontinuous functions with
dom(f) = C and dom(g) = S. As was shown in [8], v(PF ) = 0 and v(DF ) = −∞, so
we have a duality gap between the optimal objective values of the primal problem and
its Fenchel dual. Moreover, S − C is dense in l2; thus cl cone(dom(f) − dom(g)) =
cl(C − S) = l2. The last relation implies that 0 ∈ qi(dom(f) − dom(g)), hence
0 ∈ qri(dom(f) − dom(g)).

Let us notice that if v(PF ) = −∞, by the weak duality follows that also strong
duality holds. This is the reason why we suppose in the following that v(PF ) ∈ R.

Lemma 3.2. The following relation is always true:

0 ∈ qri(dom(f) − dom(g)) ⇒ (0, 1) ∈ qri[epi(f) − êpi(g − v(PF ))].

Proof. One can see that êpi(g − v(PF )) = {(x, r) ∈ X × R : r ≤ −g(x) + v(PF )}.
Let us prove first that (0, 1) ∈ epi(f) − êpi(g − v(PF )). Since infx∈X [f(x) + g(x)] =
v(PF ) < v(PF ) + 1, there exists x′ ∈ X such that f(x′) + g(x′) < v(PF ) + 1. Then

(0, 1) = (x′, v(PF ) + 1 − g(x′)) − (x′,−g(x′) + v(PF )) ∈ epi(f) − êpi(g − v(PF )).
Now let (x∗, r∗) ∈ N

epi(f)−êpi(g−v(PF ))
(0, 1). We have

(5) 〈x∗, x− x′〉 + r∗(μ− μ′ − 1) ≤ 0 ∀(x, μ) ∈ epi(f) ∀(x′, μ′) ∈ êpi(g − v(PF )).

For (x, μ) := (x0, f(x0)) and (x′, μ′) := (x0,−g(x0) + v(PF ) − 2) in (5), where x0 ∈
dom(f) ∩ dom(g) is fixed, we get r∗(f(x0) + g(x0) − v(PF ) + 1) ≤ 0, and hence
r∗ ≤ 0. As infx∈X [f(x) + g(x)] = v(PF ) < v(PF ) + 1/2, there exists x1 ∈ X such
that f(x1) + g(x1) < v(PF ) + 1/2. By taking now (x, μ) := (x1, f(x1)) and (x′, μ′) :=
(x1,−g(x1) + v(PF ) − 1/2) in (5) we obtain r∗(f(x1) + g(x1) − v(PF ) − 1/2) ≤ 0,
and so r∗ ≥ 0. Thus r∗ = 0, and (5) gives: 〈x∗, x − x′〉 ≤ 0 for all x ∈ dom(f) for
all x′ ∈ dom(g). Hence x∗ ∈ Ndom(f)−dom(g)(0). Since Ndom(f)−dom(g)(0) is a linear
subspace of X∗ (cf. Proposition 2.2), we have 〈−x∗, x−x′〉 ≤ 0 for all x ∈ dom(f) for
all x′ ∈ dom(g), and so −(x∗, r∗) = (−x∗, 0) ∈ N

epi(f)−êpi(g−v(PF ))(0, 1), showing that

Nepi(f)−êpi(g−v(PF ))
(0, 1) is a linear subspace of X∗ × R. Hence, by applying again

Proposition 2.2, we get (0, 1) ∈ qri[epi(f) − êpi(g − v(PF ))].
Proposition 3.3. Assume that 0 ∈qi[(dom(f)−dom(g))− (dom(f)−dom(g))].

Then N
co[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R if and only

if N
co[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) = {(0, 0)}.
Proof. The sufficiency is trivial. In the following let us suppose that the set

N
co[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R. Take (x∗, r∗) ∈

N
co[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0). Then

(6) 〈x∗, x− x′〉 + r∗(μ− μ′) ≤ 0 ∀(x, μ) ∈ epi(f) ∀(x′, μ′) ∈ êpi(g − v(PF )).

Let x0 ∈ dom f ∩ dom(g) be fixed. By taking (x, μ) := (x0, f(x0)) ∈ epi(f) and

(x′, μ′) := (x0,−g(x0) + v(PF ) − 1/2) ∈ êpi(g − v(PF )) in the previous inequal-
ity, we get r∗(f(x0) + g(x0) − v(PF ) + 1/2) ≤ 0, implying r∗ ≤ 0. As the set
N

co[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R, the same argu-

ment applies also for (−x∗,−r∗), implying −r∗ ≤ 0. In this way we get r∗ = 0. The
inequality (6) and the relation (−x∗, 0) ∈ N

co[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) imply

that

〈x∗, x− x′〉 = 0 ∀(x, μ) ∈ epi(f) ∀(x′, μ′) ∈ êpi(g − v(PF )),
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which is nothing else than 〈x∗, x−x′〉 = 0 for all x ∈ dom(f) for all x′ ∈ dom(g), and
thus 〈x∗, x〉 = 0 for all x ∈ dom(f) − dom(g). Since x∗ is linear and continuous, the
last relation implies that 〈x∗, x〉 = 0 for all x ∈ cl cone[(dom(f)−dom(g))−(dom(f)−
dom(g))] = X; hence x∗ = 0, and the conclusion follows.

Remark 3.4. (a) By (1) one can see that cl cone co[(epi(f) − êpi(g − v(PF ))) ∪
{(0, 0)}] = cl cone[epi(f) − êpi(g − v(PF ))]. Hence one has the following sequence of
equivalences: Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R ⇔
(0, 0) ∈ qri co[(epi(f)−êpi(g−v(PF )))∪{(0, 0)}] ⇔ cl cone co[(epi(f)−êpi(g−v(PF )))∪
{(0, 0)}] is a linear subspace of X × R ⇔ cl cone(epi(f) − êpi(g − v(PF ))) is a linear
subspace of X × R. The relation N

co[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) = {(0, 0)} is

equivalent to (0, 0) ∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] (cf. Proposition 2.4),
so in the case 0 ∈ qi[(dom(f) − dom(g)) − (dom(f) − dom(g))] the conclusion of the
previous proposition can be reformulated as follows:

cl cone(epi(f) − êpi(g − v(PF ))) is a linear subspace of X × R ⇔

(0, 0) ∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}]

or, equivalently,

(0, 0) ∈ qri co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] ⇔

(0, 0) ∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}].

(b) One can prove that the primal problem (PF ) has an optimal solution if and

only if (0, 0) ∈ epi(f) − êpi(g − v(PF )). This means that if we suppose that the
primal problem has an optimal solution and 0 ∈ qi[(dom(f) − dom(g)) − (dom(f) −
dom(g))], then the conclusion of the previous proposition can be rewritten as follows:
N

(epi(f)−êpi(g−v(PF )))(0, 0) is a linear subspace of X∗ × R if and only if

N
(epi(f)−êpi(g−v(PF )))

(0, 0) = {(0, 0)} or, equivalently,

(0, 0) ∈ qri[epi(f) − êpi(g − v(PF ))] ⇔ (0, 0) ∈ qi[epi(f) − êpi(g − v(PF ))].

We give now the first strong duality result for (PF ) and its Fenchel dual (DF ).
Let us notice that for the functions f and g we suppose just convexity properties, and
we do not use any closedness type of condition.

Theorem 3.5. Suppose that 0 ∈ qi[(dom(f) − dom(g)) − (dom(f) − dom(g))],

0 ∈ qri(dom(f)−dom(g)), and (0, 0) /∈ qri co[(epi f− êpi(g−v(PF )))∪{(0, 0)}]. Then
v(PF ) = v(DF ), and (DF ) has an optimal solution.

Proof. Lemma 3.2 ensures that (0, 1) ∈ qri[epi(f) − êpi(g − v(PF ))], and hence

qri[epi(f)− êpi(g−v(PF ))] �= ∅. The condition (0, 0) /∈ qri co[(epi f− êpi(g−v(PF )))∪
{(0, 0)}], together with the relation cl cone co[(epi f − êpi(g − v(PF ))) ∪ {(0, 0)}] =

cl cone[epi(f) − êpi(g − v(PF ))], implies that cl cone[epi(f) − êpi(g − v(PF ))] is not a

linear subspace of X ×R. We apply Corollary 2.10 with C := epi(f)− êpi(g− v(PF ))
and x0 = (0, 0). Thus there exists (x∗, λ) ∈ X∗ × R, (x∗, λ) �= (0, 0) such that

(7) 〈x∗, x〉 + λμ ≥ 〈x∗, x′〉 + λμ′ ∀(x, μ) ∈ êpi(g − v(PF )) ∀(x′, μ′) ∈ epi(f).

We claim that λ ≤ 0. Indeed, if λ > 0, then for (x, μ) := (x0,−g(x0) + v(PF )) and
(x′, μ′) := (x0, f(x0) + n), n ∈ N, where x0 ∈ dom(f) ∩ dom(g) is fixed, we obtain
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from (7): 〈x∗, x0〉 + λ(−g(x0) + v(PF )) ≥ 〈x∗, x0〉 + λ(f(x0) + n) for all n ∈ N. By
passing to the limit as n → +∞ we obtain a contradiction. Next we prove that λ < 0.
Suppose that λ = 0. Then from (7) we have 〈x∗, x〉 ≥ 〈x∗, x′〉 for all x ∈ dom(g) for
all x′ ∈ dom(f), and hence 〈x∗, x〉 ≤ 0 for all x ∈ dom(f) − dom(g). By using the
second part of Theorem 2.7, we obtain 0 �∈ qri(dom(f) − dom(g)), which contradicts
the hypothesis. Thus we must have λ < 0, and so we obtain from (7):〈

1

λ
x∗, x

〉
+ μ ≤

〈
1

λ
x∗, x′

〉
+ μ′,∀(x, μ) ∈ êpi(g − v(PF )),∀(x′, μ′) ∈ epi(f).

Let be r ∈ R such that

μ′ + 〈x∗
0, x

′〉 ≥ r ≥ μ + 〈x∗
0, x〉 ∀(x, μ) ∈ êpi(g − v(PF )) ∀(x′, μ′) ∈ epi(f),

where x∗
0 := 1

λx
∗. The first inequality shows that f(x) ≥ 〈−x∗

0, x〉 + r for all x ∈ X,
that is, f∗(−x∗

0) ≤ −r. The second one gives us −g(x) + v(PF ) + 〈x∗
0, x〉 ≤ r for all

x ∈ X; hence g∗(x∗
0) ≤ r−v(PF ), and so we have −f∗(−x∗

0)−g∗(x∗
0) ≥ r+v(PF )−r =

v(PF ). This implies that v(DF ) ≥ v(PF ). As the opposite inequality is always true,
we get v(PF ) = v(DF ), and x∗

0 is an optimal solution of the problem (DF ).
The above theorem combined with Remark 3.4(b) gives us the following result.
Corollary 3.6. Suppose that the primal problem (PF ) has an optimal solution,

0 ∈ qi[(dom(f) − dom(g)) − (dom(f) − dom(g))], 0 ∈ qri(dom(f) − dom(g)), and

(0, 0) /∈ qri[epi(f)− êpi(g− v(PF ))]. Then v(PF ) = v(DF ), and (DF ) has an optimal
solution.

Remark 3.7. The condition 0 ∈ qi[(dom(f)−dom(g))−(dom(f)−dom(g))] implies
that

0 ∈ qri(dom(f) − dom(g)) ⇔ 0 ∈ qi(dom(f) − dom(g)).

Indeed, denote by C := dom(f) − dom(g). Obviously 0 ∈ qiC implies that
0 ∈ qriC. Suppose now that 0 ∈ qriC, and let x∗ ∈ NC(0) be arbitrary. We have
〈x∗, x〉 ≤ 0 for all x ∈ C. Since NC(0) is a linear subspace of X∗, we obtain 〈x∗, x〉 = 0
for all x ∈ C. We get further 〈x∗, x〉 = 0 for all x ∈ cl cone(C−C) = X, which implies
that x∗ = 0. Thus NC(0) = {0}, and the conclusion follows.

Some stronger versions of Theorem 3.5 and Corollary 3.6, respectively, follow.
Theorem 3.8. Suppose that 0 ∈ qi(dom(f)− dom(g)) and (0, 0) /∈ qri co[(epi(f)

− êpi(g − v(PF ))) ∪ {(0, 0)}]. Then v(PF ) = v(DF ), and (DF ) has an optimal solu-
tion.

Proof. We have dom(f) − dom(g) ⊆ (dom(f) − dom(g)) − (dom(f) − dom(g)),
so the condition 0 ∈ qi(dom(f) − dom(g)) implies that 0 ∈ qi[(dom(f) − dom(g)) −
(dom(f) − dom(g))] and 0 ∈ qri(dom(f) − dom(g)). Then we apply Theorem 3.5 to
obtain the conclusion.

Corollary 3.9. Suppose that the primal problem (PF ) has an optimal solution,

0 ∈ qi(dom(f) − dom(g)), and (0, 0) /∈ qri[epi(f) − êpi(g − v(PF ))]. Then v(PF ) =
v(DF ), and (DF ) has an optimal solution.

Theorem 3.10. Suppose that dom(f)∩qri dom(g) �= ∅, 0 ∈ qi(dom(g)−dom(g)),

and (0, 0) /∈ qri co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}]. Then v(PF ) = v(DF ), and
(DF ) has an optimal solution.

Proof. We apply Lemma 2.6 with A := dom(g) and B := dom(f). We get
0 ∈ qi(dom(g) − dom(f)) or, equivalently, 0 ∈ qi(dom(f) − dom(g)). We obtain the
result by applying Theorem 3.8.
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Corollary 3.11. Suppose that the primal problem (PF ) has an optimal solution,

dom(f) ∩ qri dom(g) �= ∅, 0 ∈ qi(dom(g) − dom(g)), and (0, 0) /∈ qri[epi(f) − êpi(g −
v(PF ))]. Then v(PF ) = v(DF ), and (DF ) has an optimal solution.

Remark 3.12. (a) We introduced above three new regularity conditions for Fenchel
duality. As one can easily see from the proof of these results, the relation between
these conditions is the following one: The regularity condition given in Theorem 3.10
(Corollary 3.11) implies the one given in Theorem 3.8 (Corollary 3.9), which implies
the one given in Theorem 3.5 (Corollary 3.6).

(b) If we renounce the condition (0, 0) /∈ qri co[(epi(f)− êpi(g−v(PF )))∪{(0, 0)}],
or, respectively, (0, 0) /∈ qri(epi(f) − êpi(g − v(PF ))), in the case when the primal
problem has an optimal solution, then the duality results given above may fail. By
using again Example 3.1 we show that these conditions are essential in our theory.
Let us notice that for the problem in Example 3.1 the conditions 0 ∈ qi[(dom(f) −
dom(g))− (dom(f)− dom(g))] and 0 ∈ qri(dom(f)− dom(g)) are fulfilled. We prove
in the following that in the aforementioned example we have (0, 0) ∈ qri(epi(f) −
êpi(g − v(PF ))). Note that the scalar product on l2, 〈·, ·〉 : l2 × l2 → R, is given by
〈x, y〉 =

∑∞
n=1 xnyn for all x = (xn)n∈N, y = (yn)n∈N ∈ l2. Also, for k ∈ N, we denote

by e(k) the element in l2 which has on the kth position 1 and on the other positions 0,

that is, e
(k)
n = 1, if n = k and e

(k)
n = 0, for all n ∈ N\{k}. We have epi(f) = C×[0,∞).

Further, êpi(g − v(PF )) = {(x, r) ∈ l2 × R : r ≤ −g(x)} = {(x, r) ∈ l2 × R : x =
(xn)n∈N ∈ S, r ≤ −x1} = {(x,−x1 − ε) ∈ l2 × R : x = (xn)n∈N ∈ S, ε ≥ 0}. Then

A := epi(f) − êpi(g − v(PF )) = {(x − x′, x′
1 + ε) : x ∈ C, x′ = (x′

n)n∈N ∈ S, ε ≥ 0}.
Take (x∗, r) ∈ NA(0, 0), where x∗ = (x∗

n)n∈N. We have

(8) 〈x∗, x− x′〉 + r(x′
1 + ε) ≤ 0 ∀x ∈ C ∀x′ = (x′

n)n∈N ∈ S ∀ε ≥ 0.

By taking in (8) x′ = 0 and ε = 0 we get 〈x∗, x〉 ≤ 0 for all x ∈ C. As C is a linear
subspace of X we have

(9) 〈x∗, x〉 = 0 ∀x ∈ C.

Since e(2k−1) − e(2k) ∈ C, for all k ∈ N, the relation (9) implies that

(10) x∗
2k−1 − x∗

2k = 0 ∀k ∈ N.

From (8) and (9) we obtain

(11) 〈−x∗, x′〉 + r(x′
1 + ε) ≤ 0 ∀x′ = (x′

n)n∈N ∈ S ∀ε ≥ 0.

By taking ε = 0 and x′ := me1 ∈ S in (11), where m ∈ Z is arbitrary, we get
m(−x∗

1 + r) ≤ 0 for all m ∈ Z, and thus r = x∗
1. For ε = 0 in (11) we obtain

−
∑∞

n=1 x
∗
nx

′
n + rx′

1 ≤ 0 for all x′ ∈ S. By taking into account that r = x∗
1, we

get −
∑∞

n=2 x
∗
nx

′
n ≤ 0 for all x′ ∈ S. As S is a linear subspace of X it follows that∑∞

n=2 x
∗
nx

′
n = 0 for all x′ ∈ S, but, since e(2k) − e(2k+1) ∈ S for all k ∈ N, the above

relation shows that

(12) x∗
2k − x∗

2k+1 = 0 ∀k ∈ N.

By combining (10) with (12) we get x∗ = 0 (since x∗ ∈ l2). Because r = x∗
1, we

also have r = 0. Thus NA(0, 0) = {(0, 0)}, and Proposition 2.4 gives us the desired
conclusion.
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(c) Since in all of the strong duality results given above one must have that
0 ∈ qi[(dom(f)−dom(g))− (dom(f)−dom(g))], in view of Remark 3.4, the condition

(0, 0) �∈ qri co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] (respectively, (0, 0) �∈ qri[epi(f) −
êpi(g − v(PF ))]) is equivalent to (0, 0) �∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}]
(respectively, (0, 0) �∈ qi[epi(f) − êpi(g − v(PF ))]).

(d) We have the following relation:

(0, 0) ∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] ⇒ 0 ∈ qi(dom(f) − dom(g)).

Indeed, (0, 0) ∈ qi co[(epi(f)− êpi(g−v(PF )))∪{(0, 0)}] ⇔ cl cone co[(epi(f)− êpi(g−
v(PF ))) ∪ {(0, 0)}] = X × R; hence cl cone(epi(f) − êpi(g − v(PF ))) = X × R. Since

cl cone(epi(f) − êpi(g − v(PF ))) ⊆ cl cone(dom(f) − dom(g)) × R, this implies that
cl cone(dom(f) − dom(g)) = X, that is, 0 ∈ qi(dom(f) − dom(g)). Hence

0 �∈ qi(dom(f) − dom(g)) ⇒ (0, 0) �∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}].

Nevertheless, in the regularity conditions given above one cannot substitute the con-
dition (0, 0) �∈ qri co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] by the “nice-looking” one
0 �∈ qi(dom(f) − dom(g)), since in all three strong duality theorems the other hy-
potheses we consider imply that 0 ∈ qi(dom(f) − dom(g)) (cf. Remark 3.7).

Example 3.13. Consider again the space X = l2 equipped with the norm ‖·‖ : l2 →
R, ‖x‖2 =

∑∞
n=1 x

2
n for all x = (xn)n∈N ∈ l2. We define the functions f, g : l2 → R by

f(x) =

{
‖x‖ if x ∈ x0 − l2+,
+∞ otherwise

and

g(x) =

{
〈c, x〉 if x ∈ l2+,
+∞ otherwise,

where l2+ = {(xn)n∈N ∈ l2 : xn ≥ 0,∀n ∈ N} is the positive cone, x0 = ( 1
n )n∈N,

and c = ( 1
2n )n∈N. Note that v(PF ) = infx∈l2{f(x) + g(x)} = 0, and the infimum is

attained at x = 0. We have dom(f) = x0 − l2+ = {(xn)n∈N ∈ l2 : xn ≤ 1
n ,∀n ∈ N}

and dom(g) = l2+. Since qri l2+ = {(xn)n∈N ∈ l2 : xn > 0,∀n ∈ N} (cf. [3]), we
get dom(f) ∩ qri dom(g) = {(xn)n∈N ∈ l2 : 0 < xn ≤ 1

n ,∀n ∈ N} �= ∅. Also,
cl cone(dom(g) − dom(g)) = l2, so 0 ∈ qi(dom(g) − dom(g)). Further, epi(f) =
{(x, r) ∈ l2 × R : x ∈ x0 − l2+, ‖x‖ ≤ r} = {(x, ‖x‖ + ε) ∈ l2 × R : x ∈ x0 − l2+, ε ≥ 0}
and êpi(g − v(PF )) = {(x, r) ∈ l2 × R : r ≤ −g(x)} = {(x, r) ∈ l2 × R : r ≤
−〈c, x〉, x ∈ l2+} = {(x,−〈c, x〉 − ε) : x ∈ l2+, ε ≥ 0}. We get epi(f)− êpi(g− v(PF )) =
{(x−x′, ‖x‖+ε+〈c, x′〉+ε′) : x ∈ x0−l2+, x

′ ∈ l2+, ε, ε
′ ≥ 0} = {(x−x′, ‖x‖+〈c, x′〉+ε) :

x ∈ x0 − l2+, x
′ ∈ l2+, ε ≥ 0}.

In the following we prove that (0, 0) /∈ qri(epi(f)− êpi(g− v(PF ))). By assuming

the contrary we would have that the set cl(cone(epi(f) − êpi(g − v(PF )))) is a linear

subspace. Since (0, 1) ∈ cl(cone(epi(f)− êpi(g−v(PF )))) (take x = x′ = 0 and ε = 1)
we must have that also (0,−1) belongs to this set. On the other hand, one can easily

see that for all (x, r) belonging to cl(cone(epi(f)− êpi(g−v(PF )))) it holds that r ≥ 0.
This leads to the desired contradiction.

Hence the conditions of Corollary 3.11 are fulfilled, and thus strong duality holds.
Let us notice that the regularity conditions given in Corollaries 3.6 and 3.9 are also
fulfilled (see Remark 3.12(a)).
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On the other hand, l2 is a Fréchet space (being a Hilbert space), the functions f
and g are lower semicontinuous, and, as sqri(dom(f) − dom(g)) = sqri(x0 − l2+) = ∅,
none of the constraint qualifications (i)–(iv) presented in the beginning of this section
can be applied for this optimization problem.

As for all x∗ ∈ l2 it holds that

g∗(x∗) =

{
0 if x∗ ∈ c− l2+,
+∞ otherwise

and (see Theorem 2.8.7 in [17])

f∗(−x∗) = inf
x∗
1+x∗

2=−x∗
{‖ · ‖∗(x∗

1) + δ∗x0−l2+
(x∗

2)} = inf
x∗
1+x∗

2=−x∗,

‖x∗
1‖≤1,x∗

2∈l2+

{〈x∗
2, x0〉},

the optimal objective value of the Fenchel dual problem is

v(DF ) = sup
x∗∈X∗

{−f∗(−x∗) − g∗(x∗)}

= sup
x∗
2∈l2+−c−x∗

1 ,

‖x∗
1‖≤1,x∗

2∈l2+

{〈−x∗
2, x0〉} = sup

x∗
2∈l2+

{〈−x∗
2, x0〉} = 0,

and x∗
2 = 0 is the optimal solution of the dual.

In the following, by using the results introduced above, we give regularity condi-
tions for the following convex optimization problem:

(PA) inf
x∈X

{f(x) + (g ◦A)(x)},

where X and Y are separated locally convex vector spaces with their topological dual
spaces X∗ and Y ∗, respectively, A : X → Y is a linear continuous mapping, f : X →
R, and g : Y → R are proper convex functions such that A(dom(f)) ∩ dom(g) �= ∅.
The Fenchel dual problem to (PA) is (cf. [17])

(DA) sup
y∗∈Y ∗

{−f∗(−A∗y∗) − g∗(y∗)},

where A∗ : Y ∗ → X∗ is the adjoint operator of A, defined in the usual way: 〈A∗y∗, x〉 =
〈y∗, Ax〉 for all (y∗, x) ∈ Y ∗ ×X. We denote by v(PA) and v(DA) the optimal objec-
tive values of the primal and the dual problem, respectively. We suppose also that
v(PA) ∈ R. In the following theorem the set

A× idR(epi(f)) = {(Ax, r) ∈ Y × R : f(x) ≤ r}

is the image of epi(f) through the operator A× idR.
Theorem 3.14. Suppose that 0 ∈ qi[(A(dom(f)) − dom(g)) − (A(dom(f)) −

dom(g))], 0 ∈ qri(A(dom(f))−dom(g)), and (0, 0) /∈ qri co[(A× idR(epi(f))− êpi(g−
v(PA))) ∪ {(0, 0)}]. Then v(PA) = v(DA), and (DA) has an optimal solution.

Proof. Let us introduce the following functions: F,G : X × Y → R, F (x, y) =
f(x) + δ{x∈X:Ax=y}(x), and G(x, y) = g(y). The functions F and G are proper and
convex, and inf(x,y)∈X×Y [F (x, y) + G(x, y)] = infx∈X{f(x) + (g ◦ A)(x)} = v(PA).
Moreover, dom(F ) = dom(f)×A(dom(f)) and dom(G) = X × dom(g), so dom(F )∩
dom(G) �= ∅. Further,

dom(F ) − dom(G) = X × (A(dom(f)) − dom(g)).
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By combining the last relation with the hypotheses, we obtain (0, 0) ∈ qi[(dom(F ) −
dom(G))− (dom(F )− dom(G))] and (0, 0) ∈ qri(dom(F )− dom(G)). Since epi(F ) =

{(x,Ax, r) : f(x) ≤ r} and êpi(G − v(PA)) = {(x, y, r) : r ≤ −G(x, y) + v(PA)} =

X × êpi(g − v(PA)), we obtain

epi(F ) − êpi(G− v(PA)) = X × (A× idR(epi(f)) − êpi(g − v(PA))),

and this means that (0, 0, 0) /∈ qri co[(epi(F )− êpi(G−v(PA)))∪{(0, 0, 0)}]. Theorem
3.5 yields for F and G:

inf
(x,y)∈X×Y

[F (x, y) + G(x, y)] = max
(x∗,y∗)∈X∗×Y ∗

{−F ∗(−x∗,−y∗) −G∗(x∗, y∗)}.

On the other hand, F ∗(x∗, y∗) = f∗(x∗ + A∗y∗) for all (x∗, y∗) ∈ X∗ × Y ∗, and

G∗(x∗, y∗) =

{
g∗(y∗) if x∗ = 0,
+∞ otherwise.

Therefore, max(x∗,y∗)∈X∗×Y ∗{−F ∗(−x∗,−y∗)−G∗(x∗, y∗)} = maxy∗∈Y ∗{−f∗(−A∗y∗)
− g∗(y∗)}, and the conclusion follows.

Corollary 3.15. Suppose that the primal problem (PA) has an optimal solution,
0 ∈ qi[(A(dom(f))−dom(g))−(A(dom(f))−dom(g))], 0 ∈ qri(A(dom(f))−dom(g)),

and (0, 0) /∈ qri[A × idR(epi(f)) − êpi(g − v(PA))]. Then v(PA) = v(DA), and (DA)
has an optimal solution.

Theorem 3.16. Suppose that 0 ∈ qi(A(dom(f))−dom(g)) and (0, 0) /∈ qri co[(A×
idR(epi(f))− êpi(g− v(PA)))∪ {(0, 0)}]. Then v(PA) = v(DA), and (DA) has an op-
timal solution.

Proof. By considering the functions F and G from the proof of Theorem 3.14, we
have cl cone(dom(F ) − dom(G)) = X × cl cone(A(dom(f)) − dom(g)) = X × Y , and

thus (0, 0) ∈ qi(dom(F ) − dom(G)). Also we have (0, 0, 0) /∈ qri co[(epi(F ) − êpi(G−
v(PA))) ∪ {(0, 0, 0)}]. Theorem 3.8 yields for F and G:

inf
(x,y)∈X×Y

[F (x, y) + G(x, y)] = max
(x∗,y∗)∈X∗×Y ∗

{−F ∗(−x∗,−y∗) −G∗(x∗, y∗)},

and the conclusion follows.
Corollary 3.17. Suppose that the primal problem (PA) has an optimal solution,

0 ∈ qi(A(dom(f))−dom(g)), and (0, 0) /∈ qri[A× idR(epi(f))− êpi(g− v(PA))]. Then
v(PA) = v(DA), and (DA) has an optimal solution.

Theorem 3.18. Suppose that A(dom(f)) ∩ qri dom(g) �= ∅, 0 ∈ qi(dom(g) −
dom(g)) and (0, 0) /∈ qri co[(A×idR(epi(f))−êpi(g−v(PA)))∪{(0, 0)}]. Then v(PA) =
v(DA), and (DA) has an optimal solution.

Proof. Consider again the functions F and G defined as in the proof of Theorem
3.14. We have dom(F )∩qri dom(G) = (dom(f)× (A(dom(f)))∩ (X×qri dom(g))) =
dom(f) × (A(dom(f)) ∩ qri dom(g)) �= ∅. Also, cl cone(dom(G) − dom(G)) = X ×
cl cone(dom(g)− dom(g)) = X × Y , and hence (0, 0) ∈ qi(dom(G)− dom(G)). More-

over, (0, 0, 0) /∈ qri co[(epi(F )− êpi(G− v(PA)))∪{(0, 0, 0)}]. Theorem 3.10 yields for
F and G:

inf
(x,y)∈X×Y

[F (x, y) + G(x, y)] = max
(x∗,y∗)∈X∗×Y ∗

{−F ∗(−x∗,−y∗) −G∗(x∗, y∗)},

and the conclusion follows.
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Corollary 3.19. Suppose that the primal problem (PA) has an optimal solu-
tion, A(dom(f)) ∩ qri dom(g) �= ∅, 0 ∈ qi(dom(g) − dom(g)), and (0, 0) /∈ qri[A ×
idR(epi(f)) − êpi(g − v(PA))]. Then v(PA) = v(DA), and (DA) has an optimal solu-
tion.

4. Lagrange duality. By using an approach due to Magnanti (cf. [13]), in this
section we derive from the results in the previous section some duality results con-
cerning the Lagrange dual problem. We work in the following setting. Let X be
a real linear topological space and S a nonempty subset of X. Let Y be a sepa-
rated locally convex space partially ordered by a convex cone C. Let f : S → R

and g : S → Y be two functions such that the function (f, g) : S → R × Y , de-
fined by (f, g)(x) = (f(x), g(x)), for all x ∈ S, is convexlike with respect to the cone
R+ × C ⊆ R × Y ; that is, the set (f, g)(S) + R+ × C is convex. Let us notice that
this property implies that the sets f(S)+ [0,∞) and g(S)+C are convex (the reverse
implication does not always hold). Consider the optimization problem

(PL) inf
x∈S

g(x)∈−C

f(x),

where the constraint set T = {x ∈ S : g(x) ∈ −C} is assumed to be nonempty. The
Lagrange dual problem associated to (PL) is

(DL) sup
λ∈C∗

inf
x∈S

[f(x) + 〈λ, g(x)〉],

where C∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0,∀x ∈ C} is the dual cone of C. Let us denote by
v(PL) and v(DL) the optimal objective values of the primal and the dual problem,
respectively. A regularity condition for strong duality between (PL) and (DL) was
proposed in Theorem 2.2 in [4]. We show first that this theorem has self-contradictory
assumptions. To this end we prove the following lemma.

Lemma 4.1. Suppose that cl(C − C) = Y and there exists x ∈ S such that
g(x) ∈ − qriC. Then the following assertions are true:

(a) 0 ∈ qi(g(S) + C);
(b) cl cone[qri(g(S) + C)] is a linear subspace of Y .
Proof. (a) We apply Lemma 2.6 with A := −C and B := g(S) + C. The

condition cl(C − C) = Y implies that 0 ∈ qi(A− A), while the Slater-type condition
g(x) ∈ − qriC ensures that g(x) ∈ qriA ∩ B. Hence, by Lemma 2.6 we obtain
0 ∈ qi(A−B), that is, 0 ∈ qi(−g(S)−C), which is nothing else than 0 ∈ qi(g(S)+C).

(b) From (a) it follows that 0 ∈ qri(g(S) + C). By applying Proposition 2.5(vii)
we get 0 ∈ qri(qri(g(S) + C)), which is nothing else than cl cone[qri(g(S) + C)] is a
linear subspace of Y .

In order to get strong duality between (PL) and (DL) in Theorem 2.2 in [4] the
authors ask that the following hypotheses are fulfilled: cl(C − C) = Y , there exists
x ∈ S such that g(x) ∈ − qriC, qri(g(S) + C) �= ∅, and cl cone[qri(g(S) + C)] is not
a linear subspace of Y . The previous lemma proves that these assumptions are in
contradiction.

Next we prove some Lagrange duality results written in terms of the quasi interior
and quasi-relative interior, respectively. As in the previous section, we may suppose
that v(PL) is a real number.

Consider the following convex set:

Ev(PL) = {(f(x) + α− v(PL), g(x) + y) : x ∈ S, α ≥ 0, y ∈ C} ⊆ R × Y.
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Let us notice that the set −Ev(PL) is in analogy with the conic extension, a notion
used by Giannessi in the theory of image space analysis (see [7]). One can easily prove
that the primal problem (PL) has an optimal solution if and only if (0, 0) ∈ Ev(PL).

Let us introduce the functions f1, f2 : R × Y → R,

f1(y0, y1) =

{
y0 if (y0, y1) ∈ Ev(PL) + (v(PL), 0),
+∞ otherwise,

and f2 = δR×(−C). It holds that

(13) dom(f1) − dom(f2) = R × (g(S) + C).

Moreover, as pointed out by Magnanti (cf. [13]), we have

(14) inf
(y0,y1)∈R×Y

{f1(y0, y1) + f2(y0, y1)} = inf
x∈S

g(x)∈−C

f(x) = v(PL)

and
(15)

sup
(y∗

0 ,y
∗
1 )∈R×Y ∗

{−f∗
1 (−y∗0 ,−y∗1) − f∗

2 (y∗0 , y
∗
1)} = sup

λ∈C∗
inf
x∈S

[f(x) + 〈λ, g(x)〉] = v(DL).

With this approach, we can derive from the strong duality results given for Fenchel
duality corresponding strong duality results for Lagrange duality.

Theorem 4.2. Suppose that 0 ∈ qi[(g(S) +C)− (g(S) +C)], 0 ∈ qri(g(S) +C),
and (0, 0) �∈ qri co(Ev(PL) ∪ {(0, 0)}). Then v(PL) = v(DL), and (DL) has an optimal
solution.

Proof. The hypotheses of the theorem and (13) imply that the conditions (0, 0) ∈
qi[(dom(f1)−dom(f2))−(dom(f1)−dom(f2))] and (0, 0) ∈ qri(dom(f1)−dom(f2)) are
fulfilled. Further, epi(f1) = {(y0, y1, r) ∈ R×Y ×R : (y0, y1) ∈ Ev(PL)+(v(PL), 0), y0 ≤
r} = {(f(x)+α, g(x)+y, r) : x ∈ S, α ≥ 0, y ∈ C, f(x)+α ≤ r}, and êpi(f2−v(PL)) =
{(y0, y1, r) ∈ R × Y × R : r ≤ −f2(y0, y1) + v(PL)} = {(y0, y1, r) ∈ R × Y × R : y0 ∈
R, y1 ∈ −C, r ≤ v(PL)} = R× (−C)× (−∞, v(PL)]. Thus epi(f1)− êpi(f2 − v(PL)) =
epi(f1)+R×C× [−v(PL),+∞) = {(f(x)+α+a, g(x)+y, r−v(PL)+ε) : x ∈ S, α ≥
0, a ∈ R, y ∈ C, ε ≥ 0, f(x)+α ≤ r} = {(f(x)+α+a, g(x)+y, f(x)+α+ ε−v(PL)) :
x ∈ S, α ≥ 0, a ∈ R, y ∈ C, ε ≥ 0}, and this means that

epi(f1) − êpi(f2 − v(PL)) = R × {(g(x) + y, f(x) + α− v(PL)) : x ∈ S, α ≥ 0, y ∈ C}.

Thus (0, 0, 0) ∈ qri co[(epi(f1) − êpi(f2 − v(PL))) ∪ {(0, 0, 0)}] if and only if (0, 0) ∈
qri co(Ev(PL) ∪{(0, 0)}). Now we can apply Theorem 3.5 for f1 and f2, and we obtain

inf
(y0,y1)∈R×Y

{f1(y0, y1) + f2(y0, y1)} = max
(y∗

0 ,y
∗
1 )∈R×Y ∗

{−f∗
1 (−y∗0 ,−y∗1) − f∗

2 (y∗0 , y
∗
1)}.

By (14) and (15) the conclusion follows.
Corollary 4.3. Suppose that the primal problem (PL) has an optimal solution,

0 ∈ qi[(g(S) + C) − (g(S) + C)], 0 ∈ qri(g(S) + C), and (0, 0) �∈ qri Ev(PL). Then
v(PL) = v(DL), and (DL) has an optimal solution.

Further, like for Fenchel duality, other Lagrange duality results can be stated.
Theorem 4.4. Suppose that 0 ∈ qi(g(S)+C) and (0, 0) �∈ qri co(Ev(PL)∪{(0, 0)}).

Then v(PL) = v(DL), and (DL) has an optimal solution.
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Proof. This is a direct consequence of the previous theorem since g(S) + C ⊆
(g(S) + C) − (g(S) + C), and so the condition 0 ∈ qi(g(S) + C) implies that 0 ∈
qi[(g(S) + C) − (g(S) + C)] and 0 ∈ qri(g(S) + C).

Corollary 4.5. Suppose that the primal problem (PL) has an optimal solution,
0 ∈ qi(g(S) + C), and (0, 0) �∈ qri Ev(PL). Then v(PL) = v(DL), and (DL) has an
optimal solution.

Theorem 4.6. Suppose that cl(C − C) = Y and there exists x ∈ S such that
g(x) ∈ − qriC. If (0, 0) �∈ qri co(Ev(PL) ∪ {(0, 0)}), then v(PL) = v(DL), and (DL)
has an optimal solution.

Proof. The condition (0, 0) �∈ qri co(Ev(PL) ∪ {(0, 0)}) implies that (0, 0, 0) /∈
qri co[(epi(f1)− êpi(f2 − v(PL)))∪{(0, 0, 0)}] (cf. the proof of Theorem 4.2). Further,
we have dom(f1) ∩ qri dom(f2) = [Ev(PL) + (v(PL), 0)] ∩ qri(R × (−C)) = [Ev(PL) +
(v(PL), 0)]∩ [R×(− qriC)]. From the Slater-type condition we get that (f(x), g(x)) ∈
[Ev(PL) +(v(PL), 0)]∩ [R×(− qriC)], and hence dom(f1)∩qri dom(f2) �= ∅. Moreover,
cl cone(dom(f2) − dom(f2)) = cl cone[R × (C − C)] = R × cl(C − C) = R × Y , and
hence (0, 0) ∈ qi(dom(f2) − dom(f2)). By Theorem 3.10 for f1 and f2 we obtain

inf
(y0,y1)∈R×Y

{f1(y0, y1) + f2(y0, y1)} = max
(y∗

0 ,y
∗
1 )∈R×Y ∗

{−f∗
1 (−y∗0 ,−y∗1) − f∗

2 (y∗0 , y
∗
1)},

and by using again (14) and (15) the conclusion follows.
Corollary 4.7. Suppose that the primal problem (PL) has an optimal solution,

cl(C −C) = Y , and there exists x ∈ S such that g(x) ∈ − qriC. If (0, 0) �∈ qri Ev(PL),
then v(PL) = v(DL), and (DL) has an optimal solution.

Remark 4.8. Let us notice that from the above results one can derive duality
theorems for the case when, in the set of constraints, one has also equalities defined
by affine functions. Indeed, consider the optimization problem

(P aff
L ) inf

x∈S
g(x)∈−C
h(x)=0

f(x),

where h : X → Z is an affine mapping and Z is a real normed space (the hypotheses
regarding the functions f and g remain the same as in the beginning of this section).

The Lagrange dual problem associated to (P aff
L ) is

(Daff
L ) sup

λ∈C∗

μ∈Z∗

inf
x∈S

[f(x) + 〈λ, g(x)〉 + 〈μ, h(x)〉],

where Z∗ is the topological dual space of Z.
By using Theorems 4.2 and 4.4 one can formulate Lagrange duality theorems for

(P aff
L ) and (Daff

L ) by noticing that the primal problem can be reformulated as

inf
x∈S

g(x)∈−C
h(x)=0

f(x) = inf
x∈S

u(x)∈−(C×{0})

f(x),

where u : S → Y × Z, u(x) = (g(x), h(x)). For the optimization problem with
equality and cone constraints some regularity conditions have been given in [5] by using
the notion of the quasi-relative interior. Along them in the strong duality theorem
(Theorem 3.1 in [5]) a “separation assumption,” called by the authors Assumption S,
is imposed. Unfortunately, this assumption is not only a sufficient condition for having
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strong duality, as claimed in the paper, but actually an equivalent formulation of this
situation (this makes the other regularity conditions inoperative). More than that,
in the proof of Theorem 3.1 in [5] a mistake occurred, namely, in the relation after
inequality (8) when trying to prove the “nonverticality” of the separating hyperplane.

The approach we propose above offers a viable alternative for dealing with La-
grange duality for this class of optimization problems.

Acknowledgments. The authors are thankful to two anonymous reviewers for
comments and remarks which have improved the quality of the paper.
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[6] P. Daniele, S. Giuffrè, G. Idone, and A. Maugeri, Infinite dimensional duality and appli-
cations, Math. Ann., 339 (2007), pp. 221–239.

[7] F. Giannessi, Constrained Optimization and Image Space Analysis, Vol. 1. Separation of Sets
and Optimality Conditions, Math. Concepts Methods Sci. Engrg. 49, Springer, New York,
2005.

[8] M. S. Gowda and M. Teboulle, A comparison of constraint qualifications in infinite-
dimensional convex programming, SIAM J. Control Optim., 28 (1990), pp. 925–935.

[9] R. B. Holmes, Geometric Functional Analysis, Springer, Berlin, 1975.
[10] J. Jahn, Introduction to the Theory of Nonlinear Optimization, Springer, Berlin, 1996.
[11] V. Jeyakumar and H. Wolkowicz, Generalizations of Slater’s constraint qualification for

infinite convex programs, Math. Program., 57 (1992), pp. 85–101.
[12] M. A. Limber and R.K. Goodrich, Quasi interiors, Lagrange multipliers, and Lp spectral

estimation with lattice bounds, J. Optim. Theory Appl., 78 (1993), pp. 143–161.
[13] T. L. Magnanti, Fenchel and Lagrange duality are equivalent, Math. Program., 7 (1974),

pp. 253–258.
[14] R. T. Rockafellar, Conjugate Duality and Optimization, Conference Board of the Mathemat-

ical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial
and Applied Mathematics, Philadelphia, 1974.

[15] B. Rodrigues, The Fenchel duality theorem in Fréchet spaces, Optimization, 21 (1990), pp. 13–
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Abstract. The purpose of this paper is to present a generalization of the Farkas lemma with a
short algebraic proof. The generalization lies in the fact that we formulate the Farkas lemma in the
setting of two vector spaces over a common linearly ordered field where one of the vector spaces is
also linearly ordered. At the end of the paper, we mention the key theorem and two theorems of the
alternative, namely Motzkin’s theorem and Tucker’s theorem.
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1. Introduction. There are many proofs of the Farkas lemma [9], which is usu-
ally formulated in the setting of a finite-dimensional real vector space R

n. Broy-
den [3] distinguishes three classes of proofs: algebraic, algorithmic, and geometric.
The Farkas lemma is often the starting point when proving the duality theorem for
linear programming (see, e.g., [18]) or when proving some other theorems of the al-
ternative. Overviews of such theorems can be found in [21, 10, 12, 11, 4, 5, 3, 2];
see also [8, 19]. Out of the mentioned works, only the paper of Fan [10], the book of
Chernikov [4], and the paper of Bartl [2] deal with the topic of linear inequalities in
the setting of a general vector space, whose dimension may be infinite and no topol-
ogy or any additional structure is assumed on it. While Fan [10] works within a real
vector space, Chernikov [4] and Bartl [2] assume the more general setting of a vector
space over a linearly ordered field.

Confining our attention to the Farkas lemma and speaking in broad terms, we
need a “base” vector space, a linearly ordered field, and the additive group of the field
with its ordering to formulate the Farkas lemma given by Chernikov [4, Lemma 2.4,
p. 119]. But Bartl [2] showed that it is possible to substitute any linearly ordered
vector space instead of the additive group of the field, thus generalizing the result.
The resulting duality theorem for linear programming is also presented in [2].

Though the author’s proof of the Farkas lemma [2, Lemma 4.1] is elementary
and its main idea is easy to comprehend, the proof is rather long. In this paper, we
give another proof—which is based on a different idea and, moreover, is significantly
shorter—of the same result.

In addition to the algebraic approach, which we shall use in the following sections
to prove the result, and as already mentioned above, other approaches are also pos-
sible. See, e.g., [6, 18] or [22, 20, 1, 15] for the algorithmic or geometric approach,
respectively. Though the algebraic approach allows us to obtain quite a general version
of the Farkas lemma, the geometric one permits a very illustrative exposition—see [7],
where the geometric approach is applied within a finite-dimensional space. This is a
certain “trade-off” between the approaches that has to be considered.

∗Received by the editors August 14, 2006; accepted for publication (in revised form) November
14, 2007; published electronically March 5, 2008.
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2. Notation. Throughout this paper, the symbol F denotes a linearly ordered
field; we do not assume the commutativity of the field so that F may even be a skew
field. The symbol W denotes a vector space over the field F. The dimension of the
vector space W may be finite or infinite and we do not assume any other structure
(such as topology) on it; it plays the role of the underlying “base” vector space. The
symbol V stands for a linearly ordered vector space over the linearly ordered field F.
In what follows, we shall see it plays the role of the vector space of “objective values.”
The ordering of the (possibly skew) field F and that of the space V will be denoted
by the symbols “≤” and “�,” respectively.

Recall that the following five statements must hold true for all u, v ∈ V , and any
scalar λ ∈ F so that V is a linearly ordered vector space over the linearly ordered
field F : first, u � v if and only if u−v � 0; second, u � 0 or u � 0; third, if u � 0 and
u � 0, then u = 0; fourth, if u � 0 and v � 0, then u+v � 0; fifth, if λ ≥ 0 and u � 0,
then λu � 0. It is possible to substitute the additive group of the field F with its
ordering “≤” for the space V and its ordering “�.” Hence, five analogous statements
must also hold true when assuming u, v ∈ F , and writing “≤” instead of “�.”

We shall use the symbol γ to denote a given linear mapping γ:W → V. It assigns
an “objective value” γ(x) to any point x of the “base” vector space W.

Now, let m be a nonnegative natural number. Then Fm is the (left) vector space
over the (possibly skew) field F of all m-component column vectors whose entries
come from the field F. Analogously, the V m is the space of all m-component columns
with entries from the space V. If λ ∈ Fm or u ∈ V m, then the ith component of the
respective column is λi or ui for i = 1, . . . ,m. We symbolically write λ = (λi)

m
i=1

and u = (ui)
m
i=1. The transposition of a column is indicated by the letter T in the

superscript so that λT and uT are the respective rows. The symbol o denotes the
origin of the space Fm or V m (depending on the context) and inequalities like u � o,
λ ≥ o, λ > o, etc. are to be understood componentwise.

The symbol A stands for a linear mapping A:W → Fm. If x ∈ W, then Ax is
a column vector and its ith component is αi(x) for i = 1, . . . ,m. It follows that
α1, . . . , αm are the respective linear forms on the vector space W and we have A =
(αi)

m
i=1.
Let u ∈ V be a given vector. The linear mapping assigning the scalar multiple of

the vector u to any scalar μ ∈ F is denoted by writing the Greek letter ι before u so
that we have the linear mapping ιu:F → V and ιu(μ) = μu for all μ ∈ F. Analogously,
if ι is written before a given scalar λ ∈ F, then we have the linear mapping ιλ:F → F
and ιλ(μ) = μλ for all μ ∈ F. (As the field F may be skew, it is essential that the
given scalar λ is multiplied by the scalar μ from the left.)

Having a vector u ∈ V and a linear form α defined on the vector space W, then
ιuα denotes the composition of the mappings α:W → F and ιu:F → V. Similarly,
given yet a scalar λ ∈ F, then ιuιλα is the composition of the form α with ιλ:F → F
and ιu.

If the letter ι stands before a row uT , where u ∈ V m, then it is to be inserted
into the row and put before each of its entries. The row can be multiplied by a
column vector (from the right) in the usual manner. We obtain the linear mapping
ιuT :Fm → V and we have ιuTμ = μ1u1 + · · · + μmum for all μ ∈ Fm. The same
applies when ι stands before a row λT , where λ ∈ Fm; we then obtain the linear
mapping ιλT :Fm → F.

Consequently, given a linear mapping A:W → Fm, then ιuTA:W → V or
ιλTA:W → F, where u ∈ V m and λ ∈ Fm, is the respective composed linear map-
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ping. We have ιuTA = ιu1α1+· · ·+ιumαm and ιuTAx = (α1(x))u1+· · ·+(αm(x))um

for any x ∈ W. Analogous formulas could be written for the mapping ιλTA.

3. The Farkas lemma. We state the generalized version of the Farkas lemma
[2, Lemma 4.1] now. Putting V = F, i.e., substituting the additive group of the field F
with its ordering for the linearly ordered vector space V, we obtain the formulation of
the Farkas lemma given by Chernikov [4, Lemma 2.4, p. 119]. Substituting the field of
reals R with the standard ordering for the linearly ordered field F, still assuming V =
F, we obtain the Farkas lemma formulated in the setting of a real (possibly infinite-
dimensional) vector space. In this setting, Fan [10, Theorem 4] proved Haar’s theorem
(cf. [13, 14]) which—still within this setting, but not in general—is a strengthening
of the Farkas lemma. When V = F = R and the “base” vector space is finite-
dimensional, W = R

n, we then obtain the classical formulation of the Farkas lemma
[9, section IV]. Substituting the vector space R

N with the lexicographic ordering for V,
while the dimension of W may be finite or infinite, we then obtain the lexicographic
version of the Farkas lemma [2, Theorem 1.5].

Lemma 1 (Farkas lemma). Let A:W → Fm and γ:W → V be linear mappings.
Then the implication Ax ≤ o ⇒ γ(x) � 0 or

α1(x) ≤ 0 ∧ · · · ∧ αm(x) ≤ 0 =⇒ γ(x) � 0(1)

holds for all x ∈ W if and only if

∃u1, . . . , um � 0: ιu1α1 + · · · + ιumαm = γ ,(2)

i.e., ιuTA = γ for some u ∈ V m satisfying u � o componentwise.
While the implication ⇐ of Lemma 1 is trivial, the implication ⇒ yields the

following commutative diagram:

W
A ��

γ

��

Fm

ιuT

���
�

�
�

�

V

In words, if the given linear mappings A and γ satisfy implication (1) for all x ∈ W,
then there exists a linear mapping ιuT :Fm → V that makes the diagram commute;
in addition, we have u � o componentwise.

We prove an alternative formulation of the Farkas lemma, which is given below.
It can be easily seen that both formulations, i.e., Lemmas 1 and 2, are logically
equivalent.

Lemma 2 (Farkas lemma). Let A:W → Fm and γ:W → V be linear mappings.
Then either (A) there exists an x ∈ W such that α1(x) ≥ 0, . . . , αm(x) ≥ 0, and
γ(x) ≺ 0, or (B) there exist nonnegative vectors u1, . . . , um ∈ V such that γ =
ιu1α1 + · · · + ιumαm. The alternatives (A) and (B) exclude each other.

Proof. We proceed by induction. The statement is trivial for m = 0 because
either (A) there exists an x ∈ W such that γ(x) = 0, in which case we may assume
w.l.o.g. that γ(x) ≺ 0, or (B) it holds that γ(x) = 0 for all x ∈ W.

Let us assume that the statement is valid for a nonnegative natural number m.
We prove the assertion for m + 1. We have to prove that either (A) there exists an
x ∈ W such that α1(x) ≥ 0, . . . , αm(x) ≥ 0, αm+1(x) ≥ 0, and γ(x) ≺ 0, or (B) there
exist vectors u1, . . . , um, um+1 � 0 such that γ = ιu1α1 + · · ·+ ιumαm + ιum+1αm+1.
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By the induction hypothesis, either (a) there exists an x ∈ W such that α1(x) ≥ 0,
. . . , αm(x) ≥ 0, and γ(x) ≺ 0, or (b) there exist vectors u1, . . . , um � 0 such that
γ = ιu1α1 + · · · + ιumαm.

We are finished in the case (b) for it suffices to put um+1 = 0 so that the case
(B) arises. In the case (a), there are two cases: either (aa) it holds that αm+1(x) ≥ 0,
or (ab) it holds that αm+1(x) < 0. We are finished again in the case (aa) because the
case (A) arises. It remains to consider the case (ab) in the rest of the proof.

Having an x̄ := x such that α1(x̄) ≥ 0, . . . , αm(x̄) ≥ 0, αm+1(x̄) < 0, and
γ(x̄) ≺ 0, it is easy to see that the system

α1(x) ≥ 0 ∧ · · · ∧ αm(x) ≥ 0 ∧ αm+1(x) ≥ 0 and γ(x) ≺ 0(3)

has a solution—therefore, the case (A) arises—if and only if the system

α1(x) ≥ 0 ∧ · · · ∧ αm(x) ≥ 0 ∧ αm+1(x) = 0 and γ(x) ≺ 0(4)

has a solution.
We find λ1, . . . , λm ∈ F and a v ∈ V so that αi(x̄) − ιλiαm+1(x̄) = 0 and

γ(x̄) − ιvαm+1(x̄) = 0. We have λi = (αm+1(x̄))−1αi(x̄) and v = (αm+1(x̄))−1γ(x̄).
As αm+1(x̄) < 0, further αi(x̄) ≥ 0 and γ(x̄) ≺ 0, it is obvious that λi ≤ 0 for
i = 1, . . . , m and that v � 0.

Let us denote α′
i = αi − ιλiαm+1 and γ′ = γ − ιvαm+1. Hence α′

i(x̄) = 0 and
γ′(x̄) = 0, where i = 1, . . . ,m. It is very easy to see that the last system (4) has a
solution—equivalently, the case (A) arises—if and only if the system

α′
1(x) ≥ 0 ∧ · · · ∧ α′

m(x) ≥ 0 ∧ αm+1(x) = 0 and γ′(x) ≺ 0(5)

has a solution.
Using the induction hypothesis again, we obtain that either (aba) there exists an

x′ ∈ W such that α′
1(x

′) ≥ 0, . . . , α′
m(x′) ≥ 0, and γ(x′) ≺ 0, or (abb) there exist

vectors u′
1, . . . , u

′
m � 0 such that γ′ = ιu′

1α
′
1 + · · · + ιu′

mα′
m.

Assume the case (aba) first. To solve system (5), we are looking for a point x ∈ W
such that αm+1(x) = 0 and α′

i(x) = α′
i(x

′) for i = 1, . . . ,m and γ′(x) = γ′(x′). We
utilize the fact that α′

i(x̄) = 0 for i = 1, . . . ,m and γ′(x̄) = 0. Considering the point
x := x′ −μx̄, where μ = (αm+1(x

′))(αm+1(x̄))−1, we can see that the case (A) arises.
In the remaining case (abb), we have

γ′ = ιu′
1α

′
1 + · · · + ιu′

mα′
m ,

γ − ιvαm+1 = ιu′
1α1 − ιu′

1ιλ1αm+1 + · · · + ιu′
mαm − ιu′

mιλmαm+1 ,

γ = ιu′
1α1 + · · · + ιu′

mαm + ι(v − λ1u
′
1 − · · · − λmu′

m)αm+1 .

Hence, putting ui := u′
i for i = 1, . . . ,m and um+1 = v − λ1u

′
1 − · · · − λmu′

m, it is
obvious that um+1 � 0, and we can see that the case (B) arises.

The presented proof of the Farkas lemma is a modified proof of a lemma due to
Tucker [21, Lemma, p. 5]. Tucker himself notes that he uses an argument adapted from
a certain unpublished proof by Gale. Indeed, the proof is quite similar to Gale’s later
published proof of the Farkas lemma [11, Theorem 2.6, p. 44]. Though Tucker [21]
notes that he could also work with any linearly ordered field, both Tucker [21] and
Gale [11] assume the setting of a finite-dimensional vector space only.

Close to Tucker’s original lemma [21, Lemma, p. 5] is the following result. We
prove it as a consequence of Lemma 2.
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Lemma 3. Let A:W → Fm be a linear mapping. Then for any i = 1, . . . , m
there exist a componentwise nonnegative vector λ ∈ Fm and a point x ∈ W such that

ιλTA = o , Ax ≥ o, and λi + αi(x) > 0 ,

where o is the zero linear form o:W → F.
Proof. Choose an i = 1, . . . ,m. We use Lemma 2, putting V = F, i.e., substituting

the additive group of the field F with its ordering for the linearly ordered vector
space V, and γ = −αi in it. Then either there exists an x ∈ W such that α1(x) ≥
0, . . . , αi−1(x) ≥ 0, αi+1(x) ≥ 0, . . . , αm(x) ≥ 0, and αi(x) > 0, or there exist λ1, . . . ,
λi−1, λi+1, . . . , λm ≥ 0 such that ιλ1α1 + · · ·+ ιλi−1αi−1 + ιλi+1αi+1 + · · ·+ ιλmαm =
−αi. Put λ = o in the first case, and put x = 0 and λi = 1 in the latter one.

4. Key theorem, Motzkin’s theorem, and Tucker’s theorem. In this sec-
tion, we briefly mention the key theorem [21, Theorem 1], [12, section 4], [3, The-
orem 1.2], [2, Theorem 5.3] and two of its consequences: Motzkin’s theorem [16],
[17, Theorem D6, p. 60], [21, Corollary 2A part (ii)], [2, Theorem 5.1] and Tucker’s
theorem [21, Corollary 2A part (i)], [2, Theorem 5.2].

Theorem 4 (key theorem). Let A:W → Fm be a linear mapping. Then there
exist a componentwise nonnegative column vector λ ∈ Fm and a point x ∈ W so that

ιλTA = o , Ax ≥ o, and λ + Ax > o ,

where o is the zero linear form o:W → F.
Proof. By Lemma 3, there exist points x1, . . . , xm ∈ W and nonnegative columns

λ1, . . . ,λm ∈ Fm such that

ιλT
iA = o , Axi ≥ o, and λii + αi(xi) > 0

for i = 1, . . . , m. So it suffices to put x = x1 + · · ·+xm and λ = λ1 + · · ·+λm.
The two subsequent theorems involve two linear mappings, A:W → Fm and

B:W → Fn, where m and n are nonnegative natural numbers. Hence, either of the
mappings A or B may be null. The alternatives (A) and (B) exclude each other in
both theorems, and both Theorems 5 and 6 share the initial part of their proofs.

Theorem 5 (Motzkin’s theorem). Either (A) there exists an x ∈ W such that
Ax > o, Bx ≥ o, or (B) there exist λ ∈ Fm and μ ∈ Fn satisfying λ ≥ o, λ = o,
μ ≥ o, and such that ιλTA + ιμTB = o.

Theorem 6 (Tucker’s theorem). Either (A) there exists an x ∈ W such that
Ax ≥ o, Ax = o, Bx ≥ o, or (B) there exist λ ∈ Fm and μ ∈ Fn satisfying λ > o,
μ ≥ o, and such that ιλTA + ιμTB = o.

Proof. By Theorem 4, there exist an x ∈ W and componentwise nonnegative
λ ∈ Fm and μ ∈ Fn such that

Ax ≥ o ,

Bx ≥ o ,
ιλTA + ιμTB = o, and

λ + Ax > o ,

μ + Bx > o .

If λ = o, then Ax > o; we have thus obtained Theorem 5. If Ax = o, then λ > o;
we have then obtained Theorem 6.

As in the previous section, both of the presented proofs are modifications of
Tucker’s proofs [21, Theorem 1, Corollary 2A]. To conclude, it is interesting that the
ideas of the proofs by Gale [11] and Tucker [21] can be used to obtain the currently
presented more general results.
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[16] T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen, Doctoral dissertation at the

University of Basel, Basel, 1934; Azriel, Jerusalem, 1936.
[17] T. S. Motzkin, Contributions to the theory of linear inequalities, RAND Corporation Trans-

lation 22, RAND Corporation, Santa Monica, CA, 1952. Reprint in Theodore S. Motzkin:
Selected Papers, D. Cantor, B. Gordon, and B. Rothschild, eds., Birkhäuser, Boston, 1983,
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ALGORITHMS∗
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Abstract. For the problem of solving maximal monotone inclusions, we present a rather general
class of algorithms, which contains hybrid inexact proximal point methods as a special case and
allows for the use of a variable metric in subproblems. The global convergence and local linear
rate of convergence are established under standard assumptions. We demonstrate the advantage of
variable metric implementation in the case of solving systems of smooth monotone equations by the
proximal Newton method.
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1. Introduction. Given a maximal monotone operator T : R
n ⇒ R

n, we con-
sider the classical problem of finding a zero of T , i.e., z ∈ R

n such that

(1.1) 0 ∈ T (z).

As is well known, many important problems can be cast in this framework. Some
examples are convex optimization, min-max problems, and monotone variational in-
equalities over convex sets; see, e.g., [23].

Given some zk ∈ R
n, the current approximation to a solution of (1.1), the proxi-

mal point iteration [19, 22] generates zk+1 as the solution of the regularized subprob-
lem

(1.2) 0 ∈ ckT (z) + z − zk,

where ck > 0 is the regularization parameter. As is well known, the proximal point
method serves as a basis for developing and analyzing various useful computational
techniques, such as splitting methods for variational problems (e.g., [18, 31, 13, 33,
34, 24]), the methods of multipliers (e.g., [21, 15]), and bundle methods for non-
smooth optimization (see, e.g., [16, 3]), to name a few. In computational context, it
is important to handle approximate solutions of subproblems; this will be discussed a
little further. Also, it is attractive to allow for the use of a variable metric (or precon-
ditioning). Motivated by the latter issue, we shall consider the following generalized
proximal subproblem:

(1.3) 0 ∈ ckMkT (z) + z − zk,
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where Mk is a symmetric positive definite matrix. The case of the classical (exact)
iteration (1.2) corresponds to taking Mk = I (the identity matrix) in (1.3). Given the
presence of the matrix Mk, we could in principle dispense with the scalar parameter ck
in (1.3). We prefer, however, to keep it because this appears convenient in some parts
of the convergence analysis and in our application to solving systems of monotone
equations, discussed in section 5.

To handle approximate solutions, we shall use an extension to the variable metric
setting of the rules proposed in [27, 26] and unified in [30]. In those algorithms,
the relative error in the approximation needs only to be bounded (above, by one),
which is a numerically sound requirement, and inexact values of the operator T are
allowed, which is useful in various applications [29, 28, 24]. Specifically, to solve (1.3)
approximately, the task would be to compute a triplet (ẑk, v̂k, εk) ∈ R

n × R
n × R+

such that {
v̂k ∈ T εk(ẑk),
ckMkv̂

k + ẑk − zk = δk,

‖δk‖2
M−1

k

+ 2ckεk ≤ σ2
k

(
‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

)
,

where σk ∈ [0, 1) is the error tolerance (relaxation) parameter, by ‖ · ‖M we denote
the norm induced by a symmetric positive definite matrix M ∈ Mn

++, i.e.,

‖z‖M =
√
〈z,Mz〉,

and T ε : R
n ⇒ R

n is the ε-enlargement of a maximal monotone operator T [5, 6],
defined as

T ε(z) := {v ∈ R
n | 〈w − v, y − z〉 ≥ −ε ∀y ∈ R

n, ∀w ∈ T (y)}, ε ≥ 0.

We note that, to check the above criterion, one does not need to invert the matrix Mk,
as will be explained in what follows. The presented approximation rule is constructive
and has advantages in some situations, when compared to the original [22] (and its
variations, e.g., [32, 11, 7]), where essentially one has εk = 0 and

∑∞
k=0 ‖δk‖ < ∞ (in

the setting of Mk = I). We refer the reader to [26, 29, 28, 24] for some applications
where the relative-error criterion appears useful. It will also play a central role in the
method discussed in section 5.

Most proximal-related schemes in the literature that use variable metrics typically
deal only with the special case of optimization, i.e., the case where the operator T
is the subdifferential of a convex function [2, 20, 17, 10]. To our knowledge, the
exception is [7] and some of the subsequent results [8, 9]. We note that our use of a
variable metric is different from [7], where (exact) iteration is of the form

zk+1 = zk + Mk((I + ckT )−1 − I)zk.

The exact iteration of solving (1.3) can be written as

zk+1 = (I + ckMkT )−1zk,

and the two are the same only when Mk = I. It should be noted, however, that
[7] does not require Mk to be symmetric, and in this respect our development can
be more restrictive for some applications. On the other hand, global convergence
of the method of [7] requires a rather technical assumption about the matrices Mk.
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Specifically, the assumption of [7, Hypothesis (H2)] is that there exists a nonempty
bounded subset Ω of T−1(0) such that

‖(Mk − I)Dk(z
k)‖ ≤ γk‖Dk(z

k)‖ for all k,

where

Dk = (I + ckT )−1 − I,

γk =
‖Dk(z

k)‖
2tk + 3‖Dk(zk)‖

, with tk = sup
z∈Ω

‖z − zk‖.

This assumption essentially means that matrices Mk should not deviate from the
identity too much, in the given sense, and it is in general unverifiable (unless one
takes Mk = I) and globally quite restrictive. The only assumption we make in our
global convergence analysis is, by comparison, rather mild:

(1.4)
1

1 + ηk
Mk 
 Mk+1, ηk > 0 for all k,

∞∑
k=0

ηk < ∞,

where, for A,B ∈ Mn
++, by A 
 B we mean that B−A is a positive semidefinite ma-

trix. This condition does not introduce any essential restrictions on the choice of the
matrix Mk+1 for a given k (for a particular k, the choice of ηk is rather flexible), and
it is always satisfied if we take Mk 
 Mk+1. Also, [7] does not allow approximations
of the operator T and requires error terms to be summable, basically following [22].
In the aspect of inexact solution of subproblems, our conditions (already mentioned
above) are more flexible and constructive.

A few more words about our notation are in order. By Mn
++ we denote the space

of symmetric positive definite matrices. For M ∈ Mn
++, λmin(M) and λmax(M) stand

for the minimal and the maximal eigenvalues of M , respectively. For any A 
 B, it
holds that ‖z‖A ≤ ‖z‖B . In particular, if

0 < λl ≤ λmin(M) ≤ λmax(M) ≤ λu,

then for any x ∈ R
n it holds that

(1.5) λl‖x‖2 ≤ ‖x‖2
M ≤ λu‖x‖2,

1

λu
‖x‖2 ≤ ‖x‖2

M−1 ≤ 1

λl
‖x‖2.

By 〈x, y〉 we denote the usual inner product between x, y ∈ R
n. For a matrix M ∈

Mn
++, we denote 〈x, y〉M = 〈Mx, y〉. For a closed convex set Ω ⊆ R

n and a matrix
M ∈ Mn

++, the “skewed” projection operator onto Ω under the matrix M is given by

PΩ,M (z) = arg min
x∈Ω

1

2
〈x− z,M(x− z)〉 = arg min

x∈Ω

1

2
‖x− z‖2

M ;

i.e., it is the projection operator with respect to the norm ‖ · ‖M . Then the associated
distance from z ∈ R

n to Ω is defined as dist(z,Ω)M = ‖z − PΩ,M (z)‖.
2. Approximate solutions of the generalized proximal subproblem. Giv-

en a maximal monotone operator T : R
n ⇒ R

n, z ∈ R
n, c > 0, and M ∈ Mn

++,
consider the generalized proximal point subproblem

(2.1) 0 ∈ cMT (y) + y − z,
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with respect to y ∈ R
n. This is clearly equivalent to

0 ∈ cT (y) + M−1(y − z),

and the fact that the inclusion above has a solution follows, e.g., from [4, Proposition
3].

We next define the notion of approximate solutions of generalized proximal sub-
problems. Consider the system

(2.2)

{
v ∈ T (y),
0 = cMv + y − z,

which is equivalent to (2.1).
Definition 2.1. We say that a triplet (y, v, ε) ∈ R

n×R
n×R+ is an approximate

solution of the proximal system (2.2) with error tolerance σ ∈ [0, 1) if

v ∈ T ε(y)

and

(2.3) ‖cMv + y − z‖2
M−1 + 2cε ≤ σ2(‖cMv‖2

M−1 + ‖y − z‖2
M−1).

Note that the exact solution of (2.2) corresponds to taking ε = 0 = σ in the defini-
tion above. We next establish some properties of approximate solutions of generalized
proximal systems.

Lemma 2.2. Let z ∈ R
n, c > 0, and M ∈ Mn

++. A triplet (y, v, ε) ∈ R
n×R

n×R+

being an approximate solution of the proximal system (2.2) with error tolerance σ ∈
[0, 1) is equivalent to the conditions

(2.4) v ∈ T ε(y), 〈v, z − y〉 − ε ≥ 1 − σ2

2c

(
‖cMv‖2

M−1 + ‖y − z‖2
M−1

)
.

In addition, it holds that

(2.5)
c(1 − ρ)

1 − σ2
‖Mv‖M−1 ≤ ‖y − z‖M−1 ≤ c(1 + ρ)

1 − σ2
‖Mv‖M−1 ,

where ρ =
√

1 − (1 − σ2)2.
Furthermore, the three conditions
1. 0 ∈ T (z),
2. v = 0,
3. y = z

are equivalent and imply that ε = 0.
Proof. Rearranging terms in (2.3), we have

σ2(‖cMv‖2
M−1 + ‖y − z‖2

M−1) ≥ 2cε + ‖cMv‖2
M−1 + ‖y − z‖2

M−1 + 2〈cMv, y − z〉M−1

= 2cε + ‖cMv‖2
M−1 + ‖y − z‖2

M−1 − 2c〈v, z − y〉,

which gives the inequality in (2.4).
By using ε ≥ 0 and the Cauchy–Schwarz inequality, we obtain

1 − σ2

2c
(‖cMv‖2

M−1 + ‖y − z‖2
M−1) ≤ 〈v, z − y〉 − ε

≤ 〈Mv, z − y〉M−1 ≤ ‖Mv‖M−1‖y − z‖M−1 .
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By denoting t = ‖y − z‖M−1 and resolving the quadratic inequality

t2 − 2‖cMv‖M−1

1 − σ2
t + ‖cMv‖2

M−1 ≤ 0

with respect to t, we obtain (2.5).
Finally, suppose that 0 ∈ T (z). Since v ∈ T ε(y), we have

〈v − 0, y − z〉 ≥ −ε ⇒ 〈v, z − y〉 − ε ≤ 0.

By using now (2.4), we have cMv = 0 (so that v = 0) and y − z = 0.
If we assume that v = 0, then (2.4) implies that y = z and vice versa. In either

case, 0 ∈ T (z). From (2.4) it is also clear that all of these conditions imply that
ε = 0.

The next result shows how to make progress towards a solution of the original
problem (1.1), by using the obtained approximate solution of the generalized proximal
subproblem.

Lemma 2.3. Let z ∈ R
n, y ∈ R

n, ε ≥ 0, and v ∈ T ε(y). Suppose that

〈v, z − y〉 − ε > 0.

Then, for any z∗ ∈ T−1(0), any M ∈ Mn
++, and any τ ≥ 0, it holds that

‖z∗ − z+‖2
M−1 ≤ ‖z∗ − z‖2

M−1 − (1 − (1 − τ)2)a2‖Mv‖2
M−1 ,

where

z+ := z − τaMv

and

a :=
〈v, z − y〉 − ε

‖Mv‖2
M−1

.

Proof. Define the closed half-space

H = {w ∈ R
n | 〈v, w − y〉 − ε ≤ 0}.

By the assumption, z ∈ H. Let z̄ be the skewed projection of z onto H, under the
matrix M−1. As is easily seen,

z̄ = PH,M−1(z) = z − aMv.

For any x ∈ H, it holds that

〈x− z̄, v〉 = 〈x− z + aMv, v〉 = 〈x− z, v〉+
〈v, z − y〉 − ε

‖Mv‖2
M−1

〈Mv, v〉 = 〈x− y, v〉− ε ≤ 0.

Hence,

〈x− z̄, z+ − z〉M−1 = 〈x− z̄,M−1(−τaMv)〉 = −τa〈x− z̄, v〉 ≥ 0.
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Observe that z̄ − z+ = (τ − 1)aMv. We then obtain

‖x− z‖2
M−1 = ‖x− z+‖2

M−1 + ‖z+ − z‖2
M−1 + 2〈x− z+, z+ − z〉M−1

= ‖x− z+‖2
M−1 + ‖z+ − z‖2

M−1 + 2〈z̄ − z+, z+ − z〉M−1

+2〈x− z̄, z+ − z〉M−1

≥ ‖x− z+‖2
M−1 + ‖z+ − z‖2

M−1 + 2〈z̄ − z+, z+ − z〉M−1

= ‖x− z+‖2
M−1 + (τa)2‖Mv‖2

M−1 + 2(τ − 1)a(−τa)‖Mv‖2
M−1

= ‖x− z+‖2
M−1 + (1 − (1 − τ)2)a2‖Mv‖2

M−1 .

Suppose that z∗ ∈ T−1(0). Since v ∈ T ε(y), we have

〈v − 0, y − z∗〉 ≥ −ε.

This shows that z∗ ∈ H. We can then set x = z∗ in the chain of inequalities above to
complete the proof.

3. The algorithm. Lemma 2.3 shows that, with a proper choice of parameters,
a step in the direction obtained from an approximate solution of the generalized
proximal system, scaled by the chosen metric, brings us closer to the solution set
of the original problem. This suggests the following scheme, which we shall call the
variable metric hybrid inexact proximal point method.

Algorithm 3.1. Initialization: Choose z0 ∈ R
n, c > 0, σ̄ ∈ (0, 1), θ ∈ (0, 1),

and 0 < λl < λu. Set k := 0.
Inexact proximal step: Choose ck ≥ c, a symmetric positive definite matrix

Mk satisfying λl ≤ λmin(Mk) ≤ λmax(Mk) ≤ λu, and the error tolerance parameter
σk ∈ [0, σ̄). Find ẑk ∈ R

n, v̂k ∈ R
n, and εk ≥ 0 such that

(3.1)

{
v̂k ∈ T εk(ẑk),
δk = ckMkv̂

k + ẑk − zk

and

(3.2) ‖δk‖2
M−1

k

+ 2ckεk ≤ σ2
k

(
‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

)
.

Iterates update: If ẑk = zk, stop. Otherwise, choose τk ∈ [1− θ, 1+ θ], and set

zk+1 = zk − τkakMkv̂
k, ak =

〈v̂k, zk − ẑk〉 − εk
‖Mkv̂k‖2

M−1
k

.

Set k := k + 1, and go to the inexact proximal step.
We note that it is not necessary to calculate the inverse of Mk in order to im-

plement Algorithm 3.1 (in particular, for checking the condition (3.2) and computing
ak). Indeed, by (1.5), the condition (3.2) is satisfied if

‖δk‖2 + 2λuckεk ≤ λuσ
2
k

λl

(
‖ckMkv̂

k‖2 + ‖ẑk − zk‖2
)
.

Alternatively, in the latter relation, instead of λl and λu one can use any other (in
particular, tighter) lower and upper bounds for the eigenvalues of Mk. Also, the scalar
ak can be calculated as

ak =
〈v̂k, zk − ẑk〉 − εk

〈Mkv̂k, v̂k〉
.



246 L. A. PARENTE, P. A. LOTITO, AND M. V. SOLODOV

The next result shows that some specific realizations of Algorithm 3.1 allow for
the simple update

zk+1 = zk − ckMkv̂
k.

This is the update that we shall use for our application in section 5. Specifically, we
have the following.

Proposition 3.1. If the inequality in (3.2) is replaced by the stronger condition
‖δk‖2

M−1
k

+ 2ckεk ≤ σ2
k‖ẑk − zk‖2

M−1
k

, and we choose σk ≤ θ, then there exists τk ∈
(1 − σk, 1 + σk) ⊂ (0, 2) such that τkak = ck.

Proof. In the case of interest, v̂k = 0 and ẑk = zk. By using the triangle inequality,
from ‖δk‖M−1

k
≤ σk‖ẑk − zk‖M−1

k
we obtain

‖ẑk − zk‖M−1
k

− ck‖Mkv̂
k‖M−1

k
≤ σk‖ẑk − zk‖M−1

k

and

ck‖Mkv̂
k‖M−1

k
− ‖ẑk − zk‖M−1

k
≤ σk‖ẑk − zk‖M−1

k
,

implying that

(3.3) (1 − σk)
‖ẑk − zk‖M−1

k

‖Mkv̂k‖M−1
k

≤ ck ≤ (1 + σk)
‖ẑk − zk‖M−1

k

‖Mkv̂k‖M−1
k

.

Furthermore, by the Cauchy–Schwarz inequality, since εk ≥ 0 we have

ak =
〈v̂k, zk − ẑk〉 − εk

‖Mkv̂k‖2
M−1

k

≤
〈Mkv̂

k, zk − ẑk〉M−1
k

‖Mkv̂k‖2
M−1

k

≤
‖ẑk − zk‖M−1

k

‖Mkv̂k‖M−1
k

.

Finally, since

〈v̂k, ẑk − zk〉 = 〈Mkv̂
k, ẑk − zk〉M−1

k

=
‖ckMkv̂

k + ẑk − zk‖2
M−1

k

− ‖ẑk − zk‖2
M−1

k

− ‖ckMkv̂
k‖2

M−1
k

2ck
,

by using (2.5) and (3.3), we obtain

ak =
‖ẑk − zk‖2

M−1
k

+ ‖ckMkv̂
k‖2

M−1
k

−
(
‖ckMkv̂

k + ẑk − zk‖2
M−1

k

+ 2ckεk

)
2ck‖Mkv̂k‖2

M−1
k

≥ ck
2

+ (1 − σ2
k)

‖ẑk − zk‖2
M−1

k

‖ckMkv̂k‖2
M−1

k

≥ ck
2

(
1 +

1 − σ2
k

(1 + σk)2

)
=

ck
1 + σk

.

Hence,

(1 − σk)ak ≤ ck ≤ (1 + σk)ak,

which establishes the claim.
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4. Convergence analysis. If Algorithm 3.1 terminates at some iteration k,
then zk = ẑk, and, by Lemma 2.2, zk is a solution. We next consider the case when
infinite sequences {zk}, {ẑk}, {v̂k}, and {εk} are generated. For any k, we have v̂k = 0,
ẑk = zk, and by Lemma 2.2,

〈v̂k, zk − ẑk〉 − εk ≥ 1 − σ2
k

2ck

(
‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

)
> 0.

By the definition of ak, we then conclude that

(4.1) ak ≥ 1 − σ2
k

2ck

⎛
⎝‖ckMkv̂

k‖2
M−1

k

+ ‖ẑk − zk‖2
M−1

k

‖Mkv̂k‖2
M−1

k

⎞
⎠ .

By the Cauchy–Schwarz inequality,

‖ckMkv̂
k‖2

M−1
k

+ ‖ẑk − zk‖2
M−1

k

≥ 2ck‖Mkv̂
k‖M−1

k
‖ẑk − zk‖M−1

k
.

By combining this relation with (4.1), we obtain

(4.2) ak‖Mkv̂
k‖M−1

k
≥ (1 − σ2

k)‖ẑk − zk‖M−1
k

.

Combining (4.1) and (2.5), and using the definition of ρk, gives the following lower
bound for ak:

ak ≥ (1 − σ2
k)ck

2

⎛
⎝1 +

‖ẑk − zk‖2
M−1

k

‖ckMkv̂k‖2
M−1

k

⎞
⎠

≥ (1 − σ2
k)ck

2

(
1 +

(
1 − ρk
1 − σ2

k

)2
)

=

ck

((
1 − σ2

k

)2
+
(
1 −

√
1 − (1 − σ2

k)
2
)2

)
2 (1 − σ2

k)

=
ck

(
1 −

√
1 − (1 − σ2

k)
2
)

1 − σ2
k

=
(1 − σ2

k)ck

1 +
√

1 − (1 − σ2
k)

2
.(4.3)

Hence, the parameter ak is bounded away from zero:

(4.4) ak ≥ (1 − σ̄2)c

1 +
√

1 − (1 − σ̄2)2
> 0.

We proceed to establish the global convergence of Algorithm 3.1.
Proposition 4.1. Suppose that T−1(0) = ∅ and condition (1.4) holds. Then any

sequences generated by Algorithm 3.1 have the following properties:
1. {zk} is bounded.
2.

∑∞
k=0 ‖akMkv̂

k‖2 < ∞.
3. limk→∞ ‖ẑk − zk‖ = limk→∞ ‖v̂k‖ = limk→∞ ‖εk‖ = 0.
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Proof. By condition (1.4), it holds that

∞∏
k=0

(1 + ηk) = p < ∞,

and, for all k,

M−1
k+1 
 (1 + ηk)M

−1
k .

By (1.5), for all k we have

λ−1
u ‖z‖2 ≤ λmin(M−1

k )‖z‖2 ≤ ‖z‖2
M−1

k

≤ λmax(M−1
k )‖z‖2 ≤ λ−1

l ‖z‖2 ∀ z ∈ R
n.

By using (4.1) and Lemma 2.3, we have that for any z∗ ∈ T−1(0) it holds that

‖z∗ − zk+1‖2
M−1

k

≤ ‖z∗ − zk‖2
M−1

k

− (1 − (1 − τk)
2)a2

k‖Mkv̂
k‖2

M−1
k

≤ ‖z∗ − zk‖2
M−1

k

− (1 − θ2)‖akMkv̂
k‖2

M−1
k

.

Hence,

λ−1
u ‖z∗ − zk+1‖2 ≤ ‖z∗ − zk+1‖2

M−1
k+1

≤ (1 + ηk)‖z∗ − zk+1‖2
M−1

k

≤ (1 + ηk)
(
‖z∗ − zk‖2

M−1
k

− (1 − θ2)‖akMkv̂
k‖2

M−1
k

)
≤ (1 + ηk)‖z∗ − zk‖2

M−1
k

− (1 − θ2)‖akMkv̂
k‖2

M−1
k

.

By applying this inequality consecutively, we obtain

(4.5) λ−1
u ‖z∗ − zk+1‖2 ≤

k∏
i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0
− (1 − θ2)

k∑
i=0

‖aiMiv̂
i‖2

M−1
i

.

We therefore have, for any k,

(4.6) ‖z∗ − zk‖2 ≤ λu

k−1∏
i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0
≤ pλu

λl
‖z∗ − z0‖2,

which shows that the sequence {zk} is bounded. From (4.5), we also have

(1 − θ2)

k∑
i=0

‖aiMiv̂
i‖2

M−1
i

≤
k∏

i=0

(1 + ηi)‖z∗ − z0‖2
M−1

0
.

By passing onto the limit when k → ∞ in this relation, we obtain

∞∑
k=0

‖akMkv̂
k‖2 ≤ λu

∞∑
k=0

‖akMkv̂
k‖2

M−1
k

≤ pλu

1 − θ2
‖z∗ − z0‖2

M−1
0

< ∞.

This proves the second item in the assertion and, as a consequence, that

lim
k→∞

‖akMkv̂
k‖ = 0.
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From (4.2) and Lemma 2.2, we then conclude that

lim
k→∞

‖Mkv̂
k‖ = 0 and lim

k→∞
‖ẑk − zk‖ = 0.

Since the matrices Mk are uniformly positive definite, we also have limk→∞ v̂k = 0.
Also, since εk ≤ 〈v̂k, zk − ẑk〉, it follows that limk→∞ εk = 0.

We are now in a position to complete the proof of global convergence of Algorithm
3.1. Given the properties established in Proposition 4.1, the argument is close to
standard; we include it mainly for completeness.

Theorem 4.2. Suppose that T−1(0) = ∅ and condition (1.4) holds. Then any
sequence {zk} generated by Algorithm 3.1 converges to an element of T−1(0).

Proof. By Proposition 4.1, the sequence {zk} is bounded. Therefore, it has some
accumulation point, say, z̄ ∈ R

n. Let {zkj} be any subsequence converging to this
accumulation point: limj→∞ zkj = z̄. Since limk→∞ ‖ẑk − zk‖ = 0, we have ẑkj → z̄.
For any z ∈ R

n and any u ∈ T (z), 〈u− vkj , z − ẑkj 〉 ≥ −εkj . Hence,

〈u− 0, z − ẑkj 〉 ≥ 〈vkj , z − ẑkj 〉 − εkj
.

Since vkj → 0, εkj → 0, and ẑkj → z̄, by passing onto the limit when j → ∞ we
obtain

〈u− 0, z − z̄〉 ≥ 0.

As z ∈ R
n and u ∈ T (z) were arbitrarily chosen, and T is maximal monotone, the

above relation shows that 0 ∈ T (z̄); i.e., z̄ is a solution.
Suppose that there exists another subsequence {zti} converging to z̃ = z̄. Fix

some d ∈ (0, ‖z̃ − z̄‖). Since z̃ and z̄ are limits of corresponding subsequences, there
exists an index i0 such that for all i ≥ i0

‖zti − z̃‖ <
d

2

√
λl

pλu
,

where p =
∏∞

k=0(1 + ηk), and there exists an index j0 such that for all j ≥ j0

kj > ti0 and ‖zkj − z̄‖ <
d

2
.

Therefore,

‖zkj − z̃‖ >
d

2
∀j ≥ j0.

Since, as already established above, z̃ ∈ T−1(0), the same reasoning used to obtain
(4.6) gives, for any j ≥ j0,

d

2
< ‖zkj − z̃‖ ≤

√
pλu

λl
‖zti0 − z̃‖ <

d

2
,

which is a contradiction.
Hence, {zk} has the unique accumulation point, which is a solution.
We proceed with a convergence rate analysis of Algorithm 3.1. To this end, we

first establish an error bound for the exact solution of the generalized proximal system

(4.7)

{
v ∈ T (y),
0 = cMv + y − z.
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We note that the obtained bound is for the distance both in terms of y and in terms of
v, and it does not involve any unknown constants. Specifically, we have the following.

Lemma 4.3. Let y∗, v∗ be the exact solution of the proximal system (4.7), with
some c > 0, z ∈ R

n, and M ∈ Mn
++. Then for any y ∈ R

n and any v ∈ T ε(y), it
holds that

‖y − y∗‖2
M−1 + c2‖Mv −Mv∗‖2

M−1 ≤ ‖cMv + y − z‖2
M−1 + 2cε.

Proof. By using cMv∗ + y∗ − z = 0, we obtain

‖cMv + y − z‖2
M−1 = ‖cMv + y − z − (cMv∗ + y∗ − z)‖2

M−1

= ‖cMv − cMv∗ + y − y∗‖2
M−1

= c2‖Mv −Mv∗‖2
M−1 + ‖y − y∗‖2

M−1 + 2c〈v − v∗, y − y∗〉
≥ c2‖Mv −Mv∗‖2

M−1 + ‖y − y∗‖2
M−1 − 2cε.

We shall show linear convergence of Algorithm 3.1 under the assumption that
T−1 has the following Lipschitzian property at zero: There exist some L1 > 0 and
L2 > 0 such that

T−1(v) ⊂ T−1(0) + L1‖v‖B ∀v ∈ L2B,

where B = {x ∈ R
n | ‖x‖ ≤ 1}. Note that this condition does not imply that the

solution set T−1(0) is a singleton. The equivalent form of this local Lipschitzian
property, used below, is

(4.8) dist(z, T−1(0)) ≤ L1 min
v∈T (z)

‖v‖ ∀ z ∈ {z′ ∈ domT | min
v∈T (z′)

‖v‖ ≤ L2}.

We shall prove the linear convergence rate under one of the following two alterna-
tive assumptions on algorithm parameters. One is that σ̄ is sufficiently small, while c
is sufficiently large (note that those are user-chosen parameters). The other is that

(4.9)
1

1 + ηk
Mk 
 Mk+1 
 (1 + ηk)Mk, ηk > 0 ∀ k,

∞∑
k=0

ηk < ∞,

which is a strengthening of the condition (1.4) used for global convergence. Asymp-
totically, (4.9) means that the matrices should not differ too much on subsequent
iterations (a natural requirement in a neighborhood of a solution).

Theorem 4.4. In addition to the assumptions of Theorem 4.2, suppose that
condition (4.8) is satisfied.

Then, for sufficiently small choices of σk and sufficiently large choices of ck, the
sequence {zk} generated by Algorithm 3.1 converges to an element of T−1(0) at a
linear rate. If ck → ∞ and σk → 0, the rate of convergence is superlinear.

If condition (4.9) holds, then for any choice of parameters σ̄ and c, there exists
k0 ∈ N such that the sequence {zk} converges at the linear rate in the norm induced
by M−1

k0
.

Proof. For each k, let τk, ak, z
k be as defined in Algorithm 3.1, and let xk, wk ∈

T (xk) be the exact solution of the proximal system{
w ∈ T (x),
0 = bkMkw + x− zk,
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where bk = τkak. Since v̂k ∈ T εk(ẑk), by Lemma 4.3 and the definition of ak, it
follows that

‖xk − ẑk‖2
M−1

k

+ b2k‖Mkv̂
k −Mkw

k‖2
M−1

k

≤ ‖bkMkv̂
k + ẑk − zk‖2

M−1
k

+ 2bkεk

= ‖bkMkv̂
k + ẑk − zk‖2

M−1
k

−2bk

(
ak‖Mkv̂

k‖2
M−1

k

+ 〈Mkv̂
k, zk − ẑk〉M−1

k

)
= ‖ẑk − zk‖2

M−1
k

+ (τ2
k − 2τk)‖akMkv̂

k‖2
M−1

k

.

By using (4.2), we then obtain

(4.10)

‖xk − ẑk‖2
M−1

k

+ b2k‖Mkv̂
k −Mkw

k‖2
M−1

k

≤
(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
‖akMkv̂

k‖2
M−1

k

.

By using further the definitions of wk and v̂k, this gives

(4.11) ‖xk − ẑk‖2
M−1

k

+ ‖xk − zk+1‖2
M−1

k

≤
(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
‖akMkv̂

k‖2
M−1

k

.

From (4.10), we also have

‖Mkv̂
k −Mkw

k‖2
M−1

k

≤
(

1 − 2

τk
+

1

τ2
k (1 − σ2

k)
2

)
‖Mkv̂

k‖2
M−1

k

.

Since v̂k → 0 (see Proposition 4.1), the last relation implies that wk → 0. Hence,
there exists k1 ∈ N such that ‖wk‖ < L2 for all k > k1. By (4.8), we then have

dist(xk, T−1(0)) ≤ L1‖wk‖ ∀k > k1.

Therefore, for k > k1,

dist(xk, T−1(0))2
M−1

k

≤ 1

λl
dist(xk, T−1(0))2 ≤ L2

1

λl
‖wk‖2

≤ L2
1

λ2
l

‖wk‖2
Mk

=
L2

1

λ2
l

‖Mkw
k‖2

M−1
k

=
L2

1

λ2
l b

2
k

‖zk − xk‖2
M−1

k

.(4.12)

Let x̄k be the skewed projection of xk onto T−1(0) under the norm induced by M−1
k ,

i.e.,

x̄k := PT−1(0),M−1
k

(xk).

Then, for k > k1, we have

dist(zk+1, T−1(0))M−1
k

≤ ‖zk+1 − x̄k‖M−1
k

≤ ‖zk+1 − xk‖M−1
k

+ dist(xk, T−1(0))M−1
k

≤ ‖zk+1 − xk‖M−1
k

+
L1

λlbk
‖zk − xk‖M−1

k

≤ ‖zk+1 − xk‖M−1
k

+
L1

λlbk
‖xk − ẑk‖M−1

k
+

L1

λlbk
‖ẑk − zk‖M−1

k
,
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where the third inequality is by (4.12). By the Cauchy–Schwarz inequality, it holds
that

L1

λlbk
‖xk − ẑk‖M−1

k
+ ‖xk − zk+1‖M−1

k

≤

√
1 +

L2
1

λ2
l b

2
k

√
‖xk − ẑk‖2

M−1
k

+ ‖xk − zk+1‖2
M−1

k

≤

√(
1 +

L2
1

λ2
l b

2
k

)(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
‖akMkv̂

k‖M−1
k

,

where the second inequality follows from (4.11). By combining the latter relation with
(4.13) and using also (4.2), we obtain

dist(zk+1, T−1(0))M−1
k

(4.13)

≤
(√(

1 +
L2

1

λ2
l b

2
k

)(
τ2
k − 2τk +

1

(1 − σ2
k)

2

)
+

L1

λlbk(1 − σ2
k)

)
‖akMkv̂

k‖M−1
k

.

Define

(4.14) μk :=
√

α2
k + 1

√
β2
k − 1 + αkβk,

where

(4.15) αk :=
L1

(
1 +

√
1 − (1 − σ2

k)
2
)

λlck(1 − σ2
k)(1 − θ)

≤
L1

(
1 +

√
1 − (1 − σ̄2)2

)
λlc(1 − σ̄2)(1 − θ)

=: α,

(4.16) βk :=
1

1 − σ2
k

≤ 1

1 − σ̄2
=: β.

With those definitions, by using (4.13) and (4.3), we conclude that

(4.17) dist(zk+1, T−1(0))M−1
k

≤ μk‖akMkv̂
k‖M−1

k
.

Let z̄k := PT−1(0),M−1
k

(zk). By Lemma 2.3, it holds that

dist(zk, T−1(0))2
M−1

k

≥ ‖z̄k − zk+1‖2
M−1

k

+ (1 − (1 − τk)
2)a2

k‖Mkv̂
k‖2

M−1
k

(4.18)

≥ dist(zk+1, T−1(0))2
M−1

k

+ (1 − θ2)a2
k‖Mkv̂

k‖2
M−1

k

.(4.19)

By using (4.17), we then conclude that

(4.20) dist(zk, T−1(0))2
M−1

k

≥
(

1 +
1 − θ2

μ2
k

)
dist(zk+1, T−1(0))2

M−1
k

.

Therefore,

(4.21) dist(zk+1, T−1(0)) ≤ μk

√
λu√

λl(μ2
k + 1 − θ2)

dist(zk, T−1(0)).

By the definitions (4.15) and (4.16), by taking ck sufficiently large we can make αk

arbitrarily small, and by taking σk sufficiently small we can make βk arbitrarily close
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to one. By the definition (4.14), this means that we can make μk arbitrarily small, so
that the scalar in the right-hand side of (4.21) is less than one. Then (4.21) shows that
the sequence {dist(zk, T−1(0))} converges linearly to zero. Also, the inequality (4.19)
shows that this sequence is Fejér-monotone with respect to the set T−1(0) (for the
given norm). For Fejér-monotone sequences, linear convergence of {dist(zk, T−1(0))}
is equivalent to the linear convergence rate of {zk} to its limit (see, e.g., [1]).

By the same argument as above, if ck → ∞ and σk → 0, then μk → 0, and (4.21)
shows a superlinear convergence rate.

Assume now that the condition (4.9) holds. Then

1

(1 + ηk)
dist(z, T−1(0))2

M−1
k

= inf
y∈T−1(0)

1

(1 + ηk)
‖z − y‖2

M−1
k

≤ inf
y∈T−1(0)

‖z − y‖2
M−1

k+1

= (1 + ηk) dist(z, T−1(0))2
M−1

k+1

≤ inf
y∈T−1(0)

(1 + ηk) ‖z − y‖2
M−1

k

= (1 + ηk) dist(z, T−1(0))2
M−1

k

.(4.22)

Define

μ =
√
α2 + 1

√
β2 − 1 + αβ,

with α and β given by (4.15) and (4.16), respectively. Note that μ > μk for all k.
Since

∏∞
i=0(1 + ηi) < ∞, there exists k2 ∈ N such that

∞∏
i=k2

(1 + ηi) <

√
μ2 + 1 − θ2

μ
.

From (4.20), by applying (4.22) consecutively, for any k ≥ k0 := max{k1, k2}, we have( ∞∏
i=k0

1

(1 + ηi)

)
dist(zk+1, T−1(0))2

M−1
k0

≤
(

k−1∏
i=k0

1

(1 + ηi)

)
dist(zk+1, T−1(0))2

M−1
k0

≤ dist(zk+1, T−1(0))2
M−1

k

≤ μ2

μ2 + 1 − θ2
dist(zk, T−1(0))2

M−1
k

≤
(

k−1∏
i=k0

(1 + ηi)

)
μ2

μ2 + 1 − θ2
dist(zk, T−1(0))2

M−1
k0

≤
( ∞∏

i=k0

(1 + ηi)

)
μ2

μ2 + 1 − θ2
dist(zk, T−1(0))2

M−1
k0

.

In particular,

dist(zk+1, T−1(0))M−1
k0

≤ ν dist(zk, T−1(0))M−1
k0

,
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where

ν :=
μ√

μ2 + 1 − θ2

∞∏
i=k0

(1 + ηi) < 1,

as claimed.

5. A variable metric proximal Newton method. In this section, we show
how the proposed variable metric approach can be used to obtain a computational
advantage when solving a system of monotone differentiable equations

(5.1) F (x) = 0,

where F : R
n → R

n. Problems of this type appear, for example, in smooth multi-
plier methods for monotone complementarity problems [14]. We start with describing
the method and giving its theoretical justification and then report on our numerical
experiments.

5.1. Description and justification of the method. In [25, 29], it has been
shown that hybrid inexact proximal point schemes (with a fixed metric) can be used to
construct Newton methods for monotone problems with a very attractive combination
of global and local convergence properties. In particular, global convergence from
any starting point to a solution is guaranteed, regardless of any degeneracy along
the trajectory, which is not true in the case of more standard merit function-based
globalizations that can get stuck at stationary points of the function that are not global
minimizers. Fast local convergence for nondegenerate problems is also preserved, in
a natural way. We refer the reader to [25, 29] for more detailed discussion.

When the Newton step is computed for the proximal subproblem (with the fixed
metric Mk = I)

ckF (z) + (z − zk) = 0,

as in [25], one needs to solve the system of linear equations

(5.2) ckF (zk) + (ck∇F (zk) + I)d = 0,

with respect to d ∈ R
n. The crucial point is that, under natural assumptions, this

single Newton step is enough to obtain an acceptable approximate solution of the
proximal subproblem. Note that the above system is, in general, asymmetric. For
future comparison, note that to compute LU factorization of the matrix ck∇F (zk)+I
and then the solution dk, the number of arithmetic operations required is 2(n3/3+n2).
If to solve the linear system one uses instead of matrix factorization the conjugate
gradient method, calculation of (∇F (zk))�∇F (zk) is needed. Apart from extra com-
putational cost (which is not negligeable when n is large), the latter is in general a
dense matrix even when ∇F (zk) is sparse. In what follows, we show how choosing
a special variable metric can reduce the number of calculations in the case of using
matrix factorizations and can preserve sparsity if the conjugate gradient method is
used.

The idea is to choose a metric in such a way that, instead of solving a general
asymmetric linear system, we will have to solve one triangular system and one sym-
metric system (with a positive definite matrix). As we shall see, this has a number of
advantages.

Consider the proximal subproblem

(5.3) 0 = ckMkF (z) + (z − zk).
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We shall compute the Newton step for its equivalent formulation

0 = ckF (z) + Ak(z − zk),

where Ak plays the role of the inverse of Mk (no matrices are actually inverted, of
course; we simply choose Ak and work with it throughout, as explained next). The
Newton step for the latter equation is given by

(5.4) ckF (zk) + (ck∇F (zk) + Ak)d
k = 0.

In what follows, we shall show that, with proper choices of parameters, the point

(5.5) yk = zk + dk

is an acceptable approximate solution of (5.3), in the sense of Algorithm 3.1 (even
more specifically, in the sense of Proposition 3.1). Then the next iterate is given by

zk+1 = zk − ckMkF (yk),

which can be implemented as solving the system of linear equations

(5.6) ckF (yk) + Aks = 0,

with respect to s ∈ R
n, and setting

(5.7) zk+1 = zk + sk.

As Ak we suggest to take the symmetrization of the upper triangular part of the
matrix −ck∇F (zk) with appropriate diagonal elements, so that it is positive definite.
One choice is

(5.8) (Ak)i,j :=

⎧⎨
⎩

−ck(∇F (zk))i,j for i < j,
(Ak)j,i for i > j,

1 +
∑

i 	=j |(Ak)i,j | for i = j.

Since Ak is symmetric and strictly diagonally dominant, it is positive definite by the
Gerschgorin theorem [12, Theorem 3.5.9], and

(5.9) λmin(Ak) ≥ 1.

The proposed implementation, therefore, consists of solving the linear system
(5.4) with the triangular matrix ck∇F (zk) + Ak and the linear system (5.6) with
the symmetric positive definite matrix Ak. If the Cholesky factorization is used for
the latter, the total cost of the iteration is n3/3 + 2n2 + n2/2 arithmetic operations.
The savings compared to the fixed metric (asymmetric) implementation discussed
above amounts to n2(n/3− 1/2), which is significant for large n. If instead of matrix
factorization the conjugate gradient method is used to solve (5.6), it is important that
it works directly with the symmetric matrix Ak, which is sparse if ∇F (zk) is also.
Recall that, in the case of solving the asymmetric system, the method has to work
with (ck∇F (zk) + I)�(ck∇F (zk) + I), which is in general dense even when ∇F (zk)
is sparse.

To validate our proposal, it remains to show that the single Newton step defined by
(5.4) produces a point acceptable by the approximation criterion of Algorithm 3.1 and
that this strategy does not increase too much the overall number of iterations of the
method as compared to the asymmetric fixed metric implementation. We deal with the
first issue next and then present some numerical experiments to address the second.
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Let Mk = A−1
k . By (5.9), we have

(5.10) λmax(Mk) ≤ 1.

In particular, we can take λu = 1 in Algorithm 3.1. Since dk is the solution of the
linear system (5.4), we have

(5.11) dk = yk − zk = −ckMkF (zk) − ckMk∇F (zk)dk.

To prove the claim that this Newton step is sufficient to solve the proximal subproblem
within the required tolerance, we have to show that

(5.12) ‖ckMkF (yk) + dk‖2
M−1

k

≤ σ2
k

(
‖ckMkF (yk)‖2

M−1
k

+ ‖dk‖2
M−1

k

)
.

Let ∇F be Lipschitz-continuous with modulus γ > 0 (on the bounded set containing
the sequences {zk} and {yk}, whose boundedness has been already established). It
then holds that

‖F (yk) − F (zk) −∇F (zk)dk‖ ≤ γ

2
‖dk‖2.

Since it follows from (5.11) that

−ckF (zk) − ck∇F (zk)dk = M−1
k dk,

we obtain

(5.13) ‖ckF (yk) + M−1
k dk‖ ≤ γck

2
‖dk‖2.

Furthermore, by recalling (5.10), we have

(5.14) ‖ckF (yk) + M−1
k dk‖2 ≥ ‖ckF (yk) + M−1

k dk‖2
Mk

= ‖ckMkF (yk) + dk‖2
M−1

k

.

Also, by using (5.10) and (5.11), we obtain

‖dk‖2 ≤ ‖dk‖2
M−1

k

= 〈dk,M−1
k (−ckMkF (zk) − ckMk∇F (zk)dk)〉

= −ck〈dk, F (zk)〉 − ck〈dk,∇F (zk)dk〉
≤ ck‖dk‖‖F (zk)‖,

where we have used the fact that ∇F (zk) is positive semidefinite (by the monotonicity
of F ). Hence,

‖dk‖ ≤ ck‖F (zk)‖.

By combining this relation with (5.13) and (5.14), we conclude that

‖ckMkF (yk) + dk‖M−1
k

≤ γc2k‖F (zk)‖
2

‖dk‖ ≤ γc2k‖F (zk)‖
2

‖dk‖M−1
k

,

where (5.10) was also taken into account. Therefore, by choosing the regularization
parameter

0 < ck ≤
√

2σk√
γ‖F (zk)‖

,
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we obtain (5.12). This analysis also shows that we are in the setting of Proposition
3.1, so that the step zk+1 = zk + ckMkF (yk) is admissible (implemented above as
solving the linear system (5.6)).

If an estimate for the Lipschitz constant γ of ∇F is not available, ck can be
obtained by an Armijo-type line-search procedure. Alternatively, instead of making
one Newton step for each subproblem, we can make several, until the relative error
approximation criterion is satisfied. In our computational experience, however, one
Newton step was always enough. Moreover, by assuming the nonsingularity of ∇F

at the solution, for k large enough one can take ck =
√

2σk√
‖F (zk)‖

, without any line

search, and make a single Newton step. The superlinear rate of convergence can be
established by analysis analogous to [25].

5.2. Numerical experiments. We have compared the proximal Newton meth-
ods, with a fixed metric and a variable metric, on the following examples.

Let F : R
n → R

n be given by

F (z) = F̃ (z) + Hz,

where

F̃i(z) =
1 + (−1)i+1

2
f(zi),

f : R → R is a monotone function with a Lipschitz-continuous derivative, and H is
the n× n matrix given by

(H)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n/2 for i = j = 1,
5n for i = 1 and j = n,

−5n for i = n and j = 1,
n + i− 1 for i = j and i /∈ {1, n},

1 for j = n and i /∈ {1, n},
1 for j < i and i = n,

−1 for i = n and j /∈ {1, n},
0 elsewhere.

It can be seen that H is positive semidefinite (because (H + H�)/2 is diagonally
dominant), but it is not positive definite (because e�nHen = 0, where en is the nth
vector of the canonical basis). This fact and the monotonicity of f imply that F is
monotone. Note that, for n = 2k with k ∈ N, F is not strictly monotone, even if f is
strictly monotone.

It can be seen that its Jacobian ∇F (z) is Lipschitz-continuous with the same
Lipschitz constant as f ′, and, for any z ∈ R

n, ∇F (z) is a nonsymmetric matrix, with
a sparse upper triangular part.

We have coded both the Newton proximal method (NPM) and the variable met-
ric Newton proximal method (VMNPM) by using Scilab 4.0 (INRIA-ENPC, see
www.scilab.org). An iteration of NPM consists of solving the system of equations
(5.2), while VMNPM is the procedure given by (5.4)–(5.7), with Ak defined in (5.8).
For both methods, the regularization parameter is taken as ck =

√
2/‖F (zk)‖.

In the case of solving linear systems by matrix factorization, the comparison is
exactly as predicted by the arithmetic operations counts, mentioned above. The vari-
able metric approach requires more iterations, but already for moderate dimensions
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Table 5.1

f(x) = x + exp(−x2)

Dim NPM VMNPM T1/T2

Iter T1 ‖F‖ Iter T2 ‖F‖
100 4 0.16 3.98e-008 20 0.20 8.12e-008 0.77
300 4 1.34 3.40e-008 22 1.11 3.57e-008 1.21
500 4 4.16 4.04e-008 22 3.59 4.13e-008 1.16
700 4 9.06 4.32e-008 22 7.28 6.74e-008 1.24
900 4 16.22 4.88e-008 23 12.72 4.62e-008 1.28

1100 4 26.16 5.37e-008 23 19.06 5.10e-008 1.37
1300 4 39.00 6.81e-008 23 26.38 5.05e-008 1.48
1500 4 55.45 6.94e-008 23 35.13 4.65e-008 1.58
1700 4 75.94 9.14e-008 23 44.84 4.39e-008 1.69
1900 4 100.70 9.59e-008 23 55.91 5.12e-008 1.80

f(x) = 2 arctan(x + 1)

Dim NPM VMNPM T1/T2

Iter T1 ‖F‖ Iter T2 ‖F‖
100 4 0.13 7.42e-008 20 0.17 6.63e-008 0.73
300 4 1.36 4.80e-008 22 1.16 6.50e-008 1.18
500 4 4.38 5.77e-008 23 3.78 1.52e-008 1.16
700 4 9.22 6.42e-008 23 7.91 2.25e-008 1.17
900 4 16.45 6.51e-008 23 13.22 5.09e-008 1.24

1100 4 26.38 6.71e-008 23 19.66 9.95e-008 1.34
1300 4 39.27 7.14e-008 24 28.55 3.95e-008 1.38
1500 4 55.78 8.37e-008 24 37.89 3.18e-008 1.47
1700 4 76.92 9.02e-008 24 49.11 2.79e-008 1.57
1900 4 101.33 1.15e-007 24 60.64 3.97e-008 1.67

f(x) = 1
2
x
√
x2 + 5 + 5

2
ln(x +

√
x2 + 5)

Dim NPM VMNPM T1/T2

Iter T1 ‖F‖ Iter T2 ‖F‖
100 4 0.14 8.04e-008 20 0.20 9.22e-008 0.69
300 4 1.36 5.71e-008 23 1.19 1.78e-008 1.14
500 4 4.22 6.93e-008 23 3.80 5.05e-008 1.11
700 4 9.13 7.99e-008 24 8.08 5.35e-008 1.13
900 4 16.38 8.47e-008 24 13.30 4.05e-008 1.23

1100 4 26.31 8.51e-008 24 19.78 4.18e-008 1.33
1300 4 39.25 8.98e-008 24 27.94 9.05e-008 1.40
1500 4 55.73 9.75e-008 25 38.22 5.00e-008 1.46
1700 4 76.27 1.08e-007 25 48.89 3.49e-008 1.56
1900 4 101.08 1.18e-007 25 60.77 2.64e-008 1.66

(say, n = 500) the cheaper iteration cost starts to pay off, with the advantage growing
with n, as predicted by the operations counts. We shall not report this comparison
here, for the sake of brevity.

Instead, we shall report results for solving the linear systems by the conjugate
gradient method. The Scilab sparse utility is used to take advantage of structure. As
already pointed out, the matrix (ck∇F (zk) + I)�(ck∇F (zk) + I) in the fixed metric
approach is essentially dense, while the matrix Ak in the variable metric approach
preserves structure.

The comparison of the respective performances, for three different choices of f ,
on a 1.66 GHz, 512 MB RAM Intel Centrino processor PC is shown in Table 5.1. The
first column shows the dimension, then the number of iterations, the computation
time in seconds, and the norm of the residual at termination. The last column shows
the ratio between the computational times.

Figure 5.1 compares the computational time evolution for both methods. The
performance of the NPM is almost the same for the three functions involved, and
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Fig. 5.1. Performance comparison.

it is not distinguishable in the graphic scale, while the performance of the VMNPM
presents little variations for the three examples. As we have anticipated, the variable
metric proximal Newton method outperforms the Newton proximal method already
for moderate dimensions, with the advantage becoming more and more significant as
n grows.
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[17] C. Lemaréchal and C. Sagastizábal, Variable metric bundle methods: From conceptual to
implementable forms, Math. Program., 76 (1997), pp. 393–410.

[18] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal., 16 (1979), pp. 964–979.

[19] B. Martinet, Regularisation d’inequations variationelles par approximations successives, Re-
vue Française d’Informatique et de Recherche Opérationelle, 4 (1970), pp. 154–159.

[20] L. Qi and X. Chen, A preconditioning proximal Newton’s method for nondifferentiable convex
optimization, Math. Program., 76 (1995), pp. 411–430.

[21] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm
in convex programming, Math. Oper. Res., 1 (1976), pp. 97–116.

[22] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control
Optim., 14 (1976), pp. 877–898.

[23] R. T. Rockafellar and J.-B. Wets, Variational Analysis, Springer-Verlag, New York, 1997.
[24] M. V. Solodov, A class of decomposition methods for convex optimization and monotone

variational inclusions via the hybrid inexact proximal point framework, Optim. Methods
Softw., 19 (2004), pp. 557–575.

[25] M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems
of monotone equations, in Reformulation - Nonsmooth, Piecewise Smooth, Semismooth
and Smoothing Methods, M. Fukushima and L. Qi, eds., Kluwer Academic Publishers,
Norwell, MA, 1999, pp. 355–369.

[26] M. V. Solodov and B. F. Svaiter, A hybrid approximate extragradient–proximal point algo-
rithm using the enlargement of a maximal monotone operator, Set-Valued Anal., 7 (1999),
pp. 323–345.

[27] M. V. Solodov and B. F. Svaiter, A hybrid projection–proximal point algorithm, J. Convex
Anal., 6 (1999), pp. 59–70.

[28] M. V. Solodov and B. F. Svaiter, Error bounds for proximal point subproblems and associ-
ated inexact proximal point algorithms, Math. Program., 88 (2000), pp. 371–389.

[29] M. V. Solodov and B. F. Svaiter, A truly globally convergent Newton-type method for the
monotone nonlinear complementarity problem, SIAM J. Optim., 10 (2000), pp. 605–625.

[30] M. V. Solodov and B. F. Svaiter, A unified framework for some inexact proximal point
algorithms, Numer. Funct. Anal. Optim., 22 (2001), pp. 1013–1035.

[31] J. E. Spingarn, Applications of the method of partial inverses to convex programming, Math.
Program., 32 (1985), pp. 199–223.

[32] P. Tossings, The perturbed proximal point algorithm and some of its applications, Appl. Math.
Optim., 29 (1994), pp. 125–159.

[33] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and
variational inequalities, SIAM J. Control Optim., 29 (1991), pp. 119–138.

[34] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings,
SIAM J. Control Optim., 38 (2000), pp. 431–446.



SIAM J. OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 261–280

A CONDITION NUMBER FOR MULTIFOLD CONIC SYSTEMS∗

DENNIS CHEUNG† , FELIPE CUCKER‡ , AND JAVIER PEÑA§

Abstract. Let A : Y → X be a linear map and K ⊆ X be a regular closed convex cone.
Consider the problem of finding a nontrivial solution to the conic feasibility problem Ay ∈ K.
Condition numbers for this problem (as well as for related ones) are studied to quantify various
issues concerning properties of the conic feasibility problem. Some issues especially relevant are the
behavior of the problem under data perturbations, the geometry of the set of solutions, and the
complexity analyses of algorithms that solve the problem. In this paper we define and characterize
a condition number that exploits the possible factorization of K as a product of simpler cones.
This condition number extends both Renegar’s condition number and the one we defined in [Math.
Program., 91 (2001), pp. 163–174] for polyhedral conic systems. We see these results as a step in
developing a theory of conditioning that takes into account the structure of the problem.
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1. Introduction.

1.1. Multifold conic systems and condition. Let X,Y be real finite-dimen-
sional vector spaces (not necessarily of the same dimension) endowed with norms ‖ ‖X
and ‖ ‖Y , and let K ⊆ X be a regular closed convex cone (a precise definition is in
section 2 below). Denote by L(Y,X) the space of linear maps from Y to X endowed
with the operator norm. Given A ∈ L(Y,X), consider the feasibility problem: decide
whether there exists a nontrivial y ∈ Y satisfying

(1.1) Ay ∈ K.

This format encompasses, after homogenization, a large class of feasibility problems.
For example, the linear programming feasibility problem corresponds to K = R

n
+, the

nonnegative orthant in R
n, and semidefinite programming corresponds to K = Sn

+,
the set of n×n positive semidefinite matrices. Consider also the alternative feasibility
problem

(1.2) A∗x∗ = 0, x∗ ∈ K∗,

where X∗, Y ∗ are the dual spaces of X,Y , respectively, A∗ ∈ L(X∗, Y ∗) is the adjoint
of A, and K∗ ⊆ X∗ is the dual cone of K.

The problem (1.1) is strictly feasible if there exists y ∈ Y such that Ay ∈ int(K).
Let D denote the set of instances A ∈ L(Y,X) for which (1.1) is strictly feasible.

∗Received by the editors July 19, 2006; accepted for publication (in revised form) November 12,
2007; published electronically March 19, 2008.

http://www.siam.org/journals/siopt/19-1/66542.html
†United International College, Tang Jia Wan, Zhuhai, Guandong Province, People’s Republic of

China (dennisc@uic.edu.hk).
‡Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon,

Hong Kong (macucker@math.cityu.edu.hk). This author has been partially funded by SRG grant
7001860.

§Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213-3890 (jfp@andrew.cmu.edu).

261



262 DENNIS CHEUNG, FELIPE CUCKER, AND JAVIER PEÑA

Observe that A ∈ D if and only if AY −K = X, i.e., if and only if the conic system

(1.3) Ay − c ∈ K,

is feasible for every c ∈ X.
Likewise, the problem (1.2) is strictly feasible if there exists x∗ ∈ int(K∗) such that

A∗x∗ = 0. Let P denote the set of instances A ∈ L(Y,X) such that A∗ is surjective
and (1.2) is strictly feasible. Observe that A ∈ P if and only if A∗K∗ = Y ∗, i.e., if
and only if the conic system

(1.4) A∗x∗ = b∗, x∗ ∈ K∗,

is feasible for every b∗ ∈ Y ∗.
It is easy to see that the sets D and P are open, and P = D

c
. The sets D

and P are the set of “well-posed” feasible instances for problems (1.1) and (1.2),
respectively. The boundary Σ := ∂D = ∂P is the set of “ill-posed” instances. Given
A ∈ Σ, arbitrarily small perturbations of A may yield instances in both D and P .

The feasibility problems (1.1) and (1.2) can be solved via algorithms (such as
interior-point or ellipsoid methods). The theoretical running time of such algorithms
grows as A approaches Σ. Consequently, a complexity analysis of these algorithms
has been carried out in terms of a measure capturing this distance. Similar remarks
hold as well, with natural modifications, for linear conic optimization problems with
constraints of the form (1.3) or (1.4). A general analysis of such a type for interior-
point methods is due to Renegar [30, 31], who introduced the condition number

(1.5) C(A) =
‖A‖

dist(A,Σ)
=

‖A‖
minÃ∈Σ ‖Ã−A‖

.

Renegar’s condition number is thus the normalized inverse of the distance to ill-
posedness. The condition number C(A) can also be used in the complexity analysis of
the ellipsoid method [17] and in the round-off analysis of interior-point algorithms [10].
For the linear programming feasibility problem (K = R

n
+), the quantities C(A) and

lnC(A) have also been analyzed as random variables when A is random [7, 13].
Bounds for the expected value of C(A) (or for that of lnC(A)) yield average case
bounds for the algorithms mentioned above.

It is often the case that a feasibility problem of the form (1.1) is actually the
coupling of a number of similar feasibility problems. More precisely, if X = X1 ×
· · ·×Xr and K = K1×· · ·×Kr, where each Kj ⊆ Xj is a regular closed convex cone,
then (1.1) can be written as

A1y ∈ K1

...

Ary ∈ Kr,(1.6)

where each Aj ∈ L(Y,Xj) is the projection of A ∈ L(Y,X) onto L(Y,Xj). In this mul-
tifold case, it may well be the case that C(A) is large, but a natural preconditioning,
such as component normalization, could remove the seemingly bad conditioning. This
limitation of C(A) may yield a nonessential overestimate on the conditioning of the
problem (1.6). The latter in turn often leads to results concerning the geometry of the
set of feasible solutions, as well as complexity estimates of algorithms that are overly
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conservative. Consequently, some condition-based analyses such as those in [10, 27]
are presented in terms of the condition number of a problem after performing some
appropriate preprocessing steps on the data. In the case of linear programming (i.e.,
when X = R

n, K = R
n
+, r = n, and Kj = R+) another condition number C (A) was

introduced in [6] (extending ideas in [19]) exploiting the multifold structure of R
n
+.

This condition number is close in spirit to C(A) but is invariant under row scaling
and is defined (in the feasible case) in terms of a best conditioned solution to (1.6).
This condition number can also be used in the analysis of algorithms (e.g., the analysis
in [10] carries over to C (A)) and has also been studied as a random variable [8, 11, 20].

In this paper we show that the definition and key characterization of C (A) extend
to the general multifold conic system (1.6) for a particular class of norms in X. An
immediate consequence of our results is a maxmin characterization of C(A), which
emphasizes the close relationship between C(A) and C (A). In the special case when
the multifold structure of (1.6) is ignored, our work is closely related to previous
characterizations of the distance to ill-posedness of the system Ay ∈ K by Freund
and Vera [18] and by Cánovas et al. [5]. More precisely, Theorem 1.1 without scaling on
the components of (1.6) follows from [18, Thms. 7 and 10]. Furthermore, Theorem 1.1
without scaling also holds for an infinite family of linear inequalities as was shown
in [5, Thm. 7]. On the other hand, an extension of the condition number C (A) to
general conic systems was proposed by Lara and Tunçel [22]. However, that condition
number conveys only information about the geometry of the set of feasible solutions
of (1.6) and does not have a direct relationship to the distance to ill-posedness of
Ay ∈ K.

The central results in our paper, namely, Theorems 1.1 and 1.2, can be seen as
steps in the development of a theory of structured condition numbers in the spirit
introduced by Peña [28, 29] and Lewis [23].

1.2. Statement of the main results. Given a triple (X,K, e), with X a finite-
dimensional normed space, K ⊆ X a regular closed convex cone, and e ∈ int(K) a
given point, define λmin : X → R as

(1.7) x �→ max{t ∈ R : x− te ∈ K}.
Notice that λmin is positively homogeneous, i.e., it satisfies

λmin(sx) = sλmin(x) for all s ≥ 0 and x ∈ X,

and superlinear, i.e., it satisfies

λmin(x + u) ≥ λmin(x) + λmin(u) for all x, u ∈ X.

Notice also that x ∈ K ⇔ λmin(x) ≥ 0 and x ∈ int(K) ⇔ λmin(x) > 0.
We next proceed with conditioning.
For j = 1, . . . , r, let ej ∈ int(Kj) be fixed and λj

min : Xj → R denote the function
(1.7) corresponding to the triple (Xj ,Kj , ej).

Let R++ = (0,+∞) and α ∈ R
r
++ be given. Define the condition value of a point

y ∈ Y \ {0} to be

(1.8) vA,α(y) := min
j=1,...,r

λj
min(Ajy)

αj‖y‖
.

Observe that y is a strict solution to (1.6) if and only if vA,α(y) > 0. Define the best
conditioned value vA,α to be

vA,α := max
y �=0

vA,α(y).
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Notice that A ∈ D if and only if vA,α > 0, A ∈ Σ if and only if vA,α = 0, and
A ∈ P if and only if vA,α < 0. Notice also that this is valid for all α ∈ R

r
++.

For a ∈ X and δ > 0 let

BX(a, δ) := {x ∈ X : ‖x− a‖ ≤ δ}.

We shall say that the triple (X,K, e) satisfies the norm compatibility condition if
‖e‖ = 1 and the following condition holds:

(NC) BX(e, 1) ⊆ K.

We will see in section 2 below that a natural, canonical norm can be associated to
any triple (X,K, e) such that the triple satisfies the norm compatibility condition for
this canonical norm.

We are now ready to state our main results (we delay their proofs to section 3).
Theorem 1.1. If each one of the triples (Xj ,Kj , ej), j = 1, . . . , r, satisfies the

norm compatibility condition (NC), then

(1.9) |vA,α| = min
Ã∈Σ

max
j=1,...,r

‖Aj − Ãj‖
αj

,

where the norms in the right-hand side are the operator norms induced by the norms
in Y and Xj.

It is customary to define condition numbers either as a relativized distance to
ill-posedness or as the condition of a best conditioned solution. Theorem 1.1 shows
that both choices lead to the same notion by taking the condition number with respect
to α to be

Cα(A) :=
1

|vA,α|

and requiring the norm in X to satisfy ‖(x1, . . . , xr)‖ = maxj=1,...,r ‖xj‖. Note that
the distance to ill-posedness in the right-hand side in Theorem 1.1 is relativized by
the vector α.

In the previous development we have assumed that αj > 0 for j = 1, . . . , r. From
a perturbation theory viewpoint this corresponds to assuming that all of the Aj can be
perturbed and that the magnitude of these perturbations are weighted (or relativized)
by the αj .

We next consider the case where some blocks are rigid, i.e., cannot be perturbed.
This amounts to setting the corresponding αj to zero. To that end, assume that
B ∪ N = {1, . . . , r} is a partition of {1, . . . , r}, with B �= ∅. Let XN =

∏
j∈N Xj ,

KN =
∏

j∈N Kj , and AN =
∏

j∈N Aj . Write also αN = (αj)j∈N and αB = (αj)j∈B .
If we allow only perturbations in the blocks Aj for j ∈ B, then the following extension
of Theorem 1.1 holds.

Theorem 1.2. Assume that each one of the triples (Xj ,Kj , ej), j = 1, . . . , r,
satisfies the norm compatibility condition. Then, for A �∈ Σ,

(1.10)

∣∣∣∣∣∣ max
ANy∈KN

y �=0

min
j∈B

λj
min(Ajy)

αj‖y‖

∣∣∣∣∣∣ = min
Ã∈Σ

ÃN=AN

max
j∈B

‖Aj − Ãj‖
αj

with the convention that the left-hand side above is +∞ if

{y : ANy ∈ KN , y �= 0} = ∅
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and the right-hand side is +∞ if

{Ã ∈ Σ : ÃN = AN} = ∅.

Furthermore, (1.10) can be seen as a limit case of (1.9) in Theorem 1.1. More pre-
cisely, for A �∈ Σ, ∣∣∣∣∣∣ max

ANy∈KN
y �=0

min
j∈B

λj
min(Ajy)

αj‖y‖

∣∣∣∣∣∣ = lim
αB fixed
αN↓0

|vA,α|

and

min
Ã∈Σ

ÃN=AN

max
j∈B

‖Aj − Ãj‖
αj

= lim
αB fixed
αN↓0

min
Ã∈Σ

max
j=1,...,r

‖Aj − Ãj‖
αj

.

Remark 1.3. The identity (1.10) in Theorem 1.2 does not necessarily hold if
A ∈ Σ. For instance, consider the example r = 2, B = {1}, α1 = 1, X1 = R,

X2 = Y = R
2, K1 = R+, K2 = R

2
+, A1 = [ 1 0 ], and A2 =

[
1 0
0 0

]
. In this example

A ∈ Σ, and thus the right-hand side in (1.10) is zero, but a simple calculation shows
that the left-hand side is one.

Nevertheless, when A ∈ Σ, a modified version of (1.10) holds if the set of ill-posed
instances Σ is redefined by taking into account the relationship between the rigid part
ANY and the cone KN .

1.3. Geometric interpretation of vA,α. When A ∈ D , any point y ∈ Y that
satisfies

vA,α(y) = vA,α

can be interpreted as a best conditioned point for (1.1). Notice that in this case the
best condition value vA,α satisfies

vA,α = max{δ > 0 : ∃y ∈ Y, ‖y‖ = 1, such that (s.t.) ‖xi‖ ≤ δαi ⇒ Ay + x ∈ K}.

In particular, BY (y, ρ) is contained in the feasible solution set of (1.1) for ρ =
minj=1,...,r

vA,ααj

‖Aj‖ . Furthermore, from Theorem 1.1 and [28, Thm. 2.11], it follows

that, for A ∈ D , the best condition value vA,α satisfies

vA,α = max {δ > 0 : ‖xi‖ ≤ δαi ⇒ x ∈ {Ay −K : ‖y‖ ≤ 1}} .

In other words, vA,α

∏
BXi

(0, αi) is the largest multiple of
∏

BXi
(0, αi) contained in

the set

{Ay + K : ‖y‖ ≤ 1}.

Likewise, from Theorem 1.1 and [28, Thm. 2.8], it follows that, for A ∈ P , the best
condition value vA,α satisfies the following geometric property:

(1.11)

|vA,α| = max
{
δ > 0 : ‖y∗‖∗ ≤ δ ⇒ y∗ ∈

{
A∗x∗ : x∗ ∈ K∗,

∑
αi‖x∗

i ‖∗ ≤ 1
}}

.
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In other words, BY ∗(0, |vA,α|) is the largest (dual) ball centered at 0 that is contained
in the set {

A∗x∗ : x∗ ∈ K∗,
∑

αi‖x∗
i ‖∗ ≤ 1

}
.

The identity (1.11) yields the existence of well-conditioned solutions to (1.2), as is
stated more precisely in section 2.4 below.

We also note that the above geometric interpretations of vA,α can be extended to
the case when some of the components of α are zero. Specifically, if B∪N = {1, . . . , r}
is a partition of {1, . . . , r} such that αB > 0 and αN = 0, then the statements above
hold as long as vA,α is replaced with

max
ANy∈KN

y �=0

min
j∈B

λj
min(Ajy)

αj‖y‖
.

2. Canonical norm and examples. In this section we recall some basic no-
tions, describe various cones, exhibit explicit descriptions of their corresponding func-
tions λmin and canonical norms, and show how Theorems 1.1 and 1.2 apply in a
number of situations.

2.1. Cones and norms. A pointed cone in R
n is a set K ⊆ R

n satisfying
(i) for every x ∈ R

n, if x ∈ K, then λx ∈ K for all λ ≥ 0, and
(ii) K ∩ −K = {0}.

A cone is regular if it is pointed and has a nonempty interior. In what follows we
assume that all cones are closed, convex, and regular.

We first show that the norm compatibility condition for a given triple (X,K, e)
can be alternatively stated in terms of other geometric objects. To do so, recall [19]
that the width of K is given by τK = max{r ∈ R | B(x, r) ⊆ K, ‖x‖ = 1} and the
center of K is the point f ∈ K where τK is attained. It follows from the regularity of
K that 0 < τK ≤ 1.

Proposition 2.1. Assume that ‖e‖ = 1. The following conditions are equivalent:
(NC) B(e, 1) ⊆ K.
(NC’) |λmin(x) − λmin(u)| ≤ ‖x− u‖ for all x, u ∈ X.
(W) τK = 1 and e is the center of K.
(L) ‖s‖∗ = 〈e, s〉 for all s ∈ K∗.
Proof. To prove the equivalence between (NC) and (NC’), first observe that (NC’)

can be equivalently phrased as

(NC”) |λmin(x + d) − λmin(x)| ≤ 1 for all d ∈ B(e, 1) and x ∈ X.

Assume that (NC”) holds. Then in particular for all d ∈ B(e, 1) we have

λmin(e + d) − λmin(e) ≥ −1.

So

λmin(e + d) ≥ −1 + λmin(e) = 0,

and consequently e + d ∈ K. Since this holds for all d ∈ B(e, 1), we get (NC).
Conversely, assume that (NC) holds. Let d ∈ B(e, 1) and x ∈ X be given. By the

construction of λmin we have

x− λmin(x)e ∈ K,
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and by (NC) we have

d + e ∈ K.

Hence x + d − (λmin(x) − 1)e ∈ K. Consequently λmin(x + d) ≥ λmin(x) − 1 by the
construction of λmin. Thus

(2.1) λmin(x + d) − λmin(x) ≥ −1.

On the other hand, again by the construction of λmin and by (NC), we have

x + d− λmin(x + d)e ∈ K

and

−d + e ∈ K.

Hence x− (λmin(x + d) − 1)e ∈ K. Consequently λmin(x) ≥ λmin(x + d) − 1, i.e.,

(2.2) λmin(x + d) − λmin(x) ≤ 1.

We thus get (NC”) from (2.1) and (2.2).
Condition (NC) amounts to saying that τK = 1 and that e is the center of K.

Hence the equivalence of (NC) and (W). Finally, the equivalence between (W) and
(L) is shown in [17, Proposition 2.1].

Remark 2.2. (i) Any triple (X,K, e) can be endowed with the following canonical
norm ‖ ‖c so that (X,K, e) satisfies the norm compatibility condition:

‖x‖c := min{α ≥ 0 : x + αe ∈ K, −x + αe ∈ K}.

This canonical norm plays a central role in primal-dual interior-point methods for self-
scaled cones. In such a context, it is generally denoted as | |e. See, e.g., [25, 26, 32].

(ii) In case the norms of some Xj do not satisfy (NC), one may extend Theorem 1.1
to obtain inequalities involving the widths τKj of the respective cones.

As some of the examples below illustrate, the canonical norm ‖x‖c above coincides
with commonly used norms in a number of cases.

Example 1 (cone of squares in Euclidean Jordan algebras). Consider (X,K, e) =
(E ,K, e), where E is an Euclidean Jordan algebra, K is the closure of the cone of
squares in E , and e ∈ K is the identity element [14]. In this case

λmin(x) = min
j=1,...,q

λj(x),

and the canonical norm is the spectral norm

‖x‖c = max
j=1,...,q

|λj(x)|,

where the λj(x), j = 1, . . . , q, are the Jordan algebra eigenvalues of x, i.e., the eigenval-
ues of the characteristic polynomial det(λe−x) for a suitable homogeneous polynomial
det [14, Chap. 3].

Examples 2–7 specialize Example 1 above. They provide explicit expressions for
λmin( ) and ‖ ‖c for some specific Jordan algebras. It should be noted that the explicit
expressions in Examples 2–4 have been known in optimization for some time (see [16,
sect. 2] and [25, sect. 3]).
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Example 2 (nonnegative orthant). Consider (X,K, e) = (Rn,Rn
+, (1, . . . , 1)). In

this case q = n, λj(x) = xj , j = 1, . . . , n. Consequently,

λmin(x) = min
j

xj , ‖x‖c = ‖x‖∞ = max
j

|xj |.

Example 3 (second-order cone). Consider (X,K, e) = (Rn+1,Q n, (1, 0, . . . , 0)),
where Q n is the second-order cone defined to be

Q n := {x = (x0, x), x ∈ R
n : x0 ≥ ‖x‖2}.

In this case q = 2, λ1(x) = x0 − ‖x‖2, λ2(x) = x0 + ‖x‖2. Consequently,

λmin(x) = x0 − ‖x‖2, ‖x‖c = |x0| + ‖x‖2.

Example 4 (semidefinite cone). Consider (X,K, e) = (Sn,Sn
+, I), where Sn is

the set of n × n symmetric matrices, Sn
+ is the subset of those which are positive

semidefinite, and I is the identity matrix. In this case

λmin(x) = min
j=1,...,n

λj(x) and ‖x‖c = max
j=1,...,n

|λj(x)|,

where λj(x), j = 1, . . . , n, are the usual eigenvalues of x, i.e., the roots of p(λ) :=
det(λI − x).

Example 5 (cones of positive semidefinite Hermitian matrices). Consider (X,K, e),
where X is the real vector space Herm(n,C) of n× n Hermitian matrices with com-
plex entries, K is the cone of positive semidefinite Hermitian matrices in X, and e
is the n × n identity matrix. In this case q = n, λj(x), j = 1, . . . , n, are the usual
eigenvalues of x, i.e., the roots of p(λ) := det(λI − x) which, it is well known, are
real.

Example 6 (cones of positive semidefinite Hermitian matrices with quaternions
entries). Consider (X,K, e), where X is the real vector space Herm(n,H) of n × n
Hermitian matrices with quaternion entries, K is the cone of positive semidefinite
Hermitian matrices in X, and e is the n × n identity matrix. In this case q = n
and λj(x), j = 1, . . . , n, are the roots (as a univariate polynomial in λ) of the
“characteristic polynomial” det(λe − x) of X. This polynomial is defined as fol-
lows [15]. Let J be the 2n× 2n matrix

[
0 In

−In 0

]
. Then Herm(n,H) can be written as

{z ∈ Herm(2n,C) : zJ = Jz}, and, for z ∈ Herm(n,H),

det(z) = Pf(Jz),

where Pf(Jz) is the Pfaffian of Jz, i.e., the unique polynomial satisfying Pf(J) = 1
and Pf(Jz)2 = det(Jz). Again, it is well known that the λj(x), j = 1, . . . , n, are real.
(For a more detailed discussion on Pfaffians, see, e.g., [21].)

Example 7 (cones of squares in the Albert algebra). Consider (X,K, e), where
X is the real vector space of 3× 3 Hermitian matrices with octonion entries [2, 9], K
is the cone of squares in X, i.e., K = {x2 : x ∈ X}, and e is the 3× 3 identity matrix.
In this case q = 3 and λj(x), j = 1, 2, 3, are the roots of the characteristic polynomial

p(λ) = det(λe− x) = λ3 − trace(x)λ2 + σ(x)λ− det(x),

where trace(x), σ(x),det(x) are defined as follows [12, 15]. For a, b, c octonions and
p,m, n ∈ R,

x =

⎡
⎣ p a b

a m c
b c n

⎤
⎦ ,
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trace(x) = p + m + n,

σ(x) = pm + mn + pn− |a|2 − |b|2 − |c|2,
det(x) = pmn + b(ac) + b(ac) − n|a|2 −m|b|2 − p|c|2.

Note that we write b(ac) to emphasize the order of the multiplications in the nonas-
sociative ring of octonions. Just as in the previous examples, λ1, λ2, and λ3 are real.

Example 8 (hyperbolicity cones). Let e ∈ R
n and p ∈ R[X1, . . . , Xn] be a

complete hyperbolic polynomial in the direction e, i.e., a homogeneous polynomial
satisfying that, for all x ∈ R

n, the univariate polynomial λ �→ p(λe− x) has only real
roots, and at least one of them is nonzero for x �= 0. (For a detailed exposition on
hyperbolic polynomials, see, e.g., [3, 33].) Consider (X,K, e) = (Rn, C(p, e), e), where
C(p, e) is the closure of the hyperbolicity cone for p in the direction e; i.e., C(p, e) is
the closure of the connected component of the set {x : p(x) > 0} that contains e. In
this case

λmin(x) = min
j=1,...,d

λj(x),

where λj(x), j = 1, . . . , d = deg(p), are the roots of the polynomial λ �→ p(λe − x),
and

‖x‖c = max
j=1,...,d

|λj(x)|.

Example 9 (nonnegative, finitely spanned, functions on a compact domain). As-
sume that d ∈ N, D ⊆ R

n is a nonempty compact set, and f0, . . . , fd are continuous,
real-valued functions defined on D, with f0(x) = 1, for all x ∈ D. Consider the triple
(X,K, e), where

X = span{f0, . . . , fd},

K = {f ∈ X : f(x) ≥ 0 for all x ∈ D},

and e ∈ X is the constant function f0. In this case, for f ∈ X,

λmin(f) = min
x∈D

f(x)

and

‖f‖c = max
x∈D

|f(x)|.

2.2. Cone reducibility. Assume that X is a finite-dimensional inner product
space. Then the map u �→ 〈u, ·〉 defines an isomorphism between X and its dual space
X∗. The dual of a cone K ⊆ X is identified via this isomorphism with the cone

K∗ = {u ∈ X : 〈u, x〉 ≥ 0 for all x ∈ K}.

We say that K is self-dual if K∗ = K. We say that K is homogeneous if for all
x, u ∈ int(K) there exists g ∈ Aut(int(K)) such that gx = u, where Aut(int(K)) =
{g ∈ GL(X) : g(int(K)) = int(K)}. Here GL(X) is the general linear group over X.
A cone is symmetric if it is self-dual and homogeneous [14].

Symmetric cones coincide with self-scaled cones, a class of cones that plays a cen-
tral role in interior-point methods [25]. Nesterov and Todd identified the properties
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of self-scaled cones as the fundamental building blocks for the development of sym-
metric primal-dual interior-point algorithms [26, 32] for conic programs over these
cones. Symmetric cones have been extensively studied in other areas of mathematics.
It can also be shown that they coincide with the cones of squares of Euclidean Jordan
algebras (cf. Example 1). Furthermore, they satisfy a unique factorization property;
namely, they can be written in a unique way (up to ordering) as a product of cones
in the classes described in Examples 3–7 above [14].

Because second-order conic feasibility over a single second-order cone can be
solved in closed form, all interesting examples of second-order conic feasiblity problems
are written in terms of a nontrivial product of second-order cones (see, e.g., [1, 24]).

Given X and K, one may wonder how the canonical norm and the minimum-
eigenvalue constructs depend on different factorizations of (X,K). The following
proposition settles this question.

Proposition 2.3. Let X = X1×· · ·×Xr, K = K1×· · ·×Kr, and e = (e1, . . . , er),
with ej ∈ int(Kj). Then, for all x = (x1, . . . , xr) ∈ X,

(i)

λmin(x) = min{λ1
min(x1), . . . , λ

r
min(xr)}.

where λj
min is the minimum eigenvalue associated to (Xj ,Kj , ej) and λmin

that associated to (X,K, e).
(ii)

‖x‖c = max
j=1,...,r

‖xj‖c,j ,

where ‖ ‖c,j is the canonical norm associated to (Xj ,Kj , ej) and ‖ ‖c that
associated to (X,K, e). In particular, the restriction of ‖ ‖c to Xj is ‖ ‖c,j.

Proof. From (1.7) it follows that, for x = (x1, . . . , xr) ∈ X,

λmin(x) = max{t ∈ R : x− te ∈ K}
= max{t ∈ R : xj − tej ∈ Kj for j = 1, . . . , r}
= min

j=1,...,r
max{t ∈ R : xj − tej ∈ Kj}

= min{λ1
min(x1), . . . , λ

r
min(xr)}.

This shows part (i). For part (ii) we first claim that

(2.3) B = B1 × · · · ×Br.

Indeed, given d = (d1, . . . , dr) ∈ X,

d ∈ B ⇔ e + d, e− d ∈ K

⇔ ej + dj , ej − dj ∈ Kj for j = 1, . . . , r

⇔ dj ∈ Bj for j = 1, . . . , r

⇔ d ∈ B1 × · · · ×Br.
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From (2.3) it follows that, for x = (x1, . . . , xr) ∈ X,

‖x‖c = inf

{
t :

1

t
x ∈ B

}

= inf

{
t :

1

t
xj ∈ Bj for j = 1, . . . , r

}

= max
j=1,...,r

inf

{
t :

1

t
xj ∈ Bj

}
= max

j=1,...,r
‖xj‖c,j .

We have already mentioned that we endow L(Y,X) with the operator norm with
respect to the norms in Y and X. Therefore, the canonical norm in X induces a
canonical norm in L(Y,X). In particular, in the case where X = X1 × · · · × Xr,
Proposition 2.3(ii) yields the relation

‖A‖c = max
j=1,...,r

‖Aj‖c,j

for the canonical norms in L(Y,X) and those in L(Y,Xj), j = 1, . . . , r.
Remark 2.4. Note that the factorization mentioned above together with Propo-

sition 2.3(ii) and Examples 3–7 yield expressions for the canonical norm for every
symmetric cone. If the factorization is explicit, then the expressions for the canonical
norm are explicit as well.

2.3. Condition numbers and the choice of α. We mentioned in section 1.1
the role of Renegar’s condition number in the analysis of algorithms for conic feasibility
problems. We also mentioned there that, in the case of polyhedral cones, the condition
number C (A) exploited the reducibility of the cone R

n
+. We next show how these

condition numbers are obtained by appropriately selecting α.
Assume a factorization X = X1 × · · ·×Xr and K = K1 × · · ·×Kr. Basic choices

for α are
(1) αj = ‖A‖ for j = 1, . . . , r;
(2) αj = ‖Aj‖ for j = 1, . . . , r.

The first choice leads to Renegar’s condition number C(A) for the norm in L(Y,X)
defined by

(2.4) ‖A‖ = max
j=1,...,r

‖Aj‖

because in this case

Cα(A) =
‖A‖

min
Ã∈Σ

max
j=1,...,r

‖Aj − Ãj‖
=

‖A‖
min
Ã∈Σ

‖A− Ã‖
= C(A).

Theorem 1.1 then takes the form of a minmax characterization of the distance to ill-
posedness (and therefore of C(A)). We note that this can also be obtained from [18,
Thms. 7 and 10].

The second choice of α above leads to (extensions of) the condition number C (A)
introduced in [7].

The discusion above assumes that αj > 0 for all j = 1, . . . , r. If some cones are
rigid, say, K = K1 × · · · ×Kr ×KN with αj > 0 for j = 1, . . . , r and αN = 0, then,
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by letting B = {1, . . . , r}, one defines

C(A) =
‖AB‖

min
Ã∈Σ

ÃN=AN

max
j∈B

‖Aj − Ãj‖

and

C (A) =
1∣∣∣∣∣∣ max

ANy∈KN
y �=0

min
j∈B

λj
min(Ajy)

‖Aj‖ ‖y‖

∣∣∣∣∣∣
.

The proof of the following proposition is an immediate consequence of the fact that
‖Aj‖ ≤ ‖A‖ for all j = 1, . . . , r.

Proposition 2.5. For all A ∈ L(Y,X), C (A) ≤ C(A). This holds as well if
some factors of A are rigid.

We next see how the choices of α above materialize in the case of polyhedral conic
systems.

Example 2 (revisited). Recall that X = R
n, Y = R

m, and K = R
n
+.

(i) Consider the case r = 1. We do not decompose K. In this case we take
e = (1, . . . , 1) and, as we have seen, ‖x‖ = ‖x‖∞. This induces the canonical norm in
L(Y,X) given by

‖A‖ = ‖A‖Y∞ = max
‖y‖=1

‖Ay‖∞ = max
‖y‖=1

max
j=1,...,n

|Ajy|.

We now take α = ‖A‖. Theorem 1.1 and the fact that λmin(x) = minj=1,...,n xj give
then the following characterization of Renegar’s condition number:

(2.5) C(A) =
‖A‖

dist(A,Σ)
=

‖A‖∣∣∣∣max
‖y‖=1

min
j=1,...,n

Ay

∣∣∣∣
.

(ii) Consider now the case where r = n. Here we take Kj = [0,+∞) and ej = 1
for j = 1, . . . , r. We obtain the canonical norm ‖x‖ = |x| and the minimum-eigenvalue
λmin(x) = x. The former induces the canonical norm in L(Y,X) given by

‖A‖ = max
j=1,...,n

‖Aj‖ = max
j=1,...,n

max
‖y‖=1

|Ajy|,

that is, as in case (i) above. Again, take αj = ‖A‖ for all j. Then, not surprisingly,
Theorem 1.1 characterizes C(A) by (2.5) as well.

(iii) We now take r, Kj , and ej as in (ii) but choose instead αj = ‖Aj‖ =
max‖y‖=1 |Ajy|. In this case Theorem 1.1 gives us the well-known [7] characterization
of C (A):

C (A) :=
1

|vA,α|
=

1

min
Ã∈Σ

max
j=1,...,n

‖Aj−Ãj‖
‖Aj‖

.

(iv) For M ∈ R
n×m consider the system

My ≥ 0,

y ≥ 0.
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This system can be thought of as a special case of the above with A = (M, I). The
identity matrix I, however, should be considered to be rigid (not subject to perturba-
tions) and its corresponding αI then be set to 0.

By taking r = 2 (two blocks, corresponding to M and I) and αM = ‖M‖ =
maxj=1,...,n max‖y‖=1 |Mjy|, we obtain (in the right-hand side of (1.10)) Renegar’s
condition number, and Theorem 1.2 shows that

C(M) :=
‖M‖

min
M̃∈Σ

‖M − M̃‖
=

‖M‖
min
M̃∈Σ

max
j=1,...,n

‖Mj − M̃j‖
=

‖M‖∣∣∣∣max
y≥0

min
j=1,...,n

Mjy
‖y‖

∣∣∣∣
.

Finally, by taking r = n and αj = ‖Mj‖ = max‖y‖=1 |Mjy|, j = 1, . . . , n, we
obtain C (M) in the left-hand side of (1.10), and now Theorem 1.2 shows that

C (M) :=
1∣∣∣∣max

y≥0
min

j=1,...,n

Mjy
‖Mj‖‖y‖

∣∣∣∣
=

1

min
M̃∈Σ

max
j=1,...,n

‖Mj−M̃j‖
‖Mj‖

.

We have revisited Example 2 to see how Theorems 1.1 and 1.2, together with
appropriate choices of α, yield characterizations of C(A) and C (A) in the case of
polyhedral conic systems, possibly with rigid components. The other examples in
section 2.1, and arbitrary products of them, may be similarly dealt with. We will not
do so to avoid being repetitious.

2.4. Well-conditioned solutions. As was noted in section 1.3, for A ∈ D any
point y ∈ Y that satisfies

(2.6) vA,α(y) = vA,α

can be interpreted as a best conditioned solution for (1.1). Indeed, from (2.6) it
follows that Ay ∈ int(K) and for each i = 1, . . . , r

dist(Aiy, ∂Ki)

‖y‖ ≥ vA,α αi.

The following proposition provides an analogous statement for A ∈ P .
Proposition 2.6. Assume that each one of the triples (Xj ,Kj , ej), j = 1, . . . , r,

satisfies the norm compatibility condition (NC) and A ∈ P . Then there exists x ∈
int(K∗) such that A∗x = 0 and for each i = 1, . . . , r

(2.7)
dist(xi, ∂K

∗
i )

‖xi‖
≥

|vA,α|αi τK∗
i

r‖Ai‖ + |vA,α|αi
.

In particular, if αi = ‖Ai‖, i = 1, . . . , r, then there exists x ∈ K∗ such that A∗x = 0
and for each i = 1, . . . , r

dist(xi, ∂K
∗
i )

‖xi‖
≥

|vA,α|τK∗
i

r + |vA,α|
≥

|vA,α|τK∗
i

r + 1
.

Proof. For each i = 1, . . . , r, let f∗
i ∈ K∗

i be the center of K∗
i , i.e., ‖f∗

i ‖∗ = 1 and
dist(f∗

i , ∂K
∗
i ) = τK∗

i
. Define x̃ ∈ K∗ and y∗ ∈ Y ∗ as follows:

x̃i :=
|vA,α|
r‖Ai‖

f∗
i , y

∗ := −A∗x̃.
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It is immediate that ‖y∗‖∗ ≤ |vA,α|, so by (1.11) there exists x∗ ∈ K∗ such that
A∗x∗ = y∗ = −A∗x̃ and

∑r
i=1 αi‖x∗

i ‖∗ ≤ 1. Thus the point x := x∗ + x̃ ∈ K∗ satisfies
A∗x = 0. To finish, we next show that x satisfies (2.7). Since

∑r
i=1 αi‖x∗

i ‖∗ ≤ 1, it
follows that ‖x∗

i ‖∗ ≤ 1/αi for each i = 1, . . . , r. Hence

(2.8) ‖xi‖ ≤ ‖x∗
i ‖ + ‖x̃i‖ ≤ 1

αi
+

|vA,α|
r‖Ai‖

=
r‖Ai‖ + |vA,α|αi

r‖Ai‖αi
.

On the other hand, since dist(f∗
i , ∂K

∗
i ) = τK∗

i
, it follows that

(2.9) dist(xi, ∂K
∗
i ) ≥

|vA,α|τK∗
i

r‖Ai‖
.

Inequality (2.7) then follows from (2.8) and (2.9).

3. Proof of the main results. The result is trivial when vA,α = 0. Therefore,
we will assume that vA,α �= 0. For ease of exposition, we split the proof of Theorem 1.1
into two parts, namely, Propositions 3.1 and 3.2.

Proposition 3.1.

|vA,α| ≤ min
Ã∈Σ

max
j=1,...,r

‖Aj − Ãj‖
αj

.

Proof. Assume that Ã is such that

max
j=1,...,r

‖Aj − Ãj‖
αj

< |vA,α|.

We need to prove that Ã �∈ Σ, i.e., Ã ∈ P ∪ D .
Let yA ∈ Y be such that vA,α(yA) = vA,α. Assume without loss of generality

that ‖yA‖ = 1. Because each (Xj ,Kj , ej) satisfies the norm compatibility condition,

it follows from Proposition 2.1 that, for all Ã and y ∈ Y \ {0},

|λj
min(Ajy) − λj

min(Ãjy)|
αj

≤ ‖Aj − Ãj‖
αj

‖y‖

≤ max
j=1,...,r

‖Aj − Ãj‖
αj

‖y‖

< |vA,α|‖y‖.(3.1)

In particular

(3.2)
|λj

min(AjyA) − λj
min(ÃjyA)|

αj
< |vA,α|.

We now consider the cases vA,α < 0 and vA,α > 0 separately.
Case 1: vA,α > 0. In this case A ∈ D . From (1.8), (3.2), and the equality

vA,α(yA) = vA,α, we get, for j = 1, . . . , r,

λj
min(ÃjyA)

αj
≥ λj

min(AjyA)

αj
− |λj

min(AjyA) − λj
min(ÃjyA)|

αj

> vA,α − vA,α = 0.
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Therefore

vÃ(yA) = min
j=1,...,r

λj
min(ÃjyA)

αj
> 0,

which shows that yA is a strict solution for Ã and, consequently, that Ã ∈ D .
Case 2: vA,α < 0. In this case A ∈ P . Let y be any point in Y \ {0}. Since

vA,α < 0, we must have vA,α(y) ≤ vA,α < 0. Let j = j(y) be such that
λj

min(Ajy)

αj‖y‖
=

vA,α(y). We claim that λj
min(Ãjy) < 0. Indeed, by (3.1),∣∣∣λj

min(Ajy) − λj
min(Ãjy)

∣∣∣ < −vA,ααj‖y‖ ≤ −vA,α(y)αj‖y‖

⇒ λj
min(Ãjy) − λj

min(Ajy) < −vA,α(y)αj‖y‖

⇒ λj
min(Ãjy) − vA,α(y)αj‖y‖ < −vA,α(y)αj‖y‖

⇒ λj
min(Ãjy) < 0.

Hence, for all y ∈ Y \ {0} there exists j such that λj
min(Ãjy) < 0. It follows that

vÃ,α = max
y �=0

vÃ,α(y) = max
y �=0

min
j=1,...,r

λj
min(Ãjy)

αj‖y‖
< 0,

that is, Ã ∈ P .
Recall that, given vector spaces X and Y and a linear mapping A ∈ L(Y,X), its

adjoint A∗ ∈ L(X∗, Y ∗) is the unique linear mapping that satisfies

〈v,Ay〉 = 〈A∗v, y〉 for all v ∈ X∗, y ∈ Y.

Proposition 3.2.

|vA,α| ≥ min
Ã∈Σ

max
j=1,...,r

‖Aj − Ãj‖
αj

.

Proof. We consider the cases vA,α < 0 and vA,α > 0 separately.
Case 1: vA,α < 0. In this case A �∈ D , so it suffices to show that for all δ > 0

there exists Ã ∈ D such that, for all j = 1, . . . , r, ‖Aj − Ãj‖ ≤ αj(|vA,α| + δ).
Let yA ∈ Y be such that vA(yA) = vA,α. Assume without loss of generality that
‖yA‖ = 1. By the Hahn–Banach theorem [34, Thm. 5.20], there exists v ∈ Y ∗ such

that 〈v, yA〉 = ‖yA‖ = 1 and ‖v‖∗ = 1. For j = 1, . . . , r, consider Ãj ∈ L(Y,Xj) given
by

Ãj = Aj − αj(vA,α − δ)〈v, ·〉ej .

We claim that Ã ∈ D . To see this, first notice that, for all j = 1, . . . , r, AjyA −
vA,αej ∈ Kj because

vA,α = vA,α(yA) ≤ λj
min(AjyA)

αj
= max{t | AjyA − αjtej ∈ Kj}.

Therefore,

ÃjyA = AjyA − αj(vA,α − δ)〈v, yA〉ej = (AjyA − αjvA,αej) + αjδej ∈ int(Kj)
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since Kj is convex and ej ∈ int(Kj). This shows that yA is a strict solution for Ã. To

finish, just observe that ‖Aj − Ãj‖ = αj‖(vA,α − δ)〈v, ·〉ej‖ ≤ αj |vA,α − δ|‖v‖∗‖ej‖ =
αj(|vA,α| + δ).

Case 2: vA,α > 0. In this case A ∈ D , so it suffices to show that there exists

Ã �∈ D such that, for all j = 1, . . . , r, ‖Aj − Ãj‖ ≤ αjvA,α. Let e = (e1, . . . , er) ∈
K = K1 × · · · × Kr. Let Bj = 1

αj
Aj and B = [B1, . . . , Br] ∈ L(Y,X). From

Proposition 2.3(i) and the positive homogeneity of λmin it follows that for y ∈ Y \{0}

vA,α(y) = min
j=1,...,r

λj
min(Ajy)

αj‖y‖
=

1

‖y‖ min
j=1,...,r

λj
min(Bjy)

=
1

‖y‖λmin(By) =
1

‖y‖ max{t : By − te ∈ K}.

Then, by taking maxima on both sides above,

vA,α = max
y �=0

vA,α(y) = max
‖y‖=1

max{t : By − te ∈ K}.

Since vA,α > 0 we may rewrite the above as a maximum over a convex set

(3.3) vA,α = max
By−te∈K
‖y‖≤1

t.

Consider the Lagrangian dual (see [4]) of the right-hand side of (3.3):

min
x∈K∗

max
‖y‖≤1
t∈R

t + 〈x,By − te〉 = min
x∈K∗

max
‖y‖≤1
t∈R

t(1 − 〈x, e〉) + 〈x,By〉

= min
x∈K∗

〈x,e〉=1

max
‖y‖≤1

〈B∗x, y〉

= min
x∈K∗

〈x,e〉=1

‖B∗x‖∗.(3.4)

Since both (3.3) and (3.4) are convex programs and satisfy the Slater condition, by [4,
Thm. 4.3.7], they attain the same optimal value vA,α. Hence there exists x ∈ K∗ such

that ‖B∗x‖∗ = vA,α and 〈x, e〉 = 1. Let Ãj = Aj − αj〈B∗
j xj , ·〉ej = Aj − 〈A∗

jxj , ·〉ej .
We claim that Ã �∈ D . Indeed, otherwise, there would exist y ∈ Y and ε > 0 such
that Ãy − εe ∈ K and, therefore,

0 ≤ 〈x, Ãy − εe〉 (because x ∈ K∗)

= 〈x,Ay − (〈A∗x, y〉 + ε)e〉
= −ε (because 〈x, e〉 = 1)

< 0,

which is a contradiction. Hence Ã �∈ D . To finish, observe that

‖Ãj −Aj‖
αj

= ‖〈B∗
j xj , ·〉ej‖ = ‖B∗

j xj‖∗ ≤ ‖B∗x‖∗ = vA,α.

We next prove Theorem 1.2. We will need the following result.
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Lemma 3.3. Assume that A �∈ Σ. If the system

ANy ∈ ∂KN , ABy ∈ int(KB)

has a nontrivial solution, then so does the system

ANy ∈ int(KN ), ABy ∈ int(KB).

Proof. Let 1 = (1, 1, . . . , 1) ∈ R
d. By hypothesis, vA,1(y) = 0 and so vA,1 ≥ 0.

Since A �∈ Σ, vA,1 > 0, and so there is y′ �= 0 such that vA,1(y′) > 0. But this implies
that ANy′ ∈ int(KN ) and ABy

′ ∈ int(KB)).
Proof of Theorem 1.2. We first show that

{y �= 0 | ANy ∈ KN} = ∅ ⇐⇒ {Ã ∈ Σ | ÃN = AN} = ∅.

This will show that the left-hand side in (1.10) is +∞ if and only if so is the right-hand
side.

For the only if direction, assume that there exists ÃB such that A = (ÃB , AN ) ∈
Σ. The latter implies that vA ,1 = 0. Hence, there exists y ∈ SY := {y ∈ Y | ‖y‖ = 1}
such that minj=1,...,r λ

j
min(Ajy) = 0 and, therefore, such that λj

min(Ajy) ≥ 0 for
j = 1, . . . , r. But this implies that ANy ∈ KN .

For the if direction, assume that there exists y �= 0 such that ANy ∈ KN . Let
A = (0, AN ). Then, for all y �= 0, and since 0y = 0 ∈ ∂KB ,

vA,1(y) = min
j=1,...,r

λj
min(Ajy) ≤ 0.

This implies that vA,1 ≤ 0. But vA,1(y) = 0 since ANy ∈ KN . Therefore vA,1 = 0,
which implies that A ∈ Σ.

We now assume that the sets above are nonempty and take limits when αN → 0.
We will show that both the left- and right-hand sides of (1.9) tend to the corresponding
sides in (1.10) when αN → 0. Equation (1.10) will therefore hold since Theorem 1.1
does.

Recall that the left-hand side in the equality of Theorem 1.1 is∣∣∣∣∣max
y∈SY

min
j=1,...,r

λj
min(Ajy)

αj

∣∣∣∣∣ .
For any y ∈ SY such that ANy ∈ int(KN ), we have

∀j ∈ N
λj

min(Ajy)

αj
> 0

=⇒ ∀j ∈ N lim
αj→0

λj
min(Ajy)

αj
= +∞

=⇒ lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
= min

j∈B

λj
min(Ajy)

αj
.(3.5)

On the other hand, for any y ∈ SY such that ANy �∈ KN ,

(3.6) lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
= −∞.
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Finally, for any y ∈ SY such that ANy ∈ ∂KN , we have

(3.7) lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
=

{
0 if ABy ∈ int(KB),

minj∈B
λj

min(Ajy)
αj

otherwise.

By taking the maximum over y ∈ SY on the equalities (3.5), (3.6), and (3.7) and
using Lemma 3.3, it follows that

max
y∈SY

lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
= max

y∈SY
ANy∈KN

min
j∈B

λj
min(Ajy)

αj
.

Hence to show that the left-hand side in (1.9) tends to the left-hand side in (1.10)
when αN → 0, we need to show that

(3.8) max
y∈SY

lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
= lim

αN→0
max
y∈SY

min
j=1,...,r

λj
min(Ajy)

αj
.

If {y �= 0 | ANy ∈ KN} = ∅, then from (3.6) if follows that both sides of (3.8) are
−∞. Assume that {y �= 0 | ANy ∈ KN} �= ∅. From Lemma 3.3 and (3.5) it follows
that both sides of (3.8) are finite. Let ε > 0 be given. By Lemma 3.3, (3.5), (3.6),
and (3.7) there exists yε ∈ SY such that ANyε ∈ int(KN ) and

max
y∈SY

lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
− ε < lim

αN→0
min

j=1,...,r

λj
min(Ajyε)

αj
.

Thus

max
y∈SY

lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
− ε < lim

αN→0
min

j=1,...,r

λj
min(Ajyε)

αj

≤ lim
αN→0

max
y∈SY

min
j=1,...,r

λj
min(Ajy)

αj
.

This shows that the left-hand side in (3.8) is smaller than or equal to the right-hand
side. For the reverse inequality let ε > 0 be given. By Lemma 3.3, (3.5), (3.6), and
(3.7) there exists yε ∈ SY such that ANyε ∈ int(KN ) and

lim
αN→0

max
y∈SY

min
j=1,...,r

λj
min(Ajy)

αj
− ε < min

j=1,...,r

λj
min(Ajyε)

αj
.

Hence (3.5) yields

lim
αN→0

max
y∈SY

min
j=1,...,r

λj
min(Ajy)

αj
− ε < min

j=1,...,r

λj
min(Ajyε)

αj

= lim
αN→0

min
j=1,...,r

λj
min(Ajyε)

αj

≤ max
y∈SY

lim
αN→0

min
j=1,...,r

λj
min(Ajy)

αj
.

Therefore the right-hand side of (3.8) is also smaller than or equal to the left-hand
side.
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Next, we show that the right-hand side of (1.9), namely,

min
Ã∈Σ

max
j=1,...,r

‖Aj − Ãj‖
αj

,

tends to the right-hand side of (1.10) when αN → 0. Take Ã ∈ Σ. Then

ÃN �= AN =⇒ ∃j ∈ N ‖Aj − Ãj‖ �= 0

=⇒ ∃j ∈ N lim
αj→0

‖Aj − Ãj‖
αj

= +∞

=⇒ lim
αN→0

max
j=1,...,r

‖Aj − Ãj‖
αj

= +∞.

This implies that

(3.9) lim
αN→0

min
Ã∈Σ

max
j=1,...,r

‖Aj − Ãj‖
αj

= lim
αN→0

min
Ã∈Σ

ÃN=AN

max
j=1,...,r

‖Aj − Ãj‖
αj

.

But if ÃN = AN , then
‖Aj−Ãj‖

αj
= 0 for all j ∈ N . Therefore,

lim
αN→0

min
Ã∈Σ

ÃN=AN

max
j=1,...,r

‖Aj − Ãj‖
αj

= min
Ã∈Σ

ÃN=AN

max
j∈B

‖Aj − Ãj‖
αj

,

and the claimed limit follows.
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Abstract. We present a nonsmooth optimization technique for nonconvex maximum eigenvalue
functions and for nonsmooth functions which are infinite maxima of eigenvalue functions. We prove
global convergence of our method in the sense that for an arbitrary starting point, every accumulation
point of the sequence of iterates is critical. The method is tested on several problems in feedback
control synthesis.
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1. Introduction. Eigenvalue optimization has a wide spectrum of applications
in physics, engineering, statistics, and finance. This spectrum includes composite
materials [15], quantum computational chemistry [60], optimal system design [47,
8], shape optimization [17], pole placement in linear system theory, robotics [44],
relaxations of combinatorial optimization problems [26, 39], experimental design [55,
58], and much more. Many of these problems are nonconvex, but even in the realm of
convexity, eigenvalue optimization has a prominent place. Semidefinite programming
(SDP) is an important class of convex programs, which may be solved by way of
eigenvalue optimization [48].

The idea of solving large semidefinite programs via eigenvalue optimization can
be traced back to [16, 25, 41]. It results from the insight that interior-point methods
are not the appropriate choice when problems are sizable. Due to its importance in
practice, eigenvalue optimization has been intensively studied since the 1980s. Early
contributions are Wolfe [59], Cullum, Donath, and Wolfe [16], Polak and Wardi [54],
and Fletcher [19]. Starting in the late 1980s, Overton contributed a series of papers
([49, 50], and [51] with Womersley), where in particular Newton-type methods are
discussed. Oustry [48] presents a synthesis of first and second order methods suited
for convex maximum eigenvalue functions.

Here our interest is in nonconvex eigenvalue programs, which arise frequently in
automatic control applications and especially in controller synthesis. In particular,
solving bilinear matrix inequalities (BMIs) is a prominent application, which may
be addressed via nonconvex eigenvalue optimization. In [45, 46] we have shown how
to adapt the approach of [41, 48] to handle nonconvex situations. Applications and
extensions of these ideas are presented in [4, 1, 57, 10, 5, 6].
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The goal of the present paper is twofold. In the first part we investigate how to
expand on the idea of Helmberg and Rendl’s spectral bundle method [25] in order
to deal with nonconvex eigenvalue programs. Nonconvexity requires a new approx-
imation technique, complementing the convex mechanism used in [25]. We achieve
our goal by a trust region approach or, what is equivalent, by a dual approach us-
ing proximity control. This method has antecedents in classical bundling, such as
in Lemaréchal [36, 37, 38], Lemaréchal, Nemirovskii, and Nesterov [40], and Kiwiel
[31, 32, 33]. Extensions of the convex case to include bound constraints are given in
[23].

In the second part we extend our method to address more general classes of
functions which are infinite suprema of maximum eigenvalue functions. This includes
optimization of the H∞-norm, an important application in feedback control synthesis.
Optimization of the H∞-norm has been pioneered by Polak and coworkers. See, for
instance, [42, 43, 52], and the references given there. Our own approach to optimizing
the H∞-norm is developed in [4, 1, 5].

The structure of the paper is as follows. After some preparations in sections 2–5,
the algorithm is presented in section 6. Convergence analysis follows in sections 7
and 8. The semi-infinite case, which includes optimization of the H∞-norm, is pre-
sented in section 9. While the main objective of this work is the convergence analysis
of our method, we have added several numerical tests for eigenvalue programs in sec-
tion 10 to validate the algorithm. Numerical tests for the H∞-norm and for related
problems are presented in [7].

Notation. Our terminology follows [28] and [14]. We let ‖·‖ denote the Euclidean
norm on the space R

n equipped with the scalar product x�y, while the space S
m of

m × m symmetric matrices is equipped with the scalar product X • Y = Tr(XY ).
The corresponding matrix norm is also denoted by ‖ · ‖. For X ∈ S

m, X � 0 means
X is negative semidefinite.

2. Elements from nonsmooth analysis. Recall that the maximum eigenvalue
function λ1 : S

m → R is convex but generally nonsmooth and defined on the space
S
m of m × m symmetric or Hermitian matrices. We consider composite functions

of the form f = λ1 ◦ F , where F : R
n → S

m is a class C2 operator. Notice that
f is nonsmooth, due to nonsmoothness of λ1, and nonconvex unless F is an affine
operator. The case where F is affine and therefore f convex has been studied by
many authors [16, 25, 41]. Here our interest is focused on handling nonconvex f .

Notice that as a composite function, f has a favorable structure. In particular,
the Clarke subdifferential [14] is given by the chain rule

∂f(x) = F ′(x)�∂λ1 (F (x)) ,

where ∂λ1(X) is the usual subdifferential of convex analysis at X ∈ S
m, and where

F ′(x) is the derivative of F , F ′(x)� its adjoint, mapping S
m back into R

n. Recall that
λ1 is itself highly structured, as it is the support function of the convex compact set

G = {G ∈ S
m : G � 0,Tr(G) = 1} .

That means λ1(X) = max{G •X : G ∈ G}, and therefore (cf. [28, I, sect. 5.1, p. 275])

∂λ1(X) = {G ∈ G : G •X = λ1(X)}.
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3. First local model. Consider the minimization of f = λ1 ◦ F over R
n and

suppose x ∈ R
n is the current iterate. In order to generate a descent step from x to

y, we may consider the following convex model of f around x:

φ(y;x) = λ1 (F (x) + F ′(x)(y − x)) ,(1)

where y �→ F (x) + F ′(x)(y − x) is the first order affine approximation of F (y) in a
neighborhood of x. Clearly φ(x;x) = f(x), and f = φ in those cases where F itself
is affine (see, e.g., [16, 48, 25]). Taylor’s theorem suggests that φ(y;x) ≈ f(y) for y
sufficiently close to x. This observation is made precise by the following.

Proposition 1. For every bounded set B ⊂ R
n there exists a constant L > 0

such that

|f(y) − φ(y;x)| ≤ L‖y − x‖2(2)

for all x, y ∈ B.
Proof. Notice that for any given matrices A,E ∈ S

m, the estimate

λm(E) ≤ λ1(A + E) − λ1(A) ≤ λ1(E)

is satisfied. This is also known as Weyl’s theorem. Now as F is of class C2, expanding
at x ∈ B gives F (y) = F (x) + F ′(x)(y − x) + R(y;x) with ‖R(y;x)‖ ≤ L‖y − x‖2

for some constant L > 0 and all x, y ∈ B. Using X = F (x), D = F ′(x)(y − x), we
have f(y) = λ1 (X + D + R(y;x)). We now apply Weyl’s theorem with A = X + D,
E = R(y;x), which gives

|f(y) − φ(y;x)| = |λ1(X + D) − λ1(X + D + R(y;x))|

≤ max {|λ1 (R(y;x))| , |λm (R(y;x)|}

≤ ‖R(y;x)‖ ≤ L‖y − x‖2

for all x, y ∈ B. That proves the claim.

4. Second local model. Along with (1) we consider a second local model of f
in a neighborhood of the current iterate x, which we update recursively. Notice that

φ(y;x) = max {G • [F (x) + F ′(x)(y − x)] : G ∈ G} ,

where G = {G ∈ S
m : Tr(G) = 1, G � 0} as before. This suggests the following ap-

proximation φk(y;x) of f , where G is replaced by a smaller and easier-to-compute
subset Gk ⊂ G. We will generate a sequence Gk ⊂ G of such approximations and let

φk(y;x) = max {G • [F (x) + F ′(x)(y − x)] : G ∈ Gk} .(3)

Clearly φk ≤ φ. The idea is that we generate descent steps for the φk(·;x), which will
ultimately lead to descent in f at x, as the agreement between f and φk improves at
each step k. The minimal requirement for Gk is the following and is obvious.

Lemma 2. Suppose Gk contains a subgradient of the form G = ee� ∈ G, where e
is a normalized eigenvector associated with λ1 (F (x)). Then φk(x;x) = f(x).

5. Proximity control. Let x be our current iterate. In order to generate a new
trial step, we use the current model φk(·;x) and compute the solution yk+1 of the
unconstrained optimization program,

minimize φk(y;x) + τk
2 ‖y − x‖2, y ∈ R

n,(4)

where τk ≥ 0 is the proximity parameter, and where the term τk
2 ‖y − x‖2 is referred
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to as the proximity control. It is well known (see, e.g., [28, II, Prop. 2.2.3, p. 291])
that (4) is equivalent to a trust region program of the form

minimize φk(y;x), y ∈ R
n

subject to ‖y − x‖ ≤ tk,
(5)

where tk > 0 is the trust region radius. Indeed, minima of (5) and minima of (4) are
in one-to-one correspondence in the following sense: If yk+1 is a minimum of (4) for
fixed τk > 0, then yk+1 also solves (5) with tk := ‖yk+1−x‖ and associated multiplier
τk > 0. Conversely, if yk+1 solves (5) and if the associated multiplier τk is strictly
positive, then yk+1 solves (4) with that proximity parameter τk > 0. The case τk = 0
in (4) obviously corresponds to those cases in (5) where the trust region constraint is
inactive.

With the models φ and φk we introduce two levels of approximation of f , so it
is not surprising that two mechanisms to adjust the degree of exactness are applied.
First, in order to control the agreement between f and φ, we need to adjust tk at each
step, which is done indirectly via the management of τk. If the agreement between
f and φ is good, we increase tk, which corresponds to decreasing τk, while we have
to reduce tk when agreement is bad, achieved indirectly by increasing τk. Second, we
update Gk into Gk+1 after each trial yk+1 in order to drive φk closer to φ, and thereby
also closer to f . We use the standard terminology in nonsmooth optimization. If the
solution yk+1 of (4) is not used as the next iterate, we call it a null step. If yk+1 is
accepted and becomes the next iterate x+, we speak of a serious step.

In order to test the quality of the trial steps yk+1, we use the quotient

ρk =
f(x) − f(yk+1)

f(x) − φk(yk+1;x)
.(6)

Fixing constants 0 < γ < Γ < 1, we say that f and φk(·;x) are in good agreement
when ρk > Γ, and we say that the agreement is bad if ρk < γ. The bad case includes,
in particular, situations where ρk ≤ 0. Since always f(x) − φk(y

k+1;x) > 0, unless
0 ∈ ∂f(x), we deduce that ρk ≤ 0 corresponds to cases where f(x)−f(yk+1) ≤ 0, that
is, where the proposed step yk+1 is not even a descent step for f . In our algorithm
we use the following rule: yk+1 is accepted as soon as ρk ≥ γ, i.e., as soon as the step
is not bad. The question is then what we shall do when agreement between f and φk

is bad, i.e., when ρk < γ.

Here we compute a second test parameter,

ρ̃k :=
f(x) − φ(yk+1;x)

f(x) − φk(yk+1;x)
,

and we compare it to a second control parameter γ̃, where γ < γ̃ < 1
2 . We then have

two possibilities. If ρk < γ and also ρ̃k < γ̃, then we do not change τk, but improve
the approximation Gk+1 so that φk+1 gets closer to φ. On the other hand, if ρk < γ,
but ρ̃k ≥ γ̃, then φ and f are not in good agreement, while φk is already close to φ.
Driving φk even closer to φ in that case alone will therefore not improve the situation.
Here we have to decrease the trust region radius tk, or what comes down to the same,
increase the proximity control parameter τk. While doing this, we still update Gk to
a better Gk+1, i.e., we still let φk approach φ, so this process is always applied.
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6. Aggregate subgradients. As our convergence analysis will show, the ap-
proximations Gk ⊂ G need only satisfy the following three conditions:

(G1) G0 = e0e
�
0 ∈ Gk for some normalized eigenvector e0 associated with λ1 (F (x)).

(G2) Gk+1 = ek+1e
�
k+1 ∈ Gk+1 for some normalized eigenvector ek+1 associated

with λ1

(
F (x) + F ′(x)(yk+1 − x)

)
.

(G3) G∗
k ∈ Gk+1 for some of the G∗

k ∈ Gk, where the maximum φk(y
k+1;x) is

attained, and which satisfies 0 = F ′(x)�G∗
k + τk(y

k+1 − x).
Below we will discuss practical choices of the sets Gk, combining ideas from [25], [48],
[24], and [45]. We let Gk consist of sets of the form

αkGk + QkYkQ
�
k ,(7)

where Yk ∈ S
rk has Yk � 0, αk + Tr(Yk) = 1, 0 ≤ αk ≤ 1, where Qk is an m × rk

matrix whose rk ≥ 1 columns form an orthogonal basis of an invariant subspace of
F (x) + F ′(x)(yk+1 − x), and where Gk ∈ G is the aggregate subgradient. We assume
that at least one normalized eigenvector ek associated with the maximum eigenvalue
λ1

(
F (x) + F ′(x)(yk − x)

)
is in the span of the columns of Qk, and moreover, that e0

is in the span of the columns of Qk at all times. The idea is to build the new set Gk+1

along the same lines, using an updating strategy, which we now explain.
Let yk+1 be the solution of program (4), obtained with the help of Gk, and suppose

it is a null step. The necessary optimality condition gives 0 ∈ ∂φk(y
k+1;x)+τk(y

k+1−
x). Due to the structure of φk and (7), this means there exist G∗

k ∈ Gk such that

0 = F ′(x)�G∗
k + τk(y

k+1 − x), G∗
k = α∗

kGk + QkY
∗
k Q

�
k ,(8)

where 0 ≤ α∗
k ≤ 1, Y ∗

k � 0, and α∗
k + Tr(Y ∗

k ) = 1. Now the simplest method is to let

Gk+1 = α∗
kGk + QkY

∗
k Q

�
k ,(9)

the new aggregate subgradient. Helmberg and Rendl [25] use a refinement of (9),
which is suited for large problem size: Let Y ∗

k = PDP� be a spectral decomposition
of the rk × rk matrix Y ∗

k . Decompose P = [P1P2] with corresponding spectra D1

and D2 so that P1 contains as columns those eigenvectors associated with the large
eigenvalues of Y ∗

k , and P2 are the remaining columns. Now put

Gk+1 =
(
α∗
kGk + QkP2D2P

�
2 Q�

k

)
/ (α∗

k + Tr(D2)) ,(10)

the new aggregate subgradient, which is an element of G. In this way only the minor
part of Y ∗

k is kept in the aggregate subgradient. The dominant part of Y ∗
k is retained

in the next eigenbasis by letting QkP1 be part of Qk+1. Moreover, in view of axiom
(G2), one eigenvector ek+1 of the maximum eigenvalue of F (x) + F ′(x)(yk+1 − x) is
computed and included in Qk+1. In order to guarantee axiom (G1), we also keep at
least one normalized eigenvector e0 associated with the maximum eigenvalue of F (x)
in Qk+1.

Altogether, Gk+1 consists of all αGk+1 + Qk+1Yk+1Q
�
k+1, where 0 ≤ α ≤ 1,

Yk+1 � 0, and α + Tr(Yk+1) = 1, and where Qk+1 has the properties above. For this
construction we have the following.

Lemma 3. The sets Gk so defined satisfy the rules (G1)–(G3). In particular,
φk(x;x) = f(x), φk+1(y

k+1;x) = φ(yk+1;x), φk+1(y
k+1;x) ≥ φk(y

k+1;x), and con-
dition (8) hold for every k.

Remark. In a traditional bundle method we would refer to gk = F ′(x)�Gk as the
aggregate subgradient. Here we use the term aggregate for both gk and Gk because
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there is no risk of ambiguity. But are both elements really needed? The authors of
[25] point out that storing ḡk is cheaper than storing Ḡk, so naturally they work in
g-space and not in G-space.

Now observe an important difference of our present case with the convex case in
[25], where F ′(x)∗ = A∗ is independent of x. Since our F ′(x)∗ depends on x, as soon
as a serious step x → x+ is taken, gk = F ′(x)∗Gk is no longer useful at x+, because
it is no longer a subgradient of f at x+. However, Gk is still useful. It suffices to
replace gk by g+

k := F ′(x+)∗Gk, which is a subgradient for f at x+. So if we want to
“recycle” old aggregates in the next serious loop, we have to store Gk and not gk. On
the other hand, if we are happy to keep aggregates only within one single inner loop,
then we do not need Gk and our case is similar to [25].

Remark. Conditions (G1)–(G3) leave a lot of freedom for the choice of the bases
Qk. In [24] Helmberg and Oustry investigate the convex case and discuss ways to
combine their two approaches [25] and [48] into a unified method. An alternative ap-
proach is Polak and Wardi [54]. For nonconvex eigenvalue functions we have proposed
in [45, 46] an extension of Oustry’s approach.

Spectral bundle algorithm for minx∈Rn f(x).

Parameters: 0 < γ < γ̃ < Γ < 1.
0. Initialize outer loop. Find initial iterate x and compute f(x).
1. Outer loop. Stop if 0 ∈ ∂f(x) at current outer iterate x. Otherwise

goto inner loop.
2. Initialize inner loop. Let G1 ⊂ ∂λ1 (F (x)), G1 = 1

mIm, put inner
loop counter k = 1, and choose τ1 > 0. If old value for τ from previous
sweep is memorized, use it to initialize τ1.

3. Tangent program. At counter k with given τk > 0 and Gk solve

min
y∈Rn

φk(y;x) +
τk
2
‖y − x‖2.

Solution is yk+1. Find G∗
k ∈ Gk where (3) at yk+1 is attained. Write

G∗
k = α∗

kGk + QkYkQ
�
k according to (7).

4. Acceptance test. Compute f(yk+1) and check whether

ρk =
f(x) − f(yk+1)

f(x) − φk(yk+1;x)
≥ γ.

If this is the case, put x+ = yk+1 (serious step). Compute new memory
element τ+ as

τ+ =

{ τk
2

if ρk > Γ,

τk else
Then go back to step 1 to commence a new sweep of outer loop. On
the other hand, if ρk < γ, then continue inner loop with step 5.

5. Agreement test. Compute φ(yk+1;x) and control parameter

ρ̃k =
f(x) − φ(yk+1;x)

f(x) − φk(yk+1;x)
.

Put

τk+1 =

{
τk if ρk < γ and ρ̃k < γ̃,
2τk if ρk < γ and ρ̃k ≥ γ̃.

6. Aggregate subgradient. Compute new set Gk+1 according to (7),
with (G1)–(G3) satisfied. New aggregate subgradient is Gk+1 = G∗

k.
7. Inner loop. Increase counter k → k + 1 and go back to step 3.



SPECTRAL BUNDLE METHOD 287

7. Convergence analysis of inner loop. We have to show that the inner loop
is finite, that is, finds a trial point yk+1 accepted in step 4 after a finite number k of
steps. We prove this by showing that if the inner loop turns forever, that is, ρk < γ
for all k, then 0 ∈ ∂f(x). (Since the inner loop is not entered when 0 ∈ ∂f(x), this
is an argument by contradiction.) There are two subcases to be discussed, depending
on the decision in step 5. These will be addressed in Lemmas 4 and 5.

Our first concern is when ρk < γ but ρ̃k ≥ γ̃. This is indeed the situation where
we are far from the convex case. Namely, ρ̃k ≥ γ̃ means that φk is in good agreement
with φ, but unfortunately ρk < γ says that φ is not a good model of f , which is
usually due to the fact that f is nonconvex in a neighborhood of the current x. In
consequence, φk cannot be expected to be a good model of f either. This is addressed
in step 5 of the algorithm by increasing the proximity parameter τk, which as we know
is equivalent to reducing the trust region radius. This is the only way to improve the
agreement between φ and f .

Lemma 4. Suppose the algorithm generates an infinite sequence of trial steps
yk+1 such that always ρk < γ. Then ρ̃k < γ̃ for some k0 and all k ≥ k0.

Proof. (i) Assume on the contrary that ρk < γ for all k, but at the same time
ρ̃k ≥ γ̃ for infinitely many k ∈ N. Then according to the update rule in step 5
of the algorithm, the sequence τk tends to +∞. As a consequence of the necessary
optimality condition we have 0 ∈ ∂φk(y

k+1;x) + τk(y
k+1 − x). Now observe that

due to the special form (7), the subgradients of all functions φk(·;x) are uniformly
bounded by ‖F ′(x)�‖. Given that τk → ∞, we then must have yk+1 → x. Using
τk(x− yk+1) ∈ ∂φk(y

k+1;x) calls for the subgradient inequality, which gives

τk
(
x− yk+1

)� (
x− yk+1

)
≤ φk(x;x) − φk(y

k+1;x) = f(x) − φk(y
k+1;x),

the latter by Lemma 3. In other words,

τk‖x− yk+1‖2

f(x) − φk(yk+1;x)
≤ 1.(11)

(ii) Now we expand the test parameters as follows:

ρ̃k = ρk +
f(yk+1) − φ(yk+1;x)

f(x) − φk(yk+1;x)

≤ ρk +
L‖x− yk+1‖2

f(x) − φk(yk+1;x)
(using Proposition 1)

≤ ρk +
L

τk
(using (11)).

Since τk → ∞, we deduce lim supk→∞ ρ̃k ≤ lim supk→∞ ρk ≤ γ, contradicting ρ̃k ≥
γ̃ > γ for infinitely many k.

Remark. Notice that the proof of Lemma 4 uses Lemma 3, which in turn exploits
axiom (G1). Axioms (G2) and (G3) will be needed in the next lemma.

As a consequence of Lemma 4 we see that the algorithm, when faced with the
bad case ρk < γ, will continue to increase τk, until eventually ρ̃k < γ̃, too. From some
index k0 onwards, we will then be in the first case in step 5 of the algorithm, where
the parameter τk is frozen, i.e., τk =: τ for k ≥ k0. We then have no easy argument
to deduce yk+1 → x. Here, indeed, we will have to exploit properties (G2) and (G3)
of the update rule Gk → Gk+1. We follow the line of [25, Lemma 4.2].
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Lemma 5. Let x be the current iterate and suppose the algorithm generates an
infinite sequence of trial steps yk+1, where ρk < γ for all k while ρ̃k < γ̃ for some k0

and all k ≥ k0. Then 0 ∈ ∂f(x).

Proof. (i) As we mentioned already, ρk < γ and ρ̃k < γ for all k ≥ k0 implies that
in step 5 of the algorithm, τk =: τ is frozen for k ≥ k0. A priori we therefore do not
know whether yk+1 → x, as we did in the proof of Lemma 4. This complicates the
following analysis.

(ii) Let us introduce the function

ψk(y;x) = φk(y;x) + τ
2‖y − x‖2;

then by its definition, yk+1 is the global minimum of ψk(·;x) for k ≥ k0. Let G∗
k ∈ Gk

be the subgradient where the supremum φk(y
k+1;x) is attained and which is retained

in Gk+1 in accordance with rule (G3) and also with step 3 of the algorithm. That
means

φk(y
k+1;x) = G∗

k •
[
F (x) + F ′(x)(yk+1 − x)

]
,(12)

and also

ψk(y
k+1;x) = G∗

k •
[
F (x) + F ′(x)(yk+1 − x)

]
+ τ

2‖yk+1 − x‖2.(13)

We introduce the function

ψ∗
k(y;x) = G∗

k • [F (x) + F ′(x)(y − x)] + τ
2‖y − x‖2.

Then ψ∗
k(y

k+1;x) = ψk(y
k+1;x) and

ψ∗
k(y;x) ≤ ψk+1(y;x)(14)

for k ≥ k0, because G∗
k ∈ Gk+1. We claim that

ψ∗
k(y;x) = ψ∗

k(y
k+1;x) + τ

2‖y − yk+1‖2.(15)

An easy way to see this is to observe that ψ∗
k is quadratic and expand it, using

∇ψ∗
k(y;x) = F ′(x)�G∗

k + τ(y − x) and ∇2ψ∗
k(y;x) = τI. Then clearly,

ψ∗
k(y;x) = ψ∗

k(y
k+1;x) + ∇ψ∗

k(y
k+1;x)�(y − yk+1) + τ

2 (y − yk+1)�(y − yk+1).

Formula (15) will therefore be established as soon as we show that the first order term
in this expansion vanishes. But this term is

∇ψ∗
k(y

k+1;x)�(y − yk+1)

= (F ′(x)�G∗
k)

�
(y − yk+1) + τ(yk+1 − x)�(y − yk+1)

= τ(x− yk+1)�(y − yk+1) + τ(yk+1 − x)�(y − yk+1) (using (8))

= 0.

That proves formula (15).
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(iii) From (ii) we have

ψk(y
k+1;x) ≤ ψ∗

k(y
k+1;x) + τ

2‖yk+2 − yk+1‖2 (using ψ∗
k(y

k+1;x) = ψk(y
k+1;x))

= ψ∗
k(y

k+2;x) (using (15))

≤ ψk+1(y
k+2;x) (using (14))

≤ ψk+1(x;x) (yk+2 is minimizer of ψk+1)(16)

= φk+1(x;x) ≤ φ(x;x).

We deduce that the sequence ψk(y
k+1;x) is monotonically increasing and bounded

above by φ(x;x). It therefore converges to some ψ∗ ≤ φ(x;x).

Going back to (16) with this information, we see that the term τ
2‖yk+2 − yk+1‖2

is now squeezed in between two convergent terms with the same limit ψ∗, and must
therefore tend to zero. Consequently, ‖yk+1−x‖2−‖yk+2−x‖2 also tends to 0, because
the sequence yk is bounded. (Boundedness of the yk+1 was already used in the proof
of the previous lemma and follows from the particular form (7) of the subgradients
and the fact that the sequence τk is nondecreasing and therefore bounded away from
0.)

Recalling φk(y;x) = ψk(y;x) − τ
2‖y − x‖2, we deduce, using both convergence

results, that

φk+1(y
k+2;x) − φk(y

k+1;x)

= ψk+1(y
k+2;x) − ψk(y

k+1;x) − τ
2‖yk+2 − x‖2 + τ

2‖yk+1 − x‖2 → 0.(17)

(iv) Let ek+1 be the normalized eigenvectors of F (x)+F ′(x)(yk+1−x) associated
with λ1, which we pick in step 5 of the algorithm and according to rule (G2). Then
gk = F ′(x)�ek+1e

�
k+1 is a subgradient of φk+1(·;x) at yk+1. Hence by the subgradient

inequality

φk+1(y
k+1;x) + g�k

(
y − yk+1

)
≤ φk+1(y;x).

Since φk+1(y
k+1;x) = φ(yk+1;x) by Lemma 3, respectively, rule (G2), we have the

estimate

φ(yk+1;x) + g�k
(
y − yk+1

)
≤ φk+1(y;x).(18)

Now observe that

0 ≤ φ(yk+1;x) − φk(y
k+1;x)

= φ(yk+1;x) + g�k
(
yk+2 − yk+1

)
− φk(y

k+1;x) − g�k
(
yk+2 − yk+1

)
≤ φk+1(y

k+2;x) − φk(y
k+1;x) + ‖gk‖

∥∥yk+2 − yk+1
∥∥ (using (18)),

and this term tends to 0 due to (17), because yk+2 − yk+1 → 0, and because the
sequence gk is bounded. We deduce that φ(yk+1;x) − φk(y

k+1;x) → 0.
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(v) We now show that φk(y
k+1;x) → f(x), and then of course also φ(yk+1;x) →

f(x). Assume, contrary to what is claimed, that lim supk→∞ f(x) − φk(y
k+1;x) =:

η > 0. Choose δ > 0 such that δ < (1− γ̃)η. It follows from part (iv) that there exists
k1 ≥ k0 such that

φ(yk+1;x) − δ ≤ φk(y
k+1;x)(19)

for all k ≥ k1. Using ρ̃k ≤ γ̃ for k ≥ k1 then gives

γ̃
(
φk(y

k+1;x) − f(x)
)
≤ φ(yk+1;x) − f(x)

≤ φk(y
k+1;x) + δ − f(x),(20)

which implies γ̃η ≥ η− δ. This contradicts the choice of δ and therefore shows η = 0.
(vi) Having shown φ(yk+1;x) → f(x) and φk(y

k+1;x) → f(x), we argue that
yk+1 → x. This follows from the definition of yk+1, because

ψk(y
k+1;x) = φk(y

k+1;x) + τ
2‖yk+1 − x‖2 ≤ ψk(x;x) = φk(x;x) = f(x).

Since φk(y
k+1;x) → f(x), we have indeed ‖yk+1 − x‖ → 0 by a sandwich argument.

To finish the proof, let us show that 0 ∈ ∂f(x). Notice first that the necessary
optimality condition gives 0 ∈ ∂ψk(y

k+1;x) = ∂φk(y
k+1;x) + τ(yk+1 − x), which

implies

τ(x− yk+1) ∈ ∂φk(y
k+1;x).

The subgradient inequality gives

τ(x− yk+1)�(y − yk+1) ≤ φk(y;x) − φk(y
k+1;x)

≤ φ(y;x) − φk(y
k+1;x) (using φk ≤ φ)

for every y. Passing to the limit, observing τ(yk+1−x) → 0 and φk(y
k+1;x) → φ(x;x),

we obtain the estimate

0 ≤ φ(y;x) − φ(x;x)

for every y, which by convexity of φ(·;x) implies 0 ∈ ∂φ(x;x). Since ∂φ(x;x) = ∂f(x),
we have shown 0 ∈ ∂f(x), as claimed.

Remark. Various modifications of our algorithm may be considered. For instance,
whenever a null step yk+1 is made, that is, ρk < γ, we should first check whether yk+1

gives descent in f :

f(x) − f(yk+1) ≥ δ1 > 0.(21)

If this is not the case, the trust region radius is certainly too large, so we should
increase τk right away. As presented, this will also happen, but after several null
steps, bringing φk closer to φ, until the criterion in step 4 is met.

In the same vein, even when yk+1 gives descent in f , but slightly, so that ρk > γ
fails, we may check whether

σk :=
f(x) − f(yk+1)

f(x) − φ(yk+1;x)
≥ δ2(22)
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for some 1
2 < δ2 < 1. If σk < δ2, then f and φ are not in good agreement. In this case,

our algorithm will keep τk fixed and will start driving φk closer to φ. Eventually this
will lead to a moment where ρ̃k ≥ γ̃, and then τk will be increased to 2τk. As above
one may argue that in this case we have lost time, because we have brought φk closer
to φ even though φ is too far away from f , only to notice in the end that we could
not avoid increasing τk. This loss of time and energy could be avoided by adding the
test (22). If σk < δ2, then we increase τk right away but keep incrementing φk. The
convergence analysis of this is covered by the two central lemmas of this section.

8. Convergence analysis of the outer loop. All we have to do now is piece
things together and show subsequence convergence of the sequence of serious steps xj

retained in the outer loop. We have the following.
Theorem 6. Let f = λ1 ◦ F be a maximum eigenvalue function and let x1 ∈ R

n

be such that the set {x ∈ R
n : f(x) ≤ f(x1)} is compact. Then every accumulation

point of the sequence xj of serious steps generated by the algorithm is a critical point
of f .

Proof. (i) From the previous section we know that the inner loop always ends
after a finite number of steps k with a new x+ satisfying the acceptance test, unless
we have finite termination due to 0 ∈ ∂f(x). Excluding this case, let us assume that
xj is the sequence of serious steps, satisfying the acceptance test in step 4 of the
algorithm. Since yk+1 accepted in step 4 becomes the new xj+1, that means

f(xj) − f(xj+1) ≥ γ
(
f(xj) − φkj (x

j+1;xj)
)
,(23)

where j is the counter of the outer loop, k the counter of the inner loop, and where
at the outer step j the inner loop was stopped at k = kj . Now recall from the
construction that τkj

(
xj − xj+1

)
∈ ∂φkj

(xj+1;xj). The subgradient inequality for
φkj

(·;xj) at xj+1 therefore gives

τkj

(
xj − xj+1

)�
(xj − xj+1) ≤ φkj (x

j ;xj) − φkj
(xj+1;xj) = f(xj) − φkj

(xj+1;xj),

using φkj
(xj ;xj) = f(xj). That means

τkj‖xj+1 − xj‖2 ≤ f(xj) − φkj (x
j+1;xj) ≤ γ−1

(
f(xj) − f(xj+1)

)
using (23). Summing up from j = 1 to j = J − 1 gives

J−1∑
j=1

τkj
‖xj+1 − xj‖2 ≤ γ−1

J−1∑
j=1

f(xj) − f(xj+1) = γ−1
(
f(x1) − f(xJ)

)
,

which is bounded above due to the hypothesis that {x ∈ R
n : f(x) ≤ f(x1)} is

bounded. We deduce convergence of the series

∞∑
j=1

τkj
‖xj+1 − xj‖2 < ∞.

In particular, τkj‖xj+1 − xj‖2 → 0.
(ii) Let us prove that this implies gj := τkj

(
xj − xj+1

)
→ 0, (j → ∞). Assume

on the contrary that there exists an infinite subset N of N and some μ > 0 such that
‖gj‖ = τkj‖xj − xj+1‖ ≥ μ > 0 for every j ∈ N . In tandem with the summability of
τkj

‖xj − xj+1‖2 shown in part (i) this could only mean xj − xj+1 → 0, and at the
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same time, τkj
→ ∞, j ∈ N . We now argue that there exists yet another infinite

subsequence N ′ of N with τj → ∞, (j ∈ N ′), such that for each j ∈ N ′, the doubling
rule in step 5 of the algorithm was applied at least once before the step xj+1 = ykj+1

was accepted. Indeed, to construct N ′ we let, for every j ∈ N , j′ ≤ j be that outer-
loop instant where the τ -parameter was increased for the last time before j, and we
let N ′ consist of all these j′, j ∈ N . It is possible that j′ = j, but in general we may
have j′ < j, and we know only that

2τj′−1 ≤ τj′ and τj′ ≥ τj′+1 ≥ · · · ≥ τj .

However, since τj → ∞, j ∈ N , we know that we must have τj′ → ∞, j′ ∈ N ′.
Since the doubling rule was applied at least once at the outer-loop counter j′, N ′ is
as claimed.

Let us say that for j ∈ N ′ the doubling rule was applied for the last time at
stage τkj−νj for some νj ≥ 1. That means, τkj−νj+1 = 2τkj−νj , while the τ -parameter
remained unchanged during the following inner steps before acceptance:

τkj = τkj−1 = · · · = τkj−νj+1 = 2τkj−νj .(24)

Now recall that in step 5 of the algorithm we have ρk < γ and ρ̃k ≥ γ̃ for those k
where the trial step was not accepted and the doubling rule was applied. Since this
is the case at stage kj − νj we have

ρkj−νj
=

f(xj) − f(ykj−νj+1)

f(xj) − φkj−νj
(ykj−νj+1;xj)

< γ

and

ρ̃kj−νj
=

f(xj) − φ(ykj−νj+1;xj)

f(xj) − φkj−νj (y
kj−νj+1;xj)

≥ γ̃.

By (24) we now have

1

2
τkj

(
xj − ykj−νj+1

)
∈ ∂φkj−νj (y

kj−νj+1;xj).

Using the subgradient inequality for φkj−νj
(·;xj) at ykj−νj+1 and φkj−νj

(xj ;xj) =
f(xj), we obtain

1

2
τkj

(
xj − ykj−νj+1

)� (
xj − ykj−νj+1

)
≤ φkj−νj (x

j ;xj) − φkj−νj (y
kj−νj+1;xj)

= f(xj) − φkj−νj
(ykj−νj+1;xj),

which could also be written as

τkj‖xj − ykj−νj+1‖2

f(xj) − φkj−νj (y
kj−νj+1;xj)

≤ 2.(25)

Substituting (25) into the expression for ρ̃kj−νj
and expanding gives

ρ̃kj−νj
= ρkj−νj

+
f(ykj−νj+1) − φ(ykj−νj+1;xj)

f(xj) − φkj−νj (y
kj−νj+1;xj)

≤ ρkj−νj +
L‖xj − ykj−νj+1‖2

f(xj) − φkj−νj
(ykj−νj+1;xj)

(using Proposition 1)

≤ ρkj−νj +
2L

τkj

(using (25)).
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Here Proposition 1 is applied to the set B of all xj and ykj−νj+1, j ∈ N ′, which is
bounded because ‖ykj−νj+1‖ ≤ ‖F ′(xj)�‖ due to (7), and because the serious steps
xj belong to the level set {x ∈ R

n : f(x) ≤ f(x1)}, which is bounded by hypothesis.
Since ρkj−νj < γ and L/2τkj → 0, we have lim supj→∞ ρ̃kj−νj ≤ γ in the estimate
above, contradicting ρ̃kj−νj ≥ γ̃ > γ for all j ∈ N ′.

(iii) Having shown that gj := τkj (x
j − xj+1) → 0, (j → ∞), let us argue that

every accumulation point x̄ of the sequence xj of serious steps must be a critical point.
Notice again that since {x ∈ R

n : f(x) ≤ f(x1)} is compact by hypothesis, and since
our algorithm is of descent type in the serious steps, the sequence xj is bounded.
Select a convergent subsequence xj → x̄, j ∈ N . The same argument applies to the
sequence xj+1, j ∈ N . We may therefore assume that this sequence also has a limit,
x̃. Notice that in general we might have x̃ �= x̄. Only in those cases where the τkj

,
j ∈ N , are bounded away from 0 can we conclude that xj+1 − xj → 0, j ∈ N . In
general, however, according to step 4 of the algorithm, the τ -parameter may very well
shrink to 0, and here xj − xj+1 → 0 cannot be assured.

Since gj is a subgradient of φkj
(·;xj) at xj+1 = ykj+1, we have

g�j h ≤ φkj (x
j+1 + h;xj) − φkj (x

j+1;xj)

≤ φ(xj+1 + h;xj) − φkj (x
j+1;xj) (using φkj ≤ φ)

for every test vector h. Now we use the fact that ykj+1 = xj+1 was accepted in step 4
of the algorithm, which means

γ−1
(
f(xj) − f(xj+1)

)
≥ f(xj) − φkj

(xj+1;xj).

Combining these two estimates gives

g�j h ≤ φ(xj+1 + h;xj) − f(xj) + f(xj) − φkj
(xj+1;xj)

≤ φ(xj+1 + h;xj) − f(xj) + γ−1
(
f(xj) − f(xj+1)

)
.

Passing to the limit j ∈ N and using, in the order named, gj → 0, xj+1 → x̃, xj → x̄,
and f(x̄) = φ(x̄; x̄), implies

0 ≤ φ(x̃ + h; x̄) − φ(x̄; x̄)

for every test vector h, where the last term f(xj) − f(xj+1) → 0 by monotonicity.
Choosing h = x̄− x̃ + h′ therefore implies

0 ≤ φ(x̄ + h′; x̄) − φ(x̄; x̄)

for every test vector h′ ∈ R
n, which proves 0 ∈ ∂φ(x̄; x̄). Hence also 0 ∈ ∂f(x̄).

In practical tests we observe convergence, and the theoretical possibility of a
sequence of iterates with several accumulation points never occurs. This is explained
to some extent by the following.

Corollary 7. Suppose f = λ1◦F is convex in a closed and bounded neighborhood
Ω of x∗ and that the iterates (serious steps) xj remain in Ω. Then the sequence xj

converges to some local minimum x� ∈ Ω with f(x∗) = f(x�).
Proof. As the sequence of serious steps xj satisfies the acceptance condition in

step 4 of the algorithm, we are in a situation similar to the one in the convex algorithm
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discussed in [25]. The argument presented there can be used and shows convergence
to a local minimum x� ∈ Ω.

Remark. The present trust region method should be compared to the approach
of Fuduli, Gaudioso, and Giallombardo [20, 21] for general nonsmooth and nonconvex
locally Lipschitz functions, where the authors design a trust region with the help of
the first order affine approximations a(y) = g�(y − yk+1) + f(yk+1), g ∈ ∂f(yk+1)
of the objective f at the trial points yk+1. As these affine models are not support
functions to the objective, the authors classify them according to whether a(x) > f(x)
or a(x) ≤ f(x), using this information to devise a trust region around the current x.
Their approach is certainly appealing, because it uses genuine information from the
objective f . In contrast, our method uses information from the model φ(·;x) at the
trial points yk+1.

9. Minimizing the H∞-norm. In this section we extend our algorithm to a
larger class of functions which are suprema of an infinite family of maximum eigenvalue
functions. The application we have primarily in mind is the H∞-norm, but the results
are applicable to a much larger class.

To introduce our case, we consider a parametrized family of stable linear time-
invariant dynamical systems

P (θ) :

{
ẋ = A(θ)x + B(θ)w,

z = C(θ)x + D(θ)w
(26)

with data A(θ) ∈ R
nx×nx , B(θ) ∈ R

nw×nx , C(θ) ∈ R
nx×nz , D(θ) ∈ R

nw×nz de-
pending smoothly on a decision parameter θ ∈ R

n. The transfer function of P (θ) is

G(θ, s) = C(θ) (sI −A(θ))
−1

B(θ)+D(θ). Here nx is the order of the system, x(t) its
state, nw the number of inputs, w(t) the input vector, nz the number of outputs, and
z(t) the output vector. As a typical example, in feedback control synthesis, P (θ) may
represent a closed-loop system, depending on the unknown (to be designed) feedback
controller θ. The closed-loop transfer function then depends on the decision vector θ,
which regroups the controller gains and possibly other decision parameters, e.g., from
the open-loop system [44], or scalings/multipliers in robust synthesis [7].

Typically, the performance of the unknown feedback controller might be assessed
in the H∞-norm. Recall that the H∞-norm ‖G(θ, ·)‖∞ of a stable system is the
L2(jR) → L2(jR) operator norm of the channel w → z, where z(s) = G(θ, s)w(s).
An explicit expression is

‖G(θ, ·)‖∞ = sup
ω∈R∪{∞}

σ (G(θ, jω)) = sup
ω∈R∪{∞}

λ1

(
G(θ, jω)HG(θ, jω)

)1/2
,

where XH is the conjugate transpose of a matrix X. We are interested in that choice
of θ which minimizes the H∞-norm,

min
θ∈Rn

‖G(θ, ·)‖∞.(27)

We introduce the function

f(θ) = ‖G(θ, ·)‖2
∞,

which is then an infinite maximum of maximum eigenvalue functions

f(θ) = max
ω∈R∪{∞}

f(θ, ω), f(θ, ω) = λ1 (F (θ, ω)) ,
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where

F (θ, ω) = G(θ, jω)HG(θ, jω) ∈ S
m.

Program (27) is semi-infinite with two sources of nonsmoothness: the infinite maxi-
mum operator and the nonsmoothness of each maximum eigenvalue function f(·, ω).

Yet another difficulty arises in (27). Namely, given the fact that the H∞-norm is
defined only for stable transfer functions, the objective function f(θ) is defined only
on the set S of those parameters θ where G(θ, ·) is stable. In other words, program
(27) has the hidden constraint θ ∈ S. But S is an open set, because G(θ, ·) depends
continuously on θ, so θ ∈ S is not a constraint in the usual sense of mathematical
programming. The following known fact is therefore useful.

Lemma 8. Suppose (A(θ), B(θ), C(θ), D(θ)) is observable and controllable for
every θ ∈ S. Then ‖G(θ, ·)‖∞ → +∞ for θ ∈ S and θ → θ̄ ∈ ∂S. In other words,
f(θ) = ‖G(θ, ·)‖2

∞ behaves like a barrier function as θ approaches the boundary ∂S of
the hidden constraint S.

The following result is yet another key property for the analysis of f ; see, e.g.,
[11], [10, Lemma 1] for a proof.

Lemma 9. Suppose G(θ) is stable, i.e., θ ∈ S. Then the set Ω(θ) = {ω ∈
R ∪ {∞} : f(θ) = f(θ, ω)} of active frequencies is either finite or Ω(θ) = R ∪ {∞},
i.e., f(θ) = f(θ, ω) for every ω ∈ R ∪ {∞}.

We refer to Ω(θ) as the set of active frequencies at θ. A system where Ω(θ) =
R ∪ {∞} is called all-pass. In practical cases, iterates θ where G(θ, ·) is all-pass are
rarely encountered.

For the following we switch back to the more standard notation in optimization,
where the decision variable θ is denoted by x ∈ R

n. Let x be our current iterate
and consider the case where Ω(x) = {ω1, . . . , ωp} is finite. Any Ω with Ω(x) ⊂ Ω ⊂
R ∪ {∞} is called an extension of Ω(x). For a given extension Ω we consider the
function fΩ(y) = maxω∈Ω f(y, ω). If Ω is finite, then fΩ is a maximum eigenvalue
function, namely, fΩ(y) = λ1 (FΩ(y)), where FΩ(y) is block diagonal with diagonal
blocks F (y, ω), ω ∈ Ω arranged in any convenient order. We have fΩ ≤ f and
fΩ(x)(x) = fΩ(x) = f(x) for every extension Ω of Ω(x). The subdifferential of f at x
is determined by Ω(x) in as much as

∂f(x) = ∂fΩ(x) = ∂fΩ(x)(x).

Our goal is to extend the eigenvalue optimization algorithm to the case of the H∞-
norm. We use the following simple idea:

i. For a finite extension Ω of Ω(x) we know how to generate descent steps for
fΩ at x, because fΩ is a maximum eigenvalue function.

ii. Suppose yk+1 is a serious step for fΩ satisfying the acceptance test in step 4
of the algorithm. If Ω is large enough, fΩ is close to f , so that we may hope
that the acceptance test will also be satisfied for f .

This leads to a convergent algorithm for the H∞-norm. What is needed is an increas-
ing sequence Ω1 ⊂ Ω2 ⊂ · · · of finite sets whose union is dense in R∞. Then we use
the scheme of our algorithm to generate descent steps for fΩ�

, where Ω(x)∪Ω� ⊂ Ω�.
If the approximation of f by fΩ�

is not good enough, we replace Ω� by the larger
Ω�+1, where Ω(x) ∪ Ω�+1 ⊂ Ω�+1, etc. This approach is inspired by the theory of
consistent approximations of [53].
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Spectral bundle algorithm for program (27).

Parameters 0 < γ� < γ < 1
2 .

0. Initialize outer loop. Choose initial x such that f(x) < ∞.
1. Outer loop. If 0 ∈ ∂f(x) at current x stop, else goto inner loop.
2. Initialize inner loop. Let x1 = x and choose finite Ω1 containing Ω(x1).

Put inner loop counter � = 1.
3. Subprogram. At inner loop counter � and current Ω�, fΩ�

, φΩ�
(·;x), and

φk
Ω�

(·;x) use inner loop of the first algorithm (with counter k) to generate
trial step x� satisfying the test

f(x) − fΩ�
(x�)

f(x) − φk
Ω�

(x�;x)
≥ γ.

4. Reality check. Test whether
f(x) − f(x�)

f(x) − φk
Ω�

(x�;x)
≥ γ�.

5. Decision. If this is the case, let x+ = x� and go back to step 1. Otherwise
add new frequencies to the set Ω� to obtain Ω�+1 and go back to step 3.

Here φΩ�
(·;x) relates to fΩ�

as φ(·;x) relates to f in the algorithm of section 6, and,
similarly, φk

Ω�
(·;x) used here plays the role of φk(·;x) there.

Remarks. (i) Notice that our algorithm now has three iterative levels: the outer
loop generating the serious iterates x, x+, x++, . . . ; the inner loop with counter �,
which corresponds in fact to the outer loop in the first algorithm, now applied to the
function fΩ�

; and the innermost loop, which corresponds to the inner loop in the first
algorithm, and which has its own counter k.

(ii) Notice that Ω� could in principle be any increasing sequence of finite sets of
frequencies whose union is dense, but it is preferable to adapt this sequence to the
local situation at the current iterate x. Ideas of how Ω�(x) could be chosen at each
step are discussed in [4].

Theorem 10. Suppose (A(x), B(x), C(x), D(x)) is observable and controllable
for every x ∈ S. Let x1 be a starting point such that f(x1) < ∞ and such that
{x ∈ R

n : f(x) ≤ f(x1)} is bounded. Suppose the approximating sequence Ωk is such
that fΩk

→ f uniformly on bounded sets as k → ∞. Then every accumulation point
of the sequence of iterates xj generated by the above algorithm with starting point x1

is a critical point of f .

Proof. (i) Observe first that due to the barrier property of the objective, the
boundedness of the initial level set, and the fact that our method is of descent type in
the outer iterates, every accumulation point x̄ of the sequence of serious iterates xj is
necessarily inside the stability region S. This means criticality of x̄ is still described
by 0 ∈ ∂f(x̄). In other words, the hidden constraint x ∈ S can be disregarded in
what follows.

(ii) Let x be the current iterate of the outer loop and consider the inner loop with
function fΩ�

and its models φΩ�
and φk

Ω�
for a fixed set Ω�. Applying the lemmas of

section 7 to the maximum eigenvalue function fΩ�
shows finite termination of step 3

of the semi-infinite algorithm at a suitable x� (that is, after a finite number of steps
yk+1, where k is the counter of the innermost loop). Notice here that Lemmas 4 and 5
do not use compactness of the level sets of the objective, which is good news, because
the objective is fΩ�

, and we know nothing about compactness of the level sets of fΩ�
.

Only compactness of the level set of f is assumed in the statement. Instead, what
made that argument in section 7 work was the special structure (7) of the subgradients
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of the maximum eigenvalue function, and this applies to each fΩ�
.

(iii) The trial iterate x� found in step 3 corresponds in fact to the latest yk+1 of the
innermost loop in the terminology of section 7, and the test in step 3 is precisely the
acceptance test in the first algorithm. But being built on fΩ�

, x� does not necessarily
pass the reality check in step 4, so a restart with a larger Ω�+1 may be required. What
we have to prove, then, is that after a finite number of such updates Ω� → Ω�+1, the
x� = yk+1 will pass the test in step 4 and become the new outer iterate x+. This is
where we have to use the fact that fΩ�

gets closer to f as Ω� increases. More precisely,
exploiting again the special structure of the subgradients of the different λ1 involved,
and using that F ′(z, ω) is uniformly bounded for z in a bounded set and ω ∈ R∪{∞},
we see that the sequence of trial steps x� is bounded. Since fΩ�

→ f uniformly on
bounded sets, we conclude using γ� < γ that ultimately the test in step 3 is sharper
than the test in step 4. That proves finiteness of the loop in �.

(iv) Finally, relabeling the outer iterates x, x+, . . . as xj , we are back in the
situation analyzed in section 8. Using compactness of {x ∈ R

n : f(x) ≤ f(x1)},
we can use the same argument, now involving the parameter γ� from step 4 of the
algorithm. This completes the argument.

Remark. The theory of consistent approximations [53] allows us in principle to
apply this method in a fairly general context. However, a difficulty arises in step 4
of the algorithm, where the reality check requires computing values f(x�). This is
what makes the case of the H∞-norm special, because here we have an efficient way
to compute function values [11]. The same idea can be used to solve problems with
integral quadratic constraints (IQCs); see [7, 3].

10. Numerical tests. We present numerical tests with BMIs arising in feedback
controller synthesis. Consider a closed-loop system of the form (26), where A(K),
B(K), . . . depend on the feedback controller K to be designed. The bounded real
lemma [12] asserts that the closed-loop transfer channel w → z has H∞-norm bounded
by γ∞ if and only if there exists a Lyapunov matrix X � 0 such that

B̃(K,X, γ∞) =

⎡
⎢⎣

A(K)�X + XA(K) XB(K) C(K)�

B(K)�X −γ∞I D(K)�

C(K) D(K) −γ∞I

⎤
⎥⎦ ≺ 0.

Fixing a small threshold ε > 0, we consider the following nonlinear semidefinite pro-
gram:

minimize γ∞

subject to B̃(K,X, γ∞) � −εI,

εI −X � 0,

which may be solved as an eigenvalue optimization program with decision variable x =
(vec(K), svec(X), γ∞) if exact penalization is used. To this end, put B(K,X, γ∞) :=

diag[εI − X; B̃(K,X, γ∞)] and fix a penalty parameter α > 0 to solve the eigen-
value program minx λ1 (γ∞I + αB(K,X, γ∞)). An alternative approach is to fix the
performance level γ∞ and to solve the eigenvalue program

min
K,X

λ1 (B(K,X, γ∞))(28)

until a value < 0 is found. The gain γ∞ could then be updated a few times to improve
performance. This approach has been adopted in our numerical tests, while the exact
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penalty approach was used in [8]. Further testing of this approach for control problems
with IQCs is presented in [7].

10.1. Numerical implementation. We have performed six numerical experi-
ments using models known in the control literature (VTOL helicopter, chemical re-
actor, transport airplane, piezoelectric actuator, coupled springs model, and binary
distillation tower). This allows comparison with previous studies. We present both
static and reduced order controller designs. The state space matrices of these models
can be found in [35, 8], with the results of H2 and H∞ synthesis problems.

To solve the nonconvex eigenvalue optimization problem (28), we use our
MATLAB implementation of the spectral bundle algorithm. The tangent subproblem
to compute the trial step y+ requires minimizing a quadratic cost function subject to
an SDP constraint (an LMI (linear matrix inequality)). In order to solve the tangent
subproblem efficiently, our specSDP routine [8] was used.

10.1.1. Initialization of the algorithm. The parameter values of the spectral
bundle algorithm in section 6 have been set to γ = 0.01, γ̃ = 0.4, and Γ = 0.6. We
use tol = 10−5 as a tolerance parameter to stop the algorithm as soon as progress in
function values is minor, that is, f(x) − f(x+) < 10−5(|f(x)| + 1).

Initialization of the variables X and K in program (28) is a difficult task. In-
deed, the cost function (28) is nonconvex and the behavior of the algorithm could
dramatically change for a bad choice of X and K. For instance, simple initializa-
tions such as K = 0 and X = I are bound to fail. We have decided to start with
a closed-loop stabilizing K, which is easily obtained via minimization of the spectral
abscissa α(K) = max ReΛ(A(K)), where Λ(A(K)) is the spectrum of A(K); see [9].
Once the initial K0 is fixed in (28), minimizing the cost function with respect to X
alone is a convex program, which can be solved using standard LMI techniques. A
possible way to initialize X is therefore to choose X0 optimal with respect to K0.
Unfortunately, this often leads to numerical problems since X0 can be ill-conditioned
and have an exceedingly large norm. We have observed during our numerical testing
that the algorithm may crash because of the difference of magnitude between X and
K. To avoid these effects, we have sometimes used a scaled version of X0 to obtain
decision variables K0, X0 of the same order of magnitude.

Initializing γ∞ is easier, because the standard full order H∞ controller gives a
lower bound.

A delicate point is the initialization and choice of the number rk ∈ N defining the
dimension of the set Gk used to define the local model φk at each sweep k. As there
does not seem to be any theoretical way to set the value of rk, we have adjusted it
heuristically during the computations. Figure 1 compares, for the helicopter model,
static choices rk = const and displays the behavior of the algorithm for rk ∈ {1, 2, 3, 4}.
The ratio fi(xk)/f4(xk) is plotted for i = 1, . . . , 3, and k = 1, . . . , 100, where fi(xk) is
the value of the cost function for rk = i, and for the kth step xk of the algorithm. As
we can see in this plot, after some iterations, the algorithm behaves best for rk = 4,
indicating that larger rk should give better results. The results in [48] seem to indicate
that rk should be chosen in such a way that the gap between λrk and λrk+1 is as large
as possible, but our testing in [2, 4, 8] has not confirmed this. The situation is far from
clear, and dynamic choices of rk ought to be tested. The advantage of our present
approach motivated by [25] over the line motivated by [48] is that convergence of the
method no longer hinges on the choice of rk, respectively, rε.
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Fig. 1. Behavior of the cost function during iterations for different values of rk. This plot
shows the ratio fi(xk)/f4(xk), where fi(xk) is the value of the cost function at step xk for rk = i.

10.1.2. Nonsmooth optimality tests. To check whether the algorithm has
reached a critical point, respectively, a minimum x∗ = (X∗,K∗), we have implemented
two nonsmooth tests of optimality. The first one uses the ε-enlarged subdifferential of
[48] for the maximum eigenvalue function, δελ1(X), to compute the criticality measure

σε = dist (0, δεf(x∗)) ,

where f(x) = λ1 (B(K,X, γ∞)) = λ1(F (x)). This parameter is the minimum value of
the small size semidefinite program (computed using specSDP [8]):

minimize {||F ′(x∗)�G||2 : G ∈ δελ1 (B(X∗,K∗, γ∞))} ,

where δελ1(X) =
{
QεY Q�

ε : Y � 0,Tr(Y ) = 1
}
. Here Qε is an m× rε matrix whose

rε columns form an orthonormal basis of eigenvectors associated with those eigenvalues
λi(X) satisfying

i ∈ Iε := {i : λi(X) > λ1(X) − ε} .

The number rε := max{i : i ∈ Iε} is called the ε-multiplicity of λ1(X). In [48] it
is shown that ∂λ1(X) ⊂ δελ1(X) ⊂ ∂ελ1(X), so that ε could be roughly interpreted
in the following way: If 0 ∈ δεf(x∗) = F ′(x∗)�δελ1 (B(X∗,K∗, γ∞)), then it is not
possible to further decrease f locally around x∗ by more than ε. See [45, Lemma 2]
for more details on this optimality test. Notice that this test may indeed be used as
a stopping test in step 1 of the algorithm.

Our second optimality test is heuristic and is designed for a posteriori testing
of criticality. It uses random perturbations x of x∗ = (X∗,K∗) to see whether the
cost function value can be further decreased locally. Denoting by nv the number of
real optimization variables, we generate 100nv random perturbations around x∗ =
(X∗,K∗). The cost function values f(Xi,Ki) for each perturbation i = 1, . . . , 100nv
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are used to define

mf := min
i

f(Xi,Ki), Mf := max
i

f(Xi,Ki),

and

pf =
#{i : f(Xi,Ki) < f(X∗,K∗)}

100nv
.

Parameter pf (in percent) gives the proportion of perturbations for which the cost
function value is improved.

10.2. Numerical results for H∞-synthesis. Tables 1 and 2 present results
obtained with the spectral bundle algorithm applied to the H∞-synthesis problem.
Table 1 is for static controllers, and Table 2 is for dynamic controllers. Comparison
of performance γ∞ with results in the literature, for static controllers nk = 0, is given
in Table 3. Table 4 gives some measured CPU times for three models on the static
synthesis case. All numerical experiments have been performed on a Linux computer
with a 2Ghz processor.

10.2.1. VTOL helicopter. State space data for the VTOL helicopter model
are from [35, 8]; the model is described in [30]. The H∞ gain was fixed at γ∞ = 0.1542,
the optimization variables were initialized as K = [1, 1]�, and X = I. The algorithm
successfully solved the problem and obtained the H∞ controller

K∞ =

[
14.06432

239.5975

]
.

We decided to look for a dynamic controller of order nk = 2 with prescribed
closed-loop performance γ∞ = 0.133. The algorithm was initialized with a closed-
loop stabilizing K0 and X0 = I. The optimal Lyapunov matrix X with respect to the
given K0 was used neither in the static nor in the dynamic case, because it has a very
high norm and is likely to introduce numerical problems. The algorithm successfully
computed

AK =

[
1.672546 1.851477

1.849434 1.670218

]
, BK =

[
73.76900

73.68110

]
,

CK =

[
1.309171 1.308932

3.245753 3.241668

]
e-2, DK =

[
0.4300008

0.7486698

]
.

10.2.2. Chemical reactor. The chemical reactor model and numerical data
can be found in [29]. We fixed the performance level γ∞ = 1.1830 and initialized our
algorithm with a closed-loop stabilizing K0 together with the associated optimal X0

(scaled for numerical convenience). This kind of initialization was used for both static
and dynamic cases. The obtained static controller is

K∞ =

[
−3.791707 −9.704666

−7.166853 −35.27994

]
.
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We also computed a dynamic controller of order 2. For γ∞ = 1.1420, we obtained

AK =

[
−2.197969 −0.341903

−0.334860 2.205355

]
, BK =

[
0.4983757 1.096069

−6.452330 −13.82350

]
,

CK =

[
−0.1090918 1.556743

−0.2769249 3.964105

]
, DK =

[
−3.637238 −6.382226

−3.506708 −19.39329

]
.

The criticality measure was quite low in the static and the dynamic case, with
σε = 2.0041e-4, respectively, σε = 9.7570e-4. In the static case, for the purpose of
testing, we run the algorithm with a more severe stopping criterion to see if criticality
decreased further. The stopping criteria were

(29) f(x) − f(x+) < 10−5(|f(x)| + 1) and ||x− x+|| < 10−5(||x|| + 1).

With this rule the algorithm stops after 26448 iterations. The final point verifies
λ1(B̃) = −0.0079 and criticality measure σε = 4.2865e-06, with rε = 4 and ε =
1.3813e-5. At this numerical precision, we can consider that the algorithm has reached
a critical point.

10.2.3. Transport airplane. Model and state space data for the transport
airplane are from [22]. We used a closed-loop stabilizing K0 and the associated
optimal X0 for initialization. For γ∞ = 3.1770, our algorithm computed the static
controller

K∞ =
[

0.6340988 −0.5964908 −0.7923650 5.166775e− 2 1.055142
]
.

In the static case we have also made a test of the algorithm with the stopping criterion
(29). We have observed that the criticality of the final point of the algorithm has
decreased: σ0 = 2.4819e-5 after 241 iterations. Again, we can consider that the
algorithm has reached a critical point with regard to the chosen numerical precision.

We failed to find a dynamic controller of order 2 for the airplane model. We
computed a dynamic controller of order 1 with performance γ∞ = 2.860. The H∞
controller is

AK=
[
−0.4589498

]
,

BK=
[
−1.133331 1.441023 1.107071 −0.116483 −1.873279

]
e-2,

CK=
[
−7.108071e-3

]
,

DK=
[

1.740566 −0.8878559 −0.9477933 0.1000800 2.542508
]
.

10.2.4. Piezoelectric actuator. The model of the piezoelectric actuator can
be found in [13]. This study turned out to be one of the most difficult. As can be seen
in Tables 1 and 2, the spectral bundle algorithm at first failed to solve the control
problem both in the static and in the dynamic case. The algorithm converged to a
couple (X∗,K∗) with slightly positive objective value around 1.45e-5 for the dynamical
case, with the criticality parameter σε quite small in both cases, indicating optimality.
While it is perfectly possible that our algorithm, which is a local optimization method,
may converge to a local minimum with positive values, failing to solve the underlying
control problem, the present case turned out to be special. Namely, upon testing
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the obtained controller K∗, we realized that it is closed-loop stabilizing and therefore
solves the control problem. What happened is that the X∗ computed by our algorithm
was not suitable, as it fails to solve the Lyapunov inequality. Nonetheless, within the
prescribed numerical precision both stopping tests indicated a local minimum.

The static controller for γ∞ = 0.0578 reads

K∞ =
[
−0.3880673 −1.837152 −10.00377

]
e+7,

and the dynamical controller of order 2, for γ∞ = 0.030, is

AK=

[
−6.770630 −7.974432e-1

−7.973471e-1 −5.118056

]
e+6,

BK=

[
8.842279e-2 4.722429e-1 2.812368

3.574044e-2 1.910070e-1 1.136064

]
e+7,

CK=
[
−1.167814 −4.720797e-1

]
e+6,

DK=
[
−4.930334e-1 −1.977292 −1.480471e+1

]
e+7.

The described phenomenon indicates the numerical difficulty of synthesis problems
with joint variable x = (X,K), where important disparities between the numerical
ranges of the two variables K and X may occur. In particular, the Lyapunov matrix
X may be very ill-conditioned. The idea to keep K∗ and compute a new Lyapunov
variable X associated with K∗ using a convex technique is systematically used in D-K
iterations, where K and X variables are optimized alternatingly. The advantage of
this approach is that both subproblems are then convex and can be solved by standard
SDP solvers. However, intensive testing [27, 18] has shown that D-K techniques tend
to get stalled and should in general be avoided. We believe that joint minimization in
x = (X,K) is the method of choice, despite the indicated difficulties. This does not
exclude occasional restarts.

10.3. Coupled springs model. This is model CSE1 from [35] and consists of a
string of coupled springs with dash-pots and masses. Input forces act on both the left
and on the right ends of the spring system. The feedback controller has to stabilize
the positions of the masses. We focus on the synthesis of a dynamic controller of
order 4. To begin with, an initial closed-loop stabilizing controller was computed.
Then X0 was set to identity. An optimal controller was then synthesized for the
performance level γ∞ = 0.0235. The algorithm stopped at (K∗, X∗) with criticality
measure sufficiently low in comparison with the numerical precision: σε = 4.36e− 6,
with rε = 5 and ε = 3.64e− 5.

10.4. Distillation tower. Finally, to test the efficiency of the algorithm on
a larger model, we used the BDT2 model from COMPLeIB library [35], a binary
distillation tower with 82 states, 4 outputs, and 4 controller inputs. The complete
model is described in [56, section 12.4]. As can be seen in Table 1, the number of
optimization variables nv = 3419 is large in comparison with the previous examples.
It should be highlighted that approximatively 99.5% (3403) of these variables are
needed for the Lyapunov matrix X∗, but only 0.5% (16) are needed for controller K∗.
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Table 1

Results of static H∞-synthesis.

γ∞ α λn(X) λ1(B̃) λn+ny+nu (B̃)

Helicopter 0.1542 -0.1288 8.3236 -1.8146e-4 -1.8866e+5
Chemical reactor 1.1830 -1.8721 0.4327 -4.4606e-3 -2.4616e+3
Airplane 3.1770 -0.2486 1.1127e-3 -5.8368e-5 -44.4910
Piezo actuator 0.0578 -1.4202 7.0198e-10 8.2255e-3 -399.3432
BDT2 1.0722 -8.7144e-2 0.3223 -4.3202e-3 -6.2023e+2

#It. [n, ny , nu] nv rk σε rε ε pf mf Mf

600 [4,2,1] 12 4 1.15e-4 3 3.77e-7 0% 6.43e-4 1.95e-2
1800 [4,2,2] 14 4 2.01e-4 4 1.23e-5 0% 6.63e-3 9.28e-2
77 [9,1,5] 50 12 0.0114 4 3.24e-5 0% 4.00e-7 4.38e-5

1191 [5,1,3] 18 10 7.05e-3 5 7.94e-4 0% 570 2.29e+4
2934 [82,4,4] 3419 15 1.27e-3 6 6.20e-5 0.3% -1.02e-5 8.87e-4

Table 2

Results of dynamic H∞-synthesis.

γ∞ α λn(X) λ1(B̃) λn+ny+nu (B̃)

Helicopter 0.1334 -0.1583 2.7722e-3 -5.7903e-5 -39.5053
Chemical reactor 1.1420 -0.8245 0.2944 -3.2326e-3 -735.4831
Airplane 2.8600 -0.3161 6.2022e-4 -1.7815e-4 -150.1174
Piezo actuator 0.0300 -0.4796 -9.7169e-6 1.4503e-5 -16.1523
CSE1 0.0235 -2.1309e-1 8.2865e-1 -1.5574e-4 -6.6618e+2

#It. [n, nk, ny , nu] nv rk σε rε ε pf mf Mf

9334 [6,2,4,3] 33 10 5.14e-4 5 1.11e-5 0% 4.01e-2 5.20
1379 [6,2,4,4] 37 6 9.75e-4 3 2.94e-4 1.81% -1.81e-9 2.80e-8
1781 [10,1,2,6] 67 12 4.26e-2 3 4.50e-5 0% 2.11e-3 2.25e-2
8962 [6,2,3,5] 43 10 3.27e-2 5 1.45e-5 0% 1.15e-3 7.44e-2
2e4 [20,4,10,2] 384 6 4.34e-6 5 3.64e-5 0% 0.0025 6.51

Table 3

Comparison of γ∞ with results in the literature for static controllers nk = 0. The nonconvex
spectral bundle method (NSBM) is shown on left.

NSBM [34] [8]
Helicopter 0.1542 0.3455 0.157

Chemical reactor 1.1420 - 1.202
Airplane 3.1770 3.1774 2,220

Piezo actuator 0.0578 6.6256 3.055e-3

Table 4

Comparison of mean CPU times, in seconds, on three models of different sizes. Mean CPU
times are given for computation of f(x), computation of F ′(x), resolution of tangent program TP,
serious step, and null step. %Serious gives the percentage of serious steps with respect to the total
number of iterations.

Mean time f(x) F ′(x) TP Serious Null %Serious
Helicopter 3.23e-04 8.80e-04 3.75e-02 3.81e-02 3.89e-02 35.2
Airplane 5.11e-04 1.46e-03 8.64e-02 8.80e-02 9.09e-02 66.8
BDT2 1.08e-02 1.12 4.45 5.51 4.66 44.5
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Synthesis of a static controller K∞ was obtained for the performance level γ∞ =
1.0722. An initial stabilizing controller K0 was computed with its corresponding
optimal Lyapunov matrix X0. The synthesized controller is

K∞ :=

⎡
⎢⎢⎢⎣

5.748949e− 1 1.751953 9.954549e− 1 3.725248e− 1

−6.313297e− 1 1.133587 9.815346e− 1 2.909215

1.986992 1.789245 3.988785e− 1 2.468048

−1.061248e− 1 5.597463e− 1 3.635867 4.772583

⎤
⎥⎥⎥⎦ .

Criticality was fairly low compared to the numerical precision: σε = 1.27e − 3 with
rε = 6 and ε = 6.20e − 5. However, the same numerical phenomenon as in the
piezoelectric actuator example was observed: (X∗,K∗) was not a stationary point,
and the cost could be further reduced by using a convex optimization technique to
compute a new Lyapunov matrix X with K∗ fixed.
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[28] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms,
Vols. I, II, Grundlehren Math. Wiss. 305, 306, Springer-Verlag, New York, Heidelberg,
Berlin, 1993.

[29] Y. S. Hung and A. G. J. MacFarlane, Multivariable Feedback: A Quasi-classical Approach,
Lecture Notes in Control and Inform. Sci. 40, Springer-Verlag, New York, Heidelberg,
Berlin, 1982.

[30] L. H. Keel, S. P. Bhattacharyya, and J. W. Howe, Robust control with structured pertur-
bations, IEEE Trans Automat. Control, 36 (1988), pp. 68–77.

[31] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in
Math. 1133, Springer-Verlag, Berlin, 1985.

[32] K. C. Kiwiel, A linearization algorithm for computing control systems subject to singular
value inequalities, IEEE Trans. Automat. Control, AC-31 (1986), pp. 595–602.

[33] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable optimization,
Math. Programming, 46 (1990), pp. 105–122.

[34] F. Leibfritz, Computational Design of Stabilizing Static Output Feedback Controllers, Tech.
Report 99-01, Universität Trier, Trier, Germany, 1999.

[35] F. Leibfritz, COMPLeIB, COnstrained Matrix-optimization Problem LIbrary—A Collection
of Test Examples for Nonlinear Semidefinite Programs, Control System Design and Related
Problems, Tech. Report, Universität Trier, Trier, Germany, 2003.
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Oxford, Elmsford, NY, 1978, pp. 79–102.
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A FIRST-ORDER CONVERGENCE ANALYSIS OF TRUST-REGION
METHODS WITH INEXACT JACOBIANS∗

ANDREA WALTHER†

Abstract. A class of trust-region sequential quadratic programming algorithms for the solution
of minimization problems with nonlinear equality constraints is analyzed. The considered class of
optimization methods does not require the exact evaluation of the constraint Jacobian in each opti-
mization step but uses only an approximation of this first-order derivative information. Hence, the
presented approach is especially well suited for equality constrained optimization problems where the
Jacobian of the constraints is dense. The accuracy requirements for the presented first-order global
convergence result are based on the feasibility and the optimality of the iterates. The corresponding
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1. Introduction. Trust-region successive quadratic programming (SQP) algo-
rithms have been applied efficiently to solve a wide range of nonlinear optimization
problems given by

(1) min
x∈RN

f(x) subject to c(x) = 0,

where the objective f : R
N → R and the vector of the constraints c : R

N → R
M

with N ≥ M are given smooth functions. For the majority of the trust-region SQP
type algorithms, the computation of the next iterate requires the solution of a linear
system of the form

A(xk)A(xk)
T v = b,

where

A(x) = (∇c1(x), . . . ,∇cM (x))T ∈ R
M×N

is the exact matrix of the constraint gradients at x. Furthermore, a representation
Z(x) of the null space of A(x) is needed frequently for the computation of the next
step. For these reasons, the explicit forming and factoring of the constraint Jacobian
A(x) provides an efficient step calculation if A(x) is sparse and well structured; see,
e.g., [1]. As an alternative, one may use iterative system solves up to a certain ac-
curacy, for example, Krylov subspace or multigrid methods, for the step calculation
in each iteration; see, e.g., [17, 20, 29]. However, both approaches may result in very
time-consuming computations, especially if the Jacobian of the constraints is dense or
unstructured. Therefore, we present and analyze in this paper a class of trust-region
SQP algorithms that does not require the exact evaluation of the constraint Jacobian
or an iterative solution of a linear system with a system matrix that involves the con-
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straint Jacobian. Instead the proposed algorithm works only with an approximation
of this first-order information. Hence, the algorithm presented here is well suited for
optimization problems of moderate size but with a special structure of the constraint
Jacobian. The corresponding applications cover the wide range of periodic adsorption
processes including for example the purification of hydrogen. In these cases, the
Jacobian of the equality constraints is dense due to the periodicity of the underlying
chemical process. As a consequence, the run-time needed for the optimization process
may be dominated significantly by the computation of the dense Jacobian and its
factorization; see, e.g., [19]. For these optimization tasks and problems with a similar
structure, the algorithm proposed in this paper may allow a considerable reduction
of the computing time required to calculate a solution.

For numerous optimization problems, the considered system is described by or-
dinary or partial differential equations the discretization of which yields the equality
constraints. Exploiting the direct sensitivity equation or the adjoint differential equa-
tion, one can evaluate products of the Jacobian A(x) and a given vector v, i.e., A(x)v
and A(x)T v. Related derivative information can be computed also by applying au-
tomatic differentiation [14]. Hence, it is reasonable to assume that one can evaluate
exact products of the Jacobian multiplied from the right or from the left by a given
vector. However, the computation of the complete Jacobian matrix A(x) may be very
time consuming, especially if A(x) is dense or unstructured, since many Jacobian-
vector products are required to build the full matrix A(x) in these cases. Therefore,
we present an algorithm that uses only Jacobian-vector and vector-Jacobian products
but avoids the calculation and factorization of A(x) in each optimization step or the
iterative solve of a linear system involving A(x) as part of the system matrix.

To solve the optimization problem (1), we follow the approach proposed by Byrd
[2] and Omojokun [23]. For composite-step trust-region methods that employ exact
information, a comprehensive treatment of the convergence properties can be found
in [7]. Implementations of the Byrd–Omojokun trust-region method are used success-
fully to solve equality constrained nonlinear problems (NLPs) [1, 20]. Related imple-
mentations using augmented Lagrangian merit functions are proposed and analyzed
in [9]. Extensions of this approach to a more general class of trust-region methods
can be found in [8]. Box trust-region methods are analyzed in [13]. More recently,
trust-region methods without penalty functions have been developed by Fletcher and
others [10, 11, 12] as well as Ulbrich and Ulbrich [26].

The effects of inexact problem information on the global convergence of inexact
SQP methods can be found, for example, in [18, 21, 27]. In a line search setting, the
effects of inexact information on the global convergence are studied in [3]. For an
inexact composite step trust-region SQP method a first proof of global convergence
is given in [17], where the analysis is focused on inexactness arising from iterative
system solves. Our analysis and assumptions on inexactness differ from [17] in the
following way: we do not consider a splitting of the variables into state and control
variables. Hence, we allow general unstructured approximations of the Jacobian A(x)
and the corresponding null space representation as well as inexactness due to iterative
solves. The proofs of first-order convergence given in this paper are based on ideas
presented in [4]. Since we concentrate our analysis on the effects of inexact Jacobian
information, the present paper does not examine the performance of the algorithm in
the presence of dependent constraint gradients. Therefore, we assume in contrast to
[4] throughout that the constraint Jacobian has full rank. Furthermore, we do not
incorporate inequality constraints as in [4], since the efficient handling of inequalities
in the case of inexact constraint Jacobians is subject of further research.
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This paper has the following structure. In section 2 we introduce the notation and
the main assumptions that are used for the proof of global first-order convergence.
Subsequently, we discuss our inexact trust-region SQP algorithm in section 3. The
well-posedness of this algorithm will be shown in section 4. Section 5 contains the
proof of global convergence to first-order critical points. Finally, some conclusions
and possible extensions are presented in section 6.

2. Notation and assumptions. The Lagrangian of (1) is defined by

L(x, λ) = f(x) + λT c(x).

Assuming that a suitable constraint qualification is fulfilled, the first-order optimality
conditions yield for an optimal solution x∗ of (1) that

∇xL(x∗, λ∗) = ∇f(x∗) + A(x∗)
Tλ∗ = 0,

∇λL(x∗, λ∗) = c(x∗) = 0

holds for a certain Lagrange multiplier λ∗ ∈ R
M . To apply an SQP trust-region

algorithm, we approximately solve in the kth iteration the quadratic program

min
d∈RN

∇f(xk)
T d +

1

2
dTBkd

subject to A(xk)d + c(xk) = 0,

‖d‖ ≤ Δk,

(2)

to compute a new step dk for a given iterate xk, a given trust-region radius Δk,
and Lagrange multipliers λk. Here and throughout, Bk may stand for the exact
second-order information ∇2

xxL(xk, λk). Then, the functions f(·) and c(·) have to
be twice continuously differentiable. Alternatively, one may use a symmetric matrix
approximating the Hessian ∇2

xxL(xk, λk). Furthermore, ‖ · ‖ denotes the Euclidean
norm ‖ · ‖2.

Since problem (2) may have no feasible solution, relaxation strategies were stud-
ied; see, e.g., [5, 24, 25]. As an alternative to overcome this difficulty, one can use a
composite-step method. Following the approach of Byrd and Omojokun, we define
the merit function

φ(x;μ) = f(x) + μ‖c(x)‖

with the penalty parameter μ > 0 to judge the progress toward the solution. This
merit function is exact but nondifferentiable due to the Euclidean norm in the second
term. A model of φ(·;μk) around an iterate xk is given by the function

mk(d) = f(xk) + ∇f(xk)
T d +

1

2
dTBkd + μk‖c(xk) + A(xk)d‖.

For measuring the progress of our algorithm, we define for a given iterate xk and a
step d the actual reduction in the merit function as

aredk(d) = φ(xk;μk) − φ(xk + d;μk).(3)

The predicted reduction in the merit function is defined as the change of the model
mk caused by a step d, i.e.,

predk(d) = mk(0) −mk(d)

= −∇f(xk)
T d− 1

2
dTBkd + μk(‖c(xk)‖ − ‖c(xk) + A(xk)d‖).

(4)
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We suppose that for each iteration k one can provide an approximation Ak of the exact
Jacobian A(xk) and an approximation Zk of an exact null space basis Z(xk) with
A(xk)Z(xk) = 0 and AkZk = 0. Hence, we refer to the exact matrix information as
A(xk) and Z(xk) and to the corresponding approximation as Ak and Zk, respectively.
The approximation of the derivative matrices using quasi-Newton update formulas fits
into this setting. For this purpose, one may employ the well-known symmetric rank
one (SR1) update formula to approximate the Hessian ∇2

xxL(xk, λk). This approach is
examined for unconstrained optimization in [6]. The two-sided rank one (TR1) update
formula as proposed in [15] can be used to approximate the constraint Jacobian.
Another possibility would be to compute the required Hessian-vector products exactly
employing, for example, automatic differentiation. For the first-order information, the
exact information A(xk) and Z(xk) could be computed for the iterate k and used for
the following iterates as long as the restrictions on the inexactness are fulfilled. This is
a promising approach since the iterates converge frequently in a tangential way toward
the optimal solution. This observation holds when the Hessian is approximated for
example by a quasi-Newton formula and the exact Jacobian of the constraints is
used. We observe the same behavior in our first numerical experiments for numerous
test problems using the TR1 update to approximate the Jacobian. Therefore, the
changes in the null space will be hopefully rather small at the end of the optimization
procedure.

To prove the convergence results presented in this paper, we define D ≡ N −M
and make the following assumptions:
(AS1) A(xk) has full row rank for all iterates xk with σD(A(xk)) ≥ σ̂ > 0, where

σD(A(xk)) denotes the smallest singular value of A(xk).
(AS2) Ak has full row rank for all iterations with σD(Ak) ≥ σ̃ > 0.
(AS3) Zk ∈ R

N×D has full column rank D for all iterates xk with σD(Zk) ≥ σ̌ > 0
and remains bounded.

(AS4) The sequence {f(xk)} is bounded below. The sequences {∇f(xk)}, {c(xk)},
{A(xk)}, and {Bk} are bounded.

(AS5) The functions ∇f(·), c(·), and A(·) are Lipschitz continuous on an open
convex set X containing all iterates.

(AS6) The gradients ∇f(x), ∇xL(x, λ), the gradient-vector product ∇f(x)T d and
the products A(x)v, wTA(x) can be evaluated exactly.

(AS7) For fixed xk, the approximation Zk can be improved in a finite number of
steps such that an exact null space representation Z(xk) is obtained.

Assumption AS1 is needed to prove the feasibility of all limit points and to derive
upper bounds for the normal steps in section 5. A similar assumption is made in [17,
sec. 3.3] to prove first-order global convergence. In the paper [4], the upper bound
for the normal step is derived using an assumption similar to AS1. Furthermore,
the analysis in [4] explicitly studies the rank deficiency of the constraint Jacobian
A(xk) and its influence on the overall algorithm. That is, the iterates could converge
either to a feasible point or to a limit point failing the linear independence constraint
qualification. Therefore, an assumption similar to AS1 is not made for this part
of [4]. However, the present paper focuses mainly on the convergence of a trust-
region algorithm with inexact Jacobian information. For that reason, we decided not
to explore the possibility that A(xk) is rank deficient since this would complicate
the analysis considerably. The convergence to a limit point not satisfying the linear
independence constraint qualification may be the subject of future research.

In AS7, we assume that we can improve the approximation Zk such that it repre-
sents an exact null space Z(xk) of A(xk) after a finite number of improvement steps.
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This is possible, for example, for the TR1 approach by performing M rank one up-
dates without changing the current iterate xk since the TR1 update procedure yields
the exact Jacobian A(xk) for fixed xk after at most M updates. This can be verified
in the following way. Starting with an approximation Ã0 = Ak one performs M TR1
updates of the form

Ãi+1 ≡ Ãi +
(yi − Ãivi)(τ

T
i − wT

i Ãi)

(τTi − wT
i Ãi)vi

with yi ≡ A(xk)vi and τi ≡ wT
i A(xk) for arbitrary linearly independent vectors vi

and wi chosen such that (τTi − wT
i Ãi)vi 	= 0 holds. Due to the heredity of the rank

one update, one obtains after M updates that

wT
i ÃM = wT

i A(xk) for all i = 0, . . . ,M − 1.

The proof of this identity is similar to the proof of a related result for the SR1 update
and can be found in [28]. Since the wi, 0 ≤ i < M , are M linearly independent
vectors, it follows that ÃM = A(xk). Using an equivalent update procedure for a
factorized null space representation, one obtains an exact null space representation
Zk = Z(xk) after at most M updates [16]. If one freezes the Jacobian and null space
information as proposed above, one can evaluate new exact Jacobian information if
the restrictions on the inexactness are no longer valid. This approach ensures that
assumption AS7 holds. Hence, one can use the approximation Zk = Zk−1 and improve
the approximation of the null space if required.

All other assumptions are either standard assumptions required also for the global
convergence analysis in other papers, i.e., AS4 and AS5, or motivated by the appli-
cations that we had in mind when designing the algorithm, i.e., AS2, AS3, and AS6.

3. A Jacobian-free trust-region method. To apply a composite step trust-
region method as proposed by Byrd and Omojokun, we first compute a normal step
n that lies well inside the trust-region radius and that attempts to satisfy the lin-
ear constraints in (2). Subsequently, we take a tangential step t toward optimality.
Putting both steps together, we obtain the total step d = n + t.

3.1. The normal subproblem. For the current iterate xk, we compute a nor-
mal step nk that best satisfies the linearized constraints by solving the normal sub-
problem

min
n∈RN

‖c(xk) + A(xk)n‖2

subject to ‖n‖ ≤ Δ̃k

(5)

with Δ̃k = κΔk and κ ∈ (0, 1). This optimization problem may have infinitely many
solutions. The exact Cauchy step for (5) is given by

nC
k = −αC

k A(xk)
T c(xk),(6)

where αC
k is the optimal solution of the problem

min
α≥0

‖c(xk) − αA(xk)A(xk)
T c(xk)‖

subject to ‖αA(xk)
T c(xk)‖ ≤ Δ̃k.

(7)
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Hence, due to our assumption AS6 that we can evaluate A(xk)v and A(xk)
Tw for

given v and w exactly, we are able to compute the exact Cauchy step. Nevertheless,
employing only the exact Cauchy step may yield very slow convergence [22]. To
accelerate the optimization process, one could use in addition also the exact Newton
step. This global minimizer of the unconstrained version of (5) is given by

nN (xk) = −A(xk)
+c(xk) = −A(xk)

T (A(xk)A(xk)
T )−1c(xk).

However, we do not want to compute the vector (A(xk)A(xk)
T )−1c(xk) exactly. Al-

ternatively, if one assumes that an approximation (AkA
T
k )−1c(xk) can be evaluated

at low computational cost, for example, by maintaining a factorized approximation
of A(xk) as described in [16], then one could use the approximation

nN
k = −A(xk)

T (AkA
T
k )−1c(xk)

of the exact Newton step. In combination with the exact Cauchy step, then one may
compute the inexact dogleg step of Powell by setting

nD
k = ηnN

k + (1 − η)nC
k

with η = 1 if ‖nN
k ‖ ≤ Δ̃k. Otherwise η ∈ [0, 1] would be adjusted such that the length

of nD
k is equal to Δ̃k.
For obtaining convergence, one has to analyze the reduction in the linearized con-

straints caused by the normal step. For that purpose, we define the normal predicted
reduction for a vector n as

npredk(n) = ‖c(xk)‖ − ‖c(xk) + A(xk)n‖(8)

and require that the normal step nk computed in the kth iteration satisfies the fol-
lowing condition.

Normal Cauchy decrease condition. An approximate solution nk of the nor-
mal subproblem (5) must satisfy

npredk(nk) ≥ γnnpredk(n
C
k )(9)

for some constant γn > 0.
To guarantee that a sufficient normal Cauchy decrease is achieved, one may use the

exact Cauchy step itself as a normal step. Then (9) is obviously fulfilled with γn = 1.
If one uses the inexact dogleg step, one can ensure that (9) holds by maximizing
npredk(.) over the dogleg path. For our convergence analysis, the normal steps nk

have to fulfill the range space condition

(10) ∃ vk ∈ R
M such that nk = AT (xk)vk, i.e., nk ⊥ ker (A(xk)) ,

holds for all iterations k ∈ N. Note that the normal steps nD
k , nC

k , and a linear
combination of nD

k and nC
k are of the form AT (xk)vk such that they fulfill (10).

Since α = 0 is feasible for the optimization problem (7), it follows from (9) that

npredk(nk) ≥ 0(11)

holds. One can improve the bound on the normal predicted reduction as shown,
for example, in [7, Lemma 15.4.17] and [4, Lemma 2]. The main ingredients of the
proofs are the normal Cauchy decrease condition and the property ‖A(xk)u

C
k ‖ > 0
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for uC
k ≡ −A(xk)

T c(xk) 	= 0 due to the full rank of A(xk), i.e., assumption AS1,
and uC

k ⊥ ker(A(xk)). Since the inexactness of the Jacobian does not influence the
derivation of the result, we skip the proof of the following lemma. It can be proved
exactly along the lines of Lemma 2 in [4].

Lemma 3.1. Suppose that assumption AS1 holds. Let nk be an approximate
solution of the normal subproblem (5) such that (9) holds. Then

‖c(xk)‖npredk(nk) ≥
γn
2
‖A(xk)

T c(xk)‖min

{
Δ̃k,

‖A(xk)
T c(xk)‖

‖A(xk)‖2

}
.(12)

3.2. The tangential subproblem. Given a current iterate xk, we compute the
tangential step towards optimality. Usually, one tries to maintain linearized feasibility,
i.e., the exact tangential step t(xk) = Z(xk)pk should be in the exact null space of the
constraints. Since we have only an approximation Zk of the exact null space Z(xk)
available, we will have to safeguard the computation of the tangential step tk = Zkpk
by limiting the amount of inexactness, as will be explained later.

However, first we concentrate on computing an approximate solution of the inex-
act tangential subproblem

min
p∈RN−M

(∇f(xk)+Bknk)
TZkp +

1

2
pTZT

k BkZkp,

‖Zkp‖ ≤ Δ̂k,

(13)

with Δ̂k = (1 − κ)Δk.
The steepest descent direction in the null space basis variables for this optimiza-

tion problem at p = 0 is given by

pCk = −ZT
k (∇f(xk)+Bknk);(14)

see, e.g., [4, 17]. For judging the improvement provided by the tangential step, we
define the tangential predicted reduction produced by a tangential step t = Zkp as
change in the objective function of the tangential subproblem. Hence, we have

tpredk(t) = −(∇f(xk)+Bknk)
T t− 1

2
tTBkt.

To ensure global convergence of our trust-region algorithm, we will impose the fol-
lowing condition on the tangential step.

Tangential Cauchy decrease condition. An approximate solution tk of the
tangential subproblem (13) must satisfy

tpredk(tk) ≥ γt tpredk(θ
C
k Zkp

C
k )(15)

for some constant γt > 0, where θCk solves the problem

(16)
min
θ≥0

[
−tpredk(θZkp

C
k )

]
subject to ‖θZkp

C
k ‖ ≤ Δ̂k.

Since θ = 0 is feasible for the optimization problem (16), it follows that

tpredk(tk) ≥ 0.(17)
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For deriving a sharper bound on the tangential predicted reduction that is needed for
the convergence analysis, we cite the following result [4, Lemma 1].

Lemma 3.2. Consider the one-dimensional problem

min
z≥0

ψ(z) ≡ 1

2
az2 − bz

subject to z ≤ y,

where b ≥ 0 and y > 0. Then the optimal value ψ∗ satisfies

ψ∗ ≤ − b

2
min

{
y,

b

|a|

}
if a 	= 0 and ψ∗ ≤ −by if a = 0.

The derivation of a tighter lower bound for the tangential predicted reduction is
based also on the representation of the null space of the constraint Jacobian. In the
corresponding proofs of [7, Lemma 15.4.2] and [4, Lemma 3], the steepest descent
direction is computed with an exact null space representation. The same holds true
for the corresponding estimate in [17, section 3.1.2]. We do not require that an exact
null space representation is available but use only the inexact tangential subproblem
(13). Therefore, we state the full proof of the following result, where we use ideas
applied to prove Lemma 3 in [4].

Lemma 3.3. Suppose that assumptions AS3 and AS4 hold. Let tk be an approxi-
mate solution of the tangential subproblem (13) that satisfies (15). Then

(18) tpredk(tk) ≥ γ̂‖pCk ‖min
{

Δ̂k, ‖pCk ‖
}

for a constant γ̂ > 0.
Proof. Inequality (18) clearly holds if pCk = 0. Hence, we now assume that pCk 	= 0.

Then, problem (16) is equivalent to

min
θ≥0

−1

2
(pCk )TZT

k BkZkp
C
k θ

2 − ‖pCk ‖2θ

subject to θ ≤ Δ̂k

‖ZkpCk ‖
.

(19)

First assume that (pCk )TZT
k BkZkp

C
k 	= 0. Lemma 3.2 applied to problem (19) yields

−tpredk(θ
C
k Zkp

C
k ) ≤ −1

2
‖pCk ‖2 min

{
Δ̂k

‖ZkpCk ‖
,

‖pCk ‖2

|(pCk )TZT
k BkZkpCk |

}
.

Combining this inequality with (15) and using norm inequalities, we obtain

tpredk(tk) ≥
γt
2
‖pCk ‖min

{
Δ̂k

‖ZT
k Zk‖1/2

,
‖pCk ‖

‖ZT
k BkZk‖

}
.

Since we assume that the approximations {Zk} remain bounded, we have that {ZT
k Zk}

are bounded. In addition, {Bk} is bounded, which yields that ZT
k BkZk is bounded.

Hence, we can deduce from the last inequality that there exists a positive constant γ̂
such that (18) holds.
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We do not assume that Bk has full rank. Therefore, it may happen even if pCk 	= 0

that (pCk )TZT
k BkZkp

C
k = 0. Then the solution of (19) is given by θCk = Δ̂k

‖ZkpC
k ‖ . It

follows that

−tpredk(θ
C
k Zkp

C
k ) ≤ −‖pCk ‖2 Δ̂k

‖ZkpCk ‖
≤ −‖pCk ‖

Δ̂k

‖ZT
k Zk‖1/2

.

Since
{
Zk

}
remains bounded, this inequality proves the assertion.

To accelerate the convergence, one may use not the steepest descent direction
given by (14) but an approximation of the Newton step. For this purpose, we may
apply the Steihaug CG algorithm (see, e.g., [4, 22]) as long as (15) is fulfilled for the
tangential step tk.

The matrix Zk only approximates the null space Z(xk) of the exact Jacobian
A(xk). Hence, one has for the combined step dk = nk+tk that the identity A(xk)dk =
A(xk)nk is not necessarily valid. Therefore, we obtain for the predicted reduction (4)
of the function mk the equation

predk(dk) = −∇f(xk)
T (nk + tk) −

1

2
(nk + tk)

TBk(nk + tk)

+ μk(‖c(xk)‖ − ‖c(xk) + A(xk)(nk + tk)‖)
= tpred(tk) + μknpred(nk) + χk + errk(dk),

where

χk = −∇f(xk)
Tnk − 1

2
nT
kBknk,(20)

errk(dk) = μk(‖c(xk) + A(xk)nk‖ − ‖c(xk) + A(xk)dk‖).

As can be seen, errk(dk) is a measure for the error in Zk, i.e., in the approximation
of Z(xk). Since the usual identity for the predicted reduction is not valid, we define
an inexact predicted reduction

ipredk(dk) = tpred(tk) + μknpred(nk) + χk(21)

by omitting the error term. We will use this inexact measure for our trust-region
algorithm. However, to ensure well-posedness and convergence for the considered class
of trust-region methods, we need a bound on the error term errk(dk). Obviously, one
can derive that

|errk(dk)| = μk

∣∣‖c(xk) + A(xk)nk‖ − ‖c(xk) + A(xk)dk‖
∣∣

≤ μk‖A(xk)tk‖ ≤ μk νΔ2
k.

Hence, one may use a criterion like

‖A(xk)tk‖ ≤ νΔ2
k(22)

for a constant ν > 0 to bound the inexactness that is due to the tangential step. This
inequality can be easily verified by evaluating one Jacobian-vector product. Similar
requirements on the inexactness can be found in [17, section 4.1.4] in the context of the
convergence analysis of inexact trust-region methods for PDE-constrained optimiza-
tion problems and in [7, section 10.4] for trust-region methods in the unconstrained
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case. However, using (22) it may happen that predk(dk) may become negative if
errk(dk) is large relative to ipredk(dk). For this reason, we will use the direct criterion

−errk(dk) < (1 − η − (1 − η)/2) ipredk(dk)(23)

for a constant η ∈ (0, 1). This inequality can be used to control the error in the
inexact predicted reduction and therefore allows us to ensure well-posedness of the
algorithm. Note that one only has to bound a negative errk(dk) since a positive error
leads to an even larger predk(dk). If (23) holds, one has

predk(dk) = ipredk(dk) + errk(dk)

> ipredk(dk) − (1 − η − (1 − η)/2) ipredk(dk)(24)

> (η + (1 − η)/2) ipredk(dk) ≥ 0

if ipredk(dk) ≥ 0. Once more, (23) can be easily verified by evaluating two Jacobian-
vector products.

3.3. The trust-region algorithm. After specifying the computation of the
normal and tangential step, we can now state a detailed description of our algorithm
for solving the NLP (1).

Algorithm I.
Start: Set initial values x0, λ0, μ−1 > 0, A0, Z0, Δ0, ρ ∈ (0, 1), η ∈ (0, 1),

ω ∈ (0, 1
2 ), and ν > 0

for k = 0, 1, . . .
1. Compute a normal step nk such that (9) and (10) hold.

2. Compute a tangential step tk such that (15) holds.
Compute the total step dk = nk + tk.

3. Compute the smallest value μ̃k such that

ipredk(dk) = tpred(tk) + μ̃knpred(nk) + χk ≥ ρ μ̃k npredk(nk).(25)

If μ̃k ≤ μk−1, set μk = μk−1, otherwise set μk = max{μ̃k, 1.5μk−1}.
4. If (23) does not hold, update Ak and Zk and go to step 1.

5. If

aredk(dk) < η ipredk(dk)

decrease Δk by a constant factor and go to 1.

6. Set xk+1 = xk + dk and choose a Δk+1 such that Δk+1 ≥ Δk

7. Compute new Ak+1, Zk+1, and Lagrange multipliers λk+1 using

λk+1 = −(Ak+1A
T
k+1)

−1A(xk+1)∇f(xk+1)(26)

such that ‖ZT
k+1A(xk+1)

Tλk+1‖ ≤ ω‖ZT
k+1∇f(xk+1)‖.

8. If ZT
k+1∇f(xk+1) = 0 and c(xk+1) = 0 go to 7 to improve Zk+1,

else increase k by 1 and go to 1.

Algorithm I represents a Byrd–Omojokun trust-region algorithm that takes the
inexactness of the Jacobian and its null space representation into account. To clarify
this point we will discuss now each step of Algorithm I and compare it to a standard
Byrd–Omojokun approach. The computation of a normal direction in step 1 is identi-
cal to a standard approach where the normal Cauchy decrease condition and the range
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space condition have to be fulfilled. Note that the inexactness of the Jacobian may
enter into the normal direction due to the choice of the normal step. The tangential
direction computed in step 2 has to fulfill the tangential Cauchy decrease condition,
i.e., a standard requirement for a Byrd–Omojokun algorithm.

In step 3, χk can be of any sign. Furthermore, we have that npredk(nk) and
tpredk(tk) are nonnegative due to (11) and (17). Hence, if npredk(nk) > 0 holds it
follows that ipredk(dk) ≥ ρμk npredk(nk) is valid when

μk ≥ −χk

(1 − ρ)npredk(nk)
.

This lower bound is a sufficient condition but is not necessary, as condition (25) may
hold also for smaller values of μk. If npredk(nk) = 0 one can conclude from Lemma
3.1 that c(xk) = 0 due to assumption AS1. Therefore, nk = 0 solves the normal
subproblem (5). The solution of (5) must be unique because of the range space
condition (10). It follows for npredk(nk) = 0 that nk = 0, χk = 0, and that (25) is
satisfied for any value of μk.

The additional test on (23) in step 4 ensures that the inexactness of the Jacobian
and its null space representation does not harm the tangential direction too much.
Due to assumption AS7, we need only a finite number of improvement steps for fixed
xk to obtain an exact Zk = Z(xk) such that (23) is fulfilled.

Steps 5 and 6 are standard update procedures of a trust-region algorithm. One
only has to remember that ipred(dk) is not equal to the predicted reduction pred(dk)
due to the inexactness allowed here. We will see later that the algorithm converges
despite this inexactness.

In step 7, we compute an approximation Zk+1 of the exact null space such that
the inexactness is limited to a certain amount in the direction λk+1. Such an ap-
proximation can be found due to assumption AS7. Subsequently, we test whether the
approximation Zk+1 is good enough. A stationary point of the NLP (1) would satisfy
the equations

Z(xk+1)
T∇f(xk+1) = 0, c(xk+1) = 0

due to the first-order optimality condition. However, we do not have an exact null
space representation Z(xk+1). Therefore, in step 8 we check whether xk+1 is a sta-
tionary point of the inexact problem, i.e., whether the equations

ZT
k+1∇f(xk+1) = 0, c(xk+1) = 0

hold. If this is the case but xk+1 is not a Karush–Kuhn–Tucker (KKT) point of the
NLP (1), we have that Z(xk+1)

T∇f(xk+1) 	= 0. Hence, our approximation Zk+1

of the null space Z(xk+1) must be improved to obtain well-posedness. Due to as-
sumption AS7, we need only a finite number of improvement steps for fixed xk to
obtain ZT

k+1∇f(xk+1) 	= 0. Hence, it follows that there can be only an infinite cycling
between steps 7 and 8 if xk+1 is an KKT point of the NLP (1).

4. Well-posedness of Algorithm I. An important property of a trust-region
algorithm is the well-posedness. Here, one has to show that the trust-region radius
cannot shrink to zero if an iterate xk is not a stationary point of the NLP (1). For
this purpose, we analyze the relation of the actual and predicted reduction. We will
employ ideas used in the proof of Lemma 4 in [4]. In addition, we must take into
account the inexactness of the Jacobian and its null space representation. That is, we
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have to ensure that the error term errk(dk) does not dominate the model. In step 4
of Algorithm I, we require that (23) holds. Employing this inequality, we can prove
the following result that is related to Lemma 4 in [4].

Lemma 4.1. Assume that the assumptions AS4, AS5, and AS7 hold on the open
convex set X containing all iterates. Then there exists a positive constant ζ such
that for any iterate xk and any step dk = nk + tk generated by Algorithm I with
[xk, xk + dk] ⊂ X and aredk(dk) ≤ η ipredk(dk), it follows that

0 ≤ ηipredk(dk) − aredk(dk) ≤ ζ(1 + μk)Δ
2
k(27)

Proof. Since A(·) is Lipschitz continuous, there exists a constant ζ ′ > 0 such that∣∣ ‖c(xk + dk)‖ − ‖c(xk) + A(xk)dk ‖
∣∣ ≤ ‖c(xk + dk) − c(xk) −A(xk)dk ‖
≤ sup

x̃∈[xk,xk+dk]

‖A(x̃) −A(xk)‖ ‖dk‖

≤ ζ ′Δ2
k .

As in Lemma 4 of [4], the last inequality, the definitions (3) and (4), the Lipschitz
continuity of ∇f , and the boundedness of B yield

|predk(dk) − aredk(dk) | ≤
∣∣∣f(xk + dk)−f(xk)−∇f(xk)

T dk−
1

2
dTkBkdk

+ μk(‖c(xk+dk)‖−‖c(xk)+A(xk)dk‖)
∣∣∣

≤ ζ(1 + μk)Δ
2
k

for some positive constant ζ. Combining the last two inequalities with the bound (23)
on the error and therefore (24), we obtain

0 < ηipredk(dk) − aredk(dk) ≤
(
η +

1 − η

2

)
ipredk(dk) − aredk(dk)

≤ predk(dk) − aredk(dk) ≤ ζ(1 + μk)Δ
2
k .

Next, we have to prove that Algorithm I cannot generate an infinite cycling be-
tween steps 1 and 5. To show that an acceptable step is determined with a finite
number of reductions of Δk even if the Jacobian and its null space representation are
inexact, we employ two properties. First, it follows for c(xk) = 0 from (8), (11), and
assumption AS1 that npredk(nk,i) = 0, nk,i = 0, and therefore pCk = −ZT

k ∇f(xk) 	= 0
due to steps 7 and 8 of Algorithm I. Second, it follows for c(xk) 	= 0 from assumption
AS1 that A(xk)

T c(xk) 	= 0. Using these properties of our inexact setting, the proof
of the following result is similar to the one of Proposition 1 in [4] taking the modified
estimate (27) into account. Therefore, we only will state the parts of the proof that
differ from the proof of [4, Proposition 1].

Proposition 4.2. Let assumption AS1 hold. Suppose that xk is not a stationary
point of the NLP (1). Then there exists a Δ0

k such that

aredk(dk) ≥ η ipredk(dk)

for any Δ ∈ (0,Δ0
k).

Proof. Let the iterate xk be fixed. To prove the assertion, we assume that there
is a subsequence indexed by i of trust radii Δk,i such that Δk,i converges to zero and



CONVERGENCE OF TR-METHODS WITH INEXACT JACOBIANS 319

that aredk(dk,i) < η ipredk(dk,i) for the corresponding steps dk,i = nk,i + tk,i and the
penalty parameter μk,i for all i.

For η ∈ (0, 1), the inequality aredk(dk,i) < η ipredk(dk,i) yields(
η +

1 − η

2

)
ipredk(dk,i) − aredk(dk,i) >

1 − η

2
ipredk(dk,i) ≥ 0.

Then, it follows from Lemma 4.1 in combination with Δk,i → 0 that

ipredk(dk,i) = (1 + μk,i)o(‖dk,i‖).(28)

This equation can be used exactly along the lines of the proof of Proposition 1 in [4]
to produce a contradiction proving the assertion of the proposition. Therefore, we
skip the rest of the proof here.

Hence, to obtain well-posedness of Algorithm I even in the presence of inexact
first-order information one has to ensure that the approximation Zk of the exact null
space representation is not too bad. In our approach the effects of the inexactness
are bounded for the tangential step by the additional condition (23). This suffices to
show the bound (27). Additionally, the test on the quality of Zk in steps 7 and 8 of
Algorithm I ensures that there cannot be an infinite cycling between steps 1 and 5,
i.e., an acceptable step can be computed with a finite number of iterations. Note that
only the inexactness of the null space approximation Zk but not the inexactness of the
constraint Jacobian approximation Ak has to be controlled to achieve well-posedness.

5. Convergence analysis. Comparing the following theorem with its counter-
part in [4], one finds that the result presented here is less general. This is due to
the fact that we concentrate the analysis in this paper mainly on the influence of
inexact Jacobian information. That is, we do not want to study the performance of
Algorithm I in the presence of dependent constraint gradients as in [4] but focus on
the effects caused by inexact constraint Jacobian information. Therefore, we assume
in contrast to [4] that the exact constraint Jacobian A(xk) has full row rank, i.e.,
assumption AS1 holds. Otherwise, the iterates generated by Algorithm I may con-
verge to a limit point failing the linear independence constraint qualification. For the
derivation of the next result, it is not required to handle the inexactness of Ak and
Zk directly. The inexact first-order information are taken into account by Lemma 4.1
which is used in the proof of the following assertion. Due to the estimate in Lemma
4.1 that differs from [4, Proposition 1], we state the parts of the proof that differ from
[4, Lemma 7] but skip the rather long remaining parts of the proof.

Theorem 5.1 (feasibility of all limit points). Assume that AS1–AS7 hold. Then
we have

lim
k→∞

c(xk) = 0.

Proof. We define the function

Ψ(x) = ‖A(x)T c(x)‖ .

Using the assumptions AS4 and AS5, we obtain that there are constants ε1, ε2, ε3 > 0
such that

|Ψ(x) − Ψ(xl)| = ‖A(x)T c(x) −A(x)T c(xl) + A(x)T c(xl) −A(xl)
T c(xl)‖

≤ ε1‖x− xl‖ + ε2‖x− xl‖ ≤ ε3‖x− xl‖
(29)
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holds for any two points x and xl in X . Now, consider an arbitrary iterate xl with
Ψl ≡ Ψ(xl) 	= 0. First, we will show that Algorithm I accepts all sufficiently small
steps that are in a neighborhood of the iterate xl. If the current step dk is acceptable,
nothing has to be shown; otherwise one has aredk(dk) < η ipredk(dk) and Lemma 4.1
can be applied. We define the ball

Bl = {x : ‖x− xl‖ < Ψl/(2ε3)} .

Applying (29) yields for any x ∈ Bl that Ψ(x) ≥ Ψl/2 > 0. It follows that there exists
a constant c̄ with ‖c(x)‖ ≥ c̄ > 0. Using Lemma 3.1 and assumption AS4 yields the
existence of a constant ε4 > 0 such that for any iterate xk ∈ Bl the inequality

ipredk(dk) ≥ ρμknpredk(nk) ≥ μkε4Ψl min{Δ̃k,Ψl}(30)

holds. For sufficient small Δk it follows that

ipredk(dk) ≥ μkε4ΨlΔ̃k.(31)

Employing this inequality together with the estimate that was derived in the proof of
Lemma 4.1, we have

0 ≤
(
η + 1−η

2

)
ipredk(dk) − aredk(dk)

ipredk(dk)
≤ ζ(1 + μk)Δ

2
k

μkε4ΨlΔ̃k

and therefore

ared ≥ ηipredk(dk) +

(
1 − η

2
− ζ(1 + μk)Δk

μkε4Ψl

)
ipredk(dk) .

For Δk sufficiently small, the second term on the right-hand side is nonnegative.
Hence, for all xk ∈ Bl and all such Δk, we have

aredk(dk) ≥ η ipredk(dk),(32)

which results in acceptance of dk due to step 4 of Algorithm I. The remainder of this
proof follows exactly along the lines of [4, Lemma 7].

To prove the first-order optimality of all limit points, we need that the normal
step can be bounded by the normal predicted reduction and that the penalty factor μk

eventually becomes constant. For that purpose, we present the next two lemmas. For
the proofs of the following two results, it is not necessary to handle the inexactness of
Ak and Zk directly. Nevertheless, we state the two proofs since the derivation differs
slightly from the proofs contained in [4] due to the different setting.

Lemma 5.2 (upper bound on normal step). Let assumptions AS1 and AS4 be
fulfilled. Then there exists a positive constant γ such that

‖nk‖ ≤ γ npredk(nk).(33)

Proof. Using Lemma 3.1, we have for the normal step

‖c(xk)‖npredk(nk) ≥
γn
2
‖A(xk)

T c(xk)‖min

{
Δ̃k,

‖A(xk)
T c(xk)‖

‖A(xk)‖2

}
.
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If c(xk) = 0, then inequality (33) is trivially satisfied. Therefore assume c(xk) 	= 0.
Since A(xk) is supposed to remain bounded there exists a constant σ̄ = supk ‖A(xk)‖.
Together with assumption AS1, this gives

npredk(nk) ≥
γn
2
σ̂min

{
Δ̃k,

σ̂‖c(xk)‖
σ̄2

}
.(34)

Now, we have to consider two cases. First, let ‖c(xk)‖ ≥ σ̂Δ̃k/2. Using σ̄ ≥ σ̂ and
the trust-region constraint, we obtain

npredk(nk) ≥
γn
2
σ̂min

{
1,

σ̂2

2σ̄2

}
Δ̃k ≥ γnσ̂

3

4σ̄2
‖nk‖.

This yields (33). Second, assume that ‖c(xk)‖ < σ̂Δ̃k/2. To derive the upper bound
(33) in this case, we employ (10) and Lemma 3.1. Hence, there exists a vector vk ∈ R

M

such that

‖c(xk)‖2 ≥ ‖c(xk) + A(xk)nk‖2

= ‖c(xk)‖2 + 2c(xk)
TA(xk)nk + ‖A(xk)A(xk)

T vk‖2.

One obtains

‖A(xk)A(xk)
T vk‖2 ≤ −2c(xk)

TA(xk)nk.

Using the Cauchy–Schwarz inequality, it follows that

‖A(xk)A(xk)
T vk‖ ≤ 2‖c(xk)‖.

Due to assumption AS1, this inequality implies that

‖nk‖ = ‖A(xk)
T vk‖ ≤ 2

σ̂
‖c(xk)‖.

Employing the last inequality and (34), we have

npredk(nk) ≥
γn
2
σ̂min

{
Δ̃k,

σ̂‖c(xk)‖
σ̄2

}
≥ γn

2
σ̂min

{
2

σ̂
,
σ̂

σ̄2

}
‖c(xk)‖

≥ γn min

{
2

σ̂
,
σ̂

σ̄2

}
‖nk‖,

which concludes the proof.
Lemma 5.3 (bound on hpred and constant μk for k ≥ k1). Suppose that assump-

tions AS1 and AS4 are satisfied. Then the sequence of penalty parameters {μk} is
bounded. Furthermore, there exist an index k1 and positive constants μ̄ and ξ such
that μk = μ̄ holds for all k ≥ k1 and

ipredk(dk) ≥ ξtpredk(tk).(35)

Proof. The sequences {∇f(xk)} and {Bk} are bounded due to assumption AS4.
It follows from (8) that npredk(nk) ≤ ‖c(xk)‖. Furthermore, ‖c(xk)‖ is bounded due
to assumption AS4. Hence, npredk(nk) is bounded. Using (33), we obtain that there
exists a constant ξ1 such that

−∇f(xk)
Tnk − 1

2
nT
kBknk ≥ −ξ1npredk(nk).
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Then, we can deduce from the definition (21) of ipredk(dk) that

ipredk(dk) ≥ tpred(tk) + μknpred(nk) − ξ1npredk(nk).(36)

Employing that npredk(nk) ≥ 0 and tpredk(tk) ≥ 0, we can derive from this inequality
that (25) in step 3 of Algorithm I holds for μk ≥ ξ1/(1 − ρ). Hence, if μk becomes
larger than ξ1/(1−ρ), it will never be increased. Taking into account that Algorithm I
increases μk by a constant factor this yields that after some iterate, e.g., k1, μk will
remain unchanged at some value μ̄.

Then, it follows from (21) and (25) that

ipredk(dk) ≥ tpred(tk) − ξ1npredk(nk) ≥ tpred(tk) −
ξ1
ρμk

ipredk(dk).

Hence, (35) is satisfied with 1/ξ = 1 + ξ1/(ρ μ̄).
Now, the field is prepared to prove the main result of this paper, namely, the

convergence to a first-order critical point from an arbitrary starting point. That is,
we prove global convergence for our trust-region method given by Algorithm I. For
this purpose, we have to take the inexactness of Zk explicitly into account: the bound
on the error in the null space representation provided by step 7 of Algorithm I is
directly required to prove the following result. Therefore, we state the full proof,
where we also employ ideas from [4, Lemma 12].

Theorem 5.4 (all limit points are first-order optimal). Suppose that AS1–AS7
hold. Then, it follows that

lim
k→∞

∇xL(xk, λk) = lim
k→∞

(∇f(xk) + A(xk)
Tλk) = 0,

where the multipliers λk are defined as in (26).
Proof. Step 7 of Algorithm I ensures that

‖ZT
k A(xk)

Tλk‖ ≤ ω‖ZT
k ∇f(xk)‖

for ω ∈ (0, 1
2 ) and k > 0. This yields for qk = ∇xL(xk, λk)

‖ZT
k qk‖ = ‖ZT

k (∇f(xk) + A(xk)
Tλk)‖ ≥ ‖ZT

k ∇f(xk)‖ − ‖ZT
k A(xk)

Tλk‖

≥ (1 − ω)‖ZT
k ∇f(xk)‖ ≥ 1 − ω

ω
‖ZT

k A(xk)
Tλk‖.

Setting � = ω/(1 − ω) ∈ (0, 1), we obtain

�‖ZT
k qk‖ ≥ ‖ZT

k A(xk)
Tλk‖.

It follows that there exists a constant γ′
1 such that AS3 and AS4 yield

‖pCk ‖ = ‖ − ZT
k (∇f(xk) + Bknk)‖

= ‖ − ZT
k ∇f(xk) − ZT

k A(xk)
Tλk + ZT

k A(xk)
Tλk − ZT

k Bknk‖
= ‖ − ZT

k qk + ZT
k A(xk)

Tλk − ZT
k Bknk‖

≥ σ̌‖qk‖ − �σ̌‖qk‖ − γ′
1‖nk‖ = (1 − �)σ̌‖qk‖ − γ′

1‖nk‖

is valid.
To obtain a contradiction, suppose that limk→∞ qk = 0 does not hold. Then,

there exists a constant ϑ > 0 such that 0 < ϑ ≤ 1
4 lim supk→∞ ‖qk‖. Lemma 5.1
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ensures that c(xk) → 0. Together with Lemma 5.2 this yields ‖nk‖ → 0. Hence, there
is an arbitrarily large l such that for the iterate xl and all k ≥ l, we have ‖ql‖ > 3ϑ
and γ′

1‖nk‖ < (1 − �)σ̌ϑ. Let γL be the Lipschitz constant for qk. We define the ball
Bl = {x : ‖x − xl‖ ≤ ϑ/γL}. Now, assume that the iterates xk with k > l do not
leave Bl. Then, it follows for all k that

‖pCk ‖ ≥ (1 − �)σ̌(‖ql‖ − ‖ql − qk‖) − γ′
1‖nk‖

≥ (1 − �)σ̌(3ϑ− ϑ− ϑ) = (1 − �)σ̌ϑ > 0.

Employing Lemmas 3.3 and 5.3 gives with γ′
2 = ξ γ̂(1 − �)σ̌ that

ipredk(dk) ≥ ξ tpredk(tk) ≥ γ′
2 ϑmin{Δ̂k, (1 − �)σ̌ ϑ}.(37)

Furthermore, the boundedness of f(xk) due to AS4 and the boundedness of the μk

due to Lemma 5.3 gives

φ(xk;μk) = f(xk) + μk‖c(xk)‖ ≥ K(38)

for a constant K ∈ R. This yields that ipredk(dk) → 0. Together with (37) this
implies Δ̂k → 0. Taking l sufficiently large yields for any k ≥ l with xk ∈ Bl that
Δ̂k ≤ min{1, (1 − �)σ̌ϑ} and therefore

ipredk(dk) ≥ γ′
2 ϑΔ̂k.(39)

If xk ∈ Bl, we employ the same argument as in the proof of Theorem 5.1 to show
that an acceptable step is generated for sufficiently small Δk. Hence, if xk ∈ Bl for
all k > l, then Δk would eventually stop decreasing. However, this contradicts the
fact that Δ̂k → 0. Thus the sequence {xk} must leave Bl for some k > l.

In that case, suppose that xk+1 is the first iterate after xl that is not contained
in Bl. We deduce from (39) and Δ̂k = (1 − κ)Δk that

φ(xk+1;μk+1) ≤ φ(xl;μl) − η

k∑
j=l

ipred(xj , μj)

≤ φ(xl;μl) − γ′
2ϑ(1 − κ)

k∑
j=l

Δj

≤ φ(xl;μl) − γ′
2(1 − κ)ϑ2/γL.

(40)

One can derive the last inequality from the fact xk+1 has left the ball Bl with radius
ϑ/γL. The sequence {φ(xk;μk)} is decreasing and bounded below due to (38). Hence,
it converges. This is a contradiction to the fact that l can be chosen arbitrarily large
in (40) and the fact that ϑ > 0. Therefore, qk → 0.

Once more, one only has to limit the error due to the inexact null space rep-
resentation Zk for the proof of global convergence. Therefore, an implementation
of Algorithm I will have to handle the approximation of the null space representa-
tion carefully. One possibility is to employ the TR1 update of the Jacobian that
also provides an approximation of the null space representation [16]. We will present
corresponding numerical results in a forthcoming paper [28].
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6. Conclusion. In this paper, we have proposed and analyzed for the first time
a class of trust-region methods based only on inexact information on the constraint
Jacobian and the null space representation without any assumption on the method to
approximate these matrices. Using two conditions measuring the inexactness of the
null space representation, we prove global first-order convergence for the presented
algorithm under quite mild conditions. The two required conditions on the inexactness
can be easily verified during the optimization process.

Due to the nondifferentiable merit function and the weak assumptions on the in-
exactness, one may need to accelerate the convergence rate using additional safe-guard
strategies for the inexactness possibly in combination with a second-order correction
or a watch-dog technique.

In addition to this subject, future work will also comprise the handling of in-
equality constraints. The introduction of slack variables in combination with interior
point techniques would be one possibility. Alternatively, one may analyze projection
methods to incorporate, for example, bound constraints.
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1. Introduction. We consider the following optimal control problem (OCP)
subject to mixed control-state constraints:

(OCP)

Minimize

∫ 1

0

f0(x(t), u(t))dt

w.r.t. x ∈ W 1,∞([0, 1],Rnx), u ∈ L∞([0, 1],Rnu),
subject to (s.t.) x′(t) = f(x(t), u(t)) a.e. in [0, 1],

ψ(x(0), x(1)) = 0,
c(x(t), u(t)) ≤ 0 a.e. in [0, 1].

Without loss of generality the discussion is restricted to autonomous problems on
the fixed time interval [0, 1]. The functions f0 : R

nx × R
nu → R, f : R

nx × R
nu →

R
nx , ψ : R

nx × R
nx → R

nψ , c : R
nx × R

nu → R
nc are supposed to be at least

twice continuously differentiable w.r.t. to all arguments. As usual, the Banach space
L∞([0, 1],Rn) consists of all measurable functions h : [0, 1] → R

n with

‖h‖∞ := ess sup
0≤t≤1

‖h(t)‖ < ∞,

where ‖ · ‖ denotes the Euclidian norm on R
n. The Banach space W 1,∞([0, 1],Rn)

consists of all absolutely continuous functions h : [0, 1] → R
n with

‖h‖1,∞ := max{‖h‖∞, ‖h′‖∞} < ∞.

Several approaches toward the numerical solution of OCP have been investigated
in the literature. The so-called direct discretization method is based on a discretization
of the infinite dimensional OCP and leads to a finite dimensional nonlinear program;
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see, e.g., Gerdts [10]. The latter can be solved numerically by suitable programming
methods such as, e.g., sequential quadratic programming. The direct discretization
method turns out to be very robust in practice. Nevertheless, the computational
effort grows at a nonlinear rate with the number of grid points used for discretization.
Convergence results for discretized OCPs can be found in Dontchev and others [7, 6],
Hager [15], and Malanowski, Büskens, and Maurer [23].

The so-called indirect method for OCPs attempts to satisfy the necessary condi-
tions that are provided by the well-known minimum principle numerically; see Hartl,
Sethi, and Vickson [16] for an overview on minimum principles. The exploitation of
the minimum principle leads to a nonlinear multipoint boundary value problem that
has to be solved numerically; see Oberle and Grimm [28] for an implementation of a
multiple shooting algorithm. Although the indirect method usually leads to the most
accurate solutions, it suffers from the drawback that it requires a good initial guess in
order to converge. One crucial task is to estimate the sequence of active and inactive
intervals of the control-state constraint.

We refer to Büskens [3], Gerdts [12], chapter one of Grötschel, Krumke, and
Rambau [13], Ioffe and Tihomirov [17], and the literature cited therein for an overview
on direct discretization methods and indirect methods.

Our intention is to analyze the local and global convergence properties of an
alternative method—the nonsmooth Newton method. The method is based on a
nonsmooth reformulation of the necessary optimality conditions and it was introduced
for the problem class OCP in Gerdts [11]. A brief outline of the essential ideas of the
algorithm is as follows. The reformulation of the necessary conditions leads to the
nonsmooth equation

F (z) = 0, F : Z → Y,

where Z and Y are appropriate Banach spaces. Application of the globalized non-
smooth Newton’s method generates sequences {zk}, {dk}, and {αk} related by the
iteration

zk+1 = zk + αkd
k, k = 0, 1, 2, . . . .

Herein, the search direction dk is the solution of the linear operator equation Vk(d
k) =

−F (zk) and the step length αk > 0 is determined by a line-search procedure of
Armijo’s type for a suitably defined merit function. The linear operator Vk is chosen
from an appropriately defined generalized Jacobian ∂∗F (zk).

The nonsmooth Newton method was investigated in finite dimensions by, among
others, Qi [29] and Qi and Sun [30]. Extensions to infinite spaces can be found
in Kummer [19, 20], Chen, Nashed, and Qi [4], and Ulbrich [31, 32]. Our approach
follows the general framework of Ulbrich [31, 32], which was used to solve certain OCPs
subject to partial differential equations. The novelty of this paper is the application
to the problem class OCP. The application of the nonsmooth Newton method to this
problem class has not been investigated in detail before. The structure of the problem
is exploited and leads to a new global convergence result in section 4. Moreover,
sufficient conditions for the nonsingularity of the operator Vk are derived in section 3.

The paper is organized as follows. Section 2 introduces the nonsmooth Newton
method and establishes the locally superlinear convergence under comparatively mild
assumptions. In section 3, details of the computation of the search direction are
shown. It turns out that the search direction solves a linear boundary value problem
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with a differential-algebraic equation (DAE). If a certain operator is invertible, the so-
called index of the DAE is 1 and the DAE can be transformed easily into an ordinary
differential equation. A sufficient condition for the existence of the inverse operator
is provided. Section 4 analyzes the global convergence properties of the nonsmooth
Newton’s method. Finally, numerical illustrations are presented in section 5.

2. Local convergence of the nonsmooth Newton method. The (aug-
mented) Hamilton function H : R

nx × R
nu × R

nx × R
nc → R is defined by

H(x, u, λ, η) := f0(x, u) + λ�f(x, u) + η�c(x, u).

We summarize the well-known minimum principle for OCP. Throughout the rest of
the paper we will use the abbreviation f [t] for f(x(t), u(t)) and likewise for other
functions with time-dependent arguments. Moreover, for an index set I and a vector
c with components ci we define cI := (ci)i∈I .

Let (x∗, u∗) be a (weak) local minimum of OCP and, in addition to the smoothness
assumptions made above, let the following assumptions be satisfied at (x∗, u∗):

(i) Linear independence: there exist α > 0 and β > 0 such that

‖c′Iα(t),u[t]�ζ‖ ≥ β‖ζ‖

for all ζ of appropriate dimension. Herein, the index set Iα is defined by
Iα(t) := {i ∈ {1, . . . , nc} | ci[t] ≥ −α}.

(ii) Controllability: for every q ∈ R
nψ there exists a solution of the linear system

x′(t) − f ′
x[t]x(t) − f ′

u[t]u(t) = 0,

ψ′
x0
x(0) + ψ′

x1
x(1) = q,

c′x[t]x(t) + c′u[t]u(t) + Sα(t)σ(t) = 0,

where Sα(t) := diag(ci,α(t)) and ci,α(t) := min{ci[t] + α, 0}.
Under these assumptions, Malanowski [22, p. 86] shows in Theorem 4.3 the regularity
of the Lagrange multipliers associated with OCP. In particular, the multiplier l0 as-
sociated with the objective function can be normalized to one and the linear operator
defined by the linear system in (ii) is surjective under the assumptions (i) and (ii); see
Lemma 4.1 in Malanowski [22]. Under assumptions (i) and (ii) there exist Lagrange
multipliers λ∗ ∈ W 1,∞([0, 1],Rnx), η∗ ∈ L∞([0, 1],Rnc), and σ∗ ∈ R

nψ with

x′
∗(t) − f(x∗(t), u∗(t)) = 0,(2.1)

λ′
∗(t) + H ′

x(x∗(t), u∗(t), λ∗(t), η∗(t))
� = 0,(2.2)

ψ(x∗(0), x∗(1)) = 0,(2.3)

λ∗(0) + ψ′
x0

(x∗(0), x∗(1))�σ∗ = 0,(2.4)

λ∗(1) − ψ′
x1

(x∗(0), x∗(1))�σ∗ = 0,(2.5)

H ′
u(x∗(t), u∗(t), λ∗(t), η∗(t))

� = 0.(2.6)

Furthermore, the complementarity conditions hold a.e. in [0, 1]:

(2.7) η∗(t) ≥ 0, c(x∗(t), u∗(t)) ≤ 0, η∗(t)
�c(x∗(t), u∗(t)) = 0.

Remark 2.1. Similar necessary conditions can be found in Neustadt [27, Ch. VI.3]
and Zeidan [34, Th. 3.1]. A regularity condition based on a controllability condition
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can be found in Zeidan [34, Prop. 4.2]. The regularity assumptions (i) and (ii) with
suitable extensions occur in the context of sufficient conditions [25], convergence of
discretization methods [6], and sensitivity analysis [26].

Unfortunately, these necessary conditions are not directly solvable for the variable
(x∗, u∗, λ∗, η∗, σ∗) owing to the complementarity conditions. Therefore, the subse-
quent considerations aim at the reformulation of this set of equalities and inequalities
as an equivalent system of equations, which will be solved by a generalized version of
Newton’s method. Notice that if the mixed-control state constraints were not present
in the optimal control problem, then the generalized version of Newton’s method
will coincide with the (classical) Lagrange–Newton method. The Lagrange–Newton
method for control constrained optimal control problems was analyzed in Alt and
Malanowski [1]; later it was extended to problems involving pure state constraints
in Alt and Malanowski [2]. Under suitable conditions, the authors obtain a locally
quadratic convergence rate for problems with control constraints in the first paper
(Theorem 4) and a superlinear convergence rate for problems with control and state
constraints in the second (Theorem 5.2). This is more than we are able to show for our
approach so far, as only a locally superlinear convergence rate will be established in
this paper. The results of Alt and Malanowski [1, 2] suggest that it might be possible
to improve the local convergence rate of our method.

The convex and locally Lipschitz continuous Fischer–Burmeister function ϕ :
R

2 → R is defined by

(2.8) ϕ(a, b) :=
√
a2 + b2 − a− b,

(cf. Fischer [8]). The Fischer–Burmeister function has the nice property that ϕ(a, b) =
0 holds if and only if a, b ≥ 0 and ab = 0. Hence, the complementarity conditions
(2.7) are equivalent with the equality

ϕ(−ci(x∗(t), u∗(t)), ηi,∗(t)) = 0, i = 1, . . . , nc,

that has to hold almost everywhere in [0, 1]. Rather than working with the deriva-
tive of ϕ, which does not exist at the origin, we will work with Clarke’s generalized
Jacobian of ϕ:

∂ϕ(a, b) =

⎧⎪⎨
⎪⎩

{(
a√

a2 + b2
− 1,

b√
a2 + b2

− 1

)}
if (a, b) 	= (0, 0),{

(s, r) ∈ R
2
∣∣ (s + 1)2 + (r + 1)2 ≤ 1

}
if (a, b) = (0, 0).

Notice that ∂ϕ(a, b) is a nonempty, convex, and compact set. Let the Banach spaces

Z = W 1,∞([0, 1],Rnx) × L∞([0, 1],Rnu) ×W 1,∞([0, 1],Rnx) × L∞([0, 1],Rnc) × R
nψ ,

Y1 = L∞([0, 1],Rnx) × L∞([0, 1],Rnx) × R
nψ × R

nx × R
nx × L∞([0, 1],Rnu),

Y2 = L∞([0, 1],Rnc)

be equipped with the maximum norm for product spaces and z∗ = (x∗, u∗, λ∗, η∗, σ∗).
Then, the necessary conditions (2.1)–(2.7) are equivalent with the nonlinear equation

(2.9) F (z∗) =

(
F1(z∗)
F2(z∗)

)
= 0,
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where F1 : Z → Y1 and F2 : Z → Y2 denote the smooth and the nonsmooth part of
F : Z → Y := Y1 × Y2, respectively:

(2.10) F1(z)(·) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

x′(·) − f(x(·), u(·))
λ′(·) + H ′

x(x(·), u(·), λ(·), η(·))�
ψ(x(0), x(1))

λ(0) + ψ′
x0

(x(0), x(1))�σ
λ(1) − ψ′

x1
(x(0), x(1))�σ

H ′
u(x(·), u(·), λ(·), η(·))�

⎞
⎟⎟⎟⎟⎟⎟⎠

, F2(z)(·) := ω(z(·)),

where ω = (ω1, . . . , ωnc
)� : R

nx × R
nu × R

nx × R
nc × R

nψ → R
nc and

(2.11) ωi(x̄, ū, λ̄, η̄, σ̄) := ϕ(−ci(x̄, ū), η̄i), i = 1, . . . , nc.

The standard approach to solve (2.9) numerically would be to apply the classical
Newton method. Unfortunately, the derivative F ′(zk) does not exist since the com-
ponent F2 is not differentiable. Hence, we have to find a substitute for the derivative
F ′ in the classical Newton method. In finite dimensional spaces, such a substitute for
locally Lipschitz continuous functions may be chosen from the generalized Jacobian
of F defined by

∂F (z) := co

{
V
∣∣∣ V = lim

zi∈DF
zi→z

F ′(zi)

}
,

where DF denotes the set of points where F is differentiable [5]. However, in infinite
dimensional spaces it is more difficult to define an appropriate generalized Jacobian
since locally Lipschitz continuous functions in general are not differentiable almost
everywhere. Motivated by the chain rule in finite dimensions we define the point to
set mapping ∂∗F : Z ⇒ L(Z, Y ) according to

∂∗F (zk)(z) :=

⎧⎪⎪⎨
⎪⎪⎩
(

F ′
1(z

k)(z)
−S (c′x[·]x + c′u[·]u) + Rη

) ∣∣∣∣∣∣∣∣
S = diag(s1, . . . , snc),
R = diag(r1, . . . , rnc

),
(si, ri) ∈ ∂ϕ[·] a.e.,
si(·), ri(·) measurable

⎫⎪⎪⎬
⎪⎪⎭

and use this set as a generalized Jacobian. The same idea was introduced earlier in Ul-
brich [31, Def. 3.35]. Notice that the first component F1 of F in (2.10) is continuously
Fréchet-differentiable with

F ′
1(z

k)(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′(·) − f ′
x[·]x(·) − f ′

u[·]u(·)
λ′(·) + H ′′

xx[·]x(·) + H ′′
xu[·]u(·) + H ′′

xλ[·]λ(·) + H ′′
xη[·]η(·)

ψ′
x0
x(0) + ψ′

x1
x(1)

λ(0) + ψ′′
x0x0

(σk, x(0)) + ψ′′
x0x1

(σk, x(1)) +
(
ψ′
x0

)�
σ

λ(1) − ψ′′
x1x0

(σk, x(0)) − ψ′′
x1x1

(σk, x(1)) −
(
ψ′
x1

)�
σ

H ′′
ux[·]x(·) + H ′′

uu[·]u(·) + H ′′
uλ[·]λ(·) + H ′′

uη[·]η(·)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

provided that the functions f0, f, c, ψ are twice continuously differentiable w.r.t. all
arguments. All functions are evaluated at zk = (xk, uk, λk, ηk, σk) ∈ Z.

Replacing the nonexisting Jacobian F ′ in the classical Newton method by the
generalized Jacobian ∂∗F (zk) leads to the following algorithm.
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Algorithm 2.2. Local Nonsmooth Newton’s Method.

(0) Choose z0.
(1) If some stopping criterion is satisfied, stop.
(2) Choose an arbitrary Vk ∈ ∂∗F (zk) and compute the search direction dk from

the linear equation

Vk(d
k) = −F (zk).

(3) Set zk+1 = zk + dk, k = k + 1, and goto (1).
The assumptions needed to prove local convergence of the method are similar to

those in [29], [30], [18], and [31]. ∂∗F (z) is called nonsingular if for every V ∈ ∂∗F (z)
the inverse operator V −1 exists and if it is linear and bounded, i.e., V −1 ∈ L(Y,Z).

Theorem 2.3. Let z∗ be a zero of F . Suppose that there exist constants Δ >
0 and C > 0 such that for every z ∈ UΔ(z∗) the generalized Jacobian ∂∗F (z) is
nonsingular and ‖V −1‖L(Y,Z) ≤ C for every V ∈ ∂∗F (z).

(i) Let

(2.12) ‖F (z) − F (z∗) − V (z − z∗)‖Y = o(‖z − z∗‖Z) ∀V ∈ ∂∗F (z)

as ‖z−z∗‖Z → 0. Then, for z0 sufficiently close to z∗ the nonsmooth Newton
method converges superlinearly to z∗.

(ii) Let

(2.13) ‖F (z) − F (z∗) − V (z − z∗)‖Y = O(‖z − z∗‖1+p
Z ) ∀V ∈ ∂∗F (z)

as ‖z−z∗‖Z → 0. Then, for z0 sufficiently close to z∗ the nonsmooth Newton
method converges at order 1 + p to z∗.

Furthermore, if F (zk) 	= 0 for all k, then the residual values converge superlinearly:

lim
k→∞

‖F (zk+1)‖Y
‖F (zk)‖Y

= 0.

Proof. Due to the first assumption, the algorithm is well defined in some neigh-
borhood of z∗. It holds that

Vk(z
k+1− z∗) = Vk(z

k +dk− z∗) = Vk(z
k− z∗)+Vkd

k = Vk(z
k− z∗)−F (zk)+F (z∗).

The assertions in (i) and (ii) follow from

‖zk+1 − z∗‖Z = ‖V −1
k

(
Vk(z

k − z∗) − F (zk) + F (z∗)
)
‖Y

≤ ‖V −1
k ‖L(Y,Z) · ‖F (zk) − F (z∗) − Vk(z

k − z∗)‖Y
≤ C · ‖F (zk) − F (z∗) − Vk(z

k − z∗)‖Y

=

{
o(‖zk − z∗‖Z) in case (i),

O(‖zk − z∗‖1+p
Z ) in case (ii).

(2.14)

Let ε > 0 be arbitrary. According to (2.14) there exists δ > 0 with

‖zk+1 − z∗‖Z ≤ ε‖zk − z∗‖Z whenever ‖zk − z∗‖Z ≤ δ.

Notice that for any δ > 0 there exists some k0(δ) such that ‖zk − z∗‖ ≤ δ for every
k ≥ k0(δ) since zk converges to z∗. By the local Lipschitz continuity of F we get

‖F (zk+1)‖Y = ‖F (zk+1) − F (z∗)‖Y ≤ L‖zk+1 − z∗‖Z ≤ Lε‖zk − z∗‖Z
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locally around z∗ and the Newton iteration implies

‖zk+1 − zk‖Z ≤ ‖V −1
k ‖L(Y,Z) · ‖F (zk)‖Y ≤ C‖F (zk)‖Y .

Thus,

‖zk − z∗‖Z ≤ ‖zk+1 − zk‖Z + ‖zk+1 − z∗‖Z
≤ C‖F (zk)‖Y + ‖zk+1 − z∗‖Z
≤ C‖F (zk)‖Y + ε‖zk − z∗‖Z

and

‖zk − z∗‖Z ≤ C

1 − ε
‖F (zk)‖Y .

Finally,

‖F (zk+1)‖Y ≤ Lε‖zk − z∗‖Z ≤ LεC

1 − ε
‖F (zk)‖Y .

Since F (zk) 	= 0 and ε may be arbitrarily small, this shows the last assertion.
Remark 2.4.

• The properties (2.12) and (2.13) can be written as

sup
V ∈∂∗F (z)

‖F (z) − F (z∗) − V (z − z∗)‖Y = o(‖z − z∗‖Z),

sup
V ∈∂∗F (z)

‖F (z) − F (z∗) − V (z − z∗)‖Y = O(‖z − z∗‖1+p
Z )

as ‖z − z∗‖Z → 0 and are referred to as semi-
smoothness and p-order semismoothness of F at z∗; see Ulbrich [31, Def. 3.1].

• It suffices if the assumptions are satisfied for certain elements of ∂∗F pro-
vided that only these elements are used in the algorithm. For the upcoming
computations we used the element corresponding to the choices

si(t) =

{
−1 if ci[t] = 0, ηi(t) = 0,

−ci[t]√
ci[t]2+ηi(t)2

− 1 otherwise,

ri(t) =

{
0 if ci[t] = 0, ηi(t) = 0,

ηi(t)√
ci[t]2+ηi(t)2

− 1 otherwise.

The first component F1 is continuously Fréchet-differentiable if f0, f, c, ψ are twice
continuously differentiable. The Fréchet-differentiability immediately yields (2.12) for
the component F1. If the second derivatives of f0, f, c, ψ are even locally Lipschitz
continuous, then F ′

1 also satisfies a local Lipschitz condition of type

‖F ′
1(z + d) − F ′

1(z)‖L(Z,Y1) ≤ L‖d‖Z .
Using this property and the mean-value theorem we find

‖F1(z + d) − F1(z) − F ′
1(z + d)(d)‖Y1

≤
∫ 1

0

‖(F ′
1(z + td) − F ′

1(z + d))(d)‖Y1
dt

≤
∫ 1

0

‖F ′
1(z + td) − F ′

1(z + d)‖L(Z,Y1)dt · ‖d‖Z

≤ L

2
‖d‖2

Z

and thus (2.13) with p = 1 holds for F1.
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The second component F2(z)(t) = ω(z(t)) of F in (2.10) is a superposition oper-
ator as in [31, Sec. 3.3] with the difference that F2 maps from some subset of L∞ to
L∞. This allows us to consider the operator F2 pointwise since ‖z−z∗‖Z → 0 implies
‖z(t) − z∗(t)‖ → 0 a.e. in [0, 1]. Let us summarize some well-known results for finite
dimensions. The Fischer–Burmeister function ϕ : R

2 → R is 1-order semismooth (and
particularly semismooth) according to Fischer [9, Lem. 20]. Furthermore, due to a
result of Mifflin, the composition g = g1 ◦ g2 of semismooth functions g1, g2 is again
semismooth [9, p. 527]. Similarly, the composition of 1-order semismooth functions is
again 1-order semismooth [9, Th. 19]. In particular, continuously differentiable func-
tions are semismooth and functions having a locally Lipschitz continuous first deriva-
tive are 1-order semismooth. Consequently, the function ω in (2.11) is semismooth if
the function c is continuously differentiable. Moreover, ω is 1-order semismooth if c′ is
locally Lipschitz continuous. With these remarks the semismoothness and the 1-order
semismoothness of the superposition operator F2 : Z → Y2 in (2.10) and (2.11) are
established by the following lemma.

Lemma 2.5. Consider the operator

g : L∞([0, 1],Rn) → L∞([0, 1],Rm), z → g(z)(t) = ω(z(t)).

It holds that
(i) g is semismooth at z (in the sense of Remark 2.4) if ω : R

n → R
m is semis-

mooth at z(t) ∈ R
n for a.e. t ∈ [0, 1].

(ii) g is p-order semismooth at z (in the sense of Remark 2.4) if ω is uniformly
p-order semismooth at z, i.e., there exists Cz > 0 such that for almost every
z̄ ∈ {z(t) ∈ R

n | t ∈ [0, 1]} it holds that

max
V ∈∂ω(z̄+h)

‖ω(z̄ + h) − ω(z̄) − V h‖ ≤ Cz‖h‖1+p as ‖h‖ → 0.

Proof. Define ρ : R
n × R

n → R
m by

ρ(x, h) := max
V ∈∂ω(x+h)

‖ω(x + h) − ω(x) − V h‖ .

(i) Owing to the semismoothness of ω at z(t) for a.e. t ∈ [0, 1] it holds that

a(t) =
ρ(z(t), d(t))

‖d‖∞
=

o(‖d(t)‖)
‖d‖∞

→ 0

as ‖d(t)‖ → 0 for a.e. t ∈ [0, 1]. Since ‖d‖∞ → 0 implies ‖d(t)‖ → 0 a.e., it
holds that ‖ρ(z(·), d(·))‖∞ = ‖a‖∞ · ‖d‖∞ = o(‖d‖∞).

(ii) The uniform p-order semismoothness of ω at z yields

ρ(z(t), d(t)) ≤ Cz‖d(t)‖1+p ≤ Cz‖d‖1+p
∞

a.e. in [0, 1], where Cz does not depend on t. The assertion follows from
‖ρ(z(·), d(·))‖∞ ≤ Cz‖d‖1+p

∞ .
Application of the lemma and the previous considerations yield the following

result.
Theorem 2.6. Let z∗ be a zero of F . Suppose that there exist constants Δ >

0 and C > 0 such that for every z ∈ UΔ(z∗) the generalized Jacobian ∂∗F (z) is
nonsingular and ‖V −1‖L(Y,Z) ≤ C for every V ∈ ∂∗F (z).

The nonsmooth Newton’s method converges locally at a superlinear rate if f0, f, c, ψ
are twice continuously differentiable.
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Proof. The assertion follows from Lemma 2.5 since the Fischer–Burmeister func-
tion is semismooth at every (a, b)� ∈ R

2 and thus ω in (2.11) is semismooth every-
where provided that c is continuously differentiable.

Remark 2.7. Unfortunately, the quadratic convergence of the method could not
be established for the following reason. The Fischer–Burmeister function is twice con-
tinuously differentiable at every argument (a, b)� 	= (0, 0)�, but the second derivative
is getting unbounded for (a, b) → (0, 0). Hence, the assumption in (ii) of Lemma 2.5
can be satisfied at z∗ only if ηi(t) and ci(x∗(t), u∗(t)) do not approach zero simulta-
neously. Thus, a uniform strict complementarity condition

(2.15) |η∗,i(t)| + |ci(x∗(t), u∗(t))| ≥ α

has to hold a.e. in [0, 1] for all i = 1, . . . , nc and some α > 0.
Unfortunately, as a rule for problems of type OCP, ηi or u is continuous and thus

condition (2.15) is not satisfied, except for the trivial case that a constraint is nowhere
active or active everywhere.

3. Computation of the search direction. For brevity we neglect the argu-
ments whenever possible. The linear operator equation Vk(d

k) = −F (zk) in step 2 of
Algorithm 2.2 reads as(

x′

λ′

)
−
(

f ′
x 0

−H ′′
xx −H ′′

xλ

)(
x
λ

)
−
(

f ′
u 0

−H ′′
xu −H ′′

xη

)(
u
η

)

= −
(

(xk)′ − f

(λk)′ + (H ′
x)

�

)
(3.1)

and⎛
⎝ ψ′

x0
0 0

(ψ′
x0

�
σk)′x0

I ψ′
x0

�

−(ψ′
x1

�
σk)′x0

0 −ψ′
x1

�

⎞
⎠
⎛
⎝ x(0)

λ(0)
σ

⎞
⎠+

⎛
⎝ ψ′

x1
0 0

(ψ′
x0

�
σk)′x1

0 0

−(ψ′
x1

�
σk)′x1

I 0

⎞
⎠
⎛
⎝ x(1)

λ(1)
σ

⎞
⎠

= −

⎛
⎝ ψ(xk(0), xk(1))

λk(0) + ψ′
x0

�
σk

λk(1) − ψ′
x1

�
σk

⎞
⎠(3.2)

and

(3.3) A
(

u
η

)
+

(
H ′′

ux H ′′
uλ

−Sc′x 0

)(
x
λ

)
= −

(
H ′

u

ω(zk(·))

)
,

where

(3.4) A :=

(
H ′′

uu (c′u)
�

−Sc′u R

)
.

Herein, every function is evaluated at the current iterate zk. If the inverse operator
A−1 exists, (3.3) can be solved for u and η according to

(3.5)

(
u
η

)
= −A−1

[(
H ′′

ux H ′′
uλ

−Sc′x 0

)(
x
λ

)
+

(
H ′

u

ω(zk(·))

)]
.

A sufficient condition for the nonsingularity of A is given in Theorem 3.2. The con-
stant σ in (3.2) can be viewed as a solution of the differential equation σ′ = 0. Intro-
ducing (3.5) into the differential equation (3.1), augmenting this system by σ′ = 0,
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and taking into account the boundary conditions (3.2), yields the linear boundary
value problem for ξ = (x, λ, σ)�:

(3.6) ξ′ = Bξ + b, E0ξ(0) + E1ξ(1) = q,

where

B =

⎛
⎝ f ′

x 0 0
−H ′′

xx −H ′′
xλ 0

0 0 0

⎞
⎠−

⎛
⎝ f ′

u 0
−H ′′

xu −H ′′
xη

0 0

⎞
⎠A−1

(
H ′′

ux H ′′
uλ 0

−Sc′x 0 0

)
,

b = −

⎡
⎣
⎛
⎝ (xk)′ − f

(λk)′ + H ′
x
�

0

⎞
⎠+

⎛
⎝ f ′

u 0
−H ′′

xu −H ′′
xη

0 0

⎞
⎠A−1

(
H ′

u

ω(zk(·))

)⎤⎦ ,

E0 =

⎛
⎝ ψ′

x0
0 0

(ψ′
x0

�
σk)′x0

I ψ′
x0

�

−(ψ′
x1

�
σk)′x0

0 −ψ′
x1

�

⎞
⎠ ,

E1 =

⎛
⎝ ψ′

x1
0 0

(ψ′
x0

�
σk)′x1

0 0

−(ψ′
x1

�
σk)′x1

I 0

⎞
⎠ ,

q = −

⎛
⎝ ψ(xk(0), xk(1))

λk(0) + ψ′
x0

�
σk

λk(1) − ψ′
x1

�
σk

⎞
⎠ .

Hence, in each iteration of Algorithm 2.2 we have to solve the linear boundary value
problem (3.6).

If the operator A is not invertible, the situation becomes more involved. In this
case, (3.3) imposes algebraic constraints and (3.1) and (3.3) form a DAE with an
index of at least 2. Actually, the case when A is invertible corresponds to the index 1
case. We will not go into detail here and leave this problem open for future research.

We state a sufficient condition for the existence and boundedness of the inverse
operator of A in (3.4). The proof of this condition uses the Banach lemma [21, Th. 3].

Lemma 3.1 (Banach lemma). Let X1 and X2 be Banach spaces and M,Δ : X1 →
X2 linear and continuous operators. Let M−1 exist and let ‖M−1Δ‖ < 1. Then, the
operator M + Δ possesses an inverse (M + Δ)−1 and

‖(M + Δ)−1‖ ≤ 1

1 − ‖M−1Δ‖‖M
−1‖.

The following sufficient conditions for the boundedness of A−1 aim at the for-
mulation of conditions that do not assume that the underlying process z satisfies the
first-order necessary optimality conditions. This is important in view of globalization
of the method as the iterate zk may be arbitrary.

Theorem 3.2. Let z = (x, u, λ, η, σ) ∈ Z be given. Define the index sets

I>(t) := {i ∈ {1, . . . , nc} | ci[t] = 0, ηi(t) > 0},
Jγ(t) := {i ∈ {1, . . . , nc} | |ci[t]| ≤ γηi(t), ηi(t) ≥ 0}, γ > 0.

Let the following assumptions hold at z:
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(i) Let there exist constants C1, C2, C3 such that a.e. in [0, 1] it holds that

‖H ′′
uu[t]‖ ≤ C1, ‖c′u[t]�‖ ≤ C2, ‖c′u[t]‖ ≤ C3.

(ii) (Coercivity) Let there exist a constant α > 0 such that a.e. in [0, 1] it holds
that

d�H ′′
uu[t]d ≥ α‖d‖2 ∀ d ∈ R

nu : c′I>(t),u[t]d = 0.

(iii) (Linear independence) Let there exist constants γ > 0 and β > 0 such that
a.e. in [0, 1] it holds that

‖c′Jγ(t),u[t]�ζ‖ ≥ β‖ζ‖ ∀ ζ of appropriate dimension.

Then, a.e. in [0, 1] the inverse operator A−1(t) exists and it holds that ‖A−1(t)‖ ≤ C
for some constant C.

Proof. In what follows we will make use of the following notation. For an index
set I ⊆ {1, . . . , nc} let SI := diag(si | i ∈ I), RI := diag(ri | i ∈ I), and AI :=(
c′i,u | i ∈ I

)
. Moreover, Ic := {1, . . . , nc} \ I denotes the complementary index set of

the index set I and Q := H ′′
uu.

Without loss of generality, using row and column permutations the operator A in
(3.4) can be partitioned as

A(t) =

⎛
⎝ Q(t) AIε(t)(t)

� AIc
ε(t)(t)

�

−SIε(t)(t)AIε(t)(t) RIε(t)(t) 0
−SIc

ε(t)(t)AIc
ε(t)(t) 0 RIc

ε(t)(t)

⎞
⎠ ,

where Iε(t) is a suitable index set depending on a constant 0 < ε < 1. The idea
behind this partition is to collect all indices i with −ε ≤ ri(t) ≤ 0 in the set Iε(t), i.e.,

Iε(t) := {i ∈ {1, . . . , nc} | − ε ≤ ri(t) ≤ 0}.

Consequently, the index set Icε(t) is given by

Icε(t) = {i ∈ {1, . . . , nc} | − 2 ≤ ri(t) < −ε}.

Recall that a.e. in [0, 1] we have (si(t), ri(t)) ∈ {(s, r) ∈ R
2 | (s+1)2+(r+1)2 ≤ 1} and

hence a.e. in [0, 1] it holds −2 ≤ si(t) ≤ 0 and −2 ≤ ri(t) ≤ 0 for all i ∈ {1, . . . , nc}.
Owing to these considerations, a.e. in [0, 1] the matrices RIc

ε
and SIε are nonsin-

gular and the following estimates hold (w.r.t. the spectral norm):

‖RIε‖ ≤ ε, ε < ‖RIc
ε
‖ ≤ 2,

1

2
≤ ‖R−1

Ic
ε
‖ <

1

ε
,

0 ≤ ‖SIc
ε
‖ ≤ 2, 1 −

√
ε(2 − ε) ≤ ‖SIε‖ ≤ 2,

1

2
≤ ‖S−1

Iε
‖ ≤ 1

1 −
√

ε(2 − ε)
.

Herein, and in what follows as well, we omit the explicit dependence on t for brevity.
In order to show the nonsingularity of A we investigate the linear equation⎛

⎝ Q A�
Iε

A�
Ic
ε

−SIεAIε RIε 0
−SIc

ε
AIc

ε
0 RIc

ε

⎞
⎠
⎛
⎝ w1

w2

w3

⎞
⎠ =

⎛
⎝ e1

e2

e3

⎞
⎠
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and we will show that ‖Aw‖ ≥ C‖w‖ holds for all w = (w1, w2, w3)
� and some C > 0.

Since SIε and RIc
ε

are nonsingular, we obtain(
Q + A�

Ic
ε
R−1

Ic
ε
SIc

ε
AIc

ε
A�

Iε

AIε −S−1
Iε

RIε

)(
w1

w2

)
=

(
e1 −A�

Ic
ε
R−1

Ic
ε
e3

−S−1
Iε

e2

)
,

w3 = R−1
Ic
ε

(
e3 + SIc

ε
AIc

ε
w1

)
.(3.7)

We will now show that the operator

Mε :=

(
Q + T A�

Iε
AIε 0

)
, T = A�

Ic
ε
R−1

Ic
ε
SIc

ε
AIc

ε
,

is nonsingular for ε > 0 sufficiently small and that there exists a constant K > 0
independent of ε with ‖M−1

ε ‖ ≤ K. Notice that T is symmetric and positive semi-
definite as R−1

Ic
ε
SIc

ε
is a diagonal matrix with nonnegative entries.

We need to specify the index set Iε in more detail. It holds that

Iε = {i ∈ {1, . . . , nc} | |ci| ≤ δηi, ηi > 0}
∪{i ∈ {1, . . . , nc} | ci = 0, ηi = 0, ri ≥ −ε},(3.8)

where δ =

√
ε(2−ε)

1−ε . This can be seen as follows. If |ci| ≤ δηi and ηi > 0, then

ri =
ηi√

c2i + η2
i

− 1 ≥ ηi√
δ2η2

i + η2
i

− 1 =
1√

1 + δ2
− 1 = −

(
1 − 1√

1 + δ2

)
= −ε.

Notice that for those indices with ci = 0 = ηi the corresponding values (si, ri) can be
chosen arbitrarily from the set {(s, r) ∈ R

2 | (s + 1)2 + (r + 1)2 ≤ 1}. This explains
the second set on the right-hand side of (3.8). On the other hand, if ηi < 0, then
ri < −1. If ηi = 0 and ci 	= 0, then ri = −1. If |ci| > δηi and ηi > 0, then as above
ri < −ε. Finally, if ci = 0 = ηi and ri < −ε, then evidently ri 	∈ Iε.

Notice that I> ⊆ Iε for every ε > 0 as ci = 0 and ηi > 0 implies ri = 0. Hence,

{d ∈ R
nu | AIεd = 0} ⊆ {d ∈ R

nu | AI>d = 0} ∀ε > 0

and (ii) implies

(3.9) d�(Q + T )d ≥ d�Qd ≥ α‖d‖2 ∀ d ∈ R
nu : AIεd = 0.

Now, choose ε > 0 such that

√
ε(2−ε)

1−ε ≤ γ. Then, Iε ⊆ Jγ and assumption (iii) imply

(3.10) ‖A�
Iε ζ̃‖ = ‖A�

Iε ζ̃ + A�
Jγ\Iε · 0‖ ≥ β‖(ζ̃, 0)‖ = β‖ζ̃‖

for every ζ̃ of appropriate dimension.
Using (3.9), (3.10), assumption (i), and the same arguments as Hager [14] in the

proof of Lemma 3.2, it can be shown that the matrix Mε is nonsingular and there

exists a constant K with ‖M−1
ε ‖ ≤ K for every ε > 0 satisfying

√
ε(2−ε)

1−ε ≤ γ. It is
important to point out that the constant K depends on the constants C1, C2, C3, α, β
but not on ε.

The operator

Γ =

(
Q + T A�

Iε

AIε −S−1
Iε

RIε

)
= Mε +

(
0 0
0 −S−1

Iε
RIε

)
=: Mε + Δε
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can be viewed as a perturbation of Mε with

‖Δε‖ = ‖S−1
Iε

RIε‖ ≤ ‖S−1
Iε

‖ · ‖RIε‖ ≤ ε

1 −
√

ε(2 − ε)
.

Let ε > 0 be such that

ε

1 −
√

ε(2 − ε)
<

1

K
,

√
ε(2 − ε)

1 − ε
≤ γ.

Then, ‖Δε‖ < 1
‖M−1

ε ‖ and according to the Banach lemma, Lemma 3.1, Γ−1 exists

and there is a constant K̃ with

‖Γ−1‖ ≤ K̃.

Equation (3.7) yields the estimates

‖(w1, w2)‖ ≤ ‖Γ−1‖
(
‖e1‖ + ‖A�

Ic
ε
‖ · ‖R−1

Ic
ε
‖ · ‖e3‖ + ‖S−1

Iε
‖ · ‖e2‖

)

≤ K̃

(
1 +

C2

ε
+

1

1 −
√
ε(2 − ε)

)
‖e‖

=: C̃‖e‖

and

‖w3‖ ≤ ‖R−1
Ic
ε
‖
(
‖e3‖ + ‖SIc

ε
‖ · ‖AIε‖ · ‖w1‖

)
≤ 1

ε

(
1 + 2C3C̃

)
‖e‖.

The triangle inequality yields ‖w‖ ≤ ‖(w1, w2)‖+‖w3‖ ≤ C‖e‖, where C = C̃+ 1
ε (1+

2C3C̃), and the assertion follows with Ljusternik and Sobolew [21, Th. 1].
Remark 3.3. Assumptions (ii) and (iii) of Theorem 3.2 are related to the linear

independence condition and the Legendre–Clebsch condition which were imposed in
assumptions (A1) and (B) in [25] and in assumptions (A3) and (A4) in [24]. However,
they differ in some details. In particular, as the proof indicates, the region of validity
of the uniform linear independance condition in (iii) has to be coupled to the value of
the multiplier η.

It remains to establish the nonsingularity and the boundedness of the inverse
of the linear operator defining the boundary value problem (3.6). This operator
G : W 1,∞([0, 1],R2nx+nψ ) → L∞([0, 1],R2nx+nψ ) × R

2nx+nψ =: Ω is defined by

G(ξ)(t) =

(
ξ′(t) −B(t)ξ(t)
E0ξ(0) + E1ξ(1)

)

with ‖(ω1, ω2)‖Ω = max{‖ω1‖∞, ‖ω2‖}.
Theorem 3.4. Let the following assumptions be satisfied:
(i) Let there exist a constant C such that a.e. in [0, 1] it holds that ‖B(t)‖ ≤ C.
(ii) Let there exist κ > 0 such that for all ζ ∈ R

2nx+nψ it holds that

‖ (E0Φ(0) + E1Φ(1)) ζ‖ ≥ κ‖ζ‖,

where Φ is a fundamental solution with Φ′(t) = B(t)Φ(t), Φ(0) = I.
Then, the inverse operator G−1 exists and it holds ‖G−1‖ ≤ K for some constant K.
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Proof. The proof uses a similar reasoning as Malanowski and Maurer [24, sect. 4].
Consider the boundary value problem

(3.11)
ξ′(t) −B(t)ξ(t) = ω1(t),

E0x(0) + E1x(1) = ω2.

Since ‖G−1‖ = 1
inf{‖G(ξ)‖ | ‖ξ‖1,∞=1} , we must show that ‖(ω1, ω2)‖Ω ≥ ‖ξ‖1,∞/K for

all (ω1, ω2) ∈ Ω and ξ solving the above linear equation.
Consider the initial value problem

ξ̃′(t) = B(t)ξ̃(t) + ω1(t), ξ̃(0) = 0.

The solution is given implicitly by

ξ̃(t) =

∫ t

0

B(τ)ξ̃(τ) + ω1(τ)dτ.

Gronwall’s lemma yields

‖ξ̃(t)‖ ≤
∫ t

0

‖B‖∞‖ξ̃(τ)‖ + ‖ω1(τ)‖dτ ≤ ‖ω1‖∞ exp(‖B‖∞) ≤ ‖ω1‖∞ exp(C).

Similarly, we find

‖ξ(t)‖ ≤ (‖ξ(0)‖ + ‖ω1‖∞) exp(C).

For the fundamental system Φ we obtain

‖Φ(t)‖ ≤ 1 + ‖B‖∞
∫ t

0

‖Φ(τ)‖dτ ≤ exp(‖B‖∞) ≤ exp(C).

Using the solution formula for linear differential equations we find

ξ(t) = Φ(t)

(
ξ(0) +

∫ t

0

Φ(τ)−1ω1(τ)dτ

)
= Φ(t)ξ(0) + ξ̃(t).

Moreover,

(E0Φ(0) + E1Φ(1)) ξ(0) = ω2 − E1Φ(1)

∫ 1

0

Φ(τ)−1ω1(τ)dτ = ω2 − E1ξ̃(1).

It follows that

κ‖ξ(0)‖ ≤ ‖ω2‖ + ‖E1‖‖ξ̃(1)‖ ≤ ‖ω2‖ + ‖E1‖‖ω1‖∞ exp(C)

and thus

‖ξ(0)‖ ≤ 1

κ
(‖ω2‖ + ‖E1‖‖ω1‖∞ exp(C))

≤ 1

κ
(1 + ‖E1‖ exp(C)) max{‖ω2‖, ‖ω1‖∞}

=: κ1‖(ω1, ω2)‖Ω.

Hence,

‖ξ(t)‖ ≤ (‖ξ(0)‖ + ‖ω1‖∞) exp(C) ≤ (κ1 + 1) exp(C)‖(ω1, ω2)‖Ω.
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With κ2 := (κ1 + 1) exp(C) we proved ‖ξ‖∞ ≤ κ2‖(ω1, ω2)‖Ω. As

‖ξ′(t)‖ ≤ ‖B(t)‖‖ξ(t)‖ + ‖ω1(t)‖ ≤ Cκ2‖(ω1, ω2)‖Ω + ‖ω1‖∞

holds, we have

‖ξ′‖∞ ≤ (1 + Cκ2)‖(ω1, ω2)‖Ω.

With K := max{κ2, 1 + Cκ2} we obtain ‖ξ‖1,∞ ≤ K‖(ω1, ω2)‖Ω, which shows the
assertion.

Remark 3.5. An alternative way to show the (unique) solvability of the boundary
value problem (3.6) can be found in sections 3 and 4 of Malanowski and Maurer [24].
The idea is to interpret the boundary value problem (3.6) as the first-order necessary
optimality conditions for a linear-quadratic accessory problem. Then, the unique solv-
ability of the accessory problem is shown under a complete controllability condition
and a coercivity condition for the objective function. The latter will be satisfied if—
in addition to other assumptions—a suitably defined Riccati equation has a bounded
solution.

A combination of Theorems 2.6, 3.2, and 3.4 leads to the following result.
Theorem 3.6. Let z∗ be a zero of F . Suppose that there exists a constant Δ > 0

such that for every z ∈ UΔ(z∗) the assumptions of Theorems 3.2 and 3.4 hold with
uniform constants. Then, the generalized Jacobian ∂∗F (z) is nonsingular and there
exists a constant C > 0 such that ‖V −1‖L(Y,Z) ≤ C for every V ∈ ∂∗F (z). Moreover,
the assertions of Theorem 2.6 hold.

4. Globalization. One reason that the Fischer–Burmeister function is appealing
is that its square

φ(a, b) := ϕ(a, b)2 =
(√

a2 + b2 − a− b
)2

is continuously differentiable with φ′(a, b) = 2ϕ(a, b)v, where v ∈ ∂ϕ(a, b) is arbitrary.
Hence, the mappings

(x̄, ū, η̄) ∈ R
nx × R

nu × R
nc → φ(−ci(x̄, ū), η̄i), i = 1, . . . , nc,

are continuously differentiable by the chain rule. This allows us to globalize the local
nonsmooth Newton’s method using the squared L2-norm of F as a merit function:

Θ(z) :=
1

2
‖F (z)‖2

2

=
1

2

∫ 1

0

‖x′(t) − f(x(t), u(t))‖2
dt

+
1

2

∫ 1

0

∥∥λ′(t) + H ′
x(x(t), u(t), λ(t), η(t))�

∥∥2
dt

+
1

2

∫ 1

0

‖H ′
u(x(t), u(t), λ(t), η(t))‖2

dt +
1

2

nc∑
i=1

∫ 1

0

φ(−ci(x(t), u(t)), ηi(t))dt

+
1

2
‖ψ(x(0), x(1))‖2 +

1

2
‖λ(0) + ψ′

x0
(x(0), x(1))�σ‖2

+
1

2
‖λ(1) − ψ′

x1
(x(0), x(1))�σ‖2.
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Θ is Fréchet-differentiable in Z if f0, f, c, ψ are twice continuously differentiable. An
analysis of the derivative of Θ reveals that for dk with Vk(d

k) = −F (zk) it holds

(4.1) Θ′(zk)(dk) = −2Θ(zk) = −‖F (zk)‖2
2.

As a consequence, dk is a direction of descent of Θ at zk and the line search in the
following global version of the nonsmooth Newton’s method is well defined unless zk

is a zero of F .
Algorithm 4.1. Global Nonsmooth Newton’s Method.

(0) Choose z0, β ∈ (0, 1), σ ∈ (0, 1/2).
(1) If some stopping criterion is satisfied, stop.
(2) Chose an arbitrary Vk ∈ ∂∗F (zk) and compute the search direction dk from

Vk(d
k) = −F (zk).

(3) Find smallest ik ∈ N0 with

Θ(zk + βikdk) ≤ Θ(zk) + σβikΘ′(zk)(dk)

and set αk = βik .
(4) Set zk+1 = zk + αkd

k, k = k + 1, and goto (1).
The upcoming global convergence proof extends the proof presented in Jiang [18]

for finite dimensions into infinite dimensions.
Theorem 4.2. Let the inverse operators V −1

k exist for all k and let C > 0 be a
constant such that ‖V −1

k ‖L(Y,Z) ≤ C holds for all k. Let z∗ be an accumulation point

of the sequence {zk} generated by the global nonsmooth Newton method.
Then, z∗ is a zero of F .
Proof. Let {zkj}j∈N be a subsequence with zkj → z∗ and F (zkj ) 	= 0. Then,

Θ′(zkj )(dkj ) = −2Θ(zkj ) = −‖F (zkj )‖2
2 < 0. The line search is well defined by the

differentiability of Θ.
(i) Case 1: Assume

α := lim inf
j→∞

αkj
> 0.

Then

0 ≤ Θ(zkj+1) ≤ Θ(zkj+1) ≤ Θ(zkj )+σαkjΘ
′(zkj )(dkj ) = Θ(zkj )

(
1 − 2σαkj

)
.

With σ ∈ (0, 1/2) and α ≤ αkj ≤ 1 it follows that 0 < 1−2σαkj ≤ 1−2σα < 1,
and repeated application yields

0 ≤ Θ(zkj ) ≤ Θ(zk0) (1 − 2σα)
j → 0.

By the continuity of F , z∗ is a zero of F .
(ii) Case 2: Assume that there is a subsequence {zk}k∈J , J ⊆ {kj | j ∈ N} with

αk → 0, k ∈ J .
The sequence {dk} is bounded since {V −1

k } is bounded and

0 ≤ ‖dk‖Z = ‖V −1
k (F (zk))‖Z ≤ C‖F (zk)‖Y ≤ C‖F (z0)‖Y .

Unfortunately, the boundedness of {dk} in an infinite dimensional space does
not imply that there exists a convergent subsequence. However, since dk is



342 MATTHIAS GERDTS

bounded in Z = W 1,∞([0, 1],Rnx) × L∞([0, 1],Rnu) × W 1,∞([0, 1],Rnx) ×
L∞([0, 1],Rnc)×R

nψ , it is also bounded in the space Ẑ := W 1,2([0, 1],Rnx)×
L2([0, 1],Rnu)×W 1,2([0, 1],Rnx)×L2([0, 1],Rnc)×R

nψ . Ẑ is a Hilbert space
and thus reflexive. According to Theorem III.3.7 in [33], there exists a weakly
convergent subsequence {dk}, k ∈ Ĵ ⊆ J . Hence, there exists some d∗ ∈ Ẑ
such that for every element g ∈ Ẑ∗ it holds that

(4.2) g(dk) → g(d∗).

Herein, Ẑ∗ denotes the topological dual space of Ẑ. The derivative Θ′(z∗)(·)
is an element of Z∗ and an investigation reveals that it is essentially made up
of linear functionals of type

g1(z) =

∫ 1

0

h1(z∗(t))z(t)dt, g2(z) =

∫ 1

0

h2(z∗(t))z
′(t)dt

with essentially bounded functions h1(z∗(·)) and h2(z∗(·)). Thus, by appli-
cation of the Cauchy–Schwartz inequality, the functionals g1 and g2 are also
linear continuous functionals on Ẑ and thus g1, g2, and in particular Θ′(z∗)(·)
can be viewed as elements of Ẑ∗.
Hence, (4.2) holds for g(·) = Θ′(z∗)(·):

Θ′(z∗)(d
k) → Θ′(z∗)(d∗).

Furthermore, due to the continuity of Θ′(·) (in Z) for every ε > 0 there exists
δ > 0 such that for every ‖zk − z∗‖Z ≤ δ it holds that

|Θ′(zk)(dk) − Θ′(z∗)(d
k)| = ‖dk‖Z

∣∣∣∣Θ′(zk)

(
dk

‖dk‖Z

)
− Θ′(z∗)

(
dk

‖dk‖Z

)∣∣∣∣
≤ ‖dk‖Z · sup

‖d‖Z=1

|Θ′(zk)(d) − Θ′(z∗)(d)|

= ‖dk‖Z · ‖Θ′(zk) − Θ′(z∗)‖L(Z,R) ≤ ε‖dk‖Z .

For arbitrary ε > 0 we find

|Θ′(zk)(dk) − Θ′(z∗)(d∗)| ≤ |Θ′(zk)(dk) − Θ′(z∗)(d
k)|

+|Θ′(z∗)(d
k) − Θ′(z∗)(d∗)|

≤ ε‖dk‖Z + |Θ′(z∗)(d
k) − Θ′(z∗)(d∗)|.

Since ε > 0 was arbitrary and since dk is weakly convergent it holds that

Θ′(zk)(dk) → Θ′(z∗)(d∗) as k → ∞, k ∈ Ĵ .

In a similar way, the Fréchet differentiability of Θ yields∣∣∣∣ 1

αk

(
Θ(zk + αkd

k) − Θ(zk)
)
− Θ′(z∗)(d∗)

∣∣∣∣
≤
∣∣∣∣ 1

αk

(
Θ(zk + αkd

k) − Θ(zk)
)
− Θ′(zk)(dk)

∣∣∣∣+ ∣∣Θ′(zk)(dk) − Θ′(z∗)(d∗)
∣∣

≤ 1

αk
o(‖αkd

k‖Z) +
∣∣Θ′(zk)(dk) − Θ′(z∗)(d

k)
∣∣+ ∣∣Θ′(z∗)(d

k) − Θ′(z∗)(d∗)
∣∣

≤ ‖dk‖Z
o(αk‖dk‖Z)

αk‖dk‖Z
+ ε‖dk‖Z +

∣∣Θ′(z∗)(d
k) − Θ′(z∗)(d∗)

∣∣ .
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Since dk is weakly convergent it holds that

1

αk

(
Θ(zk + αkd

k) − Θ(zk)
)
→ Θ′(z∗)(d∗) as k → ∞, k ∈ Ĵ .

The line search in step 3 of the algorithm yields

Θ(zk + αkd
k) − Θ(zk)

αk
≤ σΘ′(zk)(dk),

Θ(zk + αk

β dk) − Θ(zk)
αk

β

> σΘ′(zk)(dk).

Passing to the limit and exploiting the previous considerations yields

σΘ′(z∗)(d∗) = Θ′(z∗)(d∗).

Since σ ∈ (0, 1/2) this only holds for Θ′(z∗)(d∗) = 0. Thus, we have shown

−‖F (zk)‖2
2 = Θ′(zk)(dk) → Θ′(z∗)(d∗) = 0.

By the continuity of F , z∗ is a zero of F .
The previous result shows only that each accumulation point is a zero of F . It

would be nice to have also the fast local convergence properties of the local method.
The locally superlinear convergence would follow from the local convergence theorem,
Theorem 2.3, if we were able to show that αk = 1 satisfies Armijo’s rule for all
sufficiently large k. But unfortunately, this leads to a two-norm discrepancy. The
proof of Theorem 2.3 showed the superlinear convergence of the values ‖F (zk)‖Y ,
i.e., for any ε > 0 there exists δ > 0 such that for all ‖z − z∗‖ ≤ δ it holds that

‖z + d− z∗‖Z ≤ ε‖z − z∗‖Z , ‖F (z + d)‖Y ≤ ε‖F (z)‖Y ,

where d = −V −1F (z), V ∈ ∂∗F (z). In particular, with z = zk and d = dk there
exists δ > 0 such that for all ‖zk − z∗‖Z ≤ δ it holds that

‖zk + dk − z∗‖Z ≤ 1

2
‖zk − z∗‖Z , ‖F (zk + dk)‖Y ≤

√
1 − 2σ‖F (zk)‖Y .

Unfortunately, we would need this property not for the norm ‖ · ‖Y but for the norm
‖ · ‖2 since then

Θ(zk + dk) =
1

2
‖F (zk + dk)‖2

2 ≤ 1 − 2σ

2
‖F (zk)‖2

2 = (1 − 2σ)Θ(zk),

respectively,

Θ(zk + dk) ≤ Θ(zk) − 2σΘ(zk) = Θ(zk) + σΘ′(zk)(dk),

i.e., Armijo’s line search would accept αk = 1 and zk+1 = zk + dk. Furthermore,
‖zk+1 − z∗‖Z ≤ 1

2‖zk − z∗‖Z ≤ δ and we are in the same situation as above and the
argument could be repeated.

Unfortunately, the superlinear convergence of the residual norms ‖F (zk)‖2 could
not be established by now. An additional assumption is needed to prove the fast local
convergence.
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Theorem 4.3. Let the assumptions of Theorem 4.2 be valid. Let, in addition,
there exist a constant K > 0 such that

‖F (zk)‖Y ≤ K‖F (zk)‖2

holds for {zk} with zk → z∗. Then, for sufficiently large k the step length αk = 1 is
accepted and the global method turns into the local one.

Proof. Owing to the previous considerations it remains to show that

lim
k→∞

‖F (zk+1)‖2

‖F (zk)‖2
= 0.

Recall that ‖ · ‖Y is essentially the L∞-norm. Hence, there exits a constant C1 > 0
with ‖y‖2 ≤ C‖y‖Y for all y ∈ Y . Together with the superlinear convergence of the
values ‖F (zk)‖Y in Theorem 2.3 for every ε > 0 and for sufficiently large k it holds
that

‖F (zk + dk)‖2 ≤ C‖F (zk + dk)‖Y ≤ Cε‖F (zk)‖Y ≤ C ·K · ε‖F (zk)‖2.

Since ε was arbitrary, this shows the superlinear convergence of the values
‖F (zk)‖2.

5. Numerical results. All computations were performed on a PC with 3 GHz
processing speed. We used ‖F (zk)‖2 ≤ 10−15 as a stopping criterion in the nonsmooth
Newton method.

5.1. Rayleigh problem, version 1. We illustrate the method for the Rayleigh
problem [26, p. 39]. Minimize

(5.1)

∫ 4.5

0

u(t)2 + x1(t)
2dt

subject to

(5.2)
x′

1 = x2, x1(0) = −5,
x′

2 = −x1 + x2

(
1.4 − 0.14x2

2

)
+ 4u, x2(0) = −5,

and

u +
1

6
x1 ≤ 0.

With x = (x1, x2)
�, λ = (λ1, λ2)

�, σ = (σ1, σ2)
� the Hamilton function reads as

H(x, u, λ, η) = u2 + x2
1 + λ1x2 + λ2

(
−x1 + x2

(
1.4 − 0.14x2

2

)
+ 4u

)
+ η

(
u +

1

6
x1

)
.

With z = (x, u, λ, η, σ) the function F in (2.9) is given by

F (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
1 − x2

x′
2 −

(
−x1 + x2

(
1.4 − 0.14x2

2

)
+ 4u

)
λ′

1 + 2x1 − λ2 + 1
6η

λ′
2 + λ1 + λ2

(
1.4 − 0.42x2

2

)
x1(0) + 5
x2(0) + 5
λ1(0) + σ1

λ2(0) + σ2

λ1(4.5)
λ2(4.5)
2u + 4λ2 + η
ϕ
(
−
(
u + 1

6x1

)
, η
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Table 5.1

Output of globalized nonsmooth Newton method for the first version of Rayleigh’s problem for
N = 100 subintervals and Euler discretization: local quadratic convergence.

ITER ALPHA ||F||^2 ||d^k||

----------------------------------------------------------

0 0.000000E+00 0.245000E+04 0.173257E+04

1 0.531441E+00 0.173372E+04 0.316003E+04

2 0.717898E-01 0.170185E+04 0.897810E+03

3 0.185302E+00 0.155477E+04 0.653211E+03

...

10 0.100000E+01 0.147905E-05 0.592231E-02

11 0.100000E+01 0.167034E-08 0.213155E-03

12 0.100000E+01 0.253557E-14 0.263768E-06

13 0.100000E+01 0.152582E-25 0.598877E-12

In each iteration of the nonsmooth Newton method we have to solve the linear bound-
ary value problem (3.2), (3.6) for x, λ, σ. We leave the details of the boundary
value problem (3.2), (3.6) and equation (3.5) to the reader. We note that for all
(s + 1)2 + (r + 1)2 ≤ 1 it holds

detA = det

(
2 1
−s r

)
= 2r + s 	= 0

and thus the operator A in (3.4) is invertible. The differential equations are dis-
cretized on [0, 4.5] using forward Euler’s method with N equidistant subintervals.
The occurring derivatives (xk)′ and (λk)′ are approximated by finite forward differ-
ences. Moreover, it turned out that it is advisable to scale the boundary conditions
and the transversality conditions in the merit function by the step size h = 1/N . The
boundary value problem was solved by the single shooting method. Table 5.1 shows
the output of the globalized nonsmooth Newton method, i.e., step size α, residual
norm ‖F‖2, and ‖dk‖ during iteration. The iterations show the rapid quadratic con-
vergence at the end of the iteration sequence. Recall that only a locally superlinear
convergence rate was established in Theorem 2.6.

The following table summarizes results for different step sizes. The number of
iterations differs only by one, which indicates—at least numerically—the mesh inde-
pendence of the method. Furthermore, the CPU time grows at a linear rate with N .

N CPU time [s] Iterations
100 0.027 13
500 0.136 14

1000 0.271 14
2000 0.505 14
4000 1.083 14
8000 2.065 14

Figure 5.1 illustrates the iterates of the nonsmooth Newton’s method. Notice the
small inactive arc of the control-state constraint at the end of the time interval.

For comparison reasons the same optimal control problem was solved alternatively
by a direct discretization method as in Gerdts [10] with Euler discretization and
N = 100 subintervals. For this method the overall CPU time was 3.81 CPU seconds
on the same processor. Furthermore, for the direct discretization method the CPU
time grows nonlinearly with N . Hence, if all regularity assumptions are fulfilled, the
nonsmooth Newton’s method is an extremely efficient method.
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Fig. 5.1. Numerical solution of the first version of Rayleigh’s problem for N = 100 Euler steps:
intermediate iterates (thin lines) and converged solution (thick lines).

5.2. Rayleigh problem, version 2. We consider a slight variation of the
Rayleigh problem where boundary conditions are added and the control-state con-
straint is replaced by box constraints for the control [26, p. 39]. Minimize (5.1)
subject to (5.2) and x1(4.5) = 0, x2(4.5) = 0 and

−1 ≤ u ≤ 1.
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With x = (x1, x2)
�, λ = (λ1, λ2)

�, σ = (σ1, . . . , σ4)
�, η = (η1, η2)

� the Hamilton
function reads as

H(x, u, λ, η) = u2 + x2
1 + λ1x2 + λ2

(
−x1 + x2

(
1.4 − 0.14x2

2

)
+ 4u

)
+ η1(u− 1) + η2(−u− 1).

With z = (x, u, λ, η, σ) the function F in (2.9) is given by

F (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
1 − x2

x′
2 −

(
−x1 + x2

(
1.4 − 0.14x2

2

)
+ 4u

)
λ′

1 + 2x1 − λ2

λ′
2 + λ1 + λ2

(
1.4 − 0.42x2

2

)
x1(0) + 5
x2(0) + 5
x1(4.5)
x2(4.5)
λ1(0) + σ1

λ2(0) + σ2

λ1(4.5) − σ3

λ2(4.5) − σ4

2u + 4λ2 + η1 − η2

ϕ (− (u− 1) , η1)
ϕ (− (−u− 1) , η2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Again, we leave the details of the linear boundary value problem (3.2), (3.6) and
equation (3.5) to the reader. An investigation of the generalized differential of ϕ
yields

detA = det

⎛
⎝ 2 1 −1

−s1 r1 0
s2 0 r2

⎞
⎠ = 2r1r2 + r1s2 + r2s1 	= 0

for any (s1, r1) ∈ ∂ϕ(−(u − 1), η1) and (s2, r2) ∈ ∂ϕ(−(−u − 1), η2). Figure 5.2
illustrates the iterates of the nonsmooth Newton method for N = 100. Table 5.2
shows more detailed information about the iterations, i.e., step size α, residual norm
‖F‖2, and ‖dk‖. Again, the boundary conditions and the transversality conditions
in the merit function were scaled by the step size h = 1/N . The iterations show the
rapid quadratic convergence at the end of the iteration sequence. Recall that only a
locally superlinear convergence rate was established in Theorem 2.6.

The number of iterations remains nearly constant, which indicates—at least
numerically—the mesh independence of the method. Furthermore, the CPU time
grows at a linear rate with N .

N CPU time [s] Iterations
100 0.049 17
500 0.204 15

1000 0.502 18
2000 0.848 16
4000 1.785 17
8000 3.713 17



348 MATTHIAS GERDTS

Fig. 5.2. Numerical solution of the second version of Rayleigh’s problem for N = 100 Euler
steps: intermediate iterates (thin lines) and converged solution (thick lines).
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Table 5.2

Output of globalized nonsmooth Newton’s method for the second version of Rayleigh’s problem
for N = 100 subintervals and Euler discretization: local quadratic convergence.

ITER ALPHA ||F||^2 ||d^k||

----------------------------------------------------------

0 0.000000E+00 0.205000E+04 0.301353E+08

1 0.898145E-07 0.205000E+04 0.772399E+06

2 0.442969E-05 0.204999E+04 0.137827E+04

3 0.656100E+00 0.137884E+04 0.533635E+03

...

14 0.100000E+01 0.485899E-04 0.165212E+00

15 0.100000E+01 0.710910E-07 0.678731E-02

16 0.100000E+01 0.108957E-12 0.842304E-05

17 0.100000E+01 0.271474E-24 0.130452E-10

Again, the same optimal control problem was solved alternatively by a direct
discretization method as in Gerdts [10] with Euler discretization and N = 100 subin-
tervals. Herein, for better comparableness the control constraints −1 ≤ u ≤ 1 are
not viewed as simple box constraints but are treated algorithmically as two nonlinear
mixed control-state constraints. For the direct method the overall CPU time was 2.41
CPU seconds. As mentioned before, the CPU time grows at a nonlinear rate with
N . Again, if all regularity assumptions are fulfilled, the nonsmooth Newton method
turns out to be extremely efficient.

Acknowledgments. The author thanks the anonymous referees for very detailed
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Zürich, 1976.

[22] K. Malanowski, On normality of Lagrange multipliers for state constrained optimal control
problems, Optimization, 52 (2003), pp. 75–91.
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1. Introduction. In this paper we discuss an algorithm for equality constrained
optimization problems of the form

(1.1)
min
x∈Rn

f(x)

subject to (s.t.) c(x) = 0,

where f : R
n → R and c : R

n → R
t are smooth nonlinear functions. Our interest is

in methods for very large problems with t ≤ n for which the exact computation of
steps in contemporary methods can be prohibitively expensive. One class of problems
of this type that demands algorithmic improvements are those where the constraint
functions are defined by systems of partial differential equations (PDEs).

One of the leading methods for solving constrained optimization problems is se-
quential quadratic programming (SQP). (In fact, modern interior point methods re-
duce to SQP when inequality constraints are not present in the problem formulation
[18].) Algorithms in this class enjoy global convergence guarantees and typically re-
quire few iterations and function evaluations to locate a solution point. A drawback
of many contemporary SQP algorithms, however, is that they require explicit rep-
resentations of exact derivative information and the solution of one or more linear
systems during every iteration. The acquisition of these quantities is particularly
cumbersome in large-scale settings and the factorization of large iteration matrices is
often impractical.
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One way to overcome these difficulties is to solve the SQP subproblems approxi-
mately using iterative linear algebra techniques. The main purpose of this paper is to
determine the accuracy with which the SQP subproblems must be solved in order to
ensure global convergence in the context of a practical algorithm for problem (1.1).
We both propose such a method and analyze its global behavior.

Our method resembles those in the class of inexact Newton methods for solving
nonlinear systems of equations. There are, however, important differences between
the two approaches. Inexact Newton methods for systems of equations are controlled
by forcing parameters that ensure that the norm of the entire residual of the Newton
equations decreases at every iteration [8]. Our approach, on the other hand, is based
on a requirement that the step decreases a local approximation of a merit function
while also satisfying bounds on the primal and dual components of the residual. We
present sets of easily calculable conditions that handle these two components of the
residual as separate quantities when determining if a given inexact solution is appro-
priate for the algorithm to follow. Such a solution may, for example, allow for an
increase in the residual corresponding to primal feasibility provided it yields a sub-
stantial decrease in dual feasibility, or vice versa. The behavior of these components
also helps determine when it is appropriate to increase the penalty parameter in the
merit function.

A variety of methods for constrained optimization with inexactness in step com-
putations have been proposed. Jäger and Sachs [14] describe an inexact reduced
SQP method in Hilbert space. Lalee, Nocedal, and Plantenga [16], Byrd, Hribar,
and Nocedal [5], and Heinkenschloss and Vicente [13] propose composite step trust
region approaches where the step is computed as an approximate solution to an SQP
subproblem. Similarly, Walther [22] provides a composite step method that allows
incomplete constraint Jacobian information. Leibfritz and Sachs [17] analyze an inte-
rior point method that benefits from a reformulation of the quadratic programming
subproblems as mixed linear complementarity problems. Our approach has some fea-
tures in common with the algorithms of Biros and Ghattas [1, 2], Haber and Ascher
[11], and Prudencio, Byrd, and Cai [20] as we follow a full space SQP method and per-
form a line search to promote convergence. Unlike these papers, however, we present
conditions that guarantee the global convergence of inexact SQP steps.

This paper is organized as follows. In section 2 we provide an overview of our
approach and globalization strategy. Section 3 contains details about the most crucial
aspect of our algorithm, namely, the sets of conditions used to determine if a given
inexact SQP solution is considered an acceptable step. The well-posedness of our
approach is also discussed, the accountability of which allows us to present global
convergence guarantees under common conditions in section 4. Section 5 provides
numerical results to illustrate the robustness of our method. We focus on problems
for which overall algorithm performance has been seen to be sensitive to the quality
of inexact subproblem solutions. Closing remarks and issues related to extensions of
this work are presented in section 6.

2. Outline of the algorithm. Let us formalize a basic SQP approach before
clarifying the novelties of our algorithm. The Lagrangian function corresponding to
problem (1.1) is

(2.1) L(x, λ) � f(x) + λT c(x),

where λ ∈ R
t are Lagrange multipliers. If f and c are continuously differentiable, then

the first-order optimality conditions for x∗ to be an optimal solution to problem (1.1)
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state that there exist multipliers λ∗ such that (x∗, λ∗) is a solution to the nonlinear
system of equations

(2.2) ∇L(x, λ) =

[
g(x) + A(x)Tλ

c(x)

]
= 0,

where g(x) is the gradient of the objective function and A(x) is the Jacobian of c(x).
The components in (x, λ) are referred to as the primal and dual variables, respectively.

An SQP algorithm defines an appropriate displacement dk in the primal space
from the kth iterate xk as the minimizer of a quadratic model of the objective subject
to a linearization of the constraints. The quadratic program can be defined as

(2.3)
min
d∈Rn

f(xk) + g(xk)
T d + 1

2d
TW (xk, λk)d

s.t. c(xk) + A(xk)d = 0,

where

W (x, λ) ≈ ∇2
xxL(x, λ) = ∇2

xxf(x) +

t∑
i=1

λi∇2
xxc

i(x)

is equal to, or is a symmetric approximation for, the Hessian of the Lagrangian. Here,
ci(x) and λi denote the ith constraint function and its corresponding dual variable,
respectively. If the constraint Jacobian A(xk) has full row rank and W (xk, λk) is
positive definite on the null space of A(xk), then a solution to (2.3) is well defined in
this context. An alternative characterization of the SQP step dk is given by the fact
that it can equivalently be obtained under similar assumptions as part of the solution
to the primal-dual system (see [18])

(2.4)

[
W (xk, λk) A(xk)

T

A(xk) 0

] [
dk
δk

]
= −

[
g(xk) + A(xk)

Tλk

c(xk)

]

constructed by applying Newton’s method to (2.2).
An explicit representation of the primal-dual matrix

(2.5)

[
W (xk, λk) A(xk)

T

A(xk) 0

]

and an exact solution of (2.4) can be expensive to obtain, particularly when the
factors of (2.5) are not very sparse. We are interested, therefore, in identifying inexact
solutions of (2.4) that can also be considered appropriate steps for the algorithm to
accept during a given iteration. Such inexact solutions can be obtained in a variety of
ways, such as by applying an iterative linear system solver to the primal-dual system.
Regardless of the method chosen, for an inexact solution (dk, δk) we define the residual
vectors (ρk, rk) by the equation

(2.6)

[
W (xk, λk) A(xk)

T

A(xk) 0

] [
dk
δk

]
= −

[
g(xk) + A(xk)

Tλk

c(xk)

]
+

[
ρk
rk

]
.

The step can then be appraised based on properties of the residual vector and other
quantities related to the SQP subproblem formulation (2.3). For convex problems,
an inexact Newton method intended for nonlinear equations will suffice, provided
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that W (xk, λk) is the exact Hessian of the Lagrangian [8]. That is, the norm of
the right-hand-side vector in (2.4) can serve as a merit function, and convergence
can be guaranteed by systematically decreasing this value. For nonconvex problems,
however, a step that decreases the first-order optimality error may move away from a
minimizer, or may be trapped near a stationary point of the Lagrangian. Thus, merit
functions more appropriate to constrained optimization should be considered.

We now outline the algorithm and globalization strategy that will be developed
in detail in the following sections. An integral part of the approach is the mechanism
used to determine if a trial primal-dual solution (d, δ) to (2.4) is acceptable during a
given iteration. For this purpose, we make use of the merit function

(2.7) φ(x;π) � f(x) + π‖c(x)‖,

where π > 0 is known as the penalty parameter and ‖ · ‖ denotes a norm on R
t.

We observe that φ(x;π) is not continuously differentiable, but it is exact in the sense
that if π is greater than a certain threshold, then a first-order optimal point of (1.1)
is a stationary point of φ(x;π). That is, the directional derivative of φ(x;π) in a
direction d, denoted by Dφ(d;π), is nonnegative at x∗ for all d ∈ R

n. The challenge
is to compute inexact SQP steps and a value for π that ensure progress in the merit
function φ(x;π) during every iteration.

Upon the calculation and acceptance of the search direction dk for a particular
value πk of the penalty parameter, we perform a backtracking line search to compute
a steplength coefficient αk satisfying the Armijo condition

(2.8) φ(xk + αkdk;πk) ≤ φ(xk;πk) + ηαkDφ(dk;πk)

for some 0 < η < 1. Accordingly, a primal-dual step will be accepted only if its primal
component is a descent direction for the merit function.

In summary, our approach follows a standard line search SQP framework. During
each iteration, a step is computed as an inexact solution to the primal-dual system
(2.6) satisfying appropriate conditions that deem the step acceptable. The penalty
parameter is then set based on properties of the computed step, after which a back-
tracking line search is performed to compute a steplength coefficient αk satisfying
the Armijo condition (2.8). Finally, the iterate is updated along with function and
derivative information at the new point. The novelty of our approach, i.e., the precise
definition of what constitutes an acceptable step, and the convergence properties of
this algorithm are considered in the remainder of this paper.

We drop functional notation throughout the rest of the paper when values are
clear from the context and delimit iteration number information for functions as with
variables; i.e., we denote gk � g(xk) and similarly for other quantities. All norms are
considered Euclidean (or l2) norms unless otherwise indicated, though much of our
analysis will apply for any norm.

3. Step computation and selection. An intuitive condition that one may
impose on an inexact SQP step is that the directional derivative of the merit function
along the primal component dk must be sufficiently negative. Such a condition could
be used in the development of a globally convergent SQP approach, but quantifying
an appropriate steepness of the directional derivative is a difficult task in practice.

As an alternative, let us borrow from an approach commonly employed in trust
region methods that begins by considering a local model of the merit function φ(x;π)
around the current iterate xk and the changes in the merit function it predicts for
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steps in the primal space. The model has the form

mk(d;π) � fk + gTk d + max{ 1
2d

TWkd, 0} + π‖ck + Akd‖,

where the max term yields a quadratic model of the objective or a linear one depending
on the curvature of Wk along d. With this approximation, we can estimate the
reduction in the merit function given by a step dk by evaluating

Δmk(dk;πk) � mk(0;πk) −mk(dk;πk)

= −gTk dk − max{ 1
2d

T
kWkdk, 0} + πk(‖ck‖ − ‖ck + Akdk‖)

= −gTk dk − max{ 1
2d

T
kWkdk, 0} + πk(‖ck‖ − ‖rk‖),(3.1)

where the residual rk = ck + Akdk as in (2.6).
At the heart of our approach is the claim that a given primal-dual step is often

beneficial for the algorithm to follow provided the following condition is satisfied.
Model Reduction Condition. A step (dk, δk) computed in an inexact SQP

algorithm must satisfy

(3.2) Δmk(dk;πk) ≥ σπk max{‖ck‖, ‖rk‖ − ‖ck‖}

for some 0 < σ < 1 and appropriate πk > 0.
We will see the effects of this condition below and in section 4. In particular, (3.2)

will indeed ensure that the directional derivative of the merit function is sufficiently
negative along the primal step component dk while also providing a mechanism for
determining appropriate values of the penalty parameter. We note that conditions
similar to the model reduction condition (3.2) are presented in the context of the
inexact composite-step SQP algorithm proposed by Heinkenschloss and Vicente [13].
However, their conditions are applicable only to a step that has been decomposed into
basic and nonbasic components, as accuracy is imposed on the components separately.
Their approach also differs from the one treated here in that they use a trust region
and assume that an approximate reduced Hessian is available.

3.1. Step acceptance conditions. An acceptable step will be required to sat-
isfy one of two sets of conditions. We refer to the conditions as termination tests
in reference to algorithms that apply an iterative solver to the primal-dual system
(2.4), as in this framework the conditions are used to determine when to terminate
the iteration. Each termination test will allow us to ensure that the step satisfies
(3.2) for an appropriate value of the penalty parameter and enforces requirements on
the residuals (ρk, rk) to ensure convergence to a local solution of (1.1). In addition,
the tests impose restrictions on when the algorithm is allowed to increase the penalty
parameter in order to satisfy the model reduction condition (3.2).

The first termination test addresses those steps providing a sufficiently large re-
duction in the model of the merit function for the most recent value of the penalty
parameter. We assume that an initial value π−1 > 0 is given.

Termination Test I. Let 0 < σ, κ < 1 be given constants. A step (dk, δk)
computed in an inexact SQP algorithm is acceptable if the model reduction condition
(3.2) holds for πk = πk−1 and

(3.3)

∥∥∥∥
[
ρk
rk

]∥∥∥∥ ≤ κ

∥∥∥∥
[
gk + AT

k λk

ck

]∥∥∥∥
for the residuals (ρk, rk) defined by (2.6).
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We claim that Termination Test I allows for productive steps to be taken that
may have been computed in a relatively cheap manner, say, after only a few iterations
of an iterative solver applied to the primal-dual system (2.4). For steps satisfying
this test, given that a sufficient reduction in the model of the merit function has been
obtained we need only enforce a generally loose bound on the residual vector. For even
greater flexibility one can in fact choose κ ≥ 1 in Termination Test I if the additional
condition

(3.4) ‖ρk‖ ≤ max{κ1‖gk + AT
k λk‖, κ2‖ck‖}, 0 < κ1 < 1, 0 < κ2,

is enforced. This may be useful, say, when applying our step acceptance criteria when
steps are not computed directly via (2.4) or when the use of a left preconditioner for
(2.4) produces steps corresponding to residuals larger in norm than the right-hand-
side vector (gk+AT

k λk, ck). All the results in the following sections hold if Termination
Test I has κ < 1 or if (3.4) is included when κ ≥ 1.

The second termination test addresses those steps providing a sufficiently large
reduction in the linear model of the constraints.

Termination Test II. Let 0 < ε < 1 and 0 < β be given constants. A step
(dk, δk) computed in an inexact SQP algorithm is acceptable if

‖rk‖ ≤ ε‖ck‖(3.5a)

and ‖ρk‖ ≤ β‖ck‖,(3.5b)

where the residuals (ρk, rk) are defined by (2.6).
A step satisfying Termination Test II may not satisfy the model reduction condi-

tion (3.2) for πk = πk−1. Thus, for such steps we require that the penalty parameter
be increased to satisfy

(3.6) πk ≥
gTk dk + max{ 1

2d
T
kWkdk, 0}

(1 − τ)(‖ck‖ − ‖rk‖)
� πtrial

k

for a given 0 < τ < 1. Notice from (3.5a) and 0 < ε < 1 that the denominator in the
above expression is positive and along with (3.1) the rule (3.6) implies

(3.7) Δmk(dk;πk) ≥ τπk(‖ck‖ − ‖rk‖) ≥ τ(1 − ε)πk‖ck‖.

Therefore, when (3.5a) is satisfied, the model reduction condition (3.2) holds with
σ = τ(1 − ε).

In summary, a step (dk, δk) will be required to satisfy Termination Test I or
II. In each case, the model reduction condition (3.2) will hold; Termination Test I
demands it explicitly and the rule (3.6) is used to enforce it when Termination Test II
is satisfied. For consistency between Termination Test I and II and (3.6), one should
set σ = τ(1 − ε) for Termination Test I.

The complete algorithm is the following. We refer to our step acceptance crite-
ria as SMART tests because they can be characterized as sufficient merit function
approximation reduction termination tests.

Algorithm A: Inexact SQP with SMART Tests.

Given parameters 0 < κ, ε, τ, σ, η < 1 and β > 0
Initialize x0, λ0, and π−1 > 0
for k = 0, 1, 2, . . . , until a convergence test for (1.1) is satisfied

Compute fk, gk, ck,Wk, and Ak and set πk ← πk−1 and αk ← 1
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Compute a step (dk, δk) satisfying Termination Test I or II
if Termination Test II is satisfied and (3.6) does not hold, set πk ← πtrial

k + 10−4

Perform a backtracking line search to obtain αk satisfying (2.8)
Set (xk+1, λk+1) ← (xk, λk) + αk(dk, δk)

endfor
In practice, the step can be computed by producing a sequence of candidate steps

{(d, δ)} via the application of an iterative solver to (2.4). The corresponding residuals
{(ρ, r)} can then be computed and Termination Tests I and II can be evaluated during
each iteration or after a few steps of the iterative solver. The constants (κ, ε, β)
should be tuned for a specific application and can significantly influence the practical
performance of the algorithm. In particular, the value for β should be chosen to reflect
the relationship between the scales of the primal and dual feasibility measures. The
scale dependence of such a parameter is not ideal, but a bound similar to (3.5b) is used
to ensure the boundedness of the penalty parameter πk (as we show in Lemma 4.7)
if the rule (3.6) is enforced. Since such a method for setting the penalty parameter
has proved to work well in practice [23], we employ this update rule in the algorithms
in this paper and define β and (3.5b) as given. The constants (τ, σ, η) generally
can be set to default values, or, in the case of σ, to promote consistency between
Termination Tests I and II. Further discussion of appropriate values for the constants
and an example implementation of Algorithm A are given in section 5.

3.2. Well-posedness of the algorithm. It is important to verify that the
iterates specified by Algorithm A can be always be computed in practice.

Suppose that (xk, λk) is an iterate that does not satisfy the optimality conditions
(2.2). We argue here that whenever Ak has full row rank and Wk is positive definite
on the null space of Ak, a sufficiently accurate solution to (2.4) will satisfy either
Termination Test I or II. If c(xk) 
= 0, then for (ρk, rk) sufficiently small we have that
(3.5), and thus Termination Test II, will be satisfied. Otherwise, if c(xk) = 0, then
(3.3) will be satisfied for (ρk, rk) sufficiently small. Then, since Wk is positive definite
on the null space of Ak, the solution of (2.4) is the solution to problem (2.3), which
means that the solution lies in the null space of Ak and corresponds to a nonpositive
objective value of (2.3) (since d = 0 is feasible). Therefore, by computing a step with
(ρk, rk) sufficiently small, it can easily be seen that (3.2), and thus Termination Test I,
will be satisfied.

Once an acceptable step is obtained, we must ensure that a positive steplength
parameter αk can be calculated to satisfy the Armijo condition (2.8). We consider
this issue by first presenting the following result.

Lemma 3.1. The directional derivative of the merit function φ(x;π) along a step
d satisfies

Dφ(d;π) ≤ gT d− π(‖c‖ − ‖r‖).

Proof. Applying Taylor’s theorem, we find for some constant γ1 > 0

φ(x + αd;π) − φ(x;π) = f(x + αd) − f(x) + π(‖c(x + αd)‖ − ‖c(x)‖)
≤ αgT d + γ1πα

2‖d‖2 + π(‖c(x) + αAd‖ − ‖c(x)‖)
= αgT d + γ1πα

2‖d‖2 + π(‖(1 − α)c(x) + αr‖ − ‖c(x)‖)
≤ α(gT d− π(‖c(x)‖ − ‖r‖)) + γ1πα

2‖d‖2,

where r = c(x) + Ad as in (2.6). Dividing both sides by α and taking the limit as
α → 0 yields the result.
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Given this result, we present the following consequence of our model reduction
condition. (A stronger result will be given as Lemma 4.6.)

Lemma 3.2. If the model reduction condition (3.2) holds for a step (dk, δk) and
penalty parameter πk, then the directional derivative of the merit function satisfies
Dφ(dk;πk) ≤ 0.

Proof. Observe from (3.1) that the inequality (3.2) can be rewritten as

gTk dk − πk(‖ck‖ − ‖rk‖) ≤ −max{ 1
2d

T
kWkdk, 0} − σπk max{‖ck‖, ‖rk‖ − ‖ck‖},

so, by Lemma 3.1, a step (dk, δk) satisfying (3.2) yields

Dφ(dk;πk) ≤ gTk dk − πk(‖ck‖ − ‖rk‖)
≤ −max{ 1

2d
T
kWkdk, 0} − σπk max{‖ck‖, ‖rk‖ − ‖ck‖},(3.8)

which yields the result.
We have shown under common conditions that an acceptable inexact SQP step

(dk, δk) can always be computed by Algorithm A and that steps satisfying the model
reduction condition (3.2) correspond to directions of nonincrease for the merit function
φ(x;πk). These results allow us to show that the Armijo condition (2.8) is satisfied
by some positive αk (see Lemma 4.8), and so Algorithm A is well-posed.

We mention in passing that, as a corollary to Lemma 3.1, we may avoid the
exact computation of the directional derivative of the merit function along a step d
by defining the estimate

(3.9) D̃φ(d;π) � gT d− π(‖c‖ − ‖r‖).

As such, the Armijo condition (2.8) can be substituted by

(3.10) φ(xk + αkdk;πk) ≤ φ(xk;πk) + ηαkD̃φ(dk;πk).

All the analysis in this paper holds when either (2.8) or (3.10) is observed in the line
search procedure of Algorithm A. For convenience, we choose to use (3.10).

4. Global analysis. Let us begin our investigation of the global behavior of
Algorithm A by making the following assumptions about the problem and the set of
computed iterates.

Assumptions 4.1. The sequence {xk, λk} generated by Algorithm A is contained
in a convex set Ω and the following properties hold:

(a) The functions f and c and their first and second derivatives are bounded on
Ω.

(b) The sequence {λk} is bounded.
(c) The constraint Jacobians Ak have full row rank and their smallest singular

values are bounded below by a positive constant.
(d) The sequence {Wk} is bounded.
(e) There exists a positive constant μ > 0 such that for any u ∈ R

n with u 
= 0
and Aku = 0 we have uTWku ≥ μ‖u‖2.

These assumptions are fairly standard for a line search method [12, 19]. As-
sumption 4.1(a) is a little weaker than the common assumption that the iterates are
contained in a compact set. Assumptions 4.1(b) and (c) are strong; we use them to
simplify the analysis in order to focus on the issues related to inexactness. It would
be of interest in future studies of inexact SQP methods to relax these assumptions.
Assuming that Wk is positive definite on the null space of the constraints is natural
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for line search algorithms, for otherwise there would be no guarantee of descent. We
comment further on the validity of Assumption 4.1(b) in section 6.

We now assume that during iteration k we have obtained an acceptable step
(dk, δk) with residuals (ρk, rk) defined by (2.6). We consider the decomposition

(4.1) dk = uk + vk,

where uk lies in the null space of the constraint Jacobian Ak and vk lies in the
range space of AT

k . We do not intend to compute the components explicitly; the
decomposition is only for analytical purposes [4, 6]. We refer to uk, which by definition
satisfies Akuk = 0, as the tangential component and vk as the normal component of
the step.

Our analysis hinges on our ability to classify the effects of two types of steps: those
lying sufficiently in the null space of the constraints and those sufficiently orthogonal
to the linearized feasible region. We show that such a distinction can be made by
observing the relative magnitudes of the normal and tangential components of the
primal component dk.

We first present a result related to the magnitude of the normal step.
Lemma 4.2. For all k, the normal component vk is bounded in norm and for

some γ2 > 0 satisfies

(4.2) ‖vk‖2 ≤ γ2 max{‖ck‖, ‖rk‖}.

Furthermore, for all k such that Termination Test II is satisfied, there exists γ3 > 0
such that

(4.3) ‖vk‖ ≤ γ3(‖ck‖ − ‖rk‖).

Proof. From Akvk = −ck + rk and the fact that vk lies in the range space of AT
k ,

it follows that

vk = AT
k (AkA

T
k )−1(−ck + rk),

and so

(4.4) ‖vk‖ ≤ ‖AT
k (AkA

T
k )−1‖(‖ck‖ + ‖rk‖).

This, along with (3.3), the fact that Assumptions 4.1(a) and (b) imply that ‖ck‖ and
‖gk + AT

k λk‖ are bounded, and the fact that Assumptions 4.1(a) and (c) imply that
‖AT

k (AkA
T
k )−1‖ is bounded, implies vk is bounded in norm for all k. The inequality

(4.4) also yields

‖vk‖2 ≤
(
‖AT

k (AkA
T
k )−1‖(‖ck‖ + ‖rk‖)

)2
≤

(
2‖AT

k (AkA
T
k )−1‖max{‖ck‖, ‖rk‖}

)2
=

[
4‖AT

k (AkA
T
k )−1‖2 max{‖ck‖, ‖rk‖}

]
max{‖ck‖, ‖rk‖},(4.5)

where (3.3) and Assumptions 4.1(a), (b), and (c) also imply that the bracketed ex-
pression in (4.5) is bounded. Thus, (4.2) holds. Finally, if Termination Test II is
satisfied, then from (3.5a) and (4.4) we have

‖vk‖ ≤ ‖AT
k (AkA

T
k )−1‖(1 + ε)‖ck‖

≤ ‖AT
k (AkA

T
k )−1‖

(
1+ε
1−ε

)
(‖ck‖ − ‖rk‖),

and so (4.3) holds.
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A similar result can be proved for the tangential component.
Lemma 4.3. The tangential components {uk} are bounded in norm.
Proof. Assumption 4.1(e), the fact that uk lies in the null space of the constraint

Jacobian Ak, and the first block equation of (2.6) yield

μ‖uk‖2 ≤ uT
kWkuk

= −gTk uk + ρTk uk − uT
kWkvk

≤ (‖gk‖ + ‖ρk‖ + ‖Wkvk‖)‖uk‖,

and so

‖uk‖ ≤ (‖gk‖ + ‖ρk‖ + ‖Wkvk‖) /μ.

The result follows from the facts that Assumptions 4.1, Lemma 4.2, and the bounds
(3.3) and (3.5b) imply that all terms in the right-hand side of this inequality are
bounded.

We now turn to the following result addressing the relative magnitudes of the
normal and tangential components of a given step.

Lemma 4.4. There exists a constant γ4 > 0 such that if ‖uk‖2 ≥ γ4‖vk‖2, then
1
2d

T
kWkdk ≥ μ

4 ‖uk‖2.
Proof. Assumption 4.1(e) implies that for any γ4 such that ‖uk‖2 ≥ γ4‖vk‖2 we

have

1
2d

T
kWkdk = 1

2u
T
kWkuk + uT

kWkvk + 1
2v

T
k Wkvk

≥ μ
2 ‖uk‖2 − ‖uk‖‖Wk‖‖vk‖ − 1

2‖Wk‖‖vk‖2

≥
(
μ

2
− ‖Wk‖√

γ4
− ‖Wk‖

2γ4

)
‖uk‖2.

Thus, Assumption 4.1(d) implies the result holds for a sufficiently large γ4 > 0.
With the above results, we can now formalize a distinction between two types of

steps. Let γ4 > 0 be chosen large enough as described in Lemma 4.4 and consider the
sets of indices

K1 � {k : ‖uk‖2 ≥ γ4‖vk‖2}
and K2 � {k : ‖uk‖2 < γ4‖vk‖2}.

Most of the remainder of our analysis will be dependent on these sets and the corre-
sponding quantity

Θk �
{

‖uk‖2 + ‖ck‖, k ∈ K1,
max{‖ck‖, ‖rk‖}, k ∈ K2.

The relevance of Θk will be seen in the following three lemmas as a quantity that can
be used for bounding the length of the primal step and the directional derivative of the
merit function, which will then provide a lower bound for the sequence of steplength
coefficients {αk}.

Lemma 4.5. There exists γ5 > 1 such that for all k,

‖dk‖2 ≤ γ5Θk

and hence

(4.6) ‖dk‖2 + ‖ck‖ ≤ 2γ5Θk.
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Proof. For k ∈ K1, we find

‖dk‖2 = ‖uk‖2 + ‖vk‖2

≤
(
1 + 1

γ4

)
‖uk‖2

≤
(
1 + 1

γ4

)
(‖uk‖2 + ‖ck‖).

Similarly, Lemma 4.2 implies that for k ∈ K2

‖dk‖2 = ‖uk‖2 + ‖vk‖2

< (γ4 + 1)‖vk‖2

≤ (γ4 + 1)γ2 max{‖ck‖, ‖rk‖}.
To establish (4.6) we note that Θk + ‖ck‖ ≤ 2Θk for all k.

The directional derivative of the merit function can be bounded in a similar
manner.

Lemma 4.6. There exists γ6 > 0 such that for all k,

D̃φ(dk;πk) ≤ −γ6Θk.

Proof. Recalling (3.8) and (3.9) we have

(4.7) D̃φ(dk;πk) ≤ −max{ 1
2d

T
kWkdk, 0} − σπk max{‖ck‖, ‖rk‖ − ‖ck‖}.

By Lemma 4.4, we have that 1
2d

T
kWkdk ≥ μ

4 ‖uk‖2 for k ∈ K1 and thus

D̃φ(dk;πk) ≤ −μ
4 ‖uk‖2 − σπk‖ck‖.

Similarly, for k ∈ K2 we have from (4.7) that

D̃φ(dk;πk) ≤ −σπk max{‖ck‖, ‖rk‖ − ‖ck‖}
≤ − 1

2σπk max{‖ck‖, ‖rk‖}.

The result holds for γ6 = min{μ
4 ,

1
2σπk}, which is bounded away from zero as {πk} is

nondecreasing.
Another important property of Algorithm A is that under Assumptions 4.1 the

penalty parameter remains bounded. We prove this result in the following lemma,
illustrating the importance of the bound (3.5b).

Lemma 4.7. The sequence of penalty parameters {πk} is bounded above and
πk = πk̄ for all k ≥ k̄ for some k̄ ≥ 0.

Proof. Recall that the penalty parameter is increased during iteration k of Algo-
rithm A only if Termination Test II is satisfied. Therefore, for the remainder of this
proof let us assume that Termination Test II is satisfied and so the inequalities in
(3.5) hold. By (3.6) the parameter πk is chosen to satisfy the first inequality in (3.7),
namely,

(4.8) Δmk(dk;πk) ≥ τπk(‖ck‖ − ‖rk‖),
where, according to the first block equation of (2.6), we can rewrite the model reduc-
tion as

Δmk(dk;πk) = πk(‖ck‖ − ‖rk‖) − gTk dk − max{ 1
2d

T
kWkdk, 0}

= πk(‖ck‖ − ‖rk‖)

+

{
−gTk vk − 1

2v
T
k Wkvk − ρTk uk + 1

2u
T
kWkuk if 1

2d
T
kWkdk ≥ 0

−gTk vk − (ρk −Wkvk)
Tuk + uT

kWkuk otherwise.
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The result follows from our ability to bound the terms in the second line of this
expression with respect to the constraint reduction.

If 1
2d

T
kWkdk ≥ 0, then under Assumptions 4.1 we have that Lemmas 4.2 and 4.3

and the bounds (3.5) on the residuals (ρk, rk) imply that there exists γ7, γ
′
7 > 0 such

that

−gTk vk − 1
2v

T
k Wkvk − ρTk uk + 1

2u
T
kWkuk ≥ −‖gk‖‖vk‖ − 1

2‖Wk‖‖vk‖2 − ‖ρk‖‖uk‖
≥ −γ7(‖vk‖ + ‖ρk‖)

≥ −γ7

(
γ3 + β

1−ε

)
(‖ck‖ − ‖rk‖)

= −γ′
7(‖ck‖ − ‖rk‖).

Similarly, if 1
2d

T
kWkdk < 0, then under Assumptions 4.1 we again find that Lemmas 4.2

and 4.3 and the bounds (3.5) on the residuals (ρk, rk) imply that there exists γ8, γ
′
8 > 0

such that

−gTk vk − (ρk −Wkvk)
Tuk + uT

kWkuk ≥ −‖gk‖‖vk‖ − ‖ρk‖‖uk‖ − ‖vk‖‖Wk‖‖uk‖
≥ −γ8(‖vk‖ + ‖ρk‖)

≥ −γ8

(
γ3 + β

1−ε

)
(‖ck‖ − ‖rk‖)

= −γ′
8(‖ck‖ − ‖rk‖).

These results together imply

Δmk(dk;πk) ≥ (πk − max{γ′
7, γ

′
8})(‖ck‖ − ‖rk‖),

and so (4.8) is always satisfied for

πk ≥ max{γ′
7, γ

′
8}/(1 − τ).

Therefore, if πk̄ ≥ max{γ′
7, γ

′
8}/(1− τ) for some k̄ ≥ 0, then πk = πk̄ for k ≥ k̄. This,

along with the fact that whenever Algorithm A increases the penalty parameter it
does so by at least a positive finite amount, proves the result.

The previous three lemmas can be used to bound the sequence of steplength
coefficients.

Lemma 4.8. The sequence {αk} is bounded below and away from zero.
Proof. Recall that the line search requires (3.10), which we rewrite for convenience

as

φ(xk + αkdk;πk) − φ(xk;πk) ≤ ηαkD̃φ(dk;πk).

Suppose that the line search fails for some ᾱ > 0, so

φ(xk + ᾱdk;πk) − φ(xk;πk) > ηᾱD̃φ(dk;πk).

From the proof of Lemma 3.1 and (3.9) we have

φ(xk + ᾱdk;πk) − φ(xk;πk) ≤ ᾱD̃φ(dk;πk) + ᾱ2γ1πk‖dk‖2,

so

(η − 1)D̃φ(dk;πk) ≤ ᾱγ1π̂‖dk‖2.
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Here, π̂ is a finite upper bound for the sequence {πk} whose existence follows from
Lemma 4.7. Lemmas 4.5 and 4.6 then yield

(1 − η)γ6Θk < ᾱγ1γ5π̂Θk,

so

ᾱ > (1 − η)γ6/(γ1γ5π̂).

Thus, αk need never be set below (1 − η)γ6/(γ1γ5π̂) for (3.10) to be satisfied.
We can now present the following result related to the lengths of the primal

components of the steps computed in Algorithm A and the convergence of the iterates
toward the feasible region of problem (1.1).

Lemma 4.9. Algorithm A yields

lim
k→∞

‖ck‖ = 0 and lim
k→∞

‖dk‖ = 0.

Proof. For all k, it can easily be seen that

φ(xk;πk) − φ(xk + αkdk;πk) ≥ γ9Θk

for some γ9 > 0 follows from (3.10) and Lemmas 4.6 and 4.8. By Lemma 4.7 the
algorithm eventually computes, during iteration k̄ ≥ 0, a finite value πk̄ beyond which
the penalty parameter will never be increased. Therefore, the penalty parameter
remains unchanged for k ≥ k̄, and for all k > k̄ (4.6) implies

φ(xk̄;πk̄) − φ(xk;πk̄) =

k−1∑
j=k̄

(φ(xj ;πk̄) − φ(xj+1;πk̄))

≥ γ9

k−1∑
j=k̄

Θj

≥ γ9

2γ5

k−1∑
j=k̄

(‖dj‖2 + ‖cj‖).

The result follows from the above and the fact that Assumption 4.1(a) implies φ(x;πk̄)
is bounded below.

We are now ready to present the main result of this section.
Theorem 4.10. Algorithm A yields

lim
k→∞

∥∥∥∥
[
gk + AT

k λk

ck

]∥∥∥∥ = 0.

Proof. Recall that αk ≤ 1 for all k and from Lemma 4.8 we have that {αk} is
bounded below and away from zero. An expansion of the first block of the optimality
conditions (2.2) yields

‖gk+1 + AT
k+1λk+1‖ ≤ ‖gk + AT

k λk + αk(∇2
xxLkdk + AT

k δk)‖ + α2
kE(dk, δk),

where

E(dk, δk) = O(‖dk‖2 + ‖dk · δk‖).



364 R. H. BYRD, F. E. CURTIS, AND J. NOCEDAL

This, along with the first block equation in (2.6) and Assumptions 4.1, implies

‖gk+1 + AT
k+1λk+1‖

≤ ‖gk + AT
k λk + αk(Wkdk + AT

k δk) + αk(∇2
xxLk −Wk)dk‖ + α2

kE(dk, δk)

≤ ‖gk + AT
k λk + αk(ρk − gk −AT

k λk)‖ + αk‖(∇2
xxLk −Wk)dk‖ + α2

kE(dk, δk)

≤ (1 − αk)‖gk + AT
k λk‖ + αk‖ρk‖ + αkE

′(dk, δk),

(4.9)

where

(4.10) E′(dk, δk) = O(‖dk‖ + ‖dk‖2 + ‖dk · δk‖).

The bounds (3.3) and (3.5b) and the triangle inequality imply

‖ρk‖ ≤ max{κ(‖gk + AT
k λk‖ + ‖ck‖), β‖ck‖},

which, along with (4.9) and the boundedness of {αk}, implies that for some 0 < γ10 <
1 and γ11 > 0 we have

(4.11) ‖gk+1 + AT
k+1λk+1‖ ≤ max{(1 − γ10)‖gk + AT

k λk‖, γ11‖ck‖} + αkE
′(dk, δk).

The boundedness of {αk}, Lemma 4.9, and the fact that Assumption 4.1(b) implies
δk is bounded in norm imply, along with (4.10), that

(4.12) lim
k→∞

αkE
′(dk, δk) = 0.

Consider an arbitrary γ̂ > 0. Lemma 4.9 and the limit (4.12) imply that there
exists k′ ≥ 0 such that for all k ≥ k′ we have

(4.13) γ11‖ck‖ < (1 − γ10)γ̂ and αkE
′(dk, δk) <

1
2γ10γ̂.

Suppose k ≥ k′ and ‖gk + AT
k λk‖ > γ̂. We find from (4.11) that

‖gk+1 + AT
k+1λk+1‖ ≤ (1 − γ10)‖gk + AT

k λk‖ + 1
2γ10γ̂

≤ ‖gk + AT
k λk‖ − 1

2γ10γ̂.

Therefore, {‖gk +AT
k λk‖} decreases monotonically by at least a constant amount for

k ≥ k′ while {‖gk + AT
k λk‖} > γ̂, so we eventually find ‖gk + AT

k λk‖ ≤ γ̂ for some
k = k′′ ≥ k′. Then, for k ≥ k′′ we find from (4.11) and (4.13) that

‖gk+1 + AT
k+1λk+1‖ ≤ (1 − γ10)γ̂ + 1

2γ10γ̂

≤ (1 − 1
2γ10)γ̂,

so ‖gk + AT
k λk‖ ≤ γ̂ for all k ≥ k′′. Since the above holds for any γ̂ > 0, we have

lim
k→∞

‖gk + AT
k λk‖ = 0,

and so the result follows with the above and the result of Lemma 4.9.



AN INEXACT SQP METHOD FOR EQUALITY CONSTRAINED OPTIMIZATION 365

5. An implementation. This section contains a description of a particular
implementation of Algorithm A and corresponding numerical results to illustrate the
robustness of our approach. Note that, for the greatest level of generality within our
framework, we implemented Termination Test I with κ ≥ 1 and (3.4) included. A
study of the efficiency of the new algorithm in realistic applications is devoted to a
separate study [7].

We developed a Matlab implementation of Algorithm A in which the generalized
minimum residual (GMRES) method [21] was used for the step computation, for
which we adapted the implementation by Kelley [15]. The GMRES method does not
exploit the symmetry of the matrix (2.5) in the primal-dual system (2.6), but the
stability of the approach is ideal for illustrating the robustness of Algorithm A.

In terms of the input parameters defined throughout the paper, we make the
following general comments on their practical effects. First, the values (κ, κ1, κ2)
and (ε, β) should receive special attention as they may greatly affect the ease with
which Termination Tests I and II, and therefore the model reduction condition (3.2),
are satisfied; larger values for these constants allow for more steps to satisfy at least
one of the tests at a given point. In general, looser bounds in Termination Tests I
and II will result in cheaper step computations, but these savings must be balanced
against possible increases in the number of outer iterations required to find a solution.
These parameters and (σ, τ) may also affect the number of iterations required until
the penalty parameter stabilizes, an important phenomenon in the analysis of section
4; e.g., larger values of (ε, β) may lead to more increases or larger values of πk or both.
In general, however, we claim that the parameters (σ, τ) can be set to default values
or to promote consistency between the two termination tests, as we do in (5.3) below.

The stopping condition for the overall nonlinear program is given by

‖gk + AT
k λk‖∞ ≤ max{‖gk‖∞, 1}εopt,(5.1)

‖ck‖∞ ≤ max{‖c0‖∞, 1}εfeas,(5.2)

where 0 < εopt, εfeas < 1 and x0 is the starting point (e.g., see [23]).
The following algorithm was implemented in Matlab and will be referred to as

isqp. The termination variable is used to indicate the successful or unsuccessful
termination of the solver near a local solution of problem (1.1).

Algorithm B: Inexact SQP with GMRES and SMART Tests.

Given parameters 0 < εfeas, εopt, κ1, ε, τ, σ, η, αmin < 1 and 0 < kmax, β, κ, κ2

Initialize x0, λ0, and π−1 > 0
Set termination ← success

for k = 0, 1, 2, . . . , kmax, or until (5.1) and (5.2) are satisfied
Compute fk, gk, ck,Wk, and Ak and set πk ← πk−1 and αk ← 1
for j = 0, 1, 2, . . . , n + t, or until Termination Test I or II is satisfied

Set (dk, δk) as the jth GMRES solution
endfor

if D̃φ(dk;π) > 0 for all π ≥ πk, set termination ← failure and break
if Termination Test II is satisfied and (3.6) does not hold, set πk ← πtrial

k + 10−4

while (3.10) is not satisfied and αk ≥ αmin, set αk ← αk/2
if αk < αmin, set termination ← failure and break
Set (xk+1, λk+1) ← (xk, λk) + αk(dk, δk)

endfor
if (5.1) or (5.2) is not satisfied, set termination ← failure

return termination
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Table 5.1

Input parameter values used for Algorithm B.

Parameter Value Parameter Value

εfeas 10−6 η 10−8

εopt 10−6 αmin 10−8

κ1 0.1 kmax 1000
ε 0.1 κ 1
τ 0.1 π−1 1

We recognize three types of failures in the above approach. First, due to the
iteration limit (n + t) imposed on the inner for loop, or if the positive definiteness
of Assumption 4.1(e) is violated, GMRES may not provide a solution satisfying Ter-
mination Test I or II. In this case, we will try to use the step dk anyway, and, if
necessary, we will try increasing πk to yield a positive value for the directional deriva-
tive Dφ(dk;πk). However, if the directional derivative is nonnegative for any value
π ≥ πk−1 of the penalty parameter, then the step is an ascent direction for the merit
function and the algorithm terminates. Second, if the steplength coefficient must be
cut below a given αmin in order to obtain a step satisfying the Armijo condition, then
the search direction is deemed unsuitable and the algorithm fails. Since we have a
descent direction, this failure can occur only due to finite precision arithmetic er-
rors or if αmin is too large relative to the curvature of the functions. Finally, if the
algorithm terminates without satisfying the nonlinear program stopping conditions
(5.1) and (5.2), then the maximum number of iterations has been reached. Though
there exist techniques for continuing a stagnated run of the algorithm when an ascent
direction for the merit function or a short steplength coefficient is computed, we im-
plement näive failure tests in Algorithm B to aggressively challenge the robustness of
our approach.

Table 5.1 contains a listing of the input parameters implemented in our code. For
the remaining parameters, we set, as is generally appropriate,

σ ← τ(1 − ε)(5.3)

and κ2 ← β ← max

{
‖g0 + AT

0 λ0‖
‖c0‖ + 1

, 1

}
.

As previously mentioned, this value for σ promotes consistency between Termination
Tests I and II and (3.6). Such a value for κ2 and β aims to reflect the relationship in
scale between the primal and dual feasibility measures.

We compare Algorithm B with an inexact method that only enforces a reduction
in the entire primal-dual residual. Our implementation of this approach, also done in
Matlab, is identical to Algorithm B except that the GMRES stopping test

for j = 0, 1, 2, . . . , n + t, or until Termination Test I or II is satisfied

is replaced by

for j = 0, 1, 2, . . . , n + t, or until (3.3) is satisfied ,

where 0 < κ < 1 for (3.3) is a given constant. We performed multiple runs of this
algorithm, which we call ires, for each problem in the test set and will refer to each
run by the particular value of κ used.

The algorithms described above were run for 44 equality constrained problems
from the CUTEr [3, 10] and COPS [9] collections. Problems from the CUTEr set for
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Table 5.2

Algorithm success rates; comparison between an inexact SQP method based on the entire resid-
ual of the Newton equations and isqp, the algorithm proposed in this paper.

Algorithm ires isqp

κ 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10 -
% Solved 45% 66% 68% 80% 80% 77% 82% 82% 86% 86% 100%

which AMPL models were available were selected based on size—fewer than 10,000
variables—and two moderately sized COPS problems were chosen. We note that Wk

was set to the exact Hessian of the Lagrangian and that a multiple of the identity
matrix was added to Wk, when necessary, to satisfy the positive definiteness of As-
sumption 4.1(e). Also, as the results provided in this section are intended only as a
simple illustration of the robustness of our approach, we did not implement a pre-
conditioner for the primal-dual system for our numerical experiments and, in fact,
this was not an issue as many of the problems are relatively small in size. We stress,
however, that preconditioning is an essential part of any implementation for many
large-scale problems.

Table 5.2 provides the percentage of problems successfully solved for each of the
solvers. All the failures for the ires algorithm occurred because either the directional
derivative Dφ(dk;π) of the merit function was nonnegative for all allowable values of
the penalty parameter π ≥ πk−1 or the backtracking line search reduced the steplength
coefficient αk below the given tolerance αmin. Thus, we find that even for relatively
small values of the tolerance parameter κ, the primal component dk provided by
GMRES can yield a value for the directional derivative Dφ(dk;π) of the merit function
that is not sufficiently negative for any π ≥ πk−1. In other words, ires runs the risk
of computing near-exact solutions of the primal-dual system (2.4) that correspond to
directions of insufficient decrease for the merit function φ(x;πk).

6. Final remarks. In this paper we have developed an inexact SQP algorithm
for equality constrained optimization that is globally convergent under common con-
ditions. The novelties of the approach are centered around a pair of SMART tests
for controlling the level of inexactness in the step computation procedure. We close
with some remarks about the assumptions used in the paper, the rate of convergence
of our approach, and possible extensions of this work.

First, let us recall the boundedness of the multipliers stated in Assumption 4.1(b).
Our analysis does not guarantee that the multipliers remain bounded in general; in
fact, Algorithm A does not exert direct control over them. We can ensure that {λk}
remains bounded, however, by adding to Termination Test I a requirement of the form

‖ρk‖ ≤ κ′ max{‖gk‖, ‖Ak‖}

for a constant κ′ > 0. Such a condition ensures that ρk is bounded independently
of the multipliers λk, so then (2.6) and Assumptions 4.1 will imply that {λk} is
bounded. An alternative would be to include a safeguard in the algorithm by which
the multiplier estimate λk is set to a nominal value, say, λk = 0, if ‖gk + AT

k λk‖ is
larger than a given constant.

Second, the rate of convergence of Algorithm A may be slow for a given prob-
lem. One can ensure a fast convergence rate, however, by imposing at each step a
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requirement of the form

(6.1)

∥∥∥∥
[
ρk
rk

]∥∥∥∥ ≤ κk

∥∥∥∥
[
gk + AT

k λk

ck

]∥∥∥∥ ,
where 0 < {κk} < 1 [8]. Then, tightening the values of κk during any point of a
run of Algorithm A will influence the convergence rate if unit steplengths are taken.
For example, if κk ≤ κ̂ < 1 for all large k, then the rate of convergence is linear
with rate κ̂. If, in addition, κk → 0, then the rate of convergence is superlinear [8].
In practice, the exact penalty function (2.7) can reject unit steps even close to the
solution, but this difficulty can be overcome by the use of a second-order correction
or nonmonotone techniques [18]. In this manner, we can be sure that the rate of
convergence of Algorithm A will be fast once the penalty parameter is stabilized.

Incidentally, by implementing such an approach, where we require the step pro-
vided by the iterative linear system solver to satisfy both (6.1) and Termination Test I
or II, one can directly observe the extra cost associated with evolving the ires al-
gorithm described in the previous section into a robust method. In our experiments
we found this extra cost to be minimal for the problems in our test set. For exam-
ple, let us define a third algorithm, call it isqp-ires, that imposes inequality (6.1)
along with our termination tests within the step computation of Algorithm B, where
κ = κk = 2−5 for all k. Note that the key differences between isqp-ires and isqp

are that we have now implemented κ < 1 for (3.3) and that an inequality of the form
(3.3)/(6.1) is also enforced in Termination Test II. Now, if we compare isqp-ires

with ires (with κ = 2−5), we can observe the extra cost required to satisfy our termi-
nation tests beyond simply attaining an accurate solution to the primal-dual system
(2.4). It turns out that for the 35 problems solved by both these algorithms, an av-
erage of only 0.5 extra total GMRES iterations over the entire run of the algorithm
were required by isqp-ires. Moreover, by observing the termination tests for the
iterative solver, the 9 problems left unsolved by ires (approximately 20% of the total
number of 44 problems) were all solved successfully by isqp-ires. Indeed, the extra
cost is minimal with respect to the added robustness.

In addition it is worth noting that imposing condition (6.1) with sufficiently small
κk implies that the bound (3.4) would automatically be satisfied, and the bounds
(3.5) of Termination Test II are satisfied in the case where ‖ck‖ is greater than some
constant times ‖gk + AT

k λk‖.
Finally, it would be of interest to analyze the behavior of inexact SQP methods

in the presence of Jacobian singularities and when Wk = ∇2
xxLk for some k with Wk

not positive definite in the null space of the constraint Jacobian Ak. However, such
an analysis can be complex and would have taken the focus away from the intended
scope of this paper. Therefore, we chose to discuss the design of inexact SQP methods
in the benign context of Assumptions 4.1.

Acknowledgments. The authors are thankful to Eldad Haber and Nick Gould
for productive discussions on this work.

REFERENCES

[1] G. Biros and O. Ghattas, Parallel Lagrange–Newton–Krylov–Schur methods for PDE-
constrained optimization. Part I: The Krylov–Schur solver, SIAM J. Sci. Comput., 27
(2005), pp. 687–713.



AN INEXACT SQP METHOD FOR EQUALITY CONSTRAINED OPTIMIZATION 369

[2] G. Biros and O. Ghattas, Parallel Lagrange–Newton–Krylov–Schur methods for PDE-
constrained optimization. Part II: The Lagrange–Newton solver, and its application to
optimal control of steady viscous flows, SIAM J. Sci. Comput., 27 (2005), pp. 714–739.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: Constrained and
Unconstrained Testing Environment, ACM Trans. Math. Software, 21 (1995), pp. 123–
160.

[4] R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal, A trust region method based on interior point
techniques for nonlinear programming, Math. Program., 89 (2000), pp. 149–185.

[5] R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point algorithm for large scale
nonlinear programming, SIAM J. Optim., 9 (1999), pp. 877–900.

[6] R. H. Byrd and J. Nocedal, An analysis of reduced Hessian methods for constrained opti-
mization, Math. Program., 49 (1991), pp. 285–323.

[7] F. E. Curtis and E. Haber, Numerical experience with an inexact SQP method for PDE-
constrained optimization, in preparation.

[8] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact-Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.
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Abstract. It is known that the Karush–Kuhn–Tucker (KKT) conditions of semidefinite pro-
gramming can be reformulated as a nonsmooth system via the metric projector over the cone of
symmetric and positive semidefinite matrices. We show in this paper that the primal and dual
constraint nondegeneracies, the strong regularity, the nonsingularity of the B-subdifferential of this
nonsmooth system, and the nonsingularity of the corresponding Clarke’s generalized Jacobian, at a
KKT point, are all equivalent. Moreover, we prove the equivalence between each of these conditions
and the nonsingularity of Clarke’s generalized Jacobian of the smoothed counterpart of this non-
smooth system used in several globally convergent smoothing Newton methods. In particular, we
establish the quadratic convergence of these methods under the primal and dual constraint nonde-
generacies, but without the strict complementarity.
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1. Introduction. The standard semidefinite programming (SDP) problem takes
the form

(1)

min 〈C,X〉

s.t. AX = b ,

X ∈ Sn
+ ,

where C ∈ Sn, the linear space of all n×n real symmetric matrices, 〈·, ·〉 is the usual
Frobenius inner product in Sn, A is a linear operator from Sn to �m, b ∈ �m, and
Sn

+ is the cone of all n × n positive semidefinite matrices in Sn. Let A∗ : �m → Sn

be the adjoint of A. The dual form of the SDP problem (1) is

(2)

max bT y

s.t. A∗y + S = C ,

S ∈ Sn
+ .

The Karush–Kuhn–Tucker (KKT) conditions, i.e., the first order optimality condi-
tions, for the SDP problem (1) and its dual (2) are

(3)

⎧⎪⎨
⎪⎩

A∗y + S = C ,

AX = b ,

Sn
+ � X ⊥ S ∈ Sn

+ ,
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where “X ⊥ S” means that X and S are perpendicular to each other, i.e., 〈X,S〉 = 0.
Any point (X, ȳ, S) ∈ Sn ×�m × Sn satisfying (3) is called a KKT point.

Due to its mathematical elegance and wide applications, the research on SDP has
been extremely active after the discovery of polynomial time interior point algorithms
[1, 27] for solving this problem. For an excellent survey on this, see [47]. Our research
in this paper is motivated by [42] on various characterizations of strong regularity, one
of the most important concepts in sensitivity and perturbation analysis, introduced
by Robinson in his seminal paper [32], for a local optimal solution of the general
nonlinear SDP problem. The basic question we want to ask here is: What does the
strong regularity mean for the SDP problem (1) and its dual (2)?

Certainly, all conditions equivalent to the strong regularity presented in [42] for
the general nonlinear SDP problem apply to the SDP problem (1), too. However,
due to the special structure of the SDP problem (1) and its dual, one may be able to
obtain more insightful characterizations about the strong regularity. This is exactly
the primary objective of this paper.

For the purpose of achieving this objective, we study the B-subdifferential and
Clarke’s generalized Jacobian of the nonsmooth system reformulated from (3). We
show that the primal and dual constraint nondegeneracies, the strong regularity, the
nonsingularity of the B-subdifferential of this nonsmooth system, and the nonsingu-
larity of the corresponding Clarke’s generalized Jacobian, at a KKT point (X, ȳ, S) ∈
Sn × �m × Sn, are all equivalent. The equivalence of the nonsingularity of the
B-subdifferential and the nonsingularity of Clarke’s generalized Jacobian comes as
a surprise, at least to the authors, as we know that the nonsingularity of the B-
subdifferential is only a necessary condition for the strong regularity, while the non-
singularity of Clarke’s generalized Jacobian is a sufficient condition for the strong
regularity (for more discussions, see [15, 28]). It is true, by [42, Theorem 4.1], that
the nonsingularity of Clarke’s generalized Jacobian is also necessary for the strong
regularity in the context of SDP problems. However, it is never known if the nonsin-
gularity of the B-subdifferential is sufficient, too. Here, the unique structure exhibited
in SDP problems (1) and (2) plays a key role for us in proving these conditions equiva-
lent. Consequently, the quadratic convergence of some local nonsmooth Newton-type
methods studied in [18, 14] follows from any one of these equivalent conditions. In
fact, by combining the two papers [18, 19, 14], we know that the primal and dual con-
straint nondegeneracies are sufficient for the nonsingularity of the B-subdifferential.
On the other hand, our equivalent results imply that they are also necessary for the
nonsingularity of the B-subdifferential.

The second objective of this paper, largely motivated by the first, is to study under
what conditions the globally convergent smoothing Newton methods studied in [9,
10, 20, 46] for solving SDP problems (1) and (2) possess local quadratic convergence,
without assuming the strict complementary condition. We achieve this objective
by showing that the nonsingularity of the B-subdifferential of one smoothed system
used in [9, 10, 20, 46] and the nonsingularity of Clarke’s generalized Jacobian of this
smoothed system are both equivalent to any of the above-stated equivalent conditions,
in particular, the primal and dual constraint nondegeneracies.

The organization of this paper is as follows. In section 2, we study some useful
properties of the B-subdifferential and Clarke’s generalized Jacobian for Lipschitz
functions, particularly for the metric projector over Sn

+ and its smoothed counterpart.
The promised equivalent conditions are given in section 3. In section 4, we prove the
quadratic convergence of some smoothing Newton methods under the primal and
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dual constraint nondegenerate conditions, but without the strict complementarity
condition. We give our conclusions in section 5.

2. Generalized Jacobians. Assume that X , Y, and Z are three finite dimen-
sional real vector spaces, each equipped with a scalar product 〈·, ·〉 and its induced
norm ‖ ·‖, O is an open set in Y, and Ξ : O ⊆ Y → Z is a locally Lipschitz continuous
function on the open set O. By the well-known Rademacher theorem [37, section 9.J],
we know that Ξ is almost everywhere F(réchet)-differentiable in O. Denote by DΞ the
set of all points in O where Ξ is F-differentiable. Then Clarke’s generalized Jacobian
of Ξ at y ∈ O is defined as follows [12]:

∂Ξ(y) := conv{ ∂BΞ(y) },

where “conv” denotes the convex hull and the B-subdifferential ∂BΞ(y), a name coined
by Qi in [29], of Ξ at y takes the form

∂BΞ(y) := {V : V = lim
k→∞

Ξ′(yk) , yk → y , yk ∈ DΞ}.

The next lemma, which is originally proven in [42, Lemma 2.1] under the addi-
tional assumption of directional differentiability, is a useful property about charac-
terizing the B-subdifferential of composite functions. Here we drop the condition of
directional differentiability and provide a self-contained proof as it may have applica-
tions in other places where the directional differentiability is not readily available.

Lemma 1. Let Ψ : X → Y be a continuously differentiable function on an open
neighborhood N̂ of x̄ and Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on
an open set O containing ȳ := Ψ(x̄). Define Φ : N̂ → Z by Φ(x) := Ξ(Ψ(x)), x ∈ N̂ .
Suppose that Ψ′(x̄) : X → Y is onto. Then there exists an open neighborhood of x̄ such
that Φ is F-differentiable at x in this neighborhood if and only if Ξ is F-differentiable
at Ψ(x) and

(4) ∂BΦ(x̄) = ∂BΞ(ȳ)Ψ′(x̄) .

Proof. Shrink N̂ , if necessary, assume that Ψ(N̂) ⊆ O, and for each x ∈ N̂ , Ψ′(x)

is onto. Then Φ is Lipschitz continuous on N̂ .

We shall first show that Φ is F-differentiable at x ∈ N̂ if and only if Ξ is F-
differentiable at Ψ(x), which, by the definition of the B-subdifferential, implies

∂BΦ(x̄) ⊆ ∂BΞ(ȳ)Ψ′(x̄).

By the definition of Φ, we know that if Ξ is F-differentiable at Ψ(x), then Φ is F-

differentiable at x ∈ N̂ . Now, assume that Φ is F-differentiable at x ∈ N̂ . Since
A := Ψ′(x) is onto, AA∗ is invertible, where A∗ : Y → X is the adjoint of A. For any
Δy ∈ Y, let

Δx := A∗(AA∗)−1Δy .
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Then, for any Y � Δy → 0, we have

‖Ξ(Ψ(x) + Δy) − Ξ(Ψ(x)) − Φ′(x)(A∗(AA∗)−1Δy)‖

= ‖Ξ(Ψ(x) + AΔx) − Φ(x) − Φ′(x)(Δx)‖
≤ ‖Φ(x + Δx) − Φ(x) − Φ′(x)(Δx)‖ + O(‖Ξ(Ψ(x + Δx)) − Ξ(Ψ(x) + AΔx)‖)

= o(‖Δx‖) + O(‖Ψ(x + Δx) − (Ψ(x) + AΔx)‖)

= o(‖Δx‖) + O(‖Ψ(x + Δx) − Ψ(x) − Ψ′(x)(Δx)‖)

= o(‖Δx‖) = o(‖Δy‖) ,

which implies that Ξ is F-differentiable at Ψ(x). This proves the first part of our
conclusion.

Next, we show that the following inclusion holds:

∂BΦ(x̄) ⊇ ∂BΞ(ȳ)Ψ′(x̄).

This part’s proof follows exactly the proof of the second part of Lemma 2.1 in [42].
Let W ∈ ∂BΞ(ȳ) be an arbitrary element. Then there exists a sequence {yk} in O
converging to ȳ such that Ξ is F-differentiable at yk and W = limk→∞ Ξ′(yk). Let
A := Ψ′(x̄). By applying the classical inverse function theorem to

Ψ
(
x̄ + A

∗
(y − ȳ)

)
− Ψ(x̄) = 0,

we obtain that there exists a sequence {ỹk} in O converging to ȳ such that

Ψ
(
x̄ + A

∗
(ỹk − ȳ)

)
− Ψ(x̄) = yk − Ψ(x̄)

for all k sufficiently large. Let x̃k := x̄ + A
∗
(ỹk − ȳ). Then yk = Ψ(x̃k) and Φ is

F-differentiable at x̃k with

Φ′(x̃k) = Ξ′(yk)Ψ′(x̃k).

By using the fact that ỹk → ȳ implies x̃k → x̄, we know that there exists a V ∈ ∂BΦ(x̄)
such that

WΨ′(x̄) = lim
k→∞

Ξ′(yk) lim
k→∞

Ψ′(x̃k) = lim
k→∞

Φ′(x̃k) = V ∈ ∂BΦ(x̄).

The proof is completed.
For any nonempty closed convex set K ⊆ Z, let ΠK : Z → Z denote the metric

projector over K. That is, for any y ∈ Z, ΠK(y) is the unique optimal solution to
the convex programming problem

(5)
min

1

2
〈z − y, z − y〉

s.t. z ∈ K.

Since the metric projector ΠK(·) is globally Lipschitz continuous with modulus 1 [49],
ΠK(·) is F-differentiable almost everywhere in Z. Thus, for any y ∈ Z, ∂ΠK(y) is
well defined. In particular, it is shown in [25, Proposition 1] that for any y ∈ Z,
V ∈ ∂ΠK(y) is self-adjoint and satisfies

(6) V  V 2, i.e., 〈d, V d〉 ≥
〈
d, V 2d

〉
∀ d ∈ Z .
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In our subsequent analysis, we need a finer characterization about the B-subdif-
ferential and Clarke’s generalized Jacobian of ΠSn

+
(·) and its smoothed counterpart.

We write A  0 and A � 0 to mean that A is a symmetric positive semidefinite
matrix and a symmetric positive definite matrix, respectively. For any A ∈ Sn, let
A+ := ΠSn

+
(A) be the metric projection of A onto Sn

+ under the usual Frobenius inner
product in Sn. Assume that A has the spectral decomposition

(7) A = PΛPT ,

where Λ is the diagonal matrix of eigenvalues λ1 ≥ · · · ≥ λn of A and P is a corre-
sponding orthogonal matrix of orthonormal eigenvectors. Then

A+ = PΛ+P
T ,

where Λ+ is the diagonal matrix whose diagonal entries are the nonnegative parts of
the respective diagonal entries of Λ. The formula for A+ has been used by statisticians
for several decades, e.g., [38, Theorem 1]. Higham [16] and Tseng [48] brought it to
the attention of the optimization community. Define three index sets of positive, zero,
and negative eigenvalues of A, respectively, as

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =

⎡
⎢⎣

Λα 0 0

0 0 0

0 0 Λγ

⎤
⎥⎦ and P = [ Pα Pβ Pγ ]

with Pα ∈ �n×|α|, Pβ ∈ �n×|β|, and Pγ ∈ �n×|γ|. For this eigenvalue vector λ ∈ �n,
define the corresponding symmetric matrix U ∈ Sn with entries

(8) Uij :=
max{λi, 0} + max{λj , 0}

|λi | + |λj |
, i, j = 1, . . . , n,

where 0/0 is defined to be 1.
We know from Bonnans, Cominetti, and Shapiro [5, 6] that ΠSn

+
is directionally

differentiable everywhere in Sn, and from Sun and Sun [43] that ΠSn
+

is strongly
semismooth everywhere in Sn and the directional derivative Π′

Sn
+
(A;H) of ΠSn

+
at A

with direction H ∈ Sn is given by

(9) Π′
Sn

+
(A;H) = P

⎡
⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ ΠS|β|

+
(H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎦PT ,

where H̃ := PTHP and “◦” denotes the Hadamard product. For a general discussion
on (strongly) semismooth functions, see [26, 29, 31]. The tangent cone of Sn

+ at A+,
in the sense of convex analysis [36], can be characterized as

TSn
+
(A+) = {B ∈ Sn : B = Π′

Sn
+
(A+;B)} = {B ∈ Sn : [Pβ Pγ ]TB [Pβ Pγ ]  0} .

Note, however, that the characterization of TSn
+
(A+) was first obtained by Arnold [3]

without using the directional derivative Π′
Sn

+
(A+;H). The linearity space of TSn

+
(A+),
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i.e., the largest linear space in TSn
+
(A+), denoted by lin

(
TSn

+
(A+)

)
, then takes the

following form:

(10) lin
(
TSn

+
(A+)

)
= {B ∈ Sn : PT

β BPβ = 0, PT
β BPγ = 0, PT

γ BPγ = 0} .

The critical cone of Sn
+ at A ∈ Sn, associated with the convex optimization problem

(5) with K = Sn
+, is defined as

(11)
C(A;Sn

+) : = TSn
+
(A+) ∩ (A+ −A)⊥

= {B ∈ Sn : PT
β BPβ  0, PT

β BPγ = 0, PT
γ BPγ = 0} ,

where (A+ − A)⊥ := {B ∈ Sn : 〈B,A+ − A〉 = 0}. Therefore, the affine hull of
C(A;Sn

+), which we denote aff(C(A;Sn
+)), can be written as

(12) aff
(
C(A;Sn

+)
)

=
{
B ∈ Sn : PT

β BPγ = 0, PT
γ BPγ = 0

}
.

In the case that β = ∅ holds, i.e., the case that A is nonsingular, ΠSn
+
(·) is F-

differentiable at A and (9) reduces to the famous result of Löwner [22]:

(13) Π′
Sn

+
(A)H = P

[
H̃αα Uαγ ◦ H̃αγ

H̃T
αγ ◦ UT

αγ 0

]
PT ∀H ∈ Sn .

From (13), one may compute the B-subdifferential and Clarke’s generalized Ja-
cobian of ΠSn

+
(·) by their definitions.1 This has been done by a number of authors

[9, 20, 23, 24, 28]. One difficulty in obtaining good formulas for ∂BΠSn
+
(A) and

∂ΠSn
+
(A) is that they both depend on the orthogonal matrices P in the spectral de-

composition of A. This difficulty can be overcome by employing the following link
developed by Pang, Sun, and Sun [28] on ∂BΠSn

+
(A) and the B-subdifferential of

Θ(·) := Π′
Sn

+
(A; ·) at the origin

(14) ∂BΠSn
+
(A) = ∂BΘ(0) .

This link leads to the following useful result on ∂BΠSn
+
(A) and ∂ΠSn

+
(A). See Sun

[42, Proposition 2.2] for a short proof.
Proposition 2. Suppose that A ∈ Sn has the spectral decomposition as in

(7). Then a V ∈ ∂BΠSn
+
(A) (respectively, ∂ΠSn

+
(A)) if and only if there exists a

V|β| ∈ ∂BΠS|β|
+

(0) (respectively, ∂ΠS|β|
+

(0)) such that

(15) V (H) = P

⎡
⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ V|β|(H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎦PT ∀H ∈ Sn,

where H̃ := PTHP .
Proposition 2 simply says that in order to compute ∂BΠSn

+
(A) and ∂ΠSn

+
(A), one

needs only to fix an arbitrary orthogonal matrix P satisfying (7) and compute the

1Note that in numerical computations it is generally impossible to compute exactly the spectral
decomposition of A as in (7). Instead, the right-hand side of (7) is the true spectral decomposition
of a nearby matrix of A [8]. Consequently, the numerically computed subdifferentials are actually
for this nearby matrix. In this paper, we will not address this numerical issue further.
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corresponding “caged” part ∂BΠS|β|
+

(0) (hence ∂ΠS|β|
+

(0)), which is much easier to

handle. To see this, let Q|β| be the set of all orthogonal matrices of order |β| × |β|
and

�|β|
> :=

{
z ∈ �|β| : z1 ≥ · · · ≥ z|β| and zi �= 0 ∀ i

}
.

Let p : � → � be the “plus” function defined by p(t) ≡ max(0, t), t ∈ �. For any

z ∈ �|β|
> , let p[1](z) represent the first divided difference matrix used in matrix analysis

for p(·) at z [4]:

(16)
[
p[1](z)

]
ij

=

⎧⎪⎨
⎪⎩

p(zi) − p(zj)

zi − zj
∈ [0, 1] if zi �= zj ,

p′(zi) ∈ {0, 1} if zi = zj ,

i, j = 1, . . . , n .

Then, by (9) and (13), one can readily draw the conclusion that V|β| ∈ ∂BΠS|β|
+

(0) if

and only if there exist Q ∈ Q|β| and Ω ∈ U|β| such that

(17) V|β|(Z) = Q [ Ω ◦ (QTZQ) ]QT ∀Z ∈ S |β| ,

where

U|β| :=
{
Ω : Ω = lim

k→∞
p[1](zk), zk → 0, zk ∈ �|β|

>

}
.

In [23], Malick and Sendov gave a detailed account on the structure of U|β|. In this
paper, we do not need the exact structure of U|β| except for the following fact that
for any Ω ∈ U|β|,

Ωij ∈ [0, 1], i, j = 1, . . . , |β| .

Note that both the zero mapping V 0
|β| ≡ 0 and the identity mapping V I

|β| = I from

S |β| → S |β| are elements in ∂BΠS|β|
+

(0). Let V 0 and V I be defined by (15) with V|β|

being replaced by V 0
|β| and V I

|β|, respectively. Define

(18) ex (∂BΠSn
+
(A)) :=

{
V 0, V I }.

Using the fact that both V 0 and V I are elements in ∂BΠSn
+
(A), we have

ex (∂BΠSn
+
(A)) ⊆ ∂BΠSn

+
(A) .

Since ΠSn
+
(·) is not differentiable everywhere, several papers [9, 10, 20, 46] on

smoothing Newton methods, for solving the SDP problem and beyond, consider the
following smoothed counterpart of ΠSn

+
(·):

(19) Φ(ε,A) :=
[
A +

√
ε2I + A2

]
/2, (ε,A) ∈ � × Sn ,

where we use I to represent the identity matrix of appropriate dimension. Note that
the function Φ(·, ·) is continuously differentiable around any (ε,A) ∈ �×Sn if ε2I+A2

is nonsingular and when ε = 0, Φ(0, A) = ΠSn
+
(A). Furthermore, Φ(·, ·) is globally

Lipschitz continuous and strongly semismooth at any (0, A) ∈ �× Sn [46]. For some
extensions on these properties, see [44].
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Let φ : �2 → � be defined by

φ(ε, t) =
[
t +
√

ε2 + t2
]
/2, (ε, t) ∈ � × � .

Let A have the spectral decomposition in (7). Then, by matrix analysis [4, 17], we
have

Φ(ε,A) = P

⎡
⎢⎣

φ(ε, λ1)
. . .

φ(ε, λn)

⎤
⎥⎦PT .

For any (ε, x) ∈ �×�n such that ε2+x2
i > 0 for all i, we use Û(ε, x) ∈ Sn to represent

the first divided difference matrix for φ(ε, ·) at x given by

(20)
[
Û(ε, x)

]
ij

=

⎧⎪⎨
⎪⎩

φ(ε, xi) − φ(ε, xj)

xi − xj
∈ [0, 1] if xi �= xj ,

φ′
xi

(ε, xi) ∈ [0, 1] if xi = xj ,

i, j = 1, . . . , n .

Then, according to Lemma 2.3 in [46], we know that for any ε ∈ � such that ε2+λ2
i > 0

for all i (i.e., ε2I + A2 is nonsingular), and any (τ,H) ∈ � × Sn, we have

(21) Φ′(ε,A)(τ,H) = P [ Û(ε, λ) ◦ (PTHP ) + τD(ε, λ) ]PT

and

(22) Φ′((0, A); (τ,H)) = P

⎡
⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ Φ|β|(τ, H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎦PT ,

where H̃ = PTHP , D(ε, λ) ∈ Sn is the diagonal matrix given by

(23) D(ε, λ) =

⎡
⎢⎣

φ′
ε(ε, λ1)

. . .

φ′
ε(ε, λn)

⎤
⎥⎦ ,

U ∈ Sn is defined by (8), and for any (t, Z) ∈ � × S |β|,

(24) Φ|β|(t, Z) :=
[
Z +

√
t2I + Z2

]
/2 .

Define Ψ : �× Sn → �× Sn by

Ψ(τ,H) := (τ, PTHP ), (τ,H) ∈ � × Sn,

and Ξ : �× Sn → Sn by

(25) Ξ(t,M) := P

⎡
⎢⎣

Mαα Mαβ Uαγ ◦Mαγ

MT
αβ Φ|β|(t,Mββ) 0

MT
αγ ◦ UT

αγ 0 0

⎤
⎥⎦PT ,

where (t,M) ∈ � × Sn. Write Γ(·, ·) ≡ Φ′((0, A); (·, ·)). Then, we have

(26) Γ(τ,H) = Ξ(Ψ(τ,H)), (τ,H) ∈ � × Sn .
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Since for any (τ,H) ∈ �×Sn, Ψ′(τ,H) : �×Sn → �×Sn is onto, we know from the
first part of Lemma 1 that Γ is F-differentiable at (τ,H) ∈ �× Sn if and only if Ξ is

F-differentiable at Ψ(τ,H), which is equivalent to the nonsingularity of τ2I +(H̃ββ)2,

where H̃ = PTHP . Thus, we have the following lemma.
Lemma 3. For any (τ,H) ∈ � × Sn, let H̃ = PTHP . Then Γ(·, ·) ≡ Φ′

((0, A); (·, ·)) is F-differentiable at (τ,H) ∈ � × Sn if and only if τ2I + (H̃ββ)2 is
nonsingular.

The following lemma establishes the equivalence between ∂BΦ(0, A) and ∂BΓ(0, 0),
which is analogous to (14) for operators ΠSn

+
and Θ. Its proof largely follows that

given in [28, Lemma 11], but with new difficulties to overcome.
Lemma 4. Suppose that A ∈ Sn has the spectral decomposition in (7). For

Γ(·, ·) ≡ Φ′((0, A); (·, ·)), it holds that

(27) ∂BΦ(0, A) = ∂BΓ(0, 0) .

Proof. Let V ∈ ∂BΦ(0, A). Then, by (21), (22), and the definition of ∂BΦ(0, A),
there exists a sequence {(εk, Ak)} in � × Sn converging to (0, A) with ε2

kI + (Ak)2

being nonsingular such that V = limk→∞Φ′(εk, A
k). Let Ak ≡ P kΛk(P k)T be the

orthogonal decomposition of Ak, where Λk is the diagonal matrix whose diagonal
entries are the eigenvalues λk

1 ≥ · · · ≥ λk
n of Ak and P k is a corresponding matrix of

orthonormal eigenvectors. Writing each Λk in the same form as Λ,

Λk =

⎡
⎢⎣

Λk
α 0 0

0 Λk
β 0

0 0 Λk
γ

⎤
⎥⎦ ,

we have Λ = limk→∞Λk, which implies that Λk
α and Λk

γ are nonsingular matrices for

all k sufficiently large and limk→∞Λk
β = 0. For each k, let Uk ≡ Û(εk, λ

k) be defined

by (20) and Dk ≡ D(εk, λ
k) be defined by (23), respectively. Then, for an arbitrarily

chosen (τ,H) ∈ � × Sn with H̃k = (P k)THP k, we obtain from (21) that

(28) Φ′(εk, A
k)(τ,H) = P k

[
Uk ◦ (P k)THP k + τDk

]
(P k)T .

By taking a subsequence if necessary, we may assume that {P k} is a convergent
sequence with limit P∞ ≡ limk→∞P k. This matrix P∞ will play the role of the
matrix P in the spectral decomposition (7). Without causing any confusion, we will
simply use P , rather than P∞, in our subsequent analysis. Since both {Uk} and {Dk}
are uniformly bounded, by further taking subsequences if necessary, we may assume
that both sequences {Uk} and {Dk} converge. Taking limits on both sides of (28),
we obtain

PTV (τ,H)P =

⎡
⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ lim

k→∞
Uk
ββ ◦ H̃ββ 0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎦

+ τ

⎡
⎢⎣

0 0 0

0 lim
k→∞

Dk
β 0

0 0 0

⎤
⎥⎦ ,
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where

Dk
β =

⎡
⎢⎣

φ′
ε(εk, λ

k
|α|+1)

. . .

φ′
ε(εk, λ

k
|α|+|β|)

⎤
⎥⎦ .

For each k, define

Mk := P

⎡
⎢⎣

0 0 0

0 Λk
β 0

0 0 0

⎤
⎥⎦PT .

Let M̃k := PTMkP . Because ε2
kI + (M̃k

ββ)2 = ε2
kI + (Λk

β)2 is nonsingular, Γ is

F-differentiable at (εk,M
k) with

Γ′(εk,M
k)(τ,H) = lim

t↓0

{
Γ(εk + tτ,Mk + tH) − Γ(εk,M

k)

t

}

= P

⎡
⎢⎢⎢⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ lim

t↓0

Φ|β|(εk + tτ,Λk
β + tH̃ββ) − Φ|β|(εk,Λ

k
β)

t
0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎥⎥⎥⎦ PT

= P

⎡
⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ Uk

ββ ◦ H̃ββ + τDk
β 0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎦ PT ,

where we have applied (21) to Φ|β| defined by (24) at (εk,Λ
k
β). Thus,

V (τ,H) = lim
k→∞

Γ′(εk,M
k)(τ,H) .

Since (τ,H) ∈ � × Sn is arbitrary, it follows that V ∈ ∂BΓ(0, 0).

Conversely, let V ∈ ∂BΓ(0, 0). Since, from Lemma 3, Γ is F-differentiable at

(ε,M) ∈ � × Sn if and only if ε2I + (M̃ββ)2 is nonsingular with M̃ = PTMP , there

exists a sequence {(εk,Mk)} ∈ �×Sn converging to (0, 0) such that ε2
kI + (M̃k

ββ)2 is

nonsingular for each k and V = limk→∞ Γ′(εk,M
k), where M̃k = PTMkP . Let M̃k

ββ

have the spectral decomposition

M̃k
ββ = QkΛ̃k

β(Qk)T ,

where Qk ∈ Q|β| is an orthogonal matrix in S |β| and Λ̃k
β is the diagonal matrix whose

diagonal entries are the eigenvalues z̃k1 ≥ · · · ≥ z̃k|β| of M̃k
ββ . Let λ̃k ∈ �n be such that

if i ∈ α ∪ γ, then λ̃k
i = λi and if i ∈ β, λ̃k

i is the (i − |α|)th eigenvalue of M̃k
ββ , i.e.,
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z̃k(i−|α|). Then, by (22), for any (τ,H) ∈ � × Sn we have

(29)

Γ′(εk,M
k)(τ,H) = lim

t↓0

{
Γ(εk + tτ,Mk + tH) − Γ(εk,M

k)

t

}

= P

⎡
⎢⎢⎢⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ lim

t↓0

Φ|β|(εk + tτ, M̃k
ββ + tH̃ββ) − Φ|β|(εk, M̃

k
ββ)

t
0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎥⎥⎥⎦ PT

with H̃ = PTHP and

(30)

lim
t↓0

Φ|β|(εk + tτ, M̃k
ββ + tH̃ββ) − Φ|β|(εk, M̃

k
ββ)

t

= Qk

(
lim
t↓0

Φ|β|(εk + tτ, Λ̃k
β + t(Qk)T H̃ββQ

k) − Φ|β|(εk, Λ̃
k
β)

t

)
(Qk)T

= Qk
[
Ω̃k ◦ ( (Qk)T H̃ββQ

k ) + τ S̃k
]
(Qk)T ,

where we have used (21) for Φ|β| and the fact that Φ|β| is F-differentiable at (εk, Λ̃
k
β)

because ε2
kI + (Λ̃k

β)2 is nonsingular,

(Ω̃k)ij =

⎧⎪⎪⎨
⎪⎪⎩

φ(εk, z̃
k
i ) − φ(εk, z̃

k
j )

z̃ki − z̃kj
if z̃ki �= z̃kj ,

φ′
z̃k
i
(ε, z̃ki ) if z̃ki = z̃kj ,

i, j = 1, . . . , |β| ,

and

S̃k =

⎡
⎢⎣

φ′
ε(εk, z̃

k
1 )

. . .

φ′
ε(εk, z̃

k
|β|)

⎤
⎥⎦ .

Define

Ak = A + P

⎡
⎢⎣

0 0 0

0 M̃k
ββ 0

0 0 0

⎤
⎥⎦PT and Ãk = PTAkP =

⎡
⎢⎣

Λα 0 0

0 M̃k
ββ 0

0 0 Λγ

⎤
⎥⎦ .

Since, for each k, ε2
kI + (M̃k

ββ)2 is nonsingular, the matrix ε2
kI + (Ak)2 = P [ε2

kI +

(Ãk)2]PT is also nonsingular. Thus, Φ is F-differentiable at (εk, A
k). Let

P k ≡ [ P k
α P k

β P k
γ ] = [ Pα PβQ

k Pγ ]

and Λ̃k be the diagonal matrix whose diagonal entries are components of λ̃k. Then

Ak = P kΛ̃k(P k)T ,
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which, together with (21), implies that for any (τ,H) ∈ � × Sn, we have

(31) Φ′(εk, A
k)(τ,H) = P k [ Ũk ◦ ((P k)THP k) + τD̃k ] (P k)T ,

where Ũk ≡ Û(εk, λ̃
k) and D̃k ≡ D(εk, λ̃

k). Since {Qk}, {Ũk}, and {D̃k} are all
uniformly bounded, by taking subsequences if necessary, we may assume that all
these three sequences converge. By simple computations, we obtain

lim
k→∞

Ũk
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if i ∈ α, j ∈ α ∪ β,

Uij if i ∈ α, j ∈ γ,

lim
k→∞

(Ω̃k)(i−|α|)(j−|α|) if i ∈ β, j ∈ β,

0 if i ∈ β ∪ γ, j ∈ γ,

i, j = 1, . . . , n,

and

lim
k→∞

D̃k =

⎡
⎢⎢⎣

0 0 0

0 lim
k→∞

S̃k 0

0 0 0

⎤
⎥⎥⎦ ,

which, together with (31), (29), and (30), imply that for any (τ,H) ∈ � × Sn,

lim
k→∞

(P k)T
[
Γ′(εk,M

k)(τ,H) − Φ′(εk, A
k)(τ,H)

]
P k = 0 .

Consequently, we can conclude V (τ,H) = limk→∞ Φ′(εk, A
k)(τ,H) for all (τ,H) ∈

� × Sn, which implies V ∈ ∂BΦ(0, A). Hence, (27) holds.
Lemma 4 allows us to completely characterize ∂BΦ(0, A) (hence, ∂Φ(0, A)).
Proposition 5. Suppose that A ∈ Sn has the spectral decomposition in (7).

Then a V ∈ ∂BΦ(0, A) (respectively, ∂Φ(0, A)) if and only if there exists a V|β| ∈
∂BΦ|β|(0, 0) (respectively, ∂Φ|β|(0, 0)) such that

(32) V (τ,H) = P

⎡
⎢⎢⎣

H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ V|β|(τ, H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

⎤
⎥⎥⎦PT

for all (τ,H) ∈ � × Sn, where H̃ = PTHP .
Proof. We need only to prove that (32) holds for V ∈ ∂BΦ(0, A) and V|β| ∈

∂BΦ|β|(0, 0) as the case for Clarke’s generalized Jacobian can be proved similarly.
Let Ψ(τ,H) := (τ, PTHP ) for any (τ,H) ∈ � × Sn, and let Ξ : � × Sn → Sn

be defined by (25). Then, since Ψ′(τ,H) : � × Sn → �× Sn is onto, we know from
Lemma 1 that

∂BΓ(0, 0) = ∂BΞ(0, 0)Ψ′(0, 0) ,

which, together with (27) in Lemma 4, completes the proof.
Just as in the case for the metric projector ΠSn

+
, Proposition 5 says that in

order to compute ∂BΦ(0, A) and ∂Φ(0, A), one needs only to fix P and compute the
corresponding easy part ∂BΦ|β|(0, 0) (hence, ∂Φ|β|(0, 0)). For any (ε, z) ∈ � × �|β|

with ε2+z2
i > 0 for all i, let Ω̂(ε, z) be defined by (20) with n and x being replaced by
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|β| and z, respectively. Then, by (22) and (21), one can readily draw the conclusion

that V|β| ∈ ∂BΦ|β|(0, 0) if and only if there exist Q ∈ Q|β| and Ω ∈ Û|β| such that

(33) V|β|(0, Z) = Q [ Ω ◦ (QTZQ) ]QT ∀Z ∈ S |β| ,

where

Û|β| :=
{
Ω : Ω = lim

k→∞
Ω̂(εk, z

k), (εk, z
k) → (0, 0),

(zk)1 ≥ · · · ≥ (zk)|β|, ε2
k + (zki )2 > 0 ∀ i

}
.

Note that for any Ω ∈ Ûβ , it holds that Ωij ∈ [0, 1], i, j = 1, . . . , |β|.
The next proposition establishes a link between ∂BΠSn

+
(A) and ∂BΦ(0, A), and

so a link between ∂ΠSn
+
(A) and ∂Φ(0, A).

Proposition 6. For any V0 ∈ ∂BΠSn
+
(A), there exists V ∈ ∂BΦ(0, A) such that

(34) V0(H) = V (0, H) ∀H ∈ Sn .

Proof. By comparing Proposition 2, together with (17), with Proposition 5, to-
gether with (33), we can derive the conclusion directly.

We conclude this section by presenting a useful inequality for elements in ∂Φ(0, A),
which is analogous to (6) for the metric projector ΠK with K = Sn

+.

Proposition 7. For any V ∈ ∂Φ(0, A), it holds that

(35) 〈H − V (0, H), V (0, H)〉 ≥ 0 ∀H ∈ Sn .

Proof. Let V ∈ ∂Φ(0, A). Then, by Carathéodory’s theorem, there exist a positive
integer κ and V i ∈ ∂BΦ(0, A), i = 1, . . . , κ, such that V is the convex combination
of V 1, . . . , V κ. Let t1, . . . , tκ be such that V =

∑κ
i=1 tiV

i, where ti ≥ 0, i = 1, . . . , κ,
and

∑κ
i=1 ti = 1.

From Sun, Sun, and Qi [46, Proposition 3.1], we know that for each i ∈ {1, . . . , κ},

(36) 〈H − V i(0, H), V i(0, H)〉 ≥ 0 ∀H ∈ Sn .

In order to prove that (35) holds for V , let θ(X) := 〈X,X〉, X ∈ Sn. By the convexity
of θ, we have for any H ∈ Sn that

θ(V (0, H)) = θ

(
κ∑

i=1

tiV
i(0, H)

)
≤

κ∑
i=1

ti θ(V
i(0, H)) =

κ∑
i=1

ti〈V i(0, H), V i(0, H)〉 ,

which, together with (36) and the definition of θ, implies

〈V (0, H), V (0, H)〉 ≤
κ∑

i=1

ti〈H,V i(0, H)〉 =

〈
H,

κ∑
i=1

tiV
i(0, H)

〉
= 〈H,V (0, H)〉 .

Thus, (35) holds.
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3. Equivalent conditions. Let X and Y be two finite dimensional real vector
spaces each equipped with a scalar product 〈·, ·〉 and its induced norm ‖ · ‖. Let
g : X → Y be a continuously differentiable function and K be a nonempty and closed
convex set in Y. Consider the following feasible problem:

(37) g(x) ∈ K , x ∈ X .

Assume that x̄ ∈ X is a feasible solution to (37). Let TK(g(x̄)) be the tangent
cone of K and NK(g(x̄)) be the normal cone of K at g(x̄), respectively. We write
lin(TK(g(x̄))) for the linearity space of TK(g(x̄)). Then we can define the following
nondegeneracy condition for problem (37).

Definition 8. We say that a feasible point x̄ to problem (37) is constraint
nondegenerate if

(38) g′(x̄)X + lin
(
TK(g(x̄))

)
= Y .

The concept of nondegeneracy for the abstract problem (37) first appeared in
Robinson [33, 34]. The name “constraint nondegeneracy” was coined by Robinson
in [35]. The nondegenerate constraint condition (38) including its various equivalent
forms was extensively used in [7, 40] for sensitivity and stability analysis in optimiza-
tion and variational inequalities. If Y is the Euclidean space �m and K = {0}m1×�m2

+

with m1 + m2 = m, then the constraint nondegenerate condition (38) is equivalent
to the well-known linear independence constraint qualification [33, 40]. Here we shall
apply Definition 8 to both the SDP problem (1) and its dual (2) to define the primal
constraint nondegeneracy and the dual constraint nondegeneracy, respectively.

Definition 9. We say that the primal constraint nondegeneracy holds at a fea-
sible solution X ∈ Sn

+ to the SDP problem (1) if

(39)

[
A
I

]
Sn +

[
{0}

lin
(
TSn

+
(X)

)
]

=

[
�m

Sn

]

or, equivalently,

(40) A lin
(
TSn

+
(X)

)
= �m ,

where I is the identity mapping from Sn to Sn. Similarly, we say that the dual
constraint nondegeneracy holds at a feasible solution (ȳ, S) ∈ �m × Sn

+ to the dual
problem (2) if

(41)

[
A∗ I
0 I

](
�m

Sn

)
+

[
{0}

lin
(
TSn

+
(S)
)
]

=

[
Sn

Sn

]

or, equivalently,

(42) A∗�m + lin
(
TSn

+
(S)
)

= Sn .

Note that in the literature constraint nondegeneracy is called different names.
Shapiro and Fan [41] and Shapiro [39] termed it transversality. Primal constraint
nondegeneracy and dual constraint nondegeneracy are better known as primal non-
degeneracy and dual nondegeneracy, respectively, in the interior point methods com-
munity. See, for example, Alizadeh, Haeber, and Overton [2]. To avoid potential
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confusion, we will stick to Robinson’s terminology here and interpret different usages
of constraint nondegeneracy in terms of Definition 9.

Let Z ≡ (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point satisfying the KKT conditions
(3). Since Sn

+ is a self-dual cone, from [13] we know that

Sn
+ � X ⊥ S ∈ Sn

+ ⇐⇒ −X ∈ NSn
+
(S)(43)

⇐⇒ S − ΠSn
+
[S −X ] = X − ΠSn

+
[X − S ] = 0 .

Therefore, (X, ȳ, S) ∈ Sn ×�m × Sn satisfies (3) if and only if (X, ȳ, S) is a solution
to the nonsmooth system of equations

(44) F (X, y, S) ≡

⎡
⎢⎣

C −A∗y − S

AX − b

S − ΠSn
+
[S −X ]

⎤
⎥⎦ =

⎡
⎢⎣

C −A∗y − S

AX − b

X − ΠSn
+
[X − S ]

⎤
⎥⎦ = 0 ,

where (X, y, S) ∈ Sn ×�m × Sn.
Note that both the KKT conditions (3) and the nonsmooth system (44) can be

written as the following special generalized equation:

(45) 0 ∈

⎡
⎢⎣

C −A∗y − S

AX − b

X

⎤
⎥⎦+

⎡
⎢⎣

NSn(X)

N	m(y)

NSn
+
(S)

⎤
⎥⎦ .

In [32], Robinson introduced an important concept called strong regularity for a solu-
tion of generalized equations. Here we define only the strong regularity for (45) rather
than for the general problems.

Definition 10. Let Z ≡ Sn × �m × Sn. We say that a KKT point Z ≡
(X, ȳ, S) ∈ Z is a strongly regular solution of the generalized equation (45) if there
exist neighborhoods B of the origin 0 ∈ Z and V of Z such that for every δ ∈ B, the
generalized equation

(46) δ ∈

⎡
⎢⎣

C −A∗y − S

AX − b

X

⎤
⎥⎦+

⎡
⎢⎣

NSn(X)

N	m(y)

NSn
+
(S)

⎤
⎥⎦

has a unique solution in V, denoted by ZV(δ), and the mapping ZV : B → V is
Lipschitz continuous.

Recall that F is said to be a locally Lipschitz homeomorphism near Z if there
exists an open neighborhood V of Z such that the restricted mapping F |V : V → F (V)
is Lipschitz continuous and bijective, and its inverse is also Lipschitz continuous.
The following result, which holds in a more general framework, shows that F is
a locally Lipschitz homeomorphism near Z if and only if Z is a strongly regular
solution of the generalized equation (45). This is almost intuitively true. For the sake
of completeness, however, we include a short proof.

Lemma 11. Let Z ≡ Sn × �m × Sn. Let F : Z → Z be defined by (44) and
Z be a KKT point of the SDP problem. Then, it holds that F is a locally Lipschitz
homeomorphism near Z if and only if Z is a strongly regular solution of the generalized
equation (45).
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Proof. “=⇒” Assume that F is a locally Lipschitz homeomorphism near Z. Then,
there exists an open neighborhood V of Z such that F (V) is an open neighborhood of

the origin 0 ∈ Z, and for any δ̂ ∈ F (V), the equation F (Z) = δ̂ has a unique solution

ẐV(δ̂) in V and ẐV : F (V) → V is Lipschitz continuous.
For any δ = (δ1, δ2, δ3) ∈ B ≡ 1

2F (V), let Z(δ) = (X(δ), y(δ), S(δ)) be a solution,
if one exists, to (46). Write δ ≡ (δ1, δ2, δ3) ∈ Sn ×�m × Sn. Then we have⎡

⎢⎣
C −A∗y(δ) − S(δ)

AX(δ) − b

(S(δ) + δ3) − ΠSn
+
[ (S(δ) + δ3) −X(δ) ]

⎤
⎥⎦ =

⎡
⎢⎣

δ1

δ2

δ3

⎤
⎥⎦ ,

i.e.,

F (X(δ), y(δ), S(δ) + δ3) =

⎡
⎢⎣

δ1 − δ3

δ2

δ3

⎤
⎥⎦ .

Then Z(δ) uniquely exists in V and

Z(δ) = ẐV(δ1 − δ3, δ2, δ3) −

⎡
⎣ 0

0
δ3

⎤
⎦ .

Hence, Z(·) is Lipschitz continuous on B.
“⇐=” Assume that Z is a strongly regular solution of the generalized equation

(45). Then, there exist neighborhoods B of the origin 0 ∈ Z and V of Z, and a locally
Lipschitz function ZV : B → V such that for any δ ∈ B, ZV(δ) is the unique solution in
V to (46). By reversing the arguments in the first part of the proof, we can conclude

that for any δ̂ ≡ (δ̂1, δ̂2, δ̂3) ∈ ( 1
2B)∩(Sn×�m×Sn ), F (Z) = δ̂ has a unique solution

Ẑ(δ̂) ∈ V given by Ẑ(δ̂) = ZV(δ̂1 + δ̂3, δ̂2, δ̂3) +

⎡
⎣ 0

0

δ̂3

⎤
⎦ ,

which implies that Ẑ(·) is Lipschitz continuous on 1
2B. Thus, F is Lipschitz homeo-

morphism near Z.
The concept of strong regularity for general nonlinear semidefinite programming

is closely related to another concept called the strong second order sufficient condition
as shown by Sun in [42]. Here we will only present the strong second order sufficient
condition in terms of the SDP problem (1). First, for any B ∈ Sn, we define a
linear-quadratic function ΥB : Sn × Sn → �.

Definition 12 ([42, Definition 2.1]). For any given B ∈ Sn, define the linear-
quadratic function ΥB : Sn × Sn → �, which is linear in the first argument and
quadratic in the second argument, by

ΥB(S,H) := 2
〈
S,HB†H

〉
, (S,H) ∈ Sn × Sn,

where B† is the Moore–Penrose pseudoinverse of B.
Let X ∈ Sn

+ be an optimal solution to the SDP problem (1). Denote M(X) by

the set of points (y, S) ∈ �m × Sn such that (X, y, S) is a KKT point, i.e., for any
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(y, S) ∈ M(X), (X, y, S) satisfies the KKT conditions (3). Let (ȳ, S) ∈ M(X). Write
A ≡ X − S. By using the fact that Sn

+ � X ⊥ S ∈ Sn
+, we may assume that A has

the spectral decomposition as in (7) by replacing A with A and

(47)

A = P

⎡
⎢⎣

Λα 0 0

0 0 0

0 0 Λγ

⎤
⎥⎦PT , X = P

⎡
⎢⎣

Λα 0 0

0 0 0

0 0 0

⎤
⎥⎦PT , S = P

⎡
⎢⎣

0 0 0

0 0 0

0 0 −Λγ

⎤
⎥⎦PT .

Write P = [ Pα Pβ Pγ ] . Then, according to (10) and (12), we have

lin
(
TSn

+
(X)

)
= {B ∈ Sn : PT

β BPβ = 0, PT
β BPγ = 0, PT

γ BPγ = 0} ,(48)

lin
(
TSn

+
(S)
)

= {B ∈ Sn : PT
α BPα = 0, PT

α BPβ = 0, PT
β BPβ = 0} ,(49)

and

aff
(
C(A;Sn

+)
)

=
{
B ∈ Sn : PT

β BPγ = 0, PT
γ BPγ = 0

}
.

Define

(50)

app(ȳ, S) :=
{
B ∈ Sn : AB = 0, B ∈ aff

(
C(A;Sn

+)
)}

= {B ∈ Sn : AB = 0, PT
β BPγ = 0, PT

γ BPγ = 0} .

Then we can state the strong second order sufficient condition for the SDP problem
tailored from Sun [42] for the general nonlinear SDP problem.

Definition 13. Let X ∈ Sn
+ be an optimal solution to the SDP problem (1). We

say that the strong second order sufficient condition holds at X if

(51) sup
(y,S)∈M(X)

{−ΥX(−S,H)} > 0 ∀ 0 �= H ∈
{ ⋂

(y,S)∈M(X)

app(y, S)
}
.

The strong second order sufficient condition (51) may look very complicated.
When M(X) is a singleton, the following result gives a very simple characterization.

Lemma 14. Let X ∈ Sn
+ be an optimal solution to the SDP problem (1). Assume

that M(X) = {(ȳ, S)}. Let X and S have the spectral decompositions as in (47).
Then the strong second order sufficient condition (51) holds at X if and only if, for
any H ∈ Sn, the following conditions hold

(52) AH = 0, PT
β HPγ = 0, PT

γ HPγ = 0, and PT
α HPγ = 0 =⇒ H = 0 .

Proof. For any H ∈ Sn, write H̃ = PTHP . Since M(X) = {(ȳ, S)}, the strong
second order sufficient condition (51) becomes

−ΥX(−S,H) > 0 ∀H ∈ app(ȳ, S)\{0} ,

which, by the definition of ΥX(−S,H) and (47), is equivalent to

2
∑

i∈α,j∈γ

−λj

λi
(H̃ij)

2 > 0 ∀H ∈ app(ȳ, S)\{0} .
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For details, see [42]. Then, by (50), the strong second order sufficient condition (51)
holds at X if and only if

AH = 0, H̃βγ = 0, H̃γγ = 0, and H �= 0 =⇒ H̃αγ �= 0 ∀H ∈ Sn ,

which is equivalent to (52). This completes the proof.
Next, we shall establish a link between the strong second order sufficient condition

and the dual constraint nondegeneracy.2

Proposition 15. Let X ∈ Sn
+ be an optimal solution to the SDP problem (1).

Under the assumption M(X) = {(ȳ, S)}, the following are equivalent:
(i) The strong second order sufficient condition (51) holds at X.
(ii) The dual constraint nondegenerate condition (42) holds at (ȳ, S).
Proof. Let X and S have the spectral decompositions as in (47). For any H ∈ Sn,

let H̃ = PTHP . We prove “(i) =⇒ (ii)” first. By Lemma 14, (i) holds if and only if
we have the following implication:

(53) AH = 0, H̃βγ = 0, H̃γγ = 0, and H̃αγ = 0 =⇒ H = 0 ∀H ∈ Sn .

Suppose, for the sake of contradiction, that the dual constraint nondegenerate condi-
tion (42) does not hold at (ȳ, S). Then, we have

(54) [A∗�m ]⊥ ∩
[
lin
(
TSn

+
(S)
)]⊥ �= {0}.

Take an arbitrary 0 �= H ∈ [A∗�m ]⊥ ∩
[
lin
(
TSn

+
(S)
) ]⊥

. We obtain from H ∈
[A∗�m ]

⊥
that

(55) 〈H,A∗y〉 = 0 ∀ y ∈ �m =⇒ 〈AH, y〉 = 0 ∀ y ∈ �m =⇒ AH = 0

and from H ∈
[
lin
(
TSn

+
(S)
) ]⊥

that

〈PTHP,PTBP 〉 = 〈H,B〉 = 0 ∀B ∈ lin
(
TSn

+
(S)
)
,

which, together with (49), implies

(56) PT
α HPγ = 0, PT

β HPγ = 0, and PT
γ HPγ = 0 .

By making use of (53), (55), and (56), we obtain H = 0, which contradicts the choice
of H. This contradiction shows that (ii) holds.

Next, we show “(ii) =⇒ (i).” Since the dual constraint nondegenerate condition

(42) holds at (ȳ, S), for any H ∈ Sn such that AH = 0, H̃βγ = 0, H̃γγ = 0, and

H̃αγ = 0, there exist y ∈ �m and S ∈ lin
(
TSn

+
(S)
)

such that

H = A∗y + S ,

which, together with (49), implies

〈H,H〉 = 〈H,A∗y + S〉 = 〈AH, y〉 + 〈H,S〉 = 0 + 〈PTHP,PTSP 〉

=

〈⎡
⎣ H̃αα H̃αβ 0

H̃T
αβ H̃ββ 0

0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 PT

α SPγ

0 0 PT
β SPγ

PT
γ SPα PT

γ SPβ PT
γ SPγ

⎤
⎦
〉

= 0 .

2A similar statement for the dual SDP problem (2) also holds. We omit it here for brevity.
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Therefore, by Lemma 14, it follows that (i) holds.
Let (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point satisfying the KKT conditions (3),

and let F be defined by (44). As we menioned in the introduction, by combining the
two papers [14] and [18], we know that if the primal constraint nondegeneracy holds
at X and the dual constraint nondegeneracy holds at (ȳ, S), then every element in
∂BF (X, ȳ, S) is nonsingular. Actually, Proposition 15 and [42, Proposition 3.2] allow
us to prove even the nonsingularity of Clarke’s generalized Jacobian ∂F (X, ȳ, S) under
the same primal and dual constraint nondegenerate conditions.

Proposition 16. Let (X, ȳ, S) ∈ Sn × �m × Sn be a KKT point. Assume that
the primal constraint nondegenerate condition (40) holds at X and the dual constraint
nondegenerate condition (42) holds at (ȳ, S), respectively. Then, every element in
∂F (X, ȳ, S) is nonsingular.

Proof. Since the primal constraint nondegenerate condition (40) implies that
M(X) = {(ȳ, S)}, we know from Proposition 15 that the strong second order sufficient
condition (51) holds at X. Consequently, by [42, Proposition 3.2], every element in
∂F (X, ȳ, S) is nonsingular.

Proposition 16 says that the primal and dual constraint nondegenerate conditions
are sufficient for the nonsingularity of all elements in ∂F (X, ȳ, S). Next, we shall
show that the nonsingularity of only two elements in ∂BF (X, ȳ, S) will imply both
the primal and dual constraint nondegenerate conditions.

From Lemma 1, we know that W ∈ ∂BF (X, ȳ, S) if and only if there exists a
V ∈ ∂BΠSn

+
(A) such that

(57) W (ΔX,Δy,ΔS) =

⎡
⎢⎣

−A∗ (Δy) − ΔS

A (ΔX)

ΔX − V (ΔX − ΔS)

⎤
⎥⎦

for all (ΔX,Δy,ΔS) ∈ Sn × �m × Sn, where A ≡ X − S. Let ex (∂BΠSn
+
(A)) be

defined by (18). For V 0, V I ∈ ex (∂BΠSn
+
(A)), let W 0 and W I be defined by (57),

respectively. Denote

(58) ex (∂BF (X, ȳ, S)) :=
{
W 0,W I } ⊆ ∂BF (X, ȳ, S) .

Proposition 17. Let (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point. If both W 0 and
W I in ex (∂BF (X, ȳ, S)) are nonsingular, then the primal constraint nondegenerate
condition (40) holds at X and the dual constraint nondegenerate condition (42) holds
at (ȳ, S), respectively.

Proof. First we show that the nonsingularity of W 0 implies the primal constraint
nondegenerate condition (40). Assume on the contrary that (40) does not hold. Since,
equivalently, (39) fails to hold, too, we have

{[
A
I

]
Sn

}⊥

∩
[

0

lin
(
TSn

+
(X)

)
]⊥

�=
[

0
0

]
∈
[

�m

Sn

]
,

which implies that there exists 0 �= (Δy,ΔS) ∈ {[AI ]Sn}⊥ ∩
[

0
lin (TSn

+
(X))

]⊥
. We

obtain from (Δy,ΔS) ∈ {[AI ]Sn}⊥ that

(59)
〈
(Δy,ΔS), (AH,H)

〉
= 0 ∀H ∈ Sn =⇒ A∗(Δy) + ΔS = 0,
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and from (Δy,ΔS) ∈
[

0
lin (TSn

+
(X))

]⊥
we obtain that

〈
PT (ΔS)P, PTHP

〉
=
〈
ΔS,H

〉
= 0 ∀H ∈ lin

(
TSn

+
(X)

)
,

which, together with (48), implies

(60) PT
α (ΔS)Pα = 0, PT

α (ΔS)Pβ = 0, and PT
α (ΔS)Pγ = 0 .

Let U ∈ Sn be defined by (8). Recall from Proposition 2 that for V 0 ∈ ex (∂BΠSn
+
(A)),

it holds that

V 0(ΔS) = P

⎡
⎢⎢⎣

PT
α (ΔS)Pα PT

α (ΔS)Pβ Uαγ ◦ (PT
α (ΔS)Pγ)(

PT
α (ΔS)Pβ

)T
0 0(

PT
α (ΔS)Pγ

)T ◦ UT
αγ 0 0

⎤
⎥⎥⎦PT ,

which, together with (60), implies V 0(ΔS) = 0 ∈ Sn. Therefore, by (57) and (59),
we have for ΔX ≡ 0 that

W 0(ΔX,Δy,ΔS) =

⎡
⎢⎣

−A∗(Δy) − ΔS

A (ΔX)

ΔX − V 0(ΔX − ΔS)

⎤
⎥⎦ =

⎡
⎢⎣

0

0

V 0(ΔS)

⎤
⎥⎦ = 0 ,

which implies that W 0 is singular. This contradiction shows that the primal constraint
nondegenerate condition (40) holds at X.

Next, we show that the nonsingularity of W I implies the dual constraint nonde-
generate condition (42). Suppose not. Then,

[A∗�m]
⊥ ∩

[
lin
(
TSn

+
(S)
) ]⊥ �= {0} .

Let 0 �= ΔX ∈ [A∗�m]
⊥ ∩

[
lin
(
TSn

+
(S)
) ]⊥

. We obtain from ΔX ∈ [A∗�m]
⊥

that

(61) 〈ΔX,A∗y〉 = 0 ∀ y ∈ �m =⇒ A(ΔX) = 0

and from ΔX ∈
[
lin
(
TSn

+
(S)
) ]⊥

that〈
PT (ΔX)P, PTSP

〉
=
〈
ΔX,S

〉
= 0 ∀S ∈ lin

(
TSn

+
(S)
)
,

which, together with (49), implies

(62) PT
α (ΔX)Pγ = 0, PT

β (ΔX)Pγ = 0, and PT
γ (ΔX)Pγ = 0 .

From Proposition 2, for V I ∈ ex (∂BΠSn
+
(A)), it holds that

V I(ΔX) = P

⎡
⎢⎢⎣

PT
α (ΔX)Pα PT

α (ΔX)Pβ Uαγ ◦ (PT
α (ΔX)Pγ)(

PT
α (ΔX)Pβ

)T
PT
β (ΔX)Pβ 0(

PT
α (ΔX)Pγ

)T ◦ UT
αγ 0 0

⎤
⎥⎥⎦PT ,

which, together with (62), implies V I(ΔX) = ΔX. Therefore, by (57) and (61), we
have for (Δy,ΔS) ≡ (0, 0) ∈ �m × Sn that

W I(ΔX,Δy,ΔS) =

⎡
⎢⎣

−A∗(Δy) − ΔS

A(ΔX)

ΔX − V I(ΔX − ΔS)

⎤
⎥⎦ =

⎡
⎢⎣

0

0

ΔX − V I(ΔX)

⎤
⎥⎦ = 0 ,
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which implies that W I is singular. This contradiction shows that the dual constraint
nondegenerate condition (42) holds at (ȳ, S). This completes the proof.

Now, we are ready to state our main result of this paper.
Theorem 18. Let (X, ȳ, S) ∈ Sn×�m×Sn be a KKT point satisfying the KKT

conditions (3), and let F be defined by (44). Then, the following are all equivalent:
(i) The KKT point (X, ȳ, S) is a strongly regular solution of the generalized equation

(45).
(ii) The function F is a locally Lipschitz homeomorphism near (X, ȳ, S).
(iii) The primal constraint nondegenerate condition (40) holds at X, and the dual

constraint nondegenerate condition (42) holds at (ȳ, S).
(iv) Every element in ∂F (X, ȳ, S) is nonsingular.
(v) Every element in ∂BF (X, ȳ, S) is nonsingular.
(vi) The two elements in ex

(
∂BF (X, ȳ, S)

)
are nonsingular.

Proof. We already know from Lemma 11 that (i) ⇐⇒ (ii) and from Proposi-
tions 16 and 17 that (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi). Furthermore, Clarke’s inverse
function theorem for Lipschitz functions [11, 12] implies that (iv) =⇒ (ii). The proof
of this theorem will be complete if one can show that (ii) =⇒ (v). However, the
latter has been known to be true since 1991 [21] (Gowda [15] even obtained a stronger
conclusion than this by employing the degree theory).

Remark 19. Note that the relations (i) ⇐⇒ (ii) ⇐⇒ (iv) even hold for the general
nonlinear semidefinite programming case [42, Theorem 4.1], whose proof further relies
on a number of important results achieved by Bonnans and Shapiro in their excellent
monograph [7] on sensitivity analysis in optimization and variational inequalities.
Here, the structure displayed uniquely by the SDP problem (1) allows us to derive
these relations directly by avoiding the detour employed in [42] for the nonlinear
SDP problem. An SDP example satisfying (iii) but with the strict complementary
condition failing to hold can be found in [2]. See also [20].

4. Quadratic convergence of smoothing Newton methods. In this section,
we shall show how the theoretical results obtained in sections 2 and 3 can be used to
provide a quadratic convergence analysis on smoothing Newton methods for solving
the nonsmooth equation F (X, y, S) = 0, where F is defined by (44). Let Φ : �×Sn →
Sn be defined by (19). We then introduce the following smoothing function for F :

(63) G(ε,X, y, S) ≡

⎡
⎢⎣

C −A∗y − S

AX − b

S − Φ(ε, S −X)

⎤
⎥⎦ =

⎡
⎢⎣

C −A∗y − S

AX − b

X − Φ(ε,X − S)

⎤
⎥⎦ ,

where (ε,X, y, S) ∈ �× Sn ×�m × Sn. The above function G is continuously differ-
entiable around any (ε,X, y, S) ∈ �×Sn×�m×Sn when ε �= 0 and has been used by
several authors [9, 10, 20, 46] to design smoothing Newton methods for solving SDP
problems (1) and (2).

Define E : �× Sn ×�m × Sn → �× Sn ×�m × Sn by

(64) E(ε,X, y, S) ≡
[

ε

G(ε,X, y, S)

]
, (ε,X, y, S) ∈ � × Sn ×�m × Sn .

Then we have

F (X, y, S) = 0 ⇐⇒ E(ε,X, y, S) = 0 ∀ (ε,X, y, S) ∈ � × Sn ×�m × Sn .
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Let (X, ȳ, S) ∈ Sn × �m × Sn be a KKT point satisfying the KKT conditions (3).
Then

E(0, X, ȳ, S) = 0 .

Write A ≡ X − S. Let A, X, and S have the spectral decompositions as in
(47). Let the linear-quadratic function ΥX(·, ·) be defined as in Definition 12. Then,
we have the following result, which will play a key role in our analysis of quadratic
convergence of smoothing Newton methods.

Proposition 20. Let V ∈ ∂Φ(0, A). Then, for any ΔX and ΔS in Sn such that
ΔX = V (0,ΔX − ΔS), it holds that

(65) 〈ΔX,ΔS〉 ≤ ΥX(−S,ΔX) .

Proof. Let ΔX and ΔS be in Sn such that ΔX = V (0,ΔX − ΔS). Write

ΔX̃ ≡ PT (ΔX)P and ΔS̃ ≡ PT (ΔS)P . Let Φ|β| be defined by (24). Then, by
Proposition 5, there exists V|β| ∈ ∂Φ|β|(0, 0) such that

V (0,ΔX − ΔS) = P

⎡
⎢⎣

ΔH̃αα ΔH̃αβ Uαγ ◦ ΔH̃αγ

(ΔH̃αβ)T V|β|(0,ΔH̃ββ) 0

(ΔH̃αγ)T ◦ UT
αγ 0 0

⎤
⎥⎦PT ,

where ΔH̃ ≡ ΔX̃ − ΔS̃ and U ∈ Sn is defined by (8). Thus, by using ΔX =
V (0,ΔX − ΔS), we obtain

ΔS̃αα = 0, ΔS̃αβ = 0, ΔX̃βγ = 0, ΔX̃γγ = 0,(66)

ΔX̃ββ = V|β|(0,ΔX̃ββ − ΔS̃ββ) ,(67)

and

(68) ΔX̃αγ − Uαγ ◦ ΔX̃αγ = −Uαγ ◦ ΔS̃αγ .

By applying Proposition 7 to Φ|β| and using (67), we obtain

(69)
〈ΔX̃ββ ,−ΔS̃ββ〉

=
〈
V|β|(0,ΔX̃ββ − ΔS̃ββ), (ΔX̃ββ − ΔS̃ββ) − V|β|(0,ΔX̃ββ − ΔS̃ββ)

〉
≥ 0 ,

Therefore, from (66), (68), and (69), we have

〈ΔX,ΔS〉 = 〈ΔX̃,ΔS̃〉

= 〈ΔX̃ββ ,ΔS̃ββ〉 + 2〈ΔX̃αγ ,ΔS̃αγ〉

≤ 2〈ΔX̃αγ ,ΔS̃αγ〉

= 2
∑

i∈α,j∈γ

λj

λi
((ΔX̃)ij)

2 ,

which, together with the fact that

ΥX(−S,ΔX) = 2
∑

i∈α,j∈γ

λj

λi
((ΔX̃)ij)

2 ,
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shows that (65) holds.
The following result relates the nonsingularity of ∂BE(0, X, ȳ, S) and ∂E(0, X, ȳ,

S) to both the primal constraint nondegeneracy and the dual constraint nondegener-
acy.

Proposition 21. Let (X, ȳ, S) ∈ Sn × �m × Sn be a KKT point satisfying the
KKT conditions (3), and let E be defined by (64). Then the following are equivalent:
(i) The primal constraint nondegenerate condition (40) holds at X, and the dual

constraint nondegenerate condition (42) holds at (ȳ, S).
(ii) Every element in ∂BE(0, X, ȳ, S) is nonsingular.
(iii) Every element in ∂E(0, X, ȳ, S) is nonsingular.

Proof. Since “(iii) =⇒ (ii)” holds trivially and “(ii) =⇒ (i)” follows from Propo-
sition 6 and Theorem 18 directly, we need only to show “(i) =⇒ (iii).” So in the
remaining part of our proof we always assume that part (i) holds.

Let W be an arbitrary element in ∂E(0, X, ȳ, S). We need to show that W is
nonsingular. Let (Δε,ΔX,Δy,ΔS) ∈ � × Sn ×�m ×�n be such that

W (Δε,ΔX,Δy,ΔS) = 0.

Then, by Lemma 1, there exists V ∈ ∂Φ(0, A) such that

W (Δε,ΔX,Δy,ΔS) =

⎡
⎢⎢⎢⎣

Δε

−A∗ (Δy) − ΔS

A (ΔX)

ΔX − V (Δε,ΔX − ΔS)

⎤
⎥⎥⎥⎦ = 0 ,

which implies that Δε = 0. Thus, we have

(70) W (0,ΔX,Δy,ΔS) =

⎡
⎢⎢⎢⎣

0

−A∗ (Δy) − ΔS

A (ΔX)

ΔX − V (0,ΔX − ΔS)

⎤
⎥⎥⎥⎦ = 0 .

Since the primal constraint nondegenerate condition (40) implies M(X) = {(ȳ, S)},
we know from Proposition 15 that the strong second order sufficient condition (51)
holds at X and takes the form

(71) −ΥX(−S,H) > 0 ∀ 0 �= H ∈ app(ȳ, S) ,

where the set app(ȳ, S) is defined by (50). From Proposition 5, (70), and (50), we
know that

(72) ΔX ∈ app(ȳ, S) .

By the second and the third equations of (70), we obtain that

0 = 〈ΔX,−A∗(Δy) − ΔS〉 + 〈Δy,A (ΔX)〉 = 〈ΔX,−ΔS〉 ,

which, together with Proposition 20 and the last equation of (70), implies that

ΥX(−S,ΔX) ≥ 0 .
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Hence, from (71) and (72), we can conclude that

ΔX = 0 .

Thus, from (70), we get

(73)

[
A∗ (Δy) + ΔS

V (0,−ΔS)

]
= 0 ,

which, by Proposition 5, gives rise to

(74) PT
α (ΔS)Pα = 0, PT

α (ΔS)Pβ = 0, and PT
α (ΔS)Pγ = 0 .

From (39), which is equivalent to the primal constraint nondegenerate condition (40),
we know that there exist X ∈ Sn and S ∈ lin

(
TSn

+
(X)

)
such that

AX = Δy and X + S = ΔS ,

which, together with (74), (49), and the first equation of (73), imply

〈Δy,Δy〉 + 〈ΔS,ΔS〉 = 〈AX,Δy〉 + 〈X + S,ΔS〉

= 〈AX,Δy〉 + 〈X,−A∗(Δy)〉 + 〈S,ΔS〉

= 〈S,ΔS〉 = 〈PTSP, PT (ΔS)P 〉 = 0 .

Thus, Δy = 0 and ΔS = 0, which, together with Δε = 0 and ΔX = 0, imply the
following:

W (Δε,ΔX,Δy,ΔS) = 0 =⇒ (Δε,ΔX,Δy,ΔS) = 0 .

This shows that W is nonsingular. So, the proof is completed.
The significance of Proposition 21 is that it allows us to offer a quadratic conver-

gence analysis on several globally convergent smoothing Newton methods presented
in [9, 10, 20, 46] for solving the SDP problem even when the strict complementarity
condition is not satisfied, i.e., when the condition X + S � 0 fails to hold. Instead
of working on these different smoothing Newton methods one by one (with some
necessary modifications), for simplicity we use only the smoothing Newton method
presented in [46] as an example of how this objective can be achieved.

For any (ε,X, y, S) ∈ �×Sn×�m×Sn, write Z ≡ (X, y, S) and define f(ε, Z) :=
‖E(ε, Z)‖2 and θ(ε, Z) : = rmin{1, f(ε, Z)}. Let ε̄ ∈ (0,∞) and r ∈ (0, 1) be such
that rε̄ < 1. The smoothing Newton method presented in [46] can then be stated as
follows.
Algorithm I (a squared smoothing Newton method).
Step 0. Select constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̄, Z0 ∈ Sn×�m×Sn

be an arbitrary point, and k := 0.
Step 1. If E(εk, Z

k) = 0, then stop. Otherwise, let θk := θ(εk, Z
k).

Step 2. Compute (Δεk,ΔZk) by

(75) E(εk, Z
k) + E′(εk, Z

k)(Δεk,ΔZk) = θk

[
ε̄

0

]
.
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Step 3. Let lk be the smallest nonnegative integer l satisfying

(76) f(εk + δlΔεk, Z
k + δlΔZk) ≤ [ 1 − 2σ(1 − rε̄)δl ]f(εk, Z

k) .

Define (εk+1, Z
k+1) := (εk + δlkΔεk, Z

k + δlkΔZk).
Step 4. Replace k by k + 1 and go to Step 1.

The well posedness of Algorithm I hinges on the nonsingularity of E′(ε, Z) for
any ε > 0, which is equivalent to the surjectivity of the linear operator A : Sn → �m

[46]. The two conditions required for quadratic convergence of Algorithm I are (i) the
strong semismoothness of the smoothing function E and (ii) the nonsingularity of all
W ∈ ∂BE(0, Z∗) (or all W ∈ ∂E(0, Z∗)). However, (i) has been proven in [46] and (ii)
can be derived from Proposition 21 under both the primal constraint nondegeneracy
and the dual constraint nondegeneracy. Thus, by employing the standard convergence
analysis detailed in [30] for the vector version of the squared smoothing Newton
method, we have the following convergence theorem. For more explanation, see [46].

Theorem 22. Assume that A : Sn → �m is onto. Then an infinite se-
quence {(εk, Zk)} is generated by Algorithm I and each accumulation point (0, Z)
of {(εk, Zk)} is a solution of E(ε, Z) = 0. Let Z = (X, ȳ, S) ∈ Sn × �m × Sn. If
the primal constraint nondegenerate condition (40) holds at X and the dual constraint
nondegenerate condition (42) holds at (ȳ, S), then the whole sequence {(εk, Zk)} con-
verges to (0, Z),

(77) ‖ (εk+1, Z
k+1) − (0, Z) ‖ = O(‖ (εk, Z

k) − (0, Z) ‖2),

and

(78) εk+1 = O(ε2
k) .

Note that in Theorem 22, the quadratic convergence does not rely on the strict
complementarity—one common condition that was assumed in all known smoothing
Newton methods for solving the SDP problem (1) and its dual, as far as we know.
The smoothing function G can certainly take other forms. For example, in order
to improve the global convergence of Algorithm I, one may consider Tikhonov-type
regularized smoothing functions such as

(79)

G(ε,X, y, S) :=

⎡
⎢⎣

C −A∗y − S + εX

AX − b + εy

S − Φ
(
ε, S − (X + εS)

)
⎤
⎥⎦ =

⎡
⎢⎣

C −A∗y − S + εX

AX − b + εy

X − Φ
(
(X + εS) − S

)
+ εS

⎤
⎥⎦ .

The quadratic convergence of Algorithm I will not be affected because, by Lemma 1,
the set ∂BE(0, X, S, Y ) is still kept the same for any (X, y, S) ∈ Sn ×�m ×Sn if one
replaces the smoothing function G in (64) by the one given in (79).

5. Conclusions. In this paper, we presented several equivalent links among the
primal and dual constraint nondegenerate conditions, the strong regularity, and the
nonsingularity of both the B-subdifferential and Clarke’s generalized Jacobian of a
nonsmooth system at a KKT point in the context of linear semidefinite program-
ming. These links were further used to derive for the first time a quadratic conver-
gence analysis of globally convergent smoothing Newton methods without assuming
the strict complementarity. Variational analysis on the metric projector over the cone
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of positive semidefinite matrices and its smoothed counterpart plays a fundamental
role in achieving these. Given the fact that the metric projector over the more gen-
eral symmetric cone behaves quite similarly to the metric projector over the cone of
positive semidefinite matrices [45], one is tempted to wonder if the results obtained
in this paper can be extended to linear symmetric cone programming. We leave this
interesting question as our future research topic.
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CONVERGENCE OF NEW INERTIAL PROXIMAL METHODS FOR
DC PROGRAMMING∗
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Abstract. We present iterative methods for finding the critical points and/or the minima of
extended real valued functions of the form φ = ψ+g−h, where ψ is a differentiable function and g and
h are convex, proper, and lower semicontinuous. The underlying idea relies upon the discretization
of a first order dissipative dynamical system which allows us to preserve the local feature and to
obtain some convergence results. The main theorems not only recover known convergence results in
this field but also provide a theoretical basis for the development of new iterative methods.

Key words. DC minimization, proximal mappings, critical points, subdifferentials

AMS subject classifications. Primary, 49J53, 65K10; Secondary, 49M37, 90C25

DOI. 10.1137/060655183

1. Introduction. In recent years there has been very active research in noncon-
vex programming. A great deal of the work involves global optimization, whose main
tools and solution methods are developed according to the spirit of combinatorial opti-
mization. Apart from this combinatorial approach to global continuous optimization,
the convex analysis approach to nonconvex programming has been much less studied,
and only on DC programming. In this paper these works are extended in a natural
and logical way to find critical points of a nonconvex objective function φ : H → R of
the form φ := ψ + g − h, namely,

P(φ,H) : min
x∈H

(ψ(x) + g(x) − h(x)),

where ψ is differentiable (not necessarily convex) and g and h are convex, lower semi-
continuous proper functions on a real Hilbert space H endowed with inner product
and induced norm, respectively denoted by 〈., .〉 and |.|.

Indeed, we wish to make an extension of DC programming—not too large to allow
us the use of the arsenal of powerful tools in convex analysis and convex optimiza-
tion but sufficiently wide to cover most real-world nonconvex optimization problems.
The convexity of the two DC components and the differentiability of ψ of the ob-
jective function will be used to develop appropriate tools from both theoretical and
algorithmic viewpoints. There is a great interest for this class of objective func-
tions (see, for instance, [18, 28]). Let us mention that P(φ,H), in the special case
when g = δC , the indicator function of a nonempty closed convex set C, becomes
P(ψ− h,C) : minx∈C(ψ(x)− h(x)), which includes constrained convex maximization
problems. When ψ ≡ 0, φ is called a DC function. It is worth mentioning that the
class of DC functions contains all lower-C2 functions and constitutes a minimal real-
istic extension of the class of convex functions. It has been successfully used in many
nonconvex applications such as multicommodity network, image restoration process-
ing, and semilinear elliptic problems arising in plasma physics and fluid mechanics
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and seems particularly well suited to model several nonconvex industrial problems
(computer vision, fuel mixture, molecular biology, etc.). Some interesting optimality
conditions related to P(φ,H) in the more general setting of Banach spaces are given
by Penot [23] (see also [10, 11, 17] for the case when ψ ≡ 0).

(i) [23, Proposition 2.1]) A necessary condition for x̄ to be a local minimizer of
φ is ∂Fh(x̄) ⊂ ∂F (ψ + g)(x̄), where ∂F is the Fréchet subdifferential. Because of the
regularity of the function ψ and the convexity of the functions g and h, we have

∂F (ψ + g)(x̄) = ∂F g(x̄) + ∇ψ(x̄), ∂F g = ∂g, and ∂Fh = ∂h,

where ∂ denotes the standard Fenchel subdifferential of convex analysis, so that this
necessary condition may be rewritten as ∂h(x̄) ⊂ ∂g(x̄) + ∇ψ(x̄).

(ii) [23, Corollary 2.4]) Conversely, when H is finite dimensional, x̄ is a local strict
minimizer of φ provided that ∂h(x̄) ⊂ int(∂g(x̄)) + ∇ψ(x̄).

Being aware that such optimality conditions are not easily reached from the nu-
merical viewpoint, we will focus on the problem of finding critical points of φ, namely,

find x̄ ∈ S := {x ∈ H; (∇ψ(x) + ∂g(x)) ∩ ∂h(x) 
= ∅}.(1.1)

In contrast with the combinatorial approach, from which many algorithms have been
studied, there have been very few algorithms for solving DC programs from the convex
analysis approach (see, for instance, [24, 27]). DC algorithms, based on local optimal-
ity conditions and duality in DC programming, have been introduced by Pham Dinh
Tao [24] as an extension of the subgradient algorithms to DC programming. Due to
its local character it cannot guarantee the globality of computed solutions for general
DC programs. It is worth mentioning that x∗ is a global solution to a DC problem
(i.e., when ψ ≡ 0) if and only if

∂εh(x∗) ⊂ ∂εg(x
∗) ∀ε ≥ 0.

Unfortunately, as we can foresee, the conditions are rather difficult to use for devising
solution methods to DC programs.

Another important feature of the DC structure, which must be taken into account
while studying solution algorithms, is the regularization techniques in DC program-
ming. To the best of our knowledge, the corresponding scheme, which has been studied
in [27], is the most recent algorithm in the special case of DC functions. Each of its
iterates consists in combining an ascent subgradient step on h with a proximal step on
g (see [27]). An approximate version of this algorithm using the ε-subdifferential was
also discussed in Moudafi and Maingé [20]. They proved that if the sequence generated
by their method is bounded, then every cluster-point is a critical point of φ.

It is worth noting, for instance, that by using suitable DC decompositions of
convex functions we can obtain almost standard algorithms for convex and nonconvex
programming. The choice of the DC decomposition in the objective function strongly
depends on the very specific structure of the problem being considered. In practice,
for solving problem (1.1), we try to choose g and h such that the sequences xn and
qn generated by (1.4) can be easily calculated: i.e., either they are in explicit form or
their computations are inexpensive. Let us remember that the convergence of most
of the numerical methods in convex minimization are obtained under the condition of
the existence of a local minimizer (which then is a global minimizer) for the objective
function. In the present setting of nonconvex minimization, the existence of local
minima does not imply the existence of global minima, even if the objective function
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is bounded from below. Therefore, one may expect not to succeed in proving the
boundedness of the iterates of the proposed numerical algorithms, except for some
restrictive assumptions.

Let us now come to the original aspect of our approach. In order to solve (1.1),
we suggest and analyze a new and promising iterative method obtained by coupling
the ε-subdifferential of h and the approximate proximal mapping of g. These new
schemes generalize the algorithms proposed in [27] and most of the existing methods in
convex minimization, e.g., the proximal point algorithm (see [9, 16, 25]), the standard
projected gradient algorithm (see [21, 15]), and the inertial proximal algorithm and
its approximate variants (see [1, 2, 12, 19]). Furthermore, our proposed algorithm is
based upon an implicit discretization of the following first order dissipative dynamical
system discussed in [3] (see also [5]):⎡

⎢⎣
x(1)(t) + β∇φ(x(t)) + ax(t) + by(t) = 0,

y(1)(t) + ax(t) + by(t) = 0,

x(0) = x0, y(0) = y0,

(1.2)

where φ is assumed to be a convex differentiable function, where the initial data x0

and y0 belong to H and where β > 0, b > 0, and a + b > 0.
Let us also specify the motivation for this dynamical system in view of building

iterative schemes. Most of the existing numerical methods for minimizing a function,
whether in the convex setting or not, are based upon a discretization of some con-
tinuous equations with appropriate convergence properties. The algorithm of Sun,
Sampaio, and Candido [27], the standard proximal point algorithm, and the gradient
method come from the first order steepest descent equation x(1)(t) + ∇φ(x(t)) = 0.
Conversely, the inertial proximal method is inspired by the heavy ball with friction
dynamical system x(2)(t)+αx(1)(t)+∇φ(x(t)) = 0. The latter system was introduced
by Attouch, Goudon, and Redont [6] for overcoming some of the drawbacks of the
steepest descent method. It turns out that when φ is convex, the two trajectories of
the last two equations weakly converge to minimizers of φ. Nevertheless, there is a
tremendous difference between them. By contrast with the steepest descent method,
the heavy ball with friction dynamical system is no longer a descent method. In the
latter case, it is not the function φ(x(t)) which decreases along trajectories in general
but the energy of the system E(t) := 1

2 |x(1)(t)|2 + φ(x(t)). Consequently, the latter
benefits from interesting properties for the exploration of local minima of φ (see [6] for
more details). It also appears that its trajectories may exhibit oscillations which are
not desirable. In view of numerical optimization purposes, Alvarez and Pérez [4] have
studied the “continuous Newton” method ∇2φ(x(t))x(1)(t) + ∇φ(x(t)) = 0. See also
[8], where an ordinary differential equation model within the framework of a precon-
ditioned gradient method is considered, the objective being the developement of an
implicit scheme to approximate the preconditioned search direction at every iteration,
without a priori knowledge of the Hessian of the objective function. If one combines
this last system with the heavy ball system with friction, the system thus obtained,

x(2)(t) + αx(1)(t) + β∇2φ(x(t))x(1)(t) + ∇φ(x(t)) = 0,(1.3)

inherits most of the advantages of the two preceding systems and corrects both of the
above-mentioned drawbacks: the term ∇2φ(x(t))x(1)(t) is a clever geometric damping
term, while the acceleration term x(2)(t) makes the Newton dynamical system well-
posed, even if ∇2φ(x(t)) is degenerate (see Attouch and Redont [7] for a first study of
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this question). It is worth mentioning that (1.3) is a second order system both in time
and in space. Furthermore, it was proved that (1.3) is equivalent in some sense to the
system (1.2) which is first order in time and with no occurrence of the Hessian (see
[3] and [5] for more details). This matter opens new interesting perspectives such as
considering (1.3) for nonsmooth functions which are only lower semicontinuous or in-
volving constraints, with clear applications to mechanics and PDEs (wave equations,
shocks). Moreover, the following theorem related to (1.2) is proved.

Theorem 1.1 (see [3]). Let φ satisfy the following hypotheses:
• φ is defined and continuously differentiable on H,
• φ is bounded from below, and
• the gradient ∇φ is Lipschitz continuous on the bounded subsets.

Assume further that β > 0, b > 0, b + a > 0 in (1.2). Then the following properties
hold.

(i) For each (x0, y0) ∈ H×H, there exists a unique solution (x, y) of (1.2) defined
on the whole interval [0,+∞), which satisfies the initial conditions x(0) = x0, y(0) =
y0; (x,y) belongs to C1(0,∞;H) × C2(0,∞;H) and satisfies the initial conditions
x(0) = x0 and y(0) = y0.

(ii) For every trajectory (x(t), y(t)) of (1.2) and for λ ∈ [β(
√
a + b −

√
b)2, β

(
√
a + b+

√
b)2], the energy Fλ : (x, y) ∈ H×H → λφ(x)+ 1

2 |ax+by|2 is a Lyapounov
function of (1.2); the energy Fλ(x(t), y(t)) is decreasing on [0,+∞) and bounded from
below and hence converges to some real value as t → +∞. Moreover, we have

• x(1) and y(1) in L2(0,+∞;H),
• limt→+∞ φ(x(t)) exists,
• limt→+∞ y(1)(t) = 0, and
• ∇φ(x) ∈ L2(0,+∞;H) and limt→+∞ x(1)(t) + β∇φ(x(t)) = 0.

(iii) Assuming, in addition, that x is in L∞(0,+∞;H), we have
• ∇φ(x), y, x(1) are bounded on [0,+∞),
• limt→+∞ x(1)(t) = 0, and
• limt→+∞ ∇φ(x(t)) = 0.

It then seems natural to investigate implicit and/or nonimplicit discretization of
(1.2) for numerical and theoretical optimization purposes, because an accurate dis-
crete version of an equation is supposed to preserve the essential properties of the
continuous one. Moreover, this approach permits us to avoid the use of the Hessian
of the function and thus, from a numerical point of view, its aproximation and the
related computational cost (see, for instance, [8]). Now, in order to introduce and
analyze convergence properties of a proximal iteration called DPM (dissipative prox-
imal method) for finding critical points of P(φ,H) which is motivated by the above
arguments and inspired by the system (1.2), let us recall the following definitions.

Given f : H → R ∪ {+∞}, a convex, proper, and lower semicontinuous function,
• the ε-subdifferential of f at any point x in the domain of f is defined by

∂εf(x) := {px ∈ H; f(y) − f(x) ≥ 〈y − x, px〉 − ε ∀y ∈ H}.

Clearly, ∂εf(x) is an enlargement of ∂f(x) in the sense that ∂0f(x) = ∂f(x) and
0 ≤ ε1 ≤ ε2 ⇒ ∂ε1f(x) ⊂ ∂ε2f(x). The use of elements in ∂εf(x) instead of ∂f(x)
allows an extra degree of freedom, which is of very practical interest in various appli-
cations.

• The approximate proximal mapping of f (denoted J∂εf
c or proxε

cf ) is defined

for any c > 0 by J∂εf
c := (I + c∂εf)−1.
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• The conjugate function of f is defined by f∗(y) = supx∈H (〈y, x〉 − f(y)).
If k : H → R ∪ {+∞} is also a convex, proper, and lower semicontinuous
function, by Toland’s duality, we have infx∈H(f(x)− k(x)) = infx∈H(k∗(x)−
f∗(x)).

Finally, we will use the usual notation

Γ0(H) := {v : H → R ∪ {+∞}; v is convex, proper, and lower semicontinuous}

and adopt in what follows the convention +∞− (+∞) = +∞.
Now, choose parameters λ, μ, (εn), α, γ, ν, τ such that
• λ > 0, μ > 0, (εn) ⊂ [0,+∞);
• α + γ > 0 and γ > 0; and
• ν > 0 and τ > −(2 + α)/(2γ).

Consider then Algorithm DPM (for finding critical points of ψ(x) + g(x) − h(x)):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Initialization: (x0, y0) in H×H.

Step 1: Compute qn ∈ ∂εnh(xn).

Step 2: Compute

xn+1 ∈ J
∂εng
λ [xn − λ (∇ψ(xn) − qn) − μ(αxn + γyn)].

Step 3: Compute

yn+1 = yn − 1

k
[αxn + γyn + να(xn+1 − xn)],

where k :=
(
1 + τγ + (α+γ)

2

)
.

(1.4)

Let us observe that under the conditions γ > 0 and τ > −(2 + α)/(2γ), we have
k ≥ γ/2 > 0, so that Step 3 in (1.4) makes sense and hence (1.4) is well defined.

The goal of this paper is to provide a broad framework for the design and the
analysis of promising algorithms based on a discretization of the new system (1.2).
This framework will not only lead to a unified convergence analysis of some existing
algorithms in convex optimization and DC programming but will also propose original
and theoretically interesting results and will serve as a basis for the development of a
new class of algorithms. More specifically, we would like to emphasize that the method
proposed by [27] is nothing but the special case of DPM when α = γ = 0 and g, h are
convex functions. The classical proximal algorithm is recovered by taking ψ = h ≡ 0
and μ = 0, and the inertial proximal method initiated in [1] for convex minimization
(see also [2]) corresponds to the particular case of DPM when ψ = h ≡ 0, γ > 0,
α > 0, and the parameters τ and ν satisfy

τ = − 1
2γ (α + 2) + 1

2 and ν = 1 + 1
α .(1.5)

Indeed, it is easy to verify that in this case k = γ and α(1 − ν) = −1; then Step 2
becomes yn+1 = −α

γ (xn + ν(xn+1 − xn)), which (in Step 1) entails

αxn + γyn = αxn −α (xn−1 + ν(xn − xn−1)) = α(1− ν)(xn −xn−1) = −(xn −xn−1),

so that DPM reduces to

xn+1 ∈ J
∂εng
λ (xn + μ (xn − xn−1)) .
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Under suitable conditions on the parameters and a summability condition on the
errors, we prove a discrete version of the main theorem, Theorem 1.1, in a more
general context. More precisely, we prove that the proposed algorithm generates
an asymptotically regular sequence (xn) and that its weak-cluster points are in S.
Moreover, in the convex case we obtain the weak convergence of the whole sequence
to a minimizer of the function under consideration.

2. Preliminaries. To begin, let us state a remark which will be useful in what
follows.

Remark 2.1. Step 3 in (1.4) is equivalent to each of the following equalities:

(i) − k(yn+1 − yn) = αxn + γyn + να(xn+1 − xn),

where k :=
(
1 + τγ + (α+γ)

2

)
;

(ii) yn − yn+1 = a[νxn+1 + (1 − ν)xn] + b[τyn+1 + (1 − τ)yn],

where a = 2α
2+α+γ and b = 2γ

2+α+γ .

(2.1)

The fact that Step 3 in (1.4) is equivalent to equality (2.1)(i) is obvious. To
complete the verification, we will see that (2.1)(ii) is in turn equivalent to (2.1)(i).
Indeed, by an elementary computation (2.1)(ii) is equivalent to

2 + α + γ

2
(yn − yn+1) = αν(xn+1 − xn) + αxn + γτ(yn+1 − yn) + γyn;

in other words,

−
(

2 + α + γ

2
+ γτ

)
(yn − yn+1) = αν(xn+1 − xn) + αxn + γyn,

which is (2.1)(i).
Now, let us clarify the link between (1.2) and (1.4).
Remark 2.2. To see the connection between (1.2) and (1.4), one may observe

that Step 2 in (1.4) is equivalent to the monotone inclusion

xn+1 − xn + λ (∂εng(xn+1) + ∇ψ(xn) − qn) + μ[αxn + γyn] � 0,(2.2)

while by (2.1)(i) we have

αxn + γyn = −k(yn+1 − yn) − να(xn+1 − xn),

where k := (1 + τγ + (α+γ)
2 ), so that we deduce

(1 − μνα) (xn+1 − xn) + λ(∂εng(xn+1) + ∇ψ(xn) − qn) − μk(yn+1 − yn) � 0,

namely,

(1 − μνα)

μk
(xn+1 − xn) +

λ

μk
[∂εng(xn+1) + ∇ψ(xn) − qn] − (yn+1 − yn) � 0.(2.3)

Setting β := λ/(μkΔt) (for some positive Δt), we obtain

(1 − μνα)

μk
(xn+1 − xn) + Δtβ[∂εng(xn+1) + ∇ψ(xn) − qn] − (yn+1 − yn) � 0.
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Hence, for μ = 1
k+να , one has 1 − μνα = μk, and we get

1

Δt
(xn+1 − xn) + β[∂εng(xn+1) + ∇ψ(xn) − qn] − 1

Δt
(yn+1 − yn) � 0,(2.4)

which in light of (2.1)(ii) can be viewed as a discrete variant of (1.2).
The following lemma will be needed in the next sections.
Lemma 2.1. Let w be a differentiable function on H with an L-Lipschitz contin-

uous gradient for some L ∈]0,+∞[ and u, v ∈ Γ0(H). Then for any points s and t in
H, we have

∀p ∈ ∂εu(t), ∀q ∈ ∂εv(s),

(w + u− v)(t) − (w + u− v)(s) ≤ 〈∇w(s) + p− q, t− s〉 + L|t− s|2 + 2ε.

Proof. Taking u ∈ Γ0(H) and p ∈ ∂εu(s), we have u(t) − u(s) ≤ 〈p, t − s〉 + ε.
Moreover, taking v ∈ Γ0(H) and q ∈ ∂εv(s), we also have v(s) − v(t) ≤ 〈q, s− t〉 + ε.
Then, by combining the two previous inequalities, we get

(u− v)(t) − (u− v)(s) ≤ 〈p− q, t− s〉 + 2ε.(2.5)

Now, by a classical result there exists cθ := θs + (1 − θ)t for some θ ∈]0, 1[ such
that w(t) = w(s) + 〈∇w(cθ), t− s〉, that is, w(t) −w(s) = 〈∇w(cθ) −∇w(s), t− s〉 +
〈∇w(s), t− s〉. Since ∇w is L-Lipschitz continuous on H, we then obtain

w(t) − w(s) ≤ L|s− t|2 + 〈∇w(s), t− s〉,

which in light of (2.5) yields the desired result.
In what follows, En(δ), the discrete energy of the method (1.4), is defined for

n ≥ 1 and δ > 0 by

En(δ) = δφ(xn) +
1

2
|axn + byn|2 − 2δ

n−1∑
j=0

εj ,(2.6)

where a = 2α
2+α+γ and b = 2γ

2+α+γ .

It is worth mentioning that (2.6) has the same form as the one used in [3] and will
permit us to make a connection with the framework developed by Attouch, Bolte, and
Redont [5]. Indeed, applying the continuous steepest descent method to the functional

E(δ) : (x, y) → 1

b2
φ(x) +

1

2
|ax + by|2(2.7)

(i.e., En(δ) with δ = 1
b2 , εj = 0 for j = 1 · · ·n − 1) provides the following first order

system which is close to (1.2):[
x(1)(t) + 1

b2 ∂φ(x(t)) + a(ax(t) + by(t)) � 0,

y(1)(t) + b(ax(t) + by(t)) = 0.

The latter was introduced by Attouch, Bolte, and Redont [5] in view of minimizing
φ, which in light of [5, Proposition 6.1.1], is equivalent to minimizing the functional
E( 1

b2 ).
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3. Asymptotic convergence of DPM. The following lemma contains a useful
property of the discrete energy.

Lemma 3.1. Let ψ be a differentiable function on H with an L-Lipschitz contin-
uous gradient for some L ∈]0,+∞[ and g, h ∈ Γ0(H). Then, the two sequences (xn)
and (yn) generated by scheme (1.4) satisfy the following inequality: ∀δ > 0,∀n ≥ 1,

En+1(δ) − En(δ) ≤
(
−δ 1−μνα

λ + δL− aC1

)
|xn+1 − xn|2 − bC2|yn+1 − yn|2

+

(
δμk

λ
− (aC2 + bC1)

)
〈xn+1 − xn, yn+1 − yn〉,

(3.1)

where k := (1 + τγ + (α+γ)
2 ), C2 := [1 + b (τ − 1/2)], and C1 := a (ν − 1/2).

(Ej(δ))j≥0 is the discrete energy defined in (2.6), and a, b stand for the two pa-
rameters defined in (2.1)(ii).

Proof. From (2.3), there exists pn+1 ∈ ∂εng(xn+1) such that

1 − μνα

μk
|xn+1−xn|2+

λ

μk
〈pn+1+∇ψ(xn)−qn, xn+1−xn〉+〈yn−yn+1, xn+1−xn〉 = 0,

that is,

〈pn+1 + ∇ψ(xn) − qn, xn+1 − xn〉

=
μk

λ

(
−1 − μνα

μk
|xn+1 − xn|2 + 〈yn+1 − yn, xn+1 − xn〉

)
.

(3.2)

Thanks to definition (2.6) of the energy function, we have

En+1(δ) − En(δ) = δ(φ(xn+1) − φ(xn)) − 2δεn

+

〈
a(xn+1 − xn) + b(yn+1 − yn), a

xn+1 + xn

2
+ b

yn+1 + yn
2

〉
.

(3.3)

By virtue of (2.1)(ii), we also have

yn − yn+1 − a
xn+1 + xn

2
− b

yn+1 + yn
2

= a[νxn+1 + (1 − ν)xn] − a
xn+1 + xn

2

+ b[τyn+1 + (1 − τ)yn] − b
yn+1 + yn

2

= a

(
ν − 1

2

)
(xn+1 − xn) + b

(
τ − 1

2

)
(yn+1 − yn),

that is,

a
xn+1 + xn

2
+ b

yn+1 + yn
2

= −[1 + b (τ − 1/2)](yn+1 − yn) − a (ν − 1/2) (xn+1 − xn)

= −C2(yn+1 − yn) − C1(xn+1 − xn),
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where C2 := [1 + b (τ − 1/2)] and C1 := a (ν − 1/2), which by (3.3) entails

En+1(δ) − En(δ) − δ(φ(xn+1) − φ(xn)) + 2δεn

=

〈
a(xn+1 − xn) + b(yn+1 − yn), a

xn+1 + xn

2
+ b

yn+1 + yn
2

〉

= −C2〈a(xn+1 − xn) + b(yn+1 − yn), yn+1 − yn〉

−C1〈a(xn+1 − xn) + b(yn+1 − yn), xn+1 − xn〉

= −bC2|yn+1 − yn|2 − aC1|xn+1 − xn|2

− (aC2 + bC1)〈xn+1 − xn, yn+1 − yn〉.

(3.4)

As a result we equivalently get

En+1(δ) − En(δ) = δ(φ(xn+1) − φ(xn)) − 2δεn

− (aC2 + bC1)〈xn+1 − xn, yn+1 − yn〉

− bC2|yn+1 − yn|2 − aC1|xn+1 − xn|2.

(3.5)

As (qn, pn+1) ∈ ∂εnh(xn) × ∂εng(xn+1) and remembering that φ = ψ + g − h, from
Lemma 2.1 we obtain

φ(xn+1) − φ(xn)

≤ 〈pn+1 + ∇ψ(xn) − qn, xn+1 − xn〉 + L|xn+1 − xn|2 + 2εn.
(3.6)

Combining (3.5) and (3.6), we consequently obtain

En+1(δ) − En(δ) ≤ δ〈pn+1 + ∇ψ(xn) − qn, xn+1 − xn〉

− (aC2 + bC1)〈xn+1 − xn, yn+1 − yn〉

− bC2|yn+1 − yn|2 + (δL− aC1)|xn+1 − xn|2,

(3.7)

which along with (3.2) yields

En+1(δ) − En(δ) ≤ δ
μk

λ

(
−1 − μνα

μk
|xn+1 − xn|2 + 〈yn+1 − yn, xn+1 − xn〉

)

− (aC2 + bC1)〈xn+1 − xn, yn+1 − yn〉

− bC2|yn+1 − yn|2 + (δL− aC1)|xn+1 − xn|2,

(3.8)

which is the desired result.
Now, let us establish the main result of this section.
Theorem 3.2. Assume that the following conditions are satisfied:

γ > 0, α + γ > 0, τ > −2 + α

2γ
, ν ≥ 1/2,(3.9)

∑
n≥0

εn < ∞.(3.10)

Suppose also that f, g ∈ Γ0(H) and ψ is a differentiable function on H with an L-
Lipschitz continuous gradient for some L ∈]0,+∞[, and set φ := ψ + g − h and

k := (1 + τγ + (α+γ)
2 ). If in addition φ is bounded from below and μ, λ > 0 verify

λL + μ(να + k) ≤ 1,(3.11)
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then the sequences (xn) and (yn) generated by scheme (1.4) satisfy the following prop-
erties:

(i) For δ ∈ [β(
√
b2 −

√
a2 + b2)

2, β(
√
b2 +

√
a2 + b2)

2], where β = λ/(kμ), a2 :=
a[1 + 2b(ν − 1/2)], b2 := b[1 + b(τ − 1/2)] (a := 2α

2+α+γ and b := 2γ
2+α+γ ), the

energy (En(δ)) is a decreasing and converging sequence.
(ii) limn→+∞ φ(xn) exists.
(iii) limn→+∞ |xn+1 − xn| = limn→+∞ |yn+1 − yn| = 0.
(iv) limn→+∞ |αxn + γyn| = 0.
(v) There exists a sequence pn+1 ∈ ∂εng(xn+1) such that

lim
n→+∞

|pn+1 + ∇ψ(xn) − qn| = 0.

(vi) If H is a finite dimensional space and if the sequences (xn) and (qn) are
bounded, then every cluster-point x∞ of the sequences (xn) is a critical point of the
function ψ + g − h.

Proof. To begin, regarding the parameters involving in this theorem, we wish to
emphasize that the conditions given in (3.9) ensure that

a > 0, a + b > 0, k > 0, β > 0.

Furthermore, setting β = λ/(kμ) (hence λ = kμβ), we have

−1 − μνα

λ
+ L = − 1

β

(
1

kμ
(1 − Lλ) − να

k

)
,

which by (3.1) yields

En+1(δ) − En(δ) ≤
(
− δ

β

(
1

kμ
(1 − Lλ) − να

k

)
− aC1

)
|xn+1 − xn|2

− bC2|yn+1 − yn|2

+

(
δ

β
− (aC2 + bC1)

)
〈xn+1 − xn, yn+1 − yn〉,

(3.12)

where C2 := [1 + b (τ − 1/2)] and C1 := a (ν − 1/2). Clearly, we have

aC1 = a2 (ν − 1/2) ≥ 0 for ν ≥ 1/2,

while it is immediate that 1
kμ (1 − Lλ) − να

k ≥ 1 when (3.11) is satisfied.

As a consequence, by (3.12) we have

En+1(δ) − En(δ) ≤ − δ

β
|xn+1 − xn|2 − bC2|yn+1 − yn|2

+

(
δ

β
− (aC2 + bC1)

)
〈xn+1 − xn, yn+1 − yn〉.

(3.13)

Let us denote a2 := (aC2 + bC1) and b2 := bC2, so that the previous inequality
becomes

En+1(δ) − En(δ) ≤ qn(δ),(3.14)
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where qn(δ) is defined by

qn(δ) := − δ

β
|xn+1 − xn|2 − b2|yn+1 − yn|2

+

(
δ

β
− a2

)
〈xn+1 − xn, yn+1 − yn〉.

(3.15)

Observe that qn(δ) is an affine function with respect to δ, since the sequences (xn)
and (yn) are independent of δ.

Moreover, for τ > 1/2 − 1/b (hence 1 + b (τ − 1/2) > 0), we obviously have

b2 = bC2 = b[1 + b (τ − 1/2)] > 0 (since b > 0)

and

a2 + b2 = (a + b)C2 + bC1 > 0, because a + b > 0, C2 > 0, b > 0, and C1 ≥ 0.

It is also easily checked that for

δ1 := β(
√

b2 −
√
a2 + b2)

2, δ2 := β(
√

b2 +
√
a2 + b2)

2,(3.16)

we obtain

qn(δ1) = −|(
√
b2 −

√
a2 + b2)(xn+1 − xn) +

√
b2(yn+1 − yn)|2,

qn(δ2) = −|(
√
b2 +

√
a2 + b2)(xn+1 − xn) −

√
b2(yn+1 − yn)|2.

(3.17)

Therefore, for δ ∈ [δ1, δ2], we deduce that

qn(δ) ≤ max{qn(δ1), qn(δ2)} ≤ 0,(3.18)

which by (3.14) yields

En+1(δ) − En(δ) ≤ 0,

so that (En(δ)) is a decreasing sequence. As a consequence, (En(δ)) is a converging
and bounded sequence, provided that

∑
j≥0 εj < ∞ and φ is bounded from below.

On the other hand, taking into account the identity

〈xn+1 − xn, yn+1 − yn〉 = −1

2
|(xn+1 − xn) − (yn+1 − yn)|2

+
1

2
|xn+1 − xn|2 +

1

2
|yn+1 − yn|2,

(3.19)

inequality (3.14) can be rewritten as

En+1(δ) − En(δ)

+
1

2

(
a2 +

δ

β

)
|xn+1 − xn|2 +

(
b2 +

a2

2
− δ

2β

)
|yn+1 − yn|2

+
1

2

(
δ

β
− a2

)
|(xn+1 − xn) − (yn+1 − yn)|2 ≤ 0.

In the particular case when δ = δ3 := β(a2 + 2b2), this inequality becomes

En+1(δ3) − En(δ3) + (a2 + b2) |xn+1 − xn|2 + b2|(xn+1 − xn) − (yn+1 − yn)|2 ≤ 0;
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hence

En+1(δ3) − E0(δ3) + (a2 + b2)

n∑
j=1

|xj+1 − xj |2

+ b2

n∑
j=1

|(xj+1 − xj) − (yj+1 − yj)|2 ≤ 0.

(3.20)

Consequently, by the boundedness of En(δ3) and remembering that b2 > 0, a2+b2 > 0,
we deduce that

∑
j≥1 |(xj+1 − xj) − (yj+1 − yj)|2 < ∞ and

∑
j≥1 |xj+1 − xj |2 < ∞,

which leads to

lim
n→+∞

|xn+1 − xn| = lim
n→+∞

|yn+1 − yn| = 0.(3.21)

This combined with (2.1)(i) yields limn→+∞(axn + byn) = 0, and (2.3) ensures then
the existence of pn+1 ∈ ∂εng(xn+1) satisfying limn→+∞ |pn+1 + ∇ψ(xn) − qn| = 0.

Taking μ1, μ2 in [β(
√
b2−

√
a2 + b2)

2, β(
√
b2 +

√
a2 + b2)

2] such that μ1 
= μ2, we
have

φ(xn) =
1

μ1 − μ2
(En(μ1) − En(μ2)),

so that limn→+∞ φ(xn) exists, because both (En(μ1)) and (En(μ2)) are converging
sequences.

Now let us consider two subsequences (xnν
) and (qnν

) of (xn) and (qn) (we will use
the same notation for the index even if this requires extracting other subsequences)
converging, respectively, to x∞ and q∞. By passing to the limit in (2.5) and in the
relation qkν

∈ ∂εkν
h(xkν

) and taking into account the fact that the multivalued maps
∂(·)f(·) and ∂(·)h(·) are closed on R+ × R

n and that ∇ψ is Lipschitz continuous, we
obtain

q∞ ∈ ∂g(x∞) + ∇ψ(x∞) and q∞ ∈ ∂h(x∞),

from which we infer that (∂g(x∞) +∇ψ(x∞))∩ ∂h(x∞) 
= ∅; in other words, x∞ is a
critical point of ψ + g − h.

Remark 3.1. By virtue of [5, Proposition 6.1.1], minimizing φ is equivalent to
minimizing the functional E( 1

b2 ) defined by (2.7); thus our result could also be con-
sidered as a discrete version of Theorem 6.1.1. by Attouch, Bolte, and Redont [5].

4. Convex minimization case. In this section, we will focus on the case where
the objective function is convex. Our interest is in solving the convex minimization
problem minx∈H g(x) or, equivalently,

find x̄ ∈ H such that 0 ∈ ∂g(x̄).(4.1)

In this context, (1.4) is nothing else than the following algorithm:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Initialization: (x0, y0) in H×H.

Step 1: Compute

xn+1 ∈ J
∂εng
λ [xn − μ(αxn + γyn)].

Step 2: Compute

yn+1 = yn − 1

k
[αxn + γyn + να(xn+1 − xn)],

where k :=
(
1 + τγ + (α+γ)

2

)
.

(4.2)
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We are going to prove, under adequate conditions, the weak convergence of the se-
quence (xn) to a minimizer of the function g. This result is the discrete version of the
main result in [3]. However, the proof is much more technical than in the continuous
case and will be obtained by verifying that conditions of Opial’s lemma are fulfilled.

Lemma 4.1. Let H be a Hilbert space and (xn) a sequence in H such that there
exists a nonempty set C ⊂ H satisfying the following:

(i) For every x̃ ∈ C, limn |xn − x̃| exists.
(ii) Any weak-cluster point of the sequence (xn) belongs in C.

Then, there exists x̄ ∈ C such that (xn) weakly converges to x̄.
Now, we are in a position to present the main convergence result of this section.
Theorem 4.2. Assume that the following conditions are satisfied:

γ > 0, α + γ > 0,(4.3)

τ > − 2+α
2γ , ν ≥ 1/2,(4.4)

∑
n≥0 εn < ∞.(4.5)

Suppose also that a function g ∈ Γ0(H) is bounded from below and such that Argmin
g, the set of minimizers of g on H, is nonempty. Then for any λ > 0 and μ > 0
verifying

μ(να + k) ≤ 1,

where k :=
(
1 + τγ + (α+γ)

2

)
,

(4.6)

the sequences (xn) and (yn) generated by scheme (4.2) satisfy the following properties:
(i)

∑
|xn+1 − xn|2 < ∞,

∑
|yn+1 − yn|2 < ∞,

(ii) limn→+∞ |αxn + γyn| = 0, and
(iii) (xn) weakly converges to a minimizer of the function g on H.

Proof. Let x̃ be a minimizer of g, set cμ := (1−μνα)
μk , and introduce the energy-like

sequence Un defined by

Un = 〈x̃− xn, axn + byn〉 +
1

2
(a + bcμ)|x̃− xn|2 + bβg(xn),(4.7)

where β = λ/(kμ), a := 2α
2+α+γ , and b := 2γ

2+α+γ .

It should be noticed that (4.7) can be viewed as a discrete version of a slight
modification of the Lyapunov functional used in [3]. Moreover, under the assumptions
of the present theorem, Theorem 3.2 clearly holds true. Furthermore, it is easily
observed that

Un+1 − Un − βb(g(xn+1) − g(xn))

= 〈x̃− xn+1, axn+1 + byn+1〉 − 〈x̃− xn, axn + byn〉

+
1

2
(a + bcμ)

(
|x̃− xn+1|2 − |x̃− xn|2

)
= 〈x̃− xn+1, a(xn+1 − xn) + b(yn+1 − yn)〉 + 〈xn − xn+1, axn + byn〉

+ (a + bcμ)

〈
xn − xn+1, x̃− xn+1 + xn

2

〉
,
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that is,

Un+1 − Un − βb(g(xn+1) − g(xn))

= a〈x̃− xn+1, xn+1 − xn〉 + b〈x̃− xn+1, yn+1 − yn〉

+ 〈xn − xn+1, axn + byn〉

+ (a + bcμ)〈xn − xn+1, x̃− xn+1〉 + (a + bcμ)

〈
xn − xn+1,

xn+1 − xn

2

〉
;

hence

Un+1 − Un = βb(g(xn+1) − g(xn))

+ b〈x̃− xn+1, yn+1 − yn − cμ(xn+1 − xn)〉

+ 〈xn − xn+1, axn + byn〉 −
a + bcμ

2
|xn+1 − xn|2.

(4.8)

Let us estimate the first term and the third term in the right-hand side of the previous
equality. By (2.1)(ii), we also have

yn − yn+1 = a[νxn+1 + (1 − ν)xn] + b[τyn+1 + (1 − τ)yn]

= aν(xn+1 − xn) + bτ(yn+1 − yn) + (axn + byn),

that is,

axn + byn = −(1 + bτ)(yn+1 − yn) − aν(xn+1 − xn).(4.9)

Referring to (3.6), for any pn+1 ∈ ∂εng(xn+1) we additionally get

g(xn+1) − g(xn) ≤ 〈pn+1, xn+1 − xn〉 + εn.(4.10)

Combining (4.8), (4.9), and (4.10), we deduce

Un+1 − Un ≤ βb(〈pn+1, xn+1 − xn〉 + εn)

+ b〈x̃− xn+1, yn+1 − yn − cμ(xn+1 − xn)〉

+ 〈xn − xn+1,−(1 + bτ)(yn+1 − yn) − aν(xn+1 − xn)〉

− a + bcμ
2

|xn+1 − xn|2,

(4.11)

namely,

Un+1 − Un ≤ b (β〈pn+1, xn+1 − xn〉 + 〈x̃− xn+1, yn+1 − yn − cμ(xn+1 − xn)〉)

+ bβεn + (1 + τb)〈xn+1 − xn, yn+1 − yn〉

− [bcμ/2 − a(ν − 1/2)]|xn+1 − xn|2.

(4.12)

In addition, by (2.3) with ψ = h ≡ 0 and taking into account the fact that β = λ
μk ,

we have

cμ(xn+1 − xn) + β[∂εng(xn+1)] − (yn+1 − yn) � 0,(4.13)
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so that there exists pn+1 ∈ ∂εng(xn+1) such that

βpn+1 = (yn+1 − yn) − cμ(xn+1 − xn);(4.14)

hence

β〈pn+1, xn+1 − x̃〉 + β〈pn+1, xn+1 − xn〉

= 〈(yn+1 − yn) − cμ(xn+1 − xn), (xn+1 − x̃) + (xn+1 − xn)〉.
(4.15)

As pn+1 ∈ ∂εng(xn+1) and 0 ∈ ∂g(x̃), from the definitions of ∂g and ∂εng, we addi-
tionally have

〈pn+1, xn+1 − x̃〉 ≥ −εn,

so that

β〈pn+1, xn+1 − xn〉

≤ 〈(yn+1 − yn) − cμ(xn+1 − xn), (xn+1 − x̃) + (xn+1 − xn)〉 + βεn.
(4.16)

This can be equivalently rewritten as

β〈pn+1, xn+1 − xn〉 + 〈x̃− xn+1, yn+1 − yn − cμ(xn+1 − xn)〉

≤ 〈(yn+1 − yn) − cμ(xn+1 − xn), xn+1 − xn〉 + βεn,
(4.17)

which along with (4.12) leads to

Un+1 − Un ≤ b〈(yn+1 − yn) − cμ(xn+1 − xn), xn+1 − xn〉

+ 2bβεn + (1 + τb)〈xn+1 − xn, yn+1 − yn〉

− [bcμ/2 − a(ν − 1/2)]|xn+1 − xn|2,

that is,

Un+1 − Un ≤ [1 + (τ + 1)b]〈yn+1 − yn, xn+1 − xn〉 + 2bβεn

−
(

3

2
bcμ − a

(
ν − 1

2

))
|xn+1 − xn|2.

(4.18)

This last inequality can be obviously written as

Un+1 − Un ≤ Sn,(4.19)

where

Sn := 2bβεn + [1 + (τ + 1)b]〈xn+1 − xn, yn+1 − yn〉

−[ 32bcμ − a(ν − 1
2 )]|xn+1 − xn|2.

(4.20)

It is then immediate that Un −
∑n−1

k=0 Sk is a nonincreasing sequence. Furthermore,
we obviously observe that

∑
n≥0 Sn is bounded, because

∑
n≥0 εn < ∞ and, by The-

orem 3.2, the two sums
∑

n≥0 |xn+1 −xn|2 and
∑

n≥0 |xn+1 −xn|2 are finite. It turns
out that Un is bounded from above, and by (4.7) we have

−|x̃− xn| × |axn + byn| +
1

2
(bcμ + a)|x̃− xn|2 + bβg(xn) ≤ Un;(4.21)
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from (4.9) and Theorem 3.2, we also note that the quantity |axn + byn| is bounded
since it converges to zero. By an easy computation, we also have

(2 + α + γ)(a + bcμ)

2
= α + γ

1 − μνα

kμ
= (α + γ) + γ

1 − μ(να + k)

kμ
,

so that a + bcμ > 0, since α + γ > 0, γ > 0, μ > 0, k > 0, and 1 − μ(να + k) ≥ 0.
Consequently, we deduce that |x̃ − xn| is bounded; hence Un is bounded from

below and is convergent. On the other hand, by Theorem 3.2, we know that g(xn)
also converges. As a consequence, observing that

|x̃− xn|2 =
2

a + bcμ
(Un − 〈x̃− xn, axn + byn〉 − bβg(xn))

and since 〈x̃−xn, axn+byn〉 → 0, we deduce the convergence of the sequence (|x̃−xn|).
Taking into account (4.13), we can easily check that any weak-cluster point of (xn)
is in Argmin g, because |xn+1 − xn| → 0, |yn+1 − yn| → 0, and the graph of ∂g is
weakly-strongly closed. Applying Opial’s lemma with C = Argmin g, we conclude
that the sequence (xn) weakly converges to a minimizer of g. This completes the
proof.

Finally, we would like to emphasize again that in the case where ψ = h ≡ 0,
α > 0, γ > 0, and the parameters τ and ν satisfy (1.5), DPM is nothing but the
inertial proximal method. Moreover, k = γ, and thus condition (4.6) can be rewritten
as μ < 1

α+γ+1 . This ensures that μ ∈ (0, 1), and we recover Theorem 3.1 by Alvarez [1].

Conclusion. The main purpose of this article is to establish the asymptotic con-
vergence of some new implicit iterative methods for solving a nonconvex minimization
problem which is a natural extension of differentiable, convex, and DC programming.
These algorithms, which generalize Sun, Sampaio, and Candido’s scheme [27], the
classical proximal algorithm [25], the inertial proximal method [1], and the gradient
algorithm [15], are obtained by a discretization of a first order dissipative dynamical
system. Particular attention to the convex case is also given, and the results obtained
are nothing but discrete versions of those proposed in the continuous case by Alvarez,
Attouch, Bolte, and Redont [3] and [5]. We think that the results obtained in this
paper may inspire and pave the way for future research in this field, especially in
developing new hybrid algorithms which admit less stringent requirements on solving
proximal subproblems in the spirit of Solodov and Svaiter [26], who showed that the
tolerance requirements for solving subproblems can be significantly relaxed if the solv-
ing of each subproblem is followed by a projection onto a certain hyperplane which
separates the current iterate from the solution set of the problem.

Acknowledgments. The authors would like to thank the anonymous referees
and Professor Adrian Lewis for their careful reading of the paper and for their com-
ments and suggestions which permitted us to improve the presentation.

REFERENCES

[1] F. Alvarez, On the minimizing property of a second order dissipative dynamical system in
Hilbert spaces, SIAM J. Control Optim., 38 (2000), pp. 1102–1119.

[2] F. Alvarez and H. Attouch, An inertial proximal method for monotone operators via dis-
cretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), pp. 3–31.

[3] F. Alvarez, H. Attouch, J. Bolte, and P. Redont, A second-order gradient-like dissi-
pative dynamical system with Hessian driven damping. Application to optimization and
mechanics, J. Math. Pures Appl. (9), 81 (2002), pp. 747–779.



DISSIPATIVE SCHEMES FOR NONCONVEX MINIMIZATION 413
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Abstract. A class of trust-region methods is presented for solving unconstrained nonlinear
and possibly nonconvex discretized optimization problems, like those arising in systems governed
by partial differential equations. The algorithms in this class make use of the discretization level
as a means of speeding up the computation of the step. This use is recursive, leading to true
multilevel/multiscale optimization methods reminiscent of multigrid methods in linear algebra and
the solution of partial differential equations. A simple algorithm of the class is then described and
its numerical performance is shown to be numerically promising. This observation then motivates
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1. Introduction. Large-scale finite-dimensional optimization problems often
arise from the discretization of infinite-dimensional problems, a primary example
being optimal control problems defined in terms of either ordinary or partial dif-
ferential equations [8]. While the direct solution of such problems for a discretization
level is often possible using existing packages for large-scale numerical optimization,
this technique typically makes very little use of the fact that the underlying infinite-
dimensional problem may be described at several discretization levels; the approach
thus rapidly becomes cumbersome. Motivated by this observation, we explore here a
class of algorithms which makes explicit use of this fact.

Using the different levels of discretization for an infinite-dimensional problem is
not a new idea. A simple first approach is to use coarser grids in order to compute
approximate solutions which can then be used as starting points for the optimization
problem on a finer grid (see [5, 6, 7, 22], for instance). Other efficient techniques are
inspired from the multigrid paradigm in the solution of partial differential equations
and associated systems of linear algebraic equations (see, for example, [10, 11, 12, 23,
41, 43] for descriptions and references).

The purpose of our paper is threefold. We first introduce a new extension of
the full approximation scheme (FAS) (see, for instance, Chapter 3 of [12] or [25]),
an existing multigrid-type method, to a class of trust-region based optimization al-
gorithms. We then indicate that this class contains numerically efficient members,
thereby motivating further analysis. We finally provide a global convergence proof for
all members of the class, which gives a robustness guarantee typical in optimization
but, to the authors’ knowledge, uncommon in multigrid approaches. Significantly,
this guarantee holds even for nonconvex (nonelliptic) problems.
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The work presented here was in particular motivated by the paper by Gelman and
Mandel [16], the “generalized truncated Newton algorithm” presented in Fisher [15],
a talk by Moré [28], and the contributions by Nash and coauthors [26, 27, 30]. These
latter three papers present the description of MG/OPT, a linesearch-based recursive
algorithm, an outline of its convergence properties, and impressive numerical results.
The generalized truncated Newton algorithm and MG/OPT are very similar and, like
many linesearch methods, naturally suited to convex problems, although their gener-
alization to the nonconvex case is possible. An older contribution for convex problems
is the damped nonlinear multilevel method by Hackbusch and Reusken [24], where
convergence is analyzed for a variant of the FAS under the condition that a Lipschitz
constant for the problem Hessian is explicitly known or can be numerically estimated.
In the same spirit, the very recent contribution by Yavneh and Dardyk [45] considers
a linesearch to improve the radius of local convergence of a nonlinear equations solver.
Further motivation to consider the more general nonconvex problem is also provided
by the computational success of the low/high-fidelity model management techniques
of Alexandrov, Lewis, and coauthors [2, 3] and a paper by Borzi and Kunisch [9] on
multigrid globalization.

The class of algorithms discussed in this note can be viewed as an alternative
where one uses the trust-region technology whose efficiency and reliability in the
solution of nonconvex problems is well known (we refer the reader to [13] for more
complete coverage of this subject). Our developments are organized as follows. We
first describe our class of multiscale trust-region algorithms in section 2 and show
in section 3 that it can be specialized to a multigrid method that performs well on
examples. This observation then motivates the proof of global convergence to first-
order critical points presented in section 4. The main results of this section are
Theorem 4.10, which establishes a level-independent complexity bound for general
trust-region algorithms, and Theorem 4.13, which is the desired convergence property.
Some conclusions and perspectives are presented in section 5.

2. Recursive multiscale trust-region algorithms. We start by considering
the solution of the unconstrained optimization problem

min
x∈�n

f(x),(2.1)

where f is a twice-continuously differentiable objective function which maps �n into
� and is bounded below. The trust-region methods which we investigate are iter-
ative: given an initial point x0, they produce a sequence {xk} of iterates (hope-
fully) converging to a first-order critical point for the problem, i.e., to a point where

g(x)
def
= ∇f(x) = 0. At each iterate xk, trust-region methods build a model mk(x)

of f(x) around xk. This model is then assumed to be adequate in a “trust region,”
defined as a sphere of radius Δk > 0 centered at xk, and a step sk is then computed
such that the trial point xk + sk sufficiently reduces this model in the region. The
objective function is computed at xk + sk and the trial point is accepted as the next
iterate if the ratio of achieved to predicted reduction is larger than a small positive
constant. The value of the radius is finally updated to ensure that it is decreased when
the trial point cannot be accepted as the next iterate and is increased or unchanged
otherwise. In many practical trust-region algorithms, the model mk is quadratic, and
obtaining sufficient decrease then amounts to (approximately) solving

min
‖s‖≤Δk

mk(xk + s) = min
‖s‖≤Δk

f(xk) + 〈gk, s〉 + 1
2 〈s,Hks〉(2.2)
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for s, where gk
def
= ∇f(xk), Hk is a symmetric n× n approximation of ∇2f(xk), 〈·, ·〉

is the Euclidean inner product, and ‖ · ‖ is the Euclidean norm.
Such methods are efficient and reliable and provably converge to first-order critical

points whenever the sequence {‖Hk‖} is uniformly bounded. Besides computing the
value f(xk + sk), their work per iteration is dominated by the numerical solution of
the subproblem (2.2), which crucially depends on the dimension n of the problem.
When (2.1) results from the discretization of some infinite-dimensional problem on a
relatively fine grid, the solution cost is therefore often significant.

In what follows, we investigate what can be done to reduce this cost by exploiting
the knowledge of alternative simplified expressions of the objective function, when
available. More specifically, we assume that we know a collection of functions {fi}ri=0

such that each fi is a twice-continuously differentiable function from �ni to � (with
ni ≥ ni−1), the connection with our original problem being that nr = n and fr(x) =
f(x) for all x ∈ �n. We will also assume that, for each i = 1, . . . , r, fi is “more
costly” to minimize than fi−1. This may be because fi has more variables than fi−1

(as would typically be the case if the fi represent increasingly finer discretizations of
the same infinite-dimensional objective), or because the structure (in terms of partial
separability, sparsity, or eigenstructure) of fi is more complex than that of fi−1, or
for any other reason. To fix terminology, we will refer to a particular i as a level.

Of course, for fi−1 to be useful at all in minimizing fi, there should be some
relation between the variables of these two functions. We henceforth assume that, for
each i = 1, . . . , r, there exist a full-rank linear operator Ri from �ni into �ni−1 (the
restriction) and another full-rank operator Pi from �ni−1 into �ni (the prolongation)
such that

σiPi = RT
i(2.3)

for some known constant σi > 0. In the context of multigrid algorithms, Pi and Ri

are interpreted as restriction and prolongation between a fine and a coarse grid (see
[12], for instance). This assumption is also used in Nash [30].

The main idea is then to use fr−1 to construct an alternative model hr−1 for
fr = f in the neighborhood of the current iterate that is cheaper than the quadratic
model at level r, and to use this alternative model, whenever suitable, to define the
step in the trust-region algorithm. If more than two levels are available (r > 1),
this can be done recursively, the approximation process stopping at level 0, where
the quadratic model is always used. In what follows, we use a simple notation where
quantities of interest have a double subscript i, k. The first, i (0 ≤ i ≤ r), is the level
index (meaning, in particular, if applied to a vector, that this vector belongs to �ni),
and the second, k, is the index of the current iteration within level i and is reset to 0
each time level i is entered.1

Consider now some iteration k at level i (with current iterate xi,k) and suppose
that one decides to use the lower level model hi−1 based on fi−1 to compute a step.
The first task is to restrict xi,k to create the starting iterate xi−1,0 at level i− 1, that
is, xi−1,0 = Rixi,k. We then define the lower level model by

hi−1(xi−1,0 + si−1)
def
= fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉,(2.4)

1We are well aware that this creates some ambiguities, since a sequence of indices i, k can occur
more than once if level i (i < r) is used more than once, implying the existence of more than one
starting iterate at this level. This ambiguity is resolved by the context.
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where vi−1 = Rigi,k − ∇fi−1(xi−1,0) with gi,k
def
= ∇hi(xi,k). By convention, we set

vr = 0 such that, for all sr,

hr(xr,0 + sr) = fr(xr,0 + sr) = f(xr,0 + sr) and gr,k = ∇hr(xr,k) = ∇f(xr,k).

The function hi therefore corresponds to a modification of fi by a linear term that
enforces the relation

gi−1,0 = ∇hi−1(xi−1,0) = Rigi,k.(2.5)

The first-order modification (2.4) is not unusual in multigrid applications in the con-
text of the FAS and is also used by Fisher [15] and Nash [30]. It crucially ensures
that the first-order behaviors of hi and hi−1 are coherent in a neighborhood of xi,k

and xi−1,0, respectively: indeed, one verifies that, if si and si−1 satisfy si = Pisi−1,
then

〈gi,k, si〉 = 〈gi,k, Pisi−1〉 =
1

σi
〈Rigi,k, si−1〉 =

1

σi
〈gi−1,0, si−1〉,(2.6)

where we have also used (2.3) and (2.5). This coherence was independently imposed
in [26] and, in a slightly different context, in [2] and other papers on first-order model
management.

Our task, when entering level i = 0, . . . , r, is then to (locally) minimize hi starting
from xi,0. At iteration k of this minimization, we first choose, at iterate xi,k, either
the model hi−1(xi−1,0 + si−1) (given by (2.4)) or

mi,k(xi,k + si) = hi(xi,k) + 〈gi,k, si〉 + 1
2 〈si, Hi,ksi〉,(2.7)

where the latter is the usual truncated Taylor series in which Hi,k is a symmetric ni×ni

approximation to the second derivatives of hi (which are also the second derivatives
of fi) at xi,k. Once the model is chosen (we will return to the conditions of this
choice below), we then compute a step si,k that generates a decrease on this model
within a trust region {si | ‖si‖i ≤ Δi,k} for some trust-region radius Δi,k > 0. The
norm ‖ · ‖i in this last expression is level-dependent and defined, for some symmetric
positive-definite matrix Mi, by

‖si‖i
def
=

√
〈si,Misi〉

def
= ‖si‖Mi .(2.8)

If the model (2.7) is chosen,2 this is nothing but a usual ellipsoidal trust-region sub-
problem solution yielding a step si,k. The decrease of the model mi,k is then under-
stood in its usual meaning for trust-region methods, which is to say that si,k is such
that

mi,k(xi,k) −mi,k(xi,k + si,k) ≥ κred‖gi,k‖min

[
‖gi,k‖

1 + ‖Hi,k‖
, Δi,k

]
(2.9)

for some constant κred ∈ (0, 1). This condition is known as the “sufficient decrease” or
“Cauchy point” condition. Chapter 7 of [13] reviews several techniques that enforce
it, including the exact minimization of mi,k within the trust region or an approximate
minimization using (possibly preconditioned) Krylov space methods. On the other

2Observe that this is the only possible choice for i = 0.
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hand, if the model hi−1 is chosen, minimization of this latter model (hopefully) pro-
duces a new point xi−1,∗ such that hi−1(xi−1,∗) < hi−1(xi−1,0) and a corresponding
step xi−1,∗ − xi−1,0 which must then be brought back to level i by the prolongation
Pi. Since

‖si‖i = ‖si‖Mi
= ‖Pisi−1‖Mi

= ‖si−1‖PT
i MiPi

def
= ‖si−1‖Mi−1

= ‖si−1‖i−1(2.10)

(which is well defined since Pi is full-rank), the trust-region constraint at level i − 1
then becomes

‖xi−1,∗ − xi−1,0‖i−1 ≤ Δi,k.(2.11)

The lower level subproblem consists in (possibly approximately) solving

min
‖si−1‖i−1≤Δi,k

hi−1(xi−1,0 + si−1).(2.12)

The relation (2.10) also implies that, for i = 0 . . . , r − 1,

Mi = QT
i Qi, where Qi = Pr . . . Pi+2Pi+1,(2.13)

while we define Mr = I for consistency. Preconditioning can also be accommodated
by choosing Mr more elaborately.

Is the cheaper model hi−1 always useful? Obviously not, as it may happen, for
instance, that gi,k lies in the nullspace of Ri and thus that Rigi,k is zero while gi,k
is not. In this case, the current iterate appears to be first-order critical for hi−1 in
�ni−1 while it is not for hi in �ni . Using the model hi−1 is hence potentially useful
only if ‖gi−1,0‖ = ‖Rigi,k‖ is large enough compared to ‖gi,k‖. We therefore restrict
the use of the model hi−1 to iterations where

‖Rigi,k‖ ≥ κg‖gi,k‖ and ‖Rigi,k‖ > εgi−1(2.14)

for some constant κg ∈ (0,min[1,mini ‖Ri‖]) and where εgi−1 ∈ (0, 1) is a measure of
the first-order criticality for hi−1 that is judged sufficient at level i − 1. Note that,
given gi,k and Ri, this condition is easy to check before even attempting to compute
a step at level i− 1.

We are now in a position to describe our recursive multiscale trust-region (RMTR)
algorithm more formally as Algorithm 2.1.

In this description, we use the constants η1, η2, γ1, and γ2 satisfying the con-
ditions 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1. It is assumed that the prolonga-
tions/restrictions Pi and Ri are known, as are the description of the levels i = 0, . . . , r.
An initial trust-region radius for each level Δs

i > 0 is also defined, as well as level-
dependent gradient norm tolerances εgi ∈ (0, 1) and trust-region tolerances εΔi ∈ (0, 1)
for i = 0, . . . , r. The algorithm’s initial data consists of the level index i (0 ≤ i ≤ r),
a starting point xi,0, the gradient gi,0 at this point, the radius Δi+1 of the level-
(i + 1) trust region, and the tolerances εgi and εΔi . The original task of minimizing
f(x) = fr(xr) = hr(xr) (up to the gradient norm tolerance εgr < ‖∇fr(xr,0)‖) is
achieved by calling RMTR(r, xr,0, ∇fr(xr,0), Δr+1,0, ε

g
r, ε

Δ
r , Δs

r) for some starting
point xr,0 and initial trust-region radius Δs

r, and where we define Δr+1,0 = ∞. For
coherence of notation, we thus view this call as being made with an infinite radius
from some (virtual) iteration 0 at level r + 1. The motivation for (2.17) in Step 6 of
the algorithm and the termination test ‖xi,k+1 − xi,0‖i > (1 − εΔi )Δi+1 in Step 5 are
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Algorithm 2.1: RMTR(i, xi,0, gi,0, Δi+1, ε
g
i , ε

Δ
i , Δs

i)

Step 0: Initialization. Compute vi = gi,0 −∇fi(xi,0) and hi(xi,0). Set Δi,0 =
min[Δs

i , Δi+1] and k = 0.
Step 1: Model choice. If i = 0 or if (2.14) fails, go to Step 3. Otherwise,

choose to go to Step 2 (recursive step) or to Step 3 (Taylor step).
Step 2: Recursive step computation.

Call Algorithm RMTR(i − 1, Rixi,k, Rigi,k, Δi,k, εgi−1, εΔi−1, Δs
i−1),

yielding an approximate solution xi−1,∗ of (2.12). Then define si,k =
Pi(xi−1,∗ − Rixi,k), set δi,k = hi−1(Rixi,k) − hi−1(xi−1,∗), and go to
Step 4.

Step 3: Taylor step computation. Choose Hi,k and compute a step si,k ∈
�ni that sufficiently reduces the model mi,k (given by (2.7)) in the sense of
(2.9) and such that ‖si,k‖i ≤ Δi,k. Set δi,k = mi,k(xi,k)−mi,k(xi,k+si,k).

Step 4: Acceptance of the trial point. Compute hi(xi,k + si,k) and define

ρi,k = (hi(xi,k) − hi(xi,k + si,k))/δi,k.(2.15)

If ρi,k ≥ η1, then define xi,k+1 = xi,k+si,k; otherwise define xi,k+1 = xi,k.
Step 5: Termination. Compute gi,k+1. If ‖gi,k+1‖∞ ≤ εgi or ‖xi,k+1 −xi,0‖i >

(1 − εΔi )Δi+1, then return with the approximate solution xi,∗ = xi,k+1.
Step 6: Trust-region radius update. Set

Δ+
i,k ∈

⎧⎪⎨
⎪⎩

[Δi,k,+∞) if ρi,k ≥ η2,

[γ2Δi,k,Δi,k] if ρi,k ∈ [η1, η2),

[γ1Δi,k, γ2Δi,k] if ρi,k < η1,

(2.16)

and

Δi,k+1 = min
[
Δ+

i,k, Δi+1 − ‖xi,k+1 − xi,0‖i
]
.(2.17)

Increment k by one and go to Step 1.

to guarantee that iterates at a lower level in a recursion remain in the trust region
defined at the calling level, as verified below in Lemma 4.1.

Iteration k at level i, associated with the computation of the step si,k, will be
referred to as iteration (i, k). It will be called a Taylor iteration if Step 3 is used
(that is, if Taylor’s model mi,k(xi,k + si) is chosen at Step 1). If Step 2 is used
instead, iteration (i, k) will then be called a recursive iteration. We emphasize that
we expect the most efficient algorithms in our class to make use of a combination of
both iteration types, which means, in particular, that recursive iterations should not
be automatic if (2.14) holds. As is usual for trust-region methods, iteration (i, k) is
said to be successful if ρi,k ≥ η1, that is, if the trial point xi,k + si,k is accepted as
the next iterate xi,k+1. It is said to be very successful if ρi,k ≥ η2, implying that
Δ+

i,k ≥ Δi,k.
In the case where r = 0, that is, if there is only one level in the problem, the

algorithm reduces to the well-known usual trust-region method (see p. 116 of [13])
and enjoys all the desirable properties of this method. If r > 0, the recursive nature
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of Algorithm RMTR is clear from Step 2. It is, in that sense, reminiscent of multigrid
methods for linear systems [23] and is close in spirit to the MG/OPT method [30].
However, this latter method differs from ours in two main respects: Algorithm RMTR
is of trust-region type, and its global convergence properties considered in this paper
do not rely on performing Taylor iterations before or after a recursive one. Algorithm
RMTR can also be viewed as an extension of the low-/high-fidelity model manage-
ment method of [2] and [3]. The main differences are that our framework explicitly
uses prolongation and restriction operators between possibly different variable spaces,
allows more than two nested levels of fidelity, and, maybe less importantly, does not
require coherence of low-fidelity model values with the high-fidelity objective function
(zeroth-order model management). On the other hand, Algorithm RMTR does not
fit in the framework of [16] because this latter formalism considers only “memory-
less” iterations and therefore does not cover adaptive algorithmic features such as
the trust-region radius. Moreover, the convergence results analyzed in this reference
require nonlocal properties on the involved functions and the limit points are proved
only to belong to a set containing the problem’s critical points and the iteration fixed
points. Finally, the proposal by Borzi and Kunisch [9] differs from ours in that it em-
phasizes convergence to minimizers on the coarsest grid but does not directly consider
globalization on finer ones.

3. A practical algorithm and some numerical motivation. Clearly, our
algorithmic description so far leaves a number of practical choices unspecified and is
best viewed at this stage as a theoretical shell which potentially contains both efficient
and inefficient algorithms. Can efficient algorithms be found in this shell? It is the
purpose of this section to show that this is indeed the case. Instead of considering the
RMTR class in its full generality, we will therefore focus on a simple implementation of
our framework, and then show that the resulting method is, in our view, numerically
promising.

3.1. Algorithm definition.
Smoothing and Taylor iterations. The most important of the open algorithmic

questions is how one enforces sufficient decrease at Taylor iterations. A first answer
is provided by existing algorithms for large-scale optimization, such as truncated
conjugate-gradient (TCG) [37, 38] or generalized Lanczos trust-region (GLTR) [19]
methods, in which the problem of minimizing (2.7) is solved in successive embedded
Krylov subspaces (see also section 7.5 in [13]). This method is known to ensure
(2.9). While it can be viewed as a Ritz procedure where solutions of subproblems
of increasing sizes approach the desired high-dimensional one, the definition of these
embedded subspaces does not exploit the explicit knowledge of discretization grids.
We are thus interested in alternatives that exploit this knowledge.

If the model (2.7) is strictly convex and the trust-region radius Δk sufficiently
large, minimizing (2.7) amounts to an (approximate) solution of the classical New-
ton equations Hi,ksi = −gi,k. If the problem additionally results from discretizing a
convex operator on successively finer grids, then multigrid solvers constitute a most
interesting alternative. Our intention is not to review this vast class of numerical algo-
rithms here (we refer the reader to [12] for an excellent introduction to the field), but
we briefly outline their main characteristics. Multigrid algorithms are based on three
complementary observations. The first is that some algorithms, called smoothers, are
very efficient at selectively reducing the high-frequency components of the error on a
grid, that is (in most cases), components whose “wavelength” is comparable to the
grid’s mesh-size. The second is that a low-frequency error component on a fine grid
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appears more oscillatory on a coarse grid and may thus be viewed as a high-frequency
component on this grid. The third is that computations on coarse grids are typically
much cheaper than on finer grids. These observations may be exploited by a two-grid
procedure, as follows. A few iterations of a smoother are first applied on the fine grid,
reducing the error’s high frequencies. The residual is then projected on the coarse
grid where the low frequencies are more oscillatory and thus efficiently and cheaply re-
duced by the smoother applied on the coarse grid. The remaining error on the coarse
grid is then prolongated back to the fine grid, which reintroduces a small amount of
high-frequency error. A few more steps of the fine-grid smoother are finally applied
to eliminate it. The multigrid algorithm is obtained by recursively replacing the error
smoothing on the coarse grid by another two-grid procedure. Multigrid methods for
positive-definite systems of equations typically result in remarkably efficient linearly
convergent processes. Our intention here is to exploit the same features in minimiz-
ing (2.7), although it is expected only to reduce to a positive-definite system of linear
equations asymptotically, when a minimizer of the problem is approached.

At the coarsest level, where further recursion is impossible, the cost of exactly
minimizing (2.7) within the trust region remains small, because of the low dimension-
ality of the subproblem. Our strategy is thus to solve it using the method by Moré
and Sorensen [29] (see also section 7.3 in [13]), whose very acceptable cost is then
dominated by that of a small number of small-scale Cholesky factorizations. At finer
levels, we have the choice of using the TCG or GLTR algorithms mentioned above,
or an adaptation of the multigrid smoothing techniques that guarantees sufficient de-
scent inside the trust region and also handles the possible nonconvexity of the model.
The remainder of this section is devoted to describing this last option.

A very well-known multigrid smoother for systems of equations is the Gauss–
Seidel method, in which every individual equation of the Newton system is solved in
succession.3 This procedure can be extended to optimization without major difficulty
as follows: instead of successively solving equations, we may perform cyclic successive
one-dimensional minimizations along the coordinate axes of the model (2.7), provided
the curvature of this model along each axis is positive. Thus, if j is an index such
that the jth diagonal entry of Hi,k is strictly positive, the updates

αj = −[g]j/[Hi,k]jj , [s]j ← [s]j + αj , and g ← g + αjHi,kei,j

are performed for the minimization along the jth axis (starting each cycle from s such
that ∇mi,k(xi,k + s) = g), where we denote by [v]j the jth component of the vector v
and by [M ]ij the (i, j)th entry of the matrix M , and where ei,j is the jth vector of the
canonical basis of �ni . This is nothing but the well-known (and widely ill-considered)
sequential coordinate minimization (see, for instance, [33, section 14.6]), which we
abbreviate as SCM. In order to enforce convergence on nonconvex problems to first-
order points, we still have to ensure sufficient model decrease (2.9) while keeping the
step in the trust region. This can be achieved in various ways, but we choose here to
start the SCM cycle by initiating the cycle with the axis corresponding to the largest
component of the gradient gi,k in absolute value. Indeed, if this component is the 
th
one and if d� = −sign([gi,k]�)ei,�, then minimization of the model mi,k along d� within
the trust region is guaranteed to yield a Cauchy step α�d� such that the inequality

mi,k(xi,k) −mi,k(xi,k + α�d�) ≥ 1
2 |[gi,k]�|min

[
|[gi,k]�|

1 + |[Hi,k]��|
, Δi,k

]
(3.1)

3See [12, p. 10], or [18, p. 510], or [33, p. 214] amongst many others.
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holds. But

|[gi,k]�| = max
j

| [gi,k]j | ≥
1√
n
‖gi,k‖, and |[Hi,k]��| ≤ ‖Hi,k‖,

and (2.9) then follows from these inequalities and (3.1) since the remaining SCM
operations only reduce the value of the model mi,k further. If, after completing one
SCM cycle, one then notices that the overall step s lies outside of the trust region, we
then apply a variant of the dogleg strategy (see [35], or [13, section 7.5.3]) to the step,
by minimizing mi,k along the segment [α�d�, s] restricted to the trust region. The final
step is then given by α�d� + αs(s− α�d�), where αs is the multiple of s− α�d� where
the minimizer is achieved.

Our description of the smoothing method is complete if we finally specify what
is done when negative curvature is encountered along one of the coordinate axes, the
jth one, say, during the SCM cycles. In this case, the model minimizer along ei,j lies
on the boundary of the trust region, and it is very easy to compute the associated
model reduction. The largest of these reductions is remembered (along with the
corresponding step) if negative curvature is met along more than one axis. It is
then compared to the reduction obtained by minimizing along the axes with positive
curvature, and the step is finally chosen as that giving the maximum reduction.

The V-cycles. One of the flexible features of our RMTR framework is that the
minimization at lower levels (i = 1, . . . , r−1) can be stopped after the first successful
iteration without affecting convergence properties (as will become clear in section 4).
This therefore opens the possibility of considering fixed form recursion patterns and
free form ones. A free form pattern is obtained when Algorithm RMTR is run without
using the premature termination option, in which case minimization is carried out
at each level until the gradient becomes small enough or the relevant trust-region
boundary is approached sufficiently (see Step 5 of Algorithm RMTR). The actual
recursion pattern is then uniquely determined by the progress of minimization at
each level and may be difficult to forecast. By contrast, the fixed form recursion
patterns are obtained by specifying a maximum number of successful iterations at
each level, a technique directly inspired from the definitions of V- and W-cycles in
multigrid algorithms (see [12, p. 40], for instance).

In this section, we consider only V-cycle iterations, where minimization at lower
levels (above the coarsest) consists in, at most, one successful smoothing iteration
followed by either a successful TCG Taylor iteration (if (2.14) fails) or a recursive
iteration (if (2.14) holds), itself followed by a second successful smoothing iteration.
The lower iteration is however terminated if the boundary of the upper-level trust
region is met, which typically occurs only far from a solution, or if the gradient
becomes sufficiently small.

Second-order and Galerkin models. The definition of the gradient correction vi−1

in (2.4) is engineered to ensure (2.6), which is to say that hi and hi−1 coincide at
first order (up to the constant σi) in the range of the prolongation operator. But
coherence of the models can also be achieved at second order: if we choose

hi−1(xi−1,0 + si−1) = fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉 + 1
2 〈si−1,Wi−1si−1〉,(3.2)

where Wi−1 = RiHi,kPi −∇2fi−1(xi−1,0), then we also have that

〈Pisi−1, Hi,kPisi−1,〉 =
1

σi
〈si−1,∇2hi−1(xi−1,0)si−1〉,
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as desired. An even more radical strategy is to choose fi−1(xi−1,0 + si−1) = 0 for
all si−1 in (3.2), which amounts to choosing the lower-level objective function as
the “restricted” version of the quadratic model at the upper level, also known as
the “Galerkin approximation.” This technique is known to improve performance for
difficult cases involving an underlying infinite-dimensional problem with discontinuous
coefficients (see, in particular, the recent analysis in [45]). This is also the option
considered in this section. In the case where this model is strictly convex and the trust-
region radius is large enough, an iteration of the algorithm reduces to the solution
of a positive-definite linear system; multigrid algorithms for solving this system, such
as the multigrid V-Cycle scheme of [12, p. 44], can then be viewed as instances of
Algorithm RMTR.

Computing the starting point at successively finer levels. It is clear that, if the
multilevel recursion idea has any power within an iteration from the finest level down
and back, it must also be advantageous to use the lower-level problems for computing
the starting point xr,0. In our motivating application, we have chosen to compute xr,0

by successively minimizing at levels 0 up to r− 1 starting from the lowest one, where
an initial starting point is assumed to be supplied by the user. (Note that, in general,
the starting point can be supplied at any discretization level and transferred to other
levels by using the prolongations or restrictions.) At level i < r, the accuracy on the
gradient infinity norm that is required for termination is given by

εgi = min(0.01, εgi+1/ν
ψ
i ),(3.3)

where ψ is the dimension of the underlying continuous problem, νi is the discretiza-
tion mesh-size along one of these dimensions, and εgr is the user-supplied gradient
accuracy requirement for the topmost level. Once computed at level i, the solution is
prolongated to level i + 1 using cubic interpolation.

3.2. Two test examples.
A simple quadratic example. We consider here the two-dimensional model prob-

lem for multigrid solvers in the unit square domain S2,

−Δu(x, y) = f in S2, u(x, y) = 0 on ∂S2,

where f is such that the analytical solution to this problem is

u(x, y) = sin[2πx(1 − x)] sin[2πy(1 − y)].

This problem is discretized using a five-point finite-difference scheme, giving a linear
system Aix = bi at level i, where Ai is a symmetric positive-definite matrix. Algorithm
RMTR is used on the variational minimization problem

min
x∈�nr

1
2x

TArx− xT br,

which is equivalent to the linear system Arx = br. The starting point for the values
of u not on the boundary is chosen as a random perturbation (of amplitude 10−5)
of the vector of all ones. This example illustrates that RMTR exhibits performance
similar to traditional linear multigrid solvers on a model problem.

A nonconvex example. We introduce the nonlinear least-squares problem

min
u,γ

1
1000

∫
S2

γ(x, y)2 +

∫
S2

[u(x, y) − u0(x, y)]
2 +

∫
S2

[Δu(x, y) − γ(x, y)u(x, y)]2,
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where the unknown functions u(x, y) and γ(x, y) are defined on the unit square S2 and
the function u0(x, y) is defined on S2 by u0(x, y) = sin(6πx) sin(2πy). This problem
is again discretized using five-point finite differences, but the square in the last term
makes the Hessian denser than for the pure Laplacian. The starting values for u
and γ are random perturbations (of amplitude 100) of u0 and zero, respectively. The
nonconvexity of the resulting discretized problem on the fine grid has been assessed
by a direct eigenvalue computation on the Hessian of the problem.

Prolongations and restrictions. In both examples, we have defined the prolonga-
tion to be the linear interpolation operator and the restriction to be its transpose
normalized to ensure that ‖Ri‖ = 1. These operators are never assembled but are
applied locally for improved efficiency.

3.3. Numerical results. The algorithm described above has been coded in
MATLAB (Release 7.0.0) and the experiments below were run on a Dell Precision
M70 laptop computer with 2MBytes of RAM. The test problems are solved with
εgr = 0.5×10−9. Smoothing iterations use a single SCM cycle, and we choose η1 = 0.01,
η2 = 0.95, γ1 = 0.05, γ2 = 0.25, κg = 0.5, and εΔi = 0.001 for all i. The choice of Δs

r,
the initial trust-region radius at level r, is slightly more difficult (see, for instance,
[34, 36] for suggested strategies), but here we choose to use Δs

r = 1. The gradient
thresholds εgi are chosen according to the rule (3.3).

We consider the simple quadratic example first. In this example, recursive it-
erations were always accepted by the test (2.14). As a result, the work consisted
only in exactly minimizing (2.7) in the trust region at the coarsest level and SCM
smoothing at higher levels. Table 3.1 gives the problem dimension (n) for each level
and the number of smoothing SCM cycles (# fine SCM) at the finest level required to
solve the complete problem from scratch. This is, by far, the dominant linear algebra
cost. For completeness, we also report the solution time in seconds (as reported by
MATLAB) in the line “CPU(s)” of the same table.

For comparison, we also tested an efficient classical trust-region method using
mesh-refinement with cubic interpolation and a TCG solver, where the conjugate-
gradient minimization at iteration (i, k) is terminated as soon as the model gradient
falls under the threshold

max

[
min

(
0.1,

√
‖gi,k‖

)
‖gi,k‖, 0.95 εgr

]

(see section 7.5.1 of [13], for instance). This algorithm solved the level-7 problem
(n = 261, 121) with 657 conjugate-gradient iterations at the finest level in 190.54
seconds, and solved the level-8 problem (n = 1, 046, 529) with 1,307 conjugate-gradient
iterations at the finest level in 2,463.33 seconds. (Note that this TCG solver can also
be obtained as a special case of our framework by replacing smoothing iterations by
TCG ones and disabling the recursive calls to RMTR.) As expected for a typical
multigrid algorithm for linear equations, we observe that the number of smoothing
cycles is fairly independent of the mesh size and dimension, which indicates that the
trust-region machinery does not alter this property.

Table 3.1

Performance on the simple quadratic example.

Level 0 1 2 3 4 5 6 7 8
n 9 49 225 961 3,969 16,129 65,025 261,121 1,046,529
# fine SCM - 11 11 11 9 8 6 5 3
CPU(s) - 0.05 0.14 0.37 0.97 2.84 9.4 38.4 150.88
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Table 3.2

Performance on the nonconvex example.

Level 0 1 2 3 4 5 6 7
n 18 98 450 1,922 7,938 32,258 130,050 522,242
# fine SCM - 21 19 21 28 32 14 9
CPU(s) - 0.43 1.05 3.60 14.90 73.63 151.53 560.26

We now consider our nonconvex test problem, for which the same statistics are
given in Table 3.2. As for the quadratic example, the test (2.14) was always satisfied
and the algorithm thus never had to use TCG iterations for levels above the coarsest.

On this example, the mesh-refinement algorithm using the TCG solver solved the
level-6 problem (n = 130, 050) with 33,033 conjugate-gradient iterations at level 6 in
3,262.06 seconds, and solved the level-7 problem (n = 522, 242) with 3,926 conjugate-
gradient iterations at level 7 in 6,154.96 seconds.

Even if these results were obtained by a very simple implementation of our frame-
work, they are nevertheless highly encouraging, as they suggest that speed-ups of
one order of magnitude or more could be obtained over (good) contending methods.
Moreover, the statistics presented here also suggest that, at least for not too nonlinear
problems, performance in CPU time can be essentially proportional to problem size, a
very desirable property. The authors are of course aware that only continued experi-
ence with more advanced implementations will vindicate those preliminary tests (this
work is currently under way) but consider that the potential numerical benefits justify
a sound convergence analysis of the algorithm, which is best carried out considering
the general RMTR class. This is the purpose of the next section.

4. Global convergence. Our exposition of the global convergence properties
of our general class of recursive multiscale algorithms starts with the analysis of
properties that are specific to our class. The main concepts and developments of
section 6.4 in [13] are subsequently revisited to conclude the case of the multiscale
algorithm. Interestingly, the techniques of proof are different and lead to a new
complexity result (Theorem 4.10) that is also valid in the classical single-level case.

We first complete our assumptions by supposing that the Hessians of each hi and
their approximations are bounded above by the constant κH ≥ 1, i.e., more formally,
that, for i = 0, . . . , r,

1 + ‖∇2hi(xi)‖ ≤ κH(4.1)

for all xi ∈ �ni , and

1 + ‖Hi,k‖ ≤ κH(4.2)

for all k. In order to keep our notation simple, we also assume, without loss of
generality, that

σi = 1(4.3)

in (2.3) for i = 0, . . . , r (this can be directly obtained from the original form by scaling
Pi and/or Ri). We also define the constants

κPR

def
= max

[
1, max

i=1,...,r
‖Pi‖

]
= max

[
1, max

i=1,...,r
‖Ri‖

]
(4.4)
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(where we used (2.3) and (4.3) to deduce the second equality) and

κσ
def
= min

[
1, min

i=0,...,r
σmin(Mi)

]
> 0,(4.5)

where σmin(A) denotes the smallest singular value of the matrix A. We finally define

Δs
min = min

i=0,...,r
Δs

i , εgmin = min
i=0,...,r

εgi , and εΔmin = min
i=0,...,r

εΔi .(4.6)

We also introduce some additional concepts and notation.
1. If iteration (i, k) is recursive, we say that this iteration initiates a minimiza-

tion sequence at level i− 1, which consists of all successive iterations at this
level (starting from the point xi−1,0 = Rixi,k) until a return is made to level
i within iteration (i, k). In this case, we also say that iteration (i, k) is the
predecessor of the minimization sequence at level i − 1. If (i − 1, 
) belongs
to this minimization sequence, this is written as (i, k) = π(i− 1, 
).

2. To a given iteration (i, k), we associate the set

R(i, k)
def
= {(j, 
) | iteration (j, 
) occurs within iteration (i, k)}.(4.7)

The set R(i, k) always contains the pair (i, k) and contains only that pair if
Step 3 is used at iteration (i, k). If Step 2 is used instead of Step 3, then it
additionally contains the pairs of level and iteration numbers of all iterations
that occur in the potential recursion started in Step 2 and terminating on
return within iteration (i, k). Because R(i, k) is defined in terms of iterations,
it does not contain the pairs of indices corresponding to the terminating
iterates (j, ∗) of its (internal) minimization sequences. One easily verifies
that j ≤ i for every j such that (j, 
) ∈ R(i, k) for some nonnegative k and 
.
The mechanism of the algorithm also ensures that

Δj,� ≤ Δi,k whenever (j, 
) ∈ R(i, k),(4.8)

because of the choice of Δj,0 in Step 0 and (2.17). Note that R(i, k) contains
at most one minimization sequence at level i− 1 but may contain more than
one at level i− 2, since each iteration at level i− 1 may generate its own.

3. For any iteration (j, 
) ∈ R(i, k), there exists a unique path from (j, 
) to (i, k)
defined by taking the predecessor of iteration (j, 
), say, (j + 1, q) = π(j, 
),
and then the predecessor of (j + 1, q) and so on until iteration (i, k). We also
define

d(i, k) = min
(j,�)∈R(i,k)

j,(4.9)

which is the index of the deepest level reached by the potential recursion of
iteration (i, k). The path from (d(i, k), 
) to (i, k) is the longest in R(i, k).

4. We use the symbol

T (i, k)
def
= {(j, 
) ∈ R(i, k) | iteration (j, 
) uses Step 3}

to denote the subset of Taylor iterations in R(i, k), that is, iterations at which
Taylor’s model mj,�(xj,� + sj) is chosen.
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We start the analysis of Algorithm RMTR by proving that it has a central property
of trust-region methods, namely, that the steps remain in the trust region.

Lemma 4.1. For each iteration (i, k), we have that

‖si,k‖i ≤ Δi,k.(4.10)

Moreover, if Δj+1,q is the trust-region radius of iteration (j + 1, q) = π(j, 
), we have
that, for each (j, 
) ∈ R(i, k),

‖xj,� − xj,0‖j ≤ Δj+1,q and ‖xj,∗ − xj,0‖j ≤ Δj+1,q.(4.11)

Proof. The constraint (4.10) is explicit for Taylor iterations. We therefore have to
verify that it holds only if Step 2 is chosen at iteration (i, k). If this is the case, consider
j = d(i, k), and consider the first time it occurs in R(i, k). Assume, furthermore, that
xj,∗ = xj,p. Because no recursion occurs to a level lower than j, one must have (from
Step 3) that

‖sj,�‖j ≤ Δj,� (
 = 0, . . . , p− 1).(4.12)

Then we obtain, for 
 = 1, . . . , p, that, if iteration (j, 
− 1) is successful,

‖xj,� − xj,0‖j = ‖xj,�−1 − xj,0 + sj,�−1‖j ≤ ‖xj,�−1 − xj,0‖j + ‖sj,�−1‖j

because of the triangle inequality, while

‖xj,� − xj,0‖j = ‖xj,�−1 − xj,0‖j ≤ ‖xj,�−1 − xj,0‖j + ‖sj,�−1‖j

if it is unsuccessful. Combining these two bounds and (4.12), we have that

‖xj,� − xj,0‖j ≤ ‖xj,�−1 − xj,0‖j + Δj,�−1

≤ ‖xj,�−1 − xj,0‖j + Δj+1,q − ‖xj,�−1 − xj,0‖j
= Δj+1,q

(4.13)

for 
 = 2, . . . , p, where the last inequality results from (2.17). The same result also
holds for 
 = 1, since ‖xj,1−xj,0‖j ≤ Δj,0 ≤ Δj+1,q because of Step 0 in the algorithm.
We then verify, using (2.10), that

‖sj+1,q‖j+1 = ‖Pj+1 (xj,∗ − xj,0) ‖j+1 = ‖xj,∗ − xj,0‖j = ‖xj,p − xj,0‖j ≤ Δj+1,q,

which is nothing but inequality (4.12) at iteration (j+1, q). The same reasoning may
then be applied to each iteration at level j + 1 that uses Step 2. Since inequality
(4.12) is guaranteed for all other iterations of that level by Step 3, we obtain that
(4.12) also holds with j replaced by j+1. The same must therefore be true for (4.13).
The induction can then be continued up to level i, yielding both (4.10) and (4.11)
(for which the case 
 = 0 is obvious).

In the same vein, the algorithm also ensures the following two properties.
Lemma 4.2. The mechanism of Algorithm RMTR guarantees that, for each iter-

ate of index (j, 
) such that (j, 
) �= (j, ∗) (i.e., for all iterates at level j but the last
one),

‖gj,�‖ > εgj(4.14)
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and

‖xj,� − xj,0‖j ≤ (1 − εΔj )Δj+1,q,(4.15)

where Δj+1,q is the trust-region radius of iteration (j + 1, q) = π(j, 
).
Proof. These bounds directly follow from the stopping criteria for minimization

at level j, in Step 5 of the algorithm.
We now prove some useful bounds on the gradient norms for all iterates that

belong to a recursion process initiated within a sufficiently small trust region.
Lemma 4.3. Assume that, for some iteration (i, k),

Δi,k ≤
√
κσκ

r
g

2rκH

‖gi,k‖
def
= κ1‖gi,k‖,(4.16)

where κ1 ∈ (0, 1). Then one has that, for all (j, 
) ∈ R(i, k),

1
2κ

r
g‖gi,k‖ ≤ ‖gj,�‖ ≤ κr

PR(1 + 1
2κ

r
g)‖gi,k‖.(4.17)

Proof. The result is obvious for (j, 
) = (i, k) since, by definition, κg < 1 and
κPR ≥ 1. Let us now consider some iteration (j, 
) ∈ R(i, k) with j < i. From the
mean-value theorem, we know that, for any iteration (j, 
),

gj,� = gj,0 + Gj,�(xj,� − xj,0),(4.18)

where

Gj,� =

∫ 1

0

∇2hj(xj,0 + t(xj,� − xj,0)) dt.(4.19)

But

‖Gj,�‖ ≤ max
t∈[0,1]

‖∇2hj(xj,0 + t(xj,� − xj,0))‖ ≤ κH,(4.20)

and hence, by definition of the norms and (4.5),

‖gj,�‖ ≥ ‖gj,0‖ − κH‖xj,� − xj,0‖ ≥ ‖gj,0‖ −
κH√
κσ

‖xj,� − xj,0‖j(4.21)

for all (j, 
). On the other hand, if (j + 1, q) = π(j, 
), we have also that, for all
(j, 
) ∈ R(i, k),

‖xj,� − xj,0‖j ≤ Δj+1,q ≤ Δi,k(4.22)

because of (4.11) and (4.8) (as (j + 1, q) ∈ R(i, k)). Combining (4.21) and (4.22), we
obtain that, for all (j, 
) ∈ R(i, k),

‖gj,�‖ ≥ ‖gj,0‖ −
κH√
κσ

Δi,k.(4.23)

Consider now the path from (j, 
) to (i, k) in R(i, k). Let this path consist of the
iterations (j, 
), (j + u, tj+u) for u = 1, . . . , i− j − 1, and (i, k). We then have that

‖gj,�‖ ≥ ‖gj,0‖ − κH√
κσ

Δi,k ≥ κg‖gj+1,tj+1‖ − κH√
κσ

Δi,k

≥ κg‖gj+1,0‖ − 2 κH√
κσ

Δi,k ≥ κ2
g‖gj+2,tj+2‖ − 2 κH√

κσ
Δi,k

≥ κr
g‖gi,k‖ − r κH√

κσ
Δi,k,
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where we successively used (4.23), (2.5), the first part of (2.14), and the inequality
κg < 1. We then deduce the first inequality of (4.17) from (4.16).

To prove the second, we reuse (4.18)–(4.20) to obtain that

‖gj,�‖ ≤ ‖gj,0‖ + κH‖xj,� − xj,0‖ ≤ ‖gj,0‖ +
κH√
κσ

‖xj,� − xj,0‖j .(4.24)

Combining this with (4.22), we conclude that

‖gj,�‖ ≤ ‖gj,0‖ +
κH√
κσ

Δi,k.(4.25)

We now retrack the iteration path from (j, 
) back to (i, k) as above and successively
deduce from (4.25), (2.5), and (4.4) that

‖gj,�‖ ≤ ‖gj,0‖ + κH√
κσ

Δi,k ≤ κPR‖gj+1,tj+1‖ + κH√
κσ

Δi,k

≤ κPR‖gj+1,0‖ + (κPR + 1) κH√
κσ

Δi,k ≤ κ2
PR‖gj+2,tj+2‖ + 2κPRκH√

κσ
Δi,k

≤ κr
PR‖gi,k‖ + r

κr−1
PR κH√
κσ

Δi,k ≤ κr
PR

[
‖gi,k‖ + r κH√

κσ
Δi,k

]
,

using κPR ≥ 1. We may now use the bound (4.16) to conclude that the second
inequality of (4.17) must hold.

We now investigate what happens at noncritical points if the trust-region radius
Δi,k is small enough. This investigation is conducted by considering the subset V(i, k)
of R(i, k) defined by

V(i, k) =
{

(j, 
) ∈ R(i, k) | δj,� ≥ 1
2κredκ

r
gκ

j−d(i,k)
ε ‖gi,k‖Δj,�

}
,(4.26)

where

κε
def
= η2ε

Δ
min < 1.(4.27)

V(i, k) is the subset of iterations within the recursion at iteration (i, k) for which
the model decrease is bounded below by a (level-dependent) factor times the product
of the gradient norm ‖gi,k‖ and the trust-region radius Δj,�. Note that, if iteration
(j, 
) belongs to V(i, k), this implies that δj,� can be computed in a finite number of
iterations, and thus that R(j, 
) is finite. The idea of the next two results is to show
that V(i, k) and R(i, k) coincide for a sufficiently small radius Δi,k.

Theorem 4.4. Consider an iteration (i, k) for which ‖gi,k‖ > 0 and

Δi,k ≤ min

[
Δs

min, min

(
κ1,

κredκσκ
r
gκ

r
ε(1 − η2)

2κH

)
‖gi,k‖

]
def
= min[Δs

min, κ2‖gi,k‖],
(4.28)

where κ2 ∈ (0, 1). Then the following conclusions hold:
1. every iteration using Taylor’s model belongs to (4.26), that is,

T (i, k) ⊆ V(i, k), and(4.29)

2. iteration (j, 
) is very successful for every (j, 
) ∈ V(i, k).
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Moreover, if all iterations (j, 
) of a minimization sequence at level j < i belong to
V(i, k) and if π(j, 
) = (j + 1, q), then

3. the decrease in the objective function at level j satisfies, for each 
 > 0,

hj(xj,0) − hj(xj,�) ≥ 1
2κredκ

r
gκ

j−d(i,k)+1
ε 
 ‖gi,k‖Δj+1,q,(4.30)

4. there are at most

p∗
def
=

⌈
κr

PR

√
κσ(2 + κr

g) + κ2κH

κredκσκr
gκ

r
ε

⌉
(4.31)

iterations in the minimization sequence at level j, and
5. we have that

(j + 1, q) ∈ V(i, k).(4.32)

Proof. 1. We start by proving (4.29). Note that, for (j, 
) ∈ R(i, k), (4.8), the
fact that the positive constants κred, κσ, κε, and η2 are all bounded above by one,
(4.28), the left inequality in (4.17), and (4.2) allow us to conclude that

Δj,� ≤ Δi,k ≤
κr

g

2κH

‖gi,k‖ ≤ ‖gj,�‖
1 + ‖Hj,�‖

.(4.33)

If we now assume that (j, 
) ∈ T (i, k), the decrease condition (2.9) must hold at this
iteration, which, together with the left part of (4.17) and (4.33), gives that

δj,� = mj,�(xj,�) −mj,�(xj,� + sj,�) ≥ κred‖gj,�‖Δj,� ≥ 1
2κredκ

r
g‖gi,k‖Δj,�,(4.34)

which then implies (4.29) since κε < 1.
2. We prove item 2 separately for (j, 
) ∈ T (i, k) and for (j, 
) ∈ V(i, k) \ T (i, k).

Consider the case where (j, 
) ∈ T (i, k) first. We deduce from Taylor’s theorem that,
for (j, 
) ∈ T (i, k),

|hj(xj,� + sj,�) −mj,�(xj,� + sj,�)| ≤ κH

(
‖sj,�‖
‖sj,�‖j

)2

Δ2
j,�(4.35)

(see, for instance, Theorem 6.4.1 on p. 133 of [13]). But, by definition of the norms
and (4.5), we know that ‖sj,�‖j ≥

√
κσ‖sj,�‖. Hence, (4.35) becomes

|hj(xj,� + sj,�) −mj,�(xj,� + sj,�)| ≤
κH

κσ
Δ2

j,�.

Combining this last bound with (4.34), we obtain from (2.15) that

|ρj,� − 1| ≤
∣∣∣∣hj(xj,� + sj,�) −mj,�(xj,� + sj,�)

mj,�(xj,�) −mj,�(xj,� + sj,�)

∣∣∣∣ ≤ 2κH

κredκσκr
g‖gi,k‖

Δj,� ≤ 1 − η2,

where the last inequality is deduced from (4.8) and the fact that (4.28) implies the
bound

Δi,k ≤ κredκσκ
r
g‖gi,k‖(1 − η2)/2κH

since κε < 1. Hence ρj,� ≥ η2 and iteration (j, 
) ∈ T (i, k) is very successful, as
requested in item 2.
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We next prove item 2 for (j, 
) ∈ V(i, k) \ T (i, k), which implies, in particular,
that R(j, 
) is finite and xj−1,∗ is well defined. If we consider iteration (j, 
), we may
still deduce from the mean-value theorem that

hj(xj,�) − hj(xj,� + sj,�) = −〈gj,�, sj,�〉 − 1
2 〈sj,�,∇2hj(ξj) sj,�〉

for some ξj ∈ [xj,�, xj,� + sj,�] and also that

hj−1(xj−1,0) − hj−1(xj−1,∗) = −〈gj−1,0, zj−1〉 − 1
2 〈zj−1,∇2hj−1(ξj−1) zj−1〉

for some ξj−1 ∈ [xj−1,0, xj−1,0 + zj−1], where zj−1 = xj−1,∗ − xj−1,0 = xj−1,∗ −
Rjxj,�. Now, because sj,� = Pjzj−1, we deduce from (2.6) and (4.3) that 〈gj,�, sj,�〉 =
〈gj−1,0, zj−1〉 and therefore that

hj(xj,�) − hj(xj,� + sj,�) = hj−1(xj−1,0) − hj−1(xj−1,∗)

− 1
2 〈sj,�,∇2hj(ξj) sj,�〉

+ 1
2 〈zj−1,∇2hj−1(ξj−1) zj−1〉.

(4.36)

But Lemma 4.1 implies that ‖sj,�‖j ≤ Δj,� and ‖zj−1‖j−1 ≤ Δj,�, which, in turn with
the Cauchy–Schwarz inequality, gives that

|〈sj,�,∇2hj(ξj) sj,�〉| ≤ κH‖sj,�‖2 ≤ κH

(
‖sj,�‖
‖sj,�‖j

)2

Δ2
j,� ≤

κH

κσ
Δ2

j,�.(4.37)

Similarly,

|〈zj−1,∇2hj−1(ξj−1) zj−1〉| ≤
κH

κσ
Δ2

j,�.(4.38)

Combining (4.36), (4.37), (4.38), and the definition of δj,�, we obtain that

hj(xj,�) − hj(xj,� + sj,�) ≥ δj,� −
κH

κσ
Δ2

j,�.(4.39)

But since (j, 
) ∈ V(i, k) and κε < 1, we have that

δj,� ≥ 1
2κredκ

r
gκ

j−d(i,k)
ε ‖gi,k‖Δj,� ≥ 1

2κredκ
r
gκ

r
ε‖gi,k‖Δj,� > 0,

and we conclude from (4.39), the definition of ρj,�, and this last bound that

ρj,� =
hj(xj,�) − hj(xj,� + sj,�)

δj,�
≥ 1 −

κHΔ2
j,�

κσδj,�
≥ 1 − 2κHΔj,�

κredκσκr
gκ

r
ε‖gi,k‖

.

Noting now that (4.28) implies the inequality

Δi,k ≤ 1
2κredκσκ

r
gκ

r
ε‖gi,k‖(1 − η2)

and using the bound (4.8), we obtain that ρj,� ≥ η2. Iteration (j, 
) is thus very
successful, which completes the proof of item 2.

3. We now assume that all iterations (j, 
) of a minimization sequence at level
j < i belong to V(i, k) with (j+1, q) = π(j, 
). We first notice that (j+1, q) ∈ R(i, k),
(4.8), (4.28), and (4.6) imply that Δj+1,q ≤ Δi,k ≤ Δs

min ≤ Δs
j . Hence Step 0 gives
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that Δj,0 = Δj+1,q, and since all iterations at level j are very successful because of
item 2, we have from Step 6 that, for all (j, 
) with 
 > 0,

Δj,� = min
[
Δ+

j,�−1, Δj+1,q − ‖xj,� − xj,0‖j
]

≥ min
[
Δj,�−1, Δj+1,q − ‖xj,� − xj,0‖j

]
= min

[
min[Δ+

j,�−2,Δj+1,q − ‖xj,�−1 − xj,0‖j ], Δj+1,q − ‖xj,� − xj,0‖j
]

≥ min

[
Δj,�−2, Δj+1,q − max

p=�−1,�
‖xj,p − xj,0‖j

]

≥ min

[
Δj,0, Δj+1,q − max

p=1,...,�
‖xj,p − xj,0‖j

]

= Δj+1,q − max
p=1,...,�

‖xj,p − xj,0‖j

≥ εΔj Δj+1,q,

where we used (4.15) to deduce the last inequality. Note that Δj,0 = Δj+1,q >
εΔj Δj+1,q, covering the case where 
 = 0. Combining these bounds with the very
successful nature of each iteration at level j, we obtain that, for each (j, p) with
p = 0, . . . , 
− 1,

hj(xj,p) − hj(xj,p + sj,p) ≥ η2δj,p

≥ 1
2η2κredκ

r
gκ

j−d(i,k)
ε ‖gi,k‖Δj,p

≥ 1
2κredκ

r
gκ

j−d(i,k)
ε η2ε

Δ
j ‖gi,k‖Δj+1,q

≥ 1
2κredκ

r
gκ

j−d(i,k)+1
ε ‖gi,k‖Δj+1,q,

where we used (4.6) and (4.27) to obtain the last inequality. Summing now over
iterations p = 0, . . . , 
− 1 at level j, we obtain that

hj(xj,0) − hj(xj,�) =

�−1∑
p=0

[hj(xj,p) − hj(xj,p + sj,p)]

≥ 1
2κredκ

r
gκ

j−d(i,k)+1
ε 
 ‖gi,k‖Δj+1,q,

yielding (4.30).
4. In order to prove item 4, we start by proving that the total decrease in hj

(the objective function for the considered minimization sequence at the jth level)
is bounded above by some multiple of ‖gi,k‖ and Δj+1,q. We first note that the
mean-value theorem gives that

hj(xj,0 + sj,min) = hj(xj,0) + 〈gj,0, sj,min〉 + 1
2 〈sj,min,∇2hj(ξj) sj,min〉

for some ξj ∈ [xj,0, xj,0 + sj,min], where we have defined

sj,min = arg min
‖sj‖j≤Δj+1,q

hj(xj,0 + sj).

Hence, we obtain that, for all sj such that ‖sj‖j ≤ Δj+1,q,

hj(xj,0) − hj(xj,0 + sj) ≤ hj(xj,0) − hj(xj,0 + sj,min) ≤ ‖gj,0‖√
κσ

Δj+1,q +
κH

2κσ
Δ2

j+1,q.
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But we have that ‖xj,� − xj,0‖j ≤ Δj+1,q because of (4.11), and therefore the right
inequalities of (4.17), (4.8), and (4.28) now give that

hj(xj,0) − hj(xj,�) ≤
[
κr

PR + 1
2κ

r
PRκ

r
g√

κσ
+

κ2κH

2κσ

]
‖gi,k‖Δj+1,q(4.40)

for all (j, 
) with 
 ≥ 0. Combining now this bound with (4.30) and remembering that
κε < 1, we deduce that item 4 must hold with (4.31).

5. Finally, since the minimization sequence at level j is guaranteed to terminate
after a finite number of iterations 1 ≤ 
 ≤ p∗, we deduce from (4.30) and the definition
of δj+1,q that

δj+1,q ≥ 1
2κredκ

r
gκ

j+1−d(i,k)
ε ‖gi,k‖Δj+1,q,

and (4.32) then immediately follows.
We may deduce the following important corollary from this theorem.
Corollary 4.5. Assume (4.28) holds for some iteration (i, k) for which ‖gi,k‖ >

0. Then all iterations (j, 
) ∈ R(i, k) are very successful. Moreover, the total number
of iterations in R(i, k) is finite and Δ+

i,k ≥ Δi,k.
Proof. As suggested above, we proceed by showing that V(i, k) = R(i, k), working

from the deepest recursion level upward. Thus consider level j = d(i, k) first. At this
level, all iterations (j, 
) belong to T (i, k) and thus, by (4.29), to V(i, k). If j = i,
we have achieved our objective. Assume, therefore, that j < i and consider level
j + 1. Using (4.32), we see that all iterations involving a recursion to level j must
belong to V(i, k), while the other (Taylor) iterations again belong to V(i, k) by (4.29).
If j + 1 = i, we have thus proved that V(i, k) = R(i, k). If j + 1 < i, we may
then apply the same reasoning to level j + 2, and so on, until level i is reached. We
may thus conclude that V(i, k) and R(i, k) always coincide and, because of item 2 of
Theorem 4.4, contain only very successful iterations. Furthermore, using item 4 of
Theorem 4.4, we see that the total number of iterations in R(i, k) is bounded above
by

r∑
l=0

p�∗ ≤ rpr∗ + 1.

Finally, the fact that Δ+
i,k ≥ Δi,k then results from the mechanism of Step 6 of the

algorithm and the very successful nature of iteration (i, k) ∈ R(i, k).
This last result guarantees the finiteness of the recursion at iteration (i, k) (and

thus the finiteness of the computation of si,k) if Δi,k is small enough. It also ensures
the following useful consequence.

Lemma 4.6. Each minimization sequence contains at least one successful itera-
tion.

Proof. This follows from the fact that unsuccessful iterations cause the trust-
region radius to decrease, until (4.28) is eventually satisfied and a (very) successful
iteration occurs because of Corollary 4.5.

We now investigate the consequence of the above results on the trust-region radius
at each minimization level.

Lemma 4.7. For every iteration (j, 
), with j = 0, . . . , r and 
 ≥ 0, we have that

Δj,� ≥ γ1 min
[
Δs

min, κ2ε
g
j , ε

Δ
j Δj+1,q

]
,(4.41)

where (j + 1, q) = π(j, 
).
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Proof. Consider the minimization sequence at level j ≤ r initiated from iteration
(j + 1, q), and assume, for the purpose of obtaining a contradiction, that iteration
(j, 
) is the first such that

Δj,� < γ1 min
[
Δs

min, κ2ε
g
j , ε

Δ
j Δj+1,q

]
.(4.42)

Note that, because εΔj < 1 and γ1 < 1,

Δj,0 = min[Δs
j , Δj+1,q] ≥ min[Δs

min, ε
Δ
j Δj+1,q] > γ1 min

[
Δs

min, κ2ε
g
j , ε

Δ
j Δj+1,q

]
,

which ensures that 
 > 0 and hence that Δj,� is computed by applying Step 6 of the
algorithm at iteration (j, 
− 1). Suppose now that

Δj,� = Δj+1,q − ‖xj,� − xj,0‖j ;(4.43)

i.e., the second term is active in (2.17). Our definition of Δr+1,0 = ∞ and (4.42) then
ensure that j < r. Then, using (4.15), the definition of γ1, and (4.42), we deduce
that, for j < r,

Δj,� ≥ Δj+1,q − (1 − εΔj )Δj+1,q = εΔj Δj+1,q > γ1ε
Δ
j Δj+1,q > Δj,�,

which is impossible. Hence (4.43) cannot hold, and we obtain from (2.17) that Δj,� =
Δ+

j,�−1 ≥ γ1Δj,�−1, where the last inequality results from (2.16). Combining this
bound with (4.42) and (4.14), we deduce that

Δj,�−1 ≤ min
[
Δs

min, κ2ε
g
j , ε

Δ
j Δj+1,q

]
≤ min [Δs

min, κ2‖gj,�−1‖] .

Hence we may apply Corollary 4.5 and conclude that iteration (j, 
−1) is very success-
ful and that Δj,�−1 ≤ Δ+

j,�−1 = Δj,�. As a consequence, iteration (j, 
) cannot be the
first such that (4.42) holds. This contradiction now implies that (4.42) is impossible,
which completes the proof.

Thus trust-region radii are bounded away from zero by a level-dependent factor.
We now verify that this factor may be made independent of the level.

Theorem 4.8. There exists a constant Δmin ∈ (0,min[Δs
min, 1]) such that

Δj,� ≥ Δmin(4.44)

for every iteration (j, 
).
Proof. Observe first that Lemma 4.7 ensures the bound

Δr,k ≥ γ1 min[Δs
min, κ2ε

g
r]

def
= γ1μ(4.45)

for all k ≥ 0, because we have assumed that the call to the uppermost level is made
with an infinite trust-region radius. Note that μ ∈ (0, 1) because κ2 and εgr both
belong to (0, 1). Suppose now that, for some iteration (j, 
),

Δj,� < γr+2
1 (εΔmin)rμ.(4.46)

If j = r, this contradicts (4.45); hence 0 ≤ j < r. Lemma 4.7 and the definition of μ
in (4.45) then imply that

min[μ, εΔj Δj+1,q] < γr+1
1 (εΔmin)rμ,
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where, as above, iteration (j + 1, q) = π(j, 
). If min[μ, εΔj Δj+1,q] = μ, then μ <

γr+1
1 (εΔmin)rμ, which is impossible because γr+1

1 (εΔmin)r < 1. As a consequence,

εΔj Δj+1,q = min[μ, εΔj Δj+1,q] < γr+1
1 (εΔmin)rμ ≤ γr+1

1 (εΔmin)r−1εΔj μ,

because of (4.6), and hence

Δj+1,q < γr+1
1 (εΔmin)r−1μ.

This condition is entirely similar to (4.46) but one level higher. We may therefore
repeat the reasoning at levels j + 1, . . . , r − 1, yielding the bound

Δr,k < γ
r+2−(r−j)
1 (εΔmin)r−(r−j)μ = γj+2

1 (εΔmin)jμ < γ1μ.

But this last inequality contradicts (4.45), and we therefore deduce that (4.46) never
holds. This proves (4.44) with

Δmin
def
= γr+2

1 (εΔmin)r min[Δs
min, κ2ε

g
r],(4.47)

and the bounds γ1 ∈ (0, 1), εΔmin ∈ (0, 1), κ2 ∈ (0, 1), and εgr ∈ (0, 1) together imply
that Δmin ∈ (0,min[Δs

min, 1]), as requested.
This result must be compared to Theorem 6.4.3 on p. 135 of [13], keeping (4.14)

in mind along with the fact that we have called the uppermost minimization level
with some nonzero tolerance εgr. Also note in (4.47) that Δmin is linearly proportional
to εgr for small enough values of this threshold. The next crucial step of our analysis
is to show that the algorithm is well defined in that all the recursions are finite.

Theorem 4.9. The number of iterations at each level is finite. Moreover, there
exists κh ∈ (0, 1) such that, for every minimization sequence at level i = 0, . . . , r,

hi(xi,0) − hi(xi,p+1) ≥ τi,p η
i+1
1 κh,

where τi,p is the total number of successful iterations in
⋃p

�=0 T (i, 
).
Proof. We prove the desired result by induction on higher and higher levels from

0 to r. We start by defining ωi,� to be the number of successful iterations in T (i, 
),
as well as the number of successful iterations in the set

⋃p
�=0 T (i, 
):

τi,p =

p∑
�=0

ωi,�.(4.48)

Note that ωi,� ≥ 1 if iteration (i, 
) is successful.
Consider first an arbitrary minimization sequence at level 0 (if any), and assume,

without loss of generality, that it belongs to R(r, k) for some k ≥ 0. Every iteration
in this minimization sequence must be a Taylor iteration, which means that every
successful iteration in the sequence satisfies

h0(x0,�) − h0(x0,�+1) ≥ η1κredε
g
0 min

[
εg0
κH

, Δmin

]

≥ ω0,� η1κredε
g
min min

[
εgmin
κH

, Δmin

]
,

(4.49)

where we have used (2.9), (4.14), (4.2), Theorem 4.8, (4.6), and the fact that ω0,� = 1
for every successful iteration (0, 
) because T (0, 
) = {(0, 
)}. Since we know from



436 S. GRATTON, A. SARTENAER, AND P. L. TOINT

Lemma 4.6 that there is at least one such iteration for every minimization sequence,
we may sum the objective decreases at level 0 and obtain from (4.49) that

h0(x0,0) − h0(x0,p+1) =

p∑
�=0

(S)[h0(x0,�) − h0(x0,�+1)] ≥ τ0,pη1κh,(4.50)

where the sum with superscript (S) is restricted to successful iterations and where

κh
def
= κredε

g
min min

[
εgmin

κH

, Δmin

]
∈ (0, 1).(4.51)

If r = 0, we know that h0 = f is bounded below by assumption, and (4.50) implies that
τ0,p must be finite. If r > 0, our assumption that f0 is continuous implies that h0 is
also continuous and hence bounded below on the set {x ∈ �n0 | ‖x− x0,0‖0 ≤ Δr,k}.
The relation (4.50), Lemma 4.1, and (4.8) therefore again impose the finiteness of
τ0,p. Since τ0,p accounts for all successful iterations in the minimization sequence, we
obtain that there must be a last finite successful iteration (0, 
0). If the sequence were
nevertheless infinite, this would mean that every iteration (0, 
) is unsuccessful for all

 > 
0, causing Δj,� to converge to zero, which is impossible in view of Theorem 4.8.
Hence the minimization sequence is finite. The same reasoning may be applied to
every such sequence at level 0.

Now consider an arbitrary minimization sequence at level i (again, without loss
of generality, within R(r, k) for some k ≥ 0) and assume that each minimization
sequence at level i−1 is finite and also that each successful iteration (i−1, u) in every
minimization sequence at this lower level satisfies

hi−1(xi−1,u) − hi−1(xi−1,u+1) ≥ ωi−1,u η
i
1κh,(4.52)

which is the direct generalization of (4.49) at level i−1. Consider a successful iteration
(i, 
), whose existence is ensured by Lemma 4.6. If it is a Taylor iteration (i.e., if
(i, 
) ∈ T (i, 
)), we obtain as above that

hi(xi,�) − hi(xi,�+1) ≥ η1κh ≥ ηi+1
1 κh = ωi,� η

i+1
1 κh(4.53)

since η1 ∈ (0, 1) and ωi,� = 1 for every successful Taylor iteration. If, on the other
hand, iteration (i, 
) uses Step 2, then, assuming xi−1,∗ = xi−1,t+1, we obtain that

hi(xi,�) − hi(xi,�+1) ≥ η1[hi−1(xi−1,0) − hi−1(xi−1,∗)]

= η1

t∑
u=0

(S)[hi−1(xi−1,u) − hi−1(xi−1,u+1)].

Observing that ωi,� = τi−1,t, (4.52) and (4.48) then give that

hi(xi,�) − hi(xi,�+1) ≥ ηi+1
1 κh

t∑
u=0

ωi−1,u = τi−1,t η
i+1
1 κh = ωi,� η

i+1
1 κh.(4.54)

Combining (4.53) and (4.54), we see that (4.52) again holds at level i instead of i− 1.
Moreover, as above,

hi(xi,0) − hi(xi,p+1) =

p∑
�=0

(S)[hi(xi,�) − hi(xi,�+1)] ≥ τi,p η
i+1
1 κh(4.55)
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for the minimization sequence including iteration (i, 
). If i = r, hi = f is bounded
below by assumption and (4.55) imposes that the number of successful iterations in
this sequence must again be finite. The same conclusion holds if i < r, since hi is
continuous and hence bounded below on the set {x ∈ �ni | ‖x−xi,0‖i ≤ Δr,k}, which
contains xi,p+1 because of Lemma 4.1 and (4.8). As for level 0, we may then conclude
that the number of iterations (both successful and unsuccessful) in the minimization
sequence is finite. Moreover, the same reasoning holds for every minimization sequence
at level i, and the induction is complete.

A first remarkable consequence of this theorem is an upper bound on the number
of iterations needed by the trust-region algorithm to reduce the gradient norm at level
r below a given threshold value.

Theorem 4.10. Assume that one knows a constant flow such that hr(xr) =
f(x) ≥ flow for every x ∈ �n. Then Algorithm RMTR needs at most⌈

f(xr,0) − flow

θ(εgmin)

⌉

successful Taylor iterations at any level to obtain an iterate xr,k such that ‖gr,k‖ ≤ εgr,
where

θ(ε) = ηr+1
1 κredεmin

[
ε

κH

, γr+2
1 (εΔmin)r min[Δs

min, κ2ε]

]
.

Proof. The desired bound directly follows from Theorem 4.9, (4.51), (4.47), and
the definition of εgmin. (To keep the expression manageable, we have refrained from
substituting the value of κ2 from (4.28) and, in this value, that of κ1 from (4.16), all
these values being independent of ε.)

Of course, the bound provided by this theorem may be very pessimistic and
not all the constants in the definition of θ(ε) may be known in practice, but this
loose complexity result is nevertheless theoretically interesting as it applies to general
nonconvex problems. One should note that the bound is in terms of iteration numbers,
and implicitly accounts only for the cost of computing a Taylor step satisfying (2.9).
Theorem 4.10 suggests several comments.

1. The bound involves the number of successful Taylor iterations, that is, suc-
cessful iterations where the trial step is computed without resorting to further
recursion. This provides an adequate measure of the linear algebra effort
for all successful iterations, since successful iterations using the recursion
of Step 2 cost little beyond the evaluation of the level-dependent objective
function and its gradient. Moreover, the number of such iterations is, by
construction, at most equal to r times that of Taylor iterations (in the worst
case, where each iteration at level r includes a full recursion to level 0 with
a single successful iteration at each level j > 0). Hence the result shows that
the number of necessary successful iterations, all levels included, is of order
1/ε2 for small values of ε. This order is not qualitatively altered by the inclu-
sion of unsuccessful iterations either, provided we replace the very successful
trust-region radius update (top case in (2.16)) by

Δ+
i,k ∈ [Δi,k, γ3Δi,k] if ρi,k ≥ η2

for some γ3 > 1. Indeed, Theorem 4.8 imposes that the decrease in radius
caused by unsuccessful iterations must asymptotically be compensated for by
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an increase at successful iterations, irrespective of the fact that Δmin depends
on ε by (4.47). This is to say that, if α is the average number of unsuccessful
iterations per successful one at any level, then one must have that γ3γ

α
2 ≥ 1

and therefore that α ≤ − log(γ3)/ log(γ2). Thus the complexity bound in 1/ε2

for small ε is modified by a constant factor only if all iterations (successful
and unsuccessful) are considered. This therefore also gives a worst-case upper
bound on the number of function and gradient evaluations.

2. This complexity bound is of the same order as the corresponding bound for
the pure gradient method (see [31, p. 29]). This is not surprising given that
it is based on the Cauchy condition, which itself results from a step in the
steepest-descent direction.

3. The bound involves the number of successful Taylor iterations summed up on
all levels (as a result of Theorem 4.9). Thus successful such iterations at cheap
low levels decrease the number of necessary expensive ones at higher levels,
and the multiscale algorithm requires (at least in the theoretical worst case)
fewer Taylor iterations at the upper level than the single-level variant. This
provides theoretical backing for the practical observation that the structure
of multiscale unconstrained optimization problems can be used to advantage.

4. The constants involved in the definition of θ(ε) do not depend on the problem
dimension but rather on the properties of the problem (r, κH, κσ) or of the
algorithm itself (κred, κg, γ1, η1, η2, εΔmin, Δs

min). If we consider the case
where different levels correspond to different discretization meshes and make
the mild assumption that r and κH are uniformly bounded above and that
κσ is uniformly bounded below, we observe that our complexity bound is
mesh-independent.

A second important consequence of Theorem 4.9 is that the algorithm is globally
convergent in the sense that it generates a subsequence of iterates whose gradients
converge to zero if run with εgr = 0.

Corollary 4.11. Assume that Algorithm RMTR is called at the uppermost level
with εgr = 0. Then

lim inf
k→∞

‖gr,k‖ = 0.(4.56)

Proof. We first observe that the sequence of iterates {xr,k} generated by the
algorithm called with εgr = 0 is identical to that generated as follows. We consider, at
level r, a sequence of gradient tolerances {εgr,j} ∈ (0, 1) monotonically converging to
zero, start the algorithm with εgr = εgr,0, and slightly alter the mechanism of Step 5 (at
level r only) to reduce εgr from εgr,j to εgr,j+1 as soon as ‖gr,k+1‖ ≤ εgr,j . The calculation
is then continued with this more stringent threshold until it is also attained, εgr is then
again reduced, and so on. Since Δr+1,0 = ∞, each successive minimization at level r
can stop at iteration k only if

‖gr,k+1‖ ≤ εgr,j .(4.57)

Theorem 4.9 then implies that there are only finitely many successful iterations be-
tween two reductions of εgr. We therefore obtain that for each εgr,j there is an arbitrarily
large k such that (4.57) holds. The desired result then follows immediately from our
assumption that {εgr,j} converges to zero.

The interest of this result is mostly theoretical, since most practical applications
of Algorithm RMTR consider a nonzero gradient tolerance εgr.
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The reader may have noticed that our theory still applies when we modify the
technique described at the start of Corollary 4.11 by allowing a reduction of all the εgi
to zero at the same time,4 instead of merely reducing the uppermost one. If this mod-
ified technique is used, and assuming the trust region becomes asymptotically inactive
at every level (as is most often the case in practice), each minimization sequence in
the algorithm becomes infinite (as if it were initiated with a zero gradient threshold
and an infinite initial radius). Recursion to lower levels then remains possible for
arbitrarily small gradients and may therefore occur arbitrarily far in the sequence of
iterates. Moreover, we may still apply Corollary 4.11 at each level and deduce that,
if the trust region becomes asymptotically inactive,

lim inf
k→∞

‖gi,k‖ = 0(4.58)

for all i = 0, . . . , r.
As is the case for single-level trust-region algorithms, we now would like to prove

that the limit inferior in (4.56) (and possibly (4.58)) can be replaced by a true limit,
while still allowing recursion for very small gradients. We start by deriving a variant
of Theorem 4.9 that does not assume that all gradient norms remain above some
threshold to obtain a measure of the predicted decrease at some iteration (i, k).

Lemma 4.12. There exists a constant κ3 ∈ (0, 1) such that, for all (i, k) such
that ‖gi,k‖ > 0,

δi,k ≥ κredη
r
1γ

r
1κ

r
g‖gi,k‖min [ Δs

min, κ3‖gi,k‖, Δi,k ] .(4.59)

Proof. Consider iteration (i, k). If it is a Taylor iteration, then, if we set

κ3 = min

[
κr

g

κH

, κ2κ
r
g

]
= κ2κ

r
g ∈ (0, 1),(4.60)

(4.59) immediately follows from (2.9), (4.2), and the bounds κg ∈ (0, 1), η1 ∈ (0, 1),
and γ1 ∈ (0, 1). Otherwise, define the iteration (j, 
) (with j < i) to be the deepest
successful iteration in R(i, k) such that gj,0 = gj,1 = · · · = gj,� = Rj+1 . . . Ri gi,k
and such that all iterations (j + 1, tj+1), (j + 2, tj+2), . . . , up to (i − 1, ti−1) of the
path from (j, 
) to (i, k), are successful (meaning that iterations (j, u) are unsuccessful
for u = 0, . . . , 
 − 1, if any, and that iterations (p, u) are also unsuccessful for p =
j + 1, . . . , i− 1 and u = 0, . . . , tp − 1, if any). Note that such a path is guaranteed to
exist because of Lemma 4.6. Using the first part of (2.14), we then obtain that

‖gj,0‖ = ‖gj,1‖ = · · · = ‖gj,�‖ = ‖Rj+1 . . . Ri gi,k‖ ≥ κr
g‖gi,k‖ > 0.(4.61)

If 
 = 0, then

Δj,� = min[Δs
j , Δj+1,tj+1 ] ≥ min[Δs

min, Δj+1,tj+1 ].(4.62)

If, on the other hand, 
 > 0, we know that iterations (j, 0) to (j, 
−1) are unsuccessful.
Corollary 4.5 then implies that (4.28) cannot hold for iteration (j, 
 − 1), and thus
that

Δj,�−1 > min[ Δs
min, κ2‖gj,�−1‖ ] = min[ Δs

min, κ2‖gj,0‖ ].

4The ratios ε
g
i /ε

g
r could, for instance, be fixed or kept within prescribed bounds.
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But this inequality, (2.16), (2.17), the unsuccessful nature of the first 
 iterations at
level j, (4.61), and the bound γ1 < 1 then yield that

Δj,� ≥ min[ γ1Δj,�−1, Δj+1,tj+1
− ‖xj,0 − xj,�‖j ]

= min[ γ1Δj,�−1, Δj+1,tj+1 ]

≥ min[ γ1 min(Δs
min, κ2‖gj,0‖), Δj+1,tj+1

]

≥ min[ γ1 min(Δs
min, κ2κ

r
g‖gi,k‖), Δj+1,tj+1 ]

≥ γ1 min[ Δs
min, κ2κ

r
g‖gi,k‖, Δj+1,tj+1

].

Combining this last inequality with (4.62), we conclude that, for 
 ≥ 0,

Δj,� ≥ γ1 min[ Δs
min, κ2κ

r
g‖gi,k‖, Δj+1,tj+1 ].

Our choice of iteration (j, 
) also ensures that the same reasoning can now be applied
not only to iteration (j, 
) but also to every iteration in the path (j + 1, tj+1), . . . ,
(i− 1, ti−1), because the first part of (2.14) implies that ‖gp,0‖ = ‖Rp+1 . . . Ri gi,k‖ ≥
κr

g‖gi,k‖ for all j ≤ p < i. Thus we obtain that

Δj+u,tj+u
≥ γ1 min[ Δs

min, κ2κ
r
g‖gi,k‖, Δj+u+1,tj+u+1 ]

for u = 0, . . . , i− j − 1 (where we identify ti = k for u = i− j − 1). We may then use
these bounds recursively level by level and deduce that

Δj,� ≥ γ1 min[ Δs
min, κ2κ

r
g‖gj,k‖, Δj+1,tj+1 ]

≥ γ1 min[ Δs
min, κ2κ

r
g‖gi,k‖, γ1 min(Δs

min, κ2κ
r
g‖gi,k‖, Δj+2,tj+2

) ]

≥ γ2
1 min[ Δs

min, κ2κ
r
g‖gi,k‖, Δj+2,tj+2 ]

≥ γr
1 min[ Δs

min, κ2κ
r
g‖gi,k‖, Δi,k ]

(4.63)

because γ1 < 1. On the other hand, (j, 
) ∈ T (i, k) by construction, and we therefore
obtain from (2.9) and (4.2) that

δj,� ≥ κred‖gj,�‖min

[
‖gj,�‖
κH

, Δj,�

]
.(4.64)

Gathering now (4.61), (4.63), and (4.64), we obtain that

δj,� ≥ κredκ
r
g‖gi,k‖min

[
κr

g‖gi,k‖
κH

, γr
1 min[Δs

min, κ2κ
r
g‖gi,k‖, Δi,k]

]
,

and thus, using (4.60), that

δj,� ≥ κredκ
r
gγ

r
1‖gi,k‖min [ Δs

min, κ3‖gi,k‖, Δi,k ] .(4.65)

But the fact that all iterations on the path from (j, 
) to (i, k) are successful also
implies that

δi,k = hi−1(xi−1,0) − hi−1(xi−1,∗) ≥ hi−1(xi−1,ti−1) − hi−1(xi−1,ti−1+1)

≥ η1δi−1,ti−1 = η1[hi−2(xi−2,0) − hi−2(xi−2,∗)]

≥ η1[hi−2(xi−2,ti−2) − hi−2(xi−2,ti−2+1)] ≥ η2
1δi−2,ti−2 ≥ ηr1δj,�.

The bound (4.59) then follows from this last inequality and (4.65).
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All the elements are now in place to show that, if the algorithm is run with εgr = 0,
then gradients at level r converge to zero.

Theorem 4.13. Assume that Algorithm RMTR is called at the uppermost level
with εgr = 0. Then

lim
k→∞

‖gr,k‖ = 0.(4.66)

Proof. The proof is identical to that of Theorem 6.4.6 on p. 137 of [13], with
(4.59) (with i = r) now playing the role of the sufficient model reduction condition
AA.1 at level r.

This last result implies, in particular, that any limit point of the infinite sequence
{xr,k} is first-order critical for problem (2.1). But we may draw stronger conclusions.
If we assume that the trust region becomes asymptotically inactive at all levels and
that all εgi (i = 0, . . . , r − 1) are driven down to zero together with εgr (thus allowing
recursion even for very small gradients), then, as explained above, each minimization
sequence in the algorithm becomes infinite, and we may apply Theorem 4.13 to each
of them, concluding that, if the trust region becomes asymptotically inactive,

lim
k→∞

‖gi,k‖ = 0

for every level i = 0, . . . , r. The behavior of Algorithm RMTR is therefore truly
coherent with its multiscale formulation, since the same convergence results hold for
each level.

The convergence results at the upper level are unaffected if minimization se-
quences at lower levels are “prematurely” terminated, provided each such sequence
contains at least one successful iteration. Indeed, Lemmas 4.1 and 4.2 do not depend
on the actual stopping criterion used, and all subsequent proofs do not depend on
it either. Thus, one might think of stopping a minimization sequence after a preset
number of successful iterations: in combination with the freedom left at Step 1 to
choose the model whenever (2.14) holds, this strategy allows a straightforward im-
plementation of fixed lower-iterations patterns, like the V or W cycles in multigrid
methods. This is what we have done in section 3.

Our theory also remains essentially unchanged if we merely insist on first-order
coherence (i.e., conditions (2.5) and (2.6)) to hold only for small enough trust-region
radii Δi,k, or only up to a perturbation of the order of Δi,k or ‖gi,k‖Δi,k. Other
generalizations may be possible. Similarly, although we have assumed for motivation
purposes that each fi is “more costly” to minimize that fi−1, we have not used this
feature in the theory presented above, nor have we used the form of the lower levels
objective functions. In particular, our choice of section 3 to define fi as identically
zero for i = 0, . . . , r − 1 satisfies all our assumptions. Nonconstant prolongation
and restriction operators of the form Pi(xi,k) and Ri(xi,k) may also be considered,
provided the singular values of these operators remain uniformly bounded.

In its full generality, convergence to second-order critical points appears to be out
of reach unless one is able to guarantee some “eigenpoint condition.” Such a condition
imposes that, if τi,k, the smallest eigenvalue of Hi,k, is negative, then

mi,k(xi,k) −mi,k(xi,k + si,k) ≥ κeip|τi,k|min[τ2
i,k,Δ

2
i,k]

for some constant κeip ∈ (0, 1
2 ) (see AA.2 in [13, p. 153]). This is easy to obtain at rel-

atively coarse levels, where the cost of an eigenvalue computation or of a factorization
remains acceptable. For instance, the algorithm considered in section 3 is convergent
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to critical points that satisfy second-order optimality conditions at the coarsest level.
This results from the application of the Moré–Sorensen exact trust-region subproblem
solver at that level, for which this property is well known (see section 6.6 of [13], for
instance). The idea of imposing an eigenpoint condition at the coarsest level to obtain
second-order criticality at that level is also at the core of the globalization proposal
in [9], but it can be verified [21] that this technique does not enforce second-order
convergence at finer levels. However, imposing an eigenpoint condition at fine lev-
els may be judged impractical: for instance, the SCM smoothing strategy described
above does not guarantee such a condition but merely that

mi,k(xi,k) −mi,k(xi,k + si,k) ≥ 1
2 |μi,k|Δ2

i,k,

where μi,k is the most negative diagonal element of Hi,k. This weaker result is caused
by the fact that SCM limits its exploration of the model’s curvature to the coordi-
nate axes, at variance with the TCG and GLTR methods, which implicitly construct
Lanczos approximations to Hessian eigenvalues. Convergence to fine-level first-order
critical points satisfying a weak version of second-order optimality can, however, be
expected in this case. In particular, the diagonal elements of the objective function’s
Hessian have to be nonnegative at such limit points (see [21]).

5. Comments and perspectives. We have defined a class of recursive trust-
region algorithms whose members are able to exploit cheap lower-level models in a
multiscale optimization problem. This class has been proved to be well defined and
globally convergent to first order; preliminary numerical experience suggests that it
may have strong potential. We have also presented a theoretical complexity result
giving a bound on the number of iterations that are required by the algorithms of
our class to find an approximate critical point of the objective function within pre-
scribed accuracy. This last result also shows that the total complexity of solving an
unconstrained multiscale problem can be shared amongst the levels, exploiting the
structure to advantage.

Although the example of discretized problems has been used as a major motiva-
tion for our work, this is not the only case where our theory can be applied. We think,
in particular, of cases where different models of the true objective function might live
in the same space but involve different levels of complexity and/or cost. This is of
interest, for instance, in a number of problems arising from physics, like data assimi-
lation in weather forecasting [15], where different models may involve different levels
of sophistication in the physical modeling itself. More generally, the algorithms and
theory presented here are relevant in most areas where simplified models are consid-
ered, such as multidisciplinary optimization [1, 2, 3] or PDE-constrained problems
[4, 14].

We may also think of investigating even more efficient algorithms combining the
trust-region framework developed here with other globalization techniques, like line-
searches [17, 32, 39], nonmonotone techniques [40, 42, 44], or filter methods [20]. While
this might add yet another level of technicality to the convergence proofs, we expect
such extensions to be possible and the resulting algorithms to be of practical interest.

Another important research direction is to investigate what kinds of Hessian (and
possibly gradient) approximations are practically efficient within our framework, es-
pecially at the fine levels. Various options are possible, ranging from specialized finite
differences to secant approximations.

Applying recursive trust-region methods of the type discussed here to constrained
problems is another obvious avenue of research. Although we anticipate the associated
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convergence theory to be again more technically difficult, intuition and limited nu-
merical experience suggest that the power of such methods should also be exploitable
in this case.

A number of practical issues related to Algorithm RMTR (such as alternative
gradient smoothing and choice of cycle patterns) have not been discussed, although
they may be crucial in practice. We investigate these issues in a forthcoming paper
describing (so far encouraging) numerical experience with Algorithm RMTR.
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on a draft of the manuscript and to Natalia Alexandrov for stimulating discussion.
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Abstract. This paper presents a parameter-free integer-programming-based algorithm for the
global resolution of a linear program with linear complementarity constraints (LPCCs). The cor-
nerstone of the algorithm is a minimax integer program formulation that characterizes and provides
certificates for the three outcomes—infeasibility, unboundedness, or solvability—of an LPCC. An
extreme point/ray generation scheme in the spirit of Benders decomposition is developed, from which
valid inequalities in the form of satisfiability constraints are obtained. The feasibility problem of these
inequalities and the carefully guided linear-programming relaxations of the LPCC are the workhorses
of the algorithm, which also employs a specialized procedure for the sparsification of the satifiability
cuts. We establish the finite termination of the algorithm and report computational results using
the algorithm for solving randomly generated LPCCs of reasonable sizes. The results establish that
the algorithm can handle infeasible, unbounded, and solvable LPCCs effectively.
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plane methods

AMS subject classifications. Primary, 90C33; Secondary, 90C26, 90C10

DOI. 10.1137/07068463x

1. Introduction. Forming a subclass of the class of mathematical programs
with equilibrium/complementarity constraints (MPECs/MPCCs) [37, 39, 11], linear
programs with linear complementarity constraints (LPCCs) are disjunctive linear op-
timization problems that contain a set of complementarity conditions. In turn, a
large subclass of LPCCs are bilevel linear/quadratic programs [10] that provide a
broad modeling framework for parameter identification in convex quadratic program-
ming; an example of such an application was proposed recently for the cross validation
of a host of machine-learning problems [6, 33, 32]. While there have been significant
recent advances on nonlinear-programming- (NLP-) based computational methods for
solving MPECs and the closely related MPCCs [1, 2, 3, 8, 14, 15, 19, 20, 29, 30, 25, 35,
36, 42, 43], many of which have nevertheless focused on obtaining stationary solutions
[12, 13, 37, 39, 38, 40, 42, 48, 47, 46], the global solution of an LPCC remains elusive.
Particularly impressive among these advances is the suite of NLP solvers publicly
available on the neos system [49]; many of them, such as filter and knitro, are
capable of producing a solution of some sort to an LPCC very efficiently. Yet they
are incapable of ascertaining the quality of the computed solution. This is the major
deficiency of these numerical solvers. Continuing our foray into the subject of comput-
ing global solutions of LPCCs, which begins with the recent article [41] that pertains
to a special problem arising from the optimization of the value at risk, the present
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paper proposes a parameter-free integer-programming-based cutting-plane algorithm
for globally resolving a general LPCC.

As a disjunctive linear optimization problem, the global solution of an LPCC has
been the subject of sustained, but not particularly focused, investigation since the
early work of Ibaraki [26, 27] and Jeroslow [28], who pioneered some cutting-plane
methods for solving a “complementary program,” which is a historical and not widely
used name for an LPCC. Over the years, various integer-programming-based methods
[4, 5, 21] and global-optimization-based methods [16, 17, 44, 45] have been developed
that are applicable to an LPCC. In this paper, we present a new cutting-plane method
that will successfully resolve a general LPCC in finite time; i.e., the method will
terminate with one of the following three mutually exclusive conclusions: the LPCC
is infeasible, the LPCC is feasible but has an unbounded objective, or the LPCC
attains a finite optimal solution. We also leverage the advances of the NLP solvers
and use two of them to benchmark our algorithm. In addition, we propose a simple
linear-programming-based preprocessor whose effectiveness will be demonstrated via
computational results.

The proposed method begins with an equivalent formulation of an LPCC as a 0-1
integer program (IP) involving a conceptually very large parameter, whose existence
is not guaranteed unless a certain boundedness condition holds. Via dualization of the
linear-programming relaxation of the IP, we obtain a minimax 0-1 integer program,
which yields a certificate for the three states of the LPCC, without any a priori
boundedness assumption. The original 0-1 IP with the conceptual parameter provides
the formulation for the application of Benders decomposition [34], which we show can
be implemented without involving the parameter in any way. Thus, the resulting
algorithm is reminiscent of the well-known phase I implementation of the “big-M”
method for solving linear programs, wherein the big-M formulation is only conceptual
whose practical solution does not require the knowledge of the scalar M.

The implementation of our parameter-free algorithm is accomplished by solving
integer subprograms defined solely by satisfiability constraints [7, 31]; in turn, each
such constraint corresponds to a “piece” of the LPCC. By using this interpretation, the
overall algorithm can be considered as solving the LPCC by searching on its (finitely
many) linear-programming pieces, with the search guided by solving the satisfiability
IPs. The implementation of the algorithm is aided by valid upper bounds on the
LPCC optimal objective value that are being updated as the algorithm progresses,
which also serve to provide the desired certificates at the termination of the algorithm.

Hooker [22, 23] and Hooker and Ottosson [24] have presented a general Benders
decomposition framework for integer-programming problems, where the subproblems
and the master problem may be solved by various techniques, for example, constraint
programming. The constraints returned by the subproblems may well be satisfiability
constraints similar to those we derive from solving a linear-programming subproblem,
leading to a satisfiability master problem. Hooker develops a broad framework for
integrating different solution methodologies, with the solution approaches driven by
the types of constraints. Different decomposition methods are available depending on
the particular mix of types of constraints. Codato and Fischetti [9] have specialized
Hooker’s approach to solve integer programs arising from linear programs with condi-
tional constraints of the kind “if then,” of which the complementarity condition is a
special case. Such constraints are modeled with the introduction of integer variables
together with big-M coefficients. The cited article presents computational results for
feasible bounded problems where only the binary variables associated with the big-M
coefficients appear in the objective function. In our problem (2.3), the objective func-
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tion is a linear function of the continuous variables; the objective function could be
regarded as a nonlinear function of the binary variables (see ϕ(z) defined in (2.9)). Our
algorithmic approach can successfully characterize infeasible and unbounded LPCC
problems as well as solve problems with a finite optimal value. Hooker [23] states
that “the success of a Benders method often rests on finding strong Benders cuts that
rule out as many infeasible solutions as possible.” The sparsification methodology we
present in section 4 is an approach to generate strong Benders cuts.

The organization of the rest of the paper is as follows. Section 2 presents the
formal statement of the LPCC, summarizes the three states of the LPCC, and in-
troduces the new minimax IP formulation. Section 3 reformulates the minimax IP
formulation in terms of the extreme points and rays of the key polyhedron Ξ (see
(2.6)) and establishes the theoretical foundation for the cutting-plane algorithm to be
presented in section 5. The key steps of the algorithm, which involve solving linear
programs (LPs) to sparsify the satisfiability constraints, are explained in section 4.
The sixth and last section reports the computational results and completes the paper
with some concluding remarks.

2. Preliminary discussion. Let c ∈ �n, d ∈ �m, f ∈ �k, q ∈ �m, A ∈ �k×n,
B ∈ �k×m, M ∈ �m×m, and N ∈ �m×n be given. Consider the LPCC [18] of finding
(x, y) ∈ �n ×�m in order to

(2.1)

minimize
(x,y)

cTx + dT y

subject to Ax + By ≥ f

and 0 ≤ y ⊥ q + Nx + My ≥ 0,

where a ⊥ b means that the two vectors are orthogonal; i.e., aT b = 0. It is well known
that the LPCC is equivalent to the minimization of a large number of linear programs,
each defined on one piece of the feasible region of the LPCC. That is, for each subset
α of {1, . . . ,m} with complement ᾱ, we may consider the LP(α):

(2.2)

minimize
(x,y)

cTx + dT y

subject to Ax + By ≥ f,

( q + Nx + My )α ≥ 0 = yα,

and ( q + Nx + My )ᾱ = 0 ≤ yᾱ.

The following facts are consequences of the disjunctive property of the complemen-
tarity condition:

(a) The LPCC (2.1) is infeasible if and only if the LP(α) is infeasible for all
α ⊆ {1, . . . ,m};

(b) the LPCC (2.1) is feasible and has an unbounded objective if and only if the
LP(α) is feasible and has an unbounded objective for some α ⊆ {1, . . . ,m};

(c) the LPCC (2.1) is feasible and attains a finite optimal objective value if and
only if (i) a subset α of {1, . . . ,m} exists such that the LP(α) is feasible and (ii) every
such feasible LP(α) has a finite optimal objective value; in this case, the optimal
objective value of the LPCC (2.1), denoted LPCCmin, is the minimum of the optimal
objective values of all such feasible LPs.

The first step in our development of an IP-based algorithm for solving the LPCC
(2.1) without any a priori assumption is to derive results parallel to the above three
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facts in terms of some parameter-free integer problems. For this purpose, we recall
the standard approach of solving (2.1) as an IP containing a large parameter. This
approach is based on the following “equivalent” IP formulation of (2.1) wherein the
complementarity constraint is reformulated in terms of the binary vector z ∈ {0, 1}m
via a conceptually very large scalar θ > 0:

(2.3)

minimize
(x,y,z)

cTx + dT y

subject to Ax + By ≥ f,

θ z ≥ q + Nx + My ≥ 0,

θ(1 − z ) y ≥ 0,

and z ∈ { 0, 1 }m,

where 1 is the m-vector of all ones. In the standard approach, we first derive a valid
value on θ by solving LPs to obtain bounds on all of the variables and constraints of
(2.1). We then solve the fixed IP (2.3) by using the so-obtained θ by, for example, the
Benders approach. There are two drawbacks of such an approach: One is the limita-
tion of the approach to problems with bounded feasible regions; the other drawback
is the nontrivial computation to derive the required bounds even if they are known to
exist implicitly. In contrast, our new approach removes such a theoretical restriction
and eliminates the front-end computation of bounds. The price of the new approach is
that it solves a (finite) family of IPs of a special type, each defined solely by constraints
of the satisfiability type. The following discussion sets the stage for the approach. [A
referee suggests that “another drawback of attacking the integer program (2.3) is the
probably (very) weak LP relaxations (which will affect the convergence of branch and
cut methods as well as approaches based on Benders decomposition).”]

For a given binary vector z and a positive scalar θ, we associate with (2.3) the
linear program below, which we denote LP(θ; z):

(2.4)

minimize
(x,y)

cTx + dT y

subject to Ax + By ≥ f (λ ),

Nx + My ≥ −q (u− ),

−Nx−My ≥ q − θ z (u+ ),

−y ≥ −θ (1 − z ) ( v ),

and y ≥ 0,

where the dual variables of the respective constraints are given in the parentheses.
The dual of (2.4), which we denote DLP(θ, z), is

(2.5)

maximize
(λ,u±,v)

fTλ + qT (u+ − u− ) − θ
[
zTu+ + (1 − z )T v

]
subject to ATλ−NT (u+ − u− ) = c,

BTλ−MT (u+ − u− ) − v ≤ d,

and (λ, u±, v ) ≥ 0.

Let Ξ ⊆ �k+3m be the feasible region of the DLP(θ, z); i.e.,

(2.6) Ξ ≡
{

(λ, u±, v ) ≥ 0 : ATλ−NT (u+ − u− ) = c

BTλ−MT (u+ − u− ) − v ≤ d

}
.
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Note that Ξ is a fixed polyhedron independent of the pair (θ, z); Ξ has at least one ex-
treme point if it is nonempty. Let LPmin(θ; z) and d(θ; z) denote the optimal objective
value of (2.4) and (2.5), respectively. Throughout, we adopt the standard convention
that the optimal objective value of an infeasible maximization (minimization) prob-
lem is defined to be −∞ (∞). We summarize some basic relations between the above
programs in the following result.

Proposition 2.1. The following three statements hold:
(a) Any feasible solution (x0, y0) of (2.1) induces a pair (θ0, z

0), where θ0 > 0
and z0 ∈ {0, 1}m, such that the tuple (x0, y0, z0) is feasible to (2.3) for all
θ ≥ θ0; such a z0 has the property that

(2.7)
( q + Nx0 + My0 )i > 0 ⇒ z0

i = 1,

( y0 )i > 0 ⇒ z0
i = 0.

(b) Conversely, if (x0, y0, z0) is feasible to (2.3) for some θ ≥ 0, then (x0, y0) is
feasible to (2.1).

(c) If (x0, y0) is an optimal solution to (2.1), then it is optimal to the LP(θ, z0)
for all pairs (θ, z0) such that θ ≥ θ0 and z0 satisfies (2.7); moreover, for each

θ > θ0, any optimal solution (λ̂, û±, v̂) of the DLP(θ, z0) satisfies (z0)T û+ +
(1 − z0 )T v̂ = 0.

Proof. Only (c) requires a proof. Suppose that (x0, y0) is optimal to (2.1). Let
(θ, z0) be such that θ ≥ θ0 and z0 ∈ {0, 1}m satisfies (2.7). Then (x0, y0) is feasible
to the LP(θ, z0); hence

(2.8) cTx0 + dT y0 ≥ LPmin(θ, z0).

But the reverse inequality must hold because of (b) and the optimality of (x0, y0) to
(2.1). Consequently, equality holds in (2.8). For θ > θ0, if i is such that z0

i > 0, then

( q + Nx0 + My0 ) ≤ θ0 z
0
i < θ z0

i ,

and complementary slackness implies that (û+)i = 0. Similarly, we can show that
z0
i = 0 ⇒ vi = 0. Hence (c) follows.

2.1. The parameter-free dual programs. Property (c) of Proposition 2.1
suggests that the inequality constraint zTu+ + (1 − z)T v ≤ 0, or, equivalently, the
equality constraint zTu+ + (1 − z)T v = 0 (because all variables are nonnegative and
z ∈ {0, 1}m), should have an important role to play in an IP approach to the LPCC.
This motivates us to define two value functions on the binary vectors. Specifically,
for any z ∈ {0, 1}m, define

(2.9)

� ∪ {±∞} � ϕ(z) ≡ maximum
(λ,u±,v)

fTλ + qT (u+ − u− )

subject to ATλ−NT (u+ − u− ) = c,

BTλ−MT (u+ − u− ) − v ≤ d,

(λ, u±, v ) ≥ 0,

and zTu+ + (1 − z)T v ≤ 0
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and its homogenization:

(2.10)

{ 0,∞} � ϕ0(z) ≡ maximum
(λ,u±,v)

fTλ + qT (u+ − u− )

subject to ATλ−NT (u+ − u− ) = 0,

BTλ−MT (u+ − u− ) − v ≤ 0,

(λ, u±, v ) ≥ 0,

and zTu+ + (1 − z )T v ≤ 0.

Clearly, (2.10) is always feasible, and ϕ0(z) takes on the values 0 or ∞ only. Unlike
(2.10), which is independent of the pair (c, d), (2.9) depends on (c, d) and is not
guaranteed to be feasible; thus ϕ(z) ∈ � ∪ {±∞}. For any pair (c, d) for which (2.9)
is feasible, we have

ϕ(z) < ∞ ⇔ ϕ0(z) = 0.

To this equivalence we add the following proposition that describes a one-to-one cor-
respondence between (2.10) and the feasible pieces of the LPCC. The support of a
vector z, denoted supp(z), is the index set of the nonzero components of z.

Proposition 2.2. For any z ∈ {0, 1}m, ϕ0(z) = 0 if and only if the LP(α) is
feasible, where α ≡ supp(z).

Proof. The dual of (2.10) is

(2.11)

minimize
(x,y)

0Tx + 0T y

subject to Ax + By ≥ f,

θ z ≥ q + Nx + My ≥ 0,

and θ (1 − z ) ≥ y ≥ 0.

By LP duality, it follows that if ϕ0(z) = 0, then (2.11) is feasible for any θ > 0;
conversely, if (2.11) is feasible for some θ > 0, then ϕ0(z) = 0. In turn, (2.11) is
feasible for some θ > 0 if and only if the LP(α) is feasible for α ≡ supp(z).

For subsequent purposes, it would be useful to record the following equivalence
between the extreme points/rays of the feasible region of (2.9) and those of the feasible
set Ξ.

Proposition 2.3. For any z ∈ [0, 1]m, a feasible solution (λp, u±,p, vp) of (2.9)
is an extreme point in this region if and only if it is extreme in Ξ; a feasible ray
(λr, u±,r, vr) of (2.9) is extreme in this region if and only if it is extreme in Ξ.

Proof. We prove only the first assertion; that for the second is similar. The
sufficiency holds because the feasible region of (2.9) is a subset of Ξ. To prove the
converse, suppose that (λp, u±,p, vp) is an extreme solution of (2.9). Then this triple
must be an element of Ξ. If it lies on the line segment of two other feasible solutions
of Ξ, then the latter two solutions must satisfy the additional constraint zTu+ + (1−
z)T v ≤ 0. Therefore, (λp, u±,p, vp) is also extreme in Ξ.

2.2. The set Z and a minimax formulation. We now define the key set of
binary vectors:

Z ≡ { z ∈ { 0, 1 }m : ϕ0(z) = 0 } ,
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which, by Proposition 2.2, is the feasibility descriptor of the feasible region of the
LPCC (2.1). Note that Z is a finite set. We also define the minimax integer program:

(2.12) minimize
z∈Z

ϕ(z) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

maximum
(λ,u±,v)

fTλ + qT (u+ − u− )

subject to ATλ−NT (u+ − u− ) = c,

BTλ−MT (u+ − u− ) − v ≤ d,

(λ, u±, v ) ≥ 0,

and zTu+ + (1 − z)T v ≤ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since Z is a finite set, and since ϕ(z) ∈ � ∪ {−∞} for z ∈ Z, it follows that
argminz∈Z ϕ(z) �= ∅ if and only if Z �= ∅. The following result rephrases the three
basic facts connecting the LPCC (2.1) and its LP pieces in terms of the IP (2.12).

Theorem 2.4. The following three statements hold:
(a) The LPCC (2.1) is infeasible if and only if minz∈Z ϕ(z) = ∞ (i.e., Z = ∅);
(b) the LPCC (2.1) is feasible and has an unbounded objective value if and only

if minz∈Z ϕ(z) = −∞ (i.e., z ∈ Z exists such that ϕ(z) = −∞);
(c) the LPCC (2.1) attains a finite optimal objective value if and only if −∞ <

minz∈Z ϕ(z) < ∞.
In all cases, LPCCmin = minz∈Z ϕ(z); moreover, for any z ∈ {0, 1}m for which
ϕ(z) > −∞, LPCCmin ≤ ϕ(z).

Proof. Statement (a) is an immediate consequence of Proposition 2.2. Statement
(b) is equivalent to saying that the LPCC (2.1) is feasible and has an unbounded
objective if and only if z ∈ {0, 1}m exists such that ϕ0(z) = 0 and ϕ(z) = −∞.
Suppose that the LPCC (2.1) is feasible and unbounded. Then an index set α ⊆
{1, . . . ,m} exists such that the LP(α) is feasible and unbounded. By letting z ∈
{0, 1}m be such that supp(z) = α and ᾱ be the complement of α in {1, . . . ,m}, we
have ϕ0(z) = 0. Moreover, the dual of the (unbounded) LP(α) is

(2.13)

maximize
(λ,uᾱ,u−

α )
fTλ + ( qᾱ )Tuᾱ − ( qα )Tu−

α

subject to ATλ− (Nᾱ• )Tuᾱ + (Nα• )Tu−
α = c,

(B•ᾱ )Tλ− (Mᾱᾱ )Tuᾱ + (Mαᾱ )Tu−
α ≤ dᾱ,

and (λ, u−
α ) ≥ 0,

which is equivalent to the problem (2.9) corresponding to the binary vector z defined
here. (Note that the • in the subscripts is the standard notation in linear program-
ming, denoting rows/columns of matrices.) Therefore, since (2.13) is infeasible, it
follows that ϕ(z) = −∞ by convention. Conversely, suppose that z ∈ {0, 1}m exists
such that ϕ0(z) = 0 and ϕ(z) = −∞. Let α ≡ supp(z) and ᾱ ≡ complement of α
in {1, . . . ,m}. It then follows that (2.11), and thus the LP(α), is feasible. Moreover,
since ϕ(z) = −∞, it follows that (2.13), being equivalent to (2.9), is infeasible; thus
the LP(α) is unbounded. Statement (c) follows readily from (a) and (b). The equal-
ity between LPCCmin and minz∈Z ϕ(z) is due to the fact that the maximizing LP
defining ϕ(z) is essentially the dual of the piece LP(α). To prove the last assertion
of the theorem, let z ∈ {0, 1}m be such that ϕ(z) > −∞. Without loss of generality,
we may assume that ϕ(z) < ∞. Thus the LP (2.9) attains a finite maximum; hence
ϕ0(z) = 0. Therefore z ∈ Z, and the bound LPCCmin ≤ ϕ(z) holds readily.
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3. The Benders approach. In essence, our strategy for solving the LPCC (2.1)
is to apply a Benders approach to the minimax IP (2.12). For this purpose, we let
{(λp,i, u±,p,i, vp,i)}Ki=1 and {(λr,j , u±,r,j , vr,j)}Lj=1 be the finite set of extreme points
and extreme rays of the polyhedron Ξ. Note that K ≥ 1 if and only if Ξ �= ∅. (These
extreme points and rays will be generated as needed. For the discussion in this section,
we take them as available.) In what follows, we derive a restatement of Theorem 2.4
in terms of these extreme points and rays.

The IP (2.12) can be written as

(3.1) minimize
z∈Z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

maximum
( ρp, ρr )≥0

K∑
i=1

ρpi
[
fTλp,i + qT (u+,p,i − u−,p,i)

]

+

L∑
j=1

ρrj
[
fTλr,j + qT (u+,r,j − u−,r,j)

]

subject to

K∑
i=1

ρpi
[
zTu+,p,i + (1 − z)T vp,i

]

+

L∑
j=1

ρrj
[
zTu+,r,j + (1 − z)T vr,j

]
≤ 0

and

K∑
i=1

ρpi = 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is the master IP. It turns out that the set Z can be completely described in
terms of certain ray cuts, whose definition requires the index set:

L ≡
{
j ∈ { 1, . . . , L } : fTλr,j + qT (u+,r,j − u−,r,j) > 0

}
.

The following proposition shows that the set Z can be described in terms of satisfia-
bility inequalities by using the extreme rays in L.

Proposition 3.1.

Z =

⎧⎨
⎩ z ∈ {0, 1}m :

∑
�:u+,r,j

� >0

z� +
∑

�:vr,j
� >0

( 1 − z� ) ≥ 1 ∀ j ∈ L

⎫⎬
⎭.

Proof. Since a tuple (λ, u±, v) is feasible to (2.10) if and only if it is a nonnegative
combination of the extreme rays of (2.9), which are necessarily extreme rays of Ξ by
Proposition 2.3, it follows that a tuple (λ, u±, v) is feasible to (2.10) if and only if
there exist nonnegative coefficients {ρrj}Lj=1 such that

(λ, u±, v ) =

L∑
j=1

ρrj (λr,j , u±,r,j , vr,j )

and
∑L

j=1 ρrj [ zTu+,r,j + (1 − z)T vr,j ] ≤ 0. Therefore, ϕ0(z) is equal to

maximize
ρr≥0

L∑
j=1

ρrj
[
fTλr,j + qT (u+,r,j − u−,r,j )

]

subject to
L∑

j=1

ρrj
[
zTu+,r,j + (1 − z)T vr,j

]
≤ 0,



GLOBAL SOLUTION OF LPCCs 453

and the latter maximization problem has a finite optimal solution if and only if

fTλr,j + qT (u+,r,j − u−,r,j ) > 0 =⇒ zTu+,r,j + (1 − z)T vr,j > 0

⇐⇒
∑

�:u+,r,j
� >0

z� +
∑

�:vr,j
� >0

( 1 − z� ) ≥ 1.

Therefore, the equality between Z and the right-hand set is immediate.
An immediate corollary of Proposition 3.1 is that it provides a certificate of in-

feasibility for the LPCC.
Corollary 3.2. If R ⊆ L exists such that⎧⎨

⎩ z ∈ {0, 1}m :
∑

�:u+,r,j
� >0

z� +
∑

�:vr,j
� >0

( 1 − z� ) ≥ 1 ∀ j ∈ R

⎫⎬
⎭ = ∅,

then the LPCC (2.1) is infeasible.
Proof. The assumption implies that Z = ∅. Thus the infeasibility of the LPCC

follows from Theorem 2.4(a).
In view of Proposition 3.1, (3.1) is equivalent to:

(3.2) minimize
z∈Z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

maximum
ρp≥0

K∑
i=1

ρpi
[
fTλp,i + qT (u+,p,i − u−,p,i)

]

subject to

K∑
i=1

ρpi
[
zTu+,p,i + (1 − z)T vp,i

]
≤ 0

and
K∑
i=1

ρpi = 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the LPCCmin is equal to the minimum objective value of (3.2). Similar to
the inequality ∑

�:u+,r,j
� >0

z� +
∑

�:vr,j
� >0

( 1 − z� ) ≥ 1,

which we call a ray cut (because it is induced by an extreme ray), we will make use
of a point cut ∑

�:u+,p,i
� >0

z� +
∑

�:vp,i
� >0

( 1 − z� ) ≥ 1,

that is induced by an extreme point (λp,i, u±,p,i, vp,i) of Ξ chosen from the following
collection:

K ≡
{
i ∈ { 1, . . . ,K } : fTλp,i + qT (u+,p,i − u−,p,i ) = ϕ(z) for some z ∈ Z

}
.

Note that K �= ∅ ⇒ Z �= ∅, which in turn implies that the LPCC (2.1) is feasible.
Moreover,

min
i∈K

[
fTλp,i + qT (u+,p,i − u−,p,i )

]
≥ LPCCmin.
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For a given pair of subsets P ×R ⊆ K × L, let

Z(P,R) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z ∈ { 0, 1 }m :
∑

�:u+,r,j
� >0

z� +
∑

�:vr,j
� >0

( 1 − z� ) ≥ 1 ∀ j ∈ R

∑
�:u+,p,i

� >0

z� +
∑

�:vp,i
� >0

( 1 − z� ) ≥ 1 ∀ i ∈ P

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

We have the following result.
Proposition 3.3. If there exists P ×R ⊆ K × L such that

min
i∈P

[
fTλp,i + qT (u+,p,i − u−,p,i )

]
> LPCCmin,

then argminz∈Z ϕ(z) ⊆ Z(P,R).
Proof. Let z̃ ∈ Z be a minimizer of ϕ(z) on Z. (The proposition is clearly valid

if no such minimizer exists.) If z̃ �∈ Z(P,R), then there exists i ∈ P such that∑
�:u+,p,i

� >0

z̃� +
∑

�:vp,i
� >0

( 1 − z̃� ) = 0.

Hence, (λp,i, u±,p,i, vp,i) is feasible to the LP (2.9) corresponding to ϕ(z̃); thus

LPCCmin = ϕ(z̃) ≥ fTλp,i + qT (u+,p,i − u−,p,i) > LPCCmin,

which is a contradiction.
Analogous to Corollary 3.2, we have the following corollary of Proposition 3.3.
Corollary 3.4. If there exists P×R ⊆ K×L, with P �= ∅, such that Z(P,R) =

∅, then

(3.3) LPCCmin = min
i∈P

[
fTλp,i + qT (u+,p,i − u−,p,i )

]
∈ (−∞,∞ ).

Proof. Indeed, if the claimed equality does not hold, then argminz∈Z ϕ(z) = ∅.
But this implies that Z = ∅, which contradicts the assumption that P �= ∅.

Combining Corollaries 3.2 and 3.4, we obtain the desired restatement of Theo-
rem 2.4 in terms of the extreme points and rays of Ξ.

Theorem 3.5. The following three statements hold:
(a) The LPCC (2.1) is infeasible if and only if a subset R ⊆ L exists such that

Z(∅,R) = ∅;
(b) the LPCC (2.1) is feasible and has an unbounded objective if and only if

Z(K,L) �= ∅;
(c) the LPCC (2.1) attains a finite optimal objective value if and only if a pair

P ×R ⊆ K × L exists, with P �= ∅, such that Z(P,R) = ∅.
Proof. Statement (a) follows from Corollary 3.2 by noting that a subset R ⊆ L

exists such that Z(∅,R) = ∅ if and only if Z = Z(∅,L) = ∅. To prove (b), suppose first
that Z(K,L) �= ∅. Let ẑ ∈ Z(K,L). Then ẑ ∈ Z. We claim that ϕ(ẑ) = −∞; i.e., the
LP (2.9) corresponding to ẑ is infeasible. Assume otherwise, and then since ϕ0(ẑ) = 0,
it follows that ϕ(ẑ) is finite. Hence there exists an extreme point (λp,i, u±,p,i, vp,i) of
the LP (2.9) corresponding to ẑ such that fTλp,i + qT (u+,p,i − u−,p,i) = ϕ(ẑ); thus
the index i ∈ K, which implies that∑

�:u+,p,i
� >0

ẑ� +
∑

�:vp,i
� >0

( 1 − ẑ� ) ≥ 1,
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because ẑ ∈ Z(K,L). But this contradicts the feasibility of (λp,i, u±,p,i, vp,i) to the
LP (2.9) corresponding to ẑ. Therefore, the LPCC (2.1) is feasible and has an un-
bounded objective value; thus, the “if” statement in (b) holds. Conversely, suppose
that LPCCmin = −∞. By Theorem 2.4, it follows that ẑ ∈ Z exists such that
ϕ(ẑ) = −∞; i.e., the LP (2.9) corresponding to ẑ is infeasible. In turn, this means that

ẑ Tu+,p,i + (1 − ẑ )T vp,i > 0

for all i = 1, . . . ,K, or, equivalently,∑
�:u+,p,i

� >0

ẑ� +
∑

�:vp,i
� >0

( 1 − ẑ� ) ≥ 1

for all i = 1, . . . ,K. Consequently, ẑ ∈ Z(K,L). Hence, statement (b) holds. Finally,
the “if” statement in (c) follows from Corollary 3.4. Conversely, if the LPCC (2.1) has
a finite optimal solution, then by (b), it follows that Z(K,L) = ∅. Since the LPCC
(2.1) is feasible, K �= ∅ by (a), establishing the “only if” statement in (c).

Theorem 3.5 constitutes the theoretical basis for the algorithm to be presented
in section 5 for resolving the LPCC. Through the successive generation of extreme
points and rays of Ξ, the algorithm searches for a pair of subsets P × R such that
Z(P,R) = ∅. If such a pair can be successfully identified, then the LPCC is either
infeasible (P = ∅) or attains a finite optimal solution (P �= ∅). If no such pair is
found, then the LPCC is unbounded. In the algorithm, the last case is identified with
a binary vector z ∈ Z, with ϕ(z) = −∞; i.e., the LP (2.9) is infeasible. Based on the
value function ϕ(z) and the point/ray cuts, the algorithm will be shown to terminate
in finite time.

4. Simple cuts and sparsification. In this section, we explain several key
steps in the main algorithm to be presented in the next section. The first idea is
a version of the well-known Gomory cut in integer programming specialized to the
LPCC and which has previously been employed for bilevel LPs; see [5]. The second
idea aims at “sparsifying” the ray/point cuts to facilitate the computation of elements
of the working sets Z(P,R). Specifically, a satisfiability constraint∑

i∈I ′

zi +
∑
j∈J ′

( 1 − zj ) ≥ 1 is sparser than
∑
i∈I

zi +
∑
j∈J

( 1 − zj ) ≥ 1

if I ′ ⊆ I and J ′ ⊆ J . In general, a satisfiability inequality cuts off certain LP pieces
of the LPCC; the sparser the inequality is, the more pieces it cuts off. Thus, it is
desirable to sparsify a cut as much as possible. Nevertheless, sparsification requires
the solution of linear subprograms; thus one needs to balance the work required with
the benefit of the process.

4.1. Simple cuts. The following discussion is a minor variant of that presented
in [5] for bilevel LPs. Consider the LP relaxation of the LPCC (2.1):

(4.1)

minimize
(x,y,w)

cTx + dT y

subject to Ax + By ≥ f

and 0 ≤ y, w ≡ q + Nx + My ≥ 0,

where the orthogonal condition yTw = 0 is dropped. Assume that, by solving this
LP, an optimal solution is obtained that fails the latter orthogonality condition, say,
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yiwi > 0 in this solution. Thus, yi and wi must be basic variables in a basic optimal
solution of the LP; in such a solution, wi and yi can be expressed in terms of the
nonbasic variables, which we denote by the generic variables sj , as follows: For some
constants aj and bj ,

wi = wi0 −
∑

sj :nonbasic

aj sj and yi = yi0 −
∑

sj :nonbasic

bj sj ,

where wi0 and yi0 are the current values of the variables wi and yi, respectively, with
min(wi0, yi0) > 0. It is not difficult to show that the following inequality must be
satisfied by all feasible solutions of the LPCC (2.1):

(4.2)
∑

sj :nonbasic
max(aj ,bj)>0

max

(
aj
wi0

,
bj
yi0

)
sj ≥ 1.

Note that if aj ≤ 0 for all nonbasic j, then wi > 0 = yi for every feasible solution of
the LPCC (2.1). A similar remark can be made if bj ≤ 0 for all nonbasic j.

Following the terminology in [5], we call the inequality (4.2) a simple cut. Multiple
such cuts can be added to the constraint Ax + By ≥ f , resulting in a modified
inequality Ãx+B̃y ≥ f̃ . We can generate and add even more simple cuts by repeating
the above step. This strategy turns out to be a very effective preprocessor for the
algorithm to be described in the next section. At the end of this preprocessor, we
obtain an optimal solution (x̄, ȳ, w̄) of (4.1) that remains infeasible to the LPCC
(otherwise, this solution would be optimal for the LPCC); the optimal objective value
cT x̄+dT ȳ provides a valid lower bound for LPCCmin. (Note that if (4.1) is unbounded,
then the preprocessor does not produce any cuts or a finite lower bound.)

LPCC feasibility recovery. Occurring in many applications of the LPCC, the
special case B = 0 deserves a bit more discussion. First note that in this case the
modified matrix B̃ is not necessarily zero. Nevertheless, the solution (x̄, ȳ, w̄) obtained
from the simple-cut preprocessor can be used to produce a feasible solution to the
LPCC (2.1) by simply solving the linear complementarity problem (LCP): 0 ≤ y ⊥
q + Nx̄ + My ≥ 0 (assuming that the matrix M has favorable properties so that
this step is effective). By letting ȳ ′ be a solution to the latter LCP, the objective
value cT x̄ + dT ȳ ′ yields a valid upper bound to LPCCmin. This recovery procedure
of an LPCC feasible solution can be extended to the case where B �= 0. (Incidentally,
this class of LPCCs is generally “more difficult” than the class where B = 0, where
the difficulty is determined by our empirical experience from the computational tests.)
Indeed, from any feasible solution (x̄, ȳ, w̄) to the LP relaxation of the LPCC (2.1) but
not to the LPCC itself, we could attempt to recover a feasible solution to the LPCC
along with an element in Z either by solving the LP(α), where α ≡ {i : ȳi ≤ w̄i},
or by solving ϕ(z), where zα = 1 and zᾱ = 0. A feasible solution to this LP piece
yields a feasible solution to the LPCC and a finite upper bound. In general, there
is no guarantee that this procedure will always be successful; nevertheless, it is very
effective when it works.

4.2. Cut management. A key step in our algorithm involves the selection of
elements in the sets Z(P,R) for various index pairs (P,R). Generally speaking, this
involves solving integer subprograms. By recognizing that the constraints in each
Z(P,R) are of the satisfiability type, we could in principle employ special algorithms
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for implementing this step (see [7, 31], and the references therein for some such al-
gorithms). To facilitate such a selection, we have developed a special heuristic that
utilizes a valid upper bound of LPCCmin to sparsify the terms in the ray/point cuts
in a working set. In what follows, we describe how the algorithm manages these cuts.

There are three pools of cuts, labeled Zwork, the working pool, Zwait, the wait
pool, and Zcand, the candidate pool. Inequalities in Zwork are valid sparsifications
of those in Z(P,R) corresponding to a current pair (P,R). Thus, the set of binary

vectors satisfying the inequalities in Zwork, which we denote Ẑwork, is a subset of
Z(P,R). Inequalities in Zcand are candidates for sparsification; the sparsification
procedure described below always ends with this set empty. The decision of whether
or not to sparsify a valid inequality is made according to a current LPCC upper
bound and a small scalar δ > 0. In essence, the sparsification is an effective way
to facilitate the search for a feasible element in Ẑwork. At one extreme, a sparsest
inequality with only one term in it automatically fixes one complementarity (e.g.,
z1 ≥ 1 fixes w1 = 0); at another extreme, it is computationally more difficult to find
feasible points satisfying many dense inequalities.

We sparsify an inequality

(4.3)
∑
i∈I

zi +
∑
j∈J

( 1 − zj ) ≥ 1

in the following way. Let I = I1 ∪ I2 be a partition of I into two disjoint subsets I1

and I2; similarly, let J = J1 ∪ J2. We split (4.3), which we call the parent, into two
subinequalities:

(4.4)
∑
i∈I1

zi +
∑
j∈J1

( 1 − zj ) ≥ 1 and
∑
i∈I2

zi +
∑
j∈J2

( 1 − zj ) ≥ 1

and test both to see if they are valid for the LPCC. To test the left-hand inequality,
we consider the LP relaxation (4.1) of the LPCC (2.1) with the additional constraints
wi = (q +Nx+My)i = 0 for i ∈ I1 and yi = 0 for i ∈ J1, which we call a relaxed LP
with restriction. If this LP has an objective value greater than the current LPCCub,
then we have successfully sparsified the inequality (4.3) into the sparser inequality:

(4.5)
∑
i∈I1

zi +
∑
j∈J1

( 1 − zj ) ≥ 1,

which must be valid for the LPCC. (In this situation, any dual solution to the relaxed
LP with restriction is feasible in the dual LP (2.9) for any binary vector z that
violates (4.5). Hence, the value ϕ(z) of the LPCC on this piece must be at least
LPCCub, implying that such a piece cannot contain an optimal solution of the LPCC.)
Otherwise, by using the feasible solution to the relaxed LP, we employ the LPCC
feasibility recovery procedure to compute an LPCC feasible solution along with a
binary z ∈ Z. If successful, one of two cases happen: If ϕ(z) ≥ LPCCub, then a new
cut can be generated; otherwise, we have reduced the LPCC upper bound. In either
case, we obtain positive progress in the algorithm. If no LPCC feasible solution is
recovered, then we save the cut (4.5) in the wait pool Zwait for later consideration.
In essence, cuts in the wait pool are not yet proven to be valid for the LPCC; they
will be revisited when there is a reduction in LPCCub. Note that every inequality
in Zwait has an LP optimal objective value associated with it that is less than the
current LPCC upper bound.
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In our experiment, we randomly divide the sets I and J roughly into two equal
halves each and adopt a strategy that attempts to sparsify the root inequality (4.3)
as much as possible via a random branching rule. The following illustrates one such
division:

z1 + z3 + z4 + (1 − z2) + (1 − z6) ≥ 1
↙ ↘

z1 + z3 + (1 − z2) ≥ 1 z4 + (1 − z6) ≥ 1.

We use a small scalar δ > 0 to help decide on the subsequent branching. In essence,
we branch only if the inequality appears strong. By solving LPs, the procedure below
sparsifies a given valid inequality for the LPCC, called the root of the procedure.

Sparsification procedure. Let (4.3) be the root inequality to be sparsified,
LPCCub be the current LPCC upper bound, and δ > 0 be a given scalar.
Branch (4.3) into two subinequalities (4.4), both of which we put in the set
Zcand.
Main step. If Zcand is empty, terminate. Otherwise pick a candidate inequality
in Zcand, say, the left one in (4.4) with the corresponding pair of index sets
(I1,J1). Solve the LP relaxation (4.1) of the LPCC (2.1) with the additional
constraints wi = (q+Nx+My)i = 0 for i ∈ I1 and yi = 0 for i ∈ J1, obtaining
an LP optimal objective value, say, LPrlx ∈ � ∪ {±∞}. We have the following
three cases:

• If LPrlx ∈ [ LPCCub,LPCCub +δ ], move the candidate inequality from
Zcand into Zwork and remove its parent; return to the main step.

• If LPrlx < LPCCub, apply the LPCC feasibility recovery procedure
to the feasible solution at termination of the current relaxed LP with
restriction. If the procedure is successful, return to the main step with
either a new cut or a reduced LPCCub. Otherwise, move the incumbent
candidate inequality from Zcand into Zwait ; return to the main step.

• If δ+LPCCub < LPrlx, move the candidate inequality from Zcand into
Zwork and remove its parent; further branch the candidate inequality
into two subinequalities, both of which we put into the candidate pool
Zcand; return to the main step.

During the procedure, the set Zcand may grow from the initial size of 2 inequalities
when the root of the procedure is first split. Nevertheless, by solving finitely many
LPs, this set will eventually shrink to empty; when that happens, either we have
successfully sparsified the root inequality and placed multiple sparser cuts into Zwork,
or some sparser cuts are added to the pool Zwait, waiting to be proven valid for the
LPCC in subsequent iterations. Note that associated with each inequality in Zwait is
the value LPrlx.

5. The IP algorithm. We are now ready to present the parameter-free IP-
based algorithm for resolving an arbitrary LPCC (2.1). Subsequently, we will establish
that the algorithm will successfully terminate in a finite number of iterations with a
definitive resolution of the LPCC in one of its three states. Referring to a return to
Step 1, each iteration consists of solving one feasibility IP of the satisfiability kind, a
couple of LPs to compute ϕ(ẑ) and possibly ϕ0(ẑ) corresponding to a binary vector ẑ
obtained from the IP, and multiple LPs within the sparsification procedure associated
with an induced point/ray cut.
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Algorithm.
Step 0 (preprocessing and initialization). Generate multiple simple cuts to tighten
the complementarity constraints. If any of the LPs encountered in this step is
infeasible, then so is the LPCC (2.1). In general, let LPCClb (−∞ allowed) and
LPCCub (∞ allowed) be valid lower and upper bounds of LPCCmin, respectively.
Let δ > 0 be a small scalar. [A finite optimal solution to a relaxed LP provides a
finite lower bound, and a feasible solution to the LPCC, which could be obtained
by the LPCC feasibility recovery procedure, provides a finite upper bound.] Set

P = R = ∅ and Zwork = Zwait = ∅. (Thus, Ẑwork = {0, 1}m.)

Step 1 (solving a satisfiability IP). Determine a vector ẑ ∈ Ẑwork. If this set is
empty, go to Step 2. Otherwise go to Step 3.
Step 2 (termination: infeasibility or finite solvability). If P = ∅, we have obtained
a certificate of infeasibility for the LPCC (2.1); stop. If P �= ∅, we have obtained a
certificate of global optimality for the LPCC (2.1) with LPCCmin given by (3.3);
stop.
Step 3 (solving dual LP). Compute ϕ( ẑ ) by solving the LP (2.9). If ϕ(ẑ) ∈
(−∞,∞), go to Step 4a. If ϕ(ẑ) = ∞, proceed to Step 4b. If ϕ(ẑ) = −∞, proceed
to Step 4c.
Step 4a (adding an extreme point). Let (λp,i, u±,p,i, vp,i) ∈ K be an optimal
extreme point of Ξ. There are 3 cases:

• If ϕ(ẑ) ∈ [ LPCCub, LPCCub + δ], let P ← P ∪ {i}, and add the corre-
sponding point cut to Zwork; return to Step 1.

• If ϕ(ẑ) > LPCCub + δ, let P ← P ∪ {i}, and add the corresponding point
cut to Zwork. Apply the sparsification procedure to the new point cut,
obtaining an updated Zwork and Zwait and possibly a reduced LPCCub. If
the LPCC upper bound is reduced during the sparsification procedure, go
to Step 5 to activate some of the cuts in the wait pool; otherwise, return
to Step 1.

• If ϕ(ẑ) < LPCCub, let LPCCub ← ϕ(ẑ), and go to Step 5.
Step 4b (adding an extreme ray). Let (λr,j , u±,r,j , vr,j) ∈ L be an extreme ray of
Ξ. Set R ←− R ∪ {j}, and add the corresponding ray cut to Zwork. Apply the
sparsification procedure to the new ray cut, obtaining an updated Zwork and Zwait

and possibly a reduced LPCCub. If the LPCC upper bound is reduced during the
sparsification procedure, go to Step 5 to activate some of the cuts in the wait pool;
otherwise, return to Step 1.
Step 4c (determining LPCC unboundedness). Solve the LP (2.10) to determine
ϕ0(ẑ). If ϕ0(ẑ) = 0, then the vector ẑ and its support provide a certificate of
unboundedness for the LPCC (2.1). Stop. If ϕ0(ẑ) = ∞, go to Step 4b.
Step 5 (LPCCub is reduced). Move all inequalities in Zwait with values LPrlx

greater than (the just-reduced) LPCCub into Zwork. Apply the sparsification pro-
cedure to each newly moved inequality with LPrlx > LPCCub + δ. Reapply this
step to the cuts in Zwait each time the LPCC upper bound is reduced from the
sparsification procedure. Return to Step 1 when no more cuts in Zwait are eligible
for sparsification.

We have the following finiteness result.
Theorem 5.1. The algorithm terminates in a finite number of iterations.
Proof. The finiteness is due to several observations: (a) The set of m-dimensional

binary vectors is finite, (b) each iteration of the algorithm generates a new binary
vector that is distinct from all of those previously generated, and (c) there are only
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finitely many cuts, sparsified or not. In turn, (a) and (c) are obvious, and (b) follows
from the operation of the algorithm: Whenever ϕ(ẑ) ≥ LPCCub, the new point cut or
ray cut will cut off all binary vectors generated so far, including ẑ; if ϕ(ẑ) < LPCCub,
then ẑ cannot be one of previously generated binary vectors because its ϕ-value is
smaller than those of the other vectors.

5.1. A numerical example. We use the following simple example to illustrate
the algorithm:

(5.1)

minimize
(x,y)

x1 + 2 y1 − y3

subject to x1 + x2 ≥ 5,

x1, x2 ≥ 0,

0 ≤ y1 ⊥ x1 − y3 + 1 ≥ 0,

0 ≤ y2 ⊥ x2 + y1 + y2 ≥ 0,

0 ≤ y3 ⊥ x1 + x2 − y2 + 2 ≥ 0.

Note that the LCP in the variable y is not derived from a convex quadratic program;
in fact, the matrix

M ≡

⎡
⎢⎣

0 0 −1

1 1 0

0 −1 0

⎤
⎥⎦

has all principal minors nonnegative, but the LCPs defined by this matrix may have
zero or unbounded solutions.

Initialization: Set the upper bound as infinity: LPCCub = ∞. Set the working
set Zwork and the waiting set Zwait both equal to empty.

Iteration 1: Since Ẑwork = {0, 1}3, we can pick an arbitrary binary vector z. We
choose z = (0, 0, 0) and solve the dual LP (2.9):

(5.2)

maximize
(λ,u±,v)

5λ + u+
1 + 2u+

3 − u−
1 − 2u−

3

subject to λ − u+
1 + u−

1 − u+
3 + u−

3 ≤ 1,

λ − u+
2 + u−

2 − u+
3 + u−

3 ≤ 0,

−u+
2 + u−

2 − v1 ≤ 2,

−u+
2 + u−

2 + u+
3 − u−

3 − v2 ≤ 0,

u+
1 − u−

1 − v3 ≤ −1,

v1 + v2 + v3 ≤ 0,

(λ, u±, v ) ≥ 0,

which is unbounded, yielding an extreme ray with u+ = (0, 10/7, 10/7) and v =
(0, 0, 0) and a corresponding ray cut: z2 + z3 ≥ 1. (Briefly, this cut is valid since
z2 = z3 = 0 implies that both x2 + y1 + y2 = 0 and x1 + x2 − y2 + 2 = 0, which
can’t both hold for nonnegative x and y.) Add this cut to Zwork, and initiate the
sparsification procedure. This inequality z2 + z3 ≥ 1 can be branched into z2 ≥ 1 or
z3 ≥ 1. To test if z2 ≥ 1 is a valid cut, we form the following relaxed LP of (5.1) by
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restricting x2 + y1 + y2 = 0:

(5.3)

minimize
(x,y)

x1 + 2 y1 − y3

subject to x1 + x2 ≥ 5,

x1 − y3 + 1 ≥ 0,

x2 + y1 + y2 = 0,

x1 + x2 − y2 + 2 ≥ 0,

x, y ≥ 0.

An optimal solution of the LP (5.3) is (x1, x2, y1, y2, y3) = (5, 0, 0, 0, 6) with the op-
timal objective value LPrlx = −1. This is not a feasible solution of the LPCC (5.1)
because the third complementarity is violated. The inequality z2 ≥ 1 is therefore
placed in the waiting set Zwait. We then use (x1, x2) = (5, 0) to recover an LPCC
feasible solution by solving the LCP in the variable y. This yields y = (0, 0, 0),
w = (6, 0, 7), and hence a corresponding vector z = (1, 0, 1). By using this z in (2.9),
we get another dual problem:

(5.4)

maximize
(λ,u±,v)

5λ + u+
1 + 2u+

3 − u−
1 − 2u−

3

subject to λ − u+
1 + u−

1 − u+
3 + u−

3 ≤ 1,

λ − u+
2 + u−

2 − u+
3 + u−

3 ≤ 0,

−u+
2 + u−

2 − v1 ≤ 2,

−u+
2 + u−

2 + u+
3 − u−

3 − v2 ≤ 0,

u+
1 − u−

1 − v3 ≤ −1,

u+
1 + v2 + u+

3 ≤ 0,

(λ, u±, v ) ≥ 0,

which has an optimal value 5 that is smaller than the current upper bound LPCCub.
So we update the upper bound as LPCCub = 5. Note that this update occurs during
the sparsification step. A corresponding optimal solution to (5.4) is u+ = (0, 1, 0) and
v = (0, 0, 1). Hence we can add the point cut z2 + (1 − z3) ≥ 1 to Zwork.

When we next proceed to the other branch z3 ≥ 1, we have a relaxed LP:

(5.5)

minimize
(x,y)

x1 + 2 y1 − y3

subject to x1 + x2 ≥ 5,

x1 − y3 + 1 ≥ 0,

x2 + y1 + y2 ≥ 0,

x1 + x2 − y2 + 2 = 0,

x, y ≥ 0.

Solving (5.5) gives an optimal value LPrlx = −1, which is smaller than LPCCub, and
a violated complementarity with w2 = 12 and y2 = 7. By adding z3 ≥ 1 to Zwait, we
apply the LPCC feasibility recovering procedure to x = (0, 5) and get a new LPCC
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feasible piece with z = (1, 1, 1). By substituting z into (2.9), we get another LP:

(5.6)

maximize
(λ,u±,v)

5λ + u+
1 + 2u+

3 − u−
1 − 2u−

3

subject to λ − u+
1 + u−

1 − u+
3 + u−

3 ≤ 1,

λ − u+
2 + u−

2 − u+
3 + u−

3 ≤ 0,

−u+
2 + u−

2 − v1 ≤ 2,

−u+
2 + u−

2 + u+
3 − u−

3 − v2 ≤ 0,

u+
1 − u−

1 − v3 ≤ −1,

u+
1 + u+

2 + u+
3 ≤ 0,

(λ, u±, v ) ≥ 0,

which has an optimal objective value 0. So a better upper bound is found; thus
LPCCub = 0. A point cut 1 − z3 ≥ 1 is derived from an optimal solution of (5.6).
This cut obviously implies the previous cut z2 + (1 − z3) ≥ 1. In order to reduce the
work load of the IP solver, we can delete z2 + (1 − z3) ≥ 1 from Zwork and add in
1 − z3 ≥ 1 instead. So far, we have the updated upper bound LPCCub = 0 and the
working set Zwork defined by the two inequalities:

(5.7) z2 + z3 ≥ 1 and 1 − z3 ≥ 1.

This completes iteration 1. During this iteration, we have solved 5 LPs, the LPCCub

has improved twice, and we have obtained 2 valid cuts.
Iteration 2: Solving a satisfiability IP yields a z = (0, 1, 0) ∈ Ẑwork. Indeed, any

element in Ẑwork, which is defined by the two inequalities in (5.7), must have z2 = 1
and z3 = 0; thus it remains to determine z1. As it turns out, z1 is irrelevant. To see
this, we substitute z = (0, 1, 0) into (2.9), obtaining

(5.8)

maximize
(λ,u±,v)

5λ + u+
1 + 2u+

3 − u−
1 − 2u−

3

subject to λ − u+
1 + u−

1 − u+
3 + u−

3 ≤ 1,

λ − u+
2 + u−

2 − u+
3 + u−

3 ≤ 0,

−u+
2 + u−

2 − v1 ≤ 2,

−u+
2 + u−

2 + u+
3 − u−

3 − v2 ≤ 0,

u+
1 − u−

1 − v3 ≤ −1,

u+
2 + v1 + v3 ≤ 0,

(λ, u±, v ) ≥ 0.

The LP (5.8) is unbounded and has an extreme ray where u+ = (0, 0, 10/7) and
v = (0, 10/7, 0). So we can add a valid ray cut (1 − z2) + z3 ≥ 1 to Zwork.

Termination: The updated working set Zwork consists of 3 inequalities:⎧⎪⎨
⎪⎩

z2 + z3 ≥ 1

1 − z3 ≥ 1

(1 − z2) + z3 ≥ 1

⎫⎪⎬
⎪⎭ ,
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which can be seen to be inconsistent. Hence we get a certificate of termination. Since
there is one point cut in Zwork, the LPCC (5.1) has an optimal objective value 0,
which happens on the piece z = (1, 1, 1). (This termination can be expected from the

fact that z2 = 1 and z3 = 0 for elements in the set Ẑwork prior to the last ray cut; these
values of z imply that y2 = w3 = 0, which is not consistent with the nonnegativity
of x. This inconsistency is detected by the algorithm through the generation of a ray
cut that leaves Ẑwork empty.)

6. Computational results. To test the effectiveness of the algorithm, we have
implemented and compared it with benchmark algorithms from neos, which for the
purpose here were chosen to be the filter solver and the knitro solver. As expected,
these two solvers consistently produce high-quality LPCC feasible solutions. For the
test problems we used, both often found solutions that turned out to be globally
optimal, as was proved by our algorithm. (The details can be seen in Tables 6.1, 6.2,
and 6.3.) We coded our algorithm in Matlab and used Cplex 9.1 to solve the LPs
and the satisfiability IPs. The experiments were run on a Dell desktop computer
with 1.40 GHz Pentium 4 processor and 1.00 GB of RAM.

Our goal in this computational study is threefold: (A) to test the practical ability
of the algorithm to provide a certificate of global optimality for LPCCs with finite
optimal solutions; (B) to determine the quality of the solutions obtained by using
the simple-cut preprocessor; and (C) to demonstrate that the algorithm is capable
of detecting infeasibility and unboundedness for LPCCs of these kinds. All problems
are randomly generated. One at a time, a total of �m/3� simple cuts are generated
in the preprocessing step for each problem. To test (A) and (B), the problems are
generated to have optimal solutions; for (C), the problems are generated to be either
infeasible or have unbounded objective values. The algorithm does not make use of
such information in any way; instead, it is up to the algorithm to verify the prescribed

Table 6.1

Special LPCCs with B = 0, A ∈ �90×100, and 100 complementarities. Remark: The first
column “#” is the problem counter; the second column “LPCClb” contains the objective values of
LP relaxations before and after the preprocessing. The column “LPCCub” reports the objective values
of the LPCC feasible solutions. The right subcolumn contains the verifiably optimal LPCCmin. The
left subcolumn contains the values obtained after preprocessing with the LPCC feasibility recovery
procedure. The objective values obtained from filter and knitro are reported in the next columns.
(Note that these values are very comparable and practically optimal in all problems except 1 and 7
for both and 8 for knitro.) The total number of LPs solved (excluding the �m/3� relaxed LPs in the
preprocessing step) and the number of IPs solved in the run are reported in the last two columns.
At the suggestion of a referee, we also reported the number of “major iterations” in the two neos

solvers; these are placed as subscripts in the objective values of the respective solvers. It should be
noted that such iterations refer to different procedures in the two solvers.

LPCClb LPCCub
# rxLPCC Preprocess Preprocess LPCCmin filter knitro LP IP

1 1094.6041 1106.8297 1146.7550 1127.4885 1140.5614 5 1141.6696 52 396 18
2 1172.1830 1176.6893 1185.0192 1182.2146 1182.2145 5 1182.2147 47 57 1
3 820.2584 823.8912 823.9099 823.9055 823.9055 10 823.9058 55 14 1
4 796.9560 813.9752 840.4828 833.9718 833.9717 6 833.9718 41 611 22
5 841.1786 849.0122 850.2416 849.8451 849.8451 5 849.8452 44 66 1
6 924.7529 926.1028 926.5924 926.5000 926.5000 5 926.5000 56 21 1
7 1536.1748 1541.4464 1543.8863 1541.9443 1543.1950 6 1543.1951 55 35 1
8 1076.8760 1090.2155 1109.1441 1106.3617 1106.3616 5 1113.8938 70 363 25
9 1232.7912 1239.7156 1239.8283 1239.8283 1239.8284 7 1239.8285 62 10 1
10 1217.1191 1229.2734 1250.6693 1249.9884 1249.9884 8 1249.9886 67 832 46
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Table 6.2

Special LPCCs with B = 0, A ∈ �200×300, and 300 complementarities. Remark: The explana-
tion of this table is the same as Table 6.1. Note that in problem 7, the solution obtained after the
preprocessing step is immediately verified to be globally optimal. For these runs, the knitro solutions
are practically optimal in all cases, but the filter solution in problem 2 is noticeably suboptimal.

LPCClb LPCCub
# rxLPCC Preprocess Preprocess LPCCmin filter knitro LP IP

1 2469.4400 2474.3166 2479.1835 2478.2254 2478.2256 19 2478.2264 66 125 1
2 3213.7176 3229.1930 3299.1115 3270.1842 3280.1865 8 3270.1844 72 4071 62
3 3639.4490 3651.5714 3671.6385 3660.5407 3660.5412 42 3660.5412 79 350 2
4 3127.3708 3140.3119 3265.7213 3176.4109 3176.4108 11 3176.4115 69 1249 15
5 2958.9147 2959.9381 2959.9498 2959.9498 2959.9495 6 2959.9529 66 5 1
6 2630.3282 2645.6771 2703.0018 2672.5706 2684.5288 30 2672.5710 60 4511 70
7 2616.9852 2617.2640 2617.2640 2617.2640 2617.2638 14 2617.2673 65 0 0
8 2766.9544 2770.1510 2771.3315 2771.2374 2771.2372 27 2771.2379 70 26 1
9 2842.4480 2846.7174 2847.9806 2847.6923 2847.6926 7 2847.6929 48 319 2
10 3207.6861 3220.3810 3235.4082 3230.9893 3230.9896 6 3230.9897 66 1569 16

Table 6.3

General LPCCs with B �= 0, A ∈ �55×50, and 50 complementarities. Remark: For these runs,
there are more instances where the two neos solutions are noticeably suboptimal.

LPCClb LPCCub
# rxLPCC Preprocess Preprocess LPCCmin filter knitro LP IP

1 28.7739 29.0318 29.0502 29.0501 29.0501 8 30.0155 32 21 2
2 36.1885 36.8258 39.1063 37.5509 37.5509 7 37.5510 25 229 9
3 33.8630 34.4988 39.1285 37.0022 38.3216 7 38.7521 28 4842 696
4 33.7618 34.1479 34.3034 34.2228 34.6057 5 34.2398 54 102 7
5 21.4187 21.9246 22.9642 22.2835 22.2945 5 22.2837 35 209 24
6 29.8919 29.9681 30.1085 30.0829 30.0829 6 30.0830 26 108 13
7 37.6712 37.9972 38.0405 38.0405 38.0419 6 38.0419 29 92 7
8 20.8210 21.4586 27.9618 22.3969 22.7453 7 22.4164 37 187 21
9 39.0227 39.4792 40.7839 40.3380 44.7872 8 44.3173 26 321 14
10 40.0135 40.7994 41.6865 41.3957 41.5810 5 41.5810 37 190 19

problem status. In all of the experiments, optimality of the LPCC is declared if
the difference between the lower and upper bounds is less than or equal to 1e-6;
this tolerance is also employed to determine the LPCC feasibility of the relaxed LP
solutions. The parameter δ for the sparsification step is selected to be 0.2.

All problems have the nonnegativity constraint x ≥ 0. The computational results
for the problems with finite optima are reported in Figures 6.1, 6.2, and 6.3 and Ta-
bles 6.1, 6.2, and 6.3. Each figure contains one set of ten randomly generated problems
with the same characteristics. Figures 6.1, 6.2, and 6.3 correspond to problems with
[n,m, k] = [100, 100, 90], [300, 300, 200], and [50, 50, 55], respectively. These sizes and
the data density are dictated by the limitations of matlab that is the environment
where our experiments were performed. All data are randomly generated with uni-
form distributions. The objectives vectors c and d are generated from the intervals
[0 1] and [1 3], respectively. For Figures 6.1 and 6.2, the matrix B = 0, and the matrix
M is generated with up to 2000 nonzero entries and of the form:

(6.1) M ≡
[

D1 ET

−E D2

]
,

where D1 and D2 are positive diagonal matrices of random order and with elements
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Fig. 6.1. Special LPCCs with B = 0, A ∈ �90×100, and 100 complementarities. Remark: Each
circle signifies that a better feasible LPCC solution is found. The circle’s horizontal coordinate
indicates the iteration where LPCCub is updated; its vertical coordinate gives the value of updated
LPCCub (we omitted some values if they are not significantly improved). Note that it is possible for
LPCCub to improve within one iteration by the sparsification step; see the example in subsection 5.1
and also the top run in the right column. In the fifth run in the left column, both of the filter

and knitro results coincide with LPCCmin, which is obtained after preprocessing and verified to be
optimal after one iteration.

chosen from [0 2] and E is arbitrary with elements in [−11]. The vector q is randomly
generated with elements in the interval [−20 − 10]. Note that M is positive definite,
albeit not symmetric. This property of M and the choice of B = 0 ensure LPCC
feasibility and thus optimality (because c and d are nonnegative and the variables are
nonnegative). For Figure 6.3, B �= 0, and the matrix M has no special structure but
has only 10% density. The rest of the data A, f , q, and N are generated to ensure
LPCC feasibility and thus optimality. Details of the data generation and the resulting
data can be found in [50].

Figures 6.1, 6.2, and 6.3 detail the progress of the runs, showing in particular how
LPCCub decreases with the number of iterations. The vertical axis refers to the LPCC
objective values, and the horizontal axis labels the number of iterations as defined in
the opening paragraph of section 5. The top value on the vertical axis is the LPCC
objective value obtained at termination of the preprocessor with the LPCC feasibility
recovery step. The bottom value is verifiably LPCCmin. The vertical axis is scaled
differently in each run with respect to the difference between the top and the bottom
values. As comparison, the objective values obtained from filter (marked by the red
square) and knitro (marked by the blue diamond) are also shown on the vertical axis;
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Fig. 6.2. Special LPCCs with B = 0, A ∈ �200×300, and 300 complementarities. Remark: The
explanation for the figure is similar to that of Figure 6.1. Note that in the third and fourth runs in
the left column LPCCub is obtained right after preprocessing. In the third run, the solution’s global
optimality is verified after 1 iteration; while in the fourth run, the solution is immediately verified to
be globally optimal (the difference between the upper and lower bounds of the LPCC is within 1e-6).

if the difference between the filter and knitro values in a run is within 1e-3, we
mark only the knitro result (the exact values from these two solvers can be found in
Tables 6.1, 6.2, and 6.3). The upper limit of the horizontal axis indicates the number
of IPs needed to be solved in each run. Note that in some runs a globally optimal
solution might have been obtained in an earlier iteration without certification, and
the algorithm needs more subsequent iterations to verify its global optimality. For
example, in the fourth run of the right-hand column in Figure 6.1, a globally optimal
solution is first obtained at iteration 2, but the certificate is established only after 23
more iterations. Other details about the figures are summarized in the remarks below
the figures.

Corresponding to the problems in Figures 6.1, 6.2, and 6.3, respectively, Ta-
bles 6.1, 6.2, and 6.3 report more details about the runs, which are indexed by count-
ing first rowwise and then columnwise in the figures (for example, the fourth run in
Table 6.1 is the second row on the right column in Figure 6.1). In addition to the ob-
jective values obtained in our algorithm and from the neos solvers, these tables also
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Fig. 6.3. General LPCCs with B �= 0, A ∈ �55×50, and 50 complementarities.

report the numbers of IPs and LPs (excluding the �m/3� relaxed LPs solved in the
preprocessor), solved in the solution process. These numbers, which are independent
of the computational platform and machine, provide a good indicator of the efforts
required by the algorithm in processing the LPCCs. We did not report computational
times for two reasons: (i) The matlab results are computer-dependent, and the runs
involve interfaces between matlab and cplex, and (ii) our runs are experimental,
and our coding is at an amateur level.

The computational results for the infeasible and unbounded LPCCs are reported
in Table 6.4, which contains 3 subtables (a), (b), and (c). The first two subtables (a)
and (b) pertain to feasible but unbounded LPCCs. For the unbounded problems, we
set B = 0, q is arbitrary, and we generate A with a nonnegative column, M given
by (6.1), and f such that {x ≥ 0 : Ax ≥ f} is feasible. Problems in (a) and (b)
have the same parameters except for the objective vectors c and d and matrix A. For
the problems in (a), we simply maximize one single x-variable whose A column is
nonnegative. For the problems in (b), the objective vectors c and d are both negative,
and the matrix A is the same as it is in group (a) except that a small number 0.005
is added to its nonnegative column (see the discussion in the first conclusion below
for why this is done). The third subtable (c) pertains to a class of infeasible LPCCs
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Table 6.4

Infeasible and unbounded LPCCs with 50 complementarities. # iters = number of returns to
Step 1 = number of IPs solved; # cuts = number of satisfiability constraints in Zwork at termination;
# LPs = number of LPs solved, excluding the �m/3� relaxed LPs in the preprocessing step.

Prob # iters # cuts # LPs # iters # cuts # LPs # iters # cuts # LPs
1 50 47 195 4 3 9 14 14 28
2 6 4 14 5 4 12 2 2 4
3 1081 828 2604 2 1 5 38 38 76
4 166 144 424 42 39 120 7 7 14
5 436 305 991 735 621 1860 47 49 100
6 18 17 54 498 379 1125 48 48 96
7 3 4 11 352 127 663 20 20 40
8 426 356 1191 489 373 1158 13 13 26
9 9 9 26 5 4 12 50 50 100
10 4 3 11 9 7 22 6 6 12

(a) (b) (c)

Table 6.5

General LPCCs with B �= 0, A ∈ �25×25, and 25 complementarities. Column A = number
of IPs or LPs solved in the run without sparsification; column B = number of IPs or LPs solved
in the run with sparsification. Remark: In column A, the number of IPs solved in the run is
equal to the number of solved LPs. Except for problems 3, 9, and 10, the B approach (with the
sparsification step implemented) is doing much better than the A approach. Especially for problems
1 and 5–8, the numbers of IPs and LPs are dramatically reduced. For the remaining problems, the
computational effort with sparsification is at least comparable to, if not better than, the approach
without sparsification. When the number of complementarities in the LPCCs grows, we expect more
computational savings with the sparsification step implemented.

A B
Prob # LPs # IPs # LPs # IPs

1 122 122 61 18
2 17 17 33 11
3 7 7 51 9
4 16 16 41 12
5 280 280 70 21
6 598 598 85 23
7 195 195 90 26
8 65 65 43 10
9 9 9 41 9
10 8 8 33 8

generated as follows: q, N , and M are all positive so that the only solution to the
LCP 0 ≤ y ⊥ q + Nx + My ≥ 0 for x ≥ 0 is y = 0; Ax + By ≥ f is feasible for some
(x, y) ≥ 0, with y �= 0, but Ax ≥ f has no solution in x ≥ 0.

To illustrate the effectiveness of the sparsification step, we generated some LPCCs
with n = m = k = 25 and the same characteristics as the problems in Figure 6.3.
Table 6.5 reports the numbers of LPs and IPs that are needed to be solved in both
runs with or without this step.

The main conclusions from the experiments are summarized below.
• The algorithm successfully terminates with the correct status of all of the LPCCs

reported. In fact, we have tested many more problems than those reported and ob-
tained similar success. There are, nevertheless, a few instances where the LPCCs
are apparently unbounded but the algorithm fails to terminate after 6000 iterations
without the definitive conclusion, even though the LPCC objective is noticeably tend-
ing to −∞. We cannot explain these exceptional cases which we suspect are due to
round-off errors in the computations. This suspicion led us to add the small 0.005
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adjustment in the unbounded set of runs reported above; with this small adjustment,
the algorithm successfully terminated with the desired certificate of unboundedness.

• For the special LPCCs with B = 0, the results from the 2 neos algorithms
filter and knitro are proved to be suboptimal in 2 out of the 20 runs (the first and
fourth runs on the left column in Figure 6.1). In the other 18 runs, our algorithm is
able to obtain an optimal solution with little computational effort (within 5 iterations)
but requires significant additional computations to produce the desired certificate of
global optimality. For the general LPCCs with B �= 0, the objective values obtained
from filter and knitro are suboptimal in 6 out of 10 runs. In the other 4 runs,
only 5 iterations are needed to derive either a globally optimal solution or an LPCC
feasible solution whose objective value is within 3% of the optimal value. These results
confirm that the verification of global optimality is generally much more demanding
than the computation of the solution without proof of optimality.

• Except for one problem (problem 7 in Table 6.3), the solutions obtained by the
simple-cut preprocessor for all LPCCs with finite optima are within 5% of the globally
optimal solutions. In fact, some of the solutions obtained from the preprocessing
are immediately verified to be optimal. This suggests that very high-quality LPCC
feasible solutions can be produced efficiently by solving a reasonable number of LPs.

• The sparsification procedure is quite effective; so is the LPCC feasibility recovery
step. Indeed without the latter, there is a significant percentage of problems where
the algorithm fails to make progress after 3000 iterations. With this step installed,
all problems are resolved satisfactorily.

• While the numbers of IPs solved are quite reasonable in most cases, there are
several runs where the numbers of relaxed LPs solved are unusually large, especially
when the problem size increases. This suggests that stronger cuts are needed for both
general LPCCs and for specialized problems arising from large-scale applications.
The implementation of a dedicated solver for satisfiability problems, such as those
described in [7, 31], could considerably improve the overall solution times of the LPCC
algorithm. These refinements of the algorithm are presently being investigated.

Concluding remarks. In this paper, we have presented a parameter-free IP-
based algorithm for the global resolution of an LPCC and reported computational
results with the application of the algorithm for solving a set of randomly generated
LPCCs of moderate sizes. Continued research on refining the algorithm and apply-
ing it to realistic classes of LPCCs, such as the bilevel machine-learning problems
described in [6, 32, 33] and other applied problems, is currently underway.

Acknowledgments. The authors are grateful to 2 referees for their constructive
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[36] S. Leyffer, G. Lopéz-Calva, and J. Nocedal, Interior methods for mathematical programs
with complementarity constraints, SIAM J. Optim., 17 (2006), pp. 52–77.

[37] Z.Q. Luo, J.S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints,
Cambridge University Press, Cambridge, 1996.

[38] J.V. Outrata, Optimality conditions for a class of mathematical programs with equilibrium
constraints, Math. Oper. Res., 24 (1999), pp. 627–644.
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EMBEDDED IN THE SHADOW OF THE SEPARATOR∗
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Abstract. Eigenvectors to the second smallest eigenvalue of the Laplace matrix of a graph,
also known as Fiedler vectors, are the basic ingredient in spectral graph partitioning heuristics.
Maximizing this second smallest eigenvalue over all nonnegative edge weightings with bounded total
weight yields the absolute algebraic connectivity introduced by Fiedler, who proved tight connections
of this value to the connectivity of the graph. Our objective is to gain a better understanding
of the connections between separators and the eigenspace of this eigenvalue by studying the dual
semidefinite optimization problem to the absolute algebraic connectivity. By exploiting optimality
conditions we show that this problem is equivalent to finding an embedding of the n nodes of the
graph in n-space so that their barycenter is the origin, the distance between adjacent nodes is bounded
by one, and the nodes are spread as much as possible (the sum of the squared norms is maximized).
For connected graphs we prove that, for any separator in the graph, at least one of the two separated
node sets is embedded in the shadow (with the origin being the light source) of the convex hull of the
separator. Furthermore, we show that there always exists an optimal embedding whose dimension is
bounded by the tree width of the graph plus one.

Key words. spectral graph theory, semidefinite programming, eigenvalue optimization, embed-
ding, graph partitioning, tree width

AMS subject classifications. 05C50, 90C22, 90C35, 05C10, 05C78
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1. Introduction. Let G := (N,E) be an undirected graph with node set N :=
{1, . . . , n} and edge set E ⊆ {{i, j} : i, j ∈ N, i �= j}. Edge {i, j} will be abbreviated
by ij if there is no danger of confusion. The adjacency matrix A ∈ R

n×n of the graph
is defined as the (symmetric) matrix having aij = 1 if ij ∈ E and 0 otherwise. The
Laplace matrix or Laplacian of the graph is the matrix L := diag(Ae) − A, where
e denotes the vector of all ones of appropriate dimension and diag(v) denotes the
diagonal matrix having v on its main diagonal. For symmetric matrices H ∈ R

n×n

we order the eigenvalues by λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H). Because the Laplacian
L is positive semidefinite and Le = 0, we have λ1(L) = 0 with eigenvector e. Fiedler
[6, 7] showed that the second smallest eigenvalue λ2(L) is tightly related to edge and
vertex connectivity of the graph. In particular, λ2(G) is positive if and only if G is
connected. Therefore, Fiedler called λ2(L) the algebraic connectivity of the graph.
Eigenvectors to λ2(L), often referred to as Fiedler vectors, have been used quite
successfully in heuristics for graph partitioning in parallel computing [20, 21, 14], in
clustering of geometric objects [1] or hyperlinks in the World Wide Web [12], or even
in computer vision [15]. The second smallest eigenvalue allows one to derive various
bounds in graph partitioning or bandwidth optimization [13, 11]; further properties of
the Laplacian spectrum are presented in [8, 9, 10, 2, 29], and [17, 18] give a survey on
the Laplacian spectrum of graphs. See also [3, 19] for related applications of spectral
graph theory in combinatorial optimization.
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By the Courant–Fischer theorem, the eigenvalue λ2(L) and its eigenvectors may
be characterized as optimal solutions to the optimization problem

λ2(L) = min
v∈Rn,vT e=0,‖v‖=1

vTLv.

The usefulness of λ2 and its eigenvectors in graph partitioning should relate to this
characterization in some way. In order to get a better understanding of these con-
nections, it seems natural to study the eigenspace of λ2 for weighted matrices on the
same support (i.e., arc weighted graphs on the same edge set) that are extremal in the
sense that, for their distribution of the weight, λ2 is maximal. The optimal λ2 with
respect to the support of the graph was introduced by Fiedler [7] under the name “ab-
solute algebraic connectivity.” We study the semidefinite dual of this optimization
problem. Due to complementarity, the optimal solutions of the dual are restricted
to the eigenspace of the optimal λ2, and so all properties of dual optimal solutions
directly provide information on the structure of the eigenspace associated with the
absolute algebraic connectivity. It turns out that the dual may be interpreted as an
embedding problem of the nodes of G in R

n; see (4). The same optimization problem
appears in [24] in connection with finding the fastest mixing Markov process on a
graph; this work also mentions interest in low-dimensional solutions of this problem
within the field of maximum variance unfolding in machine learning [26, 27].

We show that optimal embeddings of (4) have structural properties tightly con-
nected to the separator structure of the graph (Theorem 3). In particular, if a subset
S ⊂ N of nodes separates the graph into two separated node sets C1, C2 that form a
partition of N \S, then for one of the two sets, say, C1, all nodes are in the “shadow”
of the convex hull of the nodes in S as seen from the origin; i.e., the straight line
segment between any node of C1 and the origin intersects the convex hull of S. Since
any nonzero projection of the embedding to a one-dimensional subspace yields an
eigenvector to the optimal λ2 (Remark 2), this offers good geometric insight into the
usefulness of Fiedler vectors for graph partitioning.

The embedding may also be interpreted as a variant of vector labelings of graphs
as introduced in [16]. On first sight, strong similarities exist with respect to the
Colin de Verdière number μ(G); see the excellent survey [25]. But the strong Arnold
property is not required in our context, so no direct connection to μ(G) should be
expected. Yet, similar to maximizing the corank in the Colin de Verdière number, one
may ask for an optimal embedding of minimal dimension. Besides general interest
in the existence of low-dimensional optimal solutions of semidefinite programs [22],
such solutions are also sought in the machine learning applications [26, 27] mentioned
above. Even though we are still far from answering this question to our full satisfac-
tion, we are able to exhibit an intriguing bound based on the tree width of the graph.
Indeed, we show in the proof of Theorem 5 that there is always an optimal embedding
whose dimension is bounded by the cardinality of a “central” node of an arbitrary
tree decomposition of G. This bound is tight for some particular graph classes (see
Example 8). Nonetheless, the bound seems to be far too pessimistic, e.g., for planar
graphs. Therefore it is conceivable that significantly better bounds can be obtained
by minor related approaches.

The paper is organized as follows. In section 2 we derive the embedding problem as
the dual problem to the eigenvalue optimization problem of determining the absolute
algebraic connectivity and present an overview of our main results on this embedding
together with some examples. The proof of the first result (the separator-shadow
theorem) is given in section 3. Section 4 is devoted to optimality-preserving manipu-
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lations of optimal embeddings for reducing the dimension of embeddings. These are
rotations and foldings around separators that contain the origin in their convex hull
and allow us, in section 5, to design an algorithm that gives rise to the proof of the
tree width bound on the minimal dimension of optimal solutions.

We use basic notions and notation from graph theory and semidefinite program-
ming [28]. In particular, for symmetric H ∈ R

n×n, H � 0 is used to denote positive
semidefiniteness; for matrices A,B ∈ R

m×n, 〈A,B〉 :=
∑

ij AijBij is the canonical

inner product; in the case of vectors a, b ∈ R
n we will simply use aT b; ‖·‖ refers to the

usual Euclidean norm; e denotes the vector of all ones of appropriate size; for a set
S ⊂ R

n, convS refers to the convex hull of S and coneS := {λx : x ∈ convS, λ ≥ 0}.
The projection on a closed convex set C is denoted by pC(·).

2. Optimal embeddings and main results. In the remainder of the paper
we assume that the graph G = (N,E) is connected and |N | = n ≥ 2. Let

C :=

⎧⎨
⎩c ∈ R

E
+ :

∑
ij∈E

cij = |E|

⎫⎬
⎭

denote the set of all possible nonnegative edge weightings that sum up to |E|. For a
particular c ∈ C, let Ac denote the weighted adjacency matrix, i.e., Aij = cij for ij ∈ E
and 0 otherwise, and Lc := diag(Ace)−Ac the corresponding weighted Laplacian. For
i, j ∈ N , i �= j, define Eij ∈ R

n×n as the matrix having the two diagonal elements
(Eij)ii = (Eij)jj = 1, the two off-diagonal elements (Eij)ij = (Eij)ji = −1, and all
other elements equal to zero. Then we may rewrite the Laplacian as

Lc =
∑
ij∈E

cijEij .

The matrix Lc is positive semidefinite (because Eij is positive semidefinite and cij ≥ 0
for all ij ∈ E) and has an eigenvalue zero with eigenvector e (because Eije = 0). Our
basic optimization problem is to determine the absolute algebraic connectivity

â(G) := max
c∈C

λ2(Lc),(1)

where â(G) denotes the absolute algebraic connectivity introduced in [7]. The max-
imum is attained, because a continuous function is maximized over a compact set.
Since G is assumed to be connected, the result of Fiedler [6] for c = e asserts that
λ2(Lc) = λ2(L) > 0, so the optimum value is strictly positive. In order to reformulate
the optimization problem as a semidefinite program, it will be convenient to shift the
smallest eigenvalue 0 to a sufficiently large value. Thus, (1) may be rewritten as the
following semidefinite program:

â(G) = max λ

such that (s.t.)
∑
ij∈E

cijEij + ρeeT − λI � 0,

∑
ij∈E

cij = |E|,

c ≥ 0, λ, ρ free.

Because the optimal value is strictly greater than zero by the connectedness of G,
we may rescale the problem by 1/λ and equivalently minimize the sum of the scaled
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weights wij := cij/λ instead. Together with the scaled μ := ρ/λ we obtain

|E|
â(G)

= min
∑
ij∈E

wij

s.t.
∑
ij∈E

wijEij + μeeT � I,

w ≥ 0, μ free.

(2)

Note that, by the considerations above, choosing w = 1+ε
λ2(L)e and μ = 1 + ε yields a

strictly feasible solution for ε > 0. Therefore the program attains its optimal solution,
and semidefinite duality theory together with strict feasibility asserts that the optimal
value of its dual semidefinite program is also attained. The dual reads

|E|
â(G)

= max 〈I,X〉
s.t.

〈
eeT , X

〉
= 0,

〈Eij , X〉 ≤ 1 for ij ∈ E,

X � 0.

(3)

Now consider a Gram representation of X via a matrix V ∈ R
n×n with X = V TV ,

and denote column i of V by vi, i.e., V = [v1, . . . , vn]. Then

Xij = vTi vj and 〈Eij , X〉 = ‖vi‖2 − 2vTi vj + ‖vj‖2 = ‖vi − vj‖2.

Since 0 =
〈
eeT , X

〉
= eTXe = eTV TV e and V e =

∑
vi, the dual semidefinite

program (3) translates directly to

|E|
â(G)

= max
∑
i∈N

‖vi‖2

s.t.

(∑
i∈N

vi

)2

= 0,

‖vi − vj‖2 ≤ 1 for ij ∈ E,
vi ∈ R

n for i ∈ N.

(4)

Thus, the dual problem to (1) is equivalent to finding an embedding of the nodes
of the graph in n-space so that their barycenter is at the origin (we will call this
the equilibrium constraint), the distances of adjacent nodes are bounded by one (the
distance constraints), and the sum of their squared norms is maximized.

Remark 1. Together with the KKT conditions (we do not list feasibility con-
straints again)

vj +
∑
ij∈E

wij(vi − vj) + μ
∑
i∈N

vi = 0 ∀j ∈ N,

wij(1 − ‖vi − vj‖2) = 0 ∀ij ∈ E,

μ

(∑
i∈N

vi

)2

= 0,
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Fig. 1. Original graph: The 30 vertices, picked randomly in [0, 1]2, are connected by an edge if
the Euclidean distance is at most 0.3.

the embedding problem suggests the following physical interpretation of optimal pri-
mal and dual solutions. Consider each node as having a point mass of unit size, and
imagine each edge being a mass-free rope of length one that connects the points. Now
the optimum solution of (4) corresponds to an equilibrium solution of this net spread
within a force field that acts with force v on a point of mass one at position v. The
wij are the forces acting along rope ij. Indeed, all wij > 0 are on the same scale as
the force field, because wij > 0 only if ‖vi − vj‖2 = 1. So the first line of the KKT
conditions asserts that these forces are in equilibrium in each point (μ

∑
vi = 0 by

feasibility, so this term does not enter). If an optimal two-dimensional embedding
exists, such a physical situation is encountered when spreading the net on a disk ro-
tating around its center (the centripetal force is mω2r, where m is the mass, ω the
angular frequency, and r the radius). In [24] the same problem (and interpretation)
was derived by starting from the problem of determining the fastest mixing Markov
chain.

We illustrate this for an example graph on 30 vertices (see Figure 1) that was
generated by picking the vertices randomly in the unit square and by connecting
two points by an edge if their Euclidean distance is at most 0.3. The edge weights
corresponding to an optimal solution of problem (2) are given in gray shades in Fig-
ure 2 (white is weight 0, black is maximum weight). The optimal embedding of
(4) is displayed in Figure 3. It was computed by using SeDuMi [23] and is in fact
two-dimensional in this case. The origin is indicated by the small circle in the center.

Remark 2. The projections of optimal embeddings onto one-dimensional sub-
spaces yield eigenvectors to the algebraic connectivity. To see this, suppose that
V = [v1, . . . , vn] is an optimal embedding of (4) and c are the corresponding optimal
weights giving rise to the algebraic connectivity λ2(Lc) in (1). For any p ∈ R

n, the
vector u := V T p is an eigenvector of Lc for the eigenvalue λ2(Lc), i.e., Lcu = λ2(Lc)u.
Indeed, X = V TV is then an optimal solution of (3), w = c/λ2(Lc) together with
some μ = 1 is an optimal solution of (2), and by complementarity and

〈
eeT , X

〉
= 0
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Fig. 2. Graph with optimal edge weights.
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Fig. 3. Optimal embedding (the central circle indicates the origin).

we obtain

0 =

〈
X,

∑
ij∈E

wijEij + μeeT − I

〉
λ2(Lc)

=

〈
X,

∑
ij∈E

λ2(Lc)wijEij − λ2(Lc)I

〉

=
〈
V TV ,Lc − λ2(Lc)I

〉
=
〈
I, V (Lc − λ2(Lc)I)V

T
〉
.

So each column of V T (and hence u = V T p) is in the eigenspace of Lc to eigenvalue
λ2(Lc).



478 F. GÖRING, C. HELMBERG, AND M. WAPPLER

Our main results show that structural properties of optimal embeddings vi, i ∈ N ,
of (4) are tightly linked to the separator structure of the underlying graph. Here
a (node-)separator of G is a subset S ⊂ N of nodes, whose removal disconnects
the graph into at least two connected components. Often we will not discern every
single component arising this way but simply speak of two or more separated sets
of nodes. The first result states that for each separator S all but at most one of
its components must be embedded so that any ray emanating from the origin first
has to hit conv{vs : s ∈ S} before it can reach a node of these components; i.e., by
considering the origin as a light source and conv{vs : s ∈ S} as a solid object, all but
one of the components must be embedded in the shadow of the separator.

Theorem 3 (separator-shadow). Let vi ∈ R
n (i ∈ N) be an optimal solution

of (4) for a connected graph G = (N,E). Let S be a separator in G giving rise to a
partition N = S ∪ C1 ∪ C2 where there is no edge between C1 and C2. Then for at
least one Cj

conv{0, vi} ∩ conv{vs : s ∈ S} �= ∅ ∀i ∈ Cj .(5)

In words, the straight line segments conv{0, vi} of all nodes i ∈ Cj intersect the convex
hull of the points in S.

We encourage the reader to check the separator-shadow property on some of the
separators in Figure 3, e.g., for S = {13} or S = {19, 24}.

Condition (5) holds trivially if conv{vs : s ∈ S} contains the origin. Considering
a separator S with the property 0 /∈ conv{vs : s ∈ S}, the separator-shadow theorem
ensures that all but one of the components are embedded in the subspace spanned by
the separator. Thus, if all minimal separators are small in size, there seems to be hope
that there also exists an optimal embedding of small dimension. Our second main
result confirms this expectation. In order to state it, we first recall the definitions of
tree decomposition and tree width as given in [5].

Definition 4. For a graph G = (N,E) a tree decomposition of G is a tree
(N , E) =: T , with N ⊆ 2N and E ⊆

(N
2

)
, satisfying the following requirements:

(i) N =
⋃

U∈N U .
(ii) For every e ∈ E there is a U ∈ N with e ⊆ U .
(iii) If U1, U2, U3 ∈ N with U2 on the T -path from U1 to U3, then U1 ∩ U3 ⊆ U2.

The width of T is the number max{|U | − 1 : U ∈ N}. The tree width tw(G) is the
least width of any tree decomposition of G.

For example, trees have tree width one (each edge forms one set U , so choose
N = E, and for E use the edge set of any spanning tree of the original tree’s line
graph). In general, it is NP -complete to determine the tree width, but any valid tree
decomposition provides an upper bound.

Theorem 5. For each connected graph G there exists an optimal embedding of
(4) of dimension at most tw(G) + 1.

It is not difficult to devise examples where optimal embeddings of much higher
dimensions exist, as well. A simple one, that will also be helpful in the remainder of
the paper, is the star K1,n.

Example 6. For a star K1,n := ({0, 1, . . . , n}, {{0, i} : i = 1, . . . , n}), with n ≥ 2,
one optimal solution embeds the center node 0 in the origin and all other nodes in
the vertices of a regular n− 1-dimensional simplex with ‖vi‖ = 1, i = 1, . . . , n, for an
objective value of n (optimality follows from choosing wij = 1 and μ = 1 in (2)). For
even n ≥ 2, a one-dimensional optimal embedding is given by assigning the center
node 0 to the origin, half of the outer nodes to +1, and the other half to −1. For odd
n ≥ 3, one possibility to find a two-dimensional optimal embedding is to put node 0
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into the origin, node 1 to (1, 0) even nodes i ≥ 2 to (− 1
n−1 ,

√
1 − ( 1

n−1 )2), and the

odd nodes i ≥ 3 to (− 1
n−1 ,−

√
1 − ( 1

n−1 )2).

Solving (3) by interior point methods will, in fact, always generate optimal em-
beddings of (4) of maximum dimension, because interior point methods generate max-
imally complementary solutions [4]. So the next question is whether it is difficult to
find optimal embeddings satisfying the bound of Theorem 5. For general graphs there
is little hope to find a tree decomposition giving the tree width of the graph, but
for a given optimal embedding and some tree decomposition of width t our proof of
Theorem 5 allows us to transform the embedding algorithmically by a sequence of
optimality-preserving rotations and foldings into an optimal embedding of dimension
at most t + 1.

The bound of Theorem 5 on the minimum dimension of optimal embeddings is
not tight for all graphs. Already in the example above, any star K1,n with even
n ≥ 2 has an optimal embedding in one dimension. For certain classes of graphs the
bound of Theorem 5 on the minimum dimension of optimal embeddings is, in fact,
far off (e.g., planar grid graphs have one-dimensional optimal embeddings), but in
general the bound cannot be improved as is shown by the second of the following two
examples.

Example 7 (complete graphs). For Kn := ({1, . . . , n}, {{i, j} : 1 ≤ i < j ≤ n})
we show that the unique optimal embedding is the regular n− 1-dimensional simplex

with all points lying on the ball of radius rn :=
√

n−1
2n . The optimal X is given by

Xii = r2
n = n−1

2n for 1 ≤ i ≤ n and Xij = Xji = − r2
n

n−1 = − 1
2n for 1 ≤ i < j ≤ n, and

the optimal weights are wij = 1
n for 1 ≤ i < j ≤ n. By choosing μ = 1

n we compute
Lw + μeeT − I = 0, so (w, μ) is feasible for (2) with objective n−1

2 . Likewise, X is
feasible for (3) and 〈I,X〉 = n−1

2 , so optimality is shown. Furthermore, since wij > 0
for all ij, the constraints 〈Eij , X〉 = 1 hold for all optimal X; i.e., the embedding must
have all points pairwise at distance one. So the regular n− 1-dimensional simplex is
the only optimal embedding. Note that the tree width of Kn is n − 1, and thus the
complete graphs are not tight with respect to the bound of Theorem 5.

Example 8 (graphs with tight dimension bound). We append to Kn three in-
dependent vertices that are completely linked to Kn resulting in a graph G(n) :=
({1, . . . , n + 3}, {{i, j} : 1 ≤ i ≤ n, i < j ≤ n + 3}). The tree width of G(n) is n,
and for n ≥ 4 the minimal dimension of an optimal embedding of G(n) is n + 1.
In fact, we show that, for n ≥ 4, the vertices of Kn are again arranged as a cen-
trally symmetric n − 1-dimensional simplex with all points lying on a ball of radius

rn :=
√

n−1
2n , and the three new points are arranged centrally symmetric on a circle

orthogonal to this simplex with radius r̄ :=
√

n+1
2n . The optimum of (3) is obtained

by extending the optimum of Example 7 with Xii = r̄2 = n+1
2n for n < i ≤ n + 3,

Xij = Xji = − r̄2

2 = −n+1
4n for n < i < j ≤ n + 3, and Xij = Xji = 0 for 1 ≤ i ≤ n,

n < j ≤ n + 3. The optimal weights are wij = 1
n for 1 ≤ i ≤ n, n < j ≤ n + 3, and

wij = 1
n − 3

n2 for 1 ≤ i < j ≤ n (use Remark 1 and symmetry). By setting μ = 1
n the

slack matrix of (2) computes to

Z := Lw +
1

n
eeT − I =

[
3
n2 Jn 0

0 1
nJ3

]
� 0,(6)

where Jk denotes the square matrix of all ones of order k. Therefore (w, μ) is feasible

for (2), and the objective value is 3n 1
n + n(n−1)

2 ( 1
n − 3

n2 ) = 1 + n
2 + 3

2n . Likewise,
X is positive semidefinite because it is a Gram matrix. Furthermore, X satisfies all
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Fig. 4. A graph with tree width 2 and optimal embedding of dimension at least three; see
Example 8 (the central circle indicates the origin).

distance constraints and has the same objective value. Hence the primal and the dual
solution are optimal.

Now take any optimal embedding vi, i = 1, . . . , n, so V = [v1, . . . , vn]. Since w >
0, all optimal embeddings must have all edge lengths equal to one: ‖vi−vj‖ = 1 for all
ij ∈ E(G(n)). By (6) and semidefinite complementarity it holds that

〈
V TV ,Z

〉
= 0;

thus
∑n

i=1 vi = 0 and
∑n+3

i=n+1 vi = 0. So the embedding of Kn must be centrally
symmetric like in Example 7, and by the distance constraints each of the three addi-
tional vertices must be embedded orthogonal to the embedding of Kn with distance
r̄ to the origin. As the three vectors have to sum up to zero, this can be done only in
two additional dimensions. This completes the proof.

For n = 1 the construction yields a star with one central and three exterior nodes,
and the bound is also tight. For n = 2 the embedding described above is not optimal
(it would collapse to the image of the star), for n = 3 the embedding is optimal but
not of minimal dimension. Without going into details, the cases n = 2, 3 can be
extended to tight examples by appending to each node of Kn yet another node by a
single edge; see Figure 4 for an illustration of the resulting embedding for n = 2.

3. The proof of the separator-shadow Theorem 3. Our proof of the sep-
arator-shadow theorem will be indirect. Given a feasible embedding that does not
satisfy the statement of the theorem, we improve it by folding appropriate components
out of the current space in opposite directions (see Figures 6 and 7 below). This
requires some preparations. First note that a feasible embedding cannot be full-
dimensional, and so there is always space for folding.

Observation 9. Given vi ∈ R
n (i ∈ N) feasible for (4), there is a vector h ∈ R

n,
‖h‖ = 1, with vi ∈ H := {x ∈ R

n : hTx = 0} for i ∈ N .
Proof. The n vectors vi satisfy

∑
i∈N vi = 0, so they are linearly dependent, and

therefore dim(span {v1, . . . , vn}) ≤ n− 1.
Given the linear subspace H := {x ∈ R

n : hTx = 0}, a normalized b ∈ H, and
some β ∈ R, we next describe the operation of folding the flat half-space {x ∈ H :
bTx < β} along the affine subspace B := {x ∈ R

n : hTx = 0, bTx = β} by rotating
it around B into direction h by an angle γ and show that distances between folded
points are not longer than before. The latter fact will help to ensure feasibility with
respect to the distance constraints of (4). In stating this operation we make use of
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the fact that, due to ‖h‖ = ‖b‖ = 1 and hT b = 0, the projection of a point x ∈ R
n

onto B is computed by

pB(x) = x + (β − bTx)b− hTxh.(7)

Therefore the rotation of x ∈ H around B uses the radius ‖x− pB(x)‖ = |β − bTx|.
Observation 10 (folding a flat half-space). Given h ∈ R

n, with ‖h‖ = 1, let
H := {x ∈ R

n : hTx = 0}, and given b ∈ H, with ‖b‖ = 1, β ∈ R, let B := {x ∈ H :
bTx = β}. Define the continuous map ϕ : H× [−π, π] → R

n by

ϕ(x, γ) :=

{
pB(x) − (β − bTx)[b cos γ + h sin γ] if bTx < β,
x if bTx ≥ β.

For all γ ∈ [−π, π] and all x ∈ H,
(i) pB(x) = pB(ϕ(x, γ)) and ‖x− pB(x)‖ = ‖ϕ(x, γ) − pB(x)‖,
(ii) ‖ϕ(x, γ) − ϕ(y, γ)‖ = ‖x− y‖ for all y ∈ B,
(iii) ‖ϕ(x, γ) − ϕ(y, γ)‖ ≤ ‖x− y‖ for all y ∈ H.
Proof. (i) follows by direct calculation from (7).
If bTx ≥ β and bT y ≥ β, the points are not transformed. If bTx < β and bT y ≤

β, both points are subject to the same orthogonal transformation which preserves
distances. This implies (ii). If, without loss of generality (w.l.o.g.), bTx < β ≤ bT y,
the intersection of the line segment between x and y and B determines a unique
point z ∈ B ∩ conv{x, y}. The triangle inequality and (ii) yield ‖ϕ(x, γ) − y‖ ≤
‖ϕ(x, γ) − z‖ + ‖z − y‖ = ‖x− z‖ + ‖z − y‖ = ‖x− y‖, so (iii) holds.

Next, we need to trace the objective value as we fold a subset of nodes. Any such
operation can be viewed as a combination of a rotation around the barycenter of the
nodes and a uniform translation without rotation. The following two observations
show that rotations around the barycenter do not affect the cost function, while the
change induced by a translation is easily tracked via the barycenter alone.

Observation 11 (rotation around the barycenter). Given vi ∈ R
n (i ∈ C ⊆ N),

let v̄ := 1
|C|

∑
i∈C vi, and set v′i := Q(vi − v̄) + v̄, where Q is an orthogonal matrix.

Then ∑
i∈C

‖v′i‖
2

=
∑
i∈C

‖vi‖2
.

Proof. ∑
i∈C

‖v′i‖
2

=
∑
i∈C

‖Q(vi − v̄)‖2
+ 2v̄TQ

∑
i∈C

(vi − v̄)

︸ ︷︷ ︸
=0

+|C| ‖v̄‖2

=
∑
i∈C

‖vi − v̄‖2
+ 2v̄T

∑
i∈C

(vi − v̄) + |C| ‖v̄‖2

=
∑
i∈C

‖vi − v̄ + v̄‖2
=

∑
i∈C

‖vi‖2
.

Observation 12 (translation). Given d ∈ R
n and vi ∈ R

n (i ∈ C ⊆ N), let
v′i := vi + d (i ∈ C ⊆ N) and v̄ := 1

|C|
∑

i∈C vi. Then∑
i∈C

‖v′i‖
2

=
∑
i∈C

‖vi‖2
+ |C|(2v̄ + d)T d.

Proof.
∑

i∈C ‖vi + d‖2
=
∑

i∈C ‖vi‖2
+ 2|C|v̄T d + |C|dT d.
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Fig. 5. Rotation around an affine subspace.

By putting these together, we now describe the cost change arising in folding a
subset of the nodes.

Observation 13 (the cost of folding). For h, b, β > 0, H, B, and ϕ as in
Observation 10 and given vi ∈ {x ∈ H : bTx < β} (i ∈ C ⊆ N), let v̄ := 1

|C|
∑

i∈C vi,

γ ∈ [−π, π], and set for i ∈ C

v′i := ϕ(vi, γ).

Then ∑
i∈C

‖v′i‖
2

=
∑
i∈C

‖vi‖2
+ 2|C|r(1 − cos γ)β, where r := β − bT v̄ > 0.

Proof. The rotation around B may be split into a rotation of the points in C
around their barycenter v̄ as in Observation 11 and a translation as analyzed in
Observation 12. The corresponding displacement for rotating v̄ around B by angle γ
is d := r(sin γ)h + r(1 − cos γ)b, where r = β − bT v̄ > 0 is the radius (see Figure 5).
By v̄Th = 0, bTh = 0, and Observation 12 the cost function changes by

|C|(2v̄T d + dT d) = |C|
(
2r(1 − cos γ)v̄T b + r2[sin2 γ + (1 − cos γ)2]

)
= |C|

(
2r(1 − cos γ)v̄T b + r2[2 − 2 cos γ]

)
= 2|C|r(1 − cos γ)(v̄T b + r)

= 2|C|r(1 − cos γ)β.

Proof of Theorem 3. Let h ∈ R
n, with ‖h‖ = 1, satisfy hT vi = 0 for all i ∈ N

as in Observation 9, and let S := conv{vs : s ∈ S}. Assume, for contradiction, that
the theorem is not true. Then there is a node in C1 (call it node 1) and a node in C2

(call it node 2) embedded in v1 and v2, respectively, that satisfy conv{0, v1} ∩ S =
conv{0, v2}∩S = ∅. By convex separation each set conv{0, vj} can be separated from
S by a separating hyperplane within the subspace span {vi : i ∈ N}. So for j ∈ {1, 2}
there are vectors bj ∈ span {vi : i ∈ N} (these satisfy bTj h = 0) and scalars βj > 0 so

that bTj x ≥ βj for all x ∈ S and bTj x < βj for all x ∈ conv{0, vj}.
Next we show that we can find a convex combination of these two inequalities by

choosing an appropriate α ∈ [0, 1] so that, for b(α) := (1 − α)b1 + αb2 and β(α) :=
(1− α)β1 + αβ2, the open half-space {x : b(α)Tx < β(α)} contains points of both C1

and C2 (illustrated in Figure 6). Indeed, for α = 0 the half-space contains v1 and
so a point of C1, for α = 1 it contains v2 which belongs to C2, and it contains the
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Fig. 6. Initial setting in case (i) of the separator-shadow proof.
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Fig. 7. Improving movement in case (i) of the separator-shadow proof.

origin for all α ∈ [0, 1]. Suppose, for contradiction, that in sweeping α through [0, 1]
the half-space loses the last point of C1 before it encounters the first point of C2 at
some particular ᾱ. Then the corresponding hyperplane defined by b(ᾱ)Tx = β(ᾱ) > 0
would separate 0 strictly from conv{vi : i ∈ N}, but this contradicts the feasibility of
the vi as the origin is a convex combination of the vi by the equilibrium constraint
1
n

∑
i∈N vi = 0.
Thus we have found b := b(α) and β := β(α) > 0 such that the open half-

space {x : bTx < β} contains points from C1 and C2. Note that bTh = 0 holds,
and by scaling b and β we may assume w.l.o.g. that ‖b‖ = 1. Let, for j ∈ {1, 2},
Mj := {i ∈ Cj : bT vi < β}, mj := |Mj | > 0, and v̄j := 1

mj

∑
i∈Mj

vi. Next,

consider rotating independently for each j the points in Mj around the affine subspace
B = {x ∈ R

n : hTx = 0, bTx = β} as specified in Observation 13. Because the
points in M1 and M2 are not adjacent and distances to the remaining points are not
increased by Observation 10(iii), the edge constraints in (4) remain satisfied. We show
that rotating the points in M1 in direction h and the points in M2 against direction h
by sufficiently small angles γ1 and γ2 improves the solution (see Figure 7). As in the
proof of Observation 13, denote, for j ∈ {1, 2}, the radius and displacement of v̄j by

rj := β − bT v̄j > 0 and dj := rj [(sin γj)h + (1 − cos γj)b],

respectively, yielding the improvement 2mjrj(1 − cos γj)β. Rotation j adds mjdj to
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the barycenter of all points and has to be compensated in order to maintain feasibility
with respect to the equilibrium constraint. Shifts of the global barycenter in the
direction of h can be avoided by requiring m1d

T
1 h = −m2d

T
2 h; i.e., given γ1, choose

γ2 in dependence of γ1 so that m1r1 sin γ1 = −m2r2 sin γ2. After carrying out these
rotations it therefore remains to shift all points by

d := −(m1d
T
1 b + m2d

T
2 b)b/n = −[m1r1(1 − cos γ1) + m2r2(1 − cos γ2)]b/n

for feasibility in (4). By using Observation 12, the total objective improvement is∑
j∈{1,2}

2mjrj(1 − cos γj)β − ndT d

=
∑

j∈{1,2}
2mjrj(1 − cos γj)β − 1

n
[m1r1(1 − cos γ1) + m2r2(1 − cos γ2)]

2.

This is positive for γ1 and γ2(γ1) close enough to zero, yielding a contradiction to the
optimality of the embedding.

4. Separators containing the origin. The freedom for squeezing optimal em-
beddings into lower dimensions that will be needed for the proof of Theorem 5 in
section 5 is offered by separators that contain the origin in the convex hull of their
embedded nodes. Example 6 of the star K1,n may help to illustrate the main idea
of the transformations we employ. By alluding to the physical interpretation, we will
proceed in two steps:

Step one: We rearrange the cumulated force vectors of the separated node sets so
that they are balanced in just one or two additional dimensions with respect
to this central separator.

Step two: We show how to combine this with reducing the dimension of each
component.

The result will be that either we find a particularly large component that governs
the dimension of the entire embedding or no such component exists and we succeed
in flattening the embedding to a space exceeding the dimension of the separator by
at most two.

We start with an optimal embedding vi (i ∈ N) of G and, by using Observation 9,
fix some h ∈ R

n, ‖h‖ = 1, so that

{vi : i ∈ N} ⊂ H := {x ∈ R
n : hTx = 0}.

Throughout this section we assume that S ⊂ N is a separator in G satisfying

0 ∈ S := conv{vi : i ∈ S}

and separating G into m sets

Cj ⊂ N, j ∈ M := {1, . . . ,m}.

Together with S, they form a partition of N , and each edge of G is incident to at most
one of the sets Cj . Sometimes we also use sets Cj that contain more than one of the
separated connected components. For each j ∈ M , the cumulated vector is denoted by

v̄j :=
∑
i∈Cj

vi.
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We will not modify the embedding on the linear subspace

L := spanS

spanned by the vectors of the separator. Modifications will be restricted to its or-
thogonal complement L⊥, so mostly our illustrations are given with respect to the
embedding obtained by projecting the vi onto L⊥. In the projected embedding pL⊥(vi)
(i ∈ N), all nodes i ∈ S are embedded in the origin, and, like in the case of the star,
the projected cumulated vectors pL⊥(v̄j), j ∈ M , pointing out of the origin in various
directions, are in equilibrium, i.e.,

∑
j∈M pL⊥(v̄j) = 0 by feasibility. We note for later

use that, in any such configuration, none of the vectors may be longer than the sum
of the others. Indeed, set

δ̄j := ‖pL⊥(v̄j)‖ for j ∈ M,

and then
∑

j∈M pL⊥(v̄j) = 0 implies that

∑
j∈M\{ĵ}

δ̄j ≥ δ̄ĵ for all ĵ ∈ M.(8)

The following fundamental fact will be used repeatedly (the equilibrium constraint
may get violated initially, but this will be taken care of later). For each j ∈ M the
vector pL⊥(v̄j) can be rotated around the origin freely within L⊥ while preserving all
distances between nodes in Cj ∪ S by applying to all pL⊥(vi), i ∈ Cj , an orthogonal
transformation Qj with L contained in its invariant subspace (i.e., Qj restricted to
L is the identity). Furthermore, such transformations do not influence the objective
value, as distances to 0 ∈ L are preserved. We complete step one by showing that
the vectors pL⊥(v̄j) with their lengths δ̄j can always be rotated into at most three
normalized directions d1, d2, d3 so that the equilibrium constraint holds again in L⊥

(by definition, the equilibrium constraint stays valid within L).
Observation 14. Given scalars δ̄j ≥ 0 for j ∈ M = {1, . . . ,m}, m ≥ 2, so that,

for each ĵ ∈ M ,
∑

j∈M\{ĵ} δ̄j ≥ δ̄ĵ. There exist vectors d1, d2, d3 ∈ R
2 with ‖d1‖ =

‖d2‖ = ‖d3‖ = 1 and an assignment κ : M → {1, 2, 3} so that
∑

j∈M δ̄jdκ(j) = 0.
This also holds if in addition |{j ∈ M : κ(j) = 1}| = 1 is required.

Proof. If |M | = 2, then δ̄1 = δ̄2, and the claim holds for d1 = −d2 and κ

correspondingly. Otherwise let ĵ ∈ M be the smallest number so that
∑ĵ−1

j=1 δ̄j <
1
2

∑
j∈M δ̄j ≤

∑ĵ
j=1 δ̄j , and set κ(ĵ) = 1, κ(j) = 2 for ĵ > j ∈ M and κ(j) = 3 for ĵ <

j ∈ M . Set δ̌h :=
∑

j∈M,κ(j)=h δ̄j , h ∈ {1, 2, 3}. Note that δ̌1 ≤ δ̌2 + δ̌3, δ̌2 ≤ δ̌1 + δ̌3,

δ̌3 ≤ δ̌1 + δ̌2. Assume, w.l.o.g., that δ̌1 ≤ δ̌2 ≤ δ̌3. Set d1(α) := (cosα,− sinα)T

for 0 ≤ α ≤ π, d2(α) := (cos γ(α), sin γ(α))T , where γ(α) is defined implicitly by
δ̌2 sin γ(α) = δ̌1 sinα, and d3 = (−1, 0)T . Then b(α) := δ̌1d1(α) + δ̌2d2(α) + δ̌3d3

satisfies [b(α)]2 = 0 for all 0 ≤ α ≤ π, [b(0)]1 ≥ 0, and [b(π)]1 ≤ 0, so by continuity of
b(α) there is an α̂ ∈ [0, π] with b(α̂) = 0.

Let us now turn towards step two and try to reduce the dimension of the node
sets. If span {vi : i ∈ Cj} ⊆ L for j ∈ M , then the embedding is good enough for our
purposes. Assume therefore that there is some j ∈ M with span {vi : i ∈ Cj} �⊆ L.
In manipulating the embedding of Cj in Observations 15–19 we will again apply only
orthogonal transformations (sometimes we will simultaneously use separate ones for
each point in Cj) that contain L in their invariant subspace. Therefore all distances
of points in Cj will preserve their distance to the origin and to the embedding of S. In
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Fig. 8. Initial setting before the transformation of C in Observations 15–19.
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Fig. 9. ϕ folds C into the half-space specified by b (Observation 15).
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Fig. 10. ψ collapses C into the flat half-space spanned by L and direction b (Observation 17).

consequence, optimality is guaranteed if feasibility can be maintained. In particular,
feasibility of the distance constraints is ensured whenever distances within Cj are not
increased. Our manipulations may, however, increase the length of pL⊥(v̄j) and thus
δ̄j . But by Observation 14 it suffices that condition (8) is satisfied at the end in order
to restore the equilibrium constraint, as well.

Before giving the transformations in detail, we outline the main idea by sketching
the underlying geometric intuition. The goal is to squeeze the entire embedding
of component Cj into the flat half-space spanned by L and one additional direction
bj ∈ H∩L⊥, with ‖bj‖ = 1. This works as follows. The transformation of Observation
15 folds all nodes into the flat half-space {x ∈ H : bTx ≥ 0} via Observation 10 (put
b = bj and β = 0)—see Figures 8 and 9; this leaves L ⊆ B untouched as required. Then
the transformation of Observation 17 collapses this flat half-space into the even flatter
half-space cone(L∪ {bj}) as if collapsing an umbrella by rotating the ribs towards its
handle (see Figure 10). In Observation 19 these two operations are concatenated to
a continuous transformation ui(t) of the embedding for t ∈ [0, 1], and we will see via
Observations 16 and 18 that the norm ‖pL⊥(ūj(t))‖ of the cumulated vector ūj(t) =∑

i∈Cj
ui(t) is nondecreasing throughout, so that we can easily stop the transformation

at an appropriate t to ensure condition (8). We start with the folding operation.
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Observation 15 (transformation part 1, folding). Given j ∈ M and bj ∈ H∩L⊥,
with ‖bj‖ = 1, define ϕi : [0, 1] → R

n for i ∈ Cj by

ϕi(t) :=

{
vi − (vTi bj)bj + (vTi bj)[bj cos tπ + h sin tπ] if vTi bj < 0,

vi if vTi bj ≥ 0.

Then, for i ∈ Cj,
(i) ϕi(0) = vi,
(ii) ϕi(1) ∈ {x ∈ H : bTj x ≥ 0},

and for all t ∈ [0, 1] it holds that
(iii) pL(vi) = pL(ϕi(t)) and ‖pL⊥(vi)‖ = ‖pL⊥(ϕi(t))‖,
(iv) ‖ϕi(t) − v‖ = ‖vi − v‖ for v ∈ L ⊇ {vs : s ∈ S},
(v) ‖ϕi(t) − ϕk(t)‖ ≤ ‖vi − vk‖ for k ∈ Cj .
Proof. (i) and (ii) follow from direct calculation and vi ∈ H; (iii)–(v) follow from

Observation 10(i)–(iii) by using b = bj , β = 0, ϕi(t) = ϕ(vi, tπ), and the fact that
S ⊆ L ⊆ B.

Next, we show that throughout this first transformation the length of the pro-
jected cumulated vector increases.

Observation 16. For ϕi (i ∈ Cj) as defined in Observation 15, define ϕ̄j :
[0, 1] → R

n by

ϕ̄j(t) :=
∑
i∈Cj

ϕi(t).

The length ‖pL⊥(ϕ̄j(t))‖ is nondecreasing in t ∈ [0, 1].
Proof. The choice of bj ensures that B := {x ∈ H : bTj x = 0} ⊇ L and B⊥ =

span {h, bj}. By definition of the ϕi in Observation 15 we obtain

‖pL⊥(ϕ̄j(t))‖2 = ‖pL⊥(pB(ϕ̄j(0)))‖2 + ‖pB⊥(ϕ̄j(t))‖2

= ‖pL⊥(pB(ϕ̄j(0)))‖2

+

∥∥∥∥∥∥
∑

i∈Cj ,vT
i bj<0

(vTi bj)[bj cos tπ + h sin tπ] +
∑

i∈Cj ,vT
i bj≥0

(vTi bj)bj

∥∥∥∥∥∥
2

.

As bj and h are orthogonal it remains to study the monotonicity of

⎡
⎣ ∑
i∈Cj ,vT

i bj<0

vTi bj cos tπ +
∑

i∈Cj ,vT
i bj≥0

vTi bj

⎤
⎦

2

+

⎡
⎣ ∑
i∈Cj ,vT

i bj<0

vTi bj sin tπ

⎤
⎦

2

=

⎡
⎣ ∑
i∈Cj ,vT

i bj<0

vTi bj

⎤
⎦

2

(cos2 tπ + sin2 tπ) +

⎡
⎣ ∑
i∈Cj ,vT

i bj≥0

vTi bj

⎤
⎦

2

+2

⎡
⎣ ∑
i∈Cj ,vT

i bj<0

vTi bj

⎤
⎦
⎡
⎣ ∑
i∈Cj ,vT

i bj≥0

vTi bj

⎤
⎦

︸ ︷︷ ︸
≤0

cos tπ.

The last term is clearly nondecreasing.
The collapsing transformation starts from the points ϕi(1) and runs as follows.
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Observation 17 (transformation part 2, collapsing). Given the setting of Ob-
servation 15, for i ∈ Cj, set δi := ‖pL⊥(ϕi(1))‖, determine 0 ≤ γi ≤ π

2 and
qi ∈ L⊥, qTi bj = 0, ‖qi‖ = 1 so that pL⊥(ϕi(1)) = δi(qi cos γi + bj sin γi), and de-
fine ψi : [0, 1] → R

n by

ψi(t) := pL(ϕi(1)) + δi

[
qi cos

(
γi + t

[π
2
− γi

])
+ bj sin

(
γi + t

[π
2
− γi

])]
.

Then, for i ∈ Cj,
(i) ψi(0) = ϕi(1),
(ii) ψi(1) = pL(vi) + ‖pL⊥(vi)‖bj ∈ L + {βbj : β ≥ 0},

and for all t ∈ [0, 1] it holds that
(iii) pL(vi) = pL(ψi(t)) and ‖pL⊥(vi)‖ = ‖pL⊥(ψi(t))‖,
(iv) ‖ψi(t) − v‖ = ‖vi − v‖ for v ∈ L ⊇ {vs : s ∈ S},
(v) ‖ψi(t) − ψk(t)‖ ≤ ‖vi − vk‖ for k ∈ Cj.
Proof. First note that Observation 15(iii) implies that pL(vi) = pL(ϕi(1)) and

δi = ‖pL⊥(vi)‖. Now (i) and (ii) follow from direct calculation, and (iii) and (iv) are
proved in the same way as (i) and (ii) of Observation 10. It remains to prove (v).

Because of Observation 15(v) it suffices to prove that ‖ψi(t)−ψk(t)‖2 ≤ ‖ϕi(1)−
ϕk(1)‖2 for i, k ∈ Cj . For this we need to show that ψi(t)

Tψk(t) ≥ ϕi(1)Tϕk(1),
which leads to the condition

fik(t) := (qTi qk)
[
cos

(
γi + t

[π
2
− γi

])
cos

(
γk + t

[π
2
− γk

])]
+ sin

(
γi + t

[π
2
− γi

])
sin

(
γk + t

[π
2
− γk

])
(9)

≥ (qTi qk)[cos γi cos γk] + sin γi sin γk = fik(0).

We prove that fik(t) is nondecreasing in t ∈ [0, 1]. In the case qTi qk < 0, both
cosine terms in fik(t) are nonincreasing, and the sine terms are nondecreasing. In the
remaining case we use the angle addition formulas to find

fik(t) = qTi qk cos((1 − t)[γi − γk])

+ (1 − qTi qk) sin
(
γi + t

[π
2
− γi

])
sin

(
γk + t

[π
2
− γk

])
.

But 0 ≤ qTi qk ≤ 1, and so the cosine and sine terms are nondecreasing.
Again, we continue with showing that during this transformation the length of

the projected cumulated vector is nondecreasing.
Observation 18. For ψi (i ∈ Cj) as defined in Observation 17, define ψ̄j :

[0, 1] → R
n by

ψ̄j(t) :=
∑
i∈Cj

ψi(t).

The length ‖pL⊥(ψ̄j(t))‖ is nondecreasing in t ∈ [0, 1].
Proof. By using the functions fik introduced in (9) we may write∥∥∥∥∥∥
∑
i∈Cj

pL⊥(ψi(t))

∥∥∥∥∥∥
2

=
∑
i∈Cj

‖pL⊥(ψi(t))‖2 +
∑

i,k∈Cj ,i<k

2(pL⊥(ψi(t)))
T (pL⊥(ψk(t)))

=
∑
i∈Cj

‖pL⊥(ψi(t))‖2 +
∑

i,k∈Cj ,i<k

δiδkfik(t),
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and we have shown in the proof of Observation 17 that each fik(t) is nondecreasing in
t ∈ [0, 1].

We concatenate both transformations into one and summarize our findings on
this collapsing transformation.

Observation 19 (collapsing transformation). Given j ∈ M and bj ∈ H ∩ L⊥,
with ‖bj‖ = 1, define ui : [0, 1] → R

n for i ∈ Cj by

ui(t) :=

{
ϕi(2t) for t ∈ [0, 1

2 ],
ψi(2[t− 1

2 ]) for t ∈ ( 1
2 , 1],

(10)

with ϕi and ψi as given in Observations 15 and 17. Then, for i ∈ Cj,
(i) ui(0) = vi,
(ii) ui(1) = pL(vi) + ‖pL⊥(vi)‖bj ∈ L + {βbj : β ≥ 0},

and for all t ∈ [0, 1] it holds that
(iii) pL(vi) = pL(ui(t)) and ‖pL⊥(vi)‖ = ‖pL⊥(ui(t))‖,
(iv) ‖ui(t) − v‖ = ‖vi − v‖ for v ∈ L ⊇ {vs : s ∈ S},
(v) ‖ui(t) − uk(t)‖ ≤ ‖vi − vk‖ for k ∈ Cj.

Furthermore, for

ūj(t) :=
∑
i∈Cj

ui(t)

the length ‖pL⊥(ūj(t))‖ is nondecreasing in t ∈ [0, 1] and

‖pL⊥(ūj(1))‖ =
∑
i∈Cj

‖pL⊥(vi)‖.

Proof. The result follows from Observations 15, 17, 16, and 18.
Suppose that the lengths

δ̃j :=
∑
i∈Cj

‖pL⊥(vi)‖ (j ∈ M)

of the collapsed sets satisfy the condition corresponding to (8). Then, in order to
obtain an embedding that is also in equilibrium with respect to the subspace L⊥, we
have to choose only the collapsing direction bj of each component Cj according to the
vectors dk (embedded in L⊥) with the assignment κ of Observation 14, bj = dκ(j).
This will yield an optimal embedding of dimension at most dimL+ 2 as described in
the following lemma.

Lemma 20. Let vi ∈ R
n for i ∈ N be an optimal solution of (4) for a connected

graph G = (N,E), and let S ⊂ N , with 0 ∈ S := conv{vs : s ∈ S}, be a separator in
G giving rise to separated sets Cj ⊂ N , j ∈ M := {1, . . . ,m}. Put L := spanS and,

for j ∈ M , δ̃j :=
∑

i∈Cj
‖pL⊥(vi)‖.

If δ̃ĵ ≤
∑

j∈M\{ĵ} δ̃j for all ĵ ∈ M , then there exist vectors d1, d2, d3 ∈ L⊥,

‖d1‖ = ‖d2‖ = ‖d3‖ = 1, with dim span {d1, d2, d3} ≤ 2, bj ∈ {d1, d2, d3}, j ∈ M , so
that the embedding v′i, i ∈ N , with

v′i :=

{
vi for i ∈ S,
pL(vi) + ‖pL⊥(vi)‖bj for i ∈ Cj ,

is also an optimal embedding of (4). Furthermore, such an embedding exists with bj =
d1 for at most one j ∈ M and satisfies dim span {v′i : i ∈ N} ≤ dimL + 2 ≤ |S| + 1.



490 F. GÖRING, C. HELMBERG, AND M. WAPPLER

Proof. Observe that dimL ≤ |S| − 1 because by 0 ∈ S the vi (i ∈ S) are linearly
dependent. Choose h, and define H as specified in Observation 9. If δ̃j = 0 for all
j ∈ M , then the statement holds for d1 = d2 = d3 = h because v′i = vi ∈ L for i ∈ N .
So we may assume that δ̃j > 0 for at least two j ∈ M . In the case dim(H∩L⊥) = 1 we
must have |S| = n− 2, m = 2, and |C1| = |C2| = 1, so b1 = d1 = −b2 = −d2 = −d3,
with d1 = pL⊥(vi)/‖pL⊥(vi)‖, satisfies all requirements. It remains to consider the
case dim(H ∩ L⊥) ≥ 2.

By Observation 14 we find three vectors d1, d2, d3 ∈ H ∩ L⊥ of norm one and
an assignment κ : M → {1, 2, 3} satisfying

∑
j∈M δ̃jdκ(j) = 0 and {j ∈ M : κ(j) =

1} = 1. For j ∈ M set bj = dκ(j), and let ui(t), i ∈ Cj , be the transformations
of Observation 19 for the respective bj . Then v′i = ui(1) for i ∈ Cj , j ∈ M by
Observation 19(ii). The distance constraints are satisfied for the new embedding
because for {i, k} ∈ E

i, k ∈ S : ‖v′i − v′k‖ = ‖vi − vk‖ by definition,
i ∈ Cj for some j ∈ M,k ∈ S : ‖v′i − v′k‖ = ‖vi − vk‖ by Observation 19(iv),
i, k ∈ Cj for some j ∈ M : ‖v′i − v′k‖ ≤ ‖vi − vk‖ by Observation 19(v).

The equilibrium constraint is satisfied on L, because pL(vi) = pL(v′i) for all i ∈ N (by
definition for i ∈ S and by Observation 19(iii) otherwise). It is also satisfied on L⊥,
because ∑

i∈N

pL⊥(v′i) =
∑
i∈S

pL⊥(v′i)︸ ︷︷ ︸
=0

+
∑
j∈M

∑
i∈Cj

pL⊥(v′i)

=
∑
j∈M

∑
i∈Cj

‖pL⊥(vi)‖bj =
∑
j∈M

δ̃jdκ(j) = 0

by construction of the dj . Finally, the objective value has not changed because ‖vi‖ =
‖v′i‖ for all i ∈ N (by definition for i ∈ S and by Observation 19(iii) otherwise).

If one set ĵ ∈ M is “heavier” than the other sets, δ̃ĵ >
∑

j∈M\{ĵ} δ̃j , the need to
recover feasibility in the equilibrium constraint will not allow us to collapse ĵ in full.
We can, however, collapse all other sets and compensate this by carrying through the
transformation in ĵ up to the tĵ ∈ [0, 1] when ‖pL⊥(ūĵ(tĵ))‖ =

∑
j∈M\{ĵ} δ̃j . Even

though this may lead to a slight increase in the overall dimension if tĵ < 1
2 , it will

help later to reduce the number of components about which we have to worry.
Lemma 21. Given the setting of Lemma 20 assume that there is a ĵ ∈ M with

δ̃ĵ >
∑

j∈M\{ĵ} δ̃j. There exists an h ∈ span {vi : i ∈ N}⊥ and an optimal embedding

v′i (i ∈ N) of (4), with

v′i ∈ span {h, vi : i ∈ Cĵ} for i ∈ Cĵ,
v′i = vi for i ∈ S,
v′i = pL(vi) + ‖pL⊥(vi)‖b̄ for i ∈ Cj , with j ∈ M \ {ĵ},

where b̄ := − pL⊥ (v̄′
ĵ)

‖pL⊥ (v̄′
ĵ)‖

if v̄′ĵ =
∑

i∈Cĵ
v′i /∈ L and b̄ := 0 otherwise.

Furthermore, if there is some direction b̂ ∈ span {vi : i ∈ Cĵ} ∩ L⊥ \ {0} with

b̂T vi ≥ 0 for i ∈ Cĵ, then such an embedding exists with v′i ∈ span {vi : i ∈ Cĵ} for
i ∈ Cĵ.

Proof. If
∑

j∈M\{ĵ} δ̃j = 0, then we may choose h = b̄ = 0 and not transform

the embedding at all to obtain the result. Therefore assume that
∑

j∈M\{ĵ} δ̃j �= 0.
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Choose h, and define H as specified in Observation 9. Since δ̃ĵ > 0, we can find a bĵ ∈
L⊥ ∩ span {vi : i ∈ Cĵ} with ‖bĵ‖ = 1. Let ui(t) (i ∈ Cĵ) denote the transformations
of Observation 19 for this bĵ, and set ūĵ(t) :=

∑
i∈Cĵ

ui(t). By Observation 19, the

function ‖pL⊥(ūĵ(t))‖ is continuous and nondecreasing. As the equilibrium constraint
is satisfied for the vi (i ∈ N), we have

‖pL⊥(ūĵ(0))‖ Observation19(i)
=

∥∥∥∥∥∥
∑
i∈Cĵ

pL⊥(vi)

∥∥∥∥∥∥
equilib.

=

∥∥∥∥∥∥
∑

i∈N\Cĵ

pL⊥(vi)

∥∥∥∥∥∥
pL⊥ (vi)=0 (i∈S)

=

∥∥∥∥∥∥
∑

j∈M\{ĵ}

∑
i∈Cj

pL⊥(vi)

∥∥∥∥∥∥
≤

∑
j∈M\{ĵ}

∥∥∥∥∥∥
∑
i∈Cj

pL⊥(vi)

∥∥∥∥∥∥
(by def.)

=
∑

j∈M\{ĵ}
δ̃j

and, by assumption, ‖pL⊥(ūĵ(1))‖ = δ̃ĵ >
∑

j∈M\{ĵ} δ̃j . So there is a tĵ ∈ [0, 1] with

‖pL⊥(ūĵ(tĵ))‖ =
∑

j∈M\{ĵ}
δ̃j .(11)

Choose v′i = ui(tĵ) for i ∈ Cĵ, and put

v̄′ĵ =
∑
i∈Cĵ

v′i = ūĵ(tĵ) and b̄ = −pL⊥(v̄′ĵ)/‖pL⊥(v̄′ĵ)‖.(12)

For j ∈ M \ {ĵ} choose bj = b̄, and let ui(t), i ∈ Cj , be the transformations of
Observation 19 for the respective bj . Then, by Observation 19(ii), v′i = ui(1) for
i ∈ Cj , with j ∈ M \ {ĵ}, satisfies the requirements of the lemma. The equilibrium
constraint is satisfied for the embedding v′i, i ∈ N , because it holds on L due to
pL(vi) = pL(v′i) for i ∈ N by Observation 19(iii) and it holds on L⊥, because∑

i∈N

pL⊥(v′i) =
∑
i∈S

pL⊥(v′i)︸ ︷︷ ︸
=0

+
∑
i∈Cĵ

pL⊥(v′i) +
∑

j∈M\{ĵ}

∑
i∈Cj

pL⊥(v′i)

(by def.)
= pL⊥(v̄′ĵ) +

∑
j∈M\{ĵ}

∑
i∈Cj

‖pL⊥(vi)‖b̄

(12)
=

⎛
⎝‖pL⊥(v̄′ĵ)‖ −

∑
j∈M\{ĵ}

δ̃j

⎞
⎠ pL⊥(v̄′ĵ)

‖pL⊥(v̄′ĵ)‖
(11)
= 0.

The feasibility of v′i, i ∈ N , with respect to the distance constraints and optimality
follows from Observation 19(iv) and (v) as in the proof of Lemma 20.

Finally, suppose that b̂ exists as described in the statement of the lemma. Then

we may choose bĵ = b̂
‖b̂‖ and, by construction (10) of the ui (i ∈ Cĵ), ui(t) = vi for

t ∈ [0, 1
2 ] (see Observation 15 for ϕi) and ui(t) ∈ L + span {b̂, vi} for t ∈ [ 12 , 1] (see

Observation 17 for ψi). This completes the proof.
Remark 22. A solution corresponding to the modified solution of this lemma is

not necessarily an optimal embedding of minimal dimension. Consider, e.g., the graph
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Fig. 11. Optimal two-dimensional embedding of two wheels with identical hub; see Remark 22.
The construction of the proof of Lemma 21 would yield a three-dimensional embedding.
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Fig. 12. Transformation in the proof of Lemma 25.

consisting of two wheels with identical hub, and rims of k and k+1 nodes with k ≥ 6;
see Figure 11.

Lemma 21 does not provide a bound on the dimension of the embedding but will
tell us which component we have to think about next in order to get to such a bound.
In order to arrive at the result of Theorem 5, we will need a further refinement of
Lemma 20 in the case dimL = |S| − 1. In order to set up the scene, assume that the
vi (i ∈ N) are already embedded in dimension |S|+ 1 as described in Lemma 20 with
each node set Cj collapsed to some flat half-space L+ {δdκ(j) : δ ≥ 0}, and denote by
H1 the set Cj that is the only one assigned to direction d1. We are interested in the
case that H1 is not connected to some ŝ ∈ S, so S′ := S\{ŝ} is a separator for H1 in G.
By Theorem 3 we must have 0 ∈ S ′ := conv{vi : i ∈ S′}, with L′ := spanS ′ a linear
subspace of dimension dim(L′) = dim(L) − 1 and vŝ �= 0 (otherwise the dimension of
the embedding would be |S| already). Figure 12 depicts the situation when projected
onto L′⊥ with Hi :=

⋃
j∈M :κ(j)=i Cj the set of nodes which are embedded in direction

di, i = 2, 3. It will turn out that the transformation indicated in this illustration will
yield an optimal embedding of dimension at most |S|, so we can get rid of one more
dimension. For this purpose we introduce yet another transformation comparable to
closing a fan; see Figure 13. In the following observation think of vector g as spanning
the missing direction ±pL′⊥(vŝ)/‖pL′⊥(vŝ)‖ in L and d as the additional direction dj
that spans the embedding of node set Hj .

Observation 23. Given a linear subspace L′ ⊂ R
n, vectors d, g ∈ L′⊥, with

‖d‖ = ‖g‖ = 1, dT g = 0, and vi ∈ {x ∈ L′ + span {d, g} : dTx ≥ 0} (i ∈ C ⊆ N).
For i ∈ C, set δ′i := ‖pL′⊥(vi)‖, determine γi ∈ [0, π] so that pL′⊥(vi) = δ′i(g cos γi +
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θ

0, L

g

b

C

Fig. 13. θ squeezes C spanned by L′ + span {g} and nonnegative d into the boundary half-space
spanned by L and nonnegative g (Observation 23).

d sin γi), and define continuous maps θi : [0, 1] → R
n:

θi(t) := pL′(vi) + δ′i [g cos(γi − tγi) + d sin(γi − tγi)] .

Then, for i ∈ C,
(i) θi(0) = vi,
(ii) θi(1) = pL′(vi) + ‖pL′⊥(vi)‖g,

and for all t ∈ [0, 1] it holds that
(iii) pL′(vi) = pL′(θi(t)) and ‖pL′⊥(vi)‖ = ‖pL′⊥(θi(t))‖,
(iv) ‖θi(t) − v‖ ≤ ‖vi − v‖ for v ∈ L′ + {βg : β > 0},
(v) ‖θi(t) − θk(t)‖ ≤ ‖vi − vk‖ for k ∈ C.

Furthermore, for θ̄C(t) :=
∑

i∈C θi(t),
(vi) pL′⊥(θ̄C(t)) ∈ span {g} + {βd : β ≥ 0} for t ∈ [0, 1],
(vii) gT θ̄C(t) is strictly increasing in t ∈ [0, 1] if γi ∈ (0, π] and δ′i > 0 for some

i ∈ C,
(viii) θ̄C(1) =

∑
i∈C pL′(vi) + g

∑
i∈C δ′i.

Proof. (i)–(iii) follow from direct calculation and by exploiting the fact that
g, d ∈ L′⊥ are orthonormal vectors. In order to prove (iv), apply the same arguments
used in the proofs of Observation 10(ii) and (iii) to v ∈ L′ and to v ∈ L′+{βg : β ≥ 0},
respectively.

For proving (v), i.e., ‖θi(t) − θk(t)‖2 ≤ ‖vi − vk‖2 for i, k ∈ C, it suffices to show
that

fik(t) := θi(t)
T θk(t) ≥ vTi vk

(i)
= θi(0)T θk(0) = fik(0)

or, as g, d ∈ L′⊥ are orthonormal vectors, that the function

fik(t) = pL′(vi)
T pL′(vk) + δ′iδ

′
k[cos(γi − tγi) cos(γk − tγk) + sin(γi − tγi) sin(γk − tγk)]

is nondecreasing in t ∈ [0, 1]. By the angle addition formulas and since the cosine is
an even function,

cos(γi − tγi) cos(γk − tγk) + sin(γi − tγi) sin(γk − tγk) = cos((1 − t)|γi − γk|).

The right-hand side is nondecreasing, and, thus, fik is nondecreasing.
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(vi) and (viii) follow from direct computation, and for (vii) it suffices to observe
that

gT θ̄C(t) =
∑
i∈C

δ′i cos(γi − tγi)

is strictly increasing because δ′i ≥ 0 for all i ∈ C and cos(γi− tγi) is strictly increasing
in t ∈ [0, 1] whenever γi ∈ (0, π].

The next observation will serve to find the correct balancing of the parameters
for each Hj in order to guarantee the equilibrium constraint on the subspace spanned
by g and appropriately chosen dj .

Observation 24. Given continuous functions λj : [0, 1] → R
2 (j ∈ {1, 2, 3}) and

σ ∈ R, with
(i) [λ1(t)]1 is strictly decreasing, [λ2(t)]1 and [λ3(t)]1 are strictly increasing,
(ii) [λi(t)]2 ≥ 0 for t ∈ [0, 1] and i = 1, 2, 3,
(iii) [λ1(0)]1 + [λ2(0)]1 + [λ3(0)]1 + σ = 0,
(iv) [λi(0)]2 < [λj(0)]2 + [λk(0)]2 for pairwise distinct i, j, k ∈ {1, 2, 3},
(v) [λ1(1)]2 = [λ2(1)]2 = [λ3(1)]2 = 0,

there exist t1, t2, t3 ∈ [0, 1] and pairwise distinct ı̂, ĵ, k̂ ∈ {1, 2, 3} satisfying
(vi) [λ1(t1)]1 + [λ2(t2)]1 + [λ3(t3)]1 + σ = 0,
(vii) [λı̂(tı̂)]2 = [λĵ(tĵ)]2 + [λk̂(tk̂)]2.
Proof. Due to continuity, the monotonicity property (i), and the initial condi-

tion (iii), there exists a continuous nondecreasing function τ : [0, τ̄ ] → [0, 1] defined
implicitly via

[λ1(t)]1 + [λ2(τ(t))]1 + [λ3(τ(t))]1 + σ = 0,

where

τ̄ := max{t ∈ [0, 1] : [λ1(t)]1 + [λ2(t
′)]1 + [λ3(t

′)]1 + σ = 0 for some t′ ∈ [0, 1]}.

By definition, (t′1, t
′
2, t

′
3) = (τ̄ , τ(τ̄), τ(τ̄)) satisfies (vi), and by monotonicity at least

one of t′1, t
′
2, t′3 is equal to one. Then (v) and (ii) imply that there are pairwise

distinct i, j, k ∈ {1, 2, 3} with [λi(ti)]2 ≥ [λj(tj)]2 + [λk(tk)]2. By the initial condition
(iv) and the continuity of the λj and τ , there must be a smallest t1 ∈ (0, 1] so that
t2 = t3 = τ(t1) satisfy (vi) and (vii).

Lemma 25. Given the setting of Lemma 20, assume that δ̃ĵ ≤
∑

j∈M\{ĵ} δ̃j holds
for all ĵ ∈ M , and let j̄ ∈ M be the only index with bj̄ = d1 within the new embedding
of Lemma 20. If at most |S| − 1 nodes of S are adjacent to nodes in Cj̄, then there is
an optimal embedding of dimension at most |S|.

Proof. Let vi, i ∈ N , be the optimal embedding resulting from Lemma 20 with
normalized vectors d1, d2, d3 ∈ L⊥ satisfying dim span {d1, d2, d3} ≤ 2 and an assign-
ment κ : M → {1, 2, 3} with bj = dκ(j) for j ∈ M . Choose Hk :=

⋃
j∈M :κ(j)=k Cj for

k ∈ {1, 2, 3}. Then

vi ∈ L + {βdj : β ≥ 0} for i ∈ Hj , j ∈ {1, 2, 3}.(13)

Together with L = spanS and 0 ∈ S = conv{vs : s ∈ S}, the dimension of this
embedding is bounded by dimL + dim span {d1, d2, d3} and dimL ≤ |S| − 1. If
dimL < |S| − 1 or dim span {d1, d2, d3} < 2, then the statement holds, so we may
assume that dimL = |S| − 1 and dim span {d1, d2, d3} = 2. Next suppose that there
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is a j ∈ {1, 2, 3} with vTi dj = 0 for all i ∈ Hj ; w.l.o.g. assume this to hold for
j = 1. Then the equilibrium constraint on L⊥ simplifies to

∑
i∈H2

‖pL⊥(vi)‖d2 =∑
i∈H3

‖pL⊥(vi)‖d3. Thus, the embedding on L⊥ is restricted to a one-dimensional
subspace, and the dimension of the embedding is again bounded by |S|. So it remains
to consider the case

for each j ∈ {1, 2, 3}, vTi dj > 0 for some i ∈ Hj .(14)

By assumption there is a node ŝ ∈ S not adjacent to any node in H1 = Cj̄. Put
S′ := S \ {ŝ}. This set S′ separates H1 from G. We have 0 ∈ S ′ := conv{vs : s ∈ S′},
because otherwise the separator-shadow Theorem 3 would imply that vi ∈ L′ :=
spanS ′ for i ∈ H1, in contradiction to (14). Now 0 ∈ S ′ yields dimL′ = |S′| − 1, and
as dimL = |S| − 1 we find a vector ĝ with

0 �= ĝ =
pL′⊥(vŝ)

‖pL′⊥(vŝ)‖
∈ L ∩ L′⊥ and ĝT vs = 0 for s ∈ S′.(15)

Set g1 := −ĝ and g2 := g3 := ĝ, and then by (13)

for each j ∈ {1, 2, 3}, vi ∈ {x ∈ L′ + span {dj , gj} : dTj x ≥ 0} for all i ∈ Hj .

Therefore we may use Observation 23 for j ∈ {1, 2, 3} with C = Hj , d = dj , g = gj to
define transformations θi(t) for i ∈ Hj and θ̄j(t) = θ̄Hj (t). Observe that S ′ ⊂ L′ and
S ⊂ L′ + {βgj : β ≥ 0} for j ∈ {2, 3}, so Observation 23(iv) and (v) establish that for
j ∈ {1, 2, 3} and tj ∈ [0, 1] the distance constraints of edges incident to nodes i ∈ Hj

remain satisfied for embedding θi(tj), and the objective value remains unchanged due
to Observation 23(iii) by 0 ∈ L′. Also note that replacing dj by some other normalized
d′j ∈ L⊥ will not affect distance constraints but only the equilibrium constraint. So it
remains to find appropriate tj ∈ [0, 1] and normalized d′j ∈ L⊥ so that the equilibrium
constraint holds while the dimension of the embedding is reduced by at least one. For
this purpose, define for j ∈ {1, 2, 3} the function λj : [0, 1] → R

2 by

λj(t) :=

(
ĝT θ̄j(t)
dTj θ̄j(t)

)
for t ∈ [0, 1].

We show that the λj and σ := ĝT vŝ satisfy the requirements of Observation 24.
Observation 24(i) holds because of Observation 23(vii) and (14). Observation 24(ii)
follows from Observation 23(vi). Observation 24(iii) is implied by the feasibility of
equilibrium constraint on the linear subspace spanned by ĝ for the embedding vi,
i ∈ N ; for this, use Observation 23(i), (15), and the definition of σ. Suppose that
Observation 24(iv) does not hold, and assume, w.l.o.g., that λ1(0) ≥ λ2(0) + λ3(0);
then by (13) and Observation 23(i) this is equivalent to

∑
i∈H1

‖pL⊥(vi)‖ ≥
∑

i∈H2∪H3

‖pL⊥(vi)‖,

and together with the equilibrium constraint

∑
i∈H1

‖pL⊥(vi)‖d1 +
∑
i∈H2

‖pL⊥(vi)‖d2 +
∑
i∈H2

‖pL⊥(vi)‖d3 = 0
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this implies that d1 = −d2 = −d3 in contradiction to dim span {d1, d2, d3} = 2.
Thus, Observation 24(iv) holds. Finally, Observation 24(v) follows from Observa-

tion 23(viii). Hence, there exist t1, t2, t3 ∈ [0, 1] and pairwise distinct ı̂, ĵ, k̂ ∈ {1, 2, 3}
so that Observation 24(vi) and (vii) hold. Now

choose d̂ ∈ L⊥, ‖d̂‖ = 1, set d′ı̂ := −d′ĵ := −d′
k̂

:= d̂,(16)

and

v′i :=

{
vi i ∈ S,
pL′(vi) + δi[gj cos(γi − tjγi) + d′j sin(γi − tjγi)] i ∈ Hj , j ∈ {1, 2, 3}.

Since only the dj have been replaced by d′j , j ∈ {1, 2, 3}, the distance constraints are
still valid for the new embedding v′i, i ∈ N , and the objective value is unchanged.
Furthermore, by setting

θ̄′j(t) :=
∑
i∈Hj

pL′(vi) + δi[gj cos(γi − tγi) + d′j sin(γi − tγi)] for j ∈ {1, 2, 3},

we see that the functions λj , j ∈ {1, 2, 3}, also satisfy

λj(t) =

(
ĝT θ̄′j(t)
d′Tj θ̄′j(t)

)
for t ∈ [0, 1].

Therefore Observation 24(vi) and (vii) still hold for t1, t2, t3 and ı̂, ĵ, k̂ yielding

0 = σ + ĝT (θ̄′1(t1) + θ̄′2(t2) + θ̄′2(t2)) = ĝT

⎛
⎝vŝ +

∑
j∈{1,2,3}

∑
i∈Hj

v′i

⎞
⎠ (15)

= ĝT

(∑
i∈N

v′i

)
,

0 = d′Tı̂ θ̄′ı̂(tı̂) − d′Tĵ θ̄′ĵ(tĵ) − d′T
k̂
θ̄′
k̂
(tk̂)

(16)
= d̂T

∑
j∈{1,2,3}

∑
i∈Hj

v′i
d̂∈L⊥
= d̂T

(∑
i∈N

v′i

)
.

So the equilibrium constraint holds on the linear subspaces spanned by ĝ and d̂. It also
holds on L′ because pL′(vi) = pL′(v′i) for i ∈ N and the embedding vi was feasible.

Since v′i ∈ L′ + span {ĝ, d̂} = L+ span {d̂} for i ∈ N , the new embedding satisfies the
equilibrium constraint on the entire space. Therefore it is an optimal embedding of
dimension at most dimL + 1 = |S|.

5. The proof of the tree-width Theorem 5. We will show that for any
tree decomposition T = (N , E) of G (see Definition 4) there is always an optimal
embedding of dimension at most max{|U | : U ∈ N}. As this also holds for a tree
decomposition giving the tree width of G, this will prove the theorem.

Note that in a tree decomposition any U ∈ N and any U ∩ U ′ with {U,U ′} ∈ E
is a separator of G (see, e.g., Lemma 12.3.1 in [5]). In the proof we will show that by
successively transforming the optimal embedding vi, i ∈ N , we can find a separator
of the form U ∈ N or U ∩ U ′ for some {U,U ′} ∈ E containing 0 in the convex hull
of its points so that either Lemma 20 or Lemma 25 yields an optimal embedding of
appropriate dimension.

The first step asserts that for any optimal embedding any tree decomposition has
“zero-nodes” containing the origin in their convex hull.
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Lemma 26. Consider a tree decomposition T = (N , E) of a connected graph
G = (N,E) and an optimal embedding vi ∈ R

n (i ∈ N) of (4). There is a U ∈ N
with 0 ∈ conv{vu : u ∈ U}.

Proof. Consider a subtree (N ′, E ′) =: T ′ of T , with |N ′| minimal so that 0 ∈
conv{vi : i ∈

⋃
U∈N ′ U}. Such a tree exists since the condition holds for T ′ = T by

the equilibrium constraint. Let the convex combination giving the origin be described
by C :=

⋃
U∈N ′ U and α ∈ R

C
+, with αT e = 1, so that

∑
i∈C αivi = 0. If |N ′| = 1, we

are done.
Assume, for contradiction, that |N ′| > 1. Then there is an edge {U,U ′} ∈ E ′,

and S′ := U ∩ U ′ is a separator of G. Deleting edge {U,U ′} from T ′ splits T ′ into
two nonempty subtrees (N ′

j , E ′
j) =: T ′

j for j ∈ {1, 2} with 0 /∈ conv{vi : i ∈
⋃

U∈N ′
j
U}

by assumption. Set N ′
j :=

⋃
U∈N ′

j
U . Because S′ ⊆ N ′

j for j ∈ {1, 2} we obtain

0 /∈ S ′ := conv{vi : i ∈ S′}. Applying the separator-shadow Theorem 3 with respect
to S = S′ and Cj = N ′

j \ S′ (j ∈ {1, 2}) yields, w.l.o.g., conv{vi, 0} ∩ S ′ �= ∅ for all
i ∈ C1 = N ′

1\S′. But then the origin must be contained in the convex hull of subtree T ′
2

as we show next. Put C ′
1 := N ′

1 \S′, C ′
2 := N ′

2 and set, for j ∈ {1, 2}, ᾱj :=
∑

i∈C′
j
αi

and v̄j := 1
ᾱj

∑
i∈C′

j
αivi ∈ conv{vi : i ∈ N ′

j}. Then 0 = ᾱ1v̄1 + ᾱ2v̄2 ∈ conv{v̄1, v̄2}
(by definition of the αi) and ∅ �= S ′ ∩ conv{v̄1, 0} ⊂ conv{v̄1, v̄2} (as the separator-
shadow property holds for C ′

1), so there is a p ∈ S ′ ⊂ conv{vi : i ∈ N ′
2} with

0 ∈ conv{p, v̄2} ⊂ conv{vi : i ∈ N ′
2}, a contradiction to the minimality of |N ′|.

Hence, T ′ consists of only one node.
We will call a node U ∈ N a zero-node (with respect to the embedding vi, i ∈ N)

if 0 ∈ conv{vi : i ∈ U} and an edge {U,U ′} ∈ E a zero-edge (with respect to the
embedding vi, i ∈ N) if 0 ∈ conv{vi : i ∈ U ∩U ′}. Note that for a zero-edge both end
points are zero-nodes.

Observation 27. The subgraph (N ′, E ′) =: T ′ of T = (N , E) induced by the
zero-nodes of an optimal embedding vi (i ∈ N) of (4) is a tree, and E ′ is the set of
zero-edges.

Proof. Suppose that there are two zero-nodes U1 and U2 that are not connected
in T ′ or that are connected in T ′ by an edge that is not a zero-edge. In both cases
there is an edge {Ū , Ū ′} ∈ E inducing a separator S := Ū ∩ Ū ′ in G with 0 /∈ S :=
conv{vi : i ∈ S} on the path connecting U1 and U2 in T . Deleting edge {Ū , Ū ′} from
T splits T into two nonempty subtrees (Nj , Ej) =: Tj , with Uj ∈ Nj for j ∈ {1, 2}, so
that the node sets Cj :=

⋃
U∈Nj

U \S have no common incident edge in G. For S, C1,

and C2 the separator-shadow Theorem 3 implies, w.l.o.g., that conv{vi, 0}∩S �= ∅ for
all i ∈ C1. Because U1 ⊆ C1 ∪ S we obtain 0 /∈ conv{vi : i ∈ U1}, which contradicts
the assumption that U1 is a zero-node.

Hence, for a given tree decomposition any optimal embedding induces a zero-tree
(with respect to the embedding vi, i ∈ N) consisting of the zero-nodes and zero-edges.

The algorithmic idea is to pick a zero-node U , transform the embedding for S = U
as suggested in Lemmas 20, 21, and 25, and check whether the resulting dimension
is at most |U |. If it is not, it will turn out that, in the zero-tree of the new optimal
embedding, U has a unique incident zero-edge {U,U ′} leading to that part of the
graph whose embedding cannot yet be flattened out sufficiently with respect to U .
We then go on transforming the new optimal embedding with respect to the separator
U ∩ U ′ which may again lead to a sufficiently flat optimal embedding or, in failing
to find one, lead on to U ′ via the part that is not flat enough. Now at some point
this algorithm might turn back in U ′ and try to cross this last edge a second time.
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Happily, this will immediately allow one to produce an optimal embedding that is
sufficiently flat. As going on in one direction will be possible only for a finite number
of times, this will complete the proof.

We start with the convenient case, where all parts can be flattened out sufficiently.
Lemma 28. Consider a tree decomposition T = (N , E) of a connected graph

G = (N,E), an optimal embedding vi ∈ R
n (i ∈ N) of (4), and a zero-node S ∈ N

whose deletion splits T into m subtrees (Nj , Ej) =: Tj (j ∈ M := {1, . . . ,m}). Put

L := span {vs : s ∈ S},
Cj :=

⋃
U∈Nj

U \ S,

δ̃j :=
∑
i∈Cj

‖pL⊥(vi)‖ (j ∈ M).

If δ̃ĵ ≤
∑

j∈M\{ĵ} δ̃j for all ĵ ∈ M , then there is an optimal embedding v′i (i ∈ N) of

dimension at most |U ′| for some U ′ ∈ {S,U : {S,U} ∈ E}.
Proof. We distinguish two cases. In the first case assume that S has a neighbor

U ′ in T , with |U ′| > |S|, and apply Lemma 20 with respect to S and the Cj (j ∈ M).
The resulting optimal embedding v′i has dimension at most dimL + 2, and since
dimL ≤ |S| − 1 (0 ∈ conv{vs : s ∈ S}) the dimension is at most |U ′|.

In the second case all neighbors U of S in T satisfy |U | ≤ |S|. By definition,
no two nodes in N are identical, so each set Cj is separated from S by a subset
Sj := S ∩ Uj induced by an edge {S,Uj} ∈ E , with |Sj | < |S|. By applying Lemma
20 with respect to S and the Cj (j ∈ M) we obtain the corresponding embedding v′i
(i ∈ N) with a unique index j̄ ∈ M satisfying bj̄ = d1. Because Sj̄ ⊂ S separates S
and Cj̄, at most |S| − 1 nodes of S are incident to nodes in Cj̄. Therefore we may
apply Lemma 25 with respect to S, the Cj (j ∈ M), and the embedding v′i (i ∈ N)
and obtain an optimal embedding v′′i (i ∈ N) of dimension at most |S|.

If, however, one of the sets is too big to be flattened out, we can find a unique
edge that leads us towards a more balanced center in the big set.

Lemma 29. Given the setting of Lemma 28, assume that δ̃ĵ >
∑

j∈M\{ĵ} δ̃j for

a ĵ ∈ M . Let v′i (i ∈ N) be an optimal embedding arising from Lemma 21 for this S

and the Cj (j ∈ M). The (unique) edge {S, Û} ∈ E, with Û ∈ Nĵ, is a zero-edge with
respect to this new optimal embedding.

Proof. Since δ̃ĵ > 0, neither the subtree Tĵ nor Cĵ are empty, so there is an edge

{S, Û} ∈ E , with Û ∈ Nĵ. Suppose, for contradiction, that it is not a zero-edge with

respect to the embedding v′i (i ∈ N). Then S′ := S ∩ Û separates G into Cĵ and
N \ (S′ ∪Cĵ). By assumption, 0 /∈ conv{vs : s ∈ S′} and 0 ∈ conv{vs : s ∈ S}, so the
separator-shadow Theorem 3 applied with respect to the separator S′ implies that
vi ∈ cone{vs : s ∈ S′} ⊂ L for i ∈ Cĵ. But then δ̃ĵ = 0.

Note that Û is a zero-node of the embedding v′i, and we could continue with trans-

forming v′i with respect to Û ending up in Lemma 28 or Lemma 29 again. However,
in order to ensure that no edge is crossed twice, we need to look at the zero-edge itself
first.

Lemma 30. Consider the setting of Lemma 29 with {S, Û} ∈ E being the zero-

edge with respect to embedding v′i (i ∈ N) satisfying Û ∈ Nĵ. Deleting this edge in

T splits T into two subtrees (N ′
j , E ′

j) =: T ′
j, with j ∈ {S, Û}, so that S ∈ N ′

S and
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Û ∈ N ′
Û
. Put

S′ := S ∩ Û ,

L′ := span {vs : s ∈ S′},
C ′

j :=
⋃

U∈N ′
j

U \ S′,

δ̃′j :=
∑
i∈Cj

‖pL′⊥(v′i)‖ (j ∈ {S, Û}).

If δ̃′S ≥ δ̃′
Û
, then there is an optimal embedding v′′i (i ∈ N) of dimension at most |S|.

Proof. If δ̃′S = δ̃′
Û

, then Lemma 20 applied to embedding v′i with respect to S′

and C ′
j for j ∈ {S, Û} yields an optimal embedding

v′′i :=

⎧⎨
⎩

v′i for i ∈ S′,
pL′(vi) + ‖pL′⊥(vi)‖b for i ∈ C ′

S ,
pL′(vi) − ‖pL′⊥(vi)‖b for i ∈ C ′

Û

for some normalized b ∈ L′⊥, and the dimension is bounded by dimL′+1 ≤ |S′| ≤ |S|.
For δ̃S > δ̃Û remember that the v′i were constructed via Lemma 21. So with the

definitions of b̄ and the v′i given there, we have

v′i = pL(vi) + ‖pL⊥(vi)‖b̄ for i ∈ C ′
S =

⋃
j∈M\{ĵ}

Cj ∪ S \ S′.

If b̄ = 0, then all of these v′i lie in L, and, by applying Lemma 21 to v′i with respect to

S′ and C ′
j for j ∈ {S, Û}, the space of the new optimal embedding v′′i , i ∈ N , will be L

enlarged by some direction h at most, so its dimension is bounded by dimL+1 ≤ |S|.
If b̄ �= 0, then pL⊥(vi) �= 0 for some i ∈ C ′

S , and, by using b̄ ∈ L⊥ , ‖b̄‖ = 1, we
get

b̄T v′i = b̄T pL(vi) + ‖pL⊥(vi)‖b̄T b̄ = ‖pL⊥(vi)‖ ≥ 0 for i ∈ C ′
S .

Since L′ ⊆ L we obtain b̄ ∈ span {v′i : i ∈ C ′
S} ∩ L′⊥ \ {0} and b̄T v′i ≥ 0 for i ∈ C ′

S .
So we are in the special case of Lemma 21. Thus, applying Lemma 21 to v′i with

respect to S′ and C ′
j for j ∈ {S, Û} yields a new optimal embedding v′′i , i ∈ N , with

v′′i ∈ span {v′i : i ∈ C ′
S} ⊆ L + span {b̄} for i ∈ C ′

S , and therefore v′′i ∈ L + span {b̄}
for all i ∈ N . The dimension of this new embedding is again bounded by |S|.

In proving the finiteness of the algorithm below we will see that the values δ̃′j of
Lemma 30 do not change if the algorithm turns back in Û to cross the same edge
again, so that the condition δ̃′S ≥ δ̃′

Û
will be met the second time at the latest.

Algorithm 31.

Input: A connected graph G = (N,E), a tree decomposition T = (N , E) of G, an
optimal embedding vi, i ∈ N , of (4).
Step 0: Set S to a zero-vertex of T with respect to the embedding.
Step 1: By using the notation of Lemma 28 with respect to S, determine δ̃j for
j ∈ M .
Step 2: If δ̃ĵ ≤

∑
j∈M\{ĵ} δ̃j for all ĵ ∈ M , apply the proof of Lemma 28 to find an

optimal embedding of dimension at most the width of T plus one, and stop.
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Step 3: Transform, as described in Lemma 29, the optimal embedding to v′i (i ∈ N),

and compute the corresponding zero-edge {S, Û}. Determine δ̃′S and δ̃′
Û

in the notation
of Lemma 30.
Step 4: If δ̃S ≥ δ̃Û , apply the proof of Lemma 30 to find an optimal embedding of
dimension at most the width of T plus one, and stop.
Step 5: Set S ← Û , vi ← v′i for i ∈ N , and goto Step 1.

Theorem 32. Let G = (N,E) be a connected graph and T = (N , E) a tree
decomposition of G. Algorithm 31 is correct and stops with an optimal embedding for
(4) of dimension at most width of T plus one in at most |N | iterations.

Proof. Step 0 can be carried through by Lemma 26.
If in Step 1 the set M is empty (N = {S}), then the condition in Step 2 is vac-

uously satisfied and the transformation of Lemma 28 is the identity. But in this case
S = |N | and any optimal embedding has dimension at most |N |−1 by Observation 9,
so the algorithm stops correctly.

We will prove that the algorithm steps over any edge at most once without stop-
ping, and this will yield the iteration bound. Suppose that {S, Û} is the first edge
of T to be considered a second time and that the algorithm just stepped from S to
Û and now considers stepping back to S. Then Û transforms, by means of Lemma
29, the embedding v′i that was generated by S via Lemma 29. By construction (see

Lemma 21), both transformations have L′ := span {v′i : i ∈ S ∩ Û} as an invariant
subspace. Therefore the numbers δ̃′S and δ̃′

Û
of Lemma 30 computed in Step 3 have

identical values in both cases (but with names interchanged), so the condition of
Step 4 is certainly satisfied the second time, and the algorithm stops.

The correctness of the statement regarding the dimension of the optimal embed-
ding at termination is a consequence of the respective Lemmas 28 and 30.
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Abstract. This paper studies the relationship between the optimal value of a homogeneous
quadratic optimization problem and its semidefinite programming (SDP) relaxation. We consider
two quadratic optimization models: (1) min{x∗Cx | x∗Akx ≥ 1, k = 0, 1, . . . ,m, x ∈ F

n} and (2)
max{x∗Cx | x∗Akx ≤ 1, k = 0, 1, . . . ,m, x ∈ F

n}, where F is either the real field R or the complex
field C, and Ak, C are symmetric matrices. For the minimization model (1), we prove that if the
matrix C and all but one of the Ak’s are positive semidefinite, then the ratio between the optimal
value of (1) and its SDP relaxation is upper bounded by O(m2) when F = R, and by O(m) when
F = C. Moreover, when two or more of the Ak’s are indefinite, this ratio can be arbitrarily large.
For the maximization model (2), we show that if C and at most one of the Ak’s are indefinite while
other Ak’s are positive semidefinite, then the ratio between the optimal value of (2) and its SDP
relaxation is bounded from below by O(1/ logm) for both the real and the complex case. This result
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1. Introduction. In this paper we study the relationship between the optimal
values of a homogeneous quadratic optimization problem and its semidefinite pro-
gramming (SDP) relaxation. Two specific optimization models are considered.

The minimization model. Let Ak (k = 0, 1, . . . ,m) and C be n × n real
symmetric or complex Hermitian matrices. Consider

(1.1)

min x∗Cx

s.t. x∗Akx ≥ 1, k = 0, 1, . . . ,m

x ∈ F
n,

where F can be either the field of real numbers R or the field of complex numbers C,
and the superscript ∗ represents Hermitian transpose (or regular transpose in case of
real matrices). The quadratic optimization problems of form (1.1) are NP-hard [14],
even when all the data matrices, C and Ak, k = 1, . . . ,m, are positive semidefinite.
Homogeneous quadratic optimization problems (1.1) arise naturally in telecommuni-
cations and robust control applications; see [22, 17, 14] and the references therein.
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In these applications, the optimization variables are naturally complex since they
represent the in-phase and quadrature components of a complex signal. A popular
approach to approximately solving the NP-hard quadratic problem (1.1) is to use the
following SDP relaxation:

min Tr (CX)

s.t. Tr (AkX) ≥ 1, k = 0, 1, . . . ,m

X ∈ SF
n
+,

where Tr (·) represents the trace of a matrix, and SF
n
+ denotes the convex cone of posi-

tive semidefinite matrices in the space of all (Hermitian) symmetric matrices SF
n. The

above SDP is convex and can be solved efficiently using interior point methods. After
the SDP relaxation problems are solved, we can apply a probabilistic method to the
corresponding optimal SDP solution to extract rank-one feasible solutions for (1.1).
Theoretically, even though the probabilistic solutions obtained in this manner are not
globally optimal for (1.1), they can be shown to be high quality approximate solu-
tions; see, e.g., [3, 14]. Recently, Luo et al. [14] considered problem (1.1) and gave
bounds for the SDP approximation ratio for (1.1). When all of the matrices Ak and
C are positive semidefinite, Luo et al. [14] showed that the ratio between the original
optimal value and the SDP relaxation optimal value is bounded above by O(m2) when
F = R and by O(m) when F = C, where the factors in the big O notations are absolute
constants and independent of data matrices Ak and C. All of these bounds are shown
to be tight in the worst case. However, the average performance can be much better
than the stated worst-case bounds for randomly generated instances. The simulation
studies in [14] showed that the average ratios are typically close to 1.

Our contributions. In section 3, we analyze the approximation ratio of the SDP
relaxation for the homogeneous quadratic optimization problem (1.1) when some of
the constraint matrices Ak are indefinite. We show that, for problem (1.1), the same
upper bounds for the SDP approximation ratios as given in [14] (O(m2) when F = R

and O(m) when F = C) still hold true even when one of the constraint matrices is
indefinite. If there are more than one indefinite quadratic constraints, then we show
by an example that the SDP approximation ratio can be infinity. Therefore, our
bounds are essentially the best possible.

The maximization model. We also consider the quadratic optimization prob-
lem of the form

(1.2)

max x∗Cx

s.t. x∗Akx ≤ 1, k = 0, 1, . . . ,m

x ∈ F
n.

This quadratic optimization problem is still NP-hard [3, 18], even when all of the ma-
trices C and Ak are positive semidefinite. Problem (1.2) arises naturally in telecom-
munications and robust control applications; see [22, 17, 3] and the references therein.
The SDP relaxation for (1.2) can be written as follows:

max Tr (CX)

s.t. Tr (AkX) ≤ 1, k = 0, 1, . . . ,m

X ∈ SF
n
+.
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As in the minimization case, after the SDP relaxation problem is solved, some prob-
abilistic method can be applied to extract a high quality rank-one feasible solution
for (1.2). Various estimates exist for the quality of approximate solutions; see, e.g.,
[3, 18]. Specifically, Nemirovski, Roos, and Terlaky [18] proved that if all Ak’s are
positive semidefinite, then the ratio between the optimal value of the SDP relaxation
problem and that of the original quadratic problem is bounded above by O(logm).
More generally, Ben-Tal, Nemirovski, and Roos [3] established a so-called approxi-
mate S-Lemma which shows that the approximation ratio for the SDP relaxation is
at most O(log(n2m)) when all but one of the matrices Ak, k = 0, 1, . . . ,m are positive
semidefinite.

Our contributions. In section 4, we study the SDP approximation ratio for the
homogeneous quadratic maximization problem (1.2) when some of the constraint ma-
trices {Ak} are indefinite. Our results are as follows. We strengthen the approximate
S-Lemma of Ben-Tal, Nemirovski, and Roos [3] by improving their upper bound on
the SDP approximation ratio from O(log(n2m)) to O(logm) when one quadratic in-
equality is indefinite. In the process of establishing this new bound, we give a universal
lower bound of 0.03 on the probability that a homogeneous quadratic form of n binary
i.i.d. Bernoulli random variables lies below its mean. The previous best known lower
bound for this probability was 1/(8n2) due to Ben-Tal, Nemirovski, and Roos [3]. In
this reference, the authors also conjectured that the actual lower bound should be
0.25. We also present a new and unifying upper bound on the ratio of the optimal
value of SDP relaxation over that of the original quadratic maximization problem (1.2)
without any positive definiteness assumptions. This new general bound involves the
problem data and the SDP optimal solution, which is computable in polynomial time.
We also present an example showing that this bound is essentially the best possible.

Related literature. In addition to the work of Ben-Tal, Nemirovski, and Roos
[3], Luo et al. [14], and Nemirovski, Roos, and Terlaky [18], there is a sizeable literature
on the quality bounds of SDP relaxation for solving nonconvex quadratic optimization
problems. For instance, for problem (1.2), when m = n, Ai = eie

T
i (there is no A0),

and C is positive semidefinite with nonpositive nondiagonal entries and row sums
0 (which corresponds to the maximum cut problem), Goemans and Williamson [8]
showed that the ratio of the optimal value of SDP relaxation over that of the original
quadratic maximization problem (1.2) is bounded below by 0.87856 . . . . Furthermore,
if C is only positive semidefinite, Nesterov [19] showed the same ratio is bounded
below by 0.6366 . . . . For closely related results, see Ye [24] and Bertsimas and Ye
[4]. Recently, So, Ye, and Zhang [23] developed SDP relaxation methods for finding
approximate low rank solutions for linear matrix inequalities. Their results unify
and extend the approximation bounds of Nemirovski, Roos, and Terlaky [18] and
Luo et al. [14] for the case when all of the data matrices are positive semidefinite.
Beck and Teboulle [2] discussed the nonconvex problem of minimizing the ratio of
two nonconvex quadratic functions over a possibly degenerate ellipsoid, and showed
that the SDP relaxation can return exact solutions under a certain condition. There
is also some work on solving quadratic optimization problems using other methods,
e.g., Hiriart-Urruty and Jean-Baptiste [10], Jeyakumar, Rubinov, and Wu [12], and
Madsen, Nielsen, and Pinar [15, 16].

Outline of this paper. Section 2 is devoted to analyzing the probability of
a general random variable to be above (or below) its mean value. Section 3 concen-
trates on the SDP approximation bound for the quadratic minimization problem (1.1),
while section 4 studies the SDP approximation bound for quadratic maximization
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problem (1.2). Some concluding remarks are given in the last section (section 5).

2. Estimating the asymmetry of a random variable. To facilitate the tech-
nical analysis in subsequent sections, we establish in this section a bound on the prob-
ability for a general random variable to be above (or symmetrically, below) its mean
value, using only the high order moment information of the random variable. This
problem on its own is of importance in statistics and probability theory. The following
lemma is a generalization of Theorem 2.1 in [13].

Lemma 2.1. Suppose that a random variable Φ satisfies EΦ = 0, Var(Φ) = 1,

and E|Φ|t ≤ τ for some t > 2 and τ > 0. Then Prob {Φ ≥ 0} > 0.25τ−
2

t−2 and

Prob {Φ ≤ 0} > 0.25τ−
2

t−2 .
Proof. Let p1 = Prob {Φ ≥ 0} and p2 = Prob {Φ ≤ 0}. Also, let Y1 = max(Φ, 0)

and Y2 = −min(Φ, 0). Since EΦ = 0, we know that EY1 − EY2 = 0. Let s := EY1 =
EY2. By Hölder’s inequality it follows that (EY t

1 )1/(t−1)(EY1)
(t−2)/(t−1) ≥ EY 2

1 and
(EY t

2 )1/(t−1)(EY2)
(t−2)/(t−1) ≥ EY 2

2 . Since EY t
1 + EY t

2 = E|Φ|t, we have

τ ≥ E|Φ|t = EY t
1 + EY t

2 ≥ (EY 2
1 )t−1 + (EY 2

2 )t−1

st−2
.

Let u = EY 2
1 ∈ [0, 1]. Since EY 2

1 + EY 2
2 = EΦ2 = Var(Φ) = 1, it follows that

st−2 ≥ ut−1+(1−u)t−1

τ . On the other hand, by the Cauchy–Schwartz inequality, we
have

s2 = (EY1)
2 = (E(1{Y1≥0}Y1))

2 ≤ E(12
{Y1≥0})EY

2
1 ≤ p1u,

which implies that

p1 ≥ u−1

[
ut−1 + (1 − u)t−1

τ

] 2
t−2

=

(
ut−1 + (1 − u)t−1

) 2
t−2

u
τ−

2
t−2

≥
(
ut−1 + (1 − u)t−1

) 2
t−2 τ−

2
t−2

≥
(

2

(
1

2

)t−1
) 2

t−2

τ−
2

t−2

= 0.25τ−
2

t−2 ,

where the third inequality follows from the convexity of the function ut−1 when t > 2.

Obviously, the equality cannot hold throughout. Therefore, p1 > 0.25τ−
2

t−2 . By

symmetry, we also have p2 > 0.25τ−
2

t−2 .
In case t = 4, Lemma 2.1 asserts that Prob {Φ ≥ 0} ≥ 1

4τ and Prob {Φ ≤ 0} ≥ 1
4τ .

However, in this particular case, this specific bound can in fact be further sharpened.
Lemma 2.2. Suppose that a random variable Φ satisfies EΦ = 0, Var(Φ) = 1, and

EΦ4 ≤ τ . Then Prob {Φ ≥ 0} ≥ 2
√

3−3
τ > 9

20τ and Prob {Φ ≤ 0} ≥ 2
√

3−3
τ > 9

20τ .
Proof. It follows from the proof of Lemma 2.1 that

p1 ≥ u3 + (1 − u)3

τu
=

(
1

u
+ 3u− 3

)
1

τ
≥ 2

√
3 − 3

τ
>

9

20τ
.

By symmetry, p2 > 9
20τ holds as well.
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3. SDP relaxation bounds for the quadratic minimization model. Con-
sider the homogeneous quadratic optimization

(3.1)

vmin
qp := min x∗Cx

s.t. x∗Akx ≥ 1, k = 0, 1, . . . ,m

x ∈ F
n,

where C,A0, A1, . . . , Am ∈ SF
n are symmetric matrices. This problem is NP-hard

[14]. A natural SDP relaxation to the above quadratic optimization problem is

(3.2)

vmin
sdp := min Tr (CZ)

s.t. Tr (AkZ) ≥ 1, k = 0, 1, . . . ,m

Z ∈ SF
n
+.

Obviously, the SDP relaxation provides a lower bound, i.e., vmin
sdp ≤ vmin

qp . In the case
C = In and A0, A1, . . . , Am are all positive semidefinite, Luo et al. [14] proved that

vmin
qp /vmin

sdp ≤ 27(m+1)2

π for F = R, and vmin
qp /vmin

sdp ≤ 8(m+1) for F = C. Moreover, when
two or more of A0, A1, . . . , Am are indefinite, there is in general no data-independent
upper bound on vmin

qp /vmin
sdp , as shown by the following example [14]:

min x2
1 + x2

2

s.t. x2
2 ≥ 1

x2
1 + Mx1x2 ≥ 1

x2
1 −Mx1x2 ≥ 1,

where M > 0 is a constant. In the above example, vmin
sdp = 1 and the last two

constraints imply x2
1 ≥ M |x1||x2|+1 which, together with the first constraint x2

2 ≥ 1,
yield x2

1 ≥ M |x1| + 1 or, equivalently, |x1| ≥ (M +
√
M2 + 4)/2. Therefore, vmin

qp ≥
1 + 1

4 (M +
√
M2 + 4)2. That is, vmin

qp /vmin
sdp ≥ 1 + 1

4 (M +
√
M2 + 4)2, which can be

arbitrarily large, depending on the problem data M > 0.
In this section, we consider the homogeneous quadratic optimization (3.1) under

the assumption that C,A1, A2, . . . , Am ∈ SF
n
+ are positive semidefinite while A0 ∈

SF
n can be indefinite. Throughout this section, we assume that (3.1) is feasible, and

that there is μk ≥ 0, k = 0, 1, . . . ,m, such that
∑m

k=0 μkAk ≺ C. This assumption
guarantees that the SDP relaxation is primal feasible while its dual problem satisfies
the Slater condition. Hence the strong duality holds and the primal problem (3.2)
has an optimal solution that attains its infimum.

Our analysis shall treat the cases F = R and F = C separately, leading to strikingly
different bounds.

3.1. The real case. Let us start with a useful lemma regarding a lower bound
on worst asymmetric mass distributions for a χ2-distribution around its mean vector.
In fact this result is interesting on its own right.

Lemma 3.1. Let τi be any real numbers, i = 1, . . . , n, and let η ∼ N(0, In) be an
n-dimensional normal distribution with zero mean and covariance matrix In. Then
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we have

Prob

{
n∑

i=1

τi(η
2
i − 1) ≥ 0

}
>

3

100
, Prob

{
n∑

i=1

τi(η
2
i − 1) ≤ 0

}
>

3

100
.

Proof. Note that E(η2
i −1)2 = E(η4

i −2η2
i +1) = 3−2+1 = 2. Let Ψ =

∑n
i=1 τi(η

2
i −

1), and Φ = Ψ√
2
∑n

i=1 τ2
i

. Then EΦ = 0 and Var(Φ) = 1. Since E(η2
i − 1)2 = 2, and

E(η2
i − 1)4 = 60, direct calculation shows that

EΨ4 = 48

n∑
i=1

τ4
i + 12

(
n∑

i=1

τ2
i

)2

≤ 60

(
n∑

i=1

τ2
i

)2

.

Therefore, we have

EΦ4 =
EΨ4

4(
∑n

i=1 τ
2
i )2

≤ 15.

It follows from Lemma 2.2 that Prob {Φ ≥ 0} > 3
100 . Similarly, we have Prob {Φ ≤

0} > 3
100 by symmetry.

Using Hölder’s inequality, we also have E|Ψ|3 ≤ 60
3
4 (
∑n

i=1 τ
2
i )

3
2 and E|Φ|3 ≤ 15

3
4 ,

which can be used to lower Prob {Φ ≥ 0} (cf. Theorem 2.1 in [13]). However, in this
particular case, the bound so obtained is slightly worse than the one that we derived
in Lemma 3.1.

Lemma 3.2. Let A,Z be two real symmetric matrices with Z � 0 and Tr (AZ) ≥
0. Let ξ ∈ N(0, Z) be a normal random vector with zero mean and covariance matrix
Z. Then for any 0 ≤ γ ≤ 1 we have

Prob {ξTAξ < γE(ξTAξ)} < 1 − 3

100
.

Proof. Let r = rank(AZ), and let Q ∈ R
n×n be an orthogonal matrix such that

QT (Z
1
2AZ

1
2 )Q = diag(λ1, . . . , λr, 0, . . . , 0).

Since Tr (AZ) ≥ 0 we have
∑r

i=1 λi ≥ 0. Let ξ̄ ∈ N(0, In) and ξ := Z
1
2Qξ̄. Then

ξ follows a Gaussian distribution N(0, Z). Moreover, we have ξTAξ =
∑r

i=1 λiξ̄
2
i ,

where ξ̄i, i = 1, . . . , r, are independent and follow the normal distribution N(0, 1).
Therefore, we have E(ξTAξ) =

∑r
i=1 λi and

Prob {ξTAξ < γE(ξTAξ)} = Prob

{
r∑

i=1

λiξ̄
2
i < γ

r∑
i=1

λi

}

= Prob

{
r∑

i=1

λi(ξ̄
2
i − 1) < (γ − 1)

r∑
i=1

λi

}

≤ Prob

{
r∑

i=1

λi(ξ̄
2
i − 1) < 0

}
< 1 − 3

100
,

where the first inequality follows from γ ∈ [0, 1] and
∑r

i=1 λi ≥ 0, and the last step is
due to Lemma 3.1.
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Now we are ready to establish the following quality bound for the SDP relaxation.
The argument follows closely to those of [14].

Theorem 3.3. Consider the real quadratic program (3.1) and its SDP relaxation
(3.2), where F = R. Then, there holds

vmin
qp

vmin
sdp

≤ 106m2

π
.

Proof. Let Ẑ be an optimal solution of the SDP relaxation (3.2) with rank r

satisfying (r+1)r
2 ≤ m. The existence of such a matrix solution is well known; cf. Pataki

[20]. Moreover, this low rank matrix can be constructed in polynomial time; cf. [11].
Clearly, r <

√
2m. Since Ẑ is feasible, Tr (A0Ẑ) ≥ 1. Define random vector ξ =

N (0, Ẑ). For any 0 < γ ≤ 1 and μ > 0 we have

Prob

{
min

0≤k≤m
ξTAkξ ≥ γ, ξTCξ ≤ μTr (CẐ)

}

= Prob
{
ξTAkξ ≥ γ ∀k = 0, 1, . . . ,m, and ξTCξ ≤ μTr (CẐ)

}

≥ Prob
{
ξTAkξ ≥ γ Tr (AkẐ)∀k = 0, 1, . . . ,m, and ξTCξ ≤ μTr (CẐ)

}
= Prob

{
ξTAkξ ≥ γ E(ξTAkξ)∀k = 0, 1, . . . ,m, and ξTCξ ≤ μE(ξTCξ)

}

≥ 1 −
m∑

k=0

Prob
{
ξTAkξ < γ E(ξTAkξ)

}
− Prob

{
ξTCξ > μE(ξTCξ)

}
.

Since Ak � 0 for k = 1, . . . ,m, it follows from Lemma 3.1 of [14] that

Prob
{
ξTAkξ < γE(ξTAkξ)

}
≤ max

{
√
γ,

2(r − 1)γ

π − 2

}
.

Although A0 is indefinite, we can use Lemma 3.2 to obtain

Prob
{
ξTA0ξ < γE(ξTA0ξ)

}
< 1 − 3

100
.

Also, since C � 0, we can apply the Markov inequality to obtain

Prob
{
ξTCξ > μE(ξTCξ)

}
≤ 1

μ
.

Combining the above estimates yields

Prob

{
min

0≤k≤m
ξTAkξ ≥ γ, ξTCξ ≤ μTr (CẐ)

}
>

3

100
−mmax

{
√
γ,

2(r − 1)γ

π − 2

}
− 1

μ
.

Let μ̂ = 100 and γ̂ = π
104m2 . Since r <

√
2m, we have

√
γ̂ ≥ 2(r−1)γ̂

π−2 . Then we
have

3

100
−mmax

{√
γ̂,

2(r − 1)γ̂

π − 2

}
− 1

μ̂
=

3

100
−m

√
π

100m
− 1

100
>

1

500
.
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Therefore, there exists a vector ξ ∈ R
n such that

ξTAkξ ≥ γ̂, k = 0, 1, . . . ,m, and ξTCξ ≤ μ̂Tr (CẐ).

Now let x = 1√
γ̂
ξ. Then, xTAkx ≥ 1, k = 0, 1, . . . ,m, and

vmin
qp ≤ xTCx =

1

γ̂
ξTCξ ≤ μ̂

γ̂
Tr (CẐ) =

106m2

π
vmin
sdp ,

which establishes the desired bound.

3.2. The complex case. Recall that the density function of a complex-valued
normal distribution1 η ∼ Nc(0, 1) is

1

π
e−|u|2 ∀u ∈ C.

In polar coordinates, the density function becomes

ρ

π
e−ρ2 ∀ ρ ∈ [0,+∞) θ ∈ [0, 2π).

The argument θ is uniformly distributed in [0, 2π), and the modulus ρ has the distri-
bution

f(ρ) =

{
2ρe−ρ2

if ρ ≥ 0,

0 if ρ < 0.

Thus squared modulus |η|2 has the exponential distribution

Prob {|η|2 ≤ α} ≤ 1 − e−α.

Lemma 3.4. For any real numbers τi and i.i.d. exponential random variables ηi
with unit variance, i = 1, . . . , n, there holds

Prob

{
n∑

i=1

τi(ηi − 1) ≥ 0

}
>

1

20
, Prob

{
n∑

i=1

τi(ηi − 1) ≤ 0

}
>

1

20
.

Proof. Note that E(ηi − 1)2 = 1. Let Ψ =
∑n

i=1 τi(ηi − 1) and Φ = Ψ√∑n
i=1 τ2

i

.

Clearly, EΦ = 0 and Var(Φ) = 1. Since E(ηi − 1)4 = 9, direct calculation shows that

EΨ4 = 6

n∑
i=1

τ4
i + 3

(
n∑

i=1

τ2
i

)2

≤ 9

(
n∑

i=1

τ2
i

)2

.

This further implies

EΦ4 =
EΨ4

(
∑n

i=1 τ
2
i )2

≤ 9.

Using Lemma 2.2 we have Prob {Φ ≥ 0} > 1
20 . Similarly, Prob {Φ ≤ 0} > 1

20 .

1For a discussion on the complex normal distribution and the related references, see Zhang and
Huang [26].
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Interestingly, it is possible to find a closed formula (see, e.g., [7] and [1]) for the
above probability. In particular, if all the τi’s are distinctive, then

Prob

{
n∑

i=1

τi(ηi − 1) ≥ 0

}
=

n∑
i=1

e
− 1

τi∏
j �=i

(
1 − τj

τi

) .
Therefore, we have

1

20
<

n∑
i=1

e
− 1

τi∏
j �=i

(
1 − τj

τi

) <
19

20

for any distinctive real values τi, i = 1, . . . , n.
Lemma 3.5. Let A,Z be two Hermitian matrices satisfying Z � 0 and Tr (AZ) ≥

0. Let ξ ∼ Nc(0, Z) be a complex normal random vector. Then, for any 0 ≤ γ ≤ 1,
we have

Prob {ξ∗Aξ < γE(ξ∗Aξ)} < 1 − 1

20
.

Proof. Let Q ∈ C
n×n be a unitary matrix such that

Q∗(Z
1
2AZ

1
2 )Q = diag(λ1, . . . , λr, 0, . . . , 0),

where r = rank(AZ). Since Tr (AZ) ≥ 0, it follows that
∑r

i=1 λi ≥ 0. Let ξ̂ ∈ C
n

be a random Gaussian vector drawn from the complex normal distribution Nc(0, In).

Then the random vector ξ = Z
1
2Qξ̂ follows the Gaussian distribution Nc(0, Z). As a

result, there holds

Prob {ξ∗Aξ < γE(ξ∗Aξ)) = Prob

{
r∑

i=1

λi|ξ̂i|2 < γ

n∑
i=1

λi

}

= Prob

{
n∑

i=1

λi(|ξ̂i|2 − 1) < (γ − 1)

n∑
i=1

λi

}

≤ Prob

{
n∑

i=1

λi(|ξ̂i|2 − 1) < 0

}
,

where the last step follows from γ ∈ [0, 1] and
∑r

i=1 λi ≥ 0. Since |ξi|2 is exponentially
distributed, by Lemma 3.4 we have

Prob

{
n∑

i=1

λi(|ξ̂i|2 − 1) ≥ 0

}
>

1

20
,

which proves the lemma.
Theorem 3.6. Consider (3.1) and (3.2), where F = C. Then

vmin
qp

vmin
sdp

≤ 2400m.
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Proof. It is known that in this case, if vmin
sdp is finite and m ≤ 3, then vmin

qp /vmin
sdp = 1

(cf., e.g., [11] and [25]). Below we shall consider only the case where m ≥ 4. Let Ẑ be
a low rank optimal solution of the SDP relaxation (3.2) such that r = rank(Ẑ) ≤

√
m

(see [11, section 5]). The feasibility of Ẑ implies that Tr (A0Ẑ) ≥ 1. Similar to
Theorem 3.3, we can use the union bound to obtain the following inequality:

Prob

{
min

0≤k≤m
ξ∗Akξ ≥ γ, ξ∗Cξ ≤ μTr (CẐ)

}

≥ 1 −
m∑

k=0

Prob {ξ∗Akξ < γ E(ξ∗Akξ)} − Prob {ξ∗Cξ > μE(ξ∗Cξ)} .

Since Ak � 0, k = 1, . . . ,m, it follows from Lemma 3.4 in [14] that

Prob {ξ∗Akξ < γE(ξ∗Akξ)} ≤ max

{
4

3
γ, 16(r − 1)2γ2

}
.

Although A0 is indefinite, Lemma 3.5 asserts that

Prob {ξ∗A0ξ < γE(ξ∗A0ξ)} < 1 − 1

20
.

Therefore, combining these estimates and using the Markov inequality, we have

Prob

{
min

0≤k≤m
ξ∗Akξ ≥ γ, ξ∗Cξ ≤ μ, Tr (CẐ)

}

>
1

20
−mmax

{
4

3
γ, 16(r − 1)2γ2

}
− 1

μ
.

Now choose μ̂ = 60 and γ̂ = 1
40m . In this case, 4

3 γ̂ ≥ 1̂6(r − 1)2γ̂2. We also have a
strict lower bound of the above probability:

Prob

{
min

0≤k≤m
ξ∗Akξ ≥ γ̂, ξ∗Cξ ≤ μ̂Tr (CẐ)

}
> 0.

This implies that there exists ξ ∈ C
n such that

ξ∗Akξ ≥ γ̂, k = 0, 1, . . . ,m; ξ∗Cξ ≤ μ̂Tr (CẐ).

Now let x := 1√
γ̂
ξ. Then x∗Akx ≥ 1, k = 0, 1, . . . ,m, and so

vmin
qp ≤ x∗Cx ≤ ξ∗Cξ

γ̂
≤ μ̂Tr (CẐ)

γ̂
= 2400m · vmin

sdp .

The theorem is proven.
Notice that there are examples (see [14]) which show that the worst-case ratios

of vmin
qp /vmin

sdp are indeed O(m2) and O(m) in the real and complex case, respectively,
even in the absence of the indefinite constraint x∗A0x ≥ 1. Thus, the bounds of
Theorems 3.3 and 3.6 are essentially tight.

What happens if there is more than one indefinite quadratic constraint? The
following example shows that in this case the SDP relaxation does not admit any
finite quality bound.
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Example 3.7.

min x2
4

s.t. x1x2 + x2
3 + x2

4 ≥ 1

−x1x2 + x2
3 + x2

4 ≥ 1

1
2x

2
1 − x2

3 ≥ 1

1
2x

2
2 − x2

3 ≥ 1

x1, x2, x3, x4 ∈ R.

The first two constraints are equivalent to |x1x2| ≤ x2
3 + x2

4 − 1. At the same time,
the last two constraints imply |x1x2| ≥ 2(x2

3 + 1). Combining these two inequalities
yields

x2
3 + x2

4 − 1 ≥ 2(x2
3 + 1),

which further implies x2
4 ≥ 3. Therefore, we must have vmin

qp ≥ 3 in this case. However,

⎡
⎢⎢⎢⎣

4 0 0 0

0 4 0 0

0 0 1 0

0 0 0 0

⎤
⎥⎥⎥⎦

is feasible for the corresponding SDP relaxation problem and attains an objective
value of 0. Thus, it must be optimal, and thus vmin

sdp = 0. Hence, vmin
qp /vmin

sdp = ∞ in
this case.

4. SDP relaxation bounds for the quadratic maximization model. In
this section, we discuss the approximation bound of SDP relaxation for the nonconvex
homogeneous quadratic maximization problem (1.2). Subsection 4.1 considers the
case that one constraint is indefinite, and subsection 4.2 considers the case that two
or more constraints are indefinite.

4.1. One indefinite constraint. In this subsection, consider the quadratic
maximization problem

(4.1)

vmax
qp := max x∗Cx

s.t. x∗Akx ≤ 1, k = 0, 1, . . . ,m

x ∈ F
n,

where Ak ∈ SF
n
+, k = 1, . . . ,m, are positive semidefinite, while C,A0 ∈ SF

n may be
indefinite. For convenience, from now on we shall focus on the case F = R

n. Unlike
the case of minimization form, this choice does not significantly affect the quality of
SDP approximation ratios, since in the complex case the bounds are of the same order
of magnitude. We assume that there is μk ≥ 0, k = 0, 1, . . . ,m, such that

m∑
k=0

μkAk � 0.
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Under this condition, the SDP relaxation satisfies the dual Slater condition. Thus the
primal-dual optimal solutions exist and the primal-dual optimal objective values are
attainable. Let the SDP relaxation optimal value be

(4.2)

vmax
sdp := max Tr (CX)

s.t. Tr (AkX) ≤ 1, k = 0, 1, . . . ,m

X � 0.

Obviously vmax
qp ≤ vmax

sdp .
Lemma 4.1. Let wij (1 ≤ i < j ≤ n) be any real numbers, and let ξi (1 ≤ i ≤ n)

be random variables such that Prob {ξi = −1} = Prob {ξi = 1} = 0.5. Then there
holds

Prob

⎧⎨
⎩

∑
1≤i<j≤n

wijξiξj ≤ 0

⎫⎬
⎭ >

3

100
.

Proof. Let Ψ =
∑

1≤i<j≤n wijξiξj . Then EΨ = 0, E(Ψ2) =
∑

1≤i<j≤n w
2
ij and

E(Ψ4) =
∑

1≤i<j≤n

w4
ij + 6

∑
1≤i<j<k≤n

(w2
ijw

2
ik + w2

ijw
2
jk + w2

ikw
2
jk) + W,

where

W = 24
∑

1≤i<j<k<�≤n

(wijwikwj�wk� + wijwi�wjkwk� + wikwi�wjkwj�)

+ 6
∑

1≤i<j<k<�≤n

(
w2

ijw
2
k� + w2

ikw
2
j� + w2

i�w
2
jk

)

≤ 30
∑

1≤i<j<k<�≤n

(
w2

ijw
2
k� + w2

ikw
2
j� + w2

i�w
2
jk

)
.

Therefore, we have E(Ψ4) ≤ 15(
∑

1≤i<j≤n w
2
ij)

2. Now let Φ = Ψ√∑
1≤i<j≤n w2

ij

. Then

E(Φ) = 0, Var(Φ) = 1, and E(Φ4) ≤ 15. By Lemma 2.2, we have

Prob {Φ ≤ 0} >
3

100
.

The desired result follows.
Lemma 4.1 represents a significant advancement in settling an open question of

Ben-Tal, Nemirovski, and Roos [3, Conjecture A.5] who conjectured that

Prob

⎧⎨
⎩

∑
1≤i<j≤n

wijξiξj ≤ 0

⎫⎬
⎭ ≥ 1

4
∀ wij .

We managed to show a smaller constant bound of 3/100, instead of 1/4. The above
inequality was needed to establish the so called approximate S-lemma—an extension
of the well-known S-lemma, which is important in the context of robust optimization
and is closely related to our analysis in this section. In their work [18], Nemirovski,
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Roos, and Terlaky derived a weaker lower bound of 1/8n2, which goes to zero as
n → ∞.

We can now use Lemma 4.1 to analyze the performance of SDP relaxation for (4.2).
Let X̂ = UUT be one optimal solution of (4.2), where U ∈ R

n×r and r = rank(X̂).
Suppose Q ∈ R

n×r is the orthogonal matrix such that Ĉ := QTUTCUQ is diago-
nal. Let ξk, k = 1, . . . , r, be i.i.d. random variables taking values −1 or 1 with equal
probabilities, and let

x(ξ) :=
1√

max
0≤k≤m

ξT Âkξ

UQξ,

where Âk = QTUTAkUQ. Note that the above random vector x(ξ) is always well-
defined, since the assumption

∑m
k=0 μkAk � 0 implies

max
0≤k≤m

ξT Âkξ > 0 for any ξ = 0.

Let μ = min{m,maxi rank(AiX̂)}. We have the following estimate of the SDP ap-
proximation ratio.

Theorem 4.2. It holds that

vmax
qp ≤ vmax

sdp ≤ 2 log(67mμ) vmax
qp .

Proof. Notice that Ĉ = QTUTCUQ is diagonal, and hence

x(ξ)TCx(ξ) =
1

max
0≤k≤m

ξT Âkξ
ξTQTUTCUQξ =

1

max
0≤k≤m

ξT Âkξ
Tr (CX).

Therefore, for any α > 1 we have

Prob

{
x(ξ)TCx(ξ) ≥ 1

α
Tr (CX)

}

= Prob

{
max

0≤k≤m
ξT Âkξ ≤ α

}

= 1 − Prob

{
max

0≤k≤m
ξT Âkξ > α

}

≥ 1 − Prob

{
max

1≤k≤m
ξT Âkξ > α

}
− Prob

{
ξT Â0ξ > α

}
.

Since Tr (A0) ≤ 1 and so α− Tr (A0) ≥ 0, it follows from Lemma 4.1 that

Prob
{
ξT Â0ξ > α

}
≤ Prob

⎧⎨
⎩

∑
1≤i<j≤m

(Â0)ijξiξj > 0

⎫⎬
⎭ < 1 − 3

100
.

Since Âk � 0 for k = 1, . . . ,m, and Tr (Âk) ≤ 1, it follows from (12) in [18] that

Prob

{
max

1≤k≤m
ξT Âkξ > α

}
< 2mμe−

1
2α.
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Hence we have

Prob

{
x(ξ)TCx(ξ) ≥ 1

α
Tr (CX)

}
>

3

100
− 2mμe−

1
2α.

Letting α̂ = 2 log(67mμ) ensures the above probability will be positive. Therefore,
there exists a random vector ξ such that Tr (CX) ≤ α̂ x(ξ)TCx(ξ), and the theorem
is proven.

We point out that Theorem 4.2 is an improvement of the so-called approximate S-
lemma of Ben-Tal, Nemirovski, and Roos [3, Lemma A.6]. In particular, they showed
that α ≤ 2 log(16n2 mμ), in contrast to our bound α ≤ 2 log(67mμ).

Notice that in (4.1) there is only one indefinite inequality. Can we allow more than
one indefinite constraint? The following example shows that the answer is “no” if we
wish to have a data-independent worst-case approximation ratio. (Data-dependent
approximation ratio bounds will be discussed in section 4.2, where we do allow multiple
indefinite constraints.)

Example 4.3. Consider

max x2
1 + 1

M x2
2

s.t. Mx1x2 + x2
2 ≤ 1

−Mx1x2 + x2
2 ≤ 1

M(x2
1 − x2

2) ≤ 1,

where M > 0 is an arbitrarily large positive constant. Its SDP relaxation is

max X11 + 1
MX22

s.t. MX12 + X22 ≤ 1, −MX12 + X22 ≤ 1, M(X11 −X22) ≤ 1[
X11 X12

X21 X22

]
� 0.

For this quadratic program, the first two constraints imply that |x1x2| ≤ 1−x2
2

M ≤ 1
M ,

and so x2
1 ≤ 1

M2x2
2
. The third inequality assures that x2

1 ≤ 1
M + x2

2. Therefore,

x2
1 ≤ min{ 1

M2x2
2
, 1
M + x2

2} ≤
√

5+1
2M ≈ 1.618

M . Moreover, x2
2 ≤ 1, and so vmax

qp ≤ 2.618
M .

The SDP relaxation satisfies both primal and dual Slater conditions, so the primal-
dual optimal solutions exist. A feasible solution for the SDP relaxation (primal prob-
lem) is the 2 x 2 identity matrix, with the objective value being 1 + 1

M > 1. On
the other hand, since X22 ≤ M |X12| + X22 ≤ 1, and X11 ≤ X22 + 1

M , an upper
bound for the SDP optimal value is 1 + 2

M . Therefore, for this example the ratio
vmax
sdp

vmax
qp

≥ M
2.618 ≈ 0.382M can be arbitrarily large, depending on the size of M .

If there are at most two homogeneous quadratic constraints, and, moreover, if
the SDP relaxation has a primal-dual complementary optimal solution, then the SDP
optimal value will be equal to the optimal value of the quadratic model; see, e.g., Ye
and Zhang [25, Corollary 2.6]. In other words, if there are no more than two inequality
constraints, then under the primal-dual Slater condition, we will have vmax

sdp /vmax
qp = 1.

In this sense, Example 4.3 is the smallest possible in size. By removing the requirement
that the SDP relaxation has a finite optimal value, then it is possible to construct an
example which involves only two inequality constraints.
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Example 4.4. Consider

max x1x2 + x2
1

s.t. x1x2 ≤ 1

x2
1 − x2

2 ≤ 1,

with the SDP relaxation

max X12 + X11

s.t. X12 ≤ 1, X11 −X22 ≤ 1,[
X11 X12

X21 X22

]
� 0.

In terms of polar coordinates, (x1, x2) −→ (r cos θ, r sin θ), the original quadratic
problem can be turned into

max r2(sin 2θ + cos 2θ + 1)/2

s.t. r2 sin 2θ ≤ 2

r2 cos 2θ ≤ 1.

By a further change of variables (r2 cos 2θ, r2 sin 2θ) −→ (y1, y2), we can reformulate
the original quadratic problem as

max 1
2

(
y1 + y2 +

√
y2
1 + y2

2

)
s.t. y1 ≤ 2

y2 ≤ 1.

This optimization problem has a unique optimal solution at (y∗1 , y
∗
2) = (2, 1) with the

optimal value being 3+
√

5
2 ≈ 2.618. The SDP relaxation problem is clearly unbounded,

as any positive multiple of the identity matrix is feasible. Therefore, vmax
sdp /vmax

qp =
+∞. This example is possible because the dual of the SDP relaxation problem is
infeasible.

4.2. Multiple indefinite constraints. Unlike the minimization form (1.1) for
which the SDP approximation ratio can be infinite when there are more than one
indefinite constraints (see Example 3.7), the maximization form (1.2) can still ad-
mit a finite SDP approximation ratio in this case. In particular, consider a general
homogeneous quadratic maximization problem

(4.3)

max xTCx

s.t. xTAkx ≤ 1, k = 0, 1, . . . ,m

x ∈ F
n.

Suppose that I,D are two index sets, I ∪D = {0, 1, . . . ,m} and I ∩D = ∅, such that
Ak � 0 for k ∈ D and Ak indefinite for k ∈ I. The SDP relaxation for (4.3) is

(4.4)

max Tr (CX)

s.t. Tr (AkX) ≤ 1, k = 0, 1, . . . ,m

X � 0.
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We begin our analysis with a technical lemma which bounds the probability of an
exponential tail. Similar bounds exist in the literature, e.g., [6]. However, the lemma
below serves our needs exactly; for completeness we include a proof here.

Lemma 4.5. Let {λi}ni=1 be any given real numbers, and {ηi}ni=1 be i.i.d. random
variables drawn from either the real or complex valued zero mean Gaussian distribution
with unit variance. Let σ =

√∑n
i=1 λ

2
i and δ = max {max{λi | 1 ≤ i ≤ n}, 0}. Then,

for any α > 0 there holds

Prob

{
n∑

i=1

λiη
2
i −

n∑
i=1

λi ≥ ασ

}

≤
{

exp
(
−min

{
α, σ

δ

}
α
8

)
if ηi ∼ N(0, 1) is real Gaussian,

exp
(
−min

{
α, σ

δ

}
α
4

)
if ηi ∼ Nc(0, 1) is complex Gaussian.

Proof. We will prove only the real Gaussian case; the complex case is similar and
therefore omitted. Let β := 1

4 min{ 1
δ ,

α
σ }. Then, 2βλi ≤ 1/2 for all i = 1, . . . , n, and

βσ = 1
4 min{σ

δ , α}. Note that for any t ≤ 1/2 the following inequality holds:

(4.5)
1

1 − t
≤ et+t2 .

Let ζ := eβ
∑n

i=1 λiη
2
i . Since {η2

i }ni=1 are standard i.i.d. χ2 random variables, it follows
that

E(ζ) =
n∏

i=1

E
(
eβλiη

2
i

)
=

n∏
i=1

1√
1 − 2βλi

=

(
n∏

i=1

1

1 − 2βλi

) 1
2

≤
(

n∏
i=1

e2βλi+4β2λ2
i

) 1
2

= e2β2σ2+β
∑n

i=1 λi ,

where the inequality is due to (4.5). This together with the Markov inequality implies

Prob

{
n∑

i=1

λiη
2
i −

n∑
i=1

λi ≥ ασ

}
= Prob

{
ζ ≥ eβ(ασ+

∑n
i=1 λi)

}

≤ E(ζ)

eβ(ασ+
∑n

i=1 λi)

≤ e2β2σ2−βσα = eβσ(2βσ−α) ≤ eβσ(α
2 −α)

= e−min{α,σδ }α
8 .

The lemma is proven.
We are now ready to pursue the performance analysis for the real case F = R.

Assume that (4.4) has an optimal solution X̂. Denote the set of (real) eigenvalues of
AkX̂ as λk

1 , . . . , λ
k
n, k = 0, 1, . . . ,m. Since Tr (AkX̂) ≤ 1, it follows that

∑n
i=1 λ

k
i ≤ 1.

Moreover, ‖AkX̂‖2
F ≥

∑n
i=1(λ

k
i )

2, k = 0, 1, . . . ,m, where ‖ · ‖F denotes the Frobenius
norm of a matrix.

Let ξ be a random vector drawn from the Gaussian distribution N(0, X̂). For any
α > 1 and 0 ≤ k ≤ m, we consider the probability of the event Prob {ξTAkξ > α}.
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By diagonalization, we have Prob {ξTAkξ > α} = Prob {
∑n

i=1 λ
k
i η

2
i > α}, where

η = (η1, . . . , ηn)T is a random vector following the normal distribution N(0, In).

If we let σk :=
√∑n

i=1(λ
k
i )

2 ≤ ‖AkX̂‖F and δk := max
{
0,max{λk

i | 1 ≤ i ≤ n}
}
,

then Lemma 4.5 leads to

Prob {ξTAkξ > α}(4.6)

≤ exp

(
−min

{
α−

∑n
i=1 λ

k
i

σk
,
σk

δk

}
α−

∑n
i=1 λ

k
i

8σk

)
∀ 0 ≤ k ≤ m.

Alternatively, we can bound the tail probability using Chebyshev’s inequality. In
particular, since Var(

∑n
i=1 λ

k
i η

2
i ) = 2

∑n
i=1(λ

k
i )

2 ≤ 2‖AkX̂‖2
F , it follows from Cheby-

shev’s inequality that

Prob

{
n∑

i=1

λk
i η

2
i > α

}
= Prob

{
n∑

i=1

λk
i η

2
i −

n∑
i=1

λk
i > α−

n∑
i=1

λk
i

}

≤ Prob

{∣∣∣∣∣
n∑

i=1

λk
i η

2
i −

n∑
i=1

λk
i

∣∣∣∣∣ > α−
n∑

i=1

λk
i

}

≤ Var(
∑n

i=1 λ
k
i η

2
i )(

α−
∑n

i=1 λ
k
i

)2 ≤ 2‖AkX̂‖2
F

(α− 1)2
∀ 0 ≤ k ≤ m,(4.7)

where we have used the fact α > 1 ≥
∑n

i=1 λ
k
i . Applying Lemma 3.1 and using

(4.6)–(4.7) gives

Prob
{
ξTAkξ ≤ α, k = 0, 1, . . . ,m; ξTCξ ≥ Tr (CX̂)

}

≥ 1 − Prob
{
ξTCξ < Tr (CX̂)

}
−

m∑
k=0

Prob
{
ξTAkξ > α

}

≥ 3

100
−

m∑
k=0

min

{
exp

(
−min

{
α−

∑n
i=1 λ

k
i

σk
,
σk

δk

}
α−

∑n
i=1 λ

k
i

8σk

)
,
2‖AkX̂‖2

F

(α− 1)2

}
.

Notice that δk ≤ σk and
∑n

i=1 λ
k
i ≤ 1 for any k. Therefore, we have, for any α > 1,

Prob
{
ξTAkξ ≤ α, k = 0, 1, . . . ,m; ξTCξ ≥ Tr (CX̂)

}

≥ 3

100
−
∑
i∈D

exp

(
−min

{
α− 1

σk
, 1

}
α− 1

8σk

)

−
∑
i∈I

min

{
exp

(
−min

{
α− 1

σk
, 1

}
α− 1

8σk

)
,
2‖AkX̂‖2

F

(α− 1)2

}
.

Let us choose

α̂ = 1 + max⎧⎨
⎩20 + 8 log |D|,min

⎧⎨
⎩(20 + 8 log |I|) max

k∈I
‖AkX̂‖F ,

√
200
∑
k∈I

‖AkX̂‖2
F

⎫⎬
⎭
⎫⎬
⎭ .
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Since σk ≤
∑n

i=1 λ
k
i ≤ 1 for k ∈ D, it follows from the choice of α̂ that

exp

(
−min

{
α̂− 1

σk
, 1

}
α̂− 1

8σk

)

= exp

(
− α̂− 1

8σk

)
≤ exp

(
− α̂− 1

8

)
≤ 1

100|D| ∀ k ∈ D

and ∑
i∈I

min

{
exp

(
−min

{
α̂− 1

σk
, 1

}
α̂− 1

8σk

)
,
2‖AkX̂‖2

F

(α̂− 1)2

}
≤ 1

100
.

This further implies that

Prob
{
ξTAkξ ≤ α̂, k = 0, 1, . . . ,m; ξTCξ ≥ Tr (CX̂)

}
≥ 1

100
.

Summarizing, we obtain the following worst-case performance ratio bounds on the
SDP relaxation for a real-valued homogeneous (indefinite) quadratic maximization
problem. (We also state the complex case without proof.)

Theorem 4.6. For the quadratic optimization problem (4.3) with F = R and its
SDP relaxation (4.4), suppose that an optimal solution, say X̂, for (4.4) exists. Then,

vmax
sdp

vmax
qp

≤ 1 + max

⎧⎨
⎩20 + 8 log |D|,min

⎧⎨
⎩(20 + 8 log |I|) max

k∈I
‖AkX̂‖F ,

√
200
∑
k∈I

‖AkX̂‖2
F

⎫⎬
⎭
⎫⎬
⎭ .

Similarly, for the complex case F = C, we have

vmax
sdp

vmax
qp

≤ 1 + max

⎧⎨
⎩15 + 4 log |D|,min

⎧⎨
⎩(15 + 4 log |I|) max

k∈I
‖AkX̂‖F ,

√
40
∑
k∈I

‖AkX̂‖2
F

⎫⎬
⎭
⎫⎬
⎭ .

Let us consider two special cases of Theorem 4.6. First, if I = ∅, then Theorem 4.6

becomes
vmax
sdp

vmax
qp

≤ 20+8 logm (in the real case), which recovers the approximation result

of Nemirovski, Roos, and Terlaky [18]. The second case is D = ∅, where Theorem 4.6
becomes

vmax
sdp

vmax
qp

≤ 1 + min

⎧⎨
⎩(20 + 8 log(m + 1)) max

0≤k≤m
‖AkX̂‖F ,

√√√√200

m∑
k=0

‖AkX̂‖2
F

⎫⎬
⎭ .

Below is an example showing that this bound is also tight (in the order of magnitude).
Specifically, consider Example 4.3 again:

max x2
1 + 1

M x2
2

s.t. Mx1x2 + x2
2 ≤ 1

−Mx1x2 + x2
2 ≤ 1

M(x2
1 − x2

2) ≤ 1.
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In this case we know that the SDP relaxation has an optimal solution X̂ = [ 1+
1
M

0
0
1 ],

while the approximation ratio is vmax
sdp /vmax

qp = O(M). There are three constraints, all
indefinite, I = {1, 2, 3}, with

A1 =

[
0 M

2
M
2 1

]
, A2 =

[
0 −M

2

−M
2 1

]
, A3 =

[
M 0

0 −M

]
,

and so one may compute that

A1X̂ =

[
0 M

2
M
2 + 1

2 1

]
, A2X̂ =

[
0 −M

2

−M
2 − 1

2 1

]
, A3X̂ =

[
M + 1 0

0 −M

]
.

Thus, ‖AkX̂‖2
F = O(M2), for k = 1, 2, 3. Theorem 4.6 predicts that vmax

sdp /vmax
qp ≤

O(M), and this upper bound is exactly attained in this example.

5. Discussions. This paper studies the quality bounds of SDP relaxations for
some classes of nonconvex quadratic optimization problems. Our analysis reveals in-
teresting differences in the quality bounds for the optimization models expressed in
either maximization or minimization form, and for optimization variables defined over
either the real or complex field. It provides a complete picture on the performance of
the SDP relaxation techniques for quadratic optimization problems involving indefi-
nite constraints.

Theoretically, the minimization model (1.1) and maximization model (1.2) are
intrinsically different; they cannot be directly transformed from one to the other. In
general, the feasible region of problem (1.1) can be nonconvex, unbounded, or even
disconnected, while its objective function is usually assumed to be convex. In contrast,
the maximization model (1.2) typically has a convex and bounded feasible region,
but the nonconvexity of the objective function makes it difficult. These essential
differences have led to the qualitatively different behaviors in the respective SDP
approximation ratios.

It is equally interesting to note that the choice of field in which the optimization
variables reside can also impact the quality of SDP relaxation. In a natural way,
every complex quadratic program can be turned into an equivalent real quadratic
program by doubling the dimension. Such a transformation will not affect the resulting
approximation ratio. Since the SDP approximation ratio is weaker in the real case,
we cannot derive the desired approximation ratio for the complex case by this simple
reduction. It is worth noting that the tighter SDP approximation ratio for the complex
case has been observed in digital communication applications [22, 17, 14], where the
signals are naturally complex due to their in-phase and quadrature components.

An interesting byproduct of our work is a universal lower bound of Prob(
∑n

i=1 τi
(ηi − 1) ≥ 0) for the i.i.d. exponential random variables ηi (Lemma 4.1). The lower
bounds of this type are interesting on their own and are related to the well-known
inequality of Grünbaum [9] in convex analysis. In particular, by a different analytic
argument, it is possible to further improve the universal lower bound obtained in this
paper as follows:

(5.1) Prob

(
n∑

i=1

τi(ηi − 1) ≥ 0

)
=

n∑
i=1

e
− 1

τi∏
j �=i

(
1 − τj

τi

) >
1

e
,

where τi, i = 1, . . . , n, are any real numbers. (The above equality can be derived
by evaluating a multidimensional integral.) The inequality (5.1) admits a simple
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geometric interpretation. For the joint standard exponential distribution on R
n
+, the

center of gravity of R
n
+ is xc := E(η) = (1, 1, . . . , 1)T , and the inequality (5.1) can be

interpreted as follows:

(5.2) Prob(Rn
+ ∩H+) ≥ e−1 for any hyperplane H passing through xc.

Here H+ denotes the positive side of the hyperplane H. The inequality (5.2) is an
extension of the Grünbaum inequality [9]:

Volume (C ∩ H+) ≥ e−1 Volume (C)

for any bounded convex set C in R
n, and for any hyperplane H passing through the

center of gravity of C

xc =
1

Volume(C)

∫
C
dx.

In particular, if we assign the uniform distribution to C, then the mean vector of this
distribution is given by the center of gravity xc, and the probability in (5.2) can be
expressed in terms of volume. In this way, Grünbaum’s inequality can be equivalently
written as (5.2). This shows that the inequality (5.2) generalizes Grünbaum’s theo-
rem [9] from the uniform distribution over a compact, convex set to the exponential
distribution over R

n
+. Interestingly, it is possible to establish the inequality (5.2) for

any log-concave distributions defined over any (possibly unbounded) convex set in
R

n. The proof of this inequality relies on a result of Bobkov [5, Lemma 3.3] and a
result of Prekopa [21] on the projection of any log-concave distribution. We plan to
report the details of this proof in the future.
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ON RATES OF CONVERGENCE FOR STOCHASTIC
OPTIMIZATION PROBLEMS UNDER NON–INDEPENDENT AND

IDENTICALLY DISTRIBUTED SAMPLING∗

TITO HOMEM-DE-MELLO†

Abstract. In this paper we discuss the issue of solving stochastic optimization problems by
means of sample average approximations. Our focus is on rates of convergence of estimators of
optimal solutions and optimal values with respect to the sample size. This is a well-studied problem
in case the samples are independent and identically distributed (i.e., when standard Monte Carlo
simulation is used); here we study the case where that assumption is dropped. Broadly speaking, our
results show that, under appropriate assumptions, the rates of convergence for pointwise estimators
under a sampling scheme carry over to the optimization case, in the sense that convergence of
approximating optimal solutions and optimal values to their true counterparts has the same rates
as in pointwise estimation. We apply our results to two well-established sampling schemes, namely,
Latin hypercube sampling and randomized quasi-Monte Carlo (QMC). The novelty of our work arises
from the fact that, while there has been some work on the use of variance reduction techniques and
QMC methods in stochastic optimization, none of the existing work—to the best of our knowledge—
has provided a theoretical study on the effect of these techniques on rates of convergence for the
optimization problem. We present numerical results for some two-stage stochastic programs from
the literature to illustrate the discussed ideas.

Key words. stochastic optimization, two-stage stochastic programming with recourse, sam-
ple average approximation, Monte Carlo simulation, quasi-Monte Carlo methods, Latin hypercube
sampling, variance reduction techniques
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1. Introduction. In this paper we consider stochastic optimization problems of
the form

(1.1) min
x∈X

{g(x) := E[G(x, ξ)]} ,

where X is a subset of R
n, ξ is a random vector in R

s, and G : R
n×R

s � R is a real-
valued measurable function. We refer to (1.1) as the “true” optimization problem.
The class of problems falling into the framework of (1.1) is quite large and includes
two-stage stochastic programs as a particular subclass.

Oftentimes the expectation in (1.1) cannot be calculated exactly, particularly
when G does not have a closed form. In those cases, approximations based on sampling
are usually the alternative. One such approximation can be constructed as follows.
Consider a family {ĝN (·)} of random approximations of the function g(·), each ĝN (·)
being defined as

(1.2) ĝN (x) :=
1

N

N∑
j=1

G(x, ξj),

where {ξ1, . . . , ξN} is a sample from the distribution of ξ. When ξ1, . . . , ξN—viewed
as random variables—are independent and identically distributed (i.i.d.) the quantity
ĝN (x) is called a (standard) Monte Carlo estimator of g(x).
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Given the family of estimators {ĝN (·)} defined in (1.2), one can construct the
corresponding approximating program

(1.3) min
x∈X

ĝN (x).

Let x̂N and ν̂N denote, respectively, an optimal solution and the optimal value of
(1.3). Then x̂N and ν̂N provide approximations, respectively, to an optimal solution
x∗ and the optimal value ν∗ of the true problem (1.1). Note that the optimization
in (1.3) is performed for a fixed sample; for that reason, this is called an external
sampling approach. When ĝN (·) is a standard Monte Carlo estimator of g(·), such an
approach is found in the literature under the names of sample average approximation
method, stochastic counterpart, and sample-path optimization, among others.

The external sampling approach with standard Monte Carlo simulation has been
implemented in various settings; see, for instance, [14, 23, 43]. One advantage of
that approach lies in its nice convergence properties; for example, it is possible to
show that, when x∗ is the unique optimal solution, x̂N → x∗ and ν̂N → ν∗ under
fairly general assumptions (see, e.g., [10, 22, 44, 48, 49]). Two properties have proven
particulary useful in terms of establishing rates of convergence: The first establishes
that, under proper conditions, P (|g(x̂N )−g(x∗)| ≤ ε) and P (‖x̂N −x∗‖ ≤ ε) converge
to one exponentially fast in the sample size N for any fixed ε > 0 (see [6, 21]). Under
some further conditions one can say more, namely, that P (x̂N = x∗) converges to one
exponentially fast in the sample size N [53]. Exponential rates of convergence have
interesting consequences in terms of complexity of the underlying problems; see [51]
for a discussion.

Another useful property establishes that the sequence of optimal values {ν̂N}
satisfies a certain kind of central limit theorem (CLT). More specifically, one has

N1/2(ν̂N − ν∗)
d→ Normal(0, σ∗),

where “
d→” denotes convergence in distribution and σ∗ := Var[G(x∗)] [48]. An im-

mediate conclusion from the above result is that the rate of convergence of optimal
values of (1.3) is of order N−1/2. A compilation of these and other related results can
be found in [50].

It is no surprise that the sequence of approximating optimal values converges at
rate N−1/2. Indeed, consider the estimator ĝN defined in (1.2), and fix x ∈ X. Under
mild conditions, it follows from the CLT that

√
N [ĝN (x) − g(x)]/σ(x) converges in

distribution to the standard Normal, where σ2(x) is the variance of G(x). This implies
that the error ĝN (x) − g(x) converges to zero at the rate N−1/2. That is, even the
pointwise estimators converge at rate N−1/2. In many practical cases, the value of N
necessary to obtain a reasonably small error under this scheme becomes prohibitively
large, especially if evaluation of G(x, ξ) for a given ξ is computationally expensive.
This motivates the use of variance reduction techniques that can yield estimators with
smaller variance than the ones obtained with standard sampling. Consequently, the
same error can be obtained with less computational effort, which is a crucial step for
the use of sampling-based methods in large-scale problems.

Several variance reduction techniques have been developed in the simulation and
statistics literature, notably importance sampling, control variates, stratified sam-
pling, and others (see, e.g., [11, 25]). However, incorporation of these techniques into
a stochastic optimization algorithm is still at an early stage. Existing work [1, 7,



526 TITO HOMEM-DE-MELLO

16, 19, 26, 52] already shows that significant benefits can be gained by implementing
some of these methods, but these papers provide only empirical evidence of the gain.

Another approach to obtain better pointwise estimators is to choose the sample
points in an appropriate manner. Such is the case of quasi-Monte Carlo methods
(QMC); see [32] for a comprehensive discussion. This class of methods has been gain-
ing popularity in the past few years, as it has been observed that these techniques can
provide rates of convergence for pointwise estimators superior to the N−1/2 obtained
with standard Monte Carlo methods. However, because estimating the actual error
of a QMC estimator relative to the quantity being estimated can be difficult, some
procedures to randomize a QMC sequence have been proposed in the literature. We
provide a brief review of the basic ideas of QMC methods in section 3.2.

A few papers study the optimization problem minx∈X ĝN (x) under QMC: In
[20], empirical results are provided for the use of Hammersley sequences (one form
of QMC) in stochastic optimization problems. In [39, 40], the authors use the fact
that the empirical measure defined by a QMC sequence converges weakly to the uni-
form distribution to show that, under mild assumptions, the estimator function ĝN
constructed with QMC points epiconverges to the true function g, which guaran-
tees convergence of optimal values and optimal solutions under appropriate further
conditions; in [24] those results are applied to the case where the QMC sequence is
randomized with the so-called Cranley–Patterson procedure. The numerical results
in those papers also suggest considerable gains in terms of rates of convergence when
using QMC methods. A different type of point sequences is studied in [41] whereby
the sampling points are chosen in a way to minimize the Wasserstein distance between
the original distribution and the empirical distribution generated by the points. A
related approach is used in [15], which deals with the Fortet–Mourier metrics instead.
Again, the numerical results presented in [42] suggest a considerable advantage of
these techniques over standard Monte Carlo methods.

The above discussion shows that, while there has been some important work on
the use of variance reduction techniques and QMC methods in stochastic optimization,
none of these papers has provided a theoretical study on the effect of these techniques
on rates of convergence. The reason is that, without the i.i.d. assumption, many of
the classical results in probability theory cannot be applied. One exception is the
work in [6], which provides results on the exponential rate of convergence of optimal
solutions even without the i.i.d. assumption. However, that paper does not focus on
any particular sampling technique; rather, they assume that certain conditions that
allow for the application of the Gartner–Ellis theorem in large deviations theory (see,
e.g., [8]) are satisfied.

Another potential way to study convergence rates in general settings (i.e., without
the i.i.d. assumption) is by means of stability theory. Broadly speaking, stability
theory in the context of stochastic optimization quantifies how much the optimal value
and the optimal solutions of the problem change when the underlying probability
measures are perturbed. For example, by writing the optimal values of (1.1) and
(1.3), respectively, as ν(F ) and ν(FN )—where F is the distribution of ξ and FN is
the empirical distribution defined by a sample—it is possible to show that, under
certain assumptions, |ν(F )− ν(FN )| is bounded by an appropriately defined distance
between F and FN . In the particular case of i.i.d. sampling, one can write the latter
distance in terms of the sample size N , which leads to a different way to view the
N−1/2 rate obtained via the CLT. We refer to [45] for a thorough exposition of stability
results in stochastic programming.
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In this paper we propose a study of rates of convergence for optimal solutions
and optimal values of the approximating problem (1.3) without imposing that the
sample be independent or identically distributed. More specifically, we show that,
under certain conditions, if the proposed sampling scheme yields an exponential rate
of convergence for pointwise estimators, then the convergence of optimal solutions
will also have an exponential rate. Moreover, in case of discrete or piecewise linear
problems, if the proposed sampling scheme yields a CLT for pointwise estimators,
then the convergence of optimal values will obey the CLT as well. Unless stated
otherwise the setting is fairly general—i.e., the decision space can be continuous or
discrete, and the distributions of the underlying random variables can be continuous
or discrete, although some of the results will not be valid in some of these cases.

We illustrate the ideas for the particular cases of Latin hypercube sampling (LHS)
and a specific variation of randomized QMC called scrambled (t,m, s)-nets. We show
that, for a particular class of functions, the exponential feature of the rate of conver-
gence is preserved under LHS for pointwise estimators and therefore for estimators of
optimal solutions. We also use CLT-type results available for LHS and randomized
QMC to illustrate the convergence results for estimators of optimal values. In partic-
ular, we show that, under LHS, the estimators ν̂N of optimal values converge at a rate
of order N−1/2, the same as standard Monte Carlo methods; for QMC, under appro-
priate assumptions the sequence {ν̂N} converges at a rate of order [(logN)s−1/N3]1/2,
which asymptotically is better than N−1/2.

We then apply our results to two-stage stochastic linear programs and discuss the
validity of our assumptions in that context. Numerical results are presented for two
problems from the literature to illustrate the ideas.

The remainder of the paper is organized as follows: In section 2 we describe our
main results for rates of convergence of estimators of optimal solutions and optimal
values. In section 3 we apply these results to LHS and randomized QMC. We illustrate
the ideas for two-stage stochastic programs in section 4 and present numerical results
in section 5. Concluding remarks are presented in section 6.

2. Rates of convergence. We discuss separately the results on rates of conver-
gence for optimal solutions and optimal values. Throughout this paper, S∗ and SN

denote the set of optimal solutions of (1.1) and (1.3), respectively. Before we study
the two cases, we shall make a general assumption.

Assumption A1. For each x ∈ X, ĝN (x) → g(x) with probability one (denoted
w.p.1).

Assumption A1 is very natural, as it requires the estimators to be consistent. In
the i.i.d. case, this is just the standard strong law of large numbers, which holds if
E[|ĝN (x)|] < ∞ for each x ∈ X.

2.1. Convergence of estimators of optimal solutions. We start by making
the following probabilistic assumption on the estimators {ĝN (x)}.

Assumption B1. For each x ∈ X, there exist a number Cx > 0 and a function
γx(·) such that γx(0) = 0, γx(z) > 0 if z > 0, and

(2.1) P (|ĝN (x) − g(x)| ≥ δ) ≤ Cx e−Nγx(δ) for all N ≥ 1 and all δ > 0.

That is, the probability that the deviation between ĝN (x) and g(x) is bigger
than δ goes to zero exponentially fast with N . Notice that (2.1) implies that ĝN (x)
converges in probability to g(x), which is also ensured by Assumption A1.



528 TITO HOMEM-DE-MELLO

Instead of (2.1), we can impose the following weaker condition.
Assumption B1′. For each x ∈ X, there exists a function γx(·) such that γx(0) = 0,

γx(z) > 0 if z > 0, and

(2.2) lim sup
N→∞

1

N
logP (|ĝN (x) − g(x)| ≥ δ) ≤ −γx(δ) for all δ > 0.

Some of our results will be stated by assuming that B1 holds; alternatively, B1′

can be used, though in such cases the corresponding result will be stated in asymptotic
form as well.

We study now a sufficient condition for Assumption B1 to hold. The main concept
behind it arises from the theory of large deviations, a well-studied field. For a thorough
exposition of the theory, we refer to any of the classical texts in the area, e.g., [8]. We
present here a result from [9].

Proposition 2.1. Consider the sample ξ1, . . . , ξN used in (1.2), and define the
extended real-valued function

(2.3) φN (x, t) :=
1

N
log E

[
etNĝN (x)

]
.

Suppose that for each x ∈ X there exists an extended real-valued function φ∗
x such

that φN (x, ·) ≤ φ∗
x(·) for all N , and assume that φ∗

x satisfies the following con-
ditions: (i) φ∗

x(0) = 0; (ii) φ∗
x(·) is continuously differentiable and strictly con-

vex on a neighborhood of zero; and (iii) (φ∗
x)′(0) = g(x). Then, Assumption B1

holds, with the constants Cx all equal to 2 and the functions γx(·) given by γx(δ) :=
min{Ix(g(x) + δ), Ix(g(x) − δ)}, where Ix(z) = supt∈R{tz − φ∗

x(t)}.
A simple setting where the conditions of Proposition 2.1 are satisfied is when the

functions φN (x, ·), N = 1, 2, . . . , are bounded by the log-moment-generating func-
tion of some random variable Wx (i.e., φ∗

x(t) = log E[etWx ]) such that E[Wx] = g(x).
Clearly, condition (i) holds in that case. Moreover, if there exists an open neighbor-
hood N of zero such that φ∗

x(·) is finite on N , then it is well known that φ∗
x is infinitely

differentiable on N (see, e.g., p. 35 of [8]) and (iii) holds. In that case, Proposition 1
in [54] ensures that φ∗

x is strictly convex on N .
Note that when the samples {ξi} are i.i.d. we have

φN (x, t) =
1

N
log(E[etNĝN (x)]) =

1

N
log({E[etG(x,ξ)]}N ) = log(E[etG(x,ξ)])

= logMx(t),

where Mx(t) := E[etG(x,ξ)] is the moment-generating function of G(x, ξ) evaluated at
t. Hence, in that case we have φN (x, t) = φ∗

x(t) := logMx(t) for all N , so the resulting
function Ix in Proposition 2.1 is the rate function associated with G(x, ξ). Inequality
(2.1) then yields the well-known Chernoff upper bounds on the deviation probabilities.
It is also well known (Cramér’s theorem) that in that case γx(δ) in Proposition 2.1 is
an asymptotically exact rate, in the sense that (2.2) holds with equality.

One important consequence of the above developments is the following: Suppose
that the function φ∗

x in Proposition 2.1 is dominated by the log-moment-generating
function of the random variable G(x, ξ), i.e., φ∗

x(t) ≤ φMC
x (t) := log E[etG(x,ξ)]. This

immediately implies that the rate function Ix dominates the rate function associated
with the random variable G(x, ξ), which as seen earlier is the asymptotically exact
rate function obtained with i.i.d. (i.e., Monte Carlo) sampling. In other words, if one
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uses a sampling technique that yields functions φN (x, ·) for which one can find φ∗
x in

Proposition 2.1 such that φ∗
x(·) ≤ φMC

x (·), then the pointwise convergence rate for this
sampling technique—in the sense of (2.1)—is at least as good as the rate obtained
with standard Monte Carlo methods. We will use this basic argument repeatedly in
the course of this paper.

In the subsections below we will study the convergence of optimal solutions in
two different settings—one when the function G(·, ξ) is Lipschitz and the other when
either G(·, ξ) is piecewise linear or the feasible set X is finite.

2.1.1. The Lipschitz case. We now make an assumption on the integrand G
viewed as a function of its first argument.

Assumption A2. The feasibility set X is compact, and there exists an integrable
function L : R

s � R such that, for almost every ξ and all x, y ∈ X,

(2.4) |G(x, ξ) −G(y, ξ)| ≤ L(ξ)‖x− y‖.

Clearly, Assumption A2 ensures that the function G(·, ξ) is continuous for almost
every ξ. Moreover, it implies that ĝN (·) and g(·) are also Lipschitz continuous with

constants equal to L̂N := N−1
∑N

j=1 L(ξj) and E[L(ξ)], respectively. From classical

results in convex analysis (e.g., [18, Theorem IV.3.1.2]), we see that if (i) the feasibility
set X is compact and contained in the relative interior of the domain of G(·, ξ) for
almost every ξ, and (ii) G(·, ξ) is convex for almost every ξ, then the existence of
L(ξ) in (2.4) is assured, so in that case only integrability of L(ξ) needs to be checked.

Recall that x̂N is an optimal solution of (1.3) and S∗ is the set of optimal solutions
of (1.1). Below, dist(z,A) denotes the usual Euclidean distance function between a
point z and a set A, i.e., dist(z,A) := infy∈A ‖z − y‖. The following result is known
(see, e.g., [46, pp. 67–70]), but we state it here for reference.

Proposition 2.2. Suppose that Assumptions A1 and A2 hold. Then
(i) ĝN (x) → g(x) uniformly on X w.p.1;
(ii) ν̂N → ν∗ w.p.1;
(iii) dist(x̂N , S∗) → 0 w.p.1.
Theorem 2.3 below shows a probabilistic rate of convergence of optimal solutions.

In preparation for that result, we state the following assumption, which is similar to
Assumption B1 but applied to the random variable L(ξ) in Assumption A2. Con-
ditions under which such an assumption holds are similar to those given in Proposi-
tion 2.1.

Assumption B1L. Let L̂N be the estimator of E[L(ξ)] defined as L̂N := N−1
∑N

j=1

L(ξj), where as before {ξ1, . . . , ξN} is a sample from the distribution of ξ. There exist
a number CL > 0 and a function γL(·) such that γL(0) = 0, γL(z) > 0 if z > 0, and

(2.5) P
(
|L̂N − E[L(ξ)]| ≥ δ

)
≤ CL e−NγL(δ) for all N ≥ 1 and all δ > 0.

Theorem 2.3. Consider problem (1.3), and suppose that Assumptions A2, B1,
and B1L hold. Then, given ε > 0, there exist constants K > 0 and α > 0 such that

P (dist(x̂N , S∗) ≥ ε) ≤ Ke−αN for all N ≥ 1.

The constants K and α depend on the families of estimators {ĝN (·)} and {L̂N} only
through, respectively, the constants Cx and CL and the exponent functions γx(·) and
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γL(·) in (2.1) and (2.5). More specifically,

α = min

(
min

k=1,...,r
{γxk

(δ/3)}, γL(δ/3)

)
,

K = (r + 1) max

(
max

k=1,...,r
{Cxk

}, CL

)
,

where δ > 0, r is a finite number, and x1, . . . , xr are points in X.
The proof of Theorem 2.3 will be based on the following lemma.
Lemma 2.4. Suppose that Assumptions A2, B1, and B1L hold. Then, for any

δ > 0, there exist positive constants A = A(δ) and α = α(δ) such that

(2.6) P (|ĝN (x) − g(x)| ≥ δ) ≤ Ae−αN for all x ∈ X and all N ≥ 1.

Moreover, there exists a positive constant K (also dependent on δ) such that

(2.7) P (|ĝN (x) − g(x)| < δ for all x ∈ X) ≥ 1 −Ke−αN for all N ≥ 1.

Proof. Let η := δ/(3E[L(ξ)] + δ), and denote by B(x, η) the open ball with
center x and radius η. Let X = {x1, . . . , xr} be a collection of points in X such that
X ⊂ ∪r

k=1B(xk, η). Notice that the existence of X is ensured by the compactness of
X.

Consider now an arbitrary point x ∈ X. By construction, there exists some
xk ∈ X such that ‖x− xk‖ < η. Thus, from (2.4) we have

|ĝN (x) − ĝN (xk)| ≤
1

N

N∑
j=1

∣∣G(x, ξj) −G(xk, ξ
j)
∣∣ < L̂Nη =

δ

3

L̂N

E[L(ξ)] + δ/3
,

(2.8)

|g(x) − g(xk)| ≤ E [|G(x, ξ) −G(xk, ξ)|] < E[L(ξ)]η < δ/3.(2.9)

Moreover, by Assumptions B1 and B1L we have

P (|ĝN (xk) − g(xk)| ≥ δ/3) ≤ Cxk
e−Nγxk

(δ/3),(2.10)

P (|L̂N − E[L(ξ)]| ≥ δ/3) ≤ CL e−NγL(δ/3).(2.11)

Finally, since

|ĝN (x) − g(x)| ≤ |ĝN (x) − ĝN (xk)| + |ĝN (xk) − g(xk)| + |g(x) − g(xk)|,

it follows that

{|ĝN (x) − g(x)| < δ} ⊇ {|ĝN (x) − ĝN (xk)| < δ/3} ∩ {|ĝN (xk) − g(xk)| < δ/3}
∩ {|g(xk) − g(x)| < δ/3}

⊇ {|L̂N − E[L(ξ)]| < δ/3} ∩ {|ĝN (xk) − g(xk)| < δ/3} ,(2.12)

and then from (2.10)–(2.11) we have

P (|ĝN (x) − g(x)| ≥ δ) ≤ P (|ĝN (xk) − g(xk)| ≥ δ/3) + P (|L̂N − E[L(ξ)]| ≥ δ/3)

≤ Cxk
e−Nγxk

(δ/3) + CL e−NγL(δ/3).
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By taking

α := min

(
min

k=1,...,r
{γxk

(δ/3)}, γL(δ/3)

)
,(2.13)

A := 2 max

(
max

k=1,...,r
{Cxk

}, CL

)
,(2.14)

inequality (2.6) follows.
To show (2.7), notice that from (2.12) we have

P (|ĝN (x) − g(x)| < δ for all x ∈ X)

≥ P
(
{|ĝN (xk) − g(xk)| < δ/3, k = 1, . . . , r} ∩ {|L̂N − E[L(ξ)]| < δ/3}

)

≥ 1 −
r∑

k=1

P (|ĝN (xk) − g(xk)| ≥ δ/3) − P (|L̂N − E[L(ξ)]| ≥ δ/3),(2.15)

where the last inequality stems from a direct application of Bonferroni’s inequality.
It follows from (2.10), (2.11), and (2.15) that

P (|ĝN (x) − g(x)| < δ for all x ∈ X) ≥ 1 − r + 1

2
Ae−αN ,

so by taking

(2.16) K :=
r + 1

2
A

we obtain (2.7).
We return now to the proof of Theorem 2.3.
Proof. Let ε > 0 be given. Assumption A2 implies the existence of some δ > 0

such that dist(x̂N , S∗) < ε whenever |ĝN (x)− g(x)| < δ for all x ∈ X; see, e.g., [46, p.
69] for a proof. By Lemma 2.4, the event {|ĝN (x) − g(x)| < δ for all x ∈ X} occurs
with probability at least 1 −Ke−αN (where both K and α depend on δ). It follows
that

P (dist(x̂N , S∗) ≥ ε) ≤ Ke−αN

as asserted. Notice that δ does not depend on the particular approximation ĝN (·);
therefore, from (2.13), (2.14), and (2.16) we see that the constants K and α depend
on {ĝN (·)} and {L̂N} only through, respectively, the constants Cx and CL and the
exponent functions γx(·) and γL(·) in Assumptions B1 and B1L.

In essence, Theorem 2.3 says that the existence of an exponential rate of conver-
gence for pointwise estimators is enough to ensure an exponential rate of convergence
for optimal solutions of the corresponding approximating problems, regardless of the
sampling scheme adopted. Although reasonably intuitive, such a result has not—to
the best of our knowledge—been stated or proved anywhere in the literature.

It is important to remark that the second part of Theorem 2.3 suggests that a
better pointwise convergence rate leads to a better rate of convergence of optimal
solutions. Indeed, suppose that one has at hand two families of approximations, say,
{ḡN (x)} and {g̃N (x)}, whose respective exponent functions γ̄x(·) and γ̃x(·) in (2.1)
are such that γ̄x(·) ≥ γ̃x(·) for all x ∈ X. Then the corresponding constants ᾱ and α̃
will be such that ᾱ ≥ α̃, which suggests that the family {ḡN (·)} yields a better rate
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of convergence of x̂N to S∗. Of course, Theorem 2.3 gives only an upper bound on the
deviation probability P (dist(x̂N , S∗) ≥ ε), so no definitive statements can be made.

Nevertheless, we shall see later specific situations where the pointwise rate of
convergence yields an asymptotically exact rate of convergence for the optimization
problem; in those cases, the superiority of one sampling scheme over another can be
established.

2.1.2. The finite/piecewise linear case. We derive now results that parallel
the ones in section 2.1.1 but with the following assumption in place of Assumption A2.

Assumption A3. Either (i) the feasibility set X is finite or (ii) X is compact,
convex, and polyhedral, the function G(·, ξ) is convex piecewise linear for every value
of ξ, and the distribution of ξ has finite support.

Assumption A3 is useful in the context of discrete stochastic optimization (case
(i)) or stochastic linear programs (case (ii)). The proposition below shows consistency
of the estimators. In the proposition (and elsewhere in this paper), the statement
“w.p.1 for N large enough” means that, with probability one, there exists an N0

such that, on each sample path of the underlying process, the condition holds for all
N > N0. The value of such N0 depends on the particular sample path. The proof
of the proposition follows a similar argument to that of Theorem 2.6 below and is
therefore omitted.

Proposition 2.5. Suppose that Assumptions A1 and A3 hold. Then
(i) ĝN (x) → g(x) uniformly on X w.p.1;
(ii) ν̂N → ν∗ w.p.1;
(iii) x̂N ∈ S∗ w.p.1 for N large enough.
Theorem 2.6. Consider problem (1.3), and suppose that Assumptions A3 and

B1 hold. Then there exist constants K > 0 and α > 0 such that

P (x̂N ∈ S∗) ≤ Ke−αN for all N ≥ 1.

Moreover, the constants K and α depend on the family of estimators {ĝN (·)} only
through the constants Cx and the exponent functions γx(·) in (2.1).

The proof of Theorem 2.6 will be based on the following lemma.
Lemma 2.7. Suppose that Assumption B1 holds and that the set X is finite.

Then, for any δ > 0, there exist positive constants A = A(δ) and α = α(δ) such that

(2.17) P (|ĝN (x) − g(x)| ≥ δ) ≤ Ae−αN for all x ∈ X and all N ≥ 1.

Moreover, there exists a positive constant K (also dependent on δ) such that

(2.18) P (|ĝN (x) − g(x)| < δ for all x ∈ X) ≥ 1 −Ke−αN for all N ≥ 1.

Proof. By setting α := minx∈X γx(δ) and A := maxx∈X Cx in (2.1), we immedi-
ately show (2.17). The proof of (2.18) follows a very similar argument to that in the
proof of Lemma 2.4 and is therefore omitted.

We return now to the proof of Theorem 2.6.
Proof. Suppose initially that X is finite. Let δ be defined as (1/2) minx∈X\S∗ g(x)−

ν∗. It is clear that, if |ĝN (x)− g(x)| < δ for all x ∈ X, we have ĝN (x) < ĝN (y) for all
x ∈ S∗ and all y ∈ X \S∗, i.e., x̂N ∈ S∗. Now suppose that the conditions in part (ii)
of Assumption A3 hold. Then, from Lemma 2.4 in [53], we know that there exists a
finite set of points {x1, . . . , x�} ∪ {y1, . . . , yq} such that xi ∈ S∗, yj ∈ X \ S∗ and, if
ĝN (xi) < ĝN (yj) for all i ∈ {1, . . . , 
} and all j ∈ {1, . . . , q}, then x̂N ∈ S∗ (in fact,
the set SN forms a face of S∗). Therefore, we can use the same argument as in the
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case where X is finite. We remark that similar results were derived in [23, 53] in the
i.i.d. context.

Next, by Lemma 2.7, the event {|ĝN (x) − g(x)| < δ for all x ∈ X} occurs with
probability at least 1 −Ke−αN (where both K and α depend on δ). It follows that

P (x̂N ∈ S∗) ≤ Ke−αN

as asserted. As argued in the proof of Theorem 2.3, δ does not depend on the particular
approximation ĝN (·), so the constants K and α depend on {ĝN (·)} only through the
constants Cx and the exponent functions γx(·) in Assumption B1.

We conclude this section by mentioning that an analogous form of Theorems 2.3
and 2.6 can be derived in case Assumption B1′ holds instead of B1. We state the
result below for completeness; the proof follows very similar steps to the proofs of
those theorems and is therefore omitted.

Theorem 2.8. Consider problem (1.3), and suppose that Assumption B1′ holds.
1. Suppose that Assumptions A2 and B1L hold. Then, given ε > 0, there exists

a constant α > 0 such that

(2.19) lim sup
N→∞

1

N
logP (dist(x̂N , S∗) ≥ ε) ≤ −α.

2. Suppose that Assumption A3 holds. Then there exists a constant α > 0 such
that

(2.20) lim sup
N→∞

1

N
logP (x̂N ∈ S∗) ≤ −α.

2.2. Convergence of estimators of optimal values. We consider now the
convergence of the optimal value of (1.3). In the previous section we showed that
an exponential rate of convergence for pointwise estimators leads to an exponential
rate of convergence for solutions of (1.3); here we will show that, in the context of
Assumption A3, a CLT-type result for pointwise estimators leads to a CLT-type result
for the optimal value of (1.3). Outside the context of A3, however, one needs more
than CLT for pointwise estimators.

We start by making the following probabilistic assumptions on the estimators
{ĝN (x)}.

Assumption B2. For each x ∈ S∗, the random variable WN (x) defined as

(2.21) WN (x) :=
ĝN (x) − g(x)

σN (x)
,

where σ2
N (x) := Var[ĝN (x)], is such that WN (x) converges in distribution to a stan-

dard Normal (denoted WN (x)
d→ Normal(0, 1)).

Of course, Assumption B2 holds in case of i.i.d. sampling under very mild assump-
tions—in that case it corresponds to the classical CLT (with σN (x) =

√
Var[G(x, ξ)]/N).

However, as we shall see later, B2 holds in other contexts as well. Note that we impose
Assumption B2 only on the set S∗ of optimal solutions to (1.1).

The lemma below states a property that will be used in what follows.
Lemma 2.9. Suppose that Assumptions A1 and A3 hold. Then

ĝN (x̂N ) − min
x∗∈S∗

ĝN (x∗) = 0 w.p.1 for N large enough.

Proof. We have already seen in Proposition 2.5 that, under Assumptions A1 and
A3, we have x̂N ∈ S∗ w.p.1 for N large enough. Consider now an arbitrary sample
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path where such a condition holds. Then there exists N0 such that x̂N ∈ S∗ for all
N > N0. That is, for each N > N0 there exists some point x∗(N) ∈ S∗ such that
x̂N = x∗(N). It follows that

ĝN (x̂N ) − ĝN (x∗(N)) = 0 for all N > N0.

By definition, x̂N minimizes ĝN (·) over X. Together with the above equality, this
implies that

ĝN (x̂N ) ≤ min
x∗∈S∗

ĝN (x∗) ≤ ĝN (x∗(N)) = ĝN (x̂N ) for all N > N0

and hence

ĝN (x̂N ) − min
x∗∈S∗

ĝN (x∗) = 0 for all N > N0.

We then have the following result for rates of convergence.
Theorem 2.10. Consider problem (1.3), and suppose that Assumptions A1 and

A3 hold. Suppose also that the estimators ĝN (x) have the same variance on the set
S∗ of optimal solutions to (1.1), i.e., the function σ2

N (·) is constant on S∗, and let
(σ∗

N )2 denote that common value. Then

(2.22)
ν̂N − ν∗

σ∗
N

− min
x∗∈S∗

WN (x∗)
d→ 0.

If, in addition, Assumption B2 holds and problem (1.1) has a unique optimal solution
(call it x∗), then

(2.23)
ν̂N − ν∗

σN (x∗)
d→ Normal(0, 1).

Proof. By Lemma 2.9 we have

ĝN (x̂N ) − ν∗

σ∗
N

− minx∗∈S∗ ĝN (x∗) − ν∗

σ∗
N

= 0 w.p.1 for N large enough.

Since convergence w.p.1 implies convergence in distribution, it follows that

ĝN (x̂N ) − ν∗

σ∗
N

− minx∗∈S∗ ĝN (x∗) − ν∗

σ∗
N

d→ 0

and hence

ĝN (x̂N ) − ν∗

σ∗
N

− min
x∗∈S∗

ĝN (x∗) − ν∗

σ∗
N

d→ 0.

Note that the term inside the min operation is actually WN (x∗). Moreover, by defi-
nition ĝN (x̂N ) = ν̂N , which then shows (2.22).

Suppose now that B2 holds and that S∗ = {x∗}. Then, since WN (x∗)
d→

Normal(0, 1), by using a classical result in convergence of distributions (see, e.g.,
[3, Theorem 3.1]), we conclude that

ν̂N − ν∗

σN (x∗)
d→ Normal(0, 1).
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The above result can be slightly strengthened in case the set S∗ is finite (say,
S∗ = {x1, . . . , x�}) and a multivariate version of Assumption B2 holds—namely, that
for some deterministic sequence {τN} such that τN → ∞ the multivariate process
τN (ĝN (x1) − g(x1), . . . , ĝN (x�) − g(x�)) converges in distribution to a random vector
Y with Normal distribution with mean vector zero and covariance matrix Σ. In that
case, by using a very similar argument to that used in [23], one can show directly that
τN (ν̂N − ν∗) converges in distribution to minx∗∈S∗ Y (x∗). We chose to present our
result in the above form because it requires only a univariate CLT.

As mentioned earlier, outside the context of Assumption A3 stronger conditions
are required. One possibility is to assume that Assumption A2 holds and that a version
of Assumption B2 for functional spaces holds for the space C(X) of continuous func-
tions defined on X. As discussed in [48], Assumption A2 suffices to ensure that each

G(·, ξ) is a random element of the space C(X), and hence ĝN (·) := N−1
∑N

j=1 G(·, ξ)
is also a random element of C(X). The validity of a CLT in that functional space,
in turn, implies that a convergence result such as (2.23) holds. This approach works
well in the i.i.d. context; see [48] for a discussion. However, we are not aware of other
contexts where a CLT in a functional space exists, so we do not elaborate further on
this topic.

3. Applications. We discuss now the application of the results developed in
section 2 to two classes of non-i.i.d. sampling techniques—namely, LHS and random-
ized QMC methods. Note that these techniques are devised to sample s-dimensional
random vectors U that are uniformly distributed on [0, 1]s and have independent com-
ponents. Given an s-dimensional random vector ξ with arbitrary distribution and not
necessarily independent components, it is always possible to write ξ = Ψ(U) for some
mapping Ψ : [0, 1]s �→ R

s, which is constructed by inverting the conditional distribu-
tion of ξj , given ξ1, . . . , ξj−1, j = 1, . . . , s; for details see, for example, [47]. In practice,
it is difficult to generate Ψ for a general multivariate distribution, so such a method
is typically used when either the distribution has a special form or the components
of ξ are independent. In the latter case, Ψ(u1, . . . , us) = (F−1

1 (u1), . . . , F
−1
s (us)),

where F−1
j is the inverse of the cumulative distribution function Fj of ξj , defined as

F−1
j (u) := inf{y ∈ Ξj : Fj(y) ≥ u}, and Ξj denotes the support of the distribution Fj .

For the remainder of this paper we assume that the components of ξ are independent.
Moreover, since G(x, ξ) = G(x,Ψ(U)), we will restrict the domain of G(x, ·) to Ξ1 ×
. . .Ξs. Sometimes we will refer to the function G(x,Ψ(·)), which is defined on [0, 1]s.

3.1. Latin hypercube sampling. Stratified sampling techniques have been
used in statistics and simulation for years (see, for instance, [11] and references
therein). Generally speaking, the idea is to partition the sample space and fix the
number of samples on each component of the partition, which should be proportional
to the probability of that component. This way we ensure that the number of sampled
points on each region will be approximately equal to the expected number of points
to fall in that region. It is intuitive that such a procedure yields a smaller variance
than crude Monte Carlo methods; for proofs see [11]. Notice, however, that, though
theoretically appealing, implementing such a procedure is far from trivial, since the
difficulty is to determine the partition as well as to compute the corresponding prob-
abilities.

There are many variants of this basic method, one of the most well known being
the so-called LHS, introduced in [31]. The LHS method operates as follows: Sup-
pose that we want to draw N samples from a random vector ξ with s independent
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components ξ1, . . . , ξs, each of which has a Uniform(0,1) distribution. The algorithm
consists of repeating the two steps below for each dimension j = 1, . . . , s:

1. Generate

Y 1 ∼ U

(
0,

1

N

)
, Y 2 ∼ U

(
1

N
,

2

N

)
, . . . , Y N ∼ U

(
N − 1

N
, 1

)
;

2. let ξij := Y π(i), where π is a random permutation of 1, . . . , N .

In [31], it is shown that each sample ξij (viewed as a random variable) has the
same distribution as ξj , which in turn implies that the estimators generated by the
LHS method are unbiased. In case of arbitrary distributions, the above procedure is
easily modified by drawing the sample as before and applying the inversion method
discussed at the beginning of section 3 to generate the desired random variates.

It is also shown in [31] that, under some conditions, the LHS method does indeed
reduce the variance compared to crude Monte Carlo methods. The papers [37, 55]
show that, asymptotically (i.e., as the sample size N goes to infinity), LHS is never
worse than crude Monte Carlo methods, even without the assumptions of [31]. More
specifically, VLHS ≤ N/(N − 1)VMC, where VLHS and VMC are the variances under
LHS and crude Monte Carlo methods, respectively.

3.1.1. Exponential rate of convergence. Suppose that the objective function
g(·) in (1.1) is approximated by a sample average calculated by using the LHS method;
i.e., for each i = 1, . . . , s, ξ1

i , . . . , ξ
N
i are samples of ξi (the ith component of ξ)

constructed by using the LHS method. Call the resulting estimator in (1.2) ĝLHS
N (x).

To study convergence properties of the approximating problem in (1.3), we shall use
the tools of section 2. Our first goal is to show that the family {ĝLHS

N (·)} satisfies
Assumption B1, so that we can apply Theorems 2.3 and 2.6 to ensure an exponential
rate of convergence.

We shall restrict our attention to functions satisfying the following assumption.
Assumption C1. For each x ∈ X, the function G(x, ·) is monotone in each com-

ponent. That is, for each i = 1, . . . , s and each δ > 0 we have

either G(x, z + δei) ≥ G(x, z) for all z ∈ R
s(3.1)

or G(x, z + δei) ≤ G(x, z) for all z ∈ R
s,(3.2)

where as customary ei denotes the vector with 1 in the ith component and zeros
otherwise.

An important case where such an assumption is satisfied is that of two-stage
stochastic linear programs with fixed recourse. In section 4 we discuss that case in
detail.

An alternative assumption is the following.
Assumption C1′. For each x ∈ X, the function G(x, ·) is additive; i.e., there

exist functions G1, . . . , Gs (all of them mapping R
n × R to R) such that G(x, ξ) =

G1(x, ξ1) + · · ·+Gs(x, ξs). Moreover, |E[Gj(x, ξj)]| < ∞, the functions Gj(x, F
−1
j (·))

have at most a finite number of singularities (i.e., points where the function approaches
±∞), and the set of points at which Gj(x, F

−1
j (·)) is discontinuous has Lebesgue

measure zero.
The importance of Assumptions C1 and C1′ in the present context is given by

the results below.
Theorem 3.1. Suppose that (i) Assumption C1 holds and (ii) for each x ∈ X,

the moment-generating function of G(x, ξ) (denoted φMC
x (t) := E[etG(x,ξ)]) is finite
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everywhere. Consider the LHS estimators ĝLHS
N (·) above defined and the corresponding

problem minx∈X ĝLHS
N (x). Let x̂LHS

N denote an optimal solution of that problem. Then
1. if Assumption A2 holds with a uniform Lipschitz constant L (i.e., L(·) ≡ L),

then given ε > 0 there exist constants K̃ > 0 and α̃ > 0 such that

(3.3) P
(
dist(x̂LHS

N , S∗) ≥ ε
)
≤ K̃e−α̃N for all N ≥ 1;

2. if Assumption A3 holds, then there exists a constant α̃ > 0 such that

(3.4) P
(
x̂LHS
N ∈ S∗) ≤ K̃e−α̃N for all N ≥ 1.

Moreover, in either case the exponent α̃ is at least as large as the corresponding
exponent obtained for standard Monte Carlo methods.

Proof. Let φN (x, t) := 1
N log E[etNĝLHS

N (x)]. If conditions (i) and (ii) above hold,
then by Proposition 6 in [9] we have φN (x, t) ≤ φMC

x (t) for all x and all t, and hence
it follows from Proposition 2.1 that Assumption B1 holds for {ĝLHS

N (·)}. Moreover, in
case 1 of the theorem (i.e., when Assumption A2 holds with L(·) ≡ L) Assumption B1L
is trivially satisfied. The two cases of the theorem then parallel Theorems 2.3 and
2.6, which shows (3.3) and (3.4).

The last assertion of the theorem is a consequence of the remark following the
proof of Theorem 2.3. Indeed, the arguments in the previous paragraph show that
the constants Cx and the exponent functions γx(·) used to show (2.1) are the same
for both LHS and standard Monte Carlo methods.

Although Theorem 3.1 guarantees only the same bounds for both LHS and stan-
dard Monte Carlo methods, a closer look at the proof of the inequality φN (x, ·) ≤
φMC
x (·) in [9] shows that such an inequality is essentially a consequence of Jensen’s

inequality, which often holds strictly; hence, generally speaking, LHS tends to behave
better than Monte Carlo methods.

In case Assumption C1′ holds instead of C1, we have the following stronger result.
Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied, but

Assumption C1′ holds instead of C1. Then the conclusions of Theorem 3.1 hold. In
addition, we have the following:

1. If Assumption A2 holds with a uniform Lipschitz constant L (i.e., L(·) ≡ L),
then

(3.5) lim
N→∞

1

N
logP

(
dist(x̂LHS

N , S∗) ≥ ε
)

= −∞.

2. If Assumption A3 holds, then

(3.6) lim
N→∞

1

N
logP

(
x̂LHS
N ∈ S∗) = −∞.

Proof. The proof of the first part of the theorem follows the same steps as the proof
of Theorem 3.1 (except that Proposition 4 in [9] is invoked instead of Proposition 6).

To show the second part, by writing each random variable ξj as F−1
j (Uj) (where

Uj ∼ U(0, 1)), we have that conditions (i) and (ii) of Theorem 3.1 ensure that the
assumptions of Theorem 3 in [9] are satisfied. The latter result, in turn, ensures that
Assumption B1′ holds with the function γx = ∞ everywhere except at zero, where
it is equal to zero. Then (3.5) and (3.6) follow from (2.19) and (2.20) in Theorem
2.8.

The strength of Theorem 3.2, of course, lies in the asymptotic results (3.5)–
(3.6), which show that in the additive case the rate of convergence under LHS is
superexponential.
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3.1.2. Central limit theorem. We study now the convergence of optimal val-
ues of the approximating problem (1.3) under LHS. To do so we shall apply the results
of section 2.2. Before that, however, we need to review some results related to the
ANOVA decomposition of a function.

Let U = (U1, . . . , Us) be an s-dimensional random vector of independent compo-
nents with uniform distribution on [0, 1]s and f : [0, 1]s −→ R an arbitrary measurable
function, and consider the problem of estimating I := E[f(U)]. It is shown in [55]
that, when E[f(U)2] < ∞, f can be decomposed as

(3.7) f(u1, . . . , us) = E[f(U)] +

s∑
k=1

fk(uk) + r(u1, . . . , us),

where fk(uk) = E[f(U) |Uk = uk] − E[f(U)] and r(u) is the residual term, which
satisfies E[r(U) |Uj = uj ] = 0 for all j and all uj . [55] also shows that the residual
term can be viewed as a “residual from additivity” in the following sense. We say that
a function g : [0, 1]s −→ R is additive if there exist unidimensional functions g1, . . . , gs
and a constant C such that g can be written as g(u1, . . . , us) = C +

∑
k gk(uk) for

almost all u ∈ [0, 1]s (where “almost all” refers to the Lebesgue measure). Then the
additive function fa : [0, 1]s −→ R, defined as fa(u1, . . . , us) = E[f(U)]+

∑s
k=1 fk(uk),

is the best additive fit to f in the L2-norm; i.e., it minimizes E[(f(U) − g(U))2] over
all additive functions g. Note that if f is itself additive, then the residual r(u) =
f(u) − fa(u) will be equal to zero almost everywhere (a.e.); conversely, if r(u) = 0
a.e., then f(u) = fa(u) a.e., so in that case f is additive.

The variance of the estimator ILHS (defined as ILHS := N−1
∑N

i=1 f(U i), where
U1, . . . , UN are samples drawn with LHS) satisfies

(3.8) σ2
N := Var[ILHS] = N−1

E
[
(r(U))2

]
+ o(N−1);

see [55]. By using (3.7) and (3.8), it is shown in [33] that, when f is bounded, a CLT
holds for the estimator ILHS under LHS. More specifically, it is shown that

(3.9) N1/2(ILHS − I)
d→ Normal(0, σ2), where σ2 := E[(r(U))2].

Next, notice that from (3.8) we can write

ILHS − I

σN
=

N1/2(ILHS − I)[
σ2 + o(N−1)

N−1

]1/2
.

Since N1/2(ILHS−I)
d→ Normal(0, σ2) and the deterministic sequence {[σ2+ o(N−1)

N−1 ]1/2}
converges to σ, it follows from a classical result in probability theory (see, e.g., [3, p.
29]) that, when σ > 0,

(3.10)
ILHS − I

σN

d→ 1

σ
Normal(0, σ2) = Normal(0, 1).

Notice that the condition E[f(U)2] < ∞ also implies that a strong law of large
numbers holds for LHS, i.e.,

(3.11) |ILHS − I| → 0 w.p.1;

for a proof, see [27].
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By applying (3.10) to our setting we see that Assumption B2 holds for LHS when,
for every x ∈ S∗, the random variable G(x, ξ) is bounded and the function G(x,Ψ(·))
has a nonzero ANOVA residual. As seen above, the latter condition means that
G(x,Ψ(·)) is not additive; i.e., it cannot be written in the form C +

∑
k gk(uk). It is

easy to see that this is equivalent to saying that the function G(x, ·) is not additive;
note that here we extend the definition of additivity to the domain of G(x, ·), which
as discussed before is restricted to the support of ξ.

On the other hand, if E[G(x, ξ)2] < ∞ for all x ∈ X, then (3.11) implies that As-
sumption A1 holds. Thus, under additional assumptions we can apply Theorem 2.10
and Propositions 2.2 and 2.5. We summarize the result in the theorem below.

Theorem 3.3. Consider the LHS estimators ĝLHS
N (·) defined above and the cor-

responding problem minx∈X ĝLHS
N (x). Let x̂LHS

N and ν̂LHS
N denote, respectively, an

optimal solution and the optimal value of that problem. Suppose that E[G(x, ξ)2] < ∞
for all x ∈ X.

1. If Assumption A2 holds, then dist(x̂LHS
N , S∗) → 0 w.p.1 and ν̂LHS

N → ν∗ w.p.1.
2. If Assumption A3 holds, then x̂LHS

N ∈ S∗ w.p.1 for N large enough and
ν̂LHS
N → ν∗ w.p.1. In addition, if problem (1.1) has a unique optimal so-

lution (call it x∗), the random variable G(x∗, ξ) is bounded, and the function
G(x∗, ·) is not additive, then

ν̂LHS
N − ν∗

σN (x∗)
d→ Normal(0, 1),

where σ2
N (x∗) is the variance of ĝLHS

N (x∗). Moreover, there exists a positive
constant C such that

(3.12) σ2
N (x∗) = N−1C + o(N−1).

Theorem 3.3 shows that the rate of convergence of optimal values under LHS
(under the conditions of case 2 of the theorem) is N−1/2. Thus, compared to standard
Monte Carlo methods we can see that, although LHS will likely reduce the variance
of pointwise estimators, it cannot improve the rate of convergence unless G(x∗, ·) is
additive; in that case, we expect the convergence rate to be much faster. Indeed,
recall from Theorem 3.2 that, under the assumptions of that theorem (which include
additivity), the convergence of optimal solutions is superexponential. Note also that,
when S∗ is finite (but not necessarily a singleton), G(x∗, ξ) is bounded, and G(x∗, ·)
is not additive for all x∗ ∈ S∗, the stronger result discussed in the paragraph following
the proof of Theorem 2.10 applies with τN = N1/2, since the aforementioned CLT
result proved in [33] is also valid in a multivariate context.

3.2. Randomized QMC. For completeness, we provide in this section a brief
review of QMC techniques. We follow mostly [32], which we refer to for a compre-
hensive treatment of QMC concepts. Let U be an s-dimensional random vector with
uniform distribution on [0, 1]s and f : [0, 1]s −→ R an arbitrary function, and consider
the problem of estimating I := E[f(U)].

The basic idea of QMC is to calculate a sample average estimate as in the standard
Monte Carlo method, but, instead of drawing a random sample from the uniform
distribution on [0, 1]s, a certain set of points u1, . . . , uN on space [0, 1]s is carefully
chosen. The deterministic estimate

(3.13) IQMC :=
1

N

N∑
i=1

f(ui)
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is constructed. A key result is the so-called Koksma–Hlawka inequality, which, roughly
speaking, states that the quality of the approximation given by IQMC depends on the
quality of the chosen points (measured by the difference between the corresponding
empirical measure and the uniform distribution, which is quantified by the so-called
star discrepancy) as well as on the nature of the function f (measured by its total
variation). A great deal of the research on QMC methods aims at determining ways
to construct low-discrepancy sequences, i.e., sequences of points u1, u2, . . . for which
the star discrepancy is small for all N . A particular type of sequence that has proven
valuable is defined in terms of (t,m, s)-nets. We need some definitions before delving
into more details, which we do next.

Let b ≥ 2 be an arbitrary integer called the base. An elementary interval in base
b (in dimension s) is a subinterval E of [0, 1]s of the form

E =

s∏
j=1

[
aj
bdj

,
aj + 1

bdj

]

for nonnegative integers {aj} and {dj} such that aj < bdj for all j. The volume of

E is b−
∑

j dj . Next, let t and m be nonnegative integers such that t ≤ m. A finite
sequence of bm points is a (t,m, s)-net in base b if every elementary interval in base
b of volume bt−m contains exactly bt points of the sequence. A sequence of points
u1, u2, . . . is a (t, s)-sequence in base b if, for all integers k ≥ 0 and m > t, the set of
points consisting of the un such that kbm ≤ n < (k + 1)bm is a (t,m, s)-net in base b.

The advantage of (t,m, s)-nets becomes clear from a result due to Niederreiter
[32, Theorems 4.10 and 4.17], who shows that the error |IQMC − I| is (i) of order
(logN)s−1/N when IQMC is computed from a (t,m, s)-net in base b with m > 0 and
(ii) of order (logN)s/N when IQMC is computed from the first N ≥ 2 terms of a
(t, s)-sequence in base b. Note that in case (i) N must be equal to bm, whereas in
case (ii) N is arbitrary, which explains the weaker bound. In either case, it is clear
that, asymptotically, the error is smaller than N−1/2 given by standard Monte Carlo
methods.

Despite the advantage of QMC with respect to error rates, the method has two
major drawbacks:

(a) The bounds provided by the Koksma–Hlawka inequality involve difficult-to-
compute quantities such as the total variation of f ; i.e., they yield qualitative
(rather than quantitative) results. Hence, obtaining an exact estimate of the
error may be difficult.

(b) A comparison of the functions (logN)s/N and N−1/2 shows that, even though
asymptotically the error from QMC is smaller than the error from standard
Monte Carlo methods, such an advantage does not appear until N is very
large, unless s is small.

These difficulties have long been realized by the QMC community, and various reme-
dies have been proposed. A common way to overcome difficulty (a) above is to in-
corporate some randomness into the choice of QMC points. By doing so, errors can
be estimated by using standard methods, e.g., via multiple independent replications.
This is the main idea of randomized QMC methods (RQMC); see [12, 38] for detailed
discussions.

One particular technique we are interested in using relies on “scrambling” the
decimal digits of each point of a (t, s)-sequence in a proper way. This idea was
proposed in [34] and has gained popularity due to the nice properties of the randomized
sequence. We shall use these properties below.
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3.2.1. Using QMC in optimization. Consider again the family of estimators
defined in (1.2). Suppose that {ξi} is generated by a (t, s)-sequence, and call the

resulting family {ĝQMC
N (x)}.

Let us fix x ∈ X for a moment. As argued by the authors of [40]—who in turn cite
a result in [30]—the empirical measure defined by a QMC sequence converges weakly
to the uniform distribution, provided that the star discrepancy of that sequence goes
to zero, which is the case of (t, s)-sequences. It follows from [3, Theorem 2.7] that,

if G(x, ξ) is bounded, then ĝQMC
N (x) → g(x) as N → ∞. Now suppose that {ξi} is

generated by a scrambled (t, s)-sequence, and call the corresponding estimator ĝRQMC
N .

In [35] it is shown that scrambled (t, s)-sequences are (t, s)-sequences with probability
one, which then implies that

(3.14) ĝRQMC
N (x) → g(x) w.p.1.

Moreover, ĝRQMC
N (x) is an unbiased estimator of g(x), i.e., E[ĝRQMC

N (x)] = g(x).
Notice that the term “with probability one” above refers to the probability space
where the random variables defining the permutations that are part of the scrambling
algorithm lie. We assume that this probability space is the same as the one where the
random vectors ξ are defined.

For some of the results that follow we will need the following assumption.
Assumption D1. The following conditions hold for each x ∈ S∗:

(3.15)

∣∣∣∣ ∂s

∂u1 . . . ∂us
G(x,Ψ(u1, . . . us)) −

∂s

∂u1 . . . ∂us
G(x,Ψ(v1, . . . vs))

∣∣∣∣ ≤ B‖u− v‖β

(for some B > 0 and some β ∈ (0, 1]), and

(3.16)

∫
[0,1]s

[
∂s

∂u1 . . . ∂us
G(x,Ψ(u1, . . . us))

]2

du > 0,

where Ψ(u1, . . . us) = (F−1
1 (u1), . . . , F

−1
s (us)).

A few remarks about cases where Assumption D1 is satisfied are now in order.
Suppose momentarily that G is infinitely differentiable in the second argument and
that each F−1

j is differentiable as well. Then we have

∂

∂u1
G(x, F−1

1 (u1), . . . , F
−1
s (us))

=
∂

∂ξ1
G(x, ξ1, F

−1
2 (u2) . . . , F

−1
s (us))

∣∣∣∣
ξ1=F−1

1 (u1)

∂

∂u1
F−1

1 (u1),

so, by repeating the calculation for the higher-order mixed derivatives, we obtain

H(u1, . . . , us) :=
∂s

∂u1 . . . ∂us
G(x, F−1

1 (u1), . . . , F
−1
s (us))

(3.17)

=
∂s

∂ξ1 . . . ∂ξs
G(x, ξ1, . . . , ξs)

∣∣∣∣ξj=F
−1
j (uj)

j=1,...,s

∂

∂u1
F−1

1 (u1) . . .
∂

∂us
F−1
s (us).(3.18)

It follows that, if the gradient of the function H defined in (3.17) is uniformly bounded
for all u ∈ [0, 1]s, then H is Lipschitz (see, e.g, [2, Corollary 40.6]); i.e., (3.15) holds.
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A sufficient condition for uniform boundedness of ∇H(u) on [0, 1]s is its continuity
on [0, 1]s. Equation (3.18) shows that continuous differentiability of G (up to order
s+ 1) and F−1

j , j = 1, . . . , s (up to second order), on the closed set [0, 1]s suffices for

that. Of course, imposing a continuous differentiability assumption on F−1
j restricts

the type of distributions that can be used; we shall return to that issue shortly.
Condition (3.16) essentially says that interactions of order up to s are significant,

at least on a set of positive probability. For example, (3.16) does not hold if G(x, ·)
is linear for x ∈ S∗, since the mixed derivatives of any order bigger than 1 are equal
to zero. Situations like that suggest that the effective dimension (see [35]) of the
problem is less than s—indeed, in the linear case the effective dimension is 1. In that
case, one should apply QMC only to the most significant variables, for which mutual
interaction is significant.

By applying the above results on RQMC to the general context of section 2.2, we
obtain the following.

Theorem 3.4. Consider the RQMC estimators ĝRQMC
N (·) above defined and the

corresponding problem minx∈X ĝRQMC
N (x). Let x̂RQMC

N and ν̂RQMC
N denote an optimal

solution and the optimal value of that problem, respectively. Suppose that G(x, ξ) is
bounded for all x ∈ X.

1. If Assumption A2 holds, then dist(x̂RQMC
N , S∗) → 0 w.p.1 and ν̂RQMC

N → ν∗

w.p.1.
2. If Assumption A3 holds, then x̂RQMC

N ∈ S∗ w.p.1 for N large enough and

ν̂RQMC
N → ν∗ w.p.1. If, in addition, Assumption D1 holds, problem (1.1) has

a unique optimal solution (call it x∗), and the samples {ξi} are generated by
a scrambled (0,m, s)-net (i.e., t = 0), then

(3.19)
ν̂RQMC
N − ν∗

σN (x∗)
d→ Normal(0, 1),

where σ2
N (x∗) is the variance of ĝRQMC

N (x∗). Moreover, in the latter case
there exist positive constants c and C such that

(3.20) c
(logb N)s−1

N3
≤ σ2

N (x∗) ≤ C
(logb N)s−1

N3

as m → ∞.
Proof. Let us fix x ∈ X. The assertion in case 1 and the first assertion in

case 2 follow directly from (3.14) (which implies that Assumption A1 holds) and
Propositions 2.2 and 2.5.

Consider now the random variable W (x) defined as

(3.21) W (x) :=
ĝRQMC
N (x) − g(x)

σN (x)
,

where σ2
N (x) := Var[ĝRQMC

N (x)]. Here we resort to a key result on scrambled (t,m, s)-
nets proved in [28]—building upon previous results in [35, 36]—that says that a CLT
holds for pointwise estimators constructed with a scrambled (0,m, s)-net. Assumption
D1 translates the conditions in [28] into our notation. It follows that, under D1, W (x)
converges in distribution to the standard normal for each x ∈ S∗; i.e., Assumption B2
holds and hence the conclusion follows from Theorem 2.10.

Theorem 3.4 shows the benefits of using RQMC methods in optimization. Es-
sentially, it says that, in the setting of case 2 of the theorem, the convergence rate
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of optimal values is of order [(logN)s−1/N3]1/2, which asymptotically is better than
the N−1/2 obtained with standard Monte Carlo methods. This suggests that RQMC
methods can be very efficacious for stochastic optimization. Note, however, that,
strictly speaking, (3.19) applies only to the case where X is finite, since the assump-
tion of finite support of ξ in the second case of Assumption A3 conflicts with the
smoothness condition in Assumption D1. We will discuss the smoothness issue in
more detail later. Note also that (3.19) is valid only for scrambled (0,m, s)-nets,
which restricts the choice of the base b—as shown in [32], when m ≥ 2 a (0,m, s)-net
in base b can exist only if b ≥ s− 1.

4. Two-stage stochastic programs. In this section we discuss the application
of the results outlined in the previous sections to two-stage stochastic linear programs
(see, e.g., [4] for a comprehensive discussion of this class of problems). We consider
problems of the form

(4.1) min
x∈X

ctx + E[Q(x, ξ)],

where X is a convex polyhedral set,

(4.2) Q(x, ξ) = inf
{
qty : Wy ≤ h− Tx, y ≥ 0

}
,

and ξ = (h, T ). As before, ξ is an s-dimensional random vector with arbitrary
distribution. Let G(x, ξ) denote the function ctx + Q(x, ξ); then we see that the
the above problem falls in the framework of (1.1).

The use of Monte Carlo sampling to solve two-stage problems has been extensively
studied in the literature, from both algorithmic (e.g., [17, 19, 26, 52]) and theoretical
perspectives (see, for instance, [50] for a compilation of results).

Note that the function Q(x, ξ) can be written in the form Q(x, ξ) = Q̃(h− Tx),
where

(4.3) Q̃(z) = inf
{
qty : Wy ≤ z, y ≥ 0

}
.

By duality, we see that the function Q̃(·) can be represented in the form

(4.4) Q̃(z) = sup{utz : W tu ≤ q, u ≤ 0}.

For the sake of simplicity we assume that (i) for every vector z the system Wy ≤ z,
y ≥ 0, has a solution (the recourse is complete) and (ii) the system W tu ≤ q, u ≤ 0,
has a solution (dual feasibility). Under these assumptions, Q̃(·) is a finite-valued,
piecewise linear convex function. This in turn implies that the function G(x, ξ) is also
piecewise linear convex in each argument and can be written as

(4.5) G(x, ξ) = max
k=1,...,r

ctx + (vk)t(h− Tx),

where v1, . . . , vr are the vertices of the polyhedron {u : W tu ≤ q, u ≤ 0}. Fur-
thermore, by standard subdifferential calculus we have that the subdifferential set of
G(x, ξ) with respect to x is given by

(4.6) ∂xG(x, ξ) = conv{c− T tvk : G(x, ξ) = ctx + (vk)t(h− Tx), k = 1, . . . , r},

where “conv” denote the convex hull of the set.
In the discussion that follows we assume that the feasibility set X is compact.
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4.1. LHS results. In order to apply the results for LHS discussed in section 3.1,
we need to verify that the corresponding assumptions are satisfied.

Assume momentarily that the matrix T is deterministic, so that ξ = h. Con-
sider Assumption A2. It follows from (4.6) that ∂xG(x, ξ) is uniformly bounded for
all x and all ξ, and thus, by a version of the mean-value theorem for subdifferen-
tiable functions (see, e.g., [18, Theorem VI.2.3.3]), we conclude that A2 holds with
a constant L such that L(·) ≡ L. Next, notice that from (4.3) we have G(x, ξ) =
min {qty : Wy ≤ ξ − Tx, y ≥ 0}. Thus, for any δ > 0 we have G(x, ξ + δei) ≤
G(x, ξ); i.e., Assumption C1 holds.

It follows from the above discussion and from Theorem 3.1 that, if the moment-
generating function of G(x, ξ) is finite everywhere for all x, then given ε > 0 there
exist constants K̃ > 0 and α̃ > 0 such that

P
(
dist(x̂LHS

N , S∗) ≥ ε
)
≤ K̃e−α̃N for all N ≥ 1.

Moreover, the exponent α̃ is at least as large as the corresponding exponent obtained
for standard Monte Carlo methods. This suggests that convergence under LHS will
indeed be faster than under standard Monte Carlo methods.

As mentioned earlier, G(·, ξ) is piecewise linear. Thus, if ξ has finite support,
then Assumption A3 holds, so from Theorem 3.1 we have

P
(
x̂LHS
N ∈ S∗) ≤ K̃e−α̃N for all N ≥ 1.

It is fruitful to compare the above result with the i.i.d. case derived in [53]. Indeed,
when problem (4.1) has a unique solution x∗, a slightly modified proof of Theorem
3.2 in [53] shows that there exists β > 0 such that

(4.7) lim sup
N→∞

1

N
logP (x̂N = x∗) = −β,

where x̂N is the solution obtained with standard Monte Carlo methods. Moreover,
the constant β is given by the minimum of a number of pointwise rates −γx(δ0) in
(2.1) (for a fixed δ0 > 0) over a finite number of x’s. Since finite support of ξ implies
that the moment-generating function of G(x, ξ) is finite everywhere for all x, it follows
from Proposition 6 in [9] that the pointwise rates −γx(δ0) under LHS are no worse
than under Monte Carlo methods. It follows that, when LHS is applied, an equation
similar to (4.7) holds and the resulting constant β is no worse than under Monte Carlo
methods. Since the rate in (4.7) is exact, we conclude that LHS can only improve
upon Monte Carlo methods in this setting.

Next, we apply Theorem 3.3 to the present context. As seen above, Assump-
tion A2 holds if T is deterministic. Note that A2 holds even if we allow T to be
random (i.e., ξ = (h, T )), as long as the distribution of ξ has bounded support, since
in that case ∂xG(x, ξ) in (4.6) is uniformly bounded for all x. Moreover, under such a
condition (4.5) clearly implies that G(x, ξ) is bounded for each x. Theorem 3.3 then
ensures that dist(x̂LHS

N , S∗) → 0 w.p.1 and ν̂LHS
N → ν∗ w.p.1. Now suppose again that

the distribution of ξ has finite support, so Assumption A3 holds. Then x̂LHS
N ∈ S∗

w.p.1 for N large enough and ν̂LHS
N → ν∗ w.p.1. It follows that, if problem (1.1) has

a unique optimal solution x∗ and G(x∗, ·) is not additive, then

ν̂LHS
N − ν∗

σN (x∗)
d→ Normal(0, 1),
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where σN (x∗) := Var[ĝLHS
N (x∗)] = N−1C+o(N−1) for some positive constant C. Note

that the nonadditivity assumption is reasonable in this setting, since at the optimal
solution x∗ typically it happens that the maximum in (4.5) is achieved by more than
one k, so G(x∗, ·) is not linear.

4.2. QMC results. We now apply the results from section 3.2 to the two-stage
stochastic programming model described above. As seen above, a sufficient condition
for Assumption A2 to hold is that the distribution of ξ have bounded support. In that
case, we have from Theorem 3.4 that dist(x̂RQMC

N , S∗) → 0 w.p.1 and ν̂RQMC
N → ν∗

w.p.1. When ξ has finite support (i.e., Assumption A3 holds), we obtain a stronger

result, namely, that x̂RQMC
N ∈ S∗ w.p.1 for N large enough.

The second part of Theorem 3.4—which deals with convergence rates—unfortun-
ately is not applicable in this context. The reason, as pointed out in the discussion
following Theorem 3.4, is that the smoothness condition stated in Assumption D1
cannot hold in this case, since G(x, ·) is nondifferentiable for each x. Moreover,
the assumption that ξ has finite support causes the inverse cumulative distribution
function (cdfs) F−1

j to be discontinuous. Note, however, that, as recognized in [28],
the smoothness condition in Assumption D1 is only sufficient for the proof of the
CLT for scrambled (0,m, s)-nets. Indeed, as the numerical experiments in section 5
show, it appears that the rates obtained with Theorem 3.4 are sometimes valid in
the stochastic programming context considered above even though the smoothness
condition does not apply.

5. Numerical experiments. To illustrate the ideas set forth in the previous
sections, we discuss now some numerical experiments conducted with two small prob-
lems available in the literature. The first problem is APL1P, a model for electric power
capacity expansion on a transportation network that was first described in [19]. The
second problem is LandS, a modification of a simple problem in electrical investment
planning originally presented in [29]. The modified version we study is the one dis-
cussed in [26].

APL1P. APL1P has 2 decision variables with 2 constraints (plus lower bound
constraints) on the first stage and 9 decision variables with 5 constraints (plus lower
bound constraints) on the second stage. The random variables appear on both the
right-hand side and the technology matrix of the second stage. There are s = 5
independent random variables. The number of realizations per random variable yields
a total of 4×5×4×4×4 = 1280 scenarios. With current computing power, this problem
can be easily solved exactly; nevertheless, we present the results with sampling because
from that perspective the problem is ill-conditioned (cf. [54]), which means that the
approximating solutions x̂N are likely to vary with replications. That, in turn, ensures
that the objective value estimators ν̂N do not correspond to the same solution—if they
did, the analysis of rate of convergence would reduce to that of pointwise estimation.
Thus, we view this case as a good test for the theoretical results presented in the paper.

We adopted the following methodology. We solved the approximating problem
(1.3) by using samples generated with standard Monte Carlo methods, LHS, and
randomized (t, s)-sequences in base 5—which, as discussed in section 3.2, is a form
of RQMC. For each sampling scheme, we solved the problem with sample sizes equal
to successive powers of the base, ranging from 52 to 56. The choice for such sample
sizes was driven by two factors: (i) the restriction on the choice of the base in order
for a (0,m, s)-net to exist (b ≥ s − 1; cf. the discussion following Theorem 3.4), and
(ii) the restriction on sample sizes to be powers of the base in order for a sequence to
be a (t,m, s)-net. We feel that the two restrictions together would be rather limiting
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Fig. 5.1. Rates of convergence for the APL1P problem using base 5 (left) and base 2 (right).

in practice; thus, we also present results with base 2, which in addition yields faster
generators [13].

For each sample size, twenty-five replications were run, and the standard deviation
of the estimators ν̂N over these replications was calculated. All simulations used
independent random streams. By plotting the logarithm of the standard deviation
against the logarithm of the sample size, we can visualize the rate of convergence—for
example, with standard Monte Carlo methods one expects to obtain a straight line
with slope −1/2. We also calculated the mean-squared error of the estimators, but,
since the results were very similar (in this problem, the bias was much smaller than
the standard deviation), we chose not to display them.

The sampling approximation problems were solved in two steps: First, we used
the SUTIL library [5] to generate the linear programs corresponding to each sampled
problem. SUTIL can construct MPS files for Monte Carlo sampling approximations of
two-stage stochastic linear programs; we modified the library slightly to incorporate
LHS and randomized (t, s)-sequences, by using the publicly available routines devel-
oped in [13]. The resulting MPS files were fed into the software package Xpress–MPTM

from Dash Optimization (available to us under the Academic Partnership Program).
Figure 5.1 shows the results. We can see that both Monte Carlo methods and

LHS yield a convergence rate of N−1/2, thus corroborating the results of [48] for
Monte Carlo methods and of Theorem 3.3 for LHS. The rate for RQMC for both
bases appears to be of order N−1 (although that is more evident with base 5), which
is not as good as the rate in Theorem 3.4; a possible explanation is the absence of
the smoothness assumed for that result. It is clear from the figure that the rate
obtained with RQMC in either case is better than with both Monte Carlo methods
and LHS. Note also that both LHS and RQMC yield estimators with smaller variance
than Monte Carlo methods—even though the rate of convergence (in the case of LHS)
is the same as that of Monte Carlo methods—and that the variance with RQMC is
smaller than with LHS except for very small sample sizes.

LandS. The LandS problem has 4 decision variables on the first stage and 12
decision variables on the second stage. Randomness appears only on the right-hand
side of the second stage, in the form of demand constraints. There are s = 3 indepen-
dent random variables, each with 100 possible realizations. Thus, the total number
of scenarios is 106.

The methodology we adopted was the same as in the APL1P case, except that
used bases 3 and 2. Figure 5.2 shows the results. Again, we see that both Monte
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Fig. 5.2. Rates of convergence for the LandS problem using base 3 (left) and base 2 (right).
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Fig. 5.3. Rates of convergence (left) and values of the estimate ν̂N (right) for the APL1P
problem under RQMC with smoothing, using base 2.

Carlo methods and LHS yield a convergence rate of N−1/2, and the rate for RQMC
appears to be of order N−1. As in the previous example, the RQMC rate is better
than the Monte Carlo and LHS rates, both LHS and RQMC yield estimators with
smaller variance than Monte Carlo methods, and the variance with RQMC is smaller
than with LHS.

A brief study of smoothness. To check the role of the lack of smoothness in the
convergence rates, we considered the effect of smoothing the inverse cdfs F−1

i . This

was accomplished by replacing F−1
i with a smooth function FΔ

i such that F−1
i and FΔ

i

coincide everywhere except on a interval of size 2Δ around each discontinuity point.
Figures 5.3 and 5.4 depict the results. In general, such a smoothing procedure

may introduce bias; this is clearly seen in case of the APL1P problem, where smoothing
does not seem to help much, at least for base 2. With LandS, however, smoothing
works perfectly—with Δ = 0.005 we obtain the rate predicted by Theorem 3.4 without
incurring virtually any bias, even though the theorem is not directly applicable in the
absence of Assumption A3 (the smoothed distribution does not have finite support).

As another way to verify the effect of smoothness, we modified the APL1P prob-
lem by fitting continuous distributions to the discrete data. More precisely, we used
Weibull distributions for each of the five random variables in the problem, in such
a way that the mean and variance of the random variables were approximately the
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Fig. 5.5. Rates of convergence for the modified APL1P problem with Weibull distributions,
using base 5 (left) and base 2 (right).

same as in the original data. Figure 5.5 depicts the results, again for bases 2 and 5.
We see that the rates of convergence behave somewhat similarly to the discrete case,
although the benefits of using RQMC seem slightly higher in the continuous case.

These results suggest that Theorem 3.4 may be valid under more general condi-
tions than those we have used.

6. Conclusions. The theoretical and numerical results in this paper suggest
that alternative sampling methods such as LHS and QMC can be very effective when
solving stochastic optimization problems via sample average approximations. The
effectiveness is measured in terms of rates of convergence of estimators of optimal so-
lutions and of optimal values as functions of the sample size. The main contribution
of the paper is establishing that rates of convergence for pointwise estimators (i.e.,
estimation of integrals) carry over to estimators of optimal values/solutions, which
allows for the use of results for pointwise estimation available in the literature. In par-
ticular, the results in the paper show that, under appropriate conditions, it is possible
to obtain a rate of convergence of order [(logN)s−1/N3]1/2 for the approximating op-
timal values ν̂N , which asymptotically is much better than the N−1/2 obtained with
standard Monte Carlo methods.
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Such results are very encouraging and at the same time raise some interest-
ing issues for further investigation. One topic concerns the effect of smoothing on
the rates of convergence when using RQMC—as discussed earlier, the “ideal” rate
[(logN)s−1/N3]1/2 derived in Theorem 3.4 seems to require smoothness of the in-
verse cdf and of the objective function. However, our numerical results suggest that
such conditions may not be necessary. Moreover, it is important to mention that The-
orem 2.10 is valid regardless of any smoothness conditions. That is, if one shows that
a CLT holds for RQMC under nonsmooth (or potentially discontinuous) functions
with a certain rate, then Theorem 2.10 will ensure that under appropriate conditions
the optimal value estimators ν̂RQMC

N converge at the same rate. The result in [28]
used in the proof of Theorem 3.4 is, however, the only CLT-type result available for
RQMC, at least to the best of our knowledge.

On the other hand, our experiments also suggest that Theorem 3.4 is valid even
when Assumption A3 does not hold. This is not surprising—as we mentioned earlier,
it is possible that a functional version of Assumption B2 holds for the functional space
C(X) under RQMC, in which case the conditions of Assumption A3 would not be
required; however, we are not aware of the existence of such a result.

It would also be interesting to study the precise effect of having multiple optimal
solutions on the rates of convergence of optimal values—the main results we have ob-
tained for that case under LHS and RQMC (Theorems 3.3 and 3.4) require uniqueness
of the optimal solution. Such a task, however, is likely to require again a functional
or at least multivariate version of Assumption B2 (we note that multivariate CLTs
have been proved for LHS but not for RQMC).

Another important issue concerns the dimensionality of the problems. It is
well known that the performance of RQMC methods worsens with the number of
dimensions—indeed, it is easy to see that, when s is large, the term [(logb N)s−1/N3]1/2

becomes smaller than N−1/2 only for large N . For example, with s = 30 and b = 2
one needs N ≥ 216 to get the benefits of the RQMC approach. This suggests that
RQMC sampling should be used only with some of the random variables involved in
the problem; however, determining which ones to select is a nontrivial issue. Research
on this topic is underway.
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1. Introduction. Two-stage stochastic programming models are derived from
random optimization problems with information constraints. In the present paper we
start out from the following random mixed-integer linear program:

min{c�x + q�y : Tx + Wy = z(ω), x ∈ X, y ∈ Z
m̄
+ × R

m′

+ }(1)

together with the information constraint that x must be selected without anticipation
of z(ω). This leads to a two-stage scheme of alternating decision and observation:
The decision on x is followed by observing z(ω), and then y is taken, thus depending
on x and z(ω). Accordingly, x and y are called first- and second-stage decisions,
respectively.

Assume that the ingredients of (1) have conformable dimensions, that W is a
rational matrix, and that X ⊆ R

m is a nonempty polyhedron, possibly involving
integer requirements to components of x.

The mentioned two-stage dynamics becomes explicit by the following reformula-
tion of (1):

min
x

{
c�x + min

y
{q�y : Wy = z(ω) − Tx, y ∈ Z

m̄
+ × R

m′

+ } : x ∈ X
}

= min
x

{c�x + Φ(z(ω) − Tx) : x ∈ X},(2)

where

Φ(t) := min{q�y : Wy = t, y ∈ Z
m̄
+ × R

m′

+ }.(3)

∗Received by the editors December 19, 2006; accepted for publication (in revised form) February
11, 2008; published electronically June 11, 2008. The first version of this paper was written while the
third author was visiting the Centro de Modelamiento Matematico, Universidad de Chile, Santiago.
Partial funding for this research was provided by the German Federal Ministry of Education and
Research (BMBF) under grant 03-SCNIVG. We thank these institutions for their support.

http://www.siam.org/journals/siopt/19-2/67805.html
†Department of Mathematics, University of Duisburg-Essen, Campus Duisburg, Forsthausweg 2,

D-47048 Duisburg, Germany (gollmer@math.uni-duisburg.de, neise@math.uni-duisburg.de, schultz@
math.uni-duisburg.de).

552



STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 553

The function Φ, called the value function of the mixed-integer linear program

min{q�y : Wy = t, y ∈ Z
m̄
+ × R

m′

+ },

has been studied in parametric optimization. Under the assumptions
(A1) (complete recourse) W (Zm̄

+ × R
m′

+ ) = R
s,

(A2) (sufficiently expensive recourse) {u ∈ R
s : W�u ≤ q} �= ∅,

it holds that Φ is real-valued and lower semicontinuous on R
s, i.e., lim inftn→t Φ(tn) ≥

Φ(t) for all t ∈ R
s [2, 7].

In view of (2), the random optimization problem (1) gives rise to the family of
random variables (

c�x + Φ(z(ω) − Tx)
)
x∈X

.(4)

Thus every first-stage decision x ∈ X induces a random variable f(x, z) := c�x +
Φ(z(ω) − Tx). Traditional two-stage stochastic programming aims at optimizing
nonanticipative decisions, i.e., finding a best x, or in other words a best member
in the family (4) of random variables. For the specification of best, statistical param-
eters reflecting mean and/or risk are employed. Early approaches in the literature
used the expectation, leading to optimization problems

min{E[f(x, z)] : x ∈ X}.(5)

Employing the weighted sum of E and some risk measure R leads to mean-risk models

min{E[f(x, z)] + ρ · R[f(x, z)] : x ∈ X} (ρ > 0 fixed).(6)

There is an extensive literature on structural analysis and algorithm design for this
class of stochastic programs; see, for instance, [1, 5, 13, 19, 20, 23, 27, 29, 31, 32].

Here we take an alternative view. Rather than heading for best members of (4),
we want to identify “acceptable” members and optimize over them. This leads to a
new class of stochastic integer programs (see (8) below), whose structural analysis
and algorithmic treatment is the aim of the present paper.

Stochastic dominance, an established concept in decision theory [14, 22, 24], pro-
vides a possibility to formalize the above-mentioned acceptability. In the present
paper we deal with first-order stochastic dominance. A (real-valued) random variable
X is said to be stochastically smaller in first order than a random variable Y (X �1 Y)
iff Eh(X) ≤ Eh(Y) for all nondecreasing functions h for which both expectations exist.
An equivalent formulation reads as follows (see, e.g., [24]):

X �1 Y iff P[{ω : X(ω) ≤ η}] ≥ P[{ω : Y(ω) ≤ η}] ∀η ∈ R.(7)

Coming back to our two-stage random optimization problem (1) and the related family
(4), we assume that some (random) benchmark cost profile d(ω) is given. We consider
only those x ∈ X acceptable for which the corresponding f(x, z) is stochastically
smaller in first order than the benchmark profile d(ω). Over all acceptable x ∈ X we
optimize some function g : R

m → R. This leads to the following stochastic program
with first-order dominance constraints induced by mixed-integer linear recourse:

min{g(x) : f(x, z) �1 d, x ∈ X}.(8)

Stochastic optimization problems with dominance constraints involving general
random variables were pioneered in [10, 11, 12, 25]. These papers address structure,
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stability, and algorithms for (8) if general random variables, enjoying suitable conti-
nuity, smoothness, or linearity properties in x and/or z, are placed instead of f(x, z).
The random variables f(x, z), on the one hand, are more specific, since they are es-
sentially given by the mixed-integer value function in (3). On the other hand, the
results from [10, 11, 12, 25] are not applicable to our setting due to lacking continuity
of Φ; recall the above-mentioned lower semicontinuity.

Our paper is organized as follows. In section 2 we elaborate a basic structural
property of the constraint sets of (8) and draw some conclusions, among others, on the
stability behavior of (8). Section 3 is devoted to algorithmic aspects. We prove the
equivalence of (8) with a structured mixed-integer linear program if the underlying
probability spaces are finite. Then we propose a decomposition algorithm for these
models. In section 4 we report computational results with this algorithm. The paper
concludes with section 5, where a model involving a weaker stochastic order is put
into perspective, both theoretically and numerically.

2. Structure and stability. The stochastic program (8) is essentially governed
by its constraint set. In what follows we establish some results concerning the basic
well posedness of this set.

Let P(Rs) and P(R) be the sets of all Borel probability measures on R
s and

R, respectively. By μ ∈ P(Rs) and ν ∈ P(R) we denote the probability measures
induced by the random variables z(ω) and d(ω), respectively. We fix ν and consider
the multifunction C : P(Rs) → 2R

m

, where

C(μ) := {x ∈ R
m : f(x, z) �1 d, x ∈ X}.

Moreover, we equip P(Rs) with weak convergence of probability measures [3]. A

sequence {μn} in P(Rs) is said to converge weakly to μ ∈ P(Rs), written μn
w−→ μ,

if for any bounded continuous function h : R
s → R it holds that

∫
Rs h(z)μn(dz) →∫

Rs h(z)μ(dz) as n → ∞.
Proposition 2.1. Assume (A1) and (A2). Then C is a closed multifunction on

P(Rs). This means that for arbitrary μ ∈ P(Rs) and sequences μn ∈ P(Rs), xn ∈
C(μn), with μn

w−→ μ and xn → x, it follows that x ∈ C(μ).
Proof. In view of xn ∈ C(μn) and (7) it holds for all n that

ν[d ≤ η] ≤ μn[f(xn, z) ≤ η] ∀η ∈ R.(9)

(The shorthand notations d ≤ η and f(xn, z) ≤ η refer to the sets {d ∈ R : d ≤ η}
and {z ∈ R

s : f(xn, z) ≤ η}, respectively.)
Denote that Mη(x) := {z ∈ R

s : f(x, z) > η}. By (A1) and (A2), the function
Φ, and hence f(·, ·), is lower semicontinuous. Therefore, Mη(x) is open for all η ∈ R

and all x ∈ R
m. With the new notation, (9) says that for all n

ν[d ≤ η] + μn[Mη(xn)] ≤ 1 ∀η ∈ R.(10)

Since Mη(x) is open, the Portmanteau theorem (see [3, Theorem 2.1, pp. 11–12])
implies that

μ[Mη(x)] ≤ lim inf
n

μn[Mη(x)] ∀η ∈ R.(11)

The lower semicontinuity of Φ yields

Mη(x) ⊆ lim inf
n

Mη(xn) ∀η ∈ R.(12)
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Here “lim infn” denotes the set-theoretic limits inferior, i.e., the set of all points
belonging to all but a finite number of sets Mη(xn). For fixed n, (12) and the lower
semicontinuity of the probability measure (see [4, Theorem 4.1, p. 48] now imply that

μn[Mη(x)] ≤ μn[lim inf
k

Mη(xk)] ≤ lim inf
k

μn[Mη(xk)] ∀η ∈ R.

By taking the limits inferior with respect to n, we obtain

lim inf
n

μn[Mη(x)] ≤ lim inf
n

lim inf
k

μn[Mη(xk)]

≤ lim inf
n

μn[Mη(xn)]
∀η ∈ R.(13)

For the last inequality we have picked the diagonal subsequence where n = k. By
putting together (11) and (13) we arrive at

μ[Mη(x)] ≤ lim inf
n

μn[Mη(xn)] ∀η ∈ R.(14)

Taking the limits inferior with respect to n in (10) and observing (14) leads to

ν[d ≤ η] + μ[Mη(x)] ≤ ν[d ≤ η] + lim inf
n

μn[Mη(xn)] ≤ 1 ∀η ∈ R.

This implies (see (10), (9), and (7)) that f(x, z) �1 d. By the closedness of X, xn → x,
and xn ∈ X (for all n), we have x ∈ X. Altogether it follows that x ∈ C(μ), and the
proof is complete.

Remark 2.2 (about variable ν). Equipping P(R) with uniform convergence of
distribution functions (Kolmogorov–Smirnov convergence), as, for instance, in [10],
allows us to extend Proposition 2.1 to the multifunction C̄ : P(Rs) × P(R) → 2R

m

,
where C̄(μ, ν) := {x ∈ R

m : f(x, z) �1 d, x ∈ X}. Indeed, if νn converge to ν
in the Kolmogorov–Smirnov sense, then νn[d ≤ η] → ν[d ≤ η] for all η ∈ R, and the
above proof readily extends.

Remark 2.3 (about weak convergence on P(Rs)). For a different class of random
variables, [10] has established a closedness result for a dominance constraint of first
order, where convergence on the counterpart space to P(Rs) is given by a suitable
discrepancy. Compared with [10], Proposition 2.1 applies to a more focused family of
random variables (even allowing for discontinuities) with a weaker convergence notion
on P(Rs), namely, weak convergence of probability measures instead of convergence
induced by the discrepancy in [10].

Proposition 2.1 in particular implies that C(μ) is a closed set for any μ ∈ P(Rs).
Corollary 2.4. Assume (A1) and (A2). Then C(μ) is a closed subset of R

m

for any μ ∈ P(Rs).
The optimization problem (8) thus is well-posed in the sense that for, e.g., lower

semicontinuous g, bounded X, and nonempty C(μ), the infimum is finite and is at-
tained.

It is well known that continuity properties of constraint set mappings, such as the
one established in Proposition 2.1, allow for direct conclusions regarding the stability
of the related optimization problems. We next turn to such a conclusion.

Consider (8) as a parametric program where the probability distribution μ of the
random variable z(ω) enters as a parameter:

P (μ) min{g(x) : x ∈ C(μ)}.
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Studying the stability of stochastic programs with respect to perturbations of the
underlying probability distributions is motivated by the incomplete information on
these distributions that is often met and by approximation issues in the context of
computations; see [28] for a recent overview on stability analysis in stochastic pro-
gramming.

Proposition 2.5. Assume (A1) and (A2), that X is nonempty and compact,
and that g is lower semicontinuous. Let μ̄ ∈ P(Rs) be such that P (μ̄) has an optimal
solution. Then the optimal value function ϕ(μ) := inf{g(x) : x ∈ C(μ)} is lower
semicontinuous at μ̄.

Proof. Let μn
w−→ μ̄, and assume without loss of generality that C(μn) �= ∅ for all

n. Otherwise, we would have ϕ(μn) = +∞, which does not interfere with the validity
of lim infn ϕ(μn) ≥ ϕ(μ̄).

Let ε > 0 be arbitrarily fixed. Then there exist xn ∈ C(μn) such that g(xn) ≤
ϕ(μn) + ε. By the compactness of X there exists an accumulation point x̄ of the xn.
By the closedness of C(.) (Proposition 2.1), it follows that x̄ ∈ C(μ̄). Together with
the lower semicontinuity of g, this implies that

ϕ(μ̄) ≤ g(x̄) ≤ lim inf
n

g(xn) ≤ lim inf
n

ϕ(μn) + ε.

Since ε > 0 was arbitrary, the proof is complete.
Remark 2.6 (about approximation schemes). It is well known that approximation

schemes based on discretization via conditional expectations [6, 18] or on empirical
estimation [26, 33] often produce weakly converging sequences of discrete probability
measures. Stability results such as Propositions 2.1 and 2.5 thus enable justification
of numerical procedures that rely on problem solution for discrete measures, possibly
belonging to weakly converging sequences. This links our stability analysis to the
solution procedure of the next section. From Proposition 2.1 it follows that accu-
mulation points of feasible solutions to the approximates are feasible solutions to the
original problem. Proposition 2.5 yields the fact that limits of optimal values of the
approximates never drop below the optimal value of the original.

3. Algorithmic treatment. In the present section we deal with algorithmic
possibilities for (8) in case z(ω) and d(ω) follow discrete probability distributions
with finitely many realizations. We start with establishing an equivalence between
(8) and a large-scale, but structured, mixed-integer linear program.

Proposition 3.1. Let z(ω) and d(ω) in (8) follow discrete distributions with
realizations zl, l = 1, . . . , L, and dk, k = 1, . . . ,K, as well as probabilities πl, l =
1, . . . , L, and pk, k = 1, . . . ,K, respectively. Let further g(x) := g�x be linear and X
be bounded. Assume (A1) and (A2). Then there exists a constant M such that (8) is
equivalent to the mixed-integer linear program

min
{
g�x : c�x + q�ylk − dk ≤ Mθlk ∀l ∀k

Tx + Wylk = zl ∀l ∀k∑L
l=1 πlθlk ≤ d̄k ∀k

x ∈ X, ylk ∈ Z
m̄
+ × R

m′

+ , θlk ∈ {0, 1} ∀l ∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,(15)

where d̄k := 1 − ν[d ≤ dk], k = 1, . . . ,K.
Proof. By (7), the constraint f(x, z) �1 d is equivalent to

ν[d ≤ η] ≤ μ[f(x, z) ≤ η] ∀η ∈ R.
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As shown in [25] this is equivalent to

ν[d ≤ dk] ≤ μ[f(x, z) ≤ dk] for k = 1, . . . ,K.(16)

The asserted constant M is put such that

M > sup
{
c�x + Φ(zl − Tx) − dk : x ∈ X, l ∈ {1, . . . , L}, k ∈ {1, . . . ,K}

}
.

It has to be shown that the right-hand side above is finite. To this end, we employ
the following growth property of Φ; see, [2, 7], for instance. Under (A1) and (A2)
there exist constants α > 0, β > 0 such that for all t1, t2 ∈ R

s

|Φ(t1) − Φ(t2)| ≤ α‖t1 − t2‖ + β.

Moreover, (A2) implies that Φ(0) = 0. This enables the following estimate:

|c�x + Φ(zl − Tx) − dk| ≤ |c�x| + |Φ(zl − Tx) − Φ(0)| + |dk|
≤ ‖c‖ · ‖x‖ + α‖zl‖ + α‖T‖ · ‖x‖ + β + |dk|.

Since X is bounded, this verifies the finiteness of the above supremum.
By considering the complementary event on the right, we rewrite (16) as

μ[f(x, z) > dk] ≤ 1 − ν[d ≤ dk] =: d̄k for k = 1, . . . ,K.(17)

For any k ∈ {1, . . . ,K} we now consider the following sets:

S1 := {x ∈ X : μ[f(x, z) > dk] ≤ d̄k}

and

S2 :=
{
x ∈ X : ∃θl ∈ {0, 1}

∃yl ∈ Z
m̄
+ × R

m′

+ , l = 1, . . . , L,

such that:

c�x + q�yl − dk ≤ Mθl

Tx + Wyl = zl∑L
l=1 πlθl ≤ d̄k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We complete the proof by showing that S1 = S2 and begin with the inclusion
S1 ⊆ S2.

Let x ∈ S1, and consider I :=
{
l ∈ {1, . . . , L} : c�x + Φ(zl − Tx) > dk

}
. Then∑

l∈I πl ≤ d̄k, by the definition of S1. Put θl := 1, for l ∈ I, and θl := 0, otherwise.
This gives

L∑
l=1

πlθl =
∑
l∈I

πl ≤ d̄k.

For l �∈ I we have c�x+ Φ(zl − Tx) ≤ dk. Hence there exists yl ∈ Z
m̄
+ ×R

m′

+ fulfilling

c�x + q�yl − dk ≤ 0 = Mθl and Tx + Wyl = zl.
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For l ∈ I take yl ∈ Z
m̄
+ × R

m′

+ such that Tx + Wyl = zl and q�yl = Φ(zl − Tx). By
the selection of M we then have

c�x + q�yl − dk ≤ M = Mθl.

This implies that x ∈ S2.
To show S2 ⊆ S1 let x ∈ S2, and consider I :=

{
l ∈ {1, . . . , L} : θl = 0

}
. For

each l ∈ I, then there exists a yl ∈ Z
m̄
+ × R

m′

+ such that

c�x + q�yl − dk ≤ 0 and Tx + Wyl = zl.

Hence c�x + Φ(zl − Tx) ≤ dk for all l ∈ I. Therefore{
l ∈ {1, . . . , L} : c�x + Φ(zl − Tx) > dk

}
⊆

{
l ∈ {1, . . . , L} : θl = 1

}
.

This yields

μ[c�x + Φ(z − Tx) > dk] ≤
∑
l �∈I

πlθl =

L∑
l=1

πlθl ≤ d̄k.

Thus x ∈ S1, and the proof is complete.
As a mixed-integer linear program, the optimization problem from Proposition 3.1

clearly can be tackled by general-purpose mixed-integer linear programming software.
With growing numbers L and K of scenarios of the data and the benchmark distri-
butions, however, it can be expected that this approach will come to its limitations.

This motivates us to study decomposition of the model. By having in mind the
L-shaped form of the constraint matrix that arises with discrete probability spaces in
the traditional stochastic program (5) (see [5, 19, 27, 29]), similarities and differences
come to the fore: The constraints

c�x + q�ylk − dk ≤ Mθlk ∀l ∀k,
Tx + Wylk = zl ∀l ∀k

correspond to K blocks, each of them in L-shaped form. By the latter we mean that,
for fixed k, there are no constraints explicitly interlinking variables ylk, θlk belonging
to different l ∈ {1, . . . , L}. Linkage is established only by the omnipresent x-variables.
These variables must not depend on l and must not depend on k. So they couple the
K blocks above into a single L-shaped block. The constraints

L∑
l=1

πlθlk ≤ d̄k ∀k(18)

provide linkage between variables belonging to different scenarios l ∈ {1, . . . , L} such
that the full model no longer obeys the L-shaped structure.

Our basic algorithmic idea now is to generate lower bounds by a suitable relax-
ation, to generate upper bounds by a tailored feasibility heuristic, and to embed the
two into a branch-and-bound scheme in the spirit of global optimization.

Lower bounds. Relaxation is carried out in a twofold manner: The nonantici-
pativity of x gets relaxed by introducing copies xl, l = 1, . . . , L, and the constraints
(18) undergo Lagrangean relaxation. This is formalized as follows.
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In the objective we put x =
∑L

l=1 πlxl, and for the constraints (18) we introduce
Lagrangean multipliers λk ≥ 0, k = 1, . . . ,K. The Lagrangean function then reads

L(x, θ, λ) =
L∑

l=1

πl · g�xl +

K∑
k=1

λk

(
L∑

l=1

πlθlk − d̄k

)

=
L∑

l=1

πl · g�xl +

L∑
l=1

K∑
k=1

λk · (πlθlk − πld̄k)

=

L∑
l=1

Ll(xl, θl, λ),

where

Ll(xl, θl, λ) := πl · g�xl + πl

K∑
k=1

λk · (θlk − d̄k).

This leads to the Lagrangean dual

max{D(λ) : λ ∈ R
K
+ },

where

D(λ) = min
{
L(x, θ, λ) : c�xl + q�ylk − dk ≤ Mθlk ∀l ∀k

Txl + Wylk = zl ∀l ∀k

xl ∈ X, ylk ∈ Z
m̄
+ × R

m′

+ , θlk ∈ {0, 1} ∀l ∀k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The optimization problem behind D(λ) now is separable in l, and we obtain

D(λ) =
L∑

l=1

min
{
Ll(xl, θl, λ) : c�xl + q�ylk − dk ≤ Mθlk ∀k

Txl + Wylk = zl ∀k

xl ∈ X, ylk ∈ Z
m̄
+ × R

m′

+ , θlk ∈ {0, 1} ∀k

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.(19)

The Lagrangean dual is a nonsmooth concave maximization (or convex minimiza-
tion) problem whose optimal value yields a lower bound to the optimal value of the
mixed-integer linear program in Proposition 3.1. For solving the Lagrangean dual,
bundle-trust algorithms from nonsmooth convex optimization, such as the conic bun-
dle method [17], can be employed. Per iteration, these methods require the function
value D(λ) and one subgradient from ∂D(λ). Here the above separability becomes
essential, since it leads to a decomposition of the optimization problem behind D(λ)
into subproblems corresponding to the individual scenarios zl, l = 1, . . . , L.

In principle, the above lower bounding procedure can be improved by applying
Lagrangean relaxation not only to (18) but also to the nonanticipativity of x that
can be expressed by the system of identities x1 = x2 = · · · = xL. This, however,
leads to a drastic increase of dimension in the Lagrangean dual, namely, from K to
K + m · (L − 1). Recall that L is the number of data scenarios zl, while K is the
number of benchmark scenarios dk. It is reasonable to assume that L, possibly stem-
ming from past observations, is far bigger than K, possibly stemming from subjective
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risk perception. Typically, L can be on the order of several hundreds or even thou-
sands, while K is around 20 or even less. Compared with Lagrangean relaxation of
nonanticipativity (see, for instance, [8]), the above dual bounding scheme thus has
the advantage that the Lagrangean dual lives in a space of low dimension.

Upper bounds. An upper bound to the optimal value of (15) is computed by
the following heuristic that aims at finding a feasible solution to (15). The input
of the heuristic consists of the xl-parts x̃l of optimal solutions to the single-scenario
problems in (19) for optimal or nearly optimal λ.

Algorithm 3.2.

Step 1:

Understand x̃l, l = 1, . . . , L, as proposals for x and pick a “reasonable can-
didate” x̄, for instance, one arising most frequently or one with minimal
Ll(xl, θl, λ), or average the x̃l, l = 1, . . . , L, and round to integers if neces-
sary.

Step 2:

Check whether the following problems are feasible for l = 1, . . . , L:

min
{
g�x̄ : c�x̄ + q�ylk − dk ≤ Mθlk

T x̄ + Wylk = zl

ylk ∈ Z
m̄
+ × R

m′

+ , θlk ∈ {0, 1}, k = 1, . . . ,K

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.(20)

As soon as one of them fails to be feasible, x̄ cannot be feasible for (15), and
the heuristic stops with assigning the formal upper bound +∞. Otherwise, go
to Step 3.

Step 3:

Check whether the θlk found in (20) fulfill

L∑
l=1

πlθlk ≤ d̄k, k = 1, . . . ,K.

If yes, then a feasible solution to (15) is found. The heuristic stops with the
upper bound g�x̄. Otherwise, go to Step 4.

Step 4:

Solve for each l = 1, . . . , L:

min

{
K∑

k=1

θlk : c�x̄ + q�ylk − dk ≤ Mθlk

T x̄ + Wylk = zl

ylk ∈ Z
m̄
+ × R

m′

+ , θlk ∈ {0, 1}, k = 1, . . . ,K

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Go to Step 5.
Step 5:

Repeat the test from Step 3 with the θlk found in Step 4. If the test is positive,
then the heuristic stops with the upper bound g�x̄. Otherwise, the heuristic
stops without a feasible solution to (15) and assigns the formal upper bound
+∞.
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The purpose of Step 4 is to “push down” the θlk in order to fulfill (18). The
implementation is such that Step 4 just continues with the feasible solution found in
Step 2. The impact of Step 4 is particularly striking, if in Step 2 the θlk were “poorly”
selected such that the test in Step 3 fails, although x̄ is feasible for (15), with different
θlk.

Branch-and-bound scheme. The bounding procedures developed above are
integrated into a branch-and-bound scheme where branching is accomplished by par-
titioning the set X with increasing granularity. Linear inequalities are used for this
purpose to maintain the mixed-integer linear description of problems.

This results in the following algorithm. By P we denote a list of problems, and
ϕLB(P ) is a lower bound for the optimal value of P ∈ P. Moreover, ϕ̄ denotes the
currently best upper bound to the optimal value of (15), and X(P ) is the element in
the partition of X belonging to P .

Algorithm 3.3.

Step 1 (Initialization):

Let P := {(15)} and ϕ̄ := +∞.
Step 2 (Termination):

If P = ∅, then the x̄ that yielded ϕ̄ = g�x̄ is optimal.
Step 3 (Bounding):

Select and delete a problem P from P. Compute a lower bound ϕLB(P ) by
the bounding procedure developed above, and apply Algorithm 3.2 to find a
feasible point x̄ of P .

Step 4 (Pruning):

If ϕLB(P ) = +∞ (infeasibility of a subproblem in (19)) or ϕLB(P ) > ϕ̄
(inferiority of P ), then go to Step 2.
If ϕLB(P ) = g�x̄ (optimality for P ), then check whether g�x̄ < ϕ̄. If yes,
then ϕ̄ := g�x̄. Go to Step 2.
If g�x̄ < ϕ̄, then ϕ̄ := g�x̄.

Step 5 (Branching):

Create two new subproblems by partitioning the set X(P ). Add these subprob-
lems to P, and go to Step 2.

Generally speaking, the branching in Step 5 is accomplished by applying linear in-
equalities to maintain representation of subproblems as mixed-integer linear programs.
In practice, however, these inequalities usually correspond to ranges of components
of variables. For continuous variables, tolerances are used to avoid endless branching
with finer and finer granularity.

4. Computations. In the following we report computational results for Algo-
rithm 3.3 applied to test instances from power planning. The first group of instances
refers to the optimal management of a dispersed generation (DG) system run by a
power utility in Germany; see [16] for a detailed model description. The instances of
the second group are inspired by an early stochastic program from the literature, the
investment planning problem for electricity generation of [21].

4.1. DG system. The system consists of five engine-based cogeneration (CG)
stations, producing power and heat simultaneously, twelve wind turbines, and one
hydroelectric power plant. The CG stations include eight gas boilers, nine gas mo-
tors, and one gas turbine, and each is equipped with a thermal storage and a cooling
device. While the heat is distributed locally, the electricity is fed into the global dis-
tribution network. The cost minimal operation of this system with respect to relevant
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Table 1

Dimensions of mixed-integer linear programming equivalents.

Number of 10 scenarios 20 scenarios 30 scenarios 50 scenarios
Boolean variables 299159 596799 894439 1489719
Continuous variables 283013 564613 846213 1409413
Constraints 742648 1481568 2220488 3698328

technical constraints and fulfillment of heat and power demand can be formulated as
a mixed-integer linear program, with on-off decisions for the generation units as the
source of integrality. With a planning horizon of 24 hours, divided into quarter-hourly
subintervals, this (still deterministic) model has about 17500 variables (9000 Boolean
and 8500 continuous) and 22000 constraints.

The optimization problem is influenced by stochasticity on the production side,
where the in-feed from renewable resources is not known with certainty, as well as on
the consumer side, where demand of electrical and thermal energy are uncertain. The
problem turns into a random mixed-integer linear problem, a specification of (1).

Assuming that the uncertainty-prone data are known for the first four hours
of the planning horizon leads to a two-stage stochastic program with the decisions
belonging to these first four hours as the first stage. For a more detailed description
of the arising stochastic program and results on purely expectation-based and mean-
risk specifications of (6), see [16, 30].

To derive a benchmark profile d in (8) we first consider f(x̂, z), where x̂ denotes an
optimal solution to the expectation model (5). With heuristically selected benchmark
values, the f(x̂, z) then are clustered around these values, and the probability of each
benchmark value arises as the sum of the probabilities of the members in its cluster.
Further problem instances were derived by fixing the probabilities and increasing the
values of d successively.

A meaningful objective function g is to count the number of start-ups over all units
and time steps in the first stage. This number serves as a measure for the abrasion
of the DG units. Then the dominance-constrained model minimizes abrasion of units
over all generation policies incurring costs that, in a stochastic sense, do not exceed
the given benchmark profile.

We report results for instances with K = 4 benchmark scenarios and L = 10 up
to 50 scenarios for heat and power demand. The deterministic equivalents according
to Proposition 3.1 then finally are truly large-scale, as seen in Table 1, and can hardly
be handled with mixed-integer solvers such as Cplex [9].

In Tables 2–5 computations for these equivalents with Cplex are compared to
computations made with the implementation ddsip.vSD of Algorithm 3.3 derived in
section 3. Problems were solved on a Linux PC with a 3.2 GHz Pentium processor
and 2 GB RAM. As a stopping criterion we used a time limit of eight hours.

In all tables the benchmark costs increase successively from instance 1 to in-
stance 5. This means that the dominance constraints get easier to fulfill. As one
would expect, this affects the needed numbers of start-ups positively. They decrease
with increasing reference values, which is reported in the column “Upper Bound,”
where the objective value of the current best solution is displayed. The corresponding
best lower bound can be found in the column “Lower Bound.”

In every table we show the status of the optimization for different points in time.
Usually the first two points are the times where either the decomposition method
or Cplex finds the first feasible solution. Also for the time limit of eight hours the
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Table 2

Results for instances with 10 data scenarios and 4 benchmark scenarios.

Number Inst. Benchmarks Time Cplex ddsip.vSD
of Probability Benchmark (sec.) Upper Lower Upper Lower

scenarios value bound bound bound bound

10

1 0.12 2895000 430.43 – 29 29 15
0.21 4851000 899.16 – 29 29 29
0.52 7789000 15325.75 29 29 29 29
0.15 10728000

2 0.12 2900000 192.48 – 27 28 15
0.21 4860000 418.90 28 28 28 15
0.52 7800000 802.94 28 28 28 28
0.15 10740000

3 0.12 3000000 144.63 – 21 21 12
0.21 5000000 428.61 21 21 21 18
0.52 8000000 678.79 21 21 21 21
0.15 11000000

4 0.12 3500000 164.34 – 11 13 10
0.21 5500000 818.26 – 12 13 13
0.52 8500000 28800.00 13 12 13 13
0.15 11500000

5 0.12 4000000 171.52 – 7 8 8
0.21 6000000 3304.02 8 8 8 8
0.52 9000000
0.15 12000000

Table 3

Results for instances with 20 data scenarios and 4 benchmark scenarios.

Number Inst. Benchmarks Time Cplex ddsip.vSD
of Probability Benchmark (sec.) Upper Lower Upper Lower

scenarios value bound bound bound bound

20

1 0.105 2895000 306.89 – 29 29 12
0.1 4851000 1151.95 – 29 29 29
0.69 7789000 9484.97 29 29 29 29
0.105 10728000

2 0.105 2900000 703.91 – 27 28 18
0.1 4860000 1744.75 28 28 28 26
0.69 7800000 1916.06 28 28 28 28
0.105 10740000

3 0.105 3000000 305.84 – 21 21 10
0.1 5000000 1682.93 21 21 21 19
0.69 8000000 2138.94 21 21 21 21
0.105 11000000

4 0.105 3500000 425.98 – 11 13 9
0.1 5500000 2213.08 – 12 13 13
0.69 8500000 11236.31 – 12 oom.∗ 13 13
0.105 11500000

5 0.105 4000000 447.33 – 8 8 8
0.1 6000000 5599.99 9 8 8 8
0.69 9000000 7840.09 9 8 oom.∗ 8 8
0.105 12000000

objective values and the best bounds are given for each solver, unless optimality was
proven earlier.

For test instances with 20 or 30 scenarios Cplex sometimes stops before reaching
a first feasible solution, because the available memory is exceeded (marked by “oom.”).
In these cases only the lower bounds already found before the memory error occurred
are displayed.
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Table 4

Results for instances with 30 data scenarios and 4 benchmark scenarios.

Number Inst. Benchmarks Time Cplex ddsip.vSD
of Probability Benchmark (sec.) Upper Lower Upper Lower

scenarios value bound bound bound bound

30

1 0.085 2895000 473.27 – 28 29 12
0.14 4851000 1658.02 – 29 29 29
0.635 7789000 3255.99 – 29 oom.∗ 29 29
0.14 10728000

2 0.085 2900000 1001.53 – 26 28 18
0.14 4860000 2694.93 – 27 28 28
0.635 7800000 3372.24 – 27 oom.∗ 28 28
0.14 10740000

3 0.085 3000000 469.93 – 17 23 10
0.14 5000000 3681.15 – 18 oom.∗ 21 20
0.635 8000000 28800.00 – – 21 20
0.14 11000000

4 0.085 3500000 618.21 – 10 14 8
0.14 5500000 3095.02 – 11 oom.∗ 14 10
0.635 8500000 28800.00 – – 14 13
0.14 11500000

5 0.085 4000000 672.73 – 7 8 8
0.14 6000000 8504.88 – 8 oom.∗ 8 8
0.635 9000000
0.14 12000000

Table 5

Results for instances with 50 data scenarios and 4 benchmark scenarios.

Number Inst. Benchmarks Time Cplex ddsip.vSD
of Probability Benchmark (sec.) Upper Lower Upper Lower

scenarios value bound bound bound bound

50

1 0.09 2895000 745.87 – – 29 11
0.135 4851000 2534.21 – – 29 29
0.67 7789000
0.105 10728000

2 0.09 2900000 1549.22 – – 28 18
0.135 4860000 4168.89 – – 28 28
0.67 7800000
0.105 10740000

3 0.09 3000000 756.06 – – 23 10
0.135 5000000 28800.00 – – 21 20
0.67 8000000
0.105 11000000

4 0.09 3500000 975.20 – – 15 8
0.135 5500000 28800.00 – – 13 12
0.67 8500000
0.105 11500000

5 0.09 4000000 1150.95 – – 8 8
0.135 6000000
0.67 9000000
0.105 12000000

With 50 data scenarios the deterministic equivalents become so large that the
available memory is not sufficient to build up the model (lp-) file used by Cplex,
preventing optimization with Cplex for these instances. Therefore the last table
reports only best values and lower bounds calculated with the decomposition method
ddsip.vSD.
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Table 6

Results for instances with 10 data scenarios, 4 benchmark scenarios, and standard branching.

Number Inst. Benchmarks Time Cplex ddsip.vSD
of Probability Benchmark (sec.) Upper Lower Upper Lower

scenarios value bound bound bound bound

10

1 0.12 2895000 1348.95 – 29 29 18
0.21 4851000 15325.75 29 29 29 22
0.52 7789000 28800.00 29 29 29 23
0.15 10728000

2 0.12 2900000 273.78 – 27 28 14
0.21 4860000 418.90 28 28 28 14
0.52 7800000 28800.00 28 28 28 22
0.15 10740000

3 0.12 3000000 192.45 – 21 21 12
0.21 5000000 428.61 21 21 21 12
0.52 8000000 28800.00 21 21 21 16
0.15 11000000

4 0.12 3500000 227.44 – 11 13 10
0.21 5500000 2593.35 18 12 13 10
0.52 8500000 28800.00 13 13 13 11
0.15 11500000

5 0.12 4000000 225.91 – 7 8 8
0.21 6000000 3304.02 8 8 8 8
0.52 9000000
0.15 12000000

Our computations show that for all instances the decomposition method reaches
the first feasible solution faster then Cplex does. In most cases this is already an op-
timal solution. In the computations dealing with 30 and 50 scenarios, the superiority
of the decomposition method over general-purpose solvers becomes particularly evi-
dent. For 30 scenarios Cplex can’t provide any feasible solution and for 50 scenarios
even no lower bound, while ddsip.vSD is able to solve almost all problems.

In reaching these results, proper branching strategies in Step 5 of Algorithm 3.3
turned out to be essential. In the above computations branching priority was given
to Boolean variables arising in the objective of (15). As a comparison consider Ta-
ble 6 reporting computations for the 10-scenario instances with an alternative, rather
standard, branching strategy. Here a first-stage variable was selected for branching
for which the optimal solutions to the single-scenario problems in (19), with optimal
or nearly optimal λ, violated nonanticipativity the most, with violation measured by
a suitable entity reflecting dispersion. The performance gains of the first branching
strategy over the second are quite remarkable.

4.2. Investment planning. The investment planning problems for electricity
generation that form our second group of test instances are inspired by [21]. We
consider two-stage versions of the multistage model there and add integrality require-
ments to the first stage. This leads to a two-stage mixed-integer linear stochastic
program where, in the first stage, decisions on capacity expansions for different gen-
eration technologies under budget constraints and supply guarantee are made. We
assume that these decisions reflect indivisibilities (generation units) and hence are
integer-valued. The second stage concerns the minimization of production costs for
electricity under the constraints that electricity demand is met and the available ca-
pacity is not exceeded.

The electricity demand is captured by a load duration curve assigning to each
duration τ ∈ R+ the minimum load to be covered over time spans adding up to
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Table 7

Dimensions of mixed-integer linear programming equivalents.

Number of 20 scenarios 50 scenarios 100 scenarios 500 scenarios
Boolean and integer variables 404 1004 2004 10004
Continuous variables 38400 96000 192000 960000
Constraints 11622 29022 58022 290022

τ . This is where uncertainty enters, since in practice load durations are typically
available only stochastically. The model uses step function approximations for load
duration curves. So each data scenario is represented by a (finite) step function.

The aim of the optimization is cost minimization where costs are incurred by
the expansion decisions of the first stage and the production levels of the second
stage. Together with the random load durations, this leads to a random optimization
problem which is a specification of (1).

The benchmarks were constructed in a similar way as in subsection 4.1. With
first-stage decisions x fixed to “reasonable” values, the f(x, z) were clustered around
heuristically selected benchmark values, whose probabilities were obtained as proba-
bilities of the cluster sets.

As objective function g we considered the capacity expansion of one of the different
technologies, possibly one least desired for environmental reasons. The dominance-
constrained stochastic program then minimizes expansion of this capacity over all
expansion policies whose costs do not exceed the benchmark profile in terms of first-
order stochastic dominance.

We report results for instances with K = 3 up to 20 benchmark scenarios and
L = 20 up to 500 scenarios for load duration. Deterministic equivalents according to
Proposition 3.1 again become pretty large-scale. Table 7 shows dimensions for K = 20
and the different L.

Table 8 summarizes our computations for the investment planning instances.
Again, a Linux PC with a 3.2 GHz Pentium processor and 2 GB RAM was used.
The time limit was set to one hour.

The first column indicates three principal problem instances marked by their
optimal values. (Let us remark that all test instances were constructed in such a
way that their optimal values were known in advance.) The next two columns list
the numbers K of benchmark and L of data scenarios. The remaining columns list
lower and upper bounds obtained when applying Cplex [9] and our implementation
ddsip.vSD of Algorithm 3.3. Time entries deviating from the limit of 1 h indicate
that the instance was solved to optimality within this span.

It becomes evident that, at the investment planning instances, Algorithm 3.3
is superior to applying a general-purpose solver such as Cplex. Although we have
experimented with various time limits and parameter settings in Cplex, such as
“emphasize integer feasibility,” we were unable to improve the Cplex results for
upper bounds. The instance 0/3/100 (optimal-value/K/L), for example, was solved
to optimality by Cplex after more than three hours only. For the instance 0/10/100,
as another example, Cplex did not find a feasible solution even after four days of
computing time.

5. Alternative lower bounding: Increasing convex order. Let X and Y
be real-valued random variables. Then X is said to be stochastically smaller than Y
in increasing convex order (X �icx Y) iff Eh(X) ≤ Eh(Y) for all nondecreasing convex
functions h for which both expectations exist (cf., e.g., [24]). This gives rise to the



STOCHASTIC PROGRAMS WITH DOMINANCE CONSTRAINTS 567

Table 8

Results for investment planning instances.

Cplex ddsip.vSD
Optimal

value
K L

Upper
bound

Lower
bound

Time
Upper
bound

Lower
bound

Time

0

3

20 0 0 17 s 0 0 69 s
50 0 0 2712 s 0 0 138 s

100 − 0 1 h 0 0 718 s
500 − 0 1 h 0 0 2162 s

10

20 0 0 3197 s 0 0 70 s
50 − 0 1 h 0 0 588 s

100 − 0 1 h 0 0 2327 s
500 − 0 1 h 8 0 1 h

20

20 − 0 1 h 0 0 368 s
50 − 0 1 h 0 0 2395 s

100 − 0 1 h 23 0 1 h
500 − 0 1 h 166 0 1 h

1

3

20 1 1 15.9 s 1 1 659 s
50 − 0 1 h 1 1 1244 s

100 − 0 1 h 2 1 1 h
500 − 0 1 h 3 1 1 h

10

20 − 0.771 1 h 1 1 1116 s
50 − 0 1 h 4 1 1 h

100 − 0 1 h 2 1 1 h
500 − 0 1 h 8 0 1 h

20

20 − 0 1 h 1 1 3039 s
50 − 0 1 h 12 1 1 h

100 − 0 1 h 2 0 1 h
500 − 0 1 h 170 0 1 h

100

3

20 100 100 11.31 s 101 72 1 h
50 − 76.6 1 h 104 38 1 h

100 − 27 1 h 100 33 1 h
500 − 0 1 h 111 16 1 h

10

20 − 99.5 1 h 101 85 1 h
50 − 40 1 h 102 56 1 h

100 − 27 1 h 101 44 1 h
500 − 0 1 h 102 44 1 h

20

20 − 72 1 h 103 92 1 h
50 − 40 1 h 207 80 1 h

100 − 27 1 h 160 67 1 h
500 − 0 1 h 184 54 1 h

following counterpart model to (8):

min{g(x) : f(x, z) �icx d, x ∈ X}.(21)

Since f(x, z) �1 d implies f(x, z) �icx d to hold, but not vice versa, problem (21) is
a relaxation to (8), thus providing an alternative means for lower bounding of (8).
In what follows we address this issue theoretically and numerically. We begin with
reviewing some theoretical facts about (21) that are taken from [15], where structural
properties and algorithmic aspects of (21) were explored in detail.

The constraint f(x, z) �icx d can be equivalently expressed as

Ez[f(x, z) − η]+ ≤ Ed[d− η]+ ∀η ∈ R.(22)

This paves the way for an analogous result to Proposition 2.1: Assuming (A1), (A2),
and finite first moments for z and d, the constraint set of (21) defines a closed multi-
function in the probability measure underlying z. Moreover, finiteness of Ez in (22)
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provided, (22) defines a convex set if f(., z) is convex, a situation encountered in
two-stage stochastic programs with linear recourse. As soon as integrality require-
ments on y enter problem (1), however, the convexity of f(., z) is lost in general, and
it has to be expected that (21) has nonconvex constraints. Since the constraint set
mapping of (21) is a closed multifunction, a stability result for (21) in the spirit of
Proposition 2.5 is valid. This justifies numerical treatment of (21) for finite probabil-
ity spaces, tacitly assuming that, if necessary, continuous probability distributions of
z (and d) are replaced by finite discrete ones that are “sufficiently close” in terms of
suitable topologies on spaces of probability measures.

If z and d follow discrete distributions with realizations zl, l = 1, . . . , L, and
dk, k = 1, . . . ,K, as well as probabilities πl, l = 1, . . . , L, and pk, k = 1, . . . ,K,
respectively, and g(x) := g�x is linear, then, under (A1) and (A2), problem (21) is
equivalent to the mixed-integer linear program

min
{
g�x : c�x + q�ylk − dk ≤ vlk ∀l ∀k

Tx + Wylk = zl ∀l ∀k∑L
l=1 πlvlk ≤ d̄k ∀k

x ∈ X, ylk ∈ Z
m̄
+ × R

m′

+ , vlk ≥ 0 ∀l ∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,(23)

where d̄k := Ed[d− dk]+, k = 1, . . . ,K. Clearly, the optimal value to (23) is a lower
bound to the optimal value to (15). Compared to (15), problem (23) looks a little
simpler since continuous variables vlk instead of Boolean variables θlk can be employed
for integrating the stochastic order. Nevertheless, (23) remains a mixed-integer model
due to the integralities in the ylk. Moreover, (23) bears the same internal coupling as
(15): Beside nonanticipativity, the counterparts to (18) link subproblems belonging
to the individual scenarios l ∈ {1, . . . , L}. Computational tests in [15] have confirmed
that this linkage is critical when tackling (23) with mixed-integer linear program
solvers such as Cplex. Thus it seems that, although formally simpler than (15),
problem (23) does not offer a “cheap” option for its direct solution.

In [15] a decomposition algorithm for (23) was developed that resembles Algo-
rithm 3.3: Within a branch-and-bound framework, lower bounding is achieved by
ignoring nonanticipativity and subjecting the counterparts to (18) to Lagrangean re-
laxation. Upper bounds are obtained by a feasibility heuristic. This algorithm proves
superior to the solver Cplex.

In our numerical experiments, reported in Tables 9 and 10, we have evaluated
the potential of (23) to provide lower bounds to (15) that are tighter than the lower
bounds generated via Algorithm 3.3. Table 9 shows the development over time of
lower bounds for instance 4 from subsection 4.1 with 20, 30, and 50 data scenarios.
Here the model (21) provides preferable lower bounds in early stages of the iteration.
However, just the opposite occurs in Table 10 for instance 2 where Algorithm 3.3
yields the preferable lower bounds throughout the iteration.
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we express our thanks to two anonymous referees and the associate editor for their
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Table 9

Lower bounds over time for instance 4.

Number of scenarios Time (sec.) Algorithm 3.3 Model (23)

20

386 – 9
425 9 9
789 9 10
1195 9 11 optimal
2211 13 11

30

500 – 9
618 8 9
1016 8 10
1402 8 11 optimal
3107 10 11
3566 11 11
4557 12 11
5645 13 11

50

975 8 –
1026 8 9
2075 8 10
2333 9 10
2869 9 11 optimal
3456 10 11
4991 11 11
6475 12 11

Table 10

Lower bounds over time for instance 2.

Number of scenarios Time (sec.) Algorithm 3.3 Model (23)

20

377 12 –
464 12 9
704 18 9
977 18 17
1027 25 17
1435 25 25
1444 26 25
1765 27 25
1915 28 optimal 25
2500 28 27 optimal

30

529 11 –
702 11 9
1002 18 9
1433 18 17
1450 25 17
2100 25 25
2497 27 25
2692 28 optimal 25
3633 28 27 optimal

50

813 11 –
1125 11 9
1549 18 9
2208 18 17
2235 25 17
3198 25 25
3853 27 25
4165 28 optimal 25
5854 28 27 optimal
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Abstract. We investigate hierarchies of semidefinite approximations for the chromatic number
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1. Introduction. The chromatic number χ(G) of a graph G = (V,E) is the
minimum number of colors needed to color the nodes of G in such a way that adjacent
nodes receive distinct colors. Computing χ(G) is an NP-hard problem [11], and it is
also hard to approximate χ(G) within |V (G)|1/14−ε for any ε > 0 [1]. An obvious lower
bound for χ(G) is the clique number ω(G), defined as the maximum size of a clique
(i.e., a set of pairwise adjacent nodes) in G; computing ω(G) is also hard [11] as well
as approximating ω(G) within |V (G)|1/6−ε for any ε > 0 [1]. A well-known stronger
lower bound for χ(G) is ϑ(G) := ϑ

(
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)
, the theta number of the complementary

graph, introduced by Lovász [23] (see (2.3)). The theta number satisfies the “sandwich
inequality”:

ω(G) ≤ ϑ(G) ≤ χ(G),

and it can be computed to any arbitrary precision in polynomial time since it can
be formulated via a semidefinite program. It can also be used for approximately
coloring the graph (see [5, 8, 17]). Intensive research has been done for strengthening
the bound ϑ(G) towards ω(G) or, equivalently, ϑ(G) towards the stability number
α(G); see, e.g., [6, 19, 20, 21, 24, 26, 30, 32, 34]. Here α(G) = ω(G), the maximum
size of a stable set (i.e., a set of pairwise nonadjacent nodes) in G. In particular,
hierarchies of semidefinite (or linear) bounds were constructed that find α(G) in α(G)
steps [19, 20, 24, 34]. As χ(G) can be formulated via a 0/1 linear program (see, e.g.,
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[7]), the lift-and-project methods of [19, 24, 34] can in principle be applied to derive
hierarchies of semidefinite approximations finding χ(G) in finitely many steps. To the
best of our knowledge such hierarchies have not been investigated in detail so far.

In this paper we propose a systematic investigation of semidefinite approximations
for χ(G). One of our main contributions is a simple construction permitting one to
derive from any graph parameter β(G) nested between α(G) and χ(G) a new graph
parameter Ψβ(G) nested between ω(G) and χ(G). For this, given an integer t ≥ 0,
let Kt�G denote the Cartesian product of the two graphs G and Kt, with node set

(1.1) V (Kt�G) := V (Kt) × V (G) =

t⋃
p=1

Vp, where Vp := {pi | i ∈ V (G)},

and having an edge (pi, qj) if (p �= q and i = j) or if (p = q and ij ∈ E(G)). Chvátal
[4] observed the following useful reduction of the chromatic number to the stability
number:

(1.2) χ(G) ≤ t ⇐⇒ α(Kt�G) = |V (G)|.

(Reverse reductions, from the stability number to the chromatic number, can be found
in Poljak [31] and in Schrijver [33].) Given a graph parameter β(·) nested between α(·)
and χ(·), relation (1.2) motivates the introduction of the new graph parameter Ψβ(·),
defining Ψβ(G) as the smallest integer t ≥ 0 for which β(Kt�G) = |V (G)|. Among
other properties, Ψα(G) = χ(G), Ψχ(G) = Ψχ∗(G) = ω(G), Ψϑ(G) = �ϑ(G)	, and
Ψϑ′(G) = �ϑ+(G)	. Here χ∗ is the fractional chromatic number, and ϑ′ and ϑ+ are
variations of ϑ obtained by adding certain nonnegativity conditions; see section 2.1.
Moreover, the operator Ψ is monotone nonincreasing and, if β(G) is polynomial time
computable (resp., given by a semidefinite program), then the same holds for Ψβ(G).
A somewhat surprising application is that there does not exist a polynomial time
computable graph parameter nested between the fractional chromatic number and the
chromatic number unless P = NP (see Theorem 2.6). As another application we can
give (quadratically constrained) quadratic and copositive programming formulations
for χ(G) based on the Motzkin–Straus formulation for α(G) (see section 2.5).

The operator Ψ permits one to transform any hierarchy of upper bounds for
α(G) into a hierarchy of lower bounds for χ(G). In this paper we study in particular

hierarchies of lower bounds for χ(G) related to the Lasserre hierarchy las(r)(G) (r ∈
N) for α(G) [19], which finds α(G) at order r = α(G) and refines several other
known hierarchies for α(G). More precisely, we consider two hierarchies ψ(r)(G) and
Ψlas(r)(G) of lower bounds for the chromatic number χ(G), which satisfy ψ(1)(G) =

ϑ(G) and ψ(2)(G) ≥ ϑ+�(G) (Meurdesoif strengthening—see section 2.1), and

|V (G)|
las(r)(G)

≤ ψ(r)(G) ≤ Ψlas(r)(G) ≤ χ(G).

The parameter ψ(r)(G) has the same computational cost as las(r)(G), but it cannot
go beyond the fractional chromatic number; in fact, ψ(r)(G) = χ∗(G) for r ≥ α(G).

The parameter Ψlas(r)(G) has a higher computational cost than las(r)(G) (one has to

evaluate las(r)(Kt�G) for O(log n) queries on t ≤ n), but it finds χ(G) at step r = n.
Dukanovic and Rendl [9] introduced recently another hierarchy for χ(G), which is
related to the hierarchy of de Klerk and Pasechnik [6] for α(G), both being based on
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copositive programming. The hierarchy of Dukanovic and Rendl remains, however,
bounded by the fractional chromatic number; see section 3.5 for details.

Although polynomial time computable for any fixed r, the parameters ψ(r)(G) and
Ψlas(r)(G) are yet too costly to compute for large values of n already for order r = 2.
We propose some variations ψ(G) and Ψ�(G) of the order 2 bounds, which are at least
as good as ϑ+(G). As will be shown in the follow-up paper [14], for vertex-transitive
graphs, the computation of ψ(G) involves a semidefinite program with two matrices
of sizes n + 1 and n, while the computation of Ψ�(G) can be reduced to O(log n)
semidefinite programs with matrices of sizes 2n + 1, 2n, n, and n; these formulations
are obtained by exploiting symmetries in the structure of the semidefinite programs
and symmetries arising from the permutation group Sym(t) acting on the complete
graph Kt.

More details about the results of this paper can also be found in [12].

Contents of the paper. In section 2 we present the operator Ψ and its main
properties, we discuss various ways for computing Ψβ(G), and we give (quadrati-
cally constrained) quadratic and copositive programming formulations for χ(G). In
section 3 we investigate two hierarchies of lower bounds for χ(G) related to the hi-
erarchy of Lasserre for α(G) and converging, respectively, to χ∗(G) and χ(G). This
leads to two bounds ψ(G) and Ψ�(G) formulated via semidefinite programs involving
matrices of size O(n). Finally we explore the link between our bounds and the copos-
itive programming-based hierarchies of de Klerk and Pasechnik [6] for α(G) and of
Dukanovic and Rendl [9] for χ(G).

Notation. Given a graph G = (V,E), G denotes its complementary graph whose
edges are the pairs uv �∈ E(G) (u, v ∈ V (G), u �= v). Throughout we set V := V (G),
n = |V |, and to avoid trivial technicalities we assume that G �= Kn and G �= Kn, where
Kn denotes the complete graph on n nodes. For two graphs G and G′, their Cartesian
product G�G′ has node set V (G) × V (G′), with two nodes uu′, vv′ ∈ V (G) × V (G′)
being adjacent in G�G′ if and only if (u = v and u′v′ ∈ E(G′)) or (uv ∈ E(G) and
u′ = v′). For an integer t ≥ 1, we sometimes set Gt = Kt�G as a shorthand notation
for the Cartesian product of G and Kt, whose node set is as in (1.1). Given a graph
parameter β(·), β(·) is the graph parameter defined by β(G) := β(G) for any graph G.

Throughout, the letters I,J, and e denote, respectively, the identity matrix, the
all-ones matrix, and the all-ones vector (of the suitable size); N is the set of nonneg-
ative integers. For n× n matrices A,B, Tr(A) =

∑n
i=1 Aii and 〈A,B〉 = Tr(ATB) =∑n

i,j=1 AijBij . Moreover, the notation A � 0 means that A is a symmetric positive
semidefinite matrix.

Given a finite set V , P(V ) denotes the collection of all subsets of V . Given an
integer r, set Pr(V ) := {I ∈ P(V ) | |I| ≤ r}. Pr(V ) contains the empty subset
of V which we will denote as 0; thus, for instance, P1(V ) = {0, {i} (i ∈ V )}. We
sometimes identify P1(V ) \ {0} with V ; i.e., we write {i} as i and {i, j} as ij, and,
given a vector x ∈ R

P(V ) we also set xi := x{i}, xij := x{i,j}, xijk := x{i,j,k}, etc.
Let V be a finite set, and let G be a subgroup of Sym(V ), the group of per-

mutations of V , also denoted as Sym(n) if |V | = n. G acts on P(V ) by letting
σ(I) := {σ(i) | i ∈ I} for I ⊆ V , σ ∈ G. Moreover, G acts on vectors and matrices in-
dexed by V (and thus on vectors and matrices indexed by P(V )). Namely, for σ ∈ G,
x ∈ R

V , and M ∈ R
V×V , set σ(x) := (xσ(i))i∈V and σ(M) := (Mσ(i),σ(j))i,j∈V . One

says that M is invariant under the action of G if σ(M) = M for all σ ∈ G: The ma-
trix 1

|G|!
∑

σ∈G σ(M), the “symmetrization” of M obtained by applying the Reynolds
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operator, is invariant under the action of G. The same holds analogously for vectors.
A semidefinite program is said to be invariant under action of G if, for any feasible
matrix X and any σ ∈ G, the matrix σ(X) is again feasible with the same objective
value; then the optimum value of the program remains unchanged if we restrict to
invariant feasible solutions and, in particular, there is an invariant optimal solution.

The automorphism group Aut(G) of a graph G = (V,E) consists of all σ ∈
Sym(V ) preserving the set of edges. G is said to be vertex-transitive when, given any
two nodes i, j ∈ V , there exists σ ∈ Aut(G), with σ(i) = j.

2. New parameters and formulations.

2.1. Some known graph parameters. We review here some classic bounds
for the stability number α(G) and the chromatic number χ(G) of a graph G = (V,E).
We give some equivalent formulations for the bounds. Some work may be required to
derive some of them; for details see, e.g., [22, 33].

• The fractional clique cover number, also known as the fractional chromatic
number of G:

(2.1)

χ∗(G) := max eTx = min eTλ

s.t.
∑
i∈C

xi ≤ 1 (C clique) s.t.
∑

C clique

λCχ
C = e,

x ∈ R
V
+, λ ≥ 0.

It is well known (and easy to verify) that α(G) ≤ χ∗(G) ≤ χ(G), and

(2.2) ω(G)χ∗(G) ≥ |V (G)|, with equality when G is vertex-transitive.

It is hard to compute the fractional chromatic number, and, for some ε > 0, there is
no polynomial time algorithm to approximate χ∗(G) within |V (G)|ε unless P = NP
[25].

• Lovász’s theta number (introduced in [23]):

(2.3)

ϑ(G) := max 〈J, X〉 = min t
s.t. Tr(X) = 1 s.t. Uii = 1 (i ∈ V ),

Xij = 0 (ij ∈ E(G)), Uij = − 1

t− 1
(ij ∈ E(G)),

X � 0, U � 0, t ≥ 2,

where X and U are symmetric matrices indexed by V . The minimization program in
the above definition of ϑ(G) is used, e.g., in [17] for constructing a vector k-coloring.
We will also use the following equivalent formulation:

(2.4)

ϑ(G) = max
∑
i∈V

Xii

s.t. X00 = 1, Xij = 0 (ij ∈ E),
Xii = X0i (i ∈ V ), X � 0,

where the matrix variable X is indexed by the set P1(V ). Lovász [23] proved the
following analogue of (2.2) for the pair (ϑ, ϑ):

(2.5) ϑ(G)ϑ(G) ≥ |V (G)|, with equality when G is vertex-transitive.
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• The strengthening of the theta number of [26, 32]:

(2.6)
ϑ′(G) := max 〈J, X〉 = min t

s.t. Tr(X) = 1 s.t. Uii = 1 (i ∈ V ),

Xij = 0 (ij ∈ E(G)), Uij ≤ − 1

t− 1

(
ij ∈ E

(
G
))

,

X � 0, X ≥ 0, U � 0, t ≥ 2.

• Szegedy’s number [36]:

(2.7)
ϑ+(G) := max 〈J, X〉 = min t

s.t. Tr(X) = 1 s.t. Uii = 1 (i ∈ V ),

Xij ≤ 0 (ij ∈ E(G)), Uij = − 1

t− 1

(
ij ∈ E

(
G
))

,

X � 0, Uij ≥ − 1

t− 1
(ij ∈ E(G)) ,

U � 0, t ≥ 2.

Szegedy [36] showed that the analogue of (2.2) and (2.5) also holds for the pair (ϑ′, ϑ+):

(2.8) ϑ′(G)ϑ+(G) ≥ |V (G)|, with equality when G is vertex-transitive.

Thus one may see the pairs (α, χ∗), (ϑ, ϑ), and (ϑ′, ϑ+) as “reciprocal” pairs of graph
parameters. We will see later in this paper (see Theorem 3.1(e)) that they are in fact
part of a more general hierarchy of reciprocal pairs.

• Meurdesoif [27] defines the bound ϑ+�(G) obtained by adding the “triangle
inequalities” Uij +Ujk−Uik ≤ 1 (for ij, jk ∈ E) to the minimization program defining
ϑ+(G) in (2.7).

The above parameters satisfy

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ ϑ+�(G) ≤ χ∗(G) ≤ χ(G).

The inequality ϑ+�(G) ≤ χ∗(G) will follow from Theorem 3.1(c) and (d), and the
other inequalities follow directly by using the definitions.

2.2. The operator Ψ. By using relation (1.2), we see that the chromatic num-
ber of a graph G can be defined as the optimum solution of the following program:

(2.9) χ(G) = min
t∈N

t s.t. α(Kt�G) = |V (G)|.

This fact motivates the following definition.
Definition 2.1. Given a graph parameter β(·) satisfying

(2.10) min

(
α(·), |V (·)|

ω(·)

)
≤ β(·) ≤ χ(·),

define the graph parameter Ψβ(·) by

(2.11) Ψβ(G) := min
t∈N

t s.t. β(Kt�G) = |V (G)|.
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Note added in proof. The operator Ψ applies in fact to the larger range of

graph parameters β(·) satisfying |V (·)|
χ(·) ≤ β(·) ≤ χ̄(·), thus including graph parameters

satisfying relation (2.10). See [12] for the details.
Lemma 2.2.

(a) The graph parameter Ψβ(G) is well defined if β(·) satisfies (2.10).
(b) The operator Ψ is monotone nonincreasing; that is, Ψβ2(·) ≤ Ψβ1(·) if β1(·)

and β2(.) satisfy (2.10) and β1(·) ≤ β2(·).
(c) Ψα(G) = χ(G).

(d) Ψβ(G) = ω(G) for β(·) := |V (·)|
ω(·) .

(e) Ψχ̄(G) = ω(G).

(f) Ψβ(G) = χ(G) for β(·) := min(α(·), |V (·)|
ω(·) ).

(g) If β(·) satisfies (2.10), then

(2.12) ω(·) ≤ Ψβ(·) ≤ χ(·).

Proof. (a) Assume that β(·) satisfies (2.10), and let 1 ≤ t ≤ n := |V (G)|. As

ω(Kt�G) = max(t, ω(G)), we have |V (Kt�G)|
ω(Kt�G) ≥ t; together with α(Kt�G) ≥ t, this

implies that β(Kt�G) ≥ t. On the other hand, β(Kt�G) ≤ χ(Kt�G) ≤ n. Therefore,
β(Kn�G) = n, thus showing that Ψβ(G) is well-defined.

(b) If β1(·) ≤ β2(·) satisfies (2.10), then β1(Kt�G) = n implies that β2(Kt�G) =
n, which gives Ψβ2(G) ≤ Ψβ1(G).

(c) The identity Ψα(G) = χ(G) follows directly from (2.9).

(d) For β(·) := |V (·)|
ω(·) , the identity Ψβ(G) = ω(G) follows from the fact that

ω(Kt�G) = max(t, ω(G)).

(e) We verify that Ψχ̄(G) = ω(G). As χ(·) ≥ |V (·)|
ω(·) , we deduce by using (b) and

(d) that Ψχ(G) ≤ Ψ|V |/ω(G) = ω(G). To show the reverse inequality, consider a clique
C in G of size ω(G), and let Ct be the subset of V (Kt�G) consisting of all of the copies
of the nodes in C. Thus Ct is covered by t cliques of Kt�G. As the remaining nodes
of Kt�G can be covered by n−|C| cliques, we have χ(Kt�G) ≤ t+n−|C|. Therefore
χ(Kt�G) = n implies that t ≥ |C| = ω(G), which shows that Ψχ̄(G) ≥ ω(G).

(f) Consider now the parameter β(·) := min(α(·), |V (·)|
ω(·) ). As β(·) ≤ α(·), we

deduce by using (b) that Ψβ(G) ≥ Ψα(G) = χ(G), and equality holds since one can
easily verify that β(Kt�G) = n for t := χ(G).

(g) Relation (2.12) now follows directly by using again (b).

Corollary 2.3. If β(·) is a graph parameter satisfying |V (·)|
ω(·) ≤ β(·) ≤ χ̄(·), then

Ψβ = ω. In particular, Ψχ∗ = ω.
Proof. The proof follows directly from Lemma 2.2(b), (d), and (e) and (2.2).
Therefore, the operator Ψ takes a graph parameter β(G) (nested, e.g., between

α(G) and χ(G)) and produces the integer lower bound Ψβ(G) (nested between ω(G)
and χ(G)) for the chromatic number χ(G); Figure 2.1 illustrates how the operator Ψ
acts on various parameters. As α(G)χ∗(G) ≥ |V (G)|,

β(G) ≥ α(G) =⇒ χ(G) ≥ χ∗(G) ≥ |V (G)|
β(G)

.

The next lemma shows that, under the mild assumption (2.13), Ψβ(G) is at least as
good as the obvious lower bound |V (G)|/β(G) for χ(G). However, Ψβ(G) may be

equal to χ(G), while |V (G)|
β(G) always remains below the fractional chromatic number

χ∗(G). One can easily verify that condition (2.13) holds for the graph parameters
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Fig. 2.1. Converting graph parameters by the operator Ψ.

considered in this paper, e.g., for β(·) = α(·), χ(·), χ∗(·), ϑ(·), ϑ′(·) and the parameter

las(r)(·) defined later in (3.1) (see [12] for details).
Lemma 2.4. Assume that the graph parameter β(·) satisfies α(·) ≤ β(·) ≤ χ(·)

and

(2.13) β(Kt�G) ≤ tβ(G) for all t ∈ N.

Then Ψβ(G) ≥ |V (G)|
β(G) .

Proof. If β(Kt�G) = |V (G)|, then |V (G)| ≤ tβ(G), i.e., t ≥ |V (G)|
β(G) .

Remark 2.5. If β(·) ∈ [α(·), χ(·)], then Ψβ(G) − |V (G)|
β(G) ≤ χ(G) − |V (G)|

χ(G) , with

equality, e.g., when G is a perfect graph (since then α(G) = χ(G) = β(G) and

ω(G) = χ(G) = Ψβ(G)). Hence the gap Ψβ(G) − |V (G)|
β(G) can be made arbitrarily

large. For instance, this gap is equal to n− 2n
n+1 = nn−1

n+1 when G is the disjoint union
of a clique of size n and n isolated points.

We will investigate in the next section how the operator Ψ applies to the theta
number ϑ(·) and its strengthening ϑ′(·). We now present an easy but quite surprising
consequence of Lemma 2.2 concerning the complexity of graph parameters nested
between the fractional chromatic and chromatic numbers or, more generally, in the
interval [|V (·)|/ω(·), χ(·)]. The key observation is that the operator Ψ maps the whole
interval [|V (·)|/ω(·), χ(·)] to a single graph parameter (namely, the clique number
ω(·)), which is hard to compute.

Theorem 2.6. If β(·) is a graph parameter satisfying |V (·)|
ω(·) ≤ β(·) ≤ χ(·), then

there is no algorithm permitting one to compute β(G) in time polynomial in |V (G)|
unless P = NP. As |V (·)|

ω(·) ≤ χ∗(·) ≤ χ(·), the same conclusion holds if χ∗(·) ≤ β(·) ≤
χ(·).

Proof. By applying Lemma 2.2, we find that Ψβ(·) = ω(·). Suppose that one can
compute β(G) in time f(n), where f is a polynomial in n = |V (G)|. Then one can
compute Ψβ(G) = ω(G) in time

∑n
l=1 f(ln), thus polynomial in n. As computing the

clique number is an NP-hard problem [11], this implies that P = NP.
Let us mention a few graph parameters that are known to lie within the “hard”

interval [χ∗, χ]. Hence none of them can be computed in polynomial time unless
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P = NP; such a result was known already, e.g., for the circular chromatic number
χc(G) [3].

The circular graph chromatic number (or star chromatic number) χc(G), in-
troduced by Vince [37] and further studied, e.g., in [3, 39], is defined as follows.
Given r ∈ R, r ≥ 2, a function f : V (G) → [0, r) is said to be a r-coloring if
1 ≤ |f(u)−f(v)| ≤ r−1 for all edges uv ∈ E(G). Then χc(G) is defined as the infimum
of all r for which G has a r-coloring. The following hold: χ(G) − 1 < χc(G) ≤ χ(G)
and χ∗(G) ≤ χc(G) ≤ χ(G) (see, e.g., [39]).

Another graph parameter lying in the hard interval [χ∗, χ] is the local chromatic
number χloc(G), introduced in [10] as the minimum over all proper colorings of G of
the largest number of colors used to color the neighborhood NG(v) = {w ∈ V (G) |
vw ∈ E(G)} of any vertex v ∈ V (G). Obviously, χloc(G) ≤ χ(G) (the gap between
the two parameters can in fact be arbitrarily large [10]), and Körner, Pilotto, and
Simonyi [18] show that χ∗(G) ≤ χloc(G).

The independence ratio of a graph G is i(G) := α(G)
|V (G)| , and its Hall ratio is ρ(G) :=

maxH⊆G
|V (H)|
α(H) , where the maximum is taken over all subgraphs of G. For an integer

k ≥ 1, let G�k denote the graph obtained by taking the Cartesian product of k copies
of G. Then the ultimate independence ratio I(G) and the ultimate Hall ratio h�(G)
are defined, respectively, as I(G) := limk→∞ i(G�k) and h�(G) := limk→∞ ρ(G�k).
These graph parameters are studied, e.g., in [15, 16, 35]. In particular, the following
relations with fractional and circular chromatic numbers are shown there:

χ∗(G) ≤ 1

I(G)
= h�(G) ≤ χc(G) ≤ χ(G)

(see [39] for the inequality 1 ≤ I(G)χc(G)).

2.3. Action of the operator Ψ on the theta number. The next theorem
shows that the operator Ψ maps the theta number ϑ(·) to �ϑ(·)	 and its strengthening
ϑ′(·) to �ϑ+(·)	. De Klerk, Pasechnik, and Warners [5] consider a graph parameter
closely related to Ψϑ for which they can also show that it coincides with �ϑ(·)	.

Theorem 2.7. For any graph G the following hold:
(i) Ψϑ(G) = �ϑ(G)	,
(ii) Ψϑ′(G) = �ϑ+(G)	.
We first state two lemmas that we need for the proof of Theorem 2.7.
Lemma 2.8. Let X be a t × t block matrix, having an n × n matrix A as its

diagonal blocks and an n× n matrix B as nondiagonal blocks, i.e.,

(2.14) X =

⎛
⎜⎜⎜⎝

A B . . . B
B A . . . B
...

...
. . .

...
B B . . . A

⎞
⎟⎟⎟⎠ .

︸ ︷︷ ︸
t blocks

Then X � 0 ⇐⇒ A−B � 0 and A + (t− 1)B � 0.
Proof. We define a t× t block matrix Ut having the same block structure as the

matrix X. For p, q = 1, . . . , t, let Upq
t denote the (p, q)th block of Ut, defined by

(2.15) Upq
t :=

⎧⎪⎨
⎪⎩

1√
t
I if p = 1 or q = 1,(

1√
t+t

− 1
)
I if p = q ≥ 2,

1√
t+t

I otherwise.
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Here I stands for the identity matrix of order n. Notice that Ut is symmetric and
orthogonal, i.e., Ut(Ut)

T = I. Let Y := (Ut)
TXUt. Then Y � 0 if and only if X � 0,

and a simple calculation gives

(2.16) Y =

⎡
⎢⎢⎢⎣

A + (t− 1)B 0 . . . 0
0 A−B . . . 0
...

...
. . .

...
0 0 . . . A−B

⎤
⎥⎥⎥⎦ ,

which shows the lemma.
Lemma 2.9. For a positive semidefinite n× n matrix X, nTr(X) ≥ 〈J, X〉, with

equality if and only if X = cJ for some nonnegative scalar c.
Proof. As X � 0, its entries satisfy Xii + Xjj ≥ 2Xij for all i, j ∈ {1, . . . , n}.

Thus, n
∑n

i=1 Xii ≥
∑n

i,j=1 Xij . Equality holds if and only if Xii + Xjj = 2Xij for
all i, j, which gives Xii = Xjj = Xij for all i, j.

Proof of Theorem 2.7. (i) As G has at least one edge, ϑ(G) < n and thus Ψϑ(G) ≥
2. Let (t,X) be a feasible solution for the program defining Ψϑ(G); that is,

(2.17) X � 0, Xuv = 0 (uv ∈ E(Kt�G)), Tr(X) = 1, 〈J, X〉 = n.

Here the matrix X is indexed by V (Kt�G) = ∪t
p=1Vp (recall (1.1)) and t ∈ N, t ≥ 2.

As the program (2.17) is invariant under action of the group Sym(t), one may assume
that X is invariant under action of Sym(t). Then X has the block form (2.14). By
using Lemma 2.8, (2.17) can be rewritten as

(2.18)
A−B � 0, A + (t− 1)B � 0, Aij = 0 (ij ∈ E(G)), diag(B) = 0,

Tr(A) =
1

t
, 〈J, A + (t− 1)B〉 =

n

t
.

Lemma 2.9 implies that A+(t− 1)B = 1
ntJ. By setting U := nt(A−B), we find that

(2.19) U =
1

t− 1
(nt2A− J).

One can verify that (t, U) is feasible for the program

(2.20) min t s.t. diag(U) = e, Uij = − 1

t− 1
(ij ∈ E(G)), U � 0, t ≥ 2

defining the parameter ϑ(G) (see (2.3)). As t ∈ N, this implies that Ψϑ(G) ≥ �ϑ(G)	.
Conversely, let (t, U) be feasible for (2.20), with t an integer. Define the matrices A
and B via the equations

(2.21) A−B =
1

nt
U and A + (t− 1)B =

1

nt
J,

and let X be the corresponding block matrix as in (2.14). One can verify that (2.18)
holds and thus (2.17) holds, too. That is, (t,X) is feasible for (2.17). Thus we have
shown that

(2.22)

Ψϑ(G) = min
t∈N

t s.t. diag(U) = e, Uij = − 1

t− 1
(ij ∈ E(G)), U � 0, t ≥ 2.



THE OPERATOR Ψ FOR THE CHROMATIC NUMBER 581

We now show that Ψϑ(G) ≤ �ϑ(G)	. For this, set t := ϑ(G), and take an optimal

solution U to the program (2.20). Then, by setting Y := t−1
�t�−1U + �t�−t

�t�−1I, the pair

(�t	, Y ) is feasible for (2.22) with objective value �t	, which implies that �t	 ≥ Ψϑ(G).
Thus equality �ϑ(G)	 = Ψϑ(G) holds.

The proof of (ii) is analogous to that of (i). Simply note that adding the condition
X ≥ 0 to (2.17) amounts to adding the condition A,B ≥ 0 to (2.18) and thus, in view
of (2.19), to adding the condition Uij ≥ − 1

t−1 (i, j ∈ V ) to (2.22).

2.4. Semidefinite programming formulation for the new bounds. We
consider here issues related to the computation of Ψβ(G). We assume throughout
that β(·) satisfies (2.10). There is an obvious way to find Ψβ(G), namely, by com-
puting β(Kt�G) for each t = 1, . . . , n. We now observe that, when β(·) is monotone
nondecreasing (with respect to taking induced subgraphs), one can use binary search,
and it suffices to compute β(Kt�G) for O(log n) instances of t.

Lemma 2.10. Assume that

(2.23) β(Kt�G) ≤ β(Kt+1�G) for all t ∈ N.

Then β(Kt�G) = n ⇐⇒ Ψβ(G) ≤ t.
Proof. The “only if” part follows from the definition of Ψβ(G). For the “if”

part assume that t0 := Ψβ(G) ≤ t. Then β(Kt0�G) = n ≤ β(Kt�G) implies that
β(Kt�G) = n, since β(Kt�G) ≤ χ(G) ≤ n.

Under assumption (2.23) one can use binary search for computing Ψβ(G). Namely,
given t0 ∈ [1, n], compute β(Kt0�G). There are two cases:

• β(Kt0�G) < n. Then Ψβ(G) ≥ t0 +1 (by the above lemma), and we can now
restrict the search to t ∈ [t0 + 1, n].

• Or β(Kt0�G) = n. Then Ψβ(G) ≤ t0, and we can restrict the search to
t ∈ [1, t0].

Therefore, one can find Ψβ(G) by computing β(Kt�G) for O(log n) queries of t.
Observe that one may restrict the range of search for t. Suppose that we know

a lower bound t1 and an upper bound t2 on χ(G); that is, t1 ≤ χ(G) ≤ t2. Then
we may assume that t ≤ t2 in the definition of Ψβ(G), and if we add the condition
t ≥ t1, then one still obtains a lower bound for χ(G). Therefore, we may restrict the
binary search to t ∈ [t1, t2]. For instance, one can choose t1 = 3 if G is not bipartite,
or t1 = ω(G), and t2 = Δ(G) + 1 (or even Δ(G) by Brook’s theorem (see [33]) if G is
not a clique or an odd circuit), Δ(G) being the maximum degree of G.

Next we show that Ψβ(G) can be formulated via a single semidefinite program
when β(·) is given by a semidefinite program satisfying certain assumptions. Namely,
our construction applies to the case when the semidefinite program defining β(·)
involves at least one equality constraint of the form 〈A,X〉 = 1, with A � 0. Then one
may assume without loss of generality (w.l.o.g.) that all other (in)equality constraints
in the program are homogeneous, i.e., of the form 〈B,X〉 ≥ 0. (Write any equation
〈B,X〉 = 0 as two opposite inequalities 〈−B,X〉 ≥ 0 and 〈B,X〉 ≥ 0.) So let us
assume that, for an arbitrary graph H, we can express β(H) as

(2.24)
β(H) = max 〈C(H), X(H)〉 s.t. 〈A(H), X(H)〉 = 1,

B(H)(X(H)) ≥ 0,
X(H) � 0,

where C(H) and A(H) are constant symmetric n × n matrices, B(H) : Sn → R
d(H)

is a linear operator, and X(H) is the matrix variable. Note that d(·) depends on H,
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e.g., d(H) = 2|E(H)| in the formulation of ϑ(H). Moreover we assume that

A(H) � 0,(2.25)

〈A(H), X(H)〉 = 0 =⇒ 〈C(H), X(H)〉 = 0.(2.26)

Note that assumptions (2.23), (2.24), (2.25), and (2.26) hold, e.g., for ϑ(·) or for
the Lasserre hierarchy considered in section 3.1. Recall that our operator Ψ maps
β(·) in the following way:

(2.27)

Ψβ(G) := min t = min t
s.t. β(Gt) = n s.t. 〈C(Gt), X(Gt)〉 = n,

〈A(Gt), X(Gt)〉 = 1,
B(Gt)(X(Gt)) ≥ 0,
X(Gt) � 0.

Here we use the more concise notation Gt := Kt�G. Let us define

Φβ(G) := min

n∑
t=1

t〈A(Gt), X(Gt)〉 s.t.

n∑
t=1

〈C(Gt), X(Gt)〉 = n,

n∑
t=1

〈A(Gt), X(Gt)〉 = 1,

(2.28) B(Gt)(X(Gt)) ≥ 0 (t = 1, . . . , n),

X(Gt) � 0 (t = 1, . . . , n).

Theorem 2.11. Under assumptions (2.24), (2.25), and (2.26), Φβ(G) = Ψβ(G).
Proof. Take a feasible solution (t,X(Gt)) for the program (2.27), and for k �= t

set X(Gk) := 0. In this way one obtains a feasible solution for (2.28) with the same
objective value as (2.27), which shows that Φβ(G) ≤ Ψβ(G). Conversely, let X(Gt)
(t = 1, . . . , n) be a feasible solution for (2.28), and set at := 〈A(Gt), X(Gt)〉. Thus
at ≥ 0 since A(Gt) � 0 (by assumption (2.25)) and

∑
t at = 1. Consider t for which

at > 0. As 〈A(Gt),
X(Gt)

at
〉 = 1, X(Gt)

at
is feasible for (2.24) (with H = Gt), which

implies that 〈C(Gt),
X(Gt)

at
〉 ≤ β(Gt) ≤ n; moreover, equality 〈C(Gt),

X(Gt)
at

〉 = n
implies that β(Gt) = n and thus Ψβ(G) ≤ t. Now we have

n =
∑
t

〈C(Gt), X(Gt)〉 =
∑

t|at>0

at

〈
C(Gt),

X(Gt)

at

〉
≤

⎛
⎝ ∑

t|at>0

at

⎞
⎠n = n.

(Here we used assumption (2.26) for the second equality.) Therefore, equality holds
throughout, which implies that Ψβ(G) ≤ t whenever at > 0. Hence,

∑
t tat =∑

t|at>0 tat ≥ Ψβ(G)(
∑

t|at>0 at) = Ψβ(G), which gives Φβ(G) ≥ Ψβ(G).

Hence, under the assumptions (2.24), (2.25), and (2.26), the parameter Ψβ(G) can
be formulated via the semidefinite program (2.28), which involves a block-diagonal
matrix with diagonal blocks X(G1), . . . , X(Gn), each X(Gt) being the matrix variable
involved in the program (2.24) for the graph H = Gt. For instance, if (2.24) involves
a matrix variable of order f(V (H)), then (2.28) involves a block-diagonal matrix with
block sizes f(n), f(2n), . . . , f(n2). As explained above one can reduce the size of the
program (2.28) by restricting the range of t in program (2.28) to t ∈ [t1, t2], where
t1 ≤ χ(G) ≤ t2.
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2.5. Copositive programming formulation for the chromatic number.
The technique used in section 2.4 can also be applied to derive (quadratically con-
strained) quadratic and copositive programming formulations for the chromatic num-
ber. Recall that a matrix X is copositive if xTXx ≥ 0 for all x ≥ 0. A matrix X is
completely positive if it belongs to the dual of the cone of copositive matrices, i.e., if
it can be written as X =

∑
i xix

T
i for some xi ≥ 0.

Our starting point is the theorem of Motzkin and Straus [28], which, for a graph
G with adjacency matrix AG, gives the following formulation for its stability number:

(2.29)
1

α(G)
= min xT (I + AG)x s.t. x ∈ R

V (G)
+ , eTx = 1,

or, equivalently (see [6]),

(2.30) α(G) = min t s.t. t(I + AG) − J is copositive.

By using (2.29), we can rewrite the program (2.9) as

(2.31) χ(G) = min t s.t. xT
t (I + AGt

)xt =
1

n
, eTt xt = 1, xt ∈ R

V (Gt)
+ .

Here and below et denotes the all-ones vector in R
V (Gt). By using the idea from

section 2.4 let us define

(2.32)

Φ1(G) := min

n∑
t=1

t(eTt xt)
2

s.t.

n∑
t=1

(eTt xt)
2 = 1,

n∑
t=1

xT
t (I + AGt)xt =

1

n
,

xt ∈ R
V (Gt)
+ (t = 1, . . . , n).

Proposition 2.12. Φ1(G) = χ(G).
Proof. By taking a feasible solution (t, xt) for the program (2.31) and setting

xk = 0 for k �= t, we obtain a feasible solution for (2.32) with objective value t. Thus,
Φ1(G) ≤ χ(G). Conversely, let xt (t = 1, . . . , n) be feasible for (2.32). Then

1

n
=
∑
t

xT
t (I + AGt

)xt =
∑

t|xt =0

xT
t

eTt xt
(I + AGt

)
xt

eTt xt
(eTt xt)

2 ≥ 1

n

∑
t|xt =0

(eTt xt)
2 =

1

n
.

We have used
xT
t

eTt xt
(I + AGt)

xt

eTt xt
≥ 1

α(Gt)
≥ 1

n . Hence equality holds throughout,

which implies that α(Gt) = n if xt �= 0 and thus χ(G) ≤ t if xt �= 0. Therefore,

∑
t

t(eTt xt)
2 =

∑
t|xt =0

t(eTt xt)
2 ≥ χ(G)

∑
t|xt =0

(eTt xt)
2 = χ(G).

This shows that Φ1(G) ≥ χ(G).
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Up to rescaling, we obtain the following formulation for χ(G) involving only
quadratic constraints:

(2.33)

χ(G) = min
1

n2

n∑
t=1

t(eTt xt)
2

s.t.

n∑
t=1

(eTt xt)
2 = n2,

n∑
t=1

xT
t (I + AGt)xt = n,

xt ∈ R
V (Gt)
+ (t = 1, . . . , n).

It is not difficult to verify that the above program remains a formulation of χ(G) if
we replace the condition xt ≥ 0 (for all t) by the condition that xt is 0/1 valued (for
all t). Therefore this gives a 0/1 (quadratically constrained) quadratic programming
formulation for the chromatic number involving O(n3) variables.

By starting from (2.33), we can now derive a copositive programming formulation
for χ(G). Namely, consider the program

(2.34)

Φ2(G) := min
1

n2

n∑
t=1

t〈J, Xt〉

s.t.

n∑
t=1

〈J, Xt〉 = n2,

n∑
t=1

〈I + AGt , Xt〉 = n,

Xt completely positive (t = 1, . . . , n).

Proposition 2.13. Φ2(G) = χ(G).
Proof. The formulation (2.33) for χ(G) implies directly that Φ2(G) ≤ χ(G).

Conversely, let Xt (1 ≤ t ≤ n) be a feasible solution for (2.34). Consider t for
which Xt �= 0. Say, Xt =

∑
it
xitx

T
it

where xit ≥ 0, xit �= 0 for all it. Thus

λit :=
√
〈J, xitx

T
it
〉 = eTt xit > 0. Set yit :=

xit

λit
. By assumption, we have

∑
t〈n(I +

AGt)−J, Xt〉 = 0. By (2.30), each matrix n(I+AGt)−J is copositive, since n ≥ α(Gt).
This implies that 〈n(I + AGt

) − J, Xt〉 = 0 and thus 〈n(I + AGt
) − J, xitx

T
it
〉 = 0 for

all it. From this follows that 〈I + AGt , yity
T
it
〉 = 1

n for all it. As eTt yit = 1, yit
is feasible for the program (2.31), implying that χ(G) ≤ t whenever Xt �= 0. Now
(1/n2)

∑
t t〈J, Xt〉 ≥ (1/n2)χ(G)

∑
t〈J, Xt〉 = χ(G), giving Φ2(G) ≥ χ(G).

By rewriting the condition
∑

t〈I + AGt
, Xt〉 = n as

∑
t〈n(I + AGt

) − J, Xt〉 = 0,
the dual conic program of (2.34) reads:

(2.35) max
y,z

y s.t.
1

n2
(t− y)J + z(n(I + AGt) − J) copositive for 1 ≤ t ≤ n.

There is no duality gap since the program (2.35) is strictly feasible. Thus (2.35) is
yet another formulation of χ(G). This opens the road to another type of hierarchy
of relaxations for χ(G), obtained by approximating the copositive cone by tractable
subcones as suggested by Parrilo [29]. This type of approach based on copositive pro-
gramming has been studied, e.g., in [2] for standard quadratic optimization problems,
in [6, 13, 30] for the stable set problem, and recently in [9] for the coloring problem.
We will come back to it in section 3.5.
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3. Semidefinite hierarchies for (fractional) chromatic numbers. We have
seen in the previous section how to construct semidefinite programming lower bounds
for the chromatic number of a graph from semidefinite programming upper bounds
on the stability number. Several hierarchies of such upper bounds for the stability
number have been proposed in the literature, in particular, in [6, 19, 24, 30, 34].
These hierarchies were further studied and compared, e.g., in [13, 20]. It turns out
that Lasserre’s hierarchy, proposed in [19], gives the tightest bounds. For this reason
we focus in this section on this hierarchy, and we show how it can be used and
transformed to produce hierarchies of lower bounds for the (fractional) chromatic
number. We will also discuss the link with another hierarchy recently proposed by
Dukanovic and Rendl [9] based on copositive programming.

3.1. Lasserre’s hierarchy towards the stability number. For a subset S ⊆
V and an integer r ≥ 1, define the vectors χS ∈ {0, 1}V with ith entry 1 if and only
if i ∈ S (for i ∈ V ) and χS,r ∈ {0, 1}Pr(V ) with Ith entry 1 if and only if I ⊆ S (for
I ∈ Pr(V )). Given a vector x = (xI)I∈P2r(V ), consider the matrix:

Mr(x) := (xI∪J)I,J∈Pr(V )

indexed by Pr(V ), known as the (combinatorial) moment matrix of x of order r.
Consider the program:1

(3.1) las(r)(G) := max
∑
i∈V

xi s.t. Mr(x) � 0, x0 = 1, xij = 0 (ij ∈ E),

with variable x ∈ R
P2r(V ). As the feasible region is bounded, the maximum is in-

deed attained in program (3.1). Obviously, las(r+1)(G) ≤ las(r)(G) (since Mr(x) is

a principal submatrix of Mr+1(x)) and, in view of (2.4), las(1)(G) = ϑ(G). In this
way one obtains a hierarchy of semidefinite programming bounds for the stability
number, known as Lasserre’s hierarchy [19, 20]. Indeed, if S is a stable set, the vector

x := χS,2r is feasible for (3.1) with objective value |S|, showing that α(G) ≤ las(r)(G).

For fixed r, the parameter las(r)(G) can be computed in polynomial time (to an arbi-
trary precision) since the semidefinite program (3.1) involves matrices of size O(nr)
with O(n2r) variables (see, e.g., [38] for details on semidefinite programming). It is
shown in [20] that, for r ≥ α(G),

(3.2) x is feasible for (3.1) ⇐⇒ x =
∑

S stable

λSχ
S,2r, for some λ ≥ 0,

∑
S stable

λS = 1.

This implies that

(3.3) α(G) = las(r)(G) for r ≥ α(G).

3.2. An analogous semidefinite programming hierarchy towards the
fractional chromatic number. For an integer r ≥ 1, define the parameter

(3.4) ψ(r)(G) := min t s.t. Mr(x) � 0, x0 = t, xi = 1 (i ∈ V ), xij = 0 (ij ∈ E),

where the variable x is indexed by P2r(V ). Note that one can avoid the variable t
simply by replacing t by x0 in the objective function. We choose this formulation in

1One can easily verify that, under the condition Mr(x) � 0, the edge condition xij = 0 for ij ∈ E
implies that xI = 0 for any I ∈ P2r(V ) containing an edge.
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order to have a unified presentation of the various bounds; compare, e.g., with (2.9),
(2.11), (3.9), (3.12), and (3.14). Again the minimum is attained in program (3.4),
and, for fixed r, one can compute ψ(r)(G) to any arbitrary precision in polynomial
time.

Theorem 3.1. The parameters ψ(r)(G) satisfy:
(a) ψ(r)(G) ≤ ψ(r+1)(G),
(b) ψ(1)(G) = ϑ(G),

(c) ϑ+�(G) ≤ ψ(2)(G),
(d) ψ(r)(G) ≤ χ∗(G), with equality if r ≥ α(G),

(e) ψ(r)(G)las(r)(G) ≥ |V (G)|, with equality if G is vertex-transitive.

Proof. (a) is obvious. For (b), let M1(x) =
(
t eT

e M

)
be a matrix optimal for (3.4)

with r = 1. Then ψ(1)(G) = t ≥ 2 (as G has an edge) and M1(x) � 0 or, equivalently,
M − 1

t ee
T � 0. After setting U := t

t−1 (M − 1
t ee

T ) = t
t−1M − 1

t−1ee
T , we can rewrite

the program for ψ(1)(G) in the following way:

ψ(1)(G) = min t s.t. Uii = 1,

Uij = − 1

t− 1
(ij ∈ E),

U � 0, t ≥ 2.

Thus, in view of (2.3), ψ(1)(G) = ϑ(G).
(c) Assume that (t, x) is feasible for the program defining ψ(2)(G). Consider the

principal submatrix X of M2(x) indexed by {k, ij, ik, jk}, where i, j, k are distinct
elements of V and the vector w := (1, 1,−1,−1)T . Then wTXw ≥ 0 gives xik +
xjk − xij ≤ 1. By setting U := t

t−1 ((xij)
n
i,j=1 − 1

tJ), one can now verify that (t, U) is

feasible for the program defining ϑ+�(G), which shows the result.
(d) Let λ be an optimum solution for the minimization program defining χ∗(G)

(recall (2.1)). That is, eTλ = χ∗(G),
∑

S stable λSχ
S = e, and λ ≥ 0. For r ∈ N, the

vector x :=
∑

S stable λSχ
S,r is feasible for (3.4) with objective value χ∗(G), which

shows that ψ(r)(G) ≤ χ∗(G). Assume now that r ≥ α(G), and consider an optimum
solution Mr(x) for (3.4). By setting y := 1

ψ(r)(G)
x, we have Mr(y) � 0, y0 = 1, and

yij = 0 (ij ∈ E). By using (3.2) we derive y =
∑

S stable λSχ
S,2r for some λS ≥ 0,

with
∑

S λS = 1. By rescaling and taking the projection onto the subspace R
V , we

find a decomposition e = ψ(r)(G)
∑

S stable λSχ
S , with

∑
S λSψ

(r)(G) = ψ(r)(G),
which shows that χ∗(G) ≤ ψ(r)(G).

(e) Take again an optimum solution Mr(x) for (3.4), and let n = |V (G)|. Since

Mr(
1

ψ(r)(G)
x) is feasible for (3.1) with objective value n

ψ(r)(G)
, we get las(r)(G) ≥

n
ψ(r)(G)

. Assume that G is vertex-transitive. Then there exists an optimum solution

x for (3.1) which is invariant under the action of the automorphism group of G. In

particular, xi = xj for all i, j ∈ V and thus xi = las(r)(G)
n for all i ∈ V . Then the

matrix n
las(r)(G)

Mr(x) is feasible for (3.4), yielding ψ(r)(G) ≤ n
las(r)(G)

.

Theorem 3.1 shows that the reciprocity relations (2.5) and (2.2) for the pairs

(ϑ, ϑ) = (las(1), ψ(1)) and (α, χ∗) = (las(r), ψ(r)) (for r large, r ≥ α(G)) extend to any

order r pair (las(r), ψ(r)) in the hierarchy.

3.3. The hierarchy Ψlas(r)(G) (r ≥ 0) towards the chromatic number.

By applying the operator Ψ to the hierarchy las(r)(·) introduced in section 3.1, we
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obtain the following hierarchy of lower bounds for χ(G):

(3.5)

Ψlas(r)(G) = min t s.t. las(r)(Gt) = n

= min t s.t. y0 = 1,
∑

u∈V (Gt)

yu = n,

yuv = 0 (uv ∈ E(Gt)), Mr(y) � 0,

where the variable y is indexed by P2r(V (Gt)). As α(Gt) ≤ n, we deduce by using

(3.3) that las(n)(Gt) = α(Gt) for all t ∈ N. Therefore, (1.2) implies the following.
Proposition 3.2. Ψlas(n)(G) = χ(G).
In fact, this new hierarchy Ψlas(r) refines the hierarchy ψ(r).
Proposition 3.3. For any integer r ≥ 1, ψ(r)(G) ≤ Ψlas(r)(G).
Proof. Let (t, y) be feasible for the program defining the parameter Ψlas(r)(G);

that is, y ∈ R
P2r(V (Gt)) satisfies y0 = 1, yuv = 0 (uv ∈ E(Gt)),

∑
u∈V (Gt)

yu = n,

and Mr(y) � 0. We may assume w.l.o.g. that y is invariant under the action of the
symmetric group Sym(t). The next claim determines yu for u ∈ V (Gt).

Claim 3.4. yu = 1
t for all u ∈ V (Gt).

Proof. Let X denote the principal submatrix of Mr(y) indexed by P1(V (Gt)).
With respect to the partition of P1(V (Gt)) ∼ {0} ∪ V (Gt) into {0} ∪ V1 ∪ · · · ∪ Vt

(recall (1.1)), the matrix X has the block form

(3.6)

⎛
⎜⎜⎜⎜⎜⎝

1
a
a
...
a

aT aT . . . aT

A B . . . B
B A . . . B
...

...
. . .

...
B B . . . A

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
t blocks

,

where a = diag(A), diag(B) = 0, Aij = 0 for ij ∈ E(G), and eTa = n
t . By taking

the Schur complement with respect to the left upper corner and using Lemma 2.8, we

have A+(t−1)B− taaT � 0. This implies that 〈J, A+(t−1)B〉 ≥ t(eTa)2 = n2

t . On

the other hand, by Lemma 2.9, 〈J, A+(t−1)B〉 ≤ nTr(A+(t−1)B) = nTr(A) = n2

t .
Hence equality holds, implying that A+ (t− 1)B = 1

tJ and thus a = 1
t e. This shows

that yu = 1
t for all u ∈ V (Gt).

Define the vector x ∈ R
P2r(V ) with Ith entry xI := ty{pi|i∈I} for I ∈ P2r(V )\{0}

(where p is any fixed integer in {1, . . . , t}) and x0 = t. Then Mr(x) � 0, since it
coincides with the principal submatrix of Mr(ty) indexed by {0} ∪ {{pi | i ∈ I} | I ∈
Pr(V )\{0}}. Moreover, x0 = t and xi = 1 for i ∈ V . Thus, (t, x) is feasible for the
program (3.4), which implies that ψ(r)(G) ≤ Ψlas(r)(G).

In summary, we have shown the following relations among the graph parameters
las(r)(G), ψ(r)(G), and Ψlas(r)(G):

(3.7)
|V (G)|

las(r)(G)
≤ ψ(r)(G) ≤ Ψlas(r)(G) ≤ χ(G).

Let us point out again that, while ψ(r)(G) remains below the fractional chromatic
number χ∗(G), Ψlas(r)(G) may reach the chromatic number χ(G).

3.4. Variations of the second order bounds. As observed in Theorem 3.1
and Proposition 3.3, we have

ϑ+(G) ≤ ϑ+�(G) ≤ ψ(2)(G) ≤ Ψlas(2)(G).
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To compute ψ(2)(G) one needs to solve a semidefinite program with matrix size O(n2)
and with O(n4) variables. We now introduce some variations of the parameters
ψ(2)(G) and Ψlas(2)(G) which are less costly to compute but still at least as good
as ϑ+(G). The idea is to consider, instead of the full moment matrix of order 2, some
principal submatrix of it. Namely, given h ∈ V , let M2(h;x) denote the principal
submatrix of M2(x) indexed by the subset P1(V ) ∪ {{h, i} | i ∈ V } of P2(V ). Thus
in order to define the matrices M2(h;x) for all h ∈ V , one needs only the components
of x indexed by P3(V ). By following [21], define the following upper bound for the
stability number α(G):

(3.8) �(G) := max
∑
i∈V

xi s.t. M2(h;x) � 0 (h ∈ V ), x0 = 1, xij = 0 (ij ∈ E(G)),

with variable x ∈ R
P3(V ). Obviously,

las(2)(G) ≤ �(G) ≤ las(1)(G) = ϑ(G).

Next, define the graph parameter

(3.9)
ψ(G) := min t s.t. M2(h;x) � 0 (h ∈ V ), xij = 0 (ij ∈ E(G)),

x0 = t, xi = 1 (i ∈ V ),

where the variable x is indexed by P3(V ). Again one can avoid variable t by replacing
t by x0 in the objective function. We first observe that the pair (�, ψ) satisfies the

analogue of the reciprocity relation from Theorem 3.1(e) for the pairs (las(r), ψ(r)).
Proposition 3.5. We have

(3.10) �(G)ψ(G) ≥ |V (G)|, with equality if G is vertex-transitive,

(3.11) ϑ+(G) ≤ ψ(G) ≤ ψ(2)(G).

Proof. The proof for (3.10) is analogous to that of Theorem 3.1(e), and the right
inequality in (3.11) is obvious. For the left inequality, let (t, x) be feasible for (3.9).
Observe first that xhi ≥ 0 for all h, i ∈ V , since xhi is the diagonal entry of M2(h;x)
at the {h, i}th position and M2(h;x) � 0. Let A denote the principal submatrix of
M2(h;x) indexed by V . Then A = (xij)i,j∈V ≥ 0 and A− 1

tJ � 0, which implies that

U := t
t−1 (A− 1

tJ) is feasible for the program defining ϑ+(G) (recall (2.7)).
By applying the operator Ψ to the parameter �(·) (introduced in (3.8)), one ob-

tains the lower bound Ψ�(G) for χ(G), defined as

(3.12)

Ψ�(G) = min
t∈N

t s.t. �(Kt�G) = n

= min
t∈N

t s.t.
∑

u∈V (Gt)

yu = n, yuv = 0 (uv ∈ E(Gt)),

y0 = 1, M2(u; y) � 0 (u ∈ V (Gt)),

where the variable y is indexed by P3(V (Gt)). (Recall that Gt = Kt�G.)
Proposition 3.6. ψ(G) ≤ Ψ�(G) ≤ Ψlas(2)(G).
Proof. The right inequality follows from Lemma 2.2(b), and the proof for the left

inequality is analogous to that of Proposition 3.3.
In summary, we have the following analogue of (3.7) about �(G), ψ(G), and Ψ�(G):

(3.13)
|V (G)|
�(G)

≤ ψ(G) ≤ Ψ�(G) ≤ χ(G).



THE OPERATOR Ψ FOR THE CHROMATIC NUMBER 589

Again, ψ(G) ≤ χ∗(G) since ψ(2)(G) ≤ χ∗(G), but Ψ�(G) may sometimes reach χ(G).
The bound Ψ�(G) can be especially useful when the gap between χ∗(G) and χ(G)
is large, e.g., when χ∗(G) ∼ ω(G) < χ(G). We refer to the follow-up paper [14],
where such graph instances will be considered (e.g., Kneser graphs) with experimental
results. One can easily verify that the graph parameter �(·) is monotone nondecreasing
with respect to induced subgraphs. Therefore, as explained in section 2.4, one can
compute Ψ�(G) by evaluating �(Gt) for O(log n) queries of t. We will show in the
follow-up paper [14] how to give a more compact reformulation for the program (3.12)
when G is a vertex-transitive graph. Namely, we will show there that each �(Gt) can
be computed via a semidefinite program involving four matrices of size 2n+ 1, 2n, n,
and n, respectively.

3.5. Link with copositive programming-based hierarchies. We have just
seen one possible construction for hierarchies of bounds towards α(G) and χ∗(G),
based on the method of Lasserre. As mentioned earlier in this section there are several
other possible constructions for approximating the stable set problem. However, to the
best of our knowledge, such constructions were much less investigated for the coloring
problem. Recently Dukanovic and Rendl [9] investigated a hierarchy of lower bounds
for χ∗(G), which is closely related to the hierarchy of de Klerk and Pasechnik [6] for
α(G); both are based on copositive programming and some of its tractable relaxations
in terms of sums of squares of polynomials, proposed by Parrilo [29]. Let Cn denote the
cone of n × n copositive matrices and C∗

n its dual cone, consisting of the completely
positive matrices. Thus M ∈ Cn if and only if pM (x) :=

∑n
i,j=1 Mijx

2
ix

2
j ≥ 0 for

all x ∈ R
n. Obviously if, for some r ∈ N, the polynomial pM (x)(

∑n
i=1 x

2
i )

r can
be written as a sum of squares of polynomials (s.o.s. for short), then M ∈ Cn. By
following Parrilo [29], for an integer r ≥ 0, define the cone

K(r)
n :=

{
M ∈ R

n×n | pM (x)

(
n∑

i=1

x2
i

)r

is s.o.s.

}
.

Thus, K
(r)
n ⊆ K

(r+1)
n ⊆ Cn. By following [6], define the graph parameter

ϑ(r)(G) := min t s.t. t(I + AG) − J ∈ K(r)
n .

In view of (2.30), α(G) ≤ ϑ(r)(G). Moreover, it is proved in [6] that ϑ(0)(G) = ϑ′(G)
(defined in (2.6)) and �ϑ(r)(G)� = α(G) for r ≥ (α(G))2. Dukanovic and Rendl [9]
propose an analogous hierarchy toward the fractional chromatic number. To start
with, they show the following copositive programming formulation for χ∗(G):

(3.14)
χ∗(G) = min t s.t. Xii = t (i ∈ V ), Xij = 0 (ij ∈ E(G)),

X ∈ C∗
n, X − J � 0.

For an integer r ≥ 0, let κ(r)(G) denote the graph parameter obtained by replacing

the cone Cn by its subcone K
(r)
n in (3.14). Thus, κ(r)(G) ≤ κ(r+1)(G) ≤ χ∗(G).

Moreover, it is proved in [9] that κ(0)(G) = ϑ+(G) (defined in (2.7)) and that the pair
(ϑ(r), κ(r)) satisfies the reciprocity relation:

(3.15) ϑ(r)(G)κ(r)(G) ≥ |V (G)|, with equality if G is vertex-transitive,

thus extending (2.8) for the case r = 0.
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Now one may wonder what the link is between the two hierarchies las(r) and ϑ(r)

for α and between the two hierarchies ψ(r) and κ(r) for χ∗. Here is what we can
say about this. In order to be able to compare the various bounds we have to add

nonnegativity to the definition of las(r) and ψ(r); namely, let las
(r)
≥0(G) (resp., ψ

(r)
≥0(G),

�≥0(G), and ψ≥0(G)) denote the parameter obtained by adding the condition x ≥ 0 to
program (3.1) (resp., to (3.4), (3.8), and (3.9)). The analogue of Theorem 3.1(e) holds

for the pairs (las
(r)
≥0, ψ

(r)
≥0) and (�≥0, ψ≥0) as well, and we have las

(1)
≥0(G) = ϑ′(G) =

ϑ(0)(G) and ψ
(1)
≥0(G) = ϑ

+
(G) = κ(0)(G). It is shown in [13] that, for any graph G,

las
(r)
≥0(G) ≤ ϑ(r−1)(G) for all r ≥ 1,

and the same proof technique also shows that �≥0(G) ≤ ϑ(1)(G) (see [12] for de-

tails). In view of the reciprocity relations for the pairs (�≥0, ψ≥0), (las
(r)
≥0, ψ

(r)
≥0), and

(ϑ(r), κ(r)), this implies that

κ(1)(G) ≤ ψ≥0(G), κ(r−1)(G) ≤ ψ
(r)
≥0(G) (r ≥ 1), when G is vertex-transitive.

It is an open question to determine whether the above inequalities remain valid when
G is not vertex-transitive. See [9, 14] for instances of Hamming graphs (which are
indeed vertex-transitive) having a substantial gap between the two bounds κ(1)(G)
and ψ≥0(G).
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[12] N. Gvozdenović, Approximating the Stabiliy Number and the Chromatic Number of Graph
Via Semidefinite Programming, Ph.D. thesis, in preparation.



THE OPERATOR Ψ FOR THE CHROMATIC NUMBER 591
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Canad. J. Math., 17 (1965), pp. 533–540.

[29] P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Ro-
bustness and Optimization, Ph.D. thesis, California Institute of Technology, 2000.

[30] J. Peña, J. Vera, and L. Zuluaga, Computing the stability number of a graph via linear and
semidefinite programming, SIAM J. Optim., 18 (2007), pp. 87–105.

[31] S. Poljak, A note on stable sets and colorings of graphs, Comment. Math. Univ. Carolin., 15
(1974), pp. 307–309.

[32] A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inform. Theory,
25 (1979), pp. 425–429.

[33] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Springer, Berlin, 2003.
[34] H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems, SIAM J. Discrete Math.,
3 (1990), pp. 411–430.

[35] G. Simonyi, Asymptotic values of the Hall-ratio for graph powers, Discrete Math., 306 (2006),
pp. 2593–2601.

[36] M. Szegedy, A note on the theta number of Lovász and the generalized Delsarte bound, in
Proceedings of the 35th IEEE Annual Symposium on Foundations of Computer Science,
1994, pp. 36–39.

[37] A. Vince, Star chromatic number, J. Graph Theory, 12 (1988), pp. 551–559.
[38] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of Semidefinite Programming,

Kluwer Academic, Boston, 2000.
[39] X. Zhu, Circular chromatic number: A survey, Discrete Math., 229 (2001), pp. 371–410.



SIAM J. OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 19, No. 2, pp. 592–615

COMPUTING SEMIDEFINITE PROGRAMMING LOWER BOUNDS
FOR THE (FRACTIONAL) CHROMATIC NUMBER VIA

BLOCK-DIAGONALIZATION∗
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Abstract. Recently we investigated in [SIAM J. Optim., 19 (2008), pp. 572–591] hierarchies
of semidefinite approximations for the chromatic number χ(G) of a graph G. In particular, we
introduced two hierarchies of lower bounds: the “ψ”-hierarchy converging to the fractional chromatic
number and the “Ψ”-hierarchy converging to the chromatic number of a graph. In both hierarchies
the first order bounds are related to the Lovász theta number, while the second order bounds would
already be too costly to compute for large graphs. As an alternative, relaxations of the second order
bounds are proposed in [SIAM J. Optim., 19 (2008), pp. 572–591]. We present here our experimental
results with these relaxed bounds for Hamming graphs, Kneser graphs, and DIMACS benchmark
graphs. Symmetry reduction plays a crucial role as it permits us to compute the bounds by using more
compact semidefinite programs. In particular, for Hamming and Kneser graphs, we use the explicit
block-diagonalization of the Terwilliger algebra given by Schrijver [IEEE Trans. Inform. Theory, 51
(2005), pp. 2859–2866]. Our numerical results indicate that the new bounds can be much stronger
than the Lovász theta number. For some of the DIMACS instances we improve the best known lower
bounds significantly.

Key words. chromatic number, Lovász theta number, semidefinite programming, Terwilliger
algebra, Hamming graph, Kneser graph
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1. Introduction. The chromatic number χ(G) of a graph G is the smallest
number of colors needed to color the vertices of G so that no two adjacent vertices
share the same color. Determining χ(G) is an NP-hard problem [14], and it is hard
to approximate χ(G) within |V (G)|1/14−ε for any ε > 0 [1]. Finding a proper vertex
coloring with a small number of colors is essential in many real-world applications. A
lot of work has been done in order to develop efficient heuristics for this problem (see,
e.g., [5]). Nevertheless, these methods can provide us only with upper bounds on the
chromatic number. Lower bounds were mainly obtained by using linear programming
[26, 27], critical subgraphs [8], and semidefinite programming (SDP) [9, 10, 11, 18,
28, 32]. The semidefinite approaches are based on computing (variations of) the well-
known lower bound ϑ(G) := ϑ

(
G
)
, the theta number of the complementary graph,

introduced by Lovász [24]. The theta number satisfies the “sandwich inequality”:

ω(G) ≤ ϑ(G) ≤ χ(G),

and it can be computed to any arbitrary precision in polynomial time since it can
be formulated via a semidefinite program of size |V (G)|. Here ω(G) is the clique
number of G, defined as the maximum size of a clique (i.e., a set of pairwise adjacent
nodes) in G, the stability number α(G) := ω(G) of G being the maximum size of
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a stable set (i.e., a set of pairwise nonadjacent nodes) in G. The theta number has
been strengthened towards the chromatic number by using nonnegativity [32], triangle
inequalities [28], or some lift-and-project methods [11]. Computational results were
reported in [9, 10, 11]. A common feature shared by all of these bounds is that they
remain below the fractional chromatic number χ∗(G). Thus they are of little use when
χ∗(G) is close to the clique number ω(G). In [17] the authors investigated another
type of lift-and-project approach leading to a hierarchy of bounds converging to the
chromatic number χ(G). We explore in the present follow-up paper the behavior of
these bounds through experimental results on several classes of graphs.

The approach in [17] is based on the following reduction of Chvátal [6] of the
chromatic number to the stability number:

(1.1) χ(G) ≤ t ⇐⇒ α(Kt�G) = |V (G)|,

where Kt�G denotes the Cartesian product of Kt, the complete graph on t nodes,
and the graph G. For a given graph parameter β(·) satisfying α(·) ≤ β(·) ≤ χ(·),
define the new graph parameter Ψβ(·) by

(1.2) Ψβ(G) := min
t∈N

t s.t. β(Kt�G) = |V (G)|.

As shown in [17], the operator Ψ is monotone nonincreasing and satisfies

(1.3) ω(G) = Ψχ(G) ≤ Ψβ(G) ≤ Ψα(G) = χ(G) and Ψϑ(G) =
⌈
ϑ(G)

⌉
.

In other words the operator Ψ transforms upper bounds for the stability number
into lower bounds for the chromatic number. An interesting bound for α(·) from the
computational point of view is the graph parameter �(·) introduced by Laurent [21] as
a relaxation of the second order bound in Lasserre’s hierarchy for α(·) (see [19, 21]).
Two hierarchies for the chromatic number, related to Lasserre’s hierarchy for α(·),
are studied in [17], as well as two bounds ψ(·) and Ψ�(·) related to the parameter �(·).
See section 2.2 for the precise definition of the parameters �, ψ, and Ψ�.

In the present paper we investigate how to compute the bounds ψ(·) and Ψ�(·) for
Hamming graphs and for Kneser graphs. Coloring Hamming graphs is of interest, e.g.,
to the Borsuk problem (see [33]), and the chromatic number of Kneser graphs was com-
puted in the celebrated paper [23] of Lovász by using topological methods; see, e.g.,
[25] for a study of topological lower bounds for the chromatic number. The Hamming
graph G = H(n,D) has node set V (G) = {0, 1}n, with an edge uv if the Hamming
distance between u and v lies in the given set D ⊆ {1, . . . , n}. For n ≥ 2r, the Kneser
graph K(n, r) is the subgraph of H(n, {2r}) induced by the set of words u ∈ {0, 1}n
with weight

∑n
i=1 ui = r. The Hamming graph has a large automorphism group which

enables us to block-diagonalize and reformulate the programs for ψ(G) and Ψ�(G) in
such a way that they involve O(n) matrices of size O(n) (instead of 2n = |V (G)|). As
a crucial ingredient we use the block-diagonalization for the Terwilliger algebra given
by Schrijver [31]. We also use this technique, which was extended to constant-weight
codes in [31], for computing the bound Ψ�(·) for Kneser graphs. For Kneser graphs,
the bound ψ(·) coincides with the fractional chromatic number (see section 4), but, as
will be seen in Table 2, Ψ�(K(n, r)) can go beyond the fractional chromatic number.
We report experimental results for Hamming and Kneser graphs in Tables 1 and 2. For
some instances, the parameter ψ(G) improves substantially the theta number ϑ̄(G),
and adding nonnegativity may also help; moreover, while Ψ�(G) hardly improves upon
ψ(G) for Hamming graphs, it does give an improvement for Kneser graphs.
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Finally we introduce a further variation ψK(G) of our bounds (where K is a
clique in G), which can be especially useful for graphs without apparent symmetries.
By using a simple block-diagonalization argument, ψK(G) can be formulated via a
semidefinite program involving |K| matrices of size |V (G)| and one matrix of size
|V (G)|+ 1. The bound ψK(G) is bounded above by the fractional chromatic number
χ∗(G). We report experimental results on some DIMACS benchmark instances. To
the best of our knowledge, our lower bound improves the best known lower bound in
the literature for several instances of DSJC and DSJR graphs, sometimes substantially.
Moreover, for the two instances G = DSJC125.9 and DSJR500.1c, we can determine
the exact value of the chromatic number χ(G), since our lower bound matches the
known upper bound for χ(G). This indicates that the bound ψK can be quite strong
for random graphs, despite the fact that it remains below the fractional chromatic
number. Moreover, we observed experimentally that adding nonnegativity constraints
to the formulation of ψK does not help for the DSJC instances, which is similar to
the observation made in [9] that strengthening the theta number with nonnegativity
does not help for random graphs.

More details about the results of this paper can also be found in [16].

Contents of the paper. In section 2 we recall the definitions of the graph
parameters �(·), ψ(·), and Ψ�(·) and their main properties; we show how symmetry
in the semidefinite programming formulations and in the graph can be exploited to
(sometimes dramatically) reduce the sizes of the semidefinite programs defining these
bounds. Section 3 is devoted to the computation of the bounds for Hamming graphs;
we describe how to block-diagonalize the matrices in the semidefinite programs and
report computational experiments. In section 4 we focus on the graph parameter Ψ�(·)
for Kneser graphs; we present the block-diagonalization of the matrices and conclude
the section with computational results. We describe in section 5 the new lower bound
ψK(·), which we test on some DIMACS benchmark graphs.

Notation. Given a graph G = (V,E), G denotes its complementary graph whose
edges are the pairs uv �∈ E(G) (u, v ∈ V (G), u �= v). Given a graph parameter β(·),
β(·) is the graph parameter defined by β(G) := β(G) for any graph G. For two
graphs G and G′, their Cartesian product G�G′ has node set V (G) × V (G′), with
two nodes uu′, vv′ ∈ V (G)× V (G′) being adjacent in G�G′ if and only if (u = v and
u′v′ ∈ E(G′)) or (uv ∈ E(G) and u′ = v′). For an integer t ≥ 1, Kt is the complete
graph on t nodes. We also set Gt = Kt�G as a shorthand notation for the Cartesian
product of G and Kt.

Throughout, the letters I, J, and e denote, respectively, the identity matrix, the
all-ones matrix, and the all-ones vector (of suitable size); N is the set of nonnegative
integers. For matrices A and A′ indexed, respectively, by I×J and I ′×J ′, their tensor
product A⊗A′ is the matrix indexed by (I× I ′)× (J ×J ′), with (A⊗A′)(i,i′),(j,j′) :=
Ai,jBi′,j′ . Moreover, the notation A 
 0 means that A is a symmetric positive
semidefinite matrix.

Given a finite set V , P(V ) denotes the collection of all subsets of V . Given an
integer r, set Pr(V ) := {I ∈ P(V ) | |I| ≤ r}; in particular, P1(V ) = {∅, {i} (i ∈ V )}.
Sometimes (e.g., when dealing with Hamming graphs) we deal with the collection
P1(V ), where V = P(N), and N = {1, . . . , n}; then P1(V ) contains ∅ (the empty
subset of V ) and {∅} (the singleton subset of V consisting of the empty subset of
N). To avoid confusion we use the symbol 0 to denote the empty subset of V , so
that P1(V ) = {0, {i} (i ∈ V )}. We sometimes identify P1(V ) \ {0} with V ; i.e., we
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write {i} as i and {i, j} as ij, and, given a vector x ∈ R
P(V ), we also set xi := x{i},

xij := x{i,j}, xijk := x{i,j,k} (for i, j, k ∈ V ), etc.
Let V be a finite set, and let G be a subgroup of Sym(V ), the group of permu-

tations of V , also denoted as Sym(n) if |V | = n. Then G acts on P(V ) by letting
σ(I) := {σ(i) | i ∈ I} for I ⊆ V , σ ∈ G. Moreover, G acts on vectors and matrices
indexed by Pr(V ), by letting σ(x) := (xσ(I))I∈Pr(V ), σ(M) := (Mσ(I),σ(J))I,J∈Pr(V )

for x ∈ R
Pr(V ), M ∈ R

Pr(V )×Pr(V ), and σ ∈ G. One says that M is invariant under
the action of G if σ(M) = M for all σ ∈ G; then the matrix 1

|G|!
∑

σ∈G σ(M), the “sym-

metrization” of M obtained by applying the Reynolds operator, is invariant under the
action of G. The analogue statement holds for vectors. A semidefinite program is said
to be invariant under the action of G if, for any feasible matrix X and any σ ∈ G, the
matrix σ(X) is again feasible with the same objective value; then the optimum value
of the program remains unchanged if we restrict to invariant feasible solutions, and,
in particular, there is an invariant optimal solution.

The automorphism group Aut(G) of a graph G = (V,E) consists of all σ ∈
Sym(V ) preserving the set of edges. G is said to be vertex-transitive when, given
any two nodes i, j ∈ V , there exists σ ∈ Aut(G), for which σ(i) = j. For instance,
for the graph Gt = Kt�G, Sym(t) × Aut(G) ⊆ Aut(Gt), where (τ, σ) ∈ Sym(t) ×
Aut(G) acts on V (Gt) (and thus on Pr(V (Gt)) for r ∈ N) by (τ, σ)(p, i) = (τ(p), σ(i))
for (p, i) ∈ V (Kt) × V (G). We will deal in this paper with semidefinite programs
involving matrices indexed by Pr(V (Gt)), which are invariant under this action of
Sym(t) × Aut(G).

2. Graph parameters.

2.1. Classic bounds. We recall here some classic bounds for the chromatic
number χ(G) of a graph G = (V,E). Throughout section 2, V = V (G) is the node
set of graph G and n := |V (G)|. (For details see, e.g., [17, 22, 30].)

• The fractional chromatic number of G:

(2.1) χ∗(G) := max eTx s.t.
∑
i∈S

xi ≤ 1 (S stable), x ∈ R
V
+.

It is well known (and easy to verify) that ω(G) ≤ χ∗(G) ≤ χ(G), and

(2.2) α(G)χ∗(G) ≥ |V (G)| with equality when G is vertex-transitive.

• Lovász’s theta number (introduced in [24]):

(2.3)

ϑ(G) = ϑ(G) := max eTY e

s.t.
∑
i∈V

Yii = 1,

Yij = 0 (ij ∈ E(G)),

Y 
 0,

where Y is a symmetric matrix indexed by V . For a later purpose we recall the
following equivalent formulation (cf., e.g., [15, Theorem 9.3.12]):

(2.4)

ϑ(G) = min X00

s.t. Xii = X0i (i ∈ V ),
Xij = 0 (ij ∈ E(G)),
X 
 0,



596 NEBOJŠA GVOZDENOVIĆ AND MONIQUE LAURENT

where the matrix variable X is indexed by the set P1(V ) = V ∪ {0}. Lovász [24]
proved the following analogue of (2.2) for the pair (ϑ, ϑ):

(2.5) ϑ(G)ϑ(G) ≥ |V (G)| with equality when G is vertex-transitive.

• Szegedy’s number was first defined in [32]. We present the following equivalent
formulation from [17]:

(2.6)

ϑ+(G) = ϑ+(G) = min X00

s.t. Xii = X0i (i ∈ V ),
Xij = 0 (ij ∈ E(G)),
X ≥ 0, X 
 0.

The above parameters satisfy

ω(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χ∗(G) ≤ χ(G).

2.2. The bounds �, ψ, and Ψ�. We review here the graph parameters �(·)
proposed in [21] and ψ(·) and Ψ�(·) proposed in [17]; for details see also [16]. For a
subset S ⊆ V and an integer r ≥ 1, define the vectors χS ∈ {0, 1}V , with ith entry 1
if and only if i ∈ S (for i ∈ V ), and χS,r ∈ {0, 1}Pr(V ), with Ith entry 1 if and only if
I ⊆ S (for I ∈ Pr(V )). Given a vector x = (xI)I∈P2r(V ), consider the matrix:

Mr(x) := (xI∪J)I,J∈Pr(V )

known as the (combinatorial) moment matrix of x of order r. Consider the programs:

las(r)(G) := max
∑
i∈V

xi s.t. Mr(x) 
 0, x0 = 1, xij = 0 (ij ∈ E),(2.7)

ψ(r)(G) := min t s.t. Mr(x) 
 0, x0 = t, xi = 1 (i ∈ V ), xij = 0 (ij ∈ E),(2.8)

where the variable x is indexed by P2r(V ). Note that the variable t can be avoided
in (2.8) by replacing t by x0 in the objective function. We choose this formulation
to emphasize the analogy with the formulations (2.13), (2.17), and (5.1) below. The
above two programs were studied, respectively, in [19, 20] and in [17]. In particular,
the following holds:

(2.9) α(G) = las(α(G)) ≤ · · · ≤ las(r+1)(G) ≤ las(r)(G) ≤ · · · ≤ las(1)(G) = ϑ(G),

(2.10) ϑ(G) = ψ(1)(G) ≤ · · · ≤ ψ(r)(G) ≤ ψ(r+1)(G) ≤ · · · ≤ ψ(α(G))(G) = χ∗(G),

(2.11) ψ(r)(G)las(r)(G) ≥ |V (G)| with equality if G is vertex-transitive.

Thus the parameters las(r)(G) (for r = 1, . . . , α(G)) create a hierarchy of upper bounds
for the stability number, while the parameters ψ(r)(G) create a hierarchy of lower

bounds for the fractional coloring number. Theoretically, the parameters las(r)(G)
and ψ(r)(G) can be computed to any precision in polynomial time for fixed r, since
the semidefinite programs (2.7) and (2.8) involve matrices of size O(nr). On the other

hand, in practice, we are not able to compute las(2)(G) or ψ(2)(G) for “interesting”
graphs, that is, for graphs of reasonably large size. For this reason some variations of
the parameters las(2)(G) and ψ(2)(G) were proposed in [17, 21]. The idea is to consider,
instead of the full moment matrix of order 2, a number of principal submatrices of
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it. Given h ∈ V , let M2(h;x) denote the principal submatrix of M2(x) indexed by
the subset P1(V ) ∪ {{h, i} | i ∈ V } of P2(V ). Thus in order to define the matrices
M2(h;x) for all h ∈ V , one needs only the components of x indexed by P3(V ).
Following [17, 21], define the upper bound for the stability number α(G):

(2.12)

�(G) := max
∑
i∈V

xi s.t. M2(h;x) 
 0 (h ∈ V ), x0 = 1, xij = 0 (ij ∈ E(G)),

and the lower bound for the fractional coloring number χ∗(G):

(2.13)
ψ(G) := min t s.t. M2(h;x) 
 0 (h ∈ V ), xij = 0 (ij ∈ E(G)),

x0 = t, xi = 1 (i ∈ V ),

where the variable x is indexed by P3(V ). For the parameter �(G) we have (see [21])

(2.14) α(G) ≤ las(2)(G) ≤ �(G) ≤ las(1)(G) = ϑ(G) ≤ χ(G),

while ψ(G) satisfies (see [17])

(2.15) ϑ+(G) ≤ ψ(G) ≤ ψ(2)(G).

They also satisfy an inequality similar to (2.11), namely,

(2.16) ψ(G)�(G) ≥ |V (G)| with equality if G is vertex-transitive.

As α(·) ≤ �(·) ≤ χ(·) (by (2.14)), we can apply the operator Ψ from (1.2) to �(·) and
obtain the lower bound Ψ�(G) for χ(G), defined as

(2.17) Ψ�(G) = min
t∈N

t s.t. �(Gt) = n.

The parameter �(Gt) is defined via the program

(2.18)
�(Gt) = max

∑
u∈V (Gt)

yu s.t. M2(u; y) 
 0 (u ∈ V (Gt)),

y0 = 1, yuv = 0 (uv ∈ E(Gt)),

where the variable y is indexed by P3(V (Gt)). (Recall that Gt = Kt�G.) Finally, the
two parameters ψ(G) and Ψ�(G) were compared in [17], where the following relation
is shown:

(2.19) ϑ(G) ≤ ψ(G) ≤ Ψ�(G) ≤ χ(G).

Let us finally note that one can easily strengthen the bounds �(G), ψ(G), and
Ψ�(G), e.g., by requiring nonnegativity1 of the variables. Let �≥0(G) (resp., ψ≥0(G))
denote the variation of �(G) (resp., ψ(G)) obtained by adding the condition x ≥ 0 to

1Note, however, that the condition xij ≥ 0 ∀i, j ∈ V already automatically holds in (2.12) and
(2.13), since it is implied by M2(h;x) � 0 ∀h ∈ V (as xhi occurs as a diagonal entry of M2(h;x)).
Analogously, yuv ≥ 0 ∀u, v ∈ V (Gt) automatically holds in (2.18).
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(2.12) (resp., (2.13)); we have again ψ≥0(G)�≥0(G) = |V (G)| when G is vertex-
transitive. Define accordingly Ψ�≥0

(G), which amounts to requiring y ≥ 0 in (2.18).

2.3. Exploiting symmetry to compute the bounds �, ψ, and Ψ�. We
group here some observations about the complexity of computing the graph param-
eters �(·), ψ(·), and Ψ�(·). We show how one can exploit symmetry, present in the
structure of the matrices involved in the programs defining the parameters or in the
graph instance, in order to reduce the size of the programs. This symmetry reduction
is a crucial step as it allows reformulating the parameters via more compact programs.
In this way we will be able to compute the graph parameters for certain large graphs
(with as many as 220 nodes for certain Hamming graphs), a task that would obviously
be out of reach without applying this symmetry reduction.

We begin with observing that the matrix M2(h;x), used in definitions (2.12) and
(2.13), has a special block structure, whose symmetry can be exploited to “block-
diagonalize” it. Recall that M2(h;x) is indexed by the set P1(V )∪ {{h, i} | i ∈ V } =
{0} ∪ {{i} | i ∈ V } ∪ {{h, i} | i ∈ V }. Here we keep the two occurrences of the
singleton {h} in the index set, occurring first as {i} for i = h and second as {i, h} for
i = h. Thus, the index set of M2(h;x) is partitioned into {0} and two copies of V .

Lemma 2.1. With respect to this partition of its index set, the matrix M2(h;x)
has the block form:

(2.20) M2(h;x) =

⎛
⎝ a cT dT

c C D
d D D

⎞
⎠ ,

where a = x0, ci = xi, di = xhi (i ∈ V ), Cij = xij, and Dij = xhij (i, j ∈ V ). Then

(2.21) M2(h;x) 
 0 ⇐⇒
(
a− ch cT − dT

c− d C −D

)

 0 and D 
 0.

Proof. The form (2.20) follows directly from the definition of M2(h;x). To show
(2.21), observe that the row of M2(h;x) indexed by {h} has the form (ch, d

T , dT ).
Indeed, for i, j ∈ V , Cij = x{i,j}, Dij = x{h,i,j}, cj = xj , and dj = x{h,j}, implying
that Chj = Dhj = dj . As in [21], we perform some row/column manipulation on
M2(h;x) to show (2.21). Say the second row/column of M2(h;x) is indexed by {h},
i.e., h comes first when listing the elements of V . Then

UT
1 M2(h;x)U1 =

⎛
⎝a− ch cT − dT 0

c− d C D
0 D D

⎞
⎠ , setting U1 :=

⎛
⎝ 1 0 0
−1 1 0
0 0 I

⎞
⎠ ,

where I is the identity matrix of order 2n− 1 (n = |V |). Next,

UT
2 (UT

1 M2(h;x)U1)U2 =

⎛
⎝a− ch cT − dT 0

c− d C −D 0
0 0 D

⎞
⎠ , setting U2 :=

⎛
⎝1 0 0

0 I 0
0 −I I

⎞
⎠ ,

where I has order n.
Hence, in (2.12) and (2.13), we may replace each constraint M2(h;x) 
 0 (which

involves a matrix of size 2n + 1) by two constraints involving matrices of sizes n + 1
and n.
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We now consider symmetries present in the graph instance G. Observe that the
program (2.12) (or (2.13)) is invariant under the action of Aut(G). Hence one may
assume that the variable x is invariant under the action of Aut(G). Therefore, when
G is vertex-transitive, it suffices to require the condition M2(h;x) 
 0 for one choice
of h ∈ V (instead of for all h ∈ V ), and thus �(G) and ψ(G) can be computed via a
semidefinite program involving two linear matrix inequality (LMIs) matrices of sizes
n + 1, n and with O(n2) variables.

We now turn to the graph parameter Ψ�(G). In order to determine Ψ�(G), we
need to compute the parameter �(Gt) = �(Kt�G) from (2.18) (for several queries of
t ∈ N). As was just observed above, the program defining �(Gt) is invariant under the
action of Aut(Gt) thus in particular under the action of Sym(t) × Aut(G) or simply
of Sym(t). In particular, in program (2.18), one may assume that y is invariant under
the action of Sym(t). Moreover, it suffices to require the condition M2(u; y) 
 0 for
all u ∈ V1 instead of for all u ∈ V (Gt); here V1 = {1i | i ∈ V } denotes the “first layer”
of the node set V (Gt) = {pi | p = 1, . . . , t, i ∈ V } of Gt. Furthermore, when G is
vertex-transitive, it suffices to require M2(u; y) 
 0 for one choice of u ∈ V1 instead
of for all u ∈ V1.

We now show, by using the invariance of y under the action of Sym(t), that
the matrix M2(u; y) has a special block structure, whose symmetry can be used to
block-diagonalize it. To begin with, with respect to the partition {0} ∪ {{v} | v ∈
V (Gt)}∪{{u, v} | v ∈ V (Gt)} of its index set, the matrix M2(u; y) has the block form
shown in (2.20) with a, c, d, C, and D being now defined in terms of y (instead of x).
In view of (2.21), we have

(2.22) M2(u; y) 
 0 ⇐⇒
(
y0 − yu cT − dT

c− d C −D

)

 0 and D 
 0.

Next we observe that the invariance of y under Sym(t) implies a special block structure
for the matrices C and D.

Lemma 2.2. Consider the partition V (Gt) = V1∪· · ·∪Vt of the node set of graph
Gt, where Vp := {pi | i ∈ V } for p = 1, . . . , t. With respect to this partition, the
matrices C and D have the block form:

(2.23) C =

⎛
⎜⎜⎜⎜⎝

A1 A2 · · · A2

A2 A1 · · · A2

...
...

. . .
...

A2 · · · · · · A1

⎞
⎟⎟⎟⎟⎠ , D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B1 B2 B2 · · · B2

(B2)T B3 B4 · · · B4

(B2)T B4 B3 · · · B4

...
...

...
. . .

...

(B2)T B4 · · · · · · B3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where2 A1, . . . , B4 ∈ R
n×n. Moreover, by setting a1 := diag(A1), b1 := diag(B1), and

b3 := diag(B3), we have c = [aT1 , . . . , a
T
1 ]T and d = [bT1 bT3 bT3 , . . . , b

T
3 ]T .

Proof. Consider i, j ∈ V and p, q, p′, q′ ∈ {1, . . . , t}, with p = q if and only
if p′ = q′. Then Cpi,qj = y{pi,qj} = y{p′i,q′j} = Cp′i,q′j ; indeed, as there exists
σ ∈ Sym(t) mapping {p, q} to {p′, q′}, the equality y{pi,qj} = y{p′i,q′j} follows from
the fact that y is invariant under the action of Sym(t). This shows that C has the
form indicated in (2.23); the argument is analogous for matrix D.

2Here Ai or Bi should not be interpreted as powers of A or B, as i is not an exponent but just
an upper index.
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To fix ideas, set u = 1h ∈ V1 (where h ∈ V is a given node of G). Then the
entries of A1, . . . , B4 are given by

(2.24)
A1

ij = y{1i,1j}, A2
ij = y{1i,2j}, B1

ij = y{1i,1h,1j},

B2
ij = y{1i,1h,2j}, B3

ij = y{2i,1h,2j}, B4
ij = y{2i,1h,3j}

for i, j ∈ V . (Recall that y{1i,1j} = y{pi,pj}, y{1i,2j} = y{pi,qj}, and y{1i,2j,3h} =
y{pi,qj,rh} for any distinct p, q, r ∈ {1, . . . , t} since y is invariant under the action of
Sym(t).) Moreover, the edge constraints yuv = 0 (for uv ∈ E(Gt)) in (2.18) can be
reformulated as

(2.25)

A1
ij = 0 if ij ∈ E(G),

B1
ij = 0 if {i, j, h} contains an edge of G,

B2
ij = 0 if hi ∈ E(G) or j ∈ {i, h},

B3
ij = 0 if ij ∈ E(G) or if h ∈ {i, j},

B4
ij = 0 if h ∈ {i, j},

diag(A2) = diag(B2) = diag(B4) = 0

for distinct i, j ∈ V .
The next lemma indicates how one can further block-diagonalize the two matrices

appearing at the right-hand side of the equivalence in (2.22).
Lemma 2.3. We have

D 
 0 ⇐⇒
(

B1 (t− 1)B2

(t− 1)(B2)T (t− 1)B3 + (t− 1)(t− 2)B4

)
, B3 −B4 
 0.

Moreover,

(
y0 − yu cT − dT

c− d C −D

)

 0 ⇐⇒ A1 −B3 −A2 + B4 
 0 and

⎛
⎝y0 − yu aT1 − bT1 (t− 1)(aT1 − bT3 )

A1 −B1 (t− 1)(A2 −B2)
(t− 1)(A1 −B3) + (t− 1)(t− 2)(A2 −B4)

⎞
⎠ 
 0.

(We wrote only the upper triangular part in the above (symmetric) matrix.)
Proof. Consider the orthogonal matrices

M :=

(
I 0
0 Ut−1

)
, N :=

(
1 0
0 M

)
,

where I is the identity matrix of order n and Ut−1 is defined as follows. Ut−1 is a
(t − 1) × (t − 1) block matrix where, for p, q = 1, . . . , t − 1, its (p, q)th block Upq

t−1 is
the n× n matrix defined as

(2.26) Upq
t−1 :=

⎧⎪⎨
⎪⎩

1√
t−1

I if p = 1 or q = 1,(
1√

t−1+t−1
− 1

)
I if p = q ≥ 2,

1√
t−1+t−1

I otherwise.
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Notice that Ut−1 is symmetric and orthogonal, i.e., Ut−1(Ut−1)
T = I. A simple

calculation shows that

MDM =

⎛
⎜⎜⎜⎜⎜⎝

B1
√
t− 1B2 0 . . . 0√

t− 1(B2)
T B3 + (t− 2)B4 0 . . . 0

0 0 B3 −B4 0
...

...
...

. . .
...

0 0 0 . . . B3 −B4

⎞
⎟⎟⎟⎟⎟⎠ .

The first assertion of the lemma now follows after multiplying the second row/column
block by

√
t− 1. Next we have

N

(
y0 − yu cT − dT

c− d C −D

)
N =

(
y0 − yu (c− d)TM
M(c− d) M(C −D)M

)
.

As the matrix C − D has the same type of block shape as D, we deduce from the
above that M(C − D)M is block-diagonal. More precisely, the first diagonal block
has the form (

A1 −B1
√
t− 1(A2 −B2)√

t− 1(A2 −B2)T (A1 −B3) + (t− 2)(A2 −B4)

)
,

and the remaining t − 2 diagonal blocks are all equal to A1 − B3 − A2 + B4. One
can moreover verify that (c− d)TM =

(
aT1 − bT1 ,

√
t− 1(aT1 − bT3 ), 0 . . . 0

)
. From this

follows the second assertion of the lemma.
In summary, we have obtained the following more compact semidefinite program

for the parameter �(Gt):

(2.27)
�(Gt) = max teTa1 s.t. a1 = diag(A1), b1 = diag(B1), b3 = diag(B3) ∈ R

n,

A1, A2, B1, B2, B3, B4 ∈ R
n×n satisfy (2.25) and⎛

⎝1 − (a1)h aT1 − bT1 (t− 1)(aT1 − bT3 )
A1 −B1 (t− 1)(A2 −B2)

(t− 1)(A1 −B3) + (t− 1)(t− 2)(A2 −B4)

⎞
⎠ 
 0,

(
B1 (t− 1)B2

(t− 1)B3 + (t− 1)(t− 2)B4

)

 0,

A1 −A2 −B3 + B4 
 0,

B3 −B4 
 0.

This formulation applies when G is vertex-transitive; here h is any fixed node of
G. Hence Ψ�(G) can be obtained by computing �(Gt) for O(log n) queries of the
parameter t (see [17]) and the computation of each �(Gt) is via an SDP involving
four LMIs matrices of size 2n + 1, 2n, n, and n, respectively. The above reductions
obviously apply to the stronger bound Ψ�≥0

obtained by adding nonnegativity, i.e.,
by adding the constraints A1, . . . , B4 ≥ 0 in (2.27).

3. Bounds for Hamming graphs. We indicate here how to compute the pa-
rameters ψ(G) and Ψ�(G) when G is a Hamming graph. Given an integer n ≥ 1 and
D ⊆ N := {1, . . . , n}, G is the graph H(n,D) with node set V (G) := P(N) and with
an edge (I, J) if |I � J | ∈ D (for I, J ∈ P(N)). Thus we now have |V (G)| = 2n.
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As G is vertex-transitive, we can use the program (2.27). As the program (2.27)
involves matrices of size O(2n), it cannot be solved directly for interesting values of
n. However, one can use the fact that the Hamming graph G = H(n,D) has a large
automorphism group for reducing the size of the matrices A1, . . . , B4 involved in the
program (2.27). Each permutation σ ∈ Sym(n) induces an automorphism of G by
letting σ(I) := {σ(i) | i ∈ I} for I ∈ P(N), and, for any K ∈ P(N), the switching
mapping sK defined by sK(I) := I �K (for I ∈ P(N)) is also an automorphism of
G. Then Aut(G) = {σsK | σ ∈ Sym(n), K ∈ P(N)} and |Aut(G)| = n!2n.

It turns out that the matrices A1, . . . , B4 appearing in (2.27) belong to the Ter-
williger algebra of the Hamming graph. By using the explicit block-diagonalization of
the Terwilliger algebra, presented by Schrijver [31], we are able to block-diagonalize
the matrices in (2.27) which enables the computation of Ψ�(G) for G = H(n,D) for
n up to 20. We recall the details needed for our treatment in the next subsection.

3.1. The Terwilliger algebra. For i, j, p = 0, . . . , n, let Mp,n
i,j denote the 0/1

matrix indexed by P(N) whose (I, J)th entry is 1 if |I| = i, |J | = j, and |I ∩ J | = p
and equal to 0 otherwise. The set

An :=

⎧⎨
⎩

n∑
i,j,p=0

xp
i,jM

p,n
i,j | xp

i,j ∈ R

⎫⎬
⎭

is an algebra, known as the Terwilliger algebra of the Hamming graph. For k =
0, . . . , n, let Mn

k be the matrix indexed by P(N) whose (I, J)th entry is 1 if |I�J | = k
and 0 otherwise. The set

Bn :=

{
n∑

k=0

xkM
n
k | xk ∈ R

}

is an algebra, known as the Bose–Mesner algebra of the Hamming graph. Obviously,
Bn ⊆ An, since Mn

k =
∑

i,j,p|i+j−2p=k M
p,n
i,j . As is well known, Bn is a commutative

algebra, and thus all matrices in Bn can be simultaneously diagonalized (cf. Delsarte
[7]). The Terwilliger algebra is not commutative, and thus it cannot be diagonalized;
however, it can be block-diagonalized, as explained in [31]. We recall the main result
below.

Given integers i, j, k, p = 0, . . . , n, set

(3.1) βp,n
i,j,k :=

n∑
u=0

(−1)p−u

(
u

p

)(
n− 2k

n− k − u

)(
n− k − u

i− u

)(
n− k − u

j − u

)
,

(3.2) αp,n
i,j,k := βp,n

i,j,k

(
n− 2k

i− k

)− 1
2
(
n− 2k

j − k

)− 1
2

.

Theorem 3.1 (see [31]). For a matrix M =
∑

i,j,p M
p,n
i,j xp

i,j in the Terwilliger
algebra,

(3.3) M 
 0 ⇐⇒ Mk :=

(∑
p

αp,n
i,j,kx

p
i,j

)n−k

i,j=k


 0 for k = 0, 1, . . . ,
⌊n

2

⌋
.



COMPUTING SDP LOWER BOUNDS FOR χ(G) 603

To show this, Schrijver [31] constructs an orthogonal matrix U having the follow-
ing property:

UTMU =

⎛
⎜⎜⎜⎜⎝
M̂0 0 . . . 0

0 M̂1 . . . 0
...

...
. . . 0

0 0 . . . M̂	n/2


⎞
⎟⎟⎟⎟⎠ , where M̂k =

⎛
⎜⎜⎜⎝
Mk 0 . . . 0
0 Mk . . . 0
...

...
. . . 0

0 0 . . . Mk

⎞
⎟⎟⎟⎠ ,

with block Mk being repeated
(
n
k

)
−

(
n

k−1

)
times, for k = 0, . . . , �n/2�.

The result extends to a block matrix whose blocks all lie in the Terwilliger algebra
and which has a border of a special form. We state Lemma 3.2 for a 2×2 block matrix,
but the analogous result holds obviously for any number of blocks.

Lemma 3.2. Let A,B,C ∈ An, say, A =
∑

i,j,p a
p
i,jM

p,n
i,j , B =

∑
i,j,p b

p
i,jM

p,n
i,j ,

and C =
∑

i,j,p c
p
i,jM

p,n
i,j , and define accordingly

Ak =

(∑
p

αp,n
i,j,ka

p
i,j

)n−k

i,j=k

, Bk =

(∑
p

αp,n
i,j,kb

p
i,j

)n−k

i,j=k

, Ck =

(∑
p

αp,n
i,j,kc

p
i,j

)n−k

i,j=k

.

Then (
A B
BT C

)

 0 ⇐⇒

(
Ak Bk

BT
k Ck

)

 0 ∀k = 0, 1, . . . ,

⌊n
2

⌋
.

Proof. The proof follows directly from the above by using the orthogonal matrix
( U 0

0 U ).
Lemma 3.3 (see Lemma 1 in [21]). Let M =

∑n
i,j,p=0 x

p
i,jM

p,n
i,j ∈ An, c =∑n

i=0 ciχ
i, where χi ∈ {0, 1}P(N) with χi

I = 1 if |I| = i (for I ∈ P(N)), and d ∈ R.
Then (

d cT

c M

)

 0 ⇐⇒

⎧⎨
⎩

Mk 
 0 for k = 1, . . . ,
⌊
n
2

⌋
,

M̃0 :=

(
d c̃T

c̃ M0

)

 0

after setting c̃T := (ci

√(
n
i

)
)ni=0.

3.2. Compact formulation for ψ(G) for Hamming graphs. As the graph
G = H(n,D) is vertex-transitive, we have ψ(G) = 2n

�(G) by (2.16). It is shown in [21]

how to compute the parameter �(G) (when D is an interval [1, d], but the reasoning is
the same for any D). The basic idea is that the matrix M2(h;x) appearing in (2.12)
is a block matrix whose blocks lie in the Terwilliger algebra, and thus it can be block-
diagonalized. We recall the details, directly for the parameter ψ(G) from (2.13), as
they will be useful for our treatment of the parameter Ψ�(G) in the next section.

Let x be feasible for the program (2.13). As G is vertex-transitive it suffices to
require the condition M2(h;x) 
 0 in (2.13) for one choice of h ∈ V (G). Moreover,
we may assume that the variable x is invariant under the action of the automorphism
group of G. To fix ideas, let us choose the node h := ∅ of G (the empty subset of N).
The matrix M2(∅;x) has the block form

(3.4) M2(∅;x) =

⎛
⎝t eT bT

e A B
b B B

⎞
⎠ ,
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where A, B, e, and b are indexed by V (G) = P(N), diag(A) = e, and diag(B) = b.
By Lemma 2.1, we have

(3.5) M2(∅;x) 
 0 ⇐⇒
(
t− 1 eT − bT

e− b A−B

)

 0 and B 
 0.

As x is invariant under the action of Aut(G), it follows that AI,J = x{I,J} =
x{I′,J ′} = AI′,J ′ if |I � J | = |I ′ � J ′|. In other words, the matrix A lies in the
Bose–Mesner algebra, say,

(3.6) A =

n∑
k=0

xkM
n
k =

n∑
i,j,p=0

xi+j−2pM
p,n
i,j

for some reals xk. Moreover, BI,J = x{∅,I,J} = x{∅,I′,J ′} = BI′,J ′ if |I ′| = |I|,
|J ′| = |J |, and |I ′ ∩ J ′| = |I ∩ J |. In other words, the matrix B lies in the Terwilliger
algebra, say,

(3.7) B =

n∑
i,j,p=0

xp
i,jM

p,n
i,j

for some reals xp
i,j . The following relations link the parameters xi and xp

i,j .
Lemma 3.4. For i, j, p = 0, . . . , n,

(3.8)
xi = x0

0,i,

xp
i,j = xp

j,i = xj−p
i+j−2p,j = xi−p

i+j−2p,i,

and the edge equations read

(3.9) xp
i,j = 0 if {i, j, i + j − 2p} ∩ D �= ∅.

Proof. If |I| = i, then xi = A∅,I = x{∅,I} = B∅,I = x0
0,i. Let |I| = i, |J | = j,

and |I ∩ J | = p. Then xp
i,j = BI,J = BJ,I = xp

j,i. Moreover, xp
i,j = BI,J = x{∅,I,J} =

x{I,∅,I�J} = BI,I�J = xi−p
i+j−2p,i. This shows (3.8). The edge conditions read BI,J =

x{I,∅,J} = 0 if {|I|, |J |, |I � J |} ∩ D �= ∅, giving (3.9).
We can now use the results from the previous subsection (Theorem 3.1 and Lemma

3.3) for block-diagonalizing the matrices occurring in (3.5). For k = 0, . . . , �n/2�,
define the matrices

(3.10) Ak :=

(∑
p

αp,n
i,j,kx

0
0,i+j−2p

)n−k

i,j=k

, Bk :=

(∑
p

αp,n
i,j,kx

p
i,j

)n−k

i,j=k

corresponding, respectively, to the matrices A, and B in (3.6) and (3.7). Define the
vector

(3.11) c̃ :=

(√(
n

i

)(
1 − x0

0,i

))n

i=0

∈ R
n+1.

Then the parameter ψ(H(n,D)) can be reformulated in the following way:

(3.12)

ψ(H(n,D)) = min t s.t. x0
0,0 = 1 and xp

i,j satisfy (3.8) and (3.9), and

Ak −Bk 
 0 for k = 1, . . . , �n/2�,
Bk 
 0 for k = 0, 1, . . . , �n/2�,(

t− 1 c̃T

c̃ A0 −B0

)

 0,
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where Ak, Bk, and c̃ are as in (3.10) and (3.11). To compute ψ≥0(H(n,D)), simply
add the nonnegativity condition xp

i,j ≥ 0 to (3.12).

3.3. Compact formulation for Ψ�(G) for Hamming graphs. We now give a
more compact formulation for the parameter Ψ�(G) when G = H(n,D). As mentioned
above, one has to evaluate �(Gt) for various choices of t ∈ N, with �(Gt) being given
by (2.27). As for the parameter ψ(H(n,D)), we now observe that A1, . . . , B4, and
thus all blocks in the matrices in (2.27) lie in the Terwilliger algebra. (As in the
previous section we fix h := ∅, the empty subset of N .)

Lemma 3.5. The matrices As (s = 1, 2) belong to the Bose–Mesner algebra
Bn, and the matrices Bs (s = 1, 2, 3, 4) belong to the Terwilliger algebra An, say,
As =

∑n
i=0 x(s)iM

n
i (s = 1, 2) and Bs =

∑n
i,j,p=0 y(s)

p
i,jM

p,n
i,j (s = 1, 2, 3, 4). Then

(3.13)

x(s)i = y(s)00,i for s = 1, 2, i = 1, . . . , n,

y(s)pi,j = y(s)pj,i = y(s)j−p
i+j−2p,j = y(s)i−p

i+j−2p,i (for s = 1, 4),

y(2)pi,j = y(2)i−p
i,i+j−2p, y(3)pi,j = y(3)pj,i,

y(3)pi,j = y(2)i−p
i+j−2p,i for i, j, p = 0, . . . , n.

Moreover, the edge conditions can be reformulated as

(3.14)

y(1)pi,j = 0 if {i, j, i + j − 2p} ∩ D �= ∅,
y(2)ii,i = y(4)ii,i = 0 for i = 0, . . . , n,

y(2)pi,j = 0 if i ∈ D or j = 0,

y(3)pi,j = 0 if i + j − 2p ∈ D, or i = 0, or j = 0,

y(4)pi,j = 0 if i = 0 or j = 0

for distinct i, j ∈ {0, 1, . . . , n}.
Proof. We use the fact that A1, . . . , B4 satisfy (2.24) and (2.25) where the variable

y is assumed to be invariant under the action of Sym(t) × Aut(G) ⊆ Aut(Gt). We
have A1, A2 ∈ Bn, since the entries A1

I,J = y{1I,1J} and A2
I,J = y{1I,2J} depend only

on |I�J |. (Indeed, if |I ′�J ′| = |I�J |, then there exists σ ∈ Aut(G) mapping {I, J}
to {I ′, J ′}, and thus, by the invariance of y under action of σ, y{1I,1J} = y{1I′,1J′}
and y{1I,2J} = y{1I′,2J′}.) Similarly, for s = 1, . . . , 4, Bs ∈ An since the entry Bs

I,J

depends only on |I|, |J | and |I ∩ J |. The proof for the identities x(s)i = y(s)00,i (s =

1, 2) and y(1)pi,j = · · · = y(1)i−p
i+j−2p,i is identical to the proof of (3.8). Let I, J ∈ P(N),

with |I| = i, |J | = j, and |I ∩ J | = p. Then y(4)pi,j = B4
I,J = y{1∅,2I,3J} = y{1∅,3I,2J}

(use the invariance of y under the permutation (2, 3) ∈ Sym(t)) and thus is equal to
B4

J,I = y(4)pj,i. Moreover, y(4)pi,j = y{1∅,2I,3J} = y{1I,2∅,3I�J} = y{2I,1∅,3I�J} (first
apply the switching mapping by I and then permute the indices 1, 2) and thus is equal
to B4

I,I�J = y(4)i−p
i,i+j−2p. Next we have y(2)pi,j = B2

I,J = y{1I,1∅,2J} = y{1∅,1I,2I�J}

(apply the switching mapping by I) and thus is equal to B2
I,I�J = y(2)i−p

i,i+j−2p.

Finally, y(3)pi,j = B3
I,J = y{2I,1∅,2J} = B3

J,I = y(3)pj,i, and y(3)pi,j = y{2I,1∅,2J} =
y{2∅,1I,2I�J} = y{1∅,2I,1I�J} (first switch by I and then permute 1, 2) and thus is

equal to B2
I�J,I = y(2)i−p

i+j−2p,i. The identities (3.14) follow directly from (2.25).
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As the blocks of the matrices in the program (2.27) lie in the Terwilliger algebra,
the matrices in (2.27) can be block-diagonalized, as explained in section 3.1. For this,
define the matrices

(3.15) As
k :=

(∑
p

αp,n
i,j,ky(s)

0
i+j−2p,0

)n−k

i,j=k

, Bs
k :=

(∑
p

αp,n
i,j,ky(s)

p
i,j

)n−k

i,j=k

corresponding, respectively, to the matrices As (s = 1, 2) and Bs (s = 1, 2, 3, 4), and
define the vectors

(3.16)

ã :=

(√(
n

i

)(
y(1)00,0 − y(1)ii,i

))n

i=0

, b̃ :=

(√(
n

i

)(
y(1)ii,i − y(3)ii,i

))n

i=0

∈ R
n+1.

By using Lemmas 3.2 and 3.3, we obtain the following reformulation for the parameter
�(Gt) from (2.27):

(3.17)

�(Gt) = max 2nty(1)00,0 s.t. y(s)pi,j (s = 1, . . . , 4) satisfy (3.13) and (3.14), and⎛
⎝1 − y(1)00,0 ãT (t− 1)b̃T

A1
0 −B1

0 (t− 1)(A2
0 −B2

0)
(t− 1)(A1

0 −B3
0) + (t− 1)(t− 2)(A2

0 −B4
0)

⎞
⎠ 
 0,

(
A1

k −B1
k (t− 1)(A2

k −B2
k)

(t− 1)(A1
k −B3

k) + (t− 1)(t− 2)(A2
k −B4

k)

)

 0 for k = 1, . . . , �n/2�,

(
B1

k (t− 1)B2
k

(t− 1)B3
k + (t− 1)(t− 2)B4

k

)

 0 for k = 0, . . . , �n/2�,

A1
k −A2

k −B3
k + B4

k 
 0 for k = 0, . . . , �n/2�,

B3
k −B4

k 
 0 for k = 0, . . . , �n/2�,

where As
k, B

s
k, ã, and b̃ are as in (3.15) and (3.16). To compute �≥0(Gt) simply add

the nonnegativity condition y(s)pi,j ≥ 0 on all variables.

3.4. Numerical results for Hamming graphs. We have tested the various
bounds on some instances of Hamming graphs. In what follows we use the following
convention: For an integer 1 ≤ d ≤ n, H(n, d) (resp., H−(n, d), H+(n, d)) denotes
the graph H(n,D), with D = {d} (resp., D = {1, . . . , d}, {d, . . . , n}). The papers [9,
10, 11] give numerical results for the parameters ϑ (G) and ϑ+ (G) for such instances.
Moreover, a bound related to copositive programming is computed in [11] (called the
K1-bound in [11] or the κ(1) bound in [17]); it is shown in [17] that this bound is
dominated by our parameter ψ≥0.

In Table 1, the symbol “*” indicates the strict inequality Ψ�(G) > �ψ(G)�, which
happens for H(10, 8) and H+(10, 8), and we indicate in bold the values satisfying LB
= χ(G) for the obtained lower bound (LB). (Indeed, in these instances, LB = 2n−1,
while P(V ) can be covered by the 2n−1 distinct pairs {I, V \ I} (I ⊆ V ) which are
stable sets as n �∈ D.)

The results in Table 1 indicate that the parameters ψ(G) and ψ≥0(G) give in

some instances a major improvement on Szegedy’s bound ϑ+ (G). On the other hand,
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Table 1

Bounds for the chromatic number of Hamming graphs.

Graph ϑ (G) ϑ+ (G) ψ(G) Ψ�(G) ψ≥0(G) Ψ�≥0
(G)

H−(7, 4) 36 42.6667 64 64 64 64
H−(8, 5) 72 85.3333 128 128 128 128
H(10, 6) 6 8.7273 10.4366 11 10.8936 11
H−(10, 6) 207.36 320 512 512 512 512
H(10, 8) 2.6667 3.2 3.9232 5∗ 3.9232 5∗

H+(10, 8) 3.2 3.2 3.9232 5∗ 3.9232 5∗

H(11, 4) 16 21.5652 25.7351 26 25.7351 26
H(11, 6) 12 12 12 12 15.2836 16
H−(11, 7) 414.72 640 1024 1024 1024 1024
H−(11, 8) 711.1111 819.2 1024 1024 1024 1024
H(11, 8) 3.2 4.9383 5.7805 6 5.7805 6
H(13, 8) 5.3333 9.4118 12.1429 13 13.6533 14
H(15, 6) 27.7647 30.7368 46.4371 47 50.3036 51
H(16, 8) 16 16 16 16 28.4444 29
H(17, 6) 35 48.2222 86.3086 87 88.3204 89
H(17, 8) 18 18 32 32 46.5122 47
H(17, 10) 6.6666 12.6315 15.8750 16 25.8405 26
H(18, 10) 10 16 18.3076 19 38.8844 -
H(20, 6) 59.3735 59.3735 140.9586 141 140.9586 -
H(20, 8) 41.7143 60.9524 107.1489 - 136.4115 -

in most cases, the parameter Ψ�(G) gives no improvement since Ψ�(G) = �ψ(G)�. It
could be that this feature is specific to Hamming graphs. As we will see in the next
section, the bound Ψ�(G) does improve the bound �ψ(G)� for Kneser graphs.

4. Bounds for Kneser graphs. We have seen that the parameter ψ(G) is
bounded by χ∗(G) and that, for vertex-transitive graphs, it coincides with the bound
|V (G)|/�(G). On the other hand, Ψ�(G) can sometimes be strictly greater than
�ψ(G)�, e.g., for the Hamming graph H(10, 8) (recall Table 1). We present here some
numerical results showing that Ψ�(G) can in fact be strictly greater than �χ∗(G)� for
Kneser graphs.

Given integers n ≥ 2r, the Kneser graph K(n, r) is the graph whose vertices are
the subsets of size r of a set N , with |N | = n, two vertices being adjacent if and only if
they are disjoint. As shown in [24], α(K(n, r)) =

(
n−1
r−1

)
, and thus χ∗(K(n, r)) = n

r in
view of (2.2) as K(n, r) is vertex-transitive. Lovász proved that χ(K(n, r)) = n−2r+2
in his celebrated paper [23]. Thus the fractional chromatic number and the chromatic
number of K(n, r) can differ significantly, while the fractional chromatic number is
close to the clique number ω(K(n, r)) = �n

r �. Moreover, Lovász [24] proved that, for

G = K(n, r), α(G) = ϑ(G). Hence, �(G) = α(G), implying that ψ(G) = |V (G)|
�(G) =

χ∗(G) = n/r. Therefore, Ψ�(G) ≥ �n/r�. We show in this section how to compute
Ψ�(G).

The Kneser graph K(n, r) coincides with the subgraph of the Hamming graph
H(n, {2r}) induced by the subset P=r(N) := {I ∈ P(N) | |I| = r}. It will be
convenient to view the Kneser graph also in the following alternative way. Fix a set
T ⊆ N , with |T | = r, and define

P(N,T ) := {(I ′, I ′′) ∈ P(T ) × P(N \ T ) | |I ′| = |I ′′|}.

The mapping

(4.1)
P=r(N) −→ P(N,T ),

I �→ (T \ I, I \ T )
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is a bijection, and |I�J | = |(T \I)�(T \J)|+|(I\T )�(J\T )| holds for I, J ∈ P=r(N).
Hence K(n, r) can also be viewed as the graph with node set P(N,T ), with two nodes
(I ′, I ′′), (J ′, J ′′) ∈ P(N,T ) being adjacent if |I ′ � J ′| + |I ′′ � J ′′| = 2r.

As we will see below, the matrices involved in the program (2.27) for the com-
putation of Ψ�(K(n, r)) lie in Br,r′ (r′ = n − r), a subalgebra of a tensor product
of two Terwilliger algebras, which has also been studied and block-diagonalized by
Schrijver [31] (in connection with constant-weight codes). We follow the same steps
as in section 3 for the computation of �(Gt) for Hamming graphs, which we now carry
out for Kneser graphs.

4.1. The subalgebra Br,r′ . As above, |N | = n, and we fix a subset T ⊆ N ,
with |T | = r, and set r′ := n− r. For i, j, p = 0, 1, . . . , r (resp., i′, j′, q = 0, 1, . . . , r′),

let Mp,r
i,j (resp., Mq,r′

i′,j′) be the matrices indexed by P(T ) (resp., P(N \ T )) defining
the Terwilliger algebra Ar (resp., Ar′) as in section 3.1. Let now Ar,r′ be the algebra
generated by the tensor products of matrices in Ar and Ar′ , that is,

Ar,r′ :=

⎧⎨
⎩

∑
i,j,p,i′,j′,q

xp,q
i,j,i′,j′M

p,r
i,j ⊗Mq,r′

i′,j′ | x
p,q
i,j,i′,j′ ∈ R

⎫⎬
⎭ .

Matrices in Ar,r′ are indexed by the set P(T ) × P(N \ T ). Consider the subalgebra

Br,r′ :=

⎧⎨
⎩

∑
i,j,p,q

yp,qi,j M
p,r
i,j ⊗Mq,r′

i,j | yp,qi,j ∈ R

⎫⎬
⎭ .

So Br,r′ consists of all matrices from Ar,r′ satisfying xp,q
i,j,i′,j′ = 0 if i �= i′ or j �= j′.

Hence, for M ∈ Br,r′ and (I, I ′), (J, J ′) ∈ P(T ) × P(N \ T ), M(I,I′),(J,J ′) = 0 if
|I| �= |I ′| or if |J | �= |J ′|. Therefore any row/column of M indexed by (I, I ′) �∈ P(N,T )
is identically zero, and we may thus restrict matrices in Br,r′ to being indexed by the
subset P(N,T ) of P(T ) × P(N \ T ).

For k ≤ r, let Mn,r
k be the matrix indexed by P(N,T ), whose ((I, I ′), (J, J ′))th

entry is equal to 1 if |I�J |+|I ′�J ′| = 2k and to 0 otherwise. Thus Mn,r
k corresponds

to the principal submatrix of Mn
2k (in the Bose–Mesner algebra Bn) indexed by the

subset P=r(N) and Mn,r
k ∈ Br,r′ as Mn,r

k =
∑

i,j,p,q|i+j−p−q=k M
p,r
i,j ⊗Mq,r′

i,j . Hence
the set

Br
n :=

{
r∑

k=0

xkM
n,r
k | xk ∈ R

}

is a subalgebra of Br,r′ .
Schrijver [31] proved the following analogue of Theorem 3.1, giving the explicit

block-diagonalization for matrices in Br,r′ . For k = 0, . . . ,
⌊
r
2

⌋
, l = 0, . . . , � r′

2 �, set

Wkl := {k, k + 1, . . . , r − k} ∩ {l, l + 1, . . . , r′ − l}.

Theorem 4.1 (see [31]). For a matrix M =
∑

i,j,p,q y
p,q
i,j M

p,r
i,j ⊗Mq,r′

i,j in Br,r′ ,

(4.2)
M 
 0 ⇐⇒ Mk,l :=

(∑
p,q

αp,r
i,j,kα

q,r′

i,j,ly
p,q
i,j

)
i,j∈Wkl


 0

for each k = 0, 1, . . . ,
⌊
r
2

⌋
and l = 0, 1, . . . ,

⌊
r′

2

⌋
.
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We have the following analogues of Lemmas 3.2 and 3.3.

Lemma 4.2. Let A =
∑

i,j,p,q a
p,q
i,j M

p,r
i,j ⊗ Mq,r′

i,j , B =
∑

i,j,p,q b
p,q
i,j M

p,r
i,j ⊗ Mq,r′

i,j ,

and C =
∑

i,j,p,q c
p,q
i,j M

p,r
i,j ⊗Mq,r′

i,j be matrices in Br,r′ , and define accordingly

Akl =

(∑
p,q

αp,r
i,j,kα

q,r′

i,j,la
p,q
i,j

)
i,j∈Wkl

, Bkl =

(∑
p,q

αp,r
i,j,kα

q,r′

i,j,lb
p,q
i,j

)
i,j∈Wkl

,

Ckl =

(∑
p,q

αp,r
i,j,kα

q,r′

i,j,lc
p,q
i,j

)
i,j∈Wkl

.

Then(
A B
BT C

)

 0 ⇐⇒

(
Akl Bkl

BT
kl Ckl

)

 0 ∀k = 0, 1, . . . ,

⌊r
2

⌋
and l = 0, 1, . . . ,

⌊
r′

2

⌋
.

Lemma 4.3. Let M =
∑n

i,j,p,q=0 x
p,q
i,j M

p,r
i,j ⊗ Mq,r′

i,j ∈ Br,r′ and c =
∑n

i=0 ciχ
i,

where χi ∈ {0, 1}P(N,T ) with χi
(I,I′) = 1 if |I| = i (for (I, I ′) ∈ P(N,T )) and d ∈ R.

Then

(
d cT

c M

)

 0 ⇐⇒

⎧⎪⎨
⎪⎩

Mkl 
 0 for k = 0, . . . ,
⌊
r
2

⌋
, l = 0, . . . ,

⌊
r′

2

⌋
, k + l > 0;

M̃00 :=

(
d c̃T

c̃ M00

)

 0

after setting c̃T := (ci

√(
r
i

)(
r′

i

)
)ri=0.

4.2. Compact formulation for Ψ�(G) for Kneser graphs. In order to com-
pute Ψ�(G) for the Kneser graph G = K(n, r), one has to evaluate �(Gt) for various
choices of t. As G is vertex-transitive, �(Gt) can be computed by using the program
(2.27). We now fix h := T ∈ P=r(N) corresponding to (∅, ∅) ∈ P(N,T ) as a chosen
node of G. We now show that the matrices A1, . . . , B4 appearing in program (2.27)
lie in the algebra Br,r′ , and thus they can be block-diagonalized by using Theorem
4.1. The following lemma is the analogue of Lemma 3.5.

Lemma 4.4. The matrices As (s = 1, 2) belong to Br
n, and the matrices Bs

(s = 1, 2, 3, 4) belong to Br,r′ , say, As =
∑r

i=0 x(s)iM
n,r
i (s = 1, 2) and Bs =∑r

i,j,p,q=0 y(s)
p,q
i,j M

t,r
i,j ⊗Mq,r′

i,j (s = 1, 2, 3, 4). We have

(4.3)

x(s)i = y(s)0,00,i for s = 1, 2, i = 1, . . . , r,

y(s)p,qi,j = y(s)p,qj,i = y(s)i−q,i−p
i,i+j−p−q = yj−q,j−p

j,i+j−p−q for s = 1, 4,

y(2)p,qi,j = y(2)i−q,i−p
i,i+j−p−q, y(3)p,qi,j = y(3)p,qj,i ,

y(3)p,qi,j = y(2)i−q,i−p
i+j−p−q,i for i, j, p, q = 0, . . . , r.

Moreover, the edge conditions can be reformulated as

(4.4)

y(1)p,qi,j = 0 if i = r, or j = r, or i + j − p− q = r,

y(2)p,qi,j = 0 if i = r, or j = 0, or i + j − p− q = 0,

y(3)p,qi,j = 0 if i = 0, or j = 0, or i + j − p− q = r,

y(4)p,qi,j = 0 if i = 0, or j = 0, or i + j − p− q = 0.
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j−q

i−q
I

J
J’

Fig. 4.1. Venn diagrams.

Proof. As in the proof of Lemma 3.5, the matrices A1, . . . , B4 satisfy (2.24) and
(2.25), where the variable y is invariant under the action of Sym(t) × Aut(G). A
main difference with the case of the Hamming graph is that, for the Kneser graph
G = K(n, r), Aut(G) ∼ Sym(n); i.e., the only automorphisms of G arise from the
permutations of N . Recall that σ ∈ Sym(n) acts on P=r(N) in the obvious way, by
letting σ(I) = {σ(i) | i ∈ I} for I ∈ P=r(N).

Let us first show that A1 ∈ Br
n; that is, A1

I,J depends only on |I � J | (for
I, J ∈ P=r(N)). For this, let I, J, I ′, J ′ ∈ P=r(N), with |I � J | = |I ′ � J ′|. Then
|I∩J | = |I ′∩J ′|, and thus there exists σ ∈ Sym(n) such that σ(I) = I ′ and σ(J) = J ′.
Hence, A1

I,J = y{1I,1J} = y{1σ(I),1σ(J)} = A1
I′,J ′ since y is invariant under the action

of σ. The proof for A2 ∈ Br
n, Bs ∈ Br,r′ , is along the same lines.

Let us now prove the identity y(1)p,qi,j = y(1)i−q,i−p
i,i+j−p−q; the proofs for the remaining

identities are along the same lines and thus are omitted. Say, y(1)p,qi,j = B1
I,J , where

I, J ∈ P=r(N) with |T \I| = i, |T \J | = j, |(T \I)∩(T \J)| = p, and |(I\T )∩(J \T )| =
q. See Figure 4.1 for the Venn diagram of the sets I, J , and T . Consider sets
I ′, J ′ ∈ P=r(N), which together with the set T have the Venn diagram shown in
Figure 4.1. Then B1

I′,J ′ = y(1)i−q,i−p
i,i+j−p−q, and there exists σ ∈ Sym(n) such that

σ(T ) = I ′, σ(I) = T , and σ(J) = J ′. Therefore, y(1)p,qi,j = B1
I,J = y{1I,1J,1T} =

y{1σ(I),1σ(J),1σ(T )} = y{1T,1J′,1I′} = B1
I′,J ′ = y(1)i−q,i−p

i,i+j−p−q.
For k = 0, . . . , �r/2�, l = 0, . . . , �r′/2�, define the matrices

(4.5)

As
kl =

(∑
p,q

αp,r
i,j,kα

q,r′

i,j,ly(s)
0,0
0,i+j−p−q

)
i,j∈Wkl

, Bs
kl =

(∑
p,q

αp,r
i,j,kα

q,r′

i,j,ly(s)
p,q
i,j

)
i,j∈Wkl

corresponding, respectively, to the matrices As (s = 1, 2) and Bs (s = 1, 2, 3, 4), and
define the vectors

(4.6)

ã :=

(√(
r
i

)(
r′

i

) (
y(1)0,00,0 − y(1)i,ii,i

))r

i=0

, b̃ :=

(√(
r
i

)(
r′

i

) (
y(1)i,ii,i − y(3)i,ii,i

))r

i=0

.

By using Lemmas 4.2 and 4.3, we obtain the following reformulation for the parameter
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�(Gt) from (2.27):

(4.7)

�(Gt) = max

(
n

r

)
ty(1)0,00,0 s.t. y(s)p,qi,j , s = 1, . . . , 4 satisfy (4.3) and (4.4), and

⎛
⎝1 − y(1)0,00,0 ãT (t− 1)b̃T

A1
00 −B1

00 (t− 1)(A2
00 −B2

00)
(t− 1)(A1

00 −B3
00) + (t− 1)(t− 2)(A2

00 −B4
00)

⎞
⎠ 
 0;

(
A1

kl −B1
kl (t− 1)(A2

kl −B2
kl)

(t− 1)(A1
kl −B3

kl) + (t− 1)(t− 2)(A2
kl −B4

kl)

)

 0

for k = 0, . . . , �r/2�, l = 0, . . . , �r′/2�, k + l > 0;(
B1

kl (t− 1)B2
kl

(t− 1)B3
kl + (t− 1)(t− 2)B4

kl

)

 0 for k = 0, . . . , �r/2�, l = 0, . . . , �r′/2�;

A1
kl −A2

kl −B3
kl + B4

kl 
 0 for k = 0, . . . , �r/2�, l = 0, . . . , �r′/2�;

B3
kl −B4

kl 
 0 for k = 0, . . . , �r/2�, l = 0, . . . , �r′/2�,

where As
kl, B

s
kl, ã, and b̃ are as in (4.5) and (4.6). To compute �≥0(Gt) simply add

the nonnegativity condition y(s)p,qi,j ≥ 0 on all variables.

4.3. Numerical results for Kneser graphs. We show in Table 2 below our
numerical results for the bounds Ψ�(G) and Ψ�≥0

(G) for several instances of Kneser
graphs. We indicate in bold the values achieving the chromatic number.

5. Computing the new bound ψK for DIMACS benchmark graphs. So
far we have been dealing with vertex-transitive graphs and with the bounds ψ(·) and
Ψ�(·). For the formulation of ψ(G), it was observed in section 2 that, when G is
vertex-transitive, it suffices to require in (2.13) positive semidefiniteness of M2(h, x)
for only one h ∈ V (G) instead of for all h ∈ V (G). In the case of a nonsymmetric
graph G one would need to require M2(h, x) 
 0 for all h ∈ V (G); therefore, with

Table 2

Bounds for the chromatic number of Kneser graphs.

Graph �χ∗(G)� = �n/r� Ψ�(G) Ψ�≥0
(G) χ(G) = n− 2r + 2

K(6, 2) 3 4 4 4
K(7, 2) 4 4 5 5
K(8, 3) 3 4 4 4
K(9, 3) 3 4 4 5
K(10, 4) 3 3 4 4
K(11, 3) 4 5 5 7
K(11, 4) 3 4 4 5
K(12, 3) 4 5 6 8
K(12, 4) 3 4 4 6
K(12, 5) 3 3 4 4
K(13, 5) 3 4 4 5
K(14, 5) 3 4 4 6
K(15, 3) 5 6 6 11
K(16, 4) 4 5 6 10
K(24, 6) 4 4 6 14
K(25, 5) 5 6 7 17
K(34, 7) 5 6 7 22
K(36, 6) 6 7 9 26
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n := |V (G)|, in order to compute ψ(G) (resp., �(Gt), and thus Ψ�(G)), one would
have to solve a semidefinite program with 2n (resp., 4n) matrices of order ≤ n + 1
(resp., ≤ 2n + 1). For graphs that are of interest, e.g., with n ≥ 100, this cannot be
done with the currently available software for semidefinite programming.

For nonsymmetric graphs we propose another variant of the bound ψ(2)(G). Given
a clique K in G, let M2(K;x) denote the principal submatrix of M2(x) indexed by
the multiset P1(V ) ∪ (∪h∈K{{h, i} | i ∈ V }). Now define the parameter

(5.1)
ψK(G) := min t s.t. x0 = t, xi = 1 (i ∈ V ), M2(K;x) 
 0,

xI = 0 for all I containing an edge.

Then ϑ(G) ≤ ψK(G) ≤ χ∗(G). (The left inequality follows by using (2.4), and the
right inequality follows from ψK(G) ≤ ψ(2)(G) ≤ χ∗(G) by using (2.8) and (2.10).)
Set k := |K|, and assume without loss of generality that K = {1, 2, . . . , k}. With
respect to the partition of its index set as {0} ∪ {{i} | i ∈ V } ∪ ∪k

h=1{{h, i} | i ∈ V },
the matrix M2(K;x) has the block form

M2(K;x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t aT0 aT1 aT2 . . . aTk
a0 A0 A1 A2 . . . Ak

a1 A1 A1 0 . . . 0

a2 A2 0 A2
. . .

...
...

...
...

. . .
. . . 0

ak Ak 0 . . . 0 Ak

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a0, . . . , ak, A0, . . . , Ak are indexed by V , ai = diag(Ai) (0 ≤ i ≤ k), a0 = e,
(A0)ij = xij , and (Ah)ij = x{h,i,j} for h ∈ K, i, j ∈ V . Note that for h ∈ V the
columns of A0 and Ah indexed by {h} are both equal to ah. Hence, as in the proof
of Lemma 2.1, we can do some row/column manipulations and verify that

M2(K;x) 
 0 ⇐⇒
(

t− k eT − (
∑k

h=1 ah)T

e−
∑k

h=1 ah A0 −
∑k

h=1 Ah

)

 0, A1, . . . , Ak 
 0.

Hence ψK(G) can be computed via a semidefinite program involving k + 1 matrices
of sizes n + 1 (once) and n (k times).

We have conducted experiments for some DIMACS benchmark graphs (studied,
e.g., in [4, 5, 8, 9, 12, 26, 27]). In Table 3 we present our lower bounds for the chromatic
number of the graphs DSJCa.b. Recall that DSJCa.b are random graphs with a
vertices, two vertices being adjacent with probability 10−1b. The graph DSJR500.1
is a geometric graph with 500 nodes randomly distributed in the unit square, with an
edge between two nodes if their distance is less than 0.1. The graph DSJR500.1c is
the complement of DSJR500.1. The graphs can be downloaded from [34].

In Table 3, the column “LB” contains the previously best known lower bounds
taken from [8, 26, 27], and the values in parentheses come from [3]; the bound 82 for
DSJR500.1c is the size of a clique obtained by using the heuristic of [2]. The column
“UB” contains the best known upper bounds taken from [4, 12, 13], i.e., the number
of colors in the best colorings found so far. The column “K” contains the size of
the clique used for computing the parameter ψK(G) (the clique is found by using
the heuristic from [2]). We also indicate the value of the theta number ϑ̄(G) (also
computed in [9, 10] for some instances), which already improves the best lower bound
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Table 3

Bounds for the chromatic number of DIMACS instances.

Graph LB ϑ(G)
⌈
ϑ(G)

⌉
K ψK(G) �ψK(G)� UB

DSJC125.1 5 4.1062 5 4 4.337 5 5
DSJC125.5 14 (17) 11.7844 12 10 13.942 14 17
DSJC125.9 42 37.768 38 34 42.53 43 43
DSJC250.1 6 (8) 4.906 5 4 5.208 6 8
DSJC250.5 14 16.234 17 12 19.208 20 28
DSJC250.9 48 55.152 56 43 66.15 67 72
DSJC500.1 6 6.217 7 5 6.542 7 12
DSJC500.5 13 (16) 20.542 21 13 27.791 28 48
DSJC500.9 59 84.04 85 56 100.43 101 126
DSJC1000.1 6 8.307 9 5 - - 20
DSJC1000.5 15 (17) 31.89 32 14 - - 83
DSJC1000.9 66 122.67 123 65 - - 224
DSJR500.1c 82 (83) 83.74 84 77 84.12 85 85

in several instances. We indicate in bold our best new lower bounds for the chromatic
number. In several instances they give a significant improvement on the best known
lower bound. Moreover, in two instances, we are able to close the gap as our lower
bound matches the upper bound; indeed we find the exact value of the chromatic
number for the graphs DSJC125.9 (χ(G) = 43) and DSJR500.1c (χ(G) = 85), which
were not known before to the best of our knowledge. These results demonstrate that
the bounds ψK(G) can be quite strong.

One may wonder why we did not add nonnegativity constraints in the formulation
for ψK . The reason is that for random graphs adding nonnegativity constraints gives
only a negligible improvement. This fact was already observed for the Lovász theta
number in [9].

Remarks about the computational results. The computational results re-
ported in Tables 1 and 2 were carried out by using the open source codes for semidef-
inite programming CSDP 5.0 and DSDP 5.8 available, respectively, at [35] and [36].

For finding the large cliques reported in column “K” of Table 3, we used the
heuristic Max-AO (based on [2]), available at [37]. The values in the columns “ϑ(G)”
and “ψK(G)” of Table 3 were computed by using the boundary point method of Povh,
Rendl, and Wiegele [29], whose code is available at [38].

The semidefinite program for the parameter ψK can indeed be quite large. For
instance, for the graph DSJR500.1c, it contains one 501 × 501 block and 77 blocks
of size at most 500 × 500, and such a big problem cannot be solved by using solvers
based on interior point methods.

Experiments were conducted on a single machine with an AMD Athlon 64 3500
processor and 1024 MB RAM memory. Here is a rough indication of the times needed
to compute the bounds in Tables 1–3. Each bound in Tables 1–2 could be computed
in less than a minute, as it involves a relatively small SDP; for instance, computing
Ψ�(H(20, 6)) is via an SDP with 1502 variables and 47 blocks with sizes ranging from
1 to 43. It was harder to compute the bounds ψK in Table 3. In fact, we had to
rerun the boundary point code several times for each instance in order to tailor the
parameters of the code and speed up the convergence to an optimal solution. The
computation times for the parameter ψK(G) vary from a few minutes (e.g., less than
3 minutes for DCJC125.5 and about 25 minutes for DCJC125.1) up to four days for
the most demanding instance DSJR500.1c.
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Abstract. Second-order sufficient optimality conditions are established for the optimal control of
semilinear elliptic and parabolic equations with pointwise constraints on the control and the state. In
contrast to former publications on this subject, the cone of critical directions is the smallest possible
in the sense that the second-order sufficient conditions are the closest to the associated necessary
ones. The theory is developed for elliptic distributed controls in domains up to dimension three.
Moreover, problems of elliptic boundary control and parabolic distributed control are discussed in
spatial domains of dimension two and one, respectively.
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1. Introduction. In this paper, we essentially improve the theory of second-
order sufficient optimality conditions for state-constrained optimal control problems
of elliptic and parabolic type. We derive second-order sufficient conditions that are
as close as possible to the associated necessary ones. In this way, we are able to
complete the theory of second-order sufficient conditions for this class of problems, if
the dimension of the spatial domain is sufficiently small.

For the theory of nonconvex differentiable mathematical programming in finite-
dimensional spaces, second-order sufficient optimality conditions are indispensible
both in the numerical analysis and for reliable numerical methods. If second-order
information is not available, then local minima will not in general be stable and nu-
merical methods will most likely not converge. For instance, the convergence analysis
of SQP methods relies heavily on second-order conditions.

In the numerical analysis of nonlinear optimal control problems, second-order
sufficient optimality conditions are even more important. If they are not satisfied,
then the (strong) convergence of optimal controls or states and/or error estimates for
numerical discretizations of the problems can hardly be shown. Also, other types of
perturbations are difficult to handle without second-order conditions.

As is well known from the calculus of variations and the control theory for non-
linear ordinary differential equations, the theory of second-order conditions is more
delicate and rich in function spaces. We mention, for instance, the work by Maurer
[20] or Maurer and Zowe [21]. In particular, the well-known two-norm discrepancy
occurs that essentially complicates the analysis; cf. the expositions in Ioffe [16] or
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Malanowski [18]. For the important but more difficult case of pointwise state con-
straints in the control of ordinary differential equations, we refer to Malanowski [19]
and to the references therein.

At present, the control of distributed parameter systems with pointwise state
constraints is a very active field of research. Although the majority of papers are still
devoted to convex problems with linear equations, the important case of nonlinear
state equations is attracting more interest. Here, second-order conditions are needed.
However, when pointwise state constraints are imposed, the situation is more compli-
cated, since the Lagrange multipliers associated with them are measures. In contrast
to the theory for ordinary differential equations, this causes severe restrictions on the
dimension of the spatial domains of the equations and reduces the regularity of the
adjoint state.

To our best knowledge, there exist only two contributions to the theory of second-
order sufficient conditions for distributed problems with pointwise state constraints.
The elliptic case was discussed in [12], while parabolic problems were investigated in
[22]. The method of these papers was inspired by the splitting technique used in [11].
When applied to pointwise state constraints, the cones of critical directions established
by this technique are too large so that the second-order sufficient conditions are based
on slightly too strong assumptions. Moreover, the method was fairly complicated.

For other contributions to second-order optimality conditions for distributed pa-
rameter systems, we mention, for instance, the work by Bonnans [3] and the exposition
in the monography by Bonnans and Shapiro [4] on elliptic problems with control con-
straints. We also refer to [9], where second-order necessary optimality conditions were
first treated for elliptic problems, [10] for an abstract framework with applications to
elliptic and parabolic problems, and [7], where elliptic problems with control con-
straints and state constraints of integral type were considered Moreover, we refer to
the references therein.

In this paper, the sufficiency of second-order conditions is proven by a method
that is close to the theory of nonlinear optimization in finite-dimensional spaces. We
establish a cone of critical directions that is sharp; i.e., it is the one closest to the
cone for establishing second-order necessary conditions.

We present a detailed proof for the case of distributed elliptic problems in domains
of spatial dimension n ≤ 3. Moreover, we briefly sketch the extension of this result
to elliptic boundary control problems for n ≤ 2 and to the parabolic distributed case
for n = 1.

2. Problem statement. Let Ω be an open and bounded domain in R
n, n ≤ 3,

with a Lipschitz boundary Γ. In this domain we consider the following state equation:

(2.1)

{
Ay + f(x, y) = u in Ω,

y = 0 on Γ,

where f : Ω × R −→ R is a Carathéodory function and A denotes a second-order
elliptic operator of the form

Ay(x) = −
n∑

i,j=1

∂xj (aij(x)∂xiy(x));

the coefficients aij ∈ L∞(Ω) satisfy

λA‖ξ‖2 ≤
n∑

i,j=1

aij(x)ξiξj ∀ξ ∈ R
n for a.e. x ∈ Ω
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for some λA > 0. In (2.1), the function u denotes the control, and yu is the solution
associated to the control u. We will state later the conditions leading to the existence
and uniqueness of a solution of (2.1) in C(Ω̄) ∩H1(Ω).

In this paper, we study the following optimal control problem:

(P)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minJ(u) =

∫
Ω

L(x, yu(x), u(x)) dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

g(x, yu(x)) ≤ 0 ∀x ∈ K,

where α(x) < β(x) for almost all x ∈ Ω, α, β ∈ L∞(Ω), and K ⊂ Ω̄ is a compact set.
Let us state the assumptions on the functions L, f, and g.

(A1) f is of class C2 with respect to the second variable:

f(·, 0) ∈ L2(Ω),
∂f

∂y
(x, y) ≥ 0 for a.e. x ∈ Ω,

and for all M > 0 there exists a constant Cf,M > 0 such that∣∣∣∣∂f∂y (x, y)

∣∣∣∣ +

∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ ≤ Cf,M for a.e. x ∈ Ω and |y| ≤ M,

∣∣∣∣∂2f

∂y2
(x, y2) −

∂2f

∂y2
(x, y1)

∣∣∣∣ ≤ Cf,M |y2 − y1| for |y1|, |y2| ≤ M and for a.e. x ∈ Ω.

(A2) L : Ω × (R × R) −→ R is a Carathéodory function of class C2 with respect
to the second and third variables, L(·, 0, 0) ∈ L1(Ω), and for all M > 0 there is a
constant CL,M > 0 and a function ψM ∈ L2(Ω) such that∣∣∣∣∂L∂u (x, y, u)

∣∣∣∣ +

∣∣∣∣∂L∂y (x, y, u)

∣∣∣∣ ≤ ψM (x), ‖D2
(y,u)L(x, y, u)‖ ≤ CL,M ,

‖D2
(y,u)L(x, y2, u2) −D2

(y,u)L(x, y1, u1)‖ ≤ CL,M (|y2 − y1| + |u2 − u1|)

for a.e. x ∈ Ω and |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where D2
(y,u)L denotes the second

derivative of L with respect to (y, u).
(A3) The function g : K ×R −→ R is continuous, of class C2 with respect to the

second variable and ∂yg, and ∂2
yg are also continuous functions in K × R. Moreover

we will assume that g(x, 0) < 0 is satisfied for every x ∈ K ∩ Γ.
The following result on the existence of a solution holds true for (2.1) as well as

for the problem (P).
Theorem 2.1. Suppose that (A1) holds. Then, for every u ∈ L2(Ω), the state

equation (2.1) has a unique solution yu ∈ C(Ω̄) ∩ H1
0 (Ω). Furthermore, if uk ⇀ u

weakly in L2(Ω), then yuk
→ yu strongly in C(Ω̄) ∩H1

0 (Ω).
The existence of a unique solution of (2.1) in H1(Ω) ∩ L∞(Ω) is classical. It is

a consequence of the monotonicity of f with respect to the second component. The
continuity of yu is also a well-known result; see, for instance, [15]. The continuity
property is a consequence of the compactness of the inclusion L2(Ω) ⊂ W−1,p(Ω) for
any p < 6 and the fact that data u ∈ W−1,p(Ω), with 6/5 < p < 6, provide solutions
in C(Ω̄) ∩H1

0 (Ω), the mapping u → yu being continuous between these spaces.
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Theorem 2.2. Let the function L be convex with respect to the third component
and the set of feasible controls be nonempty. Then, under assumptions (A1)–(A3),
the control problem (P) has at least one solution.

The proof of this theorem can be obtained by standard arguments.
Remark 2.3. We should remark that the differentiability of the functions f , L,

and g is not necessary to prove the previous theorems. In fact, the only properties we
need are the continuity of g and f with respect to the second variable, the continuity
of L with respect to the second and third variables, the monotonicity of f with respect
to y, the convexity of L with respect to u, and, for every M > 0, the existence of two
functions φf,M ∈ L2(Ω) and φL,M ∈ L1(Ω) such that

|f(x, y)| ≤ φf,M (x) and |L(x, y, u)| ≤ φL,M (x) for a.e. x ∈ Ω and |y|, |u| ≤ M.

These properties are an immediate consequence of the assumptions (A1)–(A3).
We finish this section by recalling some results about the differentiability of the

nonlinear mappings involved in the control problem. For the detailed proofs, the
reader is referred to Casas and Mateos [7].

Theorem 2.4. If (A1) holds, then the mapping G : L2(Ω) −→ C(Ω̄) ∩ H1
0 (Ω),

defined by G(u) = yu, is of class C2. Moreover, for all v, u ∈ L2(Ω), zv = G′(u)v is
defined as the solution of

(2.2)

⎧⎪⎨
⎪⎩

Azv +
∂f

∂y
(x, yu)zv = v in Ω,

zv = 0 on Γ.

Finally, for every v1, v2 ∈ L2(Ω), zv1v2
= G′′(u)v1v2 is the solution of

(2.3)

⎧⎪⎨
⎪⎩

Azv1v2 +
∂f

∂y
(x, yu)zv1v2 +

∂2f

∂y2
(x, yu)zv1zv2

= 0 in Ω,

zv1v2 = 0 on Γ,

where zvi = G′(u)vi, i = 1, 2.
Remark 2.5. This theorem shows why we assume n ≤ 3: To prove Theorem 4.1

on second-order sufficient conditions, we need the operator G to be differentiable from
L2(Ω) to C(Ω̄). This result holds true only for n ≤ 3.

The proof can be obtained by the implicit function theorem; see, for instance, [7,
Thm. 2.5] for the proof in the case of a Neumann problem, which can be translated
straightforwardly to the Dirichlet case.

Theorem 2.6. Suppose that (A1) and (A2) hold. Then J : L∞(Ω) → R is a
functional of class C2. Moreover, for every u, v, v1, v2 ∈ L∞(Ω),

(2.4) J ′(u)v =

∫
Ω

(
∂L

∂u
(x, yu, u) + ϕ0u

)
v dx

and

(2.5)

J ′′(u)v1v2 =

∫
Ω

[
∂2L

∂y2
(x, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2L

∂u2
(x, yu, u)v1v2 − ϕ0u

∂2f

∂y2
(x, yu)zv1zv2

]
dx,
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where yu = G(u) and ϕ0u ∈ W 2,p(Ω) is the unique solution of the problem

(2.6)

⎧⎪⎨
⎪⎩

A∗ϕ +
∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu, u) in Ω,

ϕ = 0 on Γ,

A∗ being the adjoint operator of A and zvi
= G′(u)vi, i = 1, 2.

Let us remark that the linear and quadratic functionals J ′(u) and J ′′(u) can be
extended from L∞(Ω) to L2(Ω) by the formulas (2.4) and (2.5). To check this point
it is enough to use the assumptions (A1) and (A2). This extension will be used in the
rest of the paper.

The previous theorem and the next one follow easily from Theorem 2.4 and the
chain rule.

Theorem 2.7. Suppose that (A1) and (A3) hold. Then the mapping F : L2(Ω) →
C(K), defined by F (u) = g(·, yu(·)), is of class C2. Moreover, for every u, v, v1, v2 ∈
L2(Ω),

(2.7) F ′(u)v =
∂g

∂y
(·, yu(·))zv(·)

and

(2.8) F ′′(u)v1v2 =
∂2g

∂y2
(·, yu(·))zv1(·)zv2(·) +

∂g

∂y
(·, yu(·))zv1v2(·),

where zvi = G′(u)vi, i = 1, 2, and zv1v2 = G′′(u)v1v2.
Remark 2.8. A functional L that is very frequently appearing in the applications

is given by

L(x, y, u) = L0(x, y) +
N

2
u2.

In this case, the functional J is twice differentiable not only in L∞(Ω) but also in
L2(Ω). Indeed, J : L2(Ω) −→ R is of class C2, and the derivatives are given by the
expressions

(2.9) J ′(u)v =

∫
Ω

(Nu(x) + ϕ0u) v dx

and

(2.10) J ′′(u)v1v2 =

∫
Ω

[
∂2L0

∂y2
(x, yu)zv1zv2 + Nv1v2 − ϕ0u

∂2f

∂y2
(x, yu)zv1zv2

]
dx.

Remark 2.9. The adjoint state ϕ0u allows us to get a simple expression of J ′(u),
but it is not the complete adjoint state of the control problem because the adjoint
state equation (2.6) does not include the Lagrange multiplier associated to the state
constraint; see (3.2) below for the full definition.

3. First-order optimality conditions. We define the Hamiltonian associated
with problem (P), Hλ : Ω × R

3 −→ R, by

Hλ(x, y, u, ϕ) = λ · L(x, y, u) + ϕ [u− f(x, y)].
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We denote by M(K) the Banach space of all real and regular Borel measures in
K, which is identified with the dual space of C(K).

In the rest of the paper, a local minimum of (P) is assumed to be a local solution
in the sense of the topology of L∞(Ω). More precisely, we will say that ū is a local
minimum or a local solution of (P) in the sense of Lq(Ω), 1 ≤ q ≤ ∞, if it is an
admissible control of (P) and there exists εū > 0 such that the minimum of J in the
admissible set of (P) intersected with the ball B̄εū(ū) ⊂ Lq(Ω) is achieved at ū.

The following result concerning Pontryagin’s principle for problem (P) is well
known; look into [8] and [17] as well as in the references therein for the proof.

Theorem 3.1. Let ū be a local solution of (P), and suppose that the assumptions
(A1)–(A3) hold. Then there exist a real number λ̄ ≥ 0, a measure μ̄ ∈ M(K), and a
function ϕ̄ ∈ W 1,s

0 (Ω), for all 1 ≤ s < n/(n− 1), such that

(3.1) λ̄ + ‖μ̄‖ > 0

(3.2)

⎧⎪⎨
⎪⎩

A∗ϕ̄ +
∂f

∂y
(x, ȳ(x))ϕ̄ = λ̄

∂L

∂y
(x, ȳ, ū) +

∂g

∂y
(x, ȳ(x))μ̄ in Ω,

ϕ̄ = 0 on Γ,

(3.3)

∫
K

(z(x) − g(x, ȳ(x)))dμ̄(x) ≤ 0 ∀z ∈ C(K) such that z(x) ≤ 0 ∀x ∈ K,

(3.4) H λ̄(x, ȳ(x), ū(x), ϕ̄(x)) = min
t∈[αεū (x),βεū (x)]

H λ̄(x, ȳ(x), t, ϕ̄(x)) for a.e. x ∈ Ω,

where

αεū(x) = max{α(x), ū(x) − εū} and βεū(x) = min{β(x), ū(x) + εū},

assuming that ū is a minimum of (P) in the ball B̄εū(ū) ⊂ L∞(Ω). Moreover, if the
following linearized Slater condition holds:

(3.5)
∃u0 ∈ L∞(Ω),with α(x) ≤ u0(x) ≤ β(x) for a.e. x ∈ Ω, such that

g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))zu0−ū(x) < 0 ∀x ∈ K,

where ȳ is the state associated to ū and zu0−ū = G′(ū)(u0 − ū), then the choice λ̄ = 1
can be made.

From now on, we take λ̄ = 1 and denote the Hamilton function by H := H1.
Remark 3.2. Together with the inequality g(x, ȳ(x)) ≤ 0, relation (3.3) is equiva-

lent to the well-known complementarity conditions

g(x, ȳ(x)) ≤ 0 ∀x ∈ K, μ̄ ≥ 0 in M(K), and

∫
K

g(x, ȳ(x)) dμ̄(x) = 0.

It is also well known that (3.3) implies that μ̄ is a positive measure concentrated on
the set of points

K0 = {x ∈ K : g(x, ȳ(x)) = 0};

see, for instance, the references given before the statement of the previous theorem.
From this property and assumption (A3), we deduce that μ̄(K ∩ Γ) = 0.
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Remark 3.3. By using elementary calculus, we obtain from (3.4) that

(3.6)
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x))(k − ū(x)) ≥ 0 ∀k ∈ [α(x), β(x)]

and

(3.7)
∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)) ≥ 0 if

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = 0

for a.e. x ∈ Ω. On the other hand, notice that

(3.8)
∂2L

∂u2
(x, y, u) =

∂2H

∂u2
(x, y, u, ϕ).

The inequality (3.6) implies that

(3.9)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) ≥ 0 if ū(x) = α(x),

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) ≤ 0 if ū(x) = β(x),

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = 0 if α(x) < ū(x) < β(x).

Reciprocally we also deduce from (3.6) that

(3.10)

⎧⎪⎪⎨
⎪⎪⎩

ū(x) = α(x) if
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) > 0,

ū(x) = β(x) if
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) < 0.

The properties given by (3.8) and (3.9) are satisfied almost everywhere in Ω.
Remark 3.4. If we consider ū in Theorem 3.1 to be a local minimum of (P) in the

sense of Lq(Ω), 1 ≤ q < +∞, then (3.4) can be written in the form (see [8])

H λ̄(x, ȳ(x), ū(x), ϕ̄(x)) = min
t∈[α(x),β(x)]

H λ̄(x, ȳ(x), t, ϕ̄(x)) for a.e. x ∈ Ω.

Let us formulate the Lagrangian version of the optimality conditions (3.2)–(3.4).
The Lagrange function L : L∞(Ω)×M(K) −→ R associated to problem (P) is defined
by

L(u, μ) = J(u)+

∫
K

g(x, yu(x)) dμ(x) =

∫
Ω

L(x, yu(x), u(x)) dx+

∫
K

g(x, yu(x)) dμ(x).

By using (2.4) we find that

(3.11)
∂L
∂u

(u, μ)v =

∫
Ω

(
∂L

∂u
(x, yu(x), u(x)) + ϕu(x)

)
v(x) dx =

∫
Ω

Hu(x)v(x) dx,

where

(3.12) Hu(x) =
∂H

∂u
(x, yu(x), u(x), ϕ(x))
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and ϕu ∈ W 1,s
0 (Ω), for all 1 ≤ s < n/(n− 1), is the solution of the Dirichlet problem

(3.13)

⎧⎪⎨
⎪⎩

A∗ϕ +
∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu, u) +

∂g

∂y
(x, yu(x))μ in Ω,

ϕ = 0 on Γ.

Notice that the subscript u in yu and Hu has a different meaning. While yu is used
to indicate that y is the state associated with u, Hu denotes the partial derivative of
H with respect to u. This short notation for partial derivatives is frequently used in
the following and will not cause confusion. Later, we also write Huu, Hyu, or Hyu for
∂2H/∂u2, ∂2H/∂y∂u, etc.

If we insert (ȳ(x), ū(x), ϕ̄(x)) into expression (3.12), then we denote Hu(x) by
H̄u(x).

Now the inequality (3.6) along with (3.11) leads to

(3.14)
∂L
∂u

(ū, μ̄)(u− ū) ≥ 0 if α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω

for any local solution ū, where ȳ is the associated state and ϕ̄ is the adjoint state
given by (3.2), provided that (3.5) holds.

Before finishing this section we provide the expression of the second derivative of
the Lagrangian with respect to the control, which will be used in the next section.
From (2.8) we get

∂2L
∂u2

(u, μ)v1v2 = J ′′(u)v1v2

+

∫
K

[
∂2g

∂y2
(x, yu(x))zv1(x)zv2(x) +

∂g

∂y
(x, yu(x))zv1v2(x)

]
dμ(x).

By (2.5), this is equivalent to

∂2L
∂u2

(u, μ)v1v2 =

∫
Ω

[
∂2L

∂y2
(x, yu, u)zv1

zv2
+

∂2L

∂y∂u
(x, yu, u)(zv1

v2 + zv2
v1)

+
∂2L

∂u2
(x, yu, u)v1v2 − ϕu

∂2f

∂y2
(x, yu)zv1

zv2

]
dx

+

∫
K

∂2g

∂y2
(x, yu(x))zv1(x)zv2(x) dμ(x),(3.15)

where ϕu is the solution of (3.13).

4. Second-order optimality conditions. Let ū be a feasible control of prob-
lem (P) and ȳ be the associated state. We assume that there exist μ̄ ∈ M(K) and
ϕ̄ ∈ W 1,s

0 (Ω), 1 ≤ s < n/(n−1), such that (3.2)–(3.4) are satisfied. As in the previous
section, we use the notation

H̄u(x) :=
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)).

The partial derivative of H with respect to y at (x, ȳ(x), ū(x), ϕ̄(x)) is denoted anal-
ogously by H̄y(x).
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Associated with ū, we define the cone of critical directions by

Cū = {h ∈ L2(Ω) : h satisfies (4.1), (4.2), and (4.3)},

h(x) =

⎧⎨
⎩

≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),
= 0 if H̄u(x) �= 0,

(4.1)

∂g

∂y
(x, ȳ(x))zh(x) ≤ 0 if g(x, ȳ(x)) = 0,(4.2)

∫
K

∂g

∂y
(x, ȳ(x))zh(x) dμ̄(x) = 0.(4.3)

If we think in terms of the finite-dimensional case, inequality (4.2) says that the
derivative of the state constraint in the direction h is nonpositive if the constraint
is active, and (4.3) states that this derivative is zero whenever the corresponding
Lagrange multiplier is strictly positive. The relations (4.2)–(4.3) provide a convenient
extension of the usual conditions in the finite-dimensional case.

We should mention that (4.3) is new in the context of infinite-dimensional opti-
mization problems. In earlier papers on this subject, other extensions to the infinite-
dimensional case were suggested. For instance, Maurer and Zowe [21] used first-order
sufficient conditions to consider strict positivity of Lagrange multipliers. Inspired by
their approach, in [12] an application to state-constrained elliptic boundary control
was suggested. In terms of our problem, (4.3) was relaxed by∫

K

∂g

∂y
(x, ȳ(x))zh(x) dμ̄(x) ≥ −ε

∫
Ω\Ωτ

|h(x)| dx

for some ε > 0; cf. [12, ineq. (5.15)]. Here Ωτ ⊂ Ω is the set of points where
|H̄u(x)| ≥ τ holds true. We will prove that this relaxation is not necessary, which
leads to a smaller cone of critical directions that seems to be optimal.

The sufficient second-order optimality conditions are given by the expressions
(4.4) and (4.5) in the next theorem.

Theorem 4.1. Let ū a feasible control of problem (P), ȳ be the associated state,
and (ϕ̄, μ̄) ∈ W 1,s

0 (Ω) × M(K), for all 1 ≤ s < n/(n − 1), satisfying (3.2)–(3.4).
Assume further that there exist two constants ω > 0 and τ > 0 such that

∂2L

∂u2
(x, ȳ(x), ū(x)) ≥ ω if |H̄u(x)| ≤ τ for a.e. x ∈ Ω,(4.4)

∂2L
∂u2

(ū, μ̄)h2 > 0 ∀h ∈ Cū \ {0}.(4.5)

Then there exist ε > 0 and δ > 0 such that for every admissible control u of problem
(P) the following inequality holds:

(4.6) J(ū) +
δ

2
‖u− ū‖2

L2(Ω) ≤ J(u) if ‖u− ū‖L∞(Ω) < ε.

Remark 4.2. Thanks to (3.8), we can compare the second-order necessary con-
dition (3.7) with the sufficient one given by (4.4). We do not require only the strict
positivity on the second derivative of the Hamiltonian with respect to the control at
the points where the first derivative vanishes, as in the finite-dimensional case. We
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also impose the second derivative to be strictly positive whenever the first derivative
is “small.” This is the usual case when we pass from finite to infinite dimension. For
an instructive example the reader is referred to [14].

Inequality (4.4) is satisfied if the second derivative of L with respect to u is strictly
positive for any (y, u, ϕ) ∈ R

3 and almost all x ∈ Ω. This assumption implies that L
is strictly convex with respect to u. We recall that the convexity of L with respect
to u was necessary to prove the existence of an optimal control. Under this strict
convexity assumption, the sufficient second-order optimality conditions are reduced
to (4.5). This is the case when L(x, y, u) = L0(x, y) + Nu2/2 if N > 0.

The condition (4.5) seems to be natural. In fact, under some regularity assump-
tion, we can expect the inequality

∂2L
∂u2

(ū, μ̄)h2 ≥ 0 ∀h ∈ Cū

to be a necessary condition for local optimality. At least this is the case when the
state constraints are of integral type (see [7]) or when K is a finite set of points (see
[6]).

Proof of Theorem 4.1. We argue by contradiction. Suppose that ū does not satisfy
the quadratic growth condition (4.6). Then there exists a sequence {uk}∞k=1 ⊂ L2(Ω)
of feasible controls of (P) such that uk → ū in L∞(Ω) and

(4.7) J(ū) +
1

k
‖uk − ū‖2

L2(Ω) > J(uk) ∀k.

Let us take

ρk = ‖uk − ū‖L2(Ω) and hk =
1

ρk
(uk − ū).

Since ‖hk‖L2(Ω) = 1, we can extract a subsequence, denoted in the same way, such
that hk ⇀ h weakly in L2(Ω). Now we split the proof into several steps.

Step 1: ∂L
∂u (ū, μ̄)h = 0. In the following, we write yk = yuk

. Since uk is feasible,
it holds that g(x, yk(x)) ≤ 0 for every x ∈ K. By using (3.3) and (4.7) we obtain

(4.8) J(ū) +
1

k
‖uk − ū‖2

L2(Ω) = L(ū, μ̄) +
1

k
‖uk − ū‖2

L2(Ω) > J(uk) ≥ L(uk, μ̄).

From the mean value theorem we know that

L(uk, μ̄) = L(ū, μ̄) + ρk
∂L
∂u

(vk, μ̄)hk,

with vk a point between ū and uk. This identity and (4.8) imply that

∂L
∂u

(vk, μ̄)hk <
1

kρk
‖uk − ū‖2

L2(Ω) =
1

k
‖uk − ū‖L2(Ω).

Since hk ⇀ h weakly in L2(Ω), vk → ū in L∞(Ω), yvk
→ ȳ in C(Ω̄) ∩ H1

0 (Ω), and
ϕvk

→ ϕ̄ in W 1,s
0 (Ω) ⊂ L2(Ω) for s close to n/(n − 1), we deduce from the above

inequality and the expression of the derivative of the Lagrangian given by (3.11) that

(4.9)
∂L
∂u

(ū, μ̄)h = lim
k→∞

∂L
∂u

(vk, μ̄)hk ≤ 0.
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On the other hand, since α(x) ≤ uk(x) ≤ β(x) holds for almost all x ∈ Ω, we deduce
from the variational inequality (3.14) that

∂L
∂u

(ū, μ̄)hk = ρk
∂L
∂u

(ū, μ̄)(uk − ū) ≥ 0,

which implies that

∂L
∂u

(ū, μ̄)h = lim
k→∞

∂L
∂u

(vk, μ̄)hk ≥ 0.

This inequality, along with (4.9), leads to

(4.10)
∂L
∂u

(ū, μ̄)h = 0.

Step 2: h ∈ Cū. We have to confirm (4.1)–(4.3). The set of functions of L2(Ω) that
are nonnegative if ū(x) = α(x) and nonpositive if ū(x) = β(x), almost everywhere, is
convex and closed. Therefore, it is weakly closed. Moreover uk − ū obviously belongs
to this set, and thus every hk also does. Consequently, h belongs to the same set.
Then (3.10), together with (3.12), implies that∫

Ω

|H̄u(x)h(x)| dx =

∫
Ω

H̄u(x)h(x) dx =
∂L
∂u

(ū, μ̄)h = 0,

and hence h(x) = 0 if H̄u(x) �= 0, which concludes the proof of (4.1).
Let us prove (4.2). From Theorem 2.4 we have

zh = G′(ū)h = lim
k→∞

(yū+ρkhk
− ȳ)

ρk
in C(Ω̄) ∩H1

0 (Ω),

which implies for every x ∈ K such that g(x, ȳ(x)) = 0 that

(4.11)
∂g

∂y
(x, ȳ(x))zh(x) = lim

k→∞

[g(x, yū+ρkhk
(x)) − g(x, ȳ(x))]

ρk
≤ 0.

The last inequality follows from the fact that uk is feasible, ū + ρkhk = uk, and
consequently g(x, yū+ρkhk

(x)) = g(x, yuk
(x)) ≤ 0 for every x ∈ K.

Finally, we prove (4.3). By taking z = g(·, yuk
(·)) in (3.3), we get∫

K

∂g

∂y
(x, ȳ(x))zh(x) dμ̄(x) = lim

k→∞

1

ρk

∫
K

[g(x, yū+ρkhk
(x)) − g(x, ȳ(x))] dμ̄(x)

(4.12) = lim
k→∞

1

ρk

∫
K

[g(x, yuk
(x)) − g(x, ȳ(x))] dμ̄(x) ≤ 0.

On the other hand, from (4.7) we find

(4.13) J ′(ū)h = lim
k→∞

J(ū + ρkhk) − J(ū)

ρk
= lim

k→∞

J(uk) − J(ū)

ρk
≤ lim

k→∞

ρk
k

= 0.

Then (4.10), (4.12), (4.13), and the fact that

∂L
∂u

(ū, μ̄)h = J ′(ū)h +

∫
K

∂g

∂y
(x, ȳ(x))zh(x) dμ̄(x)
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imply that

J ′(ū)h =

∫
K

∂g

∂y
(x, ȳ(x))zh(x) dμ̄(x) = 0.

Thus (4.3) holds, and we know that h ∈ Cū.
Step 3: h = 0. By taking into account (4.5), it is enough to prove that

(4.14)
∂2L
∂u2

(ū, μ̄)h ≤ 0.

For this purpose, we evaluate the Lagrangian. By a second-order Taylor expansion,
we derive

(4.15) L(uk, μ̄) = L(ū, μ̄) + ρk
∂L
∂u

(ū, μ̄)hk +
ρ2
k

2

∂2L
∂u2

(wk, μ̄)h2
k,

wk being an intermediate point between ū and uk. From here we get

ρk
∂L
∂u

(ū, μ̄)hk +
ρ2
k

2

∂2L
∂u2

(ū, μ̄)h2
k

= L(uk, μ̄) − L(ū, μ̄) +
ρ2
k

2

[
∂2L
∂u2

(ū, μ̄) − ∂2L
∂u2

(wk, μ̄)

]
h2
k.(4.16)

Now (4.8) can be written

(4.17) L(uk, μ̄) − L(ū, μ̄) ≤ ρ2
k

k
.

On the other hand, by taking into account the expression (3.15) of the second deriva-
tive of the Lagrangian, assumptions (A1)–(A3) and Theorems 2.1 and 2.4, and the
fact that uk → ū in L∞(Ω) and ‖hk‖L2(Ω) = 1, we obtain

∣∣∣∣
[
∂2L
∂u2

(ū, μ̄) − ∂2L
∂u2

(wk, μ̄)

]
h2
k

∣∣∣∣ ≤
∥∥∥∥∂2L
∂u2

(ū, μ̄) − ∂2L
∂u2

(wk, μ̄)

∥∥∥∥
B(L2(Ω))

‖hk‖2
L2(Ω)

(4.18) =

∥∥∥∥∂2L
∂u2

(ū, μ̄) − ∂2L
∂u2

(wk, μ̄)

∥∥∥∥
B(L2(Ω))

→ 0 when k → ∞,

where B(L2(Ω)) is the space of quadratic forms in L2(Ω).
Let us define

Ωτ = {x ∈ Ω : |H̄u(x)| > τ}.

From (3.10) and the definition of hk we know that H̄u(x)hk(x) ≥ 0 in Ω; therefore

(4.19)
∂L
∂u

(ū, μ̄)hk =

∫
Ω

H̄u(x)hk(x) dx ≥
∫

Ωτ

|H̄u(x)||hk(x)| dx ≥ τ

∫
Ωτ

|hk(x)| dx.

For any ε > 0 we can take kε such that

‖ρkhk‖L∞(Ω) = ‖ū− uk‖L∞(Ω) < ε ∀k ≥ kε for a.e. x ∈ Ω,
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and therefore

ρ2
kh

2
k(x)

ε
≤ ρk|hk(x)| ∀k ≥ kε for a.e. x ∈ Ω.

From this inequality and (4.19) it follows that

(4.20) ρk
∂L
∂u

(ū, μ̄)hk ≥ ρkτ

∫
Ωτ

|hk(x)| dx ≥ ρ2
kτ

ε

∫
Ωτ

h2
k(x) dx.

By collecting (4.16)–(4.18) and (4.20) and dividing by ρ2
k/2, we obtain for any

k ≥ kε

(4.21)
2τ

ε

∫
Ωτ

h2
k(x) dx +

∂2L
∂u2

(ū, μ̄)h2
k ≤ 2

k
+

∥∥∥∥∂2L
∂u2

(ū, μ̄) − ∂2L
∂u2

(wk, μ̄)

∥∥∥∥
B(L2(Ω))

.

Next, we study the left-hand side of this inequality. First of all let us notice that from
(3.15) we obtain for any v ∈ L2(Ω)

∂2L
∂u2

(ū, μ̄)v2 =

∫
Ω

[
H̄uu(x)v2(x) + 2H̄uy(x)zv(x)v(x) + H̄yy(x)z2

v(x)
]
dx

+

∫
K

∂2g

∂y2
(x, ȳ(x))z2

v(x) dμ̄(x),

where

H̄uu(x) =
∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x))

and H̄uy and H̄yy are defined analogously. We also recall that

(4.22) H̄uu(x) =
∂2L

∂u2
(x, ȳ(x), ū(x)).

Then we have

2τ

ε

∫
Ωτ

h2
k(x) dx +

∂2L
∂u2

(ū, μ̄)h2
k

=

∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x) dx +

∫
Ω\Ωτ

H̄uu(x)h2
k(x) dx

+

∫
Ω

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
dx

+

∫
K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dμ̄(x).(4.23)

From assumptions (A1)–(A3) we deduce the existence of C > 0 such that
|H̄uu(x)| ≤ C for a.e. x ∈ Ω. Therefore we can take ε > 0 small enough so that
the following inequality holds:

2τ

ε
+ H̄uu(x) ≥ 2τ

ε
− C > 0 for a.e. x ∈ Ωτ .

Thus

(4.24) lim inf
k→∞

∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x) dx ≥

∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2(x) dx.
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Moreover from (4.4) we have H̄uu(x) ≥ ω > 0 in Ω \ Ωτ , and therefore we also get

(4.25) lim inf
k→∞

∫
Ω\Ωτ

H̄uu(x)h2
k(x) dx ≥

∫
Ω\Ωτ

H̄uu(x)h2(x) dx.

Finally, by taking into account that zhk
→ zh strongly in C(Ω̄) ∩ H1

0 (Ω), we
deduce from (4.21)–(4.24) and (4.18) that∫

Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2(x) dx +

∫
Ω\Ωτ

H̄uu(x)h2(x) dx

(4.26) +

∫
Ω

[2H̄uy(x)h(x)zh(x) + H̄yy(x)z2
h(x)]dx+

∫
K

∂2g

∂y2
(x, ȳ(x))z2

h(x) dμ̄(x) ≤ 0.

This expression can be written as follows:

2τ

ε

∫
Ωτ

h2(x) dx +
∂2L
∂u2

(ū, μ̄)h2 ≤ 0,

which along with (4.5) and the fact that h ∈ Cū implies that h = 0.
Step 4: hk → 0 strongly in L2(Ω). We have already proved that hk ⇀ 0 weakly

in L2(Ω); therefore zhk
→ 0 strongly in C(Ω̄) ∩ H1

0 (Ω). By using (4.21) and (4.23)
and the fact that ‖hk‖L2(Ω) = 1, we conclude that

0 < min

{
ω,

2τ

ε
− C

}
= min

{
ω,

2τ

ε
− C

}
lim sup
k→∞

∫
Ω

h2
k(x) dx

≤ lim sup
k→∞

{∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x) dx +

∫
Ω\Ωτ

H̄uu(x)h2
k(x) dx

}

≤ lim sup
k→∞

{
2

k
+

∥∥∥∥∂2L
∂u2

(ū, μ̄) − ∂2L
∂u2

(wk, μ̄)

∥∥∥∥
B(L2(Ω))

−
∫
K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dμ̄(x) −

∫
Ω

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
dx

}
= 0.

Thus we have the contradiction.
There is a very interesting particular case of (P) where Theorem 4.1 has a stronger

formulation.
Theorem 4.3. Assume that L(x, y, u) = L0(x, y) + Nu2/2, with N > 0. If ū is

a feasible control of problem (P), ȳ is the associated state, (ϕ̄, μ̄) ∈ W 1,s
0 (Ω)×M(K),

for all 1 ≤ s < n/(n − 1), and (ȳ, ū, ϕ̄, μ̄) satisfies (3.2)–(3.4) and (4.5), then there
exist ε > 0 and δ > 0 such that for every admissible control u of problem (P) the
following inequality holds:

(4.27) J(ū) +
δ

2
‖u− ū‖2

L2(Ω) ≤ J(u) if ‖u− ū‖L2(Ω) < ε.

We have already mentioned in Remark 4.2 that the first-order optimality condi-
tions along with (4.5) are sufficient for optimality when L(x, y, u) = L0(x, y)+Nu2/2,
with N > 0. But the above theorem includes more very important information. Re-
lation (4.27) says that ū is a strict local minimum of (P) in L2(Ω). The fact that
the control appears linearly in the state equation and quadratically in the cost func-
tional allows us to get sufficient optimality conditions for a local minimum not only
in L∞(Ω) but also in L2(Ω). This fact is very important in the analysis of stability
and convergence of numerical algorithms to solve (P). The proof of Theorem 4.3 fol-
lows the same arguments and steps as those given in the proof of Theorem 4.1. The
essential fact is that the functional J is of class C2 in L2(Ω); see Remark 2.8.
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5. Bilateral state constraints. In this section we will consider the extension
of the control problem to the case of bilateral state constraints. More precisely we
formulate the control problem as follows:

(P)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minJ(u) =

∫
Ω

L(x, yu(x), u(x)) dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

ga(x) ≤ g(x, yu(x)) ≤ gb(x) ∀x ∈ K,

where ga, gb : K → R are continuous functions and ga(x) < gb(x) for every x ∈ K. We
assume the same hypotheses as in the previous sections. All of the previous theorems
remain valid with some obvious modifications that we are going to mention. The
Slater assumption required in Theorem 3.5 is now formulated as follows:

(5.1)

∃u0 ∈ L∞(Ω),with α(x) ≤ u0(x) ≤ β(x) for a.e. x ∈ Ω, such that

ga(x) < g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))zu0−ū(x) < gb(x) ∀x ∈ K.

Under this assumption, Theorem 3.1 remains valid except for (3.3), which is
written now in the following way:

(5.2)

∫
K

(z(x))−g(x, ȳ(x))dμ̄(x) ≤ 0 ∀z ∈ C(K), with ga(x) ≤ z(x) ≤ gb(x) ∀x ∈ K.

From (5.2) we deduce that μ̄ is concentrated at the set of points K0 where the
state constraint is active:

K0 = K− ∪K+ = {x ∈ K : g(x, ȳ(x)) = ga(x)} ∪ {x ∈ K : g(x, ȳ(x)) = gb(x)}.

Now the Lagrange multiplier μ̄ is not necessarily a positive measure. However, its
Jordan decomposition into nonnegative measures μ̄+, μ̄− is as follows:

μ̄ = μ̄+ − μ̄−, with supp(μ̄+) ⊂ K+ and supp(μ̄−) ⊂ K−.

The cone of critical directions Cū is formed by the functions h ∈ L2(Ω) satisfying
(4.1) and

∂g

∂y
(x, ȳ(x))zh(x) ≤ 0 if g(x, ȳ(x)) = gb(x),(5.3)

∂g

∂y
(x, ȳ(x))zh(x) ≥ 0 if g(x, ȳ(x)) = ga(x),(5.4) ∫

K

∣∣∣∣∂g∂y (x, ȳ(x))zh(x)

∣∣∣∣ d|μ̄|(x) = 0,(5.5)

where |μ̄| = μ̄+ + μ̄−. Then Theorem 4.1 is still true, and the only changes of the
proof appear in Steps 1 and 2. In particular, (4.8) can be rewritten with the help
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of (3.3) in the following way:

L(ū, μ̄) +
1

k
‖uk − ū‖2

L2(Ω) −
∫
K

g(x, ȳ(x)) dμ̄(x) = J(ū) +
1

k
‖uk − ū‖2

L2(Ω)

> J(uk) ≥ L(uk, μ̄) −
∫
K

g(x, ȳ(x)) dμ̄(x) ≥ L(uk, μ̄),

and the proof can continue as in Theorem 4.1.
On the other hand, relation (4.11) in Step 2 must be replaced by

(5.6)
∂g

∂y
(x, ȳ(x))zh(x) =

{
≤ 0 ∀x ∈ K+,
≥ 0 ∀x ∈ K−.

Relations (4.12) and (4.13) remain valid. Finally, by using (4.10) and (5.6) we deduce
the identity (5.5) as follows:∫

K

∣∣∣∣∂g∂y (x, ȳ(x))zh(x)

∣∣∣∣ d|μ̄|(x) = −
∫
K

∂g

∂y
(x, ȳ(x))zh(x) dμ̄(x) = J ′(ū)h = 0.

6. Elliptic boundary control.

6.1. Problem statement. The method of the preceding sections can be ex-
tended to other types of equations in a straightforward way. Here we discuss the case
of boundary control, while the next section is devoted to a one-dimensional distributed
parabolic control problem. Instead of (2.1), we consider now

(6.1)

{
Ay + f(x, y) = 0 in Ω,

∂νy + γ y = u on Γ,

where ∂ν denotes the conormal-derivative associated with A and γ ∈ L∞(Γ) is non-
negative with γ �≡ 0. In contrast to section 1, we assume here that n = 2. We need this
stronger assumption, since now the control-to-state mapping G must be twice contin-
uously differentiable from L2(Γ) to C(Ω̄); cf. Remark 2.5. The differential operator
A is defined as in section 1.

We consider the optimal boundary control problem

(6.2) (PB)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minJ(u) =

∫
Ω

L(x, yu(x)) dx +

∫
Γ

�(x, yu(x), u(x)) ds(x)

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω)) × L∞(Γ),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Γ,

g(x, yu(x)) ≤ 0 ∀x ∈ K.

Here α and β are now functions from L∞(Γ), with α(x) ≤ β(x) for a.a. x ∈ Γ, ds
denotes the surface measure on Γ, yu is the solution of (6.1) associated with u ∈ L2(Γ),
and K ⊂ Ω̄ is again a compact set.

The following assumptions are imposed on the data: We assume (A1)–(A3) on
f, L, and g (where, of course, the dependence of L on u in (A2) is redundant).
Moreover, we require the following.

(A4) The function � : Γ× (R × R) −→ R satisfies assumption (A2) with � substi-
tuted for L and Γ substituted for Ω.
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Remark 6.1. We confine ourselves to a linear boundary condition. An extension
to a nonlinear condition of the type ∂νy + b(x, y) = u is possible under associated
assumptions on b. On the other hand, the assumption γ �≡ 0, that allows us to deduce
the existence of a unique solution of (6.1), can be replaced by

∂f

∂y
(x, t) > 0 for all x ∈ E and t ∈ R,

where E is a measurable subset of Ω with a strictly positive measure.
The proof of the next theorems is completely analogous to that of Theorems 2.2

and 2.4; see Alibert and Raymond [1].
Theorem 6.2. Suppose that (A1) holds. Then, for every u ∈ L2(Γ), the state

equation (6.1) has a unique solution yu ∈ C(Ω̄) ∩ H1(Ω). Furthermore, if uk ⇀ u
weakly in L2(Γ), then yuk

→ yu strongly in C(Ω̄) ∩H1(Ω).
Notice that controls of L2(Γ) are transformed continuously to states in the Hölder

space C0,κ(Ω), with some 0 < κ < 1; cf. Stampacchia [23, Thm. 14.2]. The second
part of the statement is an immediate conclusion.

Theorem 6.3. Assume that (A1)–(A4) are fulfilled, the function � is convex with
respect to the third component, and the set of feasible controls is nonempty. Then the
control problem (PB) has at least one solution.

The proof can be performed by standard methods.

6.2. Necessary optimality conditions. We first state results on the first-
and second-order derivatives of the control-to-state mapping G(u) = yu and of the
reduced objective functional J . The results are analogous to Theorems 2.6–2.7 so that
we only collect them without proof, since the associated modifications are obvious.
Under assumptions (A1)–(A4), all mappings listed below are of class C2 from L∞(Γ)
to their respective image spaces. The associated derivatives can be obtained as follows.

We define, for v ∈ L2(Γ), the function zv as the unique solution to

(6.3)

⎧⎪⎨
⎪⎩

Azv +
∂f

∂y
(x, yu)zv = 0 in Ω,

∂νzv + γzv = v on Γ.

Then G′ is given by G′(u)v = zv. Moreover, for v1, v2 ∈ L2(Γ), we introduce zvi
=

G′(u)vi, i = 1, 2, and obtain G′′(u)v1v2 = zv1v2 , where zv1v2 is the solution to

(6.4)

⎧⎪⎨
⎪⎩

Azv1v2 +
∂f

∂y
(x, yu)zv1v2 +

∂2f

∂y2
(x, yu)zv1zv2 = 0 in Ω,

∂νzv1v2
+ γ zv1v2

= 0 on Γ.

The adjoint state ϕ0u ∈ H1
0 (Ω) associated with u and J is introduced as the unique

solution to

(6.5)

⎧⎪⎪⎨
⎪⎪⎩

A∗ϕ +
∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω,

∂νϕ + γ ϕ =
∂�

∂y
(x, yu, u) on Γ.
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It holds that

(6.6) J ′(u)v =

∫
Γ

(
∂�

∂u
(x, yu, u) + ϕ0u

)
v ds,

(6.7)

J ′′(u)v1v2 =

∫
Ω

[
∂2L

∂y2
(x, yu, u)zv1

zv2
− ϕ0u

∂2f

∂y2
(x, yu)zv1

zv2

]
dx

+

∫
Γ

[
∂2�

∂y2
(x, yu, u)zv1zv2 +

∂2�

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2�

∂u2
(x, yu, u)v1v2

]
ds.

Under (A1) and (A3), the mapping F : L2(Γ) → C(K), defined by F (u) =
g(·, yu(·)), is of class C2. For every u, v, v1, v2 ∈ L2(Γ), its first- and second-order
derivatives are given again by (2.7) and (2.8), respectively.

Now we introduce the Hamiltonian H by

H(x, y, u, ϕ) = �(x, y, u) + ϕ [u− γ y].

The first-order necessary conditions admit the following form.
Theorem 6.4. Let ū be a local solution of (PB). Suppose that assumptions (A1)–

(A4) hold, and assume the linearized Slater condition (3.5) with some u0 ∈ L∞(Γ),
α(x) ≤ u0(x) ≤ β(x) for a.e. x ∈ Γ. Then there exist a measure μ̄ ∈ M(K) and a
function ϕ̄ ∈ W 1,s(Ω) for all 1 ≤ s < n/(n− 1) such that

(6.8)

⎧⎪⎪⎨
⎪⎪⎩

A∗ϕ̄ +
∂f

∂y
(x, ȳ(x))ϕ̄ =

∂L

∂y
(x, ȳ, ū) +

∂g

∂y
(x, ȳ(x))μ̄|Ω in Ω,

∂νϕ̄ + γ ϕ̄ =
∂g

∂y
(x, ȳ(x))μ̄|Γ on Γ,

(6.9)

∫
K

(z(x) − g(x, ȳ(x)))dμ̄(x) ≤ 0 ∀z ∈ C(K) such that z(x) ≤ 0 ∀x ∈ K,

(6.10) H(x, ȳ(x), ū(x), ϕ̄(x)) = min
t∈[αεū (x),βεū (x)]

H(x, ȳ(x), t, ϕ̄(x)) for a.e. x ∈ Γ,

where αεū and βεū are defined similarly as in Theorem 3.1 and μ̄|Ω and μ̄|Γ denote
the restrictions of μ to Ω and Γ, respectively.

At the optimal point, the derivatives of H fulfill the relations (3.6)–(3.10) with
an obvious modification: We have to substitute x ∈ Γ for x ∈ Ω. Moreover, we have
to replace (3.8) by

(6.11)
∂2�

∂u2
(x, y, u) =

∂2H

∂u2
(x, y, u, ϕ).

The Lagrangian function L : L∞(Γ) × M(K) −→ R associated to problem (PB) is
defined by

L(u, μ) =

∫
Ω

L(x, yu(x)) dx +

∫
Γ

�(x, yu(x), u(x)) ds +

∫
K

g(x, yu(x)) dμ(x).
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By using (6.6) we deduce that

(6.12)
∂L
∂u

(u, μ)v =

∫
Γ

Hu(x)v(x) ds,

where

(6.13) Hu(x) =
∂H

∂u
(x, y(x), u(x), ϕu(x))

and ϕu is obtained from the adjoint equation (6.8), where yu is substituted for ȳ, u for
ū, and μ for μ̄, respectively. We finally indicate the expression for the second-order
derivative of L:

∂2L
∂u2

(u, μ)v1v2 =

∫
Ω

[
∂2L

∂y2
(x, yu)zv1

zv2
− ϕu

∂2f

∂y2
(x, yu)zv1

zv2

]
dx

+

∫
Γ

[
∂2�

∂y2
(x, yu, u)zv1zv2 +

∂2�

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2�

∂u2
(x, yu, u)v1v2

]
ds

+

∫
K

∂2g

∂y2
(x, yu(x))zv1

(x)zv2
(x) dμ(x),(6.14)

where ϕu is defined as after (6.13).

6.3. Second-order sufficient optimality conditions. Let ū be a feasible con-
trol of problem (PB) and ȳ be the associated state. We assume that there exist
μ̄ ∈ M(K) and ϕ̄ ∈ W 1,s

0 (Ω), 1 ≤ s < n/(n − 1), such that the first-order necessary
conditions (6.8)–(6.10) are satisfied. Associated with ū, we introduce the function

H̄u(x) =
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x))

and define the cone of critical directions by

(6.15) Cū = {h ∈ L2(Γ) : h satisfies (4.1)–(4.3) with x ∈ Γ}.

Notice that this cone is only formally the same as in (4.1)–(4.3), since x varies here
through Γ. The second-order sufficient condition admits now the following form.

Theorem 6.5. Assume that n = 2, and let ū be a feasible control of problem
(PB), ȳ the associated state, and (ϕ̄, μ̄) ∈ W 1,s(Ω)×M(K), for all 1 ≤ s < n/(n−1),
satisfying (6.8)–(6.10). Let there exist two constants ω > 0 and τ > 0 such that

∂2�

∂u2
(x, ȳ(x), ū(x)) ≥ ω if |H̄u(x)| ≤ τ for a.e. x ∈ Γ,(6.16)

∂2L
∂u2

(ū, μ̄)h2 > 0 ∀h ∈ Cū \ {0},(6.17)

where Cū is defined in (6.15) and ∂2L/∂u2 is taken from (6.14), with u := ū and
μ := μ̄.

Then there exist ε > 0 and δ > 0 such that, for every admissible control u of
problem (PB), the following inequality holds:

(6.18) J(ū) +
δ

2
‖u− ū‖2

L2(Γ) ≤ J(u) if ‖u− ū‖L∞(Γ) < ε.
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Proof. The proof is almost identical with the one of Theorem 4.1. Therefore, we
mention only where essential changes occur.

Throughout the proof, we have to perform the obvious modification that L2(Γ),
L∞(Γ), and H1(Ω) must be substituted for L2(Ω), L∞(Ω), and H1

0 (Ω), respectively.
Moreover, in some integrals, Ω must obviously be replaced by Γ. Then Steps 1 and 2
can be adopted without further changes.

Step 3: The arguments up to (4.18) do not need changes. Next, we modify Ωτ by

Γτ = {x ∈ Γ : |H̄u(x)| > τ}.

Hereafter, Ω and Ωτ are replaced by Γ and Γτ , respectively. In (4.22), � must be
substituted for L, and in (4.23) we add the integral over ∂2L/∂u2 to arrive at

2τ

ε

∫
Γτ

h2
k(x) ds +

∂2L
∂u2

(ū, μ̄)h2
k

=

∫
Γτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x) ds +

∫
Γ\Γτ

H̄uu(x)h2
k(x) ds

+

∫
Γ

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
ds

+

∫
K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dμ̄(x) +

∫
Ω

∂2L

∂y2
(x, ȳ(x))z2

hk
(x) dx.(6.19)

Analogously, this term must be added to the left-hand side of (4.26).
Step 4: First, we conclude from hk ⇀ 0 in L2(Γ) that zhk

→ 0 strongly in C(Ω̄).
Proceeding as in the former Step 4, we finally conclude with

0 < lim sup
k→∞

{
2

k
+

∥∥∥∥∂2L
∂u2

(ū, μ̄) − ∂2L
∂u2

(wk, μ̄)

∥∥∥∥
B(L2(Γ))

−
∫
K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dμ̄(x) −

∫
Ω

∂2L

∂y2
(x, ȳ(x))z2

hk
(x) dx

−
∫

Ω

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
dx

}
= 0.

7. The parabolic case.

7.1. Problem statement. Finally we prove that our method can also be ex-
tended to one-dimensional parabolic problems with distributed control. This ex-
tension is addressed here. To define the parabolic problem, we consider the one-
dimensional domain Ω = (a, b) and the time interval [0, T ] for given T > 0. We fix
an initial value y0 ∈ C[a, b] and introduce the set Q = (a, b) × (0, T ). Moreover, we

introduce the space W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) : dy
dt ∈ L2(0, T ;H1(Ω)

′
)}.

Remark 7.1. Again, the restriction on the dimension of Ω comes from the re-
quirement that the control-to-state mapping is of class C2 from L2(Q) to C(Q̄). This
holds true only for n = 1. We should mention here that boundary controls cannot be
handled by our approach. Neumann boundary data from L2(0, T ) are not, in general,
transformed into continuous states.
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The parabolic equation is defined by

(7.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dy

dt
+ Ay + f(x, t, y) = u in (a, b) × (0, T ),

−∂xy(a, t) = 0 in (0, T ),
∂xy(b, t) = 0 in (0, T ),

y(·, 0) = y0 in (a, b),

where ∂x denotes the partial derivative with respect to x. The associated optimal
control problem is

(7.2) (PP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minJ(u) =

∫ T

0

∫ b

a

L(x, t, yu(x, t), u(x, t)) dxdt +

∫ b

a

r(x, y(x, T )) dx

+

∫ T

0

�a(t, yu(a, t)) dt +

∫ T

0

�b(t, yu(b, t)) dt

subject to (yu, u) ∈ (C(Q̄) ∩W (0, T )) × L∞(Q),

α(x, t) ≤ u(x, t) ≤ β(x, t) for a.e. (x, t) ∈ Q,

g(x, t, yu(x, t)) ≤ 0 ∀(x, t) ∈ K.

Here α and β are functions from L∞(Q), with α(x, t) ≤ β(x, t) for a.a. (x, t) ∈ Q, yu
is the solution of (7.1) associated with u ∈ L2(Q), and K ⊂ Q̄ is a compact set.

The following assumptions are required.
(A5) The function f : Q× R −→ R satisfies the modification of assumption (A1)

that is obtained by substituting Q for Ω and (x, t) for x, respectively.
(A6) The function L : Q× (R × R) −→ R satisfies the modified assumption (A2)

obtained by substituting Q for Ω and (x, t) for x, respectively.
(A7) The function g : K × R −→ R is continuous and is of class C2 with respect

to the second variable, and ∂yg and ∂2
yg are also continuous functions in K × R.

Moreover, the strict inequality

(7.3) g(x, 0, y0(x)) < 0

holds for every x ∈ K ∩ Ω̄.
(A8) The functions �k : [0, T ] × R −→ R, k ∈ {a, b}, are Carathéodory functions

of class C2 with respect to the second variable with �k(·, 0) ∈ L1(0, T ). For all M > 0,
there exist a constant CM > 0 and a function ψM ∈ L2(0, T ) such that

∣∣∣∣∂�k∂u
(t, y)

∣∣∣∣ ≤ ψM (x),

∣∣∣∣∂2�k
∂y2

(t, y)

∣∣∣∣ ≤ CM ,

∣∣∣∣∂2�k
∂y2

(t, y2) −
∂2�k
∂y2

(t, y1)

∣∣∣∣ ≤ CM |y2 − y1|

holds for k ∈ {a, b} for a.e. t ∈ [0, T ] and |y|, |yi| ≤ M , i = 1, 2.
Analogously, r : [a, b] × R −→ R is a Carathéodory function of class C2 with

respect to the second variable with r(·, 0) ∈ L1(a, b). It satisfies the assumptions on
�k above with �k replaced by r, (a, b) substituted for (0, T ), and x substituted for t.
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For the parabolic equation, the following result on existence and regularity holds
true.

Theorem 7.2. Suppose that (A5) is satisfied. Then, for every u ∈ L2(Q), the
state equation (7.1) has a unique solution yu ∈ C(Q̄) ∩W (0, T ). If uk ⇀ u weakly in
L2(Q), then yuk

→ yu strongly in C(Q̄).
The proof of the theorem is postponed to section 7.4.
Theorem 7.3. Assume that (A5)–(A8) are fulfilled, the function L is convex with

respect to the third component, and the set of feasible controls is nonempty. Then the
control problem (PP) has at least one solution.

This theorem is a standard consequence of Theorem 7.2.

7.2. Necessary optimality conditions. Also here, the control-to-state map-
ping G(u) = yu, G : L2(Q) → C(Q̄) ∩W (0, T ), and the reduced objective functional
J are of class C2 from L∞(Q) to their image spaces, provided that assumptions (A5)–
(A8) are satisfied. Since this is known (see [5]) we state the associated derivatives for
convenience below.

We define, for v ∈ L2(Q), the function zv as the unique solution to

(7.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dzv
dt

+ Azv +
∂f

∂y
(x, t, yu)zv = v in Q,

−∂xzv(a, t) = 0 in (0, T ),

∂xzv(b, t) = 0 in (0, T ),

y(x, 0) = 0 in (a, b).

Then G′(u), G : L2(Q) → C(Q̄) ∩ W (0, T ), is given by G′(u)v = zv. Moreover, for
v1, v2 ∈ L2(Q), we introduce zvi = G′(u)vi, i = 1, 2, and obtain G′′(u)v1v2 = zv1v2 ,
where zv1v2 is the solution to

(7.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dzv1v2

dt
+ Azv1v2 +

∂f

∂y
(x, t, yu)zv1v2

+
∂2f

∂y2
(x, t, yu)zv1zv2

= 0 in Q,

−∂xzv1v2(a, t) = 0 in (0, T ),

∂xzv1v2
(b, t) = 0 in (0, T ),

zv1v2(x, 0) = 0 in (a, b).

The adjoint state ϕ0u ∈ W (0, T ) associated with u and J is introduced as the unique
solution to

(7.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dϕ

dt
+ A∗ϕ +

∂f

∂y
(x, t, yu)ϕ =

∂L

∂y
(x, t, yu, u) in Q,

−∂xϕ(a, t) =
∂�a
∂y

(t, yu(a, t)) in (0, T ),

∂xϕ(b, t) =
∂�b
∂y

(t, yu(b, t)) in (0, T ),

ϕ(x, T ) =
∂r

∂y
(x, yu(x, T )) in (a, b).
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We have

(7.7) J ′(u)v =

∫
Q

(
∂L

∂u
(x, t, yu, u) + ϕ0u

)
v dxdt,

(7.8)

J ′′(u)v1v2 =

∫
Q

[
∂2L

∂y2
(x, t, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, t, yu, u)(zv1v2 + zv2v1)

+
∂2L

∂u2
(x, t, yu, u)v1v2 − ϕ0u

∂2f

∂y2
(x, t, yu)zv1zv2

]
dxdt

+

∫ T

0

∂2�a
∂y2

(t, yu(a, t))zv1(a, t)zv2(a, t) dt

+

∫ T

0

∂2�b
∂y2

(t, yu(b, t))zv1
(b, t)zv2(b, t) dt

+

∫
Ω

∂2r

∂y2
(x, yu(x, T ))zv1

(x, T )zv2
(x, T ) dx.

We require the following linearized Slater condition: There exists u0 ∈ L∞(Q)
with α(x, t) ≤ u0(x, t) ≤ β(x, t) for a.e. (x, t) ∈ Q such that

(7.9) g(x, t, ȳ(x, t)) +
∂g

∂y
(x, t, ȳ(x, t))zu0−ū(x, t) < 0 ∀(x, t) ∈ K.

Notice that we have assumed (7.3), since this is needed to satisfy (7.9). The Hamil-
tonian H is defined by

H(x, t, y, u, ϕ) = L(x, t, y, u) + ϕ [u− f(x, t, y)],

and the first-order necessary conditions admit the following form (see Casas [5]).
Theorem 7.4. Let ū be a local solution of (PP). Suppose that assumptions (A5)–

(A8) hold, and assume the Slater condition (7.9) with some u0 ∈ L∞(Q), α(x, t) ≤
u0(x, t) ≤ β(x, t) for a.e. (x, t) ∈ Q. Then there exist a measure μ̄ ∈ M(K) and a
function ϕ̄ ∈ Lτ (0, T ;W 1,σ(Ω)), for all τ, σ ∈ [1, 2), with 1

τ + 1
σ > 3

2 , such that

(7.10)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dϕ̄

dt
+ A∗ϕ +

∂f

∂y
(x, t, ȳ) ϕ̄ =

∂L

∂y
(x, t, ȳ, ū) +

∂g

∂y
(x, t, ȳ)μ̄|Q ,

−∂xϕ̄(a, t) =
∂�a
∂y

(t, yu(a, t)) +
∂g

∂y
(a, t, ȳ(a, t))μ̄|{a}×(0,T )

,

∂xϕ̄(b, t) =
∂�b
∂y

(t, ȳ(b, t)) +
∂g

∂y
(b, t, ȳ(b, t))μ̄|{b}×(0,T )

,

ϕ̄(x, T ) =
∂r

∂y
(x, ȳ(x, T )) +

∂g

∂y
(x, T, ȳ(x, T ))μ̄|Ω×{T}

for a.a. x ∈ (a, b), t ∈ (0, T ), where μ̄|Q , μ̄|{a}×(0,T )
, μ̄|{b}×(0,T )

, and μ̄|Ω×{T} denote
the restrictions of μ to Q, {a} × (0, T ), {b} × (0, T ), and Ω × {T}, respectively,

(7.11)

∫
K

(z(x, t)−g(x, t, ȳ(x, t)))dμ̄(x, t)≤ 0 ∀z ∈ C(K), with z(x, t) ≤ 0 ∀(x, t) ∈ K,

and, for almost all (x, t) ∈ Q,

(7.12) H(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t)) = min
s∈[αεū (x,t),βεū (x,t)]

H(x, t, ȳ(x, t), s, ϕ̄(x, t)),

where αεū and βεū are defined along the lines of Theorem 3.1.
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The Lagrange function is defined in a standard way by

L(u, μ) =

∫
Q

L(x, t, yu(x, t), u(x, t)) dxdt +

∫ T

0

�a(t, yu(a, t)) dt

+

∫ T

0

�b(t, yu(b, t)) dt +

∫
K

g(x, t, yu(x, t)) dμ(x, t).

For convenience, we establish only the second-order derivative of L:

(7.13)
∂2L
∂u2

(u, μ)v1v2

=

∫
Q

[
∂2L

∂y2
(x, t, yu, u)zv1

zv2
+

∂2L

∂y∂u
(x, t, yu, u)(zv1

v2 + zv2
v1) +

∂2L

∂u2
(x, t, yu, u)v1v2

− ϕu
∂2f

∂y2
(x, t, yu)zv1zv2

]
dxdt +

∫
Ω

∂2r

∂y2
(x, yu(x, T ))zv1(x, T )zv2(x, T ) dx

+

∫ T

0

[
∂2�a
∂y2

(t, yu(a, t))zv1(a, t)zv2(a, t) +
∂2�b
∂y2

(t, yu(b, t))zv1(b, t)zv2(b, t)

]
dt

+

∫
K

∂2g

∂y2
(x, t, yu(x, t))zv1(x)zv2(x) dμ̄(x, t),

where ϕu is the solution of (7.10), where u is taken for ū, yu instead of ȳ, and μ for
μ̄.

7.3. Second-order sufficient optimality conditions. With the prerequisites
of the preceding section at hand, the extension of the second-order sufficient optimality
conditions to the parabolic case is straightforward. We define the cone of critical
directions associated with ū by

Cū = {h ∈ L2(Q) : h satisfies (7.14), (7.15), and (7.16) below},

h(x, t) =

⎧⎨
⎩

≥ 0 if ū(x, t) = α(x, t),
≤ 0 if ū(x, t) = β(x, t),
= 0 if H̄u(x, t) �= 0,

(7.14)

∂g

∂y
(x, t, ȳ(x, t))zh(x, t) ≤ 0 if g(x, t, ȳ(x, t)) = 0,(7.15) ∫

K

∂g

∂y
(x, t, ȳ(x, t))zh(x, t) dμ̄(x, t) = 0.(7.16)

The sufficient second-order optimality conditions for ū are stated in the following
result.

Theorem 7.5. Let ū be a feasible control of problem (PP) that satisfies, together
with the associated state ȳ and (ϕ̄, μ̄) ∈ Lτ (0, T ;W 1,σ(Ω))×M(K) for all τ, σ ∈ [1, 2),
with 1

τ + 1
σ > 3

2 , the first-order conditions (7.10)–(7.12). Assume in addition that there
exist two constants ω > 0 and τ > 0 such that

∂2L

∂u2
(x, t, ȳ(x, t), ū(x, t)) ≥ ω if |H̄u(x, t)| ≤ τ for a.e. (x, t) ∈ Q,(7.17)

∂2L
∂u2

(ū, μ̄)h2 > 0 ∀h ∈ Cū \ {0}.(7.18)
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Then there exist ε > 0 and δ > 0 such that, for every admissible control u of problem
(PP), the following inequality holds:

(7.19) J(ū) +
δ

2
‖u− ū‖2

L2(Q) ≤ J(u) if ‖u− ū‖L∞(Q) < ε.

The proof is analogous to the one of Theorem 4.1. We have to perform obvious
modifications that are along the line of the ones explained in the proof of Theorem
6.5. Therefore, we skip these details.

7.4. Proof of Theorem 7.2. To prepare the proof of Theorem 7.2, we first
state some results on maximal parabolic regularity of the elliptic differential operator
A. In the one-dimensional case we study here, A admits the form

A =
∂

∂x

[
a11(·)

∂

∂x

]
.

Let us consider A on its natural domain

(7.20) D := D(A) =

{
w ∈ H2(Ω) :

∂w

∂x
(a) =

∂w

∂x
(b) = 0

}

that is dense in L2(Ω). It is known that, for all τ ∈ (0, 1),

D(Aτ ) =

⎧⎨
⎩ H2τ (Ω) ∩

{
w :

∂w

∂x
(a) =

∂w

∂x
(b) = 0

}
if τ > 3

4 ,

H2τ (Ω), if τ < 3
4 ;

cf. [24]. In particular, we have D(A
1
2 ) = H1(Ω). To shorten the notation, we write

below S := (0, T ) with closure S̄. Moreover, for a Banach space X ⊂ L1(Ω) and
1 < p < ∞, we introduce the space

W 1,p(S,X) =

{
y ∈ Lp(S,X) :

∂y

∂t
∈ Lp(S,X)

}
.

It is known that, for all 1 < p < ∞, A exhibits maximal parabolic Lp(S,Lp(Ω))-
regularity. This means that, for all f ∈ Lp(S,Lp(Ω)), there is a unique solution
y ∈ W 1,p(S,Lp(Ω)) ∩ Lp(S,D(A)) of

(7.21)
∂y

∂t
+ Ay = f in S, y(0) = 0,

where the differential equation is to be understood in the distributional sense; cf. [13].
Here the definition of D(A) must be adapted by replacing W 2,p(Ω) for H2(Ω) in (7.20).
In all that follows, we apply this result with p = 2 for X = H := L2(Ω). Therefore,
for all f ∈ L2(S,H) ∼= L2(Q), there is a unique solution y ∈ W 1,2(S,H) ∩ L2(S,D)
of (7.21). The mapping f → y is surjective and hence continuous.

Our proof relies on the following result.
Lemma 7.6. For all 0 < τ < η < 1 and κ = η−τ

2η , there holds the continuous

injection W 1,2(S,H) ∩ L2(S,D) ↪→ Cκ(S,Hτ (Ω)).

Proof. We show first that W 1,2(S,H) ↪→ C
1
2 (S,H). To this aim, let y ∈

W 1,2(S,H) and t, s ∈ S̄ be given. Then

‖y(t) − y(s)‖H =

∥∥∥∥
∫ t

s

y′(ρ) dρ

∥∥∥∥
H

≤
∫ t

s

‖y′(ρ)‖H dρ

≤
(∫ t

s

‖y′(ρ)‖2
H dρ

) 1
2
(∫ t

s

dρ

) 1
2

≤ ‖y‖W 1,2(S,H) |t− s| 12
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verifies the injection claimed above. Next, we prove the statement of the lemma. We
denote by [·, ·]θ the complex interpolation functor; see Triebel [24]. It follows from [2,
Chap. III, Thm. 4.10.2] and [24, Chap. 1.8] that the continuous injection

(7.22) W 1,2(S,H) ∩ L2(S,D) ↪→ C(S̄, [H,D]1/2) = C(S̄,H1(Ω))

takes place. The interpolation identity [H,D]1/2 = H1(Ω) is well known and can be
found, for instance, in [24].

We fix now τ and η by 0 < τ < η < 1/2 and put λ = τ/η. Then we obtain with
a generic constant c that

‖y(t) − y(s)‖[H,D]τ

|t− s| 12 (1−λ)
≤ c

‖y(t) − y(s)‖[H,[H,D]η]λ

|t− s| 12 (1−λ)
(7.23)

≤ c
‖y(t) − y(s)‖1−λ

H

|t− s| 12 (1−λ)
‖y(t) − y(s)‖λ[H,D]η

≤ c

(
‖y(t) − y(s)‖H

|t− s| 12

)1−λ

‖y(t) − y(s)‖λ[H,D]η
,(7.24)

where we have applied the complex reiteration theorem, [24, Chap. 1.9.3]. In the last

estimate, the first factor is bounded, since W 1,2(S,H) ↪→ C
1
2 (S,H). In view of the

injection (7.22) and [H,D]η = H2η(Ω), with 0 < 2η < 1, the second factor can be
estimated by

‖y(t) − y(s)‖λ[H,D]η
≤ c ‖y(t) − y(s)‖λH2η(Ω) ≤

(
2c ‖y‖C(S̄,H2η(Ω))

)λ

≤
(
c ‖y‖C(S̄,H1(Ω))

)λ

≤ c ‖y‖λW 1,2(S,H)∩L2(S,D).

In the last estimate, we have used the embedding (7.22). Moreover, we took advantage
of the equivalence of the norms of [H,D]η and H2η(Ω). Therefore, the second factor
in (7.24) is bounded, too. The statement of the lemma follows now from (7.24) after
inserting τ := 2τ , η := 2η, [H,D]τ = H2τ (Ω), and κ = 1

2 (1 − λ) into (7.23).
Proof of Theorem 7.2. The existence result of Theorem 7.2 is well known; we refer

to Casas [5]. Therefore, we show only that weakly converging sequences of controls
are transformed to strongly converging sequences of states.

Let a sequence (uk) be given that converges weakly in L2(Q) to u. Consider the
equation for yk and uk:

∂yk
∂t

+ Ayk + f(x, yk) = uk in Q,

∂yk
∂x

(a, t) = 0 in S,

∂yk
∂x

(b, t) = 0 in S,

yk(0) = y0 in Ω.

Standard arguments show that yk ⇀ y in W (0, T ) ∩ C(Q̄), where y = yu. The
functions yk are uniformly bounded in C(Q̄), hence the sequence

(
d(·, yk)

)
is bounded

in L2(Q), and we can select a weakly converging subsequence indexed by kl. We write
fk = uk − d(·, yk) and split yk = v + wk, where wk solves

∂wk

∂t
+ Awk = fk
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with homogeneous inital and boundary conditions, while v solves

∂v

∂t
+ Av = 0

with inhomogeneous initial condition v(0) = y0 and homogeneous boundary condi-
tions. Thanks to Lemma 7.6, the sequence (wkl

) converges weakly in Cκ(S,Hτ (Ω)),
where κ > 0 and τ > 1/2 can be chosen. Therefore, the functions wkl

belong to a
space Cσ(Q̄) with some positive σ so that, by compact embedding into C(Q̄), the se-
quence converges strongly in C(Q̄). Consequently, ykl

= v+wkl
converges strongly in

C(Q̄) towards y. Moreover, it follows by standard arguments that y = yu. Since this
holds for all subsequences with the same limit y, the whole sequence (yk) converges
uniformly to yu.

Acknowledgment. The authors are grateful to J. Rehberg (Weierstrass Insti-
tute Berlin (WIAS)) for pointing out the proof of Lemma 7.6.
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Abstract. We consider the feasible set of a generalized semi-infinite programming problem with
a one-dimensional index set of inequality constraints depending on the state variable. The latter
dependence on the state variable gives rise to a complicated structure of the feasible set. Under
appropriate transversality conditions we partially present the local description of feasible sets in new
coordinates by means of the finitely many basic functions.
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1. Introduction. We consider the feasible set M of a generalized semi-infinite
programming (GSIP) problem, which is defined as

M := {x ∈ R
n | v0(x, y) ≥ 0, y ∈ Y (x)}

with the index set

Y (x) := {y ∈ R | vi(x, y) ≥ 0, i ∈ I = {1, . . . , p}}.

For x ∈ R
n define the corresponding set of active constraints as

Y0(x) := {y ∈ Y (x) | v0(x, y) = 0}.

In GSIP the index set Y (x) may depend on the state variable x. This is in contrast to
standard semi-infinite programming (SIP) where the corresponding index set is fixed.
GSIP became in recent years a substantial research area in mathematical program-
ming. There exists a wide range of applications, we refer, e.g., to design-centering
problems, reverse Chebyshev approximation, robust optimization, time-minimal con-
trol problems, and others. For a more detailed study see, e.g., the recent book [11]
and the compilations [2], [10].

Throughout the paper we make the following two assumptions.
(A1) The set-valued mapping x ∈ R

n �→ Y (x) ⊂ R is upper-semicontinuous in the
sense of Berge [1], and Y (x) is compact.

(A2) vi ∈ C∞(Rn × R,R), i = 0, . . . , p.
Assumption (A1) is an usual assumption in GSIP. If x̄ ∈ M and Y0(x̄) = ∅, then (A1)
implies that x̄ ∈ intM . We assume (A2) in order to avoid unnecessary technicalities.
Note that (A2) is a mild differentiability assumption since the C∞-functions are Cl

s-
dense in the space of Cl-functions (here, Cl

s denotes the strong (Whitney) Cl-topology
[5]).

∗Received by the editors June 11, 2007; accepted for publication (in revised form) January 30,
2008; published electronically July 2, 2008.

http://www.siam.org/journals/siopt/19-2/69425.html
†Department of Mathematics, RWTH Aachen University, Templergraben 55, 52056 Aachen, Ger-

many (guenzel@mathc.rwth-aachen.de, jongen@rwth-aachen.de).
‡School of Mathematics, University of Birmingham, Edgbaston, Birmingham B152TT, United

Kingdom (ruckmanj@maths.bham.ac.uk).

644



STABLE FEASIBLE SETS IN GSIP 645

The feasible set M in GSIP may exhibit some topological properties which do not
appear in standard SIP, e.g.,

- M need not be closed;
- M may have a disjunctive structure (for details see [3], [6], [7], and [11]).

If x̄ ∈ M , then each ȳ ∈ Y0(x̄) is a global minimizer of the function v0(x̄, .) subject to
y ∈ Y (x̄). By using the corresponding optimal value function, M can be described as

M = {x ∈ R
n | min

y∈Y (x)
v0(x, y) ≥ 0}.

In the case where Y (x̄) = ∅, the minimum in the latter description of M is defined
to be ∞; in particular, in that case x̄ belongs to M . If for x̄ ∈ M each y ∈ Y0(x̄)
is a nondegenerate minimizer of v0(x̄, .) restricted to Y (x̄), then the so-called reduc-
tion approach is available and in a neighborhood of x̄ the set M can be described
by finitely many differentiable functions (e.g., [4], [9]). Unfortunately, one cannot
avoid degenerate minimizers y ∈ Y0(x) for some x ∈ M . Moreover, some of these
degeneracies also remain stable under small perturbations.

The goal of this paper is to describe the local structure of M around x̄ ∈ ∂M (the
boundary of M) in new coordinates by means of the finitely many basic functions.
If x̄ ∈ intM , then the local structure of M is trivial since an open neighborhood of
x̄ belongs completely to M . The knowledge of the local structure of M gives insight
into the complicated structure of this type of optimization problem, and might be
useful for the design of corresponding solution methods.

Definition 1. Let v ∈ C∞(Rn × R,R). For k ≥ 1, a point ȳ ∈ R is called a
zero-point for v(x̄, .) of an order k, if the following holds at (x̄, ȳ):

(1)

(
∂

∂y

)i

v = 0, i = 0, . . . , k − 1,

(
∂

∂y

)k

v 	= 0.

Moreover, the zero-point ȳ for v(x̄, .) of an order k is called transversal, if in addi-
tion to (1), the Jacobian matrix with respect to (x, y) of the system of the equations
( ∂
∂y )iv = 0, i = 0, . . . , k − 1, has rank k at (x̄, ȳ).

The local description of M around x̄ ∈ ∂M may become extremely complicated if
the functions vi(x̄, .), i = 0, . . . , p, have the zero-points of arbitrary order. Therefore,
we restrict our forthcoming analysis to the four most simple cases, where x̄ ∈ ∂M
and ȳ ∈ Y (x̄) (note: If Y (x̄) = ∅, then x̄ ∈ M with Y0(x̄) = ∅, and, hence x̄ ∈ intM).
In the following we present a first characterization of these four cases; their complete
definitions will be given in section 3.
Case A. ȳ is a transversal zero-point for v0(x̄, .) of an order k, k ≥ 2, and vi(x̄, ȳ) > 0,

i ∈ I.
Case B. ȳ is a transversal zero-point for v0(x̄, .) of an order k, k ≥ 2, there exists

an index i0 ∈ I such that ȳ is a transversal zero-point for vi0(x̄, .) of an order
one, and vi(x̄, ȳ) > 0, i ∈ I \ {i0}.

Case C. ȳ is a transversal zero-point for vi(x̄, .) of an order one for each i ∈ {0} ∪ I
with vi(x̄, ȳ) = 0.

Case D. The set {i ∈ I | vi(x̄, ȳ) = 0} is a singleton, say {1}, and
- either v0(x̄, ȳ) 	= 0 and ȳ is a transversal zero-point for v1(x̄, .) of an

order two,
- or v0(x̄, ȳ) = 0 and with {i1, i2} = {0, 1}, ȳ is a transversal zero-point

for vi1(x̄, .) of an order two and a transversal zero-point for vi2(x̄, .) of
an order one or two.
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Remark 2. The local analysis of these four cases will describe the existence of
the above-mentioned phenomena (nonclosedness and the disjunctive structure of M)
while a further analysis which includes the zero-points of higher order would only
illustrate that the local fine structure of M becomes more complicated. This can
already be seen by comparing the analysis of Cases A, B, and C with that of Case D.
In this sense, the choice of these four cases can be considered as complete.

The results of this paper can be extended to the more general case, where M is de-
scribed by finitely many equality constraints and finitely many inequality constraints
of the type v0(x, y) ≥ 0, y ∈ Y (x).

This paper is organized as follows. Section 2 contains some basic results, and
section 3 presents the discussion of the four cases and a decomposition theorem in
which the feasible set M around x̄ ∈ ∂M is locally described in new coordinates by
means of the finitely many basic functions. Since this decomposition theorem mainly
uses a transversality condition, the description of M remains stable under sufficiently
small smooth perturbations of the defining functions.

2. Basic results. We start with a definition and a lemma that is a consequence
of [8], Lemma 1.

Definition 3. A local C∞-coordinate transformation on R
n × R, mapping

(x, y) �→ (u,w), is called admissible, if it can be written in the form

u = ξ1(x),
w = ξ2(x, y).

Lemma 4. Let v ∈ C∞(Rn × R,R), x̄ ∈ R
n, and let ȳ ∈ R be a transversal

zero-point for v(x̄, .) of an order k, k ≥ 2. Let ε := sign( ∂
∂y )kv(x̄, ȳ). Then, there

exists an admissible C∞-coordinate transformation sending (x̄, ȳ) to (0, 0) such that
v has in new coordinates the form

(2) εyk +

k−1∑
i=1

xiy
k−1−i,

where the new coordinates are again denoted by x and y. Let the associated set of
vectors S(ȳ) be defined as

S(ȳ) :=

{(
∂

∂y

)i

vx(x̄, ȳ), i = 0, . . . , k − 2

}

(vx denotes the partial derivative of v with respect to x). Then, the vectors in S(ȳ)
are linearly independent.

Remark 5. Let ε = 1, and k be even. Then, the local optimal value function
miny v(x, y), takes in new coordinates the form

(3) x �→ ηk−1(x1, . . . , xk−1) = min
y∈[−1,1]

yk +

k−1∑
i=1

xiy
k−1−i.

In particular, if k = 2, we have η1(x1) = x1.
Remark 6. The associated set S(ȳ) is related to a fundamental part of the

Jacobian matrix Dξ1(x̄). Moreover, ∂
∂y ξ

2(x̄, ȳ) > 0. See [8] for details.
As done in the lemma, we will always denote the resulting coordinates after an

admissible coordinate transformation for (x, y) by (x, y).
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Now, we consider the following special situation, which will be related later to case
D. Let x̄ ∈ R

n, and let ȳ ∈ R be a zero-point for v0(x̄, .) of an order two and a zero-
point for v1(x̄, .) of an order two such that vi(x̄, ȳ) > 0 for i = 2, . . . , p. Furthermore,
assume that the Jacobian matrix of the system

v0 = 0, v1 = 0, v0,y = 0, v1,y = 0

has rank four at (x̄, ȳ) (by v0,x, v0,y, v0,xx, v0,xy. . . we denote the corresponding par-
tial derivatives of v0). Omitting all arguments (x̄, ȳ) the latter Jacobian is the first
entry in (4), and since the following matrices in (4)–(5) are the results of simple row
manipulations, the matrix in (5) also has rank four:

(4)

⎛
⎜⎜⎝

v0,x 0
v1,x 0
v0,yx v0,yy

v1,yx v1,yy

⎞
⎟⎟⎠

⎛
⎜⎜⎝

v0,x 0
v1,x 0
v0,yx(v0,yy)

−1 1
v1,yx(v1,yy)

−1 1

⎞
⎟⎟⎠

(5)

⎛
⎜⎜⎝

v0,x 0
v1,x 0
v0,yx(v0,yy)

−1 − v1,yx(v1,yy)
−1 0

v1,yx(v1,yy)
−1 1

⎞
⎟⎟⎠ .

The rows of the upper-left submatrix, marked in (5), must therefore be linearly inde-
pendent. They form the associated set of vectors

S(ȳ) :=
{
v0,x, v1,x, v0,yx(v0,yy)

−1 − v1,yx(v1,yy)
−1
}
.

Let yi(x) denote the locally unique solution of the system vi,y(x, .) = 0, i = 0, 1 for x
close to x̄. Applying the chain rule, one obtains

Dyi(x) = −vi,yx(vi,yy)
−1
∣∣
y=yi(x)

, i = 0, 1.

Hence, S(ȳ) is linearly independent if and only if the Jacobian at x = x̄ of the mapping
x �→ (v0(x, y0(x)), v1(x, y1(x)), y1(x)− y0(x)) has rank three. The latter mapping is
related to the coordinate transformation in the following lemma.

Lemma 7. Let the assumptions of the above special situation be satisfied. Then,
there exists an admissible local C∞-coordinate transformation sending (x̄, ȳ) to (0, 0)
such that in the new coordinates the functions v0, v1 take the form:

v0(x, y) = ±y2 ∓ x1,
v1(x, y) = α(x, y)(y − x2)

2 + x3,

where α ∈ C∞(Rn × R,R) with α(0, 0) 	= 0.
Proof. First we show that there exists a local representation of vi with smooth

functions γi, γi(x̄, ȳ) 	= 0, i = 0, 1 such that

(6) vi(x, y) = γi(x, y)(y − yi(x))2 + vi(x, yi(x)).

The formula (6) can be derived as follows (omitting the index i):

(7)

v(x, y) = v(x, y) − v(x, y(x)) + v(x, y(x))

v(x, y) − v(x, y(x)) =

∫ 1

0

d

dt
v(x, ty + (1 − t)y(x))dt

=

∫ 1

0

vy(x, ty + (1 − t)y(x))(y − y(x))dt

= (y − y(x))h(x, y),
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where h(x, y) stands for the part separated by y − y(x). Noting h(x, y(x)) = 0, we
can use the same integral representation for h(x, y), obtaining (with γ(x, y) denoting
the analogous part separated by y − y(x))

(8) h(x, y) = (y − y(x))γ(x, y).

Substituting (8) in (7), we get (6).
Now we take (y − y0(x))

√
|γ0(x, y)| as a new y-coordinate and v0(x, y0(x)) as

new x-coordinate, say, x1 if γ0(x̄, ȳ) < 0 (or −x1 if γ0(x̄, ȳ) > 0). Let ṽ1 denote the
function v1 in the new coordinates, and let ỹ1(x) be the corresponding solution of
ṽ1,y(x, .) = 0 for x near x̄. In an analogous way as in (6) we can write ṽ1 as follows:

ṽ1(x, y) = γ̃1(x, y)(y − ỹ1(x))2 + ṽ1(x, ỹ1(x)).

Finally, we take ỹ1(x) and ṽ1(x, ỹ1(x)) as new coordinates, say, x2 and x3 (without
affecting x1 and y). Then, the linear independence of the vectors in S(ȳ) guarantees
that the above procedure results in an admissible local C∞-coordinate transformation,
indeed. This completes the proof.

3. Main results.

3.1. The four cases. In this subsection we will discuss the cases A, B, C, and
D mentioned in section 1. Throughout this subsection we assume that x̄ ∈ ∂M ,
ȳ ∈ Y (x̄) (hence vi(x̄, ȳ) ≥ 0, i ∈ I), and that the set

I∗ := {i ∈ {0} ∪ I | vi(x̄, ȳ) = 0}

is nonempty. Note that x̄ need not be feasible since M is not necessarily closed. If ȳ is
a transversal zero-point for vi(x̄, .) of an order k for some i ∈ I∗, then let yi(x) denote
the locally unique solution of ( ∂

∂y )k−1vi(x, .) = 0 (with yi(x̄) = ȳ). Furthermore, if the

functions vi, i ∈ {0} ∪ I, or their derivatives are evaluated at (x̄, ȳ), then we omit the
argument (x̄, ȳ) in the remainder of this paper. Moreover, all considered coordinate
transformations in this subsection will be admissible.

In what follows we will define certain sets Mk, k = 1, . . . , 11. These sets partially
describe the feasible set M . In fact, they define local normal forms, say, basic sets.
Finally, the feasible set will be the intersection of such basic sets (see section 3.2).

Case A. I∗ = {0} and ȳ is a transversal zero-point for v0(x̄, .) of an order k,
k ≥ 2.

Then, the associated set of vectors S(ȳ) is

S(ȳ) =

{(
∂

∂y

)i

v0,x, i = 0, . . . , k − 2

}
,

and its cardinality |S(ȳ)| is called the rank of ȳ, i.e., we have rank(ȳ) = k − 1. Since
x̄ ∈ ∂M , ȳ is a transversal zero-point for v0(x̄, .) of an even order with ε = 1 (recall
that, ε := sign( ∂

∂y )kv0) and, by Lemma 4, there exists an admissible local coordinate

transformation sending (x̄, ȳ) to (0, 0) such that the local optimal value function takes
the form ηk−1(x1, . . . , xk−1) (in (3)).

We say that ȳ is of Type 1 and define the set

M1(x1, . . . , xk−1) :=
{
x ∈ U | ηk−1(x1, . . . , xk−1) ≥ 0

}
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for an appropriate neighborhood U of 0 ∈ R
n. In particular, if k = 4, then the set

M1 is the upper part of the so-called swallow tail (see [8], where a picture is also
included).

Case B. ȳ is a transversal zero-point for v0(x̄, .) of an order k, k ≥ 2; there exists
an index i0 ∈ I (say i0 = 1) such that I∗ = {0, 1}, and ȳ is a transversal zero-point
for v1(x̄, .) of an order one. Furthermore, the Jacobian matrix of the system(

∂

∂y

)i

v0 = 0, i = 0, . . . , k − 1, v1 = 0

has rank k + 1.
The associated set of vectors S(ȳ) is

S(ȳ) =

⎧⎨
⎩
(

∂

∂y

)k−1

v0,x

[(
∂

∂y

)k

v0

]−1

− v1,x(v1,y)
−1,

(
∂

∂y

)i

v0,x, i = 0, . . . , k − 2

⎫⎬
⎭ ,

and we have rank(ȳ) = k.
The linear independence of the vectors in S(ȳ) implies that the following C∞-

coordinate transformation is admissible. First, by Lemma 4, in new coordinates, v0

takes the form

εyk +

k−1∑
i=1

xiy
k−i−1,

and we obtain y0(x) = 0 for x near x̄. Then, we take y1(x) (= y1(x) − y0(x)) as a
new x-coordinate, say, xk.

Note that sign v1,y is invariant under the former admissible coordinate transfor-
mation, since ∂

∂y ξ
2(x̄, ȳ) > 0. If v1,y > 0, then we say that ȳ is of Type 2 and define

the set

M2(x1, . . . , xk) :=

{
x ∈ U | min

y∈[xk,1]
yk +

k−1∑
i=1

xiy
k−i−1 ≥ 0

}
,

where, without loss of generality, we have taken (and will also take in the following
cases) the same neighborhood U of 0 ∈ R

n as for M1 (see [8] for a picture of M2).
Note that in the latter case we have ε = 1.

If v1,y < 0, then we say the ȳ is of Type 3 and define the set

M3(x1, . . . , xk) :=

{
x ∈ U | min

y∈[−1,xk]
(−1)kyk +

k−1∑
i=1

xiy
k−i−1 ≥ 0

}
.

In the latter case there exist the following two options: Either k is even and ε = 1, or
k is odd and ε = −1.

Remark 8. In [8], the index y belongs to a fixed interval Y . In our context, the
boundary points of Y (x) may vary as a function of the state variable x. This is the
reason why, in the definitions of the sets M2, M3, the variable boundary xk appears.

Case C. ȳ is a transversal zero-point for vi(x̄, .) of an order one, i ∈ I∗, and the
Jacobian matrix of the system

vi = 0, i ∈ I∗

has rank |I∗|.
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We define the sets I0 := I∗ ∩ I, I+
0 := {i ∈ I0 | vi,y > 0}, and I−0 := I0 \ I+

0 and
consider the following two subcases.

Subcase C1. 0 	∈ I∗.
If v0 > 0, then v0(x, y) > 0 for all x near x̄ and all y ∈ Y (x) locally around ȳ.
Now, let v0 < 0. If I+

0 = ∅ or I−0 = ∅, then x̄ ∈ int �M , where �M := R
n \M .

Next, let I+
0 and I−0 both be nonempty. Furthermore, let I0 =: {1, . . . , k}, k ∈ I+

0

and define the associated set of vectors S(ȳ) as

S(ȳ) :=
{
vk,x(vk,y)

−1 − vi,x(vi,y)
−1 | i = 1, . . . , k − 1

}
.

The vectors in S(ȳ) are linearly independent, and we put rank(ȳ) = k− 1. Note that
x̄ 	∈ M (since ȳ ∈ Y (x̄) and v0 < 0)!

Obviously, if x̄ ∈ ∂M , then there exist indices i ∈ I−0 and j ∈ I+
0 with yi(x) <

yj(x) for some x near x̄. After choosing yi(x) − yk(x) as new x-coordinates xi, i =
1, . . . , k − 1, we say that ȳ is of Type 4 and define the set:

M4(x1, . . . , xk−1) :=
⋃

i∈I−
0

{x ∈ U | xi < 0}∪
{
x ∈ U | ∃ i ∈ I−0 , j ∈ I+

0 \ {k} : xi < xj

}
.

Note that M4 (as well as some further sets M i, i ≥ 5 to be defined) are related to
both of the topological features of M mentioned in section 1: It has a disjunctive
structure, and its constraints do not describe a closed set.

Subcase C2. 0 ∈ I∗.
If I0 = ∅, then we have x̄ ∈ int �M . Now, let I0 =: {1, . . . , k} with k ≥ 1, define

S(ȳ) :=
{
v0,x(v0,y)

−1 − vi,x(vi,y)
−1 | i = 1, . . . , k

}
,

and hence, rank(ȳ) = k.
First, let v0,y > 0 and define the new x-coordinates xi := yi(x) − y0(x), i =

1, . . . , k. Assume for the moment that I+
0 	= ∅ and I−0 	= ∅. Then, locally around ȳ,

the set Y (x̄) reduces to the singleton {ȳ}. If there exist indices i ∈ I−0 and j ∈ I+
0 with

xi < xj , then Y (x) becomes empty locally around ȳ. If Y (x) is not empty around ȳ,
we must have xi ≥ xj for all i ∈ I−0 and j ∈ I+

0 . In the latter case, it is necessary for
the feasibility of x to have max{xj | j ∈ I+

0 } ≥ 0. Now, we define the set:

M5(x1, . . . , xk) :=
⋃

i∈I−
0 , j∈I+

0
{x ∈ U | xi < xj}

∪
{
x ∈ U | xj ≤ xi, i ∈ I−0 , j ∈ I+

0 , max{xj | j ∈ I+
0 } ≥ 0

}
.

If I+
0 = I0, the latter set reduces to

M5(x1, . . . , xk) =
{
x ∈ U | max{xj | j ∈ I+

0 } ≥ 0
}
.

The case I−0 = I0 is not possible, since it would imply x̄ ∈ int �M . Altogether, if
v0,y > 0, we say that ȳ is of Type 5, and we have rank(ȳ) = k.

Now, let v0,y < 0 and define the new x-coordinates xi := yi(x) − y0(x), i =
1, . . . , k. If I+

0 	= ∅ and I−0 	= ∅, then, by analogous arguments, we define the set:

M6(x1, . . . , xk) :=
⋃

i∈I−
0 , j∈I+

0
{x ∈ U | xi < xj}

∪
{
x ∈ U | xj ≤ xi, i ∈ I−0 , j ∈ I+

0 , min{xi | i ∈ I−0 } ≤ 0
}
.

For I−0 = I0, the latter set reduces to

M6(x1, . . . , xk) =
{
x ∈ U | min{xi | i ∈ I−0 } ≤ 0

}
.

If vo,y < 0, we say that ȳ is of Type 6, and we have rank(ȳ) = k.
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Case D. The set I0 is a singleton, say, I0 = {1}, and
• either I∗ = {1}, and ȳ is a transversal zero-point for v1(x̄, .) of an order two;
• or I∗ = {0, 1}, and there exist indices i1, i2 ∈ I∗ such that ȳ is a transversal

zero-point for vi1(x̄, .) of order two, and a transversal zero-point for vi2(x̄, .)
of an order one or two.

Furthermore, a corresponding rank condition for the Jacobian matrix is satisfied (to
be specified).

We consider four subcases.
Subcase D1. I∗ = {1}.
If v0 > 0, then v0(x, y) > 0 for all x near x̄ and all y ∈ Y (x) locally around ȳ.

Now, let v0 < 0 and v1,yy < 0 (v1,yy > 0 implies x̄ ∈ int �M). Note that x̄ 	∈ M . We
have S(ȳ) = {v1,x} and, by Lemma 4, in new coordinates the function v1 takes the
form −y2 + x1. We define the set:

M7(x1) := {x ∈ U | x1 < 0} .

We say that ȳ is of Type 7, and we have rank(ȳ) = 1.
Subcase D2. I∗ = {0, 1}, and ȳ is a transversal zero-point for v0(x̄, .) of an

order one, and a transversal zero-point for v1(x̄, .) of an order two. Furthermore, the
Jacobian matrix of the system

v0 = 0, v1 = 0, v1,y = 0

has rank 3.
Then, define

S(ȳ) :=
{
v1,yx(v1,yy)

−1 − v0,x(v0,y)
−1, v1,x

}
.

We have v1,yy < 0 (v1,yy > 0 would imply x̄ ∈ int �M) and, by Lemma 4, in new
coordinates, v1 takes the form −y2 + x1 (here, v1(x, y1(x)) is the new coordinate x1).
First, let v0,y > 0. We take y0(x) (= y0(x) − y1(x)) as a new x-coordinate, say, x2.
Now, if x1 < 0, then Y (x) becomes empty locally around ȳ. If x1 ≥ 0, then for the
feasibility of x one needs that x2 ≤ −√

x1. Therefore, we define the set:

M8(x1, x2) := {x ∈ U | x1 < 0} ∪ {x ∈ U | x1 ≥ 0, x2 ≤ −√
x1} .

If v0,y < 0, then take −y0(x) (= −y0(x) + y1(x)) as the new coordinate x2, and we
obtain the same description M8. We say that ȳ is of Type 8, and we have rank(ȳ) = 2.

Subcase D3. I∗ = {0, 1}, and ȳ is a transversal zero-point for v0(x̄, .) of an
order two, and a transversal zero-point for v1(x̄, .) of an order one. Furthermore, the
Jacobian matrix of the system

v0 = 0, v0,y = 0, v1 = 0

has rank 3. This case is already included in Case B (for k = 2).
Subcase D4. I∗ = {0, 1}, and ȳ is a transversal zero-point for vi(x̄, .) of an order

two, i = 0, 1. The Jacobian matrix of the system

v0 = 0, v0,y = 0, v1 = 0, v1,y = 0

has rank 4.
Then, we define the set:

S(ȳ) :=
{
v0,x, v1,x, v0,yx(v0,yy)

−1 − v1,yx(v1,yy)
−1
}
.
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By Lemma 7, in new coordinates, the functions v0, v1 take the form:

v0(x, y) = ±y2 ∓ x1,

v1(x, y) = α(x, y)(y − x2)
2 + x3,

where α ∈ C∞(Rn × R,R) with α(0, 0) 	= 0.
First, let v0,yy > 0 and v1,yy > 0. For x1 ≤ 0 we obtain locally v0(x, y) ≥ 0. If

x1 > 0, then for the feasibility of x one needs v1(x,
√
x1) ≤ 0 and v1(x,−

√
x1) ≤ 0.

Then, define

M9(x1, x2, x3) := {x ∈ U | x1 ≤ 0}∪

∪
{

x ∈ U x1 > 0, α(x,
√
x1)(

√
x1 − x2)

2 + x3 ≤ 0
α(x,−√

x1)(−
√
x1 − x2)

2 + x3 ≤ 0

}
.

We say that ȳ is of Type 9, and we have rank(ȳ) = 3.
Now let v0,yy > 0 and v1,yy < 0. As in the latter case, locally we obtain v0(x, y) ≥

0 for x1 ≤ 0. If x3 < 0, then Y (x) is empty locally around ȳ. If x1 > 0 and x3 ≥ 0,
then for the feasibility of x one needs

v1(x,
√
x1) ≤ 0 and v1,y(x,

√
x1) ≥ 0 or

v1(x,−
√
x1) ≤ 0 and v1,y(x,−

√
x1) ≤ 0.

Therefore, define

M10(x1, x2, x3) := {x ∈ U | x1 ≤ 0} ∪ {x ∈ U | x3 < 0}

∪

⎧⎨
⎩

x ∈ U x1 > 0, x3 ≥ 0, α(x,
√
x1)(

√
x1 − x2)

2 + x3 ≤ 0

∂

∂y

(
α(x, y)(y − x2)

2 + x3

)
|y=

√
x1

≥ 0

⎫⎬
⎭

∪

⎧⎨
⎩

x ∈ U x1 > 0, x3 ≥ 0, α(x,−√
x1)(−

√
x1 − x2)

2 + x3 ≤ 0

∂

∂y

(
α(x, y)(y − x2)

2 + x3

)
|y=−√

x1
≤ 0

⎫⎬
⎭ .

We say that ȳ is of Type 10, and we have rank(ȳ) = 3.
Now let v0,yy < 0 and v1,yy < 0. Again, x3 < 0 implies that Y (x) is empty

locally around ȳ. If x3 ≥ 0, then for the feasibility of x one needs x1 ≥ 0 as well as
v1(x,

√
x1) ≤ 0, v1,y(x,

√
x1) ≤ 0, v1(x,−

√
x1) ≤ 0, and v1,y(x,−

√
x1) ≥ 0. Define

M11(x1, x2, x3) := {x ∈ U | x3 < 0}

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ U x1 ≥ 0, x3 ≥ 0, α(x,
√
x1)(

√
x1 − x2)

2 + x3 ≤ 0

α(x,−√
x1)(−

√
x1 − x2)

2 + x3 ≤ 0

∂

∂y

(
α(x, y)(y − x2)

2 + x3

)
|y=

√
x1

≤ 0

∂

∂y

(
α(x, y)(y − x2)

2 + x3

)
|y=−√

x1
≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

We say that ȳ is of Type 11, and we have rank(ȳ) = 3.
If v0,yy < 0 and v1,yy > 0, then x̄ ∈ int �M .
Note that the sets M i, i = 1, .., 8 are of cylindric type. They depend only on a

subset of the coordinates x1, . . . , xn. However, the sets M9, M10, and M11 depend
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on the whole vector x ∈ R
n, since the functions α depend on all coordinates x1, ., , xn.

This completes the analysis of the four cases.
Remark 9. As already mentioned in section 1, there exist some topological

phenomena of the feasible set M of a GSIP (nonclosedness, disjunctive structure),
which do not appear in standard SIP. The reason for the existence of these phenomena
and for the much more complicated analysis of the local structure of M is that the
index set Y (x) depends on the state variable x. In standard SIP we have the constant
index set Y (x) = Y , and a local description of the feasible set takes into account only
the zero-points of v0 (see [8] for a complete discussion of the standard SIP case).

Remark 10. In the discussion of Cases A and B we already referred to the pictures
in [8], which are related to the sets M1 and M2. In the following we illustrate for
some of the subcases of the Cases C and D, where the above-mentioned topological
phenomena (nonclosedness, disjunctive structure) of M appear.

Consider Subcase C1 with I0 = {1, 2, 3}, I−0 = {1, 2}, and I+
0 = {3}. Then, the

set

M4(x1, x2) := {x ∈ U | x1 < 0} ∪ {x ∈ U | x2 < 0}

is not closed and has a disjunctive structure.
Consider Subcase C2 with I0 = I+

0 and v0,y > 0. Then, the set

M5(x1, . . . , xk) := {x ∈ U | max{x1, . . . , xk} ≥ 0}

has a disjunctive structure (an analogous result holds for M6).
Consider Subcase D1. Then, the set

M7(x1) := {x ∈ U | x1 < 0}

is not closed.
Consider Subcase D2. Then, the set

M8(x1, x2) := {x ∈ U | x1 < 0} ∪ {x ∈ U | x1 ≥ 0, x2 ≤ −√
x1}

is not closed.
The sets in Subcase D4 depend on the function α(x, y).

3.2. The decomposition theorem. Throughout this subsection let x̄ ∈ ∂M
and assume the following conditions:

(A3) The set Y0(x̄)∪{y ∈ Y (x̄) | v0(x̄, y) < 0, ∃ i ∈ I : vi(x̄, y) = 0} is finite—say
{y1, . . . , yq}—and each yi, i ∈ Q := {1, . . . , q} is of one of the Types j, j = 1, . . . , 11.

(A4) For i ∈ Q let rank(yi) =: ri, and let yi be of Type mi. For the sets S(yi) of
linearly independent vectors let

(9) dim span
⋃
i∈Q

S(yi) =
∑
i∈Q

ri.

We note that (9) is a multitransversality condition; it guarantees the stability of
the local description of the feasible set under sufficiently small smooth perturbations of
the functions vi, i = 0, . . . , p. In fact, the conditions describing the Types 1–11 remain
fulfilled under small perturbations up to the corresponding order of the zero-point ȳ
for vi(x̄, .), i ∈ I∗.

Theorem 11. Assume (A3) and (A4). Let ti, i = 0, . . . , q, recursively be defined
as follows: t0 := 0, ti := ti−1 + ri, i ∈ Q. Then, there exist an open neighborhood V
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of x̄, an open neighborhood U of 0 ∈ R
n, and a local C∞-coordinate transformation

φ : V → U , sending x̄ to 0 ∈ R
n such that

(10) φ(M ∩ V ) =
⋂
i∈Q

Mmi(xti−1+1, . . . , xti).

Proof. Choose for each ȳ ∈ Y (x̄) \ {yi | i ∈ Q} the open neighborhoods Uȳ of
ȳ and Uȳ(x̄) of x̄ such that v0(x, y) > 0 for all x ∈ Uȳ(x̄) and all y ∈ Uȳ ∩ Y (x).
For yi, i ∈ Q, choose the open neighborhoods Uyi of yi and Uyi(x̄) of x̄ such that lo-
cally around (x̄, yi) the local C∞-coordinate transformation for the Type mi can
be applied for all (x, y) ∈ Uyi(x̄) × Uyi . Then, select a finite covering of Y (x̄)
from {Uy, y ∈ Y (x̄)} which, by (A3), also covers Y (x) for x sufficiently near x̄.
We obtain a neighborhood V of x̄ as the intersection of the finitely many neighbor-
hoods of x̄, which appear in this covering. Recall that the sets S(yi) are closely re-
lated to the Jacobian Dxξ

1 of the corresponding local admissible coordinates (ξ1, ξ2).
Therefore, the multitransversality condition (9) allows the choice of new coordinates
x1, . . . , xr1=t1 , xt1+1, . . . , xt2 , xt2+1, . . . , xtq simultaneously. After that, the functions
α appearing in the sets of Types 9, 10, and 11 take their final form, and we obtain
(10).
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FURTHER RELAXATIONS OF THE SEMIDEFINITE
PROGRAMMING APPROACH TO SENSOR NETWORK

LOCALIZATION∗
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Abstract. Recently, a semidefinite programming (SDP) relaxation approach has been proposed
to solve the sensor network localization problem. Although it achieves high accuracy in estimating
the sensor locations, the speed of the SDP approach is not satisfactory for practical applications.
In this paper we propose methods to further relax the SDP relaxation, more precisely, to relax the
single semidefinite matrix cone into a set of small-size semidefinite submatrix cones, which we call
a sub-SDP (SSDP) approach. We present two such relaxations. Although they are weaker than the
original SDP relaxation, they retain the key theoretical property, and numerical experiments show
that they are both efficient and accurate. The speed of the SSDP is even faster than that of other
approaches based on weaker relaxations. The SSDP approach may also pave a way to efficiently
solving general SDP problems without sacrificing the solution quality.

Key words. sensor network localization, semidefinite programming, second-order cone pro-
gramming, principal submatrix, chordal graph
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1. Introduction. There has been an increase in the use of ad hoc wireless sensor
networks for monitoring environmental information (e.g., temperature, sound levels,
and light) across an entire physical space, where the sensor network localization prob-
lem has received considerable attention recently. Typical networks of this type consist
of a large number of densely deployed sensor nodes which gather local data and com-
municate with other nearby nodes. The sensor data from these nodes are relevant
only if we know to what location they refer. Therefore knowledge of the node po-
sitions becomes imperative. The use of a GPS system could be a very expensive or
otherwise impossible approach to this requirement. This problem is also related to
other practical distance geometry problems.

The mathematical model of the problem can be described as follows. There are
n distinct sensor points in Rd, whose locations are to be determined, and m other
fixed points (called the anchor points), whose locations a1, a2, . . . , am are known. The
Euclidean distance dij between the ith and jth sensor points is known if (i, j) ∈ Nx,
and the distance d̄ik between the ith sensor and kth anchor points is known if (i, k) ∈
Na. Usually, Nx = {(i, j) : ‖xi − xj‖ = dij ≤ rd} and Na = {(i, k) : ‖xi − ak‖ =
d̄ik ≤ rd}, where rd is a fixed parameter called the radio range. The sensor network
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localization problem is to find xi ∈ Rd, i = 1, 2, . . . , n, for which

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ Nx,

‖xi − ak‖2 = d̄2
ik ∀ (i, k) ∈ Na.

Unfortunately, this problem is hard to solve in general even for d = 1; see, e.g., [15, 35].
For simplicity, we restrict ourselves to d = 2 in this paper. Many relaxations

have been developed to tackle this and other related problems; see, e.g., [1, 4, 3, 5,
23, 6, 7, 28, 29, 33, 25, 16, 21, 12, 18, 20, 22, 26, 2, 31, 30, 19]. Among them, the
work of [1, 4, 3, 5, 23, 16, 20, 19] used a Euclidean distance matrix-based approach,
where no anchor was needed or used to compute the unknown portions of the distance
matrix [36]; [12, 22] developed a global optimization approach; [21, 30] constructed
a second-order cone relaxation; [26, 18] adapted the sum-of-squares (SOS) approach;
[33] modeled a problem similar to the dual of the distance completion problem; and
[6, 27] considered bounds on the solution rank of a semidefinite programming (SDP)
problem. Recently, an SDP relaxation (see, e.g., [7, 28, 29, 25, 2, 31]) which explicitly
used the anchors’ positions as the first-order information, was applied to solving a class
of sensor network localization problems. Their relaxation model can be represented
by a standard SDP model

minimize 0 • Z
subject to Z(1,2) = I,

(0; ei − ej)(0; ei − ej)
T • Z = d2

ij ∀ (i, j) ∈ Nx,

(−ak; ei)(−ak; ei)
T • Z = d̄2

ik ∀ (i, k) ∈ Na,

Z � 0.

(1.1)

Here I is the 2-dimensional identity matrix and Z(1,2) is the upper-left 2× 2 principal
submatrix of Z, 0 is a vector or matrix of all zeros, and ei is the vector of all zeros,
except for a one in the ith position. If a solution

Z =

(
I X

XT Y

)

to (1.1) is of rank 2, or, equivalently, Y = XTX, then X = [x1, . . . , xn] ∈ R2×n is
a solution to the sensor network localization problem. Note that the SDP variable
matrix has two parts: the first-order part X (positions) and the second-order part of Y
(position inner products). Both parts give valuable information about the estimation
and confidence measure of the final localization solution.

As the size of the SDP problem increases, the dimension of the matrix cone
increases and the number of variables increases quadratically, no matter how sparse
Nx and Na might be. It is also known that the arithmetic operation complexity of
the SDP is at least O(n3) to obtain an approximate solution. This complexity bound
prevents solving large-size problems. Therefore, it would be very beneficial to further
relax the full SDP problem by exploiting the sparsity of Nx and Na at the relaxation
modeling level.

Throughout the paper, Rd denotes d-dimensional Euclidean space, Sn denotes the
space of n× n symmetric matrices, and Rank(A) denotes the rank of A. For A ∈ Sn,
Aij denotes the (i, j) entry of A, and A(i1,...,ik) denotes the principal submatrix from
the rows and columns indexed by i1, . . . , ik. For A,B ∈ Sn, A � B means that A−B
is positive semidefinite, and A •B denotes the inner product, i.e., A •B = Tr(AB).
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2. Further relaxations of the SDP model. We will give two such relaxations.
The first is a node-based relaxation, which we call the NSDP relaxation:

minimize 0 • Z
subject to Z(1,2) = I,

(0; ei − ej)(0; ei − ej)
T • Z = d2

ij ∀ (i, j) ∈ Nx,

(−ak; ei)(−ak; ei)
T • Z = d̄2

ik ∀ (i, k) ∈ Na,

Zi = Z(1,2,i,Ni) � 0 ∀i,

(2.1)

where Ni = {j : (i, j) ∈ Nx} is the sensor-i-connected point set. Here the single
(2 + n)-dimensional matrix cone is replaced by n smaller 3 + |Ni|-dimensional matrix
cones, each of which is a principal submatrix of Z. We should mention that a similar
idea was proposed in [24] for solving general SDP problems.

The second relaxation is an edge-based relaxation, which we call the ESDP re-
laxation:

minimize 0 • Z
subject to Z(1,2) = I,

(0; ei − ej)(0; ei − ej)
T • Z = d2

ij ∀ (i, j) ∈ Nx,

(−ak; ei)(−ak; ei)
T • Z = d̄2

ik ∀ (i, k) ∈ Na,

Z(1,2,i,j) � 0 ∀(i, j) ∈ Nx.

(2.2)

Here the single (2+n)-dimensional matrix cone is replaced by |Nx| smaller 4-dimensional
matrix cones, each of which is a principal submatrix of Z. If a solution

Z =

(
I X

XT Y

)

to (2.2) satisfies Rank(Z(1,2,i,j) = 2 for all (i, j) ∈ Nx, then X = [x1, . . . , xn] is a
localization for the localization problem. An edge-based decomposition was also used
for the SOS approach to localization in [26].

In practice, the distances may be corrupted by random measurement errors. In
this case the ESDP model can be adjusted by forming a suitable objective. For
example, if there is a random Laplacian noise added to each d2

ij and d̄2
ik, then we solve

minimize
∑

(i,j)∈Nx

|(0, ei − ej)(0, ei − ej)
T • Z − d2

ij |

+
∑

(i,k)∈Na

|(−ak, ei)(−ak, ei)
T • Z − d̄2

ik|

subject to Z(1,2) = I,

Z(1,2,i,j) � 0 ∀(i, j) ∈ Nx,

which can be written as an SDP:

minimize
∑

(i,j)∈Nx

(uij + vij) +
∑

(i,k)∈Na

(uik + vik)

subject to Z(1,2) = I,

(0; ei − ej)(0; ei − ej)
T • Z − uij + vij = d2

ij ∀ (i, j) ∈ Nx,

(−ak; ei)(−ak; ei)
T • Z − uik + vik = d̄2

ik ∀ (i, k) ∈ Na,

Z(1,2,i,j) � 0, uij , vij ≥ 0 ∀(i, j) ∈ Nx,

uik, vik ≥ 0 ∀(i, k) ∈ Na.

(2.3)
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Similarly, NSDP can be reformulated as

minimize
∑

(i,j)∈Nx

(uij + vij) +
∑

(i,k)∈Na

(uik + vik)

subject to Z(1,2) = I,

(0; ei − ej)(0; ei − ej)
T • Z − uij + vij = d2

ij ∀ (i, j) ∈ Nx,

(−ak; ei)(−ak; ei)
T • Z − uik + vik = d̄2

ik ∀ (i, k) ∈ Na,

Zi = Z(1,2,i,Ni) � 0 ∀i,
uij , vij ≥ 0 ∀(i, j) ∈ Nx, uik, vik ≥ 0 ∀(i, k) ∈ Na.

(2.4)

For simplicity, we focus on the feasibility models of (1.1), (2.1), and (2.2) in the rest
of this paper.

Obviously, (2.1) is a relaxation of (1.1), and (2.2) is a relaxation of (2.1). The
following proposition will formalize these relations.

Proposition 2.1. If

Z∗
SDP =

(
I X

XT Y

)

is a solution to (1.1), then Z∗
SDP , after removing the unspecified variables, is a solution

to relaxation (2.1); if

Z∗
NSDP =

(
I X

XT Y

)

is a solution to (2.1), then Z∗
NSDP , after removing the unspecified variables, is a

solution to relaxation (2.2). Hence

FSDP ⊂ FNSDP ⊂ FESDP ,

where F . represents the solution set of the corresponding SDP relaxation.
We notice that (1.1) has (n + 2)2 variables and |Nx| + |Na| equality constraints,

(2.1) has at most 4+2n+
∑

i |Ni|2 variables and |Nx|+ |Na| equality constraints, and
(2.2) has 4 + 3n + |Nx| variables and also |Nx| + |Na| equality constraints. Usually,
4 + 3n+ |Nx| is much smaller than (n+ 2)2, so that (2.2) has a much smaller number
of variables than (1.1); hence, the NSDP or ESDP relaxation has the potential to be
solved much faster than (1.1). Our computational results will confirm this fact.

But how good is the NSDP or ESDP relaxation? How do these relaxations per-
form? In the rest of the paper, we will prove that, although they are weaker than
the SDP relaxation, the NSDP and ESDP relaxations share some of the same desired
theoretical properties possessed by the full SDP relaxation, including the trace crite-
rion for accuracy. We develop a sufficient condition when NSDP coincides with SDP.
We also show that the ESDP relaxation is stronger than the second-order cone pro-
gramming (SOCP) relaxation. Furthermore, we will present computational results
and compare our method with the full SDP, SOS, SOCP relaxation, and domain-
decomposition methods. One will see that our method is among the fastest methods,
and its localization quality is comparable or superior to that of other methods.

3. Theoretical analyses of NSDP. We make the following basic assumption:
G, the undirected graph of a sensor network consisting of all sensors and anchors,
with edge sets Nx and Na, is connected and contains at least three anchors. Before
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we present our results, we recall three basic concepts: the d-uniquely localizable graph,
the chordal graph, and the partial positive semidefinite matrix.

The definition of a d-uniquely localizable graph is given by [2].
Definition 3.1. A sensor localization problem is d-uniquely localizable if there

is a unique localization X̄ ∈ Rd×n and there is no xi ∈ Rh, i = 1, . . . , n, where h > d,
such that:

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ Nx,

‖(ak;0) − xi‖2 = d̄2
ik ∀ (i, k) ∈ Na,

xi 	= (x̄i;0) for some i ∈ {1, . . . , n}.
The latter says that the problem cannot have a nontrivial localization in some higher-
dimensional space Rh (i.e., a localization different from the one obtained by simply
setting xi = (x̄i;0), where anchor points are augmented to (ak;0) ∈ Rh).

The condition of a d-unique localizability has been proved to be the necessary
and sufficient condition for the SDP relaxation to compute a solution in Rd; see [2].
For the case of d = 2, if a graph is 2-uniquely localizable, then the SDP relaxation
(1.1) produces a unique solution Z with rank 2, and X = [x1, . . . , xn] ∈ R2×n of Z is
the unique localization of a localization problem in R2.

Definition 3.2. An undirected graph is a chordal graph if every cycle of length
greater than three has a chord; see, e.g., [8].

The chordal graph has been used for solving sparse SDP problems or reducing
the number of high-order variables in SOS relaxations; see, e.g., [24, 17, 18].

Definition 3.3. A square matrix, possibly containing some unspecified entries,
is called partial symmetric if whenever the (i, j) entry of the matrix is specified, then
so is the (j, i) entry, and the two are equal. A partial semidefinite matrix is a par-
tial symmetric matrix for which every fully specified principal submatrix is positive
semidefinite.

The concept of a partial positive semidefinite matrix can be found, e.g., in [9, 13,
14].

The following result was proved in [9, 13].
Lemma 3.4. Every partial positive semidefinite matrix with undirected graph G

has positive semidefinite completion if and only if G is chordal.
Although the NSDP model is weaker than the SDP relaxation in general, the

following theorem implies that they are equivalent under the chordal condition.
Theorem 3.5. Let the undirected graph of sensor nodes with edge set Nx be

chordal. Then

FSDP = FNSDP .

Proof. We need only to prove that any solution to (2.1) can be completed to a
solution of (1.1). Let

Z =

(
I X

XT Y

)
be a solution to (2.1). Then all entries of Z are specified except those Yij such that
(i, j) 	∈ Nx. The conic constraints of (2.1) indicate that every fully specified principal
submatrix of Z is positive semidefinite, since it is a principal submatrix of Zi in (2.1).
Thus, Z is a partial semidefinite matrix.

We are also given that the undirected graph induced by Y in Z is chordal. We
now prove that the undirected graph induced by Z is also chordal. Notice that the
graph of Z has a total of n+2 nodes, and every specified entry represents an edge. Let
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nodes D1 and D2 represent the first two rows (columns) of Z, respectively. Then each
of the two nodes has edges to all other nodes in the graph. Now consider any cycle
in the graph of Z. If the cycle contains D1 or D2 or both, then it must have a chord
since each of D1 and D2 connect to every other node; if the cycle contains neither
D1 nor D2, then it still contains a chord since the graph of Y is chordal. Therefore,
Z has a positive semidefinite completion, say, Z̄, from Lemma 3.4, and Z̄ must be a
solution to (1.1), since (2.1) and (1.1) share the same constraints involving only the
specified entries.

Under the condition of 2-unique localizability, we further have the following.
Corollary 3.6. If a sensor network is 2-uniquely localizable and its undirected

graph of sensor nodes with edge set Nx is chordal, then the solution of (2.1) is a unique
localization for the sensor network.

4. Theoretical analyses of ESDP. We now focus on our second relaxation,
the ESDP relaxation of (2.2).

4.1. Relation between ESDP and SDP. In the SDP relaxation model, let

ZSDP =

(
I X

XT Y

)

be a solution to (1.1). Then it is shown that the individual traces or the diagonal
entries of Y −XTX represent confidence measures in the accuracy of the corresponding
sensor’s location; see [7, 2]. We will show that the ESDP model retains this very
desired property. More precisely, if

ZESDP =

(
I X

XT Y

)

is a solution to (2.2), then the individual traces of Y −XTX also represent confidence
measures in the accuracy of the corresponding sensor’s location.

First, we introduce a lemma involving the rank of SDP solutions.
Lemma 4.1. Consider the following SDP:

minimize
∑
i

Ci •Xi

subject to
∑
i

Aij •Xi = bj ∀j,

Xi � 0 ∀i.

(4.1)

Then applying the path-following interior-point method will produce a max-rank (rel-
ative interior) solution for each Xi, i.e., if X1 and X2 are two different optimal
solutions satisfying

Rank(X1
ī ) < Rank(X2

ī ) for at least one ī.

Then solving (4.1) by applying the path-following interior-point method will not yield
solution X1.

Proof. Problem (4.1) can be reformulated into

minimize C •X
subject to Aj •X = bj ∀j,

X =

⎛
⎜⎝

X1 · · · 0
...

. . .
...

0 · · · Xn

⎞
⎟⎠ � 0,
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where C = diag(Ci)
n
i=1 and Aj = diag(Aij)

n
i=1. This can also be written as

minimize C •X
subject to Aj •X = bj ∀j,

Eij •X = 0 ∀(i, j) 	∈ D,

X � 0,

where D denotes those positions that do not belong to any diagonal block of X.
Thus, the path-following algorithm will return a max-rank solution to the prob-

lem; see, e.g., [10, 11]. In other words, if X∗ is a solution calculated by the path-
following method, then

∑n
i=1 Rank(X∗

i ) is maximal among all solutions; hence, for
every i, Rank(X∗

i ) must be maximal among all solutions to (4.1). Thus, X1 cannot
be a solution generated by the interior-point method.

By applying this lemma, we have the following result which provides a justification
for using the individual traces to measure the accuracy of computed sensor locations.

Theorem 4.2. Let

Z =

(
I X

XT Y

)

be a max-rank solution of (2.2). If the diagonal entry or individual trace

(Y −XTX)ī̄i = 0,(4.2)

then the īth column of X, xī, must be the true location of the īth sensor, and xī is
invariant over all solutions Z for (2.2).

Proof. Our proof is by contradiction. Without losing generality, we assume that
(Y −XTX)jj > 0 for all j 	= ī.

Note that the constraints in (2.2) ensured that Z(1,2,̄i,j) � 0 for all (̄i, j) ∈ Nx.

Thus, (Y −XTX)ī̄i = 0 implies that (Y −XTX)īj = 0 for all (̄i, j) ∈ Nx, i.e., Z(1,2,̄i,j)

has rank 3 for all (̄i, j) ∈ Nx. Moreover, from Lemma 4.1, the max-rank of Z(1,2,̄i,j)

is at most 3 for all solutions to (2.2).
Denote by Z̄ a true localization for (2.2), that is, Z̄(1,2,i,j) has rank 2 for all

(i, j) ∈ Nx, where

Z̄(1,2,i,j) =

⎛
⎜⎝

I x̄i x̄j

x̄T
i Ȳii Ȳij

x̄T
j Ȳji Ȳjj

⎞
⎟⎠ =

⎛
⎜⎝

I x̄i x̄j

x̄T
i ‖x̄i‖2 x̄T

i x̄j

x̄T
j x̄T

j x̄i ‖x̄j‖2

⎞
⎟⎠ .

Suppose that x̄ī 	= xī. Since the solution set is convex, then

Zα = αZ̄ + (1 − α)Z, 0 ≤ α ≤ 1,

is also a solution to (2.2). By taking α sufficiently small but strictly positive, we will
get another solution Zα which satisfies

Rank(Zα
(1,2,i,j)) ≥ Rank(Z(1,2,i,j)) ∀(i, j) ∈ Nx,

and the strict inequality holds for i = ī. This is because for (̄i, j) ∈ Nx

Y α
(̄i,j)

− [xα
ī
, xα

j ]T [xα
ī
, xα

j ]

= αȲ(̄i,j) + (1 − α)Y(̄i,j) − (α[x̄ī, x̄j ] + (1 − α)[xī, xj ])
T (α[x̄ī, x̄j ] + (1 − α)[xī, xj ])

= (1 − α)(Y(̄i,j) − [xī, xj ]
T [xī, xj ]) + α(1 − α)([xī, xj ] − [x̄ī, x̄j ])

T ([xī, xj ] − [x̄ī, x̄j ]).
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Since (Y −XTX)ī̄i = (Y −XTX)īj = (Y −XTX)jī = 0,

Y(̄i,j) − [xī, xj ]
T [xī, xj ] =

(
0 0
0 γ

)

for some γ > 0.
Also we are given that x̄ī 	= xī, so that ([xī, xj ]− [x̄ī, x̄j ])

T ([xī, xj ]− [x̄ī, x̄j ]) is a
positive semidefinite matrix whose first element is positive, which implies that

det

[
(1 − α)

(
0 0
0 γ

)
+ α(1 − α)([xī, xj ] − [x̄ī, x̄j ])

T ([xī, xj ] − [x̄ī, x̄j ])

]
> 0.

That is, Zα
(1,2,̄i,j)

is a solution to (2.2) with rank 4, which is a contradiction.

Therefore, we proved that x̄ī must be the true location of the īth sensor and x̄ī

is invariant over all solutions to (2.2).
Theorem 4.2 is related to Proposition 2 of [30]. Moreover, the desired invariance

property of xī extends to the case with noises, which can also be seen from the proof
in [30]. In summary, we have the following.

Corollary 4.3. Let

Z =

(
I X

XT Y

)

be a solution to (2.2) and condition (4.2) hold for all i. Then the ESDP model (2.2)
produces a unique solution for the sensor network in R2.

Next we enhance Proposition 2.1 by the following theorem.
Theorem 4.4. Let

Z =

(
I X

XT Y

)

be a solution to (2.2), and let

Z̄ =

(
I X̄

X̄T Ȳ

)

be any solution to (1.1); both are calculated by the path-following method. If condition
(4.2) holds for Z, so it does for Z̄.

Proof. Our proof is again by contradiction. If (4.2) holds for Z but not for Z̄,
e.g., (Ȳ − X̄T X̄)ii > 0. Since, for 0 ≤ α ≤ 1,

Zα = (1 − α)Z + αZ̄

is always a solution to (2.2), by taking α sufficiently small, we will get a solution with
a higher rank than Z, and this fact contradicts Lemma 4.1.

Theorem 4.4 says that if the ESDP relaxation can accurately locate a certain
sensor, so can the SDP relaxation. This implies that the ESDP relaxation is weaker
than the SDP relaxation. We illustrate this by using an example.

Example 1. Consider the following graph with 3 sensors and 3 anchors. The 3
anchors are located at (−0.4, 0), (0.4, 0), and (0, 0.4), and the 3 sensors are located
at (−0.05, 0.3), (−0.08, 0.2), and (0.2, 0.3), respectively. We set the radio range to be
0.50; see Figure 4.1.
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Fig. 4.1. The locations of sensors, anchors, and connection edges in Example 1.

In Figure 4.1 (and throughout this paper), we use diamonds to represent the
anchor positions. We use a solid line to connect two points (sensors and/or anchors)
when their Euclidean distance is smaller than the radio range, so that the length of
the line segment is known.

First, we use full SDP relaxation (1.1) to solve this sensor localization problem,
where the result is accurate (see Figure 4.2(a)). In Figure 4.2(a) (and throughout this
paper), a circle denotes the true location of a sensor (they are not known to the SDP
models), and a star denotes the location of a sensor computed by the SDP model.
If we use the quantity of the root mean square deviance (RMSD) to measure the
deviance of the computed result:

RMSD =

(
1

n

n∑
i=1

‖xi − x̄i‖2
2

) 1
2

,(4.3)

where xi is the position vector of sensor i computed by the algorithm and x̄i is its
true position vector, then the RMSD of the full SDP localization is about 1e−7. Note
that the NSDP model (2.1) returns the exactly same localization of the full SDP from
Theorem 3.5, since Nx is a chordal graph.

Next we use the ESDP model (2.2) to solve the problem, and this time the result
is inaccurate with the RMSD at 0.048; see Figure 4.2(b), where every true sensor
location and its computed corresponding position are connected by a solid line.

Now we illustrate why this error happened. In SDP model (1.1), the solution
matrix Z∗ is required to be positive semidefinite. If we write

Z∗
SDP =

(
I X

XT Y

)
,

then the matrix Y −XTX is required to be positive semidefinite. But in model (2.2),

Z∗
ESDP =

(
I X̄

X̄T Ȳ

)
,
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(a) Graphical localization result
of the SDP model
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(b) Graphical localization result
of the ESDP model

Fig. 4.2. Comparision of graphical localization results generated by the SDP and ESDP in
Example 1.

where we just require that each 2 × 2 principal submatrix of Ȳ − X̄T X̄ be positive
semidefinite. This does not imply that the entire matrix is positive semidefinite. In
fact, the solution calculated by the ESDP model (2.2) is

Z∗
ESDP =

⎛
⎜⎜⎜⎜⎝

1 0 −0.07278 −0.13467 0.14884
0 1 0.32778 0.25467 0.24884

−0.07278 0.32778 0.11072 0.09498 0.06865
−0.13467 0.25467 0.09498 0.09014 0.04540
0.14884 0.24884 0.06865 0.04540 0.08907

⎞
⎟⎟⎟⎟⎠ .

It can be verified that Z∗
ESDP satisfies all constraints in (2.2) as well as in (1.1),

and each 2 × 2 principal matrix of Ȳ − X̄T X̄ is positive semidefinite. But the three
eigenvalues of Ȳ − X̄T X̄ are (−0.00048, 0.0048, 0.0091), so that the entire matrix
of Ȳ − X̄T X̄ is indefinite, and this is the cause of the difference between the two
relaxations.

4.2. Relation between ESDP and SOCP. A SOCP relaxation for the sensor
network localization problem has been proposed (see, e.g., [21, 30]):

minimize
∑

(i,j)∈Nx

(uij + vij) +
∑

(i,k)∈Na

(uik + vik)

subject to xi − xj − wij = 0 ∀(i, j) ∈ Nx, xi − ak − wik = 0 ∀(i, k) ∈ Na,

yij − uij + vij = d2
ij ∀(i, j) ∈ Nx, yik − uik + vik = d̄2

ik ∀(i, k) ∈ Na,

uij ≥ 0, vij ≥ 0, (yij + 1
4 , yij −

1
4 , wij) ∈ SOC ∀(i, j) ∈ Nx,

uik ≥ 0, vik ≥ 0, (yik + 1
4 , yik − 1

4 , wik) ∈ SOC ∀(i, k) ∈ Na.

(4.4)

The SOCP relaxation can be also viewed as a further relaxation of the SDP
relaxation, and it was proved to be faster than the SDP method and to serve as a
useful preprocessor of the actual problem. In this section, we will show that the ESDP
model is stronger than the SOCP relaxation. Our proof refers to Proposition 1 of [30].
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Theorem 4.5. If

Z =

(
I X

XT Y

)

is an optimal solution to (2.3), then the ith column of X, xi, i = 1, . . . , n, and

yij =

{
Yii + Yjj − 2Yij , (i, j) ∈ Nx,

‖a2
k‖ − 2aTk xi + Yii, (i, k) ∈ Na

form a feasible solution for (4.4) with the same objective value.
Proof. Since Z is a feasible solution to (2.3), we have Z(1,2,i,j),(1,2,i,j) � 0 for all

(i, j) ∈ Nx. So, for each (i, j) ∈ Nx, we have(
Yii − ‖x2

i ‖ Yij − xT
i xj

Yij − xT
i xj Yjj − ‖x2

j‖

)
� 0.

This implies that Yii − ‖x2
i ‖ ≥ 0, Yjj − ‖x2

j‖ ≥ 0, and (Yii − ‖x2
i ‖)(Yjj − ‖x2

j‖) ≥
(Yij − xT

i xj)
2.

Hence (Yii − ‖x2
i ‖ + Yjj − ‖x2

j‖)2 ≥ 4(Yij − xT
i xj)

2, i.e.,

Yii + Yjj − 2Yij ≥ ‖x2
i ‖ + ‖x2

j‖ − 2xT
i xj ,

and the theorem follows.
Corollary 4.6. If xi is invariant over all of the solutions of (4.4), then it is

also invariant over all of the ESDP solutions. That is, if SOCP relaxation can return
the true location for a sensor, so can ESDP relaxation.

The above theorem and corollary indicate that one can always derive the same
SOCP relaxation solution from an ESDP relaxation solution; that is, the solution set
of the ESDP relaxation is smaller than that of the SOCP relaxation. Thus, the ESDP
relaxation is stronger than the SOCP relaxation. The following example shows that
the reverse is not true.

Example 2. Consider the following problem with 3 anchors and 2 sensors. The
true locations of 3 anchors are a1 = (−0.4, 0), a2 = (0, 0.5), and a3 = (0.4, 0), and the
true locations of the 2 sensors are x1 = (0,−0.3) and x2 = (0.4, 0.2) with radio range
0.7 (see Figure 4.3).

Since there are only two sensors, the ESDP relaxation is the same with the full
SDP relaxation, and it is known that this graph is strongly localizable (see [2]), so
we know that the ESDP relaxation will give the unique solution Z where X is the
accurate positions of the sensors. However, for SOCP relaxation, since the graph is
2-realizable, its optimal value of (4.4) is 0 so that the optimal solution must satisfy
yij = d2

ij and yik = d̄2
ik. Thus, any (x̄1, x̄2) that satisfies

‖x̄1 − x̄2‖2 ≤ 0.42 + 0.52 = 0.41,

‖x̄1 − a1‖2 ≤ 0.32 + 0.42 = 0.25,

‖x̄1 − a3‖2 ≤ 0.32 + 0.42 = 0.25,

‖x̄2 − a2‖2 ≤ 0.42 + 0.32 = 0.25,

‖x̄2 − a3‖2 ≤ 02 + 0.22 = 0.04

must be also optimal to (4.4).
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Fig. 4.3. The locations of sensors, anchors, and connection edges in Example 2.

Now let x̄1 = (0, 0) 	= x1 and x̄2 = (0.3, 0.15) 	= x2. Then it is easy to verify
that the above inequalities hold, so that (x̄1, x̄2) is also an optimal solution to (4.4).
But we know that the interior-point method would always maximize the potential
function (see [11, 10])

P (x, y) =
∑

(i,j)∈Nx

log (yij − ‖xi − xj‖2) +
∑

(i,k)∈Na

log (yik − ‖xi − ak‖2)

in the optimal solution set; and it is obvious that P (x̄1, x̄2) > P (x1, x2). Therefore the
SOCP relaxation model (4.4) will not give the true solution x1 and x2, and, thereby,
the ESDP relaxation is strictly stronger than the SOCP relaxation for this example.

4.3. The dual problem of ESDP. For a conic programming problem, it is im-
portant to consider its dual problem. In many cases, the dual problem can give much
important information about the primal problem as well as many useful applications.
Here we will present the dual problem of (2.2) and list some basic properties between
the primal and dual.

Consider a general conic programming problem:

minimize C •X
subject to Aj •X = bj ∀j,

X(Ni) � 0 ∀i,
(4.5)

where X ∈ Sn and Ni is an index subset of {1, 2, . . . , n}. Then the dual to the problem
is

maximize
∑
j

bjyj

subject to
∑
j

yjAj +
∑
i

Si = C,

Si
(Ni)

� 0, and Si
kj = 0 ∀k 	∈ Ni or j 	∈ Ni; ∀i.

(4.6)

In other words, Si is an Sn matrix, and its entries are zero outside the principal
submatrix of SNi,Ni .
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For the ESDP model (2.2), the dual problem is

maximize
∑

(i,j)∈Nx

ωijd
2
ij +

∑
(i,k)∈Na

ωikd̄
2
ik + u11 + 2u12 + u22

subject to
∑

(i,j)∈Nx

ωij(0; ei − ej)
T (0; ei − ej) +

∑
(i,k)∈Na

ωik(−ak; ei)
T (−ak; ei)

+

⎛
⎝ u11 + u12 u12 0

u12 u22 + u12 0
0 0 0

⎞
⎠ +

∑
(i,j)∈Nx

S(i,j) = 0,

S
(i,j)
(1,2,i,j) � 0, and S

(i,j)
kl = 0 ∀k 	∈ {i, j} or l 	∈ {i, j}, ∀(i, j) ∈ Nx.

(4.7)

We have the following complementarity result.
Proposition 4.7. Let Z be a solution to (2.2) and {S(i,j)} be an optimal solution

to the dual. Then

S
(i,j)
(1,2,i,j) • Z(1,2,i,j) = 0 ∀(i, j) ∈ Nx.

In particular, if Rank(S
(i,j)
(1,2,i,j)) is 2 for all (i, j) ∈ Nx, then Rank

(
Z(1,2,i,j)

)
is 2 for

all (i, j) ∈ Nx so that (2.2) produces a unique localization for the sensor network in
R2.

By using duality we can solve the dual problem and simultaneously yield a primal
solution from the complementarity proposition. We demonstrate in the next section
that the solution speed of solving the dual is about twice as fast as solving the primal
problem, which was originally observed in [34].

5. Computational results and comparison to other approaches. Now we
address the question: Will the improvement in the speed of the ESDP relaxation
compensate the loss in relaxation quality? In this section, we first present some
computational results of the ESDP relaxation model. Then we compare the model
with different kinds of approaches, including the full SDP approach (1.1) of [7], the
SOCP approach [30], the SOS approach [26], and the domain-decomposition approach
of [25, 29].

5.1. Computational results of the ESDP relaxation. In our numerical sim-
ulation, we follow [7]. We randomly generate the true positions of n points in a square
of 1 by 1, then randomly select m points to be anchors, and compute every edge length
d̄ij . We select only those edges whose edge length is less than the given radio range
rd and add a multiplicative random noise to every selected edge length,

dij = d̄ij(1 + nf · randn(1)),

as the distance input data to the SDP models. Here nf is a specified noisy factor, and
randn(1) is a standard Gaussian random variable. There may still be many points
within the radio range for a sensor or anchor. Thus, in order to maintain the sparsity
of the graph, we set a limit 7 on the number of selected edges connected to every
sensor or anchor, and they are randomly chosen.

In our computational experiments we also implement the steepest-descent local
search refinement proposed in [28, 29] for solving noisy problems. All test problems
are solved by SeDuMi 1.05 [32] of Matlab7.0 on a DELL D420 laptop with 1.99 GB
memory and 1.06 GHz CPU.
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Table 5.1

Noisy test problems and the SDP solution time comparison.

Noisy problem # n m rd Full SDP time ESDP time Dual ESDP time
1 50 5 0.35 1.33 1.5 1.22
2 100 5 0.3 4.94 3.22 1.91
3 200 5 0.25 35.21 7.64 4.19
4 400 10 0.2 358.8 18.2 8.98
5 800 20 0.12 * 44.67 18.58
6 1600 40 0.07 * 120.58 43.91
7 3200 80 0.04 * 287.39 104.36
8 5000 100 0.03 * 426.85 192.08
9 6400 160 0.025 * 603.16 250.97

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) Graphic result of the full SDP
model
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(b) Graphic result of the dual
ESDP model

Fig. 5.1. Comparision of graphical localization results generated by the full SDP and dual ESDP
on a 10% noisy problem.

The first set of test problems has noisy factor nf = 0.1 throughout. Table 5.1
contains a computational comparison of ESDP to the full SDP relaxation [7]. Here
three models, the full SDP model (up to 400 points), the ESDP model, and the dual
of the ESDP model, are all solved by SeDuMi 1.05. In order to see the efficiency of
the ESDP model itself, the solution time (in seconds) in Table 5.1 includes only the
SeDuMi solver time; that is, the data input/preparation time is excluded.

As we can see, while the full SDP solution time increases cubically in size, the SDP
solver times of both ESDP and dual ESDP increase little faster than linearity. While
this speedup was remarkable, how about the localization quality? Figure 5.1 shows
two graphical results generated by full SDP and dual ESDP on solving a smaller
problem, where one can barely see much difference. Here diamonds represent the
anchor positions, circles represent sensor’s true positions, and stars represent the
computed sensor positions. (The codes and a few test problems have been placed
on the public site [37]. We welcome the reader to test them and draw their own
conclusions.)

Next we compare our approach to the SOS approach, the SOCP approach, and
the domain-decomposition approach. We will use the same examples presented in
these papers.
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Fig. 5.2. Graphical localization result of the ESDP model on the problem of Nie [26], 500
sensors, 4 anchors, rd = 0.3, nf = 0, and RMSD = 1e− 6.

5.2. Computational comparison with the SOS method. The SOS method
is an SDP relaxation which applies to solving the problem

min f(x) =
∑

(i,j)∈Nx

(‖xi − xj‖2
2 − d2

ij)
2 +

∑
(i,k)∈Na

(‖xi − ak‖2
2 − d̄2

ik)
2,(5.1)

where the objective function is a polynomial.
Recent study [26] has shown that by exploiting the sparsity in SOS relaxation

one can get faster computing speed than the SDP relaxation (1.1) and sometimes
higher accuracy as well. The author demonstrated that this structure can help save
computation time significantly. In [26], the author used the model of 500 sensors and
4 anchors with a radio range of 0.3 and no noises in distance measurements.

The author of [26] reported that it took totally about 1 hour and 25 minutes on
a 0.98 GB RAM and 1.46 GHz CPU computer to get a result with RMSD=2.9e− 6.
However, with the same parameters, our approach needs only 30 seconds to get the
result with RMSD=1e − 6. Thus, the ESDP approach is much faster than the SOS
approach in this case, and the solution quality is comparable to that of the SOS
method; see Figure 5.2.

5.3. Computational comparison with the SOCP method. The SOCP
model performs best with a large fraction of anchors and a low noise. Thus, we
test (primal) ESDP on the same set of problems reported in [30], where m = 0.1n
(10% of points are anchors) and nf ≤ 0.01 (less than 1% noise), and the results are
shown in Table 5.2. To solve the SOCP relaxation model, two methods are proposed
in [30]: one directly uses Matlab SeDuMi, and the other uses a smoothing coordi-
nate gradient descent (SCGD) method coded in FORTRAN 77. The latter is highly
parallelizable, similar to the distributed methods of [25, 29].

From Table 5.2, we see that the ESDP approach is much faster than the SOCP
approach when both use Matlab SeDuMi, and it is slower than the tailored and
FORTRAN-coded SCGD method. On the other hand, the localization quality (see
RMSD in Table 5.3) of ESDP is much better than that reported in [30] for both
SeDuMi of SOCP and SCGD of SOCP. Figure 5.3 shows the graphical result of test
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Table 5.2

ESDP times are taken on DELL D420 (1.99 GB and 1.06 GHz), and SOCP times are reported
from [30] on a HP DL360 (1 G memory and 3 GHz).

Test problem # n nf rd ESDP time SeDuMi of SOCP SCGD of SOCP
1 1000 0 0.06 59.60 sec 3.6 min 0.2 min
2 1000 0.001 0.06 57.55 sec 3.2 min 0.4 min
3 1000 0.01 0.06 53.60 sec 3.9 min 1.6 min
4 4000 0 0.035 653.7 sec 202.5 min 1.6 min
5 4000 0.001 0.035 668.3 sec 193.8 min 5.1 min
6 4000 0.01 0.035 615.9 sec 196.3 min 6.2 min

Table 5.3

Input parameters for the test problems, the corresponding ESDP dimensions, and ESDP com-
putational results.

Test problem # n nf rd SeDuMi SDP dim CPU time obj RMSD
1 1000 0 0.06 20321 × 29195 59.60 3e-3 2e-3
2 1000 0.001 0.06 20321 × 29195 57.55 5e-4 3e-3
3 1000 0.01 0.06 20321 × 29195 53.66 4e-2 2e-2
4 4000 0 0.035 93727 × 133285 653.7 3e-3 1e-3
5 4000 0.001 0.035 93727 × 133285 668.3 7e-3 8e-4
6 4000 0.01 0.035 93727 × 133285 615.9 2e-2 3e-2
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Fig. 5.3. Graphical localization result of the ESDP model on test problem 2 in Table 5.2.

problem 2 (900 sensors, 100 anchors, nf = 0.001, and rd = 0.06), where the local-
ization of ESDP is quite accurate compared with the graphical result on the same
problem reported in [30].

In Table 5.2, “ESDP time” denotes the total solution running time, including
Matlab data preparation and SeDuMi input setup time. By comparing Tables 5.1
and 5.2, one can see that, for ESDP, the Matlab data input and SeDuMi setup time
is considerable. This is because Matlab is notoriously slow on matrix loops and
data inputs. This problem should go away when the algorithm is coded in C or
FORTRAN 77.

Table 5.3 contains more detailed statistical results on this test, where “SeDuMi
SDP dim” represents problem dimensions solved by SeDuMi, “CPU time” denotes
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the total ESDP solution time in seconds (including Matlab data preparation and
SeDuMi input setup time), “obj” denotes the SDP objective value, and RMSD is the
localization quality defined by (4.3).

5.4. Computational comparison with the decomposition method. There
are other earlier approaches to speed up the SDP solution time. The domain-
decomposition method of [29] and SpaceLoc of [25] are both based on breaking the
localization problem into many geographically partitioned and smaller-sized localiza-
tion problems, since each smaller SDP problem can be solved much faster and more
accurately. Thus, they work quite well when many anchors are uniformly distributed
in the region so that one is able to partition the network into many smaller domains;
and, as a result, each of them contains enough anchors and forms its own indepen-
dent localization problem. However, when the quantity of anchors is small or most
of them are located on the boundary, such as the problems in Table 5.1, these ap-
proaches would fail at the beginning, simply because they are reduced to solving a
nearly full-size SDP problem.

In contrast, our new approach does not depend on the quantity and location of an-
chors, since it is designed to improve the efficiency of solving a full-size SDP problem.
In fact, any improvement on solving an individual SDP problem would complement
the domain-decomposition approaches, since it would be possible to handle much
larger-sized subproblems.

6. Future directions. From the computational results, we can see that the sub-
SDP approaches indeed have a great potential to save computation time in solving
sensor network localization problems, and the efficiency of the model is considerable.
At the same time, they retain some of the most important theoretical features of the
original SDP relaxation and achieve high localization quality.

There are many directions for future research. First, although our ESDP relax-
ation performs very well in localization quality, we still lack some powerful theorems
to illustrate why the model works. This is a major issue that needs to be answered.
Second, since, in our ESDP model, the decision matrix has its special structure, ap-
plying a tailored interior-point method (such as SCGD for the SOCP approach) may
save more computational time. We also see that the NSDP relaxation has its own
merit, both in theory and in practice. Therefore, further research about the NSDP
model is also worth perusing. In fact, we have experimented with the NSDP model
for solving the Max-Cut problem and will discuss its behavior and performance in an-
other report. Finally, we plan to investigate the applicability of the SSDP relaxation
idea for solving general SDP problems.
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[5] M. Bâdoiu, Approximation algorithm for embedding metrics into a two-dimensional space, in
SODA ’03: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 2003, pp. 434–443.



672 Z. WANG, S. ZHENG, Y. YE, AND S. BOYD

[6] A. I. Barvinokdoi, Problems of distance geometry and convex properties of quadratic maps,
Discrete Comput. Geom., 13 (1995), pp. 189–202.

[7] P. Biswas and Y. Ye, Semidefinite programming for ad hoc wireless sensor network local-
ization, in IPSN 2004 Proceedings of the Third International Symposium on Information
Processing in Sensor Networks, ACM, New York, 2004, pp. 46–54.

[8] J. Blair and B. Peyton, An introduction to chordal graphs and clique trees, Inst. Math.
Appl., 56 (1993), pp. 1–30.

[9] B. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, Positive definite completions of
partial Hermitian matrices, Linear Algebra Appl., 58 (1984), pp. 109–124.

[10] D. Goldfarb and K. Scheinberg, Interior point trajectories in semidefinite programming,
SIAM J. Optim., 8 (1998), pp. 871–886.
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WITH PROBABILISTIC CONSTRAINTS∗
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Abstract. We study approximations of optimization problems with probabilistic constraints
in which the original distribution of the underlying random vector is replaced with an empirical
distribution obtained from a random sample. We show that such a sample approximation problem
with a risk level larger than the required risk level will yield a lower bound to the true optimal value
with probability approaching one exponentially fast. This leads to an a priori estimate of the sample
size required to have high confidence that the sample approximation will yield a lower bound. We
then provide conditions under which solving a sample approximation problem with a risk level smaller
than the required risk level will yield feasible solutions to the original problem with high probability.
Once again, we obtain a priori estimates on the sample size required to obtain high confidence that
the sample approximation problem will yield a feasible solution to the original problem. Finally,
we present numerical illustrations of how these results can be used to obtain feasible solutions and
optimality bounds for optimization problems with probabilistic constraints.

Key words. probabilistic constraints, chance constraints, Monte Carlo, stochastic program-
ming, large deviation
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1. Introduction. We consider optimization problems with probabilistic con-
straints (also known as chance constraints) of the form

(PCP) min {f(x) : x ∈ X, Pr {G(x, ξ) ≤ 0} ≥ 1 − ε} ,

where X ⊂ Rn represents a deterministic feasible region, f : Rn → R represents the
objective to be minimized, ξ is a random vector with suport Ξ ⊆ Rd, G : Rn ×Rd →
Rm is a given constraint mapping, and ε is a risk parameter chosen by the decision
maker, typically near zero, e.g., ε = 0.01 or ε = 0.05. Such problems are sometimes
called probabilistic programs. In (PCP) a single probabilistic constraint is enforced
over all rows in the constraints G(x, ξ) ≤ 0 rather than requiring that each row
independently be satisfied with high probability. Such a constraint is known as a
joint probabilistic constraint and is appropriate in a context in which it is important
to have all constraints satisfied simultaneously and there may be dependence between
random variables in different rows.

Problems with joint probabilistic constraints have been extensively studied; see
[25] for a background and an extensive list of references. Probabilistic constraints have
been used in various applications including supply chain management [17], production
planning [21], optimization of chemical processes [13, 14], and surface water quality
management [30].

Unfortunately, probabilistic programs are still largely intractable except for a few
special cases. There are two primary reasons for this intractability. First, in general,
for a given x ∈ X, the quantity Pr{G(x, ξ) ≤ 0} is hard to compute, as it requires
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multidimensional integration, and hence just checking the feasibility of a solution is
difficult. Second, the feasible region defined by a probabilistic constraint generally is
not convex. In this paper, we study how the difficulty in checking feasibility can be
addressed by solving a sample approximation problem based on a Monte Carlo sample
of ξ. In particular, we study how this approximation can be used to generate feasible
solutions and optimality bounds for general probabilistic programs.

The sample approximation that we study is a probabilistic program in which the
original distribution of the random vector ξ is replaced with the empirical distribu-
tion obtained from the random sample. We show that such a sample approximation
problem with a risk level larger than the nominal risk level ε will yield a lower bound
to the true optimal value with probability approaching one exponentially fast. This
leads to an a priori estimate of the sample size required to have high confidence that
the sample approximation will yield a lower bound. We also discuss alternative means
of generating lower bounds, which can be used regardless of the sample size used. We
then provide conditions under which solving a sample approximation problem with a
risk level smaller than ε will yield feasible solutions to the original problem with high
probability. Once again, we obtain a priori estimates on the sample size required to
obtain high confidence that the sample approximation problem will yield a feasible
solution to the original problem.

Recently, a number of approaches have been proposed to find approximate so-
lutions to probabilistic programs; the common theme among these is that they all
seek “safe” or conservative approximations which can be solved efficiently. That is,
they propose approximation problems which are convex and yield solutions which
are feasible, or at least highly likely to be feasible, to the original probabilistic pro-
gram. Approaches of this type include: the scenario approximation method studied
by Calafiore and Campi [7, 8] and extended by Nemirovski and Shapiro [22]; the Bern-
stein approximation scheme of Nemirovski and Shapiro [23]; and robust optimization,
e.g., [4, 6, 11]. The conservative approximations, when applicable, are attractive be-
cause they allow efficient generation of feasible solutions. In particular, they can yield
feasible solutions when the probabilistic constraint is “hard,” that is, with ε very
small, such as ε = 10−6 or even ε = 10−12. However, in a context in which ε is not so
small, such as ε = 0.05 or ε = 0.01, the probabilistic constraint is more likely to repre-
sent a “soft” constraint, one which the decision-maker would like to have satisfied but
is willing to allow a nontrivial chance that it will be violated if doing so would suffi-
ciently decrease the cost of the implemented solution. In this latter context, it would
be desirable to obtain solutions which are feasible to the probabilistic constraint along
with an assurance that the solutions are not much more costly than the lowest-cost
solution attaining the same risk level. In this way, the decision-maker can be confident
that they are choosing from solutions on the efficient frontier between the competing
objectives of cost and risk. Unfortunately, the recently proposed conservative approx-
imations say very little in terms of how conservative the solutions are. In particular,
it is generally not possible to make a statement about how much worse the objective
is relative to the optimal value at a fixed risk level ε.

The scenario approximation methods are most similar to the sample approach
that we study in that they solve an approximation problem based on an independent
Monte Carlo sample of the random vector. For example, the scenario approximation
of [7, 8] takes a sample ξ1, . . . , ξN and solves the problem

(1) min
x∈X

{
f(x) : G(x, ξi) ≤ 0, i = 1, . . . , N

}
.
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That is, the scenario approximation enforces all of the constraints corresponding to
the sample taken. When the nominal problem is convex (that is, X ⊆ Rn is a
convex set, f is convex, and G is convex in x for each ξ), they show that the scenario
approximation problem will yield a feasible solution to (PCP) with probability of at
least 1 − δ for

(2) N ≥ 2

ε
log

(
1

δ

)
+ 2n +

2n

ε
log

(
2

ε

)
.

In addition, under the stated convexity assumptions, the scenario approximation prob-
lem remains a convex program. An advantage of this approach relative to the approx-
imations [4, 6, 11, 23] is that the only assumption that is made on the distribution of
ξ is that it can be sampled from.

The key difference between the sample approximation that we study and scenario
approximation is that we allow the risk level in the sample approximation problem
to be positive; that is, we do not require that all sampled constraint sets be satisfied.
Instead, the constraint sets which will be satisfied can be chosen optimally. The
disadvantage of this scheme is that the sample approximation problem with a positive
risk level has a nonconvex feasible region and hence may be difficult to solve despite
having a simplified probabilistic structure. Specifically, if we allow k of the N sampled
constraint sets to be violated, then we must choose a set of k constraint sets which will
not be enforced, and there are

(
N
k

)
possible sets from which to choose. Choosing the

optimal set is an NP -hard problem even in a very special case [20]. However, in some
special cases, such as when randomness appears only in the right-hand side of the
constraints, the sample approximation problem may be relatively tractable to solve
with integer programming techniques; see [20, 19]. In addition, for generating feasible
solutions to (PCP), our analysis indicates that with appropriately chosen parameters
any feasible solution to the sample approximation problem will be feasible to the
original problem with high probability, so that it is sufficient to generate heuristic
solutions. Similarly, to obtain a lower bound for (PCP), it is sufficient to obtain a
lower bound for the appropriate sample approximation problem.

In the context of generating feasible solutions for (PCP), our sample approxima-
tion scheme includes as a special case the scenario approximation of [7, 8] in which the
constraints corresponding to all sampled vectors ξi are enforced. In this special case,
we obtain results very similar to those in [8] in terms of how many samples should be
used to yield a solution feasible to (PCP) with high probability. However, our analysis
is quite different from the analysis of [8] and, in particular, requires a significantly dif-
ferent set of assumptions. In some cases our assumptions are more stringent, but there
are also a number of cases in which our assumptions apply and those of [8] do not,
most notably if the feasible region X is not convex, as in the case of a mixed-integer
program. Thus, our results complement those of [8] in two ways: First we show that
sample approximations with positive risk levels can be used to yield feasible solutions
to (PCP), and second we relax the convexity assumptions. Another closely related
work is [9], in which the authors consider a sample approximation problem in which
some of the sampled constraints are allowed to be violated. When the nominal prob-
lem is convex and a nondegeneracy assumption holds, they present an estimate on the
sample size needed to obtain a feasible solution with high probability when a fixed
number of sampled constraint sets are discarded optimally. Under these assumptions,
their results for generating feasible solutions are very similar to the results that we
present. The unique contributions of the present paper are (1) we use assumptions
which are significantly different from the convexity and nondegeneracy assumptions
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used in [9] (neither set of assumptions implies the other), (2) we analyze a method
for generating lower bounds on the optimal value (which is useful for validating the
quality of a given solution), (3) we prove that the sample approximation yields an
exact optimal solution with high probability when X is finite (as in the case of an
integer program), and (4) we conduct extensive numerical experiments on practical
size problems indicating the potential of the approach.

The sample approximation problem that we study can be thought of as a variation
of the well-studied sample average approximation (SAA) approach; see, e.g., [1, 10,
16, 29]. The difference is that the approximation that we study enforces a sample
average constraint involving expectations of indicator functions, whereas the SAA
approach typically optimizes a sample average objective. Shapiro [28] and Wang
[32] have considered SAA approximation for expected value constraints. However,
in these works, the function taken under expectation in the constraints is assumed
to be continuous, and hence these results cannot be directly applied because of the
discontinuity of indicator functions. In [2] a model with expected value constraints in
which the function taken under expectation is not necessarily continuous is considered,
and hence their analysis does apply to the case of probabilistic constraints. However,
they consider only the case in which the feasible region is finite, and they discuss only
the theoretical rate of convergence. In contrast, we begin with a similar analysis for the
finite feasible region case but then extend the analysis to a number of significantly
more general settings. In addition, we separate the analysis of when the sample
approximation will be likely to yield a lower bound and when it will be likely to yield
feasible solutions. This separate analysis allows for the development of methods which
yield optimality statements which hold with high probability.

Finally, we mention the work of Vogel [31], which considers convergence properties
of the sample approximation we use for probabilistic programs. When only the right-
hand side is random with continuous distribution, it is shown that the probability that
the distance between the sample feasible region and the true feasible region is larger
than any positive threshold decreases exponentially fast with the size of the sample.
However, the convergence rate has poor dependence on the dimension of the random
vector, implying that the number of samples required to yield a reasonable approx-
imation would have to grow exponentially in this dimension. Better convergence is
demonstrated for the case of random right-hand side with discrete distribution. For
the general case, linear convergence is demonstrated in the case of continuous distri-
butions. Our analysis of the sample approximation problem extends these results by
improving on the convergence rates and by analyzing what happens when the sample
approximation problem is allowed to have a different risk level than the nominal risk
level ε. This allows the sample approximation problem to be used to generate feasible
solutions and optimality bounds.

The remainder of this paper is organized as follows. In section 2 we present
and analyze the sample approximation scheme. We present results of a preliminary
computational study of the use of the sample approximation scheme in section 3. We
close with concluding remarks and directions for future research in section 4.

2. Analysis of sample approximation. We now study how Monte Carlo sam-
pling can be used to generate probabilistically constrained problems with finite dis-
tribution which can be used to approximate problems with general distributions. Let
us restate (PCP) as

z∗ε = min
{
f(x) : x ∈ Xε

}
,(Pε)
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where

Xε =
{
x ∈ X : Pr {G(x, ξ) ≤ 0} ≥ 1 − ε

}
.

We assume that z∗ε exists and is finite. For example, if X is compact and G(x, ξ) is
affine in x for each ξ ∈ Ξ, then Xε is closed [12] and hence compact, and so if f(x) is
continuous, then an optimal solution exists whenever Xε �= ∅. Furthermore, we take
as an assumption the measurability of any event S taken under probability, such as
the event {G(x, ξ) ≤ 0} for each x ∈ X.

If X is a polyhedron, f(x) = cx, G(x, ξ) = ξ − Tx (d = m), then we obtain the
probabilistically constrained linear program with random right-hand side

min
{
cx : x ∈ X,Pr {Tx ≥ ξ} ≥ 1 − ε

}
.

We can also model a two-stage problem in which we make a decision x and wish to
guarantee that with probability at least 1 − ε there is a feasible recourse decision y
satisfying Wy ≥ H(x, ξ), where W is an m by l matrix and H : Rn × Rd → Rm.
This is accomplished by letting G : Rn × Rd → R be defined by

G(x, ξ) = min
μ,y

{μ : Wy + μe ≥ H(x, ξ), μ ≥ −1},

where e ∈ Rm is a vector of all ones. Indeed, G(x, ξ) ≤ 0 if and only if there exists
y ∈ Rl and μ ≤ 0 such that Wy + μe ≥ H(x, ξ), which occurs if and only if there
exists y ∈ Rl such that Wy ≥ H(x, ξ).

Due to the general difficulty in calculating Pr{G(x, ξ) ≤ 0} for a given x ∈ X,
we seek to approximate (Pε) by solving a sample approximation problem. We let
ξ1, . . . , ξN be an independent Monte Carlo sample of the random vector ξ. Then, for
fixed α ∈ [0, 1), the sample approximation problem is defined to be

ẑNα = min
{
f(x) : x ∈ XN

α

}
,(PN

α )

where

XN
α =

{
x ∈ X :

1

N

N∑
i=1

I
(
G(x, ξi) ≤ 0

)
≥ 1 − α

}
,

where I(·) is the indicator function which takes value one when · is true and zero
otherwise. We adopt the convention that if XN

α = ∅, then ẑNα = +∞, whereas if
(PN

α ) is unbounded, we take ẑNα = −∞. We assume that, except for these two cases,
(PN

α ) has an optimal solution. This assumption is satisfied, for example, if X is
compact, f(x) is continuous, and G(x, ξ) is continuous in x for each ξ ∈ Ξ, since
then XN

α is the union of finitely many compact sets (in this case ẑNα = −∞ is also
not possible). If α = 0, the sample approximation problem (PN

0 ) corresponds to the
scenario approximation of probabilistic constraints, studied in [8, 22]. Our goal is to
establish statistical relationships between problems (Pε) and (PN

α ) for α ≥ 0. We first
consider when (PN

α ) yields lower bounds for (Pε) and then consider when (PN
α ) yields

feasible solutions for (Pε).
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2.1. Lower bounds. We now establish a bound on the probability that (PN
α )

yields a lower bound for (Pε). Let

ρ(α, ε,N) =

�αN�∑
i=0

(
N

i

)
εi(1 − ε)N−i.

ρ(α, ε,N) represents the probability of having at most �αN� “successes” in N inde-
pendent trials, in which the probability of a success in each trial is ε.

Lemma 1. Assume that (Pε) has an optimal solution. Then

Pr
{
ẑNα ≤ z∗ε

}
≥ ρ(α, ε,N).

Proof. Let x∗ ∈ Xε be an optimal solution to (Pε). Then Pr{G(x∗, ξi) � 0} ≤ ε
for each i. Hence, if we call the event {G(x∗, ξi) � 0} a success, then the probability
of a success in trial i is φ̄(x∗) := Pr{G(x∗, ξi) � 0} ≤ ε. By the definition of XN

α ,
x∗ ∈ XN

α if and only if

1

N

N∑
i=1

I
(
G(x∗, ξi) ≤ 0

)
≥ 1 − α ⇔ 1

N

N∑
i=1

I
(
G(x∗, ξi) � 0

)
≤ α

⇔
N∑
i=1

I
(
G(x∗, ξi) � 0

)
≤ �αN�.

Hence, Pr{x∗ ∈ XN
α } is the probability of having at most �αN� successes in N trials.

Also, if x∗ ∈ XN
α , then ẑNα ≤ z∗ε . Thus,

Pr
{
ẑNα ≤ z∗ε

}
≥ Pr

{
x∗ ∈ XN

α

}
= ρ(α, φ̄(x∗), N) ≥ ρ(α, ε,N)

since ρ(α, ε,N) is decreasing in ε.
For example, if α = 0 as in the previously studied scenario approximation [8, 22],

then we obtain Pr{ẑNα ≤ z∗ε } ≥ ρ(0, ε,N) = (1− ε)N . For this choice of α, it becomes
very unlikely that the sample approximation (PN

α ) will yield a lower bound as N gets
large. For α > ε we see different behavior: the sample approximation yields a lower
bound with probability approaching one exponentially fast as N increases. The proof
is based on Hoeffding’s inequality.

Theorem 2 (Hoeffding’s inequality [15]). Let Y1, . . . , YN be independent random
variables, with Pr{Yi ∈ [ai, bi]} = 1, where ai ≤ bi for i = 1, . . . , N . Then if t > 0,

Pr

{
N∑
i=1

(Yi − E[Yi]) ≥ tN

}
≤ exp

{
− 2N2t2∑N

i=1(bi − ai)2

}
.

Theorem 3. Let α > ε, and assume that (Pε) has an optimal solution. Then

Pr
{
ẑNα ≤ z∗ε

}
≥ 1 − exp

{
−2N(α− ε)2

}
.

Proof. Let x∗ be an optimal solution to (Pε). As in the proof of Lemma 1, if
x∗ ∈ XN

α , then ẑNα ≤ z∗ε . For i = 1, . . . , N let Yi be a random variable taking value 1
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if G(x∗, ξi) � 0 and 0 otherwise. Then Pr{Yi ∈ [0, 1]} = 1 and E[Yi] ≤ ε. Hence,

Pr
{
ẑNα > z∗ε

}
≤ Pr

{
x∗ /∈ XN

α

}
= Pr

{
1

N

N∑
i=1

Yi > α

}

≤ Pr

{
1

N

N∑
i=1

(Yi − E[Yi]) > α− ε

}

≤ exp
{
−2N2(α− ε)2

N

}
= exp

{
−2N(α− ε)2

}
,

where the first inequality follows since E[Yi] ≤ ε and the second inequality follows
from Hoeffding’s inequality.

Theorem 3 states that, by taking a risk parameter α > ε in our sample approxima-
tion problem, we will obtain a lower bound to the true optimal value with probability
approaching one exponentially fast as N increases. Stated another way, suppose that
we solve a sample approximation problem (PN

α ) with α = ε. Then for any γ > 0
such that γ < ε, the optimal value of this problem, ẑNε , will be a lower bound to the
optimal value of Pε−γ with probability approaching one exponentially fast with N . If
γ is small, this states that the optimal solution to the sample problem will have cost
no worse than any solution that is “slightly less risky” than the nominal risk level ε.

Theorem 3 immediately yields a method for generating lower bounds with speci-
fied confidence 1 − δ, where δ ∈ (0, 1). If we select α > ε and

N ≥ 1

2(α− ε)2
log

(1

δ

)
,

then Theorem 3 ensures that ẑNα ≤ z∗ε with probability of at least 1− δ. Indeed, with
this choice of α and N , we have

Pr
{
ẑNα > z∗ε

}
≤ exp

{
−2N(α− ε)2

}
≤ exp

{
− log

(1

δ

)}
= δ.

Because 1/δ is taken under logarithm, we can obtain a lower bound with high confi-
dence, i.e., with δ very small, without significantly increasing the required sample size
N . On the other hand, the required sample size grows quadratically with 1/(α − ε)
and hence will be large for α very close to ε.

Lemma 1 can also be used to obtain lower bounds with specified confidence, by
using the bounding procedure proposed by Nemirovski and Shapiro [23]. They restrict
α = 0 in the sample approximation, but the technique can be applied in exactly the
same way when α > 0, and it is likely that this can make the bounding technique
significantly more powerful. The idea is as follows. Take M sets of N independent
samples of ξ, given by ξi,j for j = 1, . . . ,M and i = 1, . . . , N , and for each j solve the
associated sample approximation problem

ẑNα,j = min
{
f(x) : x ∈ XN

α,j

}
,

where

XN
α,j =

{
x ∈ X :

1

N

N∑
i=1

I
(
G(x, ξi,j) ≤ 0

)
≥ 1 − α

}
.
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We then rearrange the values {ẑNα,j}Mj=1 to obtain the order statistics ẑNα,[j] for j =

1, . . . ,M satisfying ẑNα,[1] ≤ · · · ≤ ẑNα,[M ]. Then a lower bound which is valid with
specified confidence 1 − δ can be obtained as follows.

Theorem 4. Let δ ∈ (0, 1), α ∈ [0, 1), and N,L, and M be positive integers such
that L ≤ M and

(3)
L−1∑
i=0

(
M

i

)
ρ(α, ε,N)i

(
1 − ρ(α, ε,N)

)M−i ≤ δ.

Then

Pr
{
ẑNα,[L] ≤ z∗ε

}
≥ 1 − δ.

Proof. We show that Pr{ẑNα,[L] > z∗ε } ≤ δ. Note that ẑNα,[L] > z∗ε if and only if

less than L of the values ẑNα,j satisfy ẑNα,j ≤ z∗ε . Thus, calling the event {ẑNα,j ≤ z∗ε } a

success, the event ẑNα,[L] > z∗ε occurs if and only if there are fewer than L successes in

M trials, in which the probability of a success is η := Pr{ẑNα,j ≤ z∗ε }. The result then
follows since η ≥ ρ(α, ε,N) by Lemma 1 and so

L−1∑
i=0

(
M

i

)
ηi(1 − η)M−i ≤

L−1∑
i=0

(
M

i

)
ρ(α, ε,N)i

(
1 − ρ(α, ε,N)

)M−i ≤ δ

by (3).
An interesting special case of Theorem 4 is obtained by taking L = 1. In this

case, we are taking as our lower bound the minimum of the optimal values obtained
from solving the M sample approximation problems. To have confidence 1 − δ that
the lower bound is truly a lower bound, we should choose M such that

(4)
(
1 − ρ(α, ε,N)

)M ≤ δ.

With the choice of L = 1, let us consider how large M should be with α = 0 and with
α = ε. With α = 0, we obtain ρ(0, ε,N) = (1 − ε)N . Hence, to have confidence 1 − δ
to obtain a lower bound, we should take

(5) M ≥ log

(
1

δ

)
/ log

(
1

1 − (1 − ε)N

)
.

By using the inequality log(1 + x) ≤ x for x > 0, we have

log

(
1

1 − (1 − ε)N

)
= log

(
1 +

(1 − ε)N

1 − (1 − ε)N

)
≤ (1 − ε)N

1 − (1 − ε)N
.

Hence, when α = 0, we should take

M ≥ log

(
1

δ

)
1 − (1 − ε)N

(1 − ε)N
.

Thus, for fixed ε ∈ (0, 1), the required M grows exponentially in N . For example, by
using (5), if δ = 0.001 and ε = 0.01, then for N = 250 we need M ≥ 82, for N = 500
we need M ≥ 1048, and for N = 750 we need M ≥ 12967. If δ = 0.001 and ε = 0.05,
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then for N = 50 we should take M ≥ 87, for N = 100 we should take M ≥ 1160, and
for N = 150 we must already have M ≥ 15157! Thus, to keep M reasonably small,
we must keep N small, but this will weaken the lower bound obtained in each sample.

Now suppose that we take L = 1 and α = ε. Then, for N “large enough”
(e.g., Nε ≥ 10), we have ρ(ε, ε,N) ≈ 1/2. Indeed, ρ(ε, ε,N) is the probability that
a binomial random variable with success probability ε and N trials is at most �εN�.
With N large enough relative to ε, this probability can be approximated by the
probability that a random variable with normal distribution having mean εN does
not exceed �εN�. Because the median of the normal distribution equals the mean, we
obtain ρ(ε, ε,N) � 1/2. Thus, with L = 1 and α = ε, we should choose M such that
(1/2)M ≤ δ or

M ≥ log2

(
1

δ

)
.

Note that this bound is independent of N and ε. For example, for δ = 0.001, we
should take M ≥ 10. The independence of N has the advantage that we can take N
to be as large as is computationally tractable, which will tend to make each of the
optimal values ẑNε,j closer to the true optimal z∗ε and hence make the lower bound

minj{ẑNε,j} tighter.
We close this section by commenting that, although our results have been stated

in terms of the exact optimal solution ẑNα of the sample approximation problem, it
is not necessary to calculate this value exactly to use the results. All of the results
about lower bounds for z∗ε will be valid if ẑNα is replaced with a lower bound of ẑNα ,
at the expense, of course, of weakening the lower bound.

2.2. Feasible solutions. We now consider conditions under which an optimal
solution to (PN

α ), if one exists, is feasible to (Pε). The idea is that if we take the risk
parameter α in (PN

α ) to be smaller than ε, then for N large enough the feasible region
of (PN

α ) will be a subset of the feasible region of (Pε), so that any optimal solution
to (PN

α ) must be feasible to (Pε). Unlike the case for lower bounds, we will need to
make additional assumptions to assure that (PN

α ) yields a feasible solution with high
probability.

We begin by assuming that the feasible region X is finite. Note, however, that |X|
may be exponentially large; for example, X could be the feasible region of a bounded
integer program. We then show how this assumption can be relaxed and replaced
with some milder assumptions.

2.2.1. Finite X.
Theorem 5. Suppose that X is finite and α ∈ [0, ε). Then

Pr
{
XN

α ⊆ Xε

}
≥ 1 − |X \Xε| exp

{
−2N(ε− α)2

}
.

Proof. Consider any x ∈ X \ Xε, i.e., x ∈ X with Pr{G(x, ξ) ≤ 0} < 1 − ε.
We want to estimate the probability that x ∈ XN

α . For i = 1, . . . , N define the
random variable Yi by Yi = 1 if G(x, ξi) ≤ 0 and Yi = 0 otherwise. Then E[Yi] =
Pr{G(x, ξi) ≤ 0} < 1 − ε and Pr{Yi ∈ [0, 1]} = 1. By observing that x ∈ XN

α if and

only if (1/N)
∑N

i=1 Yi ≥ 1 − α and applying Hoeffding’s inequality, we obtain

Pr
{
x ∈ XN

α

}
= Pr

{
1

N

N∑
i=1

Yi ≥ 1 − α

}
≤ Pr

{
N∑
i=1

(Yi − E[Yi]) ≥ N(ε− α)

}

≤ exp
{
−2N(ε− α)2

}
.
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Then

Pr
{
XN

α � Xε

}
= Pr

{
∃x ∈ XN

α such that Pr {G(x, ξ) ≤ 0} < 1 − ε
}

≤
∑

x∈X\Xε

Pr
{
x ∈ XN

α

}
≤ |X \Xε| exp

{
−2N(ε− α)2

}
.

For fixed α < ε and δ ∈ (0, 1), Theorem 5 shows that if we take

N ≥ 1

2(ε− α)2
log

(
|X \Xε|

δ

)
,

then, if (PN
α ) is feasible, it will yield a feasible solution to (Pε) with probability at

least 1 − δ. If |X| ≤ Un, we can take

(6) N ≥ 1

2(ε− α)2
log

(
1

δ

)
+

n

2(ε− α)2
log(U).

Note that N grows linearly with the dimension n of the feasible region and logarith-
mically with 1/δ, so that the confidence of generating a feasible solution can be made
large without requiring N to be too large. However, the quadratic dependence on
ε−α implies that this a priori estimate of how large N should be will grow quite large
for α near ε.

Theorem 5 states that for α < ε every feasible solution to the sample approxi-
mation problem will be feasible to the original problem with risk level ε with high
probability as N gets large. This is in contrast to the results of the scenario ap-
proximation method presented in [8] in which α = 0.0 is required, and the result is
that the optimal solution to the sample approximation problem will be feasible to the
original problem with high probability. The advantage of our approach is that one
need not solve the sample approximation problem to optimality to obtain a solution
to the original problem. Simple heuristics which select which sampled constraints to
be satisfied, e.g., greedily or by local search, can be used to yield feasible solutions for
the approximation problem, which by virtue of Theorem 5 will have high probability
of being feasible to the original problem. This comment also applies to subsequent
feasibility results in which we relax the assumption that the feasible region X is finite.

In this case of finite X, we can combine Theorem 5 with Theorem 3 to demonstrate
that solving a sample approximation with α = ε will yield an exact optimal solution
with probability approaching one exponentially fast with N . Let X∗

ε be the set of
optimal solutions to (Pε), and define α = max{Pr{G(x, ξ) � 0} : x ∈ X∗

ε }. By
definition, we have z∗α = z∗ε . Next, let α = min{Pr{G(x, ξ) � 0} : x ∈ X \Xε}. By
definition, we have α > ε. Finally, define κ = min{ε− α, α− ε}.

Corollary 6. Assume that α < ε. Then

Pr
{
ẑNε = z∗ε

}
≥ 1 − (|X| + 1) exp

{
−2Nκ2

}
.

Proof. First observe that κ > 0 when α < ε. Next, we apply Theorem 3 with α
in place of ε and ε in place of α to obtain Pr{ẑNε ≤ z∗α} ≥ 1 − exp{−2N(ε − α)2}.
Because z∗α = z∗ε , this implies that Pr{ẑNε > z∗ε } ≤ exp{−2N(ε− α)2}.

We next observe that the proof of Theorem 5 can be modified to show the slightly
stronger result that

Pr
{
XN

α ⊆ X ′
ε

}
≥ 1 − |X \X ′

ε| exp
{
−2N(ε− α)2

}
,
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where X ′
ε = {x ∈ X : Pr{G(x, ξ) ≤ 0} > 1 − ε}. (In the proof, we consider each

x ∈ X \X ′
ε and observe that the defined random variable Yi satisfies E[Yi] ≤ 1 − ε.

The remainder of the proof is identical with Xε replaced by X ′
ε.) By applying this

result, we obtain

Pr
{
XN

ε ⊆ X ′
α

}
≥ 1 − |X \X ′

α| exp
{
−2N(α− ε)2

}
.

However, if x ∈ X ′
α, then Pr{G(x, ξ) � 0} < α, and by definition of α this implies

that Pr{G(x, ξ) � 0} ≤ ε and thus X ′
α ⊆ Xε. It follows that

Pr
{
ẑNε < z∗ε

}
≤ Pr

{
XN

ε � Xε

}
≤ |X| exp

{
−2N(α− ε)2

}
.

Therefore,

Pr
{
ẑNε �= z∗ε

}
≤ Pr

{
ẑNε > z∗ε

}
+ Pr

{
ẑNε < z∗ε

}
≤ exp

{
−2N(ε− α)2

}
+ |X| exp

{
−2N(α− ε)2

}
≤ (1 + |X|) exp

{
−2Nκ2

}
.

The assumption that α < ε is mild since, because X is finite, there are only finitely
many values of ε ∈ [0, 1] for which it is possible to have ε = α. Stated another way, if
we add a random perturbation uniformly distributed in (−γ, γ) to ε, where γ can be
arbitrarily small, then the assumption will hold with probability one. On the other
hand, the number of scenarios required to guarantee a reasonably high probability of
obtaining the optimal solution will be at least proportional to (ε − α)−2 and hence
may be very large. Thus, Corollary 6 illustrates the qualitative behavior of the sample
approximation with α = ε in the finite feasible region case but may not be useful for
estimating the required sample size.

If we take α = 0 in Theorem 5, we obtain improved dependence of N on ε.
Theorem 7. Suppose that X is finite and α = 0. Then

Pr
{
XN

0 ⊆ Xε

}
≥ 1 − |X \Xε|(1 − ε)N .

Proof. With α = 0, if x ∈ X satisfies Pr{G(x, ξ) ≤ 0} < 1 − ε, then x ∈ XN
0 if

and only if G(x, ξi) ≤ 0 for each i = 1, . . . , N , and hence Pr{x ∈ XN
0 } < (1 − ε)N .

The claim then follows just as in the proof of Theorem 5.
When α = 0, to obtain confidence 1 − δ that (PN

α ) will yield a feasible solution
to (Pε) whenever (PN

α ) is feasible, we should take

N ≥ log−1

(
1

1 − ε

)
log

(
|X \Xε|

δ

)
.

If |X| ≤ Un, then it is sufficient to take

(7) N ≥ 1

ε
log

(
1

δ

)
+

n

ε
logU,

where we have used the inequality log(1/(1 − ε)) ≥ ε. Hence, with α = 0, the
required sample size again grows linearly in n but now also linearly with 1/ε. Note
the similarity between the bound (7) and the bound of Campi and Calafiore [8]

N ≥ 2

ε
log

(
1

δ

)
+ 2n +

2n

ε
log

(
2

ε

)
,
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which also exhibits linear dependence in n and (nearly) linear dependence in 1/ε. This
is interesting considering the significantly different assumptions used for the analysis.
In [8] it is assumed that X is a convex set and G(x, ξ) is a convex function of x for
every possible value of ξ. In contrast, we make the strong assumption that X is finite
but require no other assumptions on the form of the random constraint G(x, ξ) ≤ 0.

2.2.2. Random right-hand side. We now show how the assumption that X
is finite can be relaxed when the probabilistic constraint involves randomness only
in the right-hand side. Thus, in this section we assume that G(x, ξ) = ξ − g(x),
where g : Rn → Rm, and Ξ ⊆ Rm. Let the cumulative distribution function of ξ
be F (y) = Pr{ξ ≤ y} for y ∈ Rm. Then the feasible region of the probabilistically
constrained problem with a random right-hand side is

X̄ε =
{
x ∈ X : F (g(x)) ≥ 1 − ε

}
.

The feasible region of the sample approximation problem for α ∈ [0, 1) is

X̄N
α =

{
x ∈ X :

1

N

N∑
i=1

I
(
g(x) ≥ ξi

)
≥ 1 − α

}
.

We first consider the case that ξ has a finite distribution, that is, Ξ = {ξ1, . . . , ξK}.
Note that K may be very large, for example, K = Um for a positive integer U . Next,
for j = 1, . . . ,m define Ξj = {ξkj : k = 1, . . . ,K}, and finally let C =

∏m
j=1 Ξj .

Theorem 8. Suppose that ξ has a finite distribution, and let α ∈ [0, ε). Then

Pr
{
X̄N

α ⊆ X̄ε

}
≥ 1 − |C| exp

{
−2N(ε− α)2

}
.

Proof. Let Cε = {y ∈ C : F (y) ≥ 1 − ε} and

CN
α =

{
y ∈ C :

1

N

N∑
i=1

I
(
y ≥ ξi

)
≥ 1 − α

}
.

Because C is a finite set, we can apply Theorem 5 to obtain

(8) Pr
{
CN

α ⊆ Cε

}
≥ 1 − |C| exp

{
−2N(ε− α)2

}
.

Now, let x ∈ X̄N
α , so that x ∈ X and

∑N
i=1 I(g(x) ≥ ξi) ≥ N(1−α). Define ȳ ∈ C by

ȳj = max{yj ∈ Ξj : yj ≤ gj(x)}, j = 1, . . . ,m,

so that by definition ȳ ≤ g(x). Next, note that if g(x) ≥ ξi for some i, then also

ȳ ≥ ξi since ξi ∈ C. Hence,
∑N

i=1 I(ȳ ≥ ξi) ≥ N(1 − α) and so ȳ ∈ CN
α . Hence, when

CN
α ⊆ Cε, F (ȳ) ≥ 1 − ε, and, because ȳ ≤ g(x), also F (g(x)) ≥ 1 − ε and so x ∈ X̄ε.

Since x ∈ X̄N
α was arbitrary, this shows that, when CN

α ⊆ Cε, X̄
N
α ⊆ X̄ε, and the

result follows from (8).
If, for example, |Ξj | ≤ U for each j, then |C| ≤ Um, so to obtain confidence 1− δ

that X̄N
α ⊆ X̄ε it is sufficient to take

(9) N ≥ 1

2(ε− α)2
log

(
1

δ

)
+

m

2(ε− α)2
logU.
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The difference between this bound and (6) is that (9) depends linearly on m, the
dimension of ξ, whereas (6) depends linearly on n, the dimension of x.

Similarly to the case of finite feasible region X, when ξ has a finite distribution, it
can be shown that the sample approximation problem with ε = α will yield an exact
optimal solution with probability approaching one as N increases. The statement and
proof of this result are completely analogous to those of Corollary 6 and are omitted
for the sake of brevity.

As in the case of Theorem 7, if we take α = 0, we can obtain the stronger
convergence result

Pr
{
X̄N

0 ⊆ X̄ε

}
≥ 1 − |C|(1 − ε)N .

The assumption in Theorem 8 that Ξ is finite can be relaxed if we assume that
X̄ε ⊆ X̄(l, u) := {x ∈ X : l ≤ g(x) ≤ u} for some l, u ∈ Rm. This assumption is not
very strict. Indeed, if we define l ∈ Rm by

lj = min{l ∈ R : Fj(l) ≥ 1 − ε},

where Fj is the marginal distribution of ξj for j = 1, . . . ,m, then g(x) ≥ l for any
x ∈ X̄ε. This holds because if gj(x) < lj for some j, then Pr{g(x) ≥ ξ} ≤ Pr{gj(x) ≥
ξj} = Fj(gj(x)) < 1 − ε by the definition of lj and hence x /∈ X̄ε. Furthermore, if X
is compact and g(x) is continuous in x, then if we define u ∈ Rm by

uj = max{gj(x) : x ∈ X}, j = 1, . . . ,m,

each uj is finite, and, by definition, g(x) ≤ u for any x ∈ X̄. Under the assumption
that X̄ε ⊆ X̄(l, u) the assumption that Ξ is finite can be replaced by the assumption
that Ξ∩{y ∈ Rm : l ≤ y ≤ u} is finite, leading to a result similar to Theorem 8, with
a nearly identical proof.

Alternatively, when X̄ε ⊆ X̄(l, u), we can obtain a similar result if ξ has a Lip-
schitz continuous cumulative distribution function F on [l, u] = {y ∈ Rm : l ≤ y ≤ u}.
That is, we assume that there exists L > 0 such that

|F (y) − F (y′)| ≤ L‖y − y′‖∞ ∀y, y′ ∈ [l, u],

where ‖y‖∞ = max{|yj | : j = 1, . . . ,m}. Under the assumption that X̄ε ⊆ X̄(l, u) we
add the constraints l ≤ g(x) ≤ u to the sample approximation problem to obtain

X̄N
α (l, u) =

{
x ∈ X̄(l, u) :

1

N

N∑
i=1

I
(
g(x) ≥ ξi

)
≥ 1 − α

}
.

We define D = max{uj − lj : j = 1, . . . ,m}. Then we have the following.
Theorem 9. Suppose that X̄ε ⊆ X̄(l, u) and F is Lipschitz continuous with

constant L. Let α ∈ [0, ε) and β ∈ (0, ε− α). Then

Pr
{
X̄N

α (l, u) ⊆ X̄ε

}
≥ 1 − �DL/β�m exp

{
−2N(ε− α− β)2

}
.

Proof. Let K = �DL/β�, and define Yj = {lj + (uj − lj)i/K : i = 1, . . . ,K} for
j = 1, . . . ,m and Y =

∏m
j=1 Yj , so that |Y | = Km and that for any y ∈ [l, u] there

exists y′ ∈ Y such that y′ ≥ y and ‖y − y′‖∞ ≤ β/L. Indeed, for a given y ∈ [l, u]
such a y′ can be obtained by letting

y′j = min{w ∈ Yj : w ≥ yj}, j = 1, . . . ,m.
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With this definition of y′, we have y′ ≥ y and

|y′j − yj | = y′j − yj ≤ (uj − lj)/K ≤ D/K ≤ β/L, j = 1, . . . ,m.

Next, let Yε−β = {y ∈ Y : F (y) ≥ 1 − ε + β} and

(10) Y N
α =

{
y ∈ Y :

1

N

N∑
i=1

I
(
y ≥ ξi

)
≥ 1 − α

}
.

Since Y is finite and α < ε− β, we can apply Theorem 5 to obtain

Pr
{
Y N
α ⊆ Yε−β

}
≥ 1 − |Y | exp

{
−2N(ε− α− β)2

}
.

Now, let x ∈ X̄N
α (l, u), and let y′ ∈ Y be such that y′ ≥ g(x) and ‖y′−g(x)‖∞ ≤ β/L.

By Lipschitz continuity of F , this implies that

(11) F (y′) − F (g(x)) ≤ L‖y′ − g(x)‖∞ ≤ β.

Because x satisfies
∑N

i=1 I(g(x) ≥ ξi) ≥ N(1−α) and y′ ≥ g(x), we have
∑N

i=1 I(y′ ≥
ξi) ≥ N(1 − α) and hence y′ ∈ Y N

α . Thus, by using (11), when Y N
α ⊆ Yε−β occurs,

F (g(x)) ≥ F (y′) − β ≥ (1 − ε + β) − β = 1 − ε.

Since x ∈ X̄N
α (l, u) was arbitrary, Y N

α ⊆ Yε−β implies that X̄N
α (l, u) ⊆ X̄ε, and the

result follows from (10).
To obtain a confidence of at least 1− δ that X̄N

α (l, u) ⊆ X̄ε, it is sufficient to take

N ≥ 1

2(ε− α− β)2
log

(
1

δ

)
+

m

2(ε− α− β)2
log

⌈
DL

β

⌉
.

Note that for fixed ε > 0 and α ∈ [0, ε), β is a free parameter which can be chosen in
(0, ε− α). If, for example, we take β = (ε− α)/2, we obtain

N ≥ 2

(ε− α)2
log

(
1

δ

)
+

2m

(ε− α)2
log

⌈
2DL

ε− α

⌉
.

Once again, if α = 0, similar arguments can be used to conclude that if

N ≥ 2

ε
log

(
1

δ

)
+

2m

ε
log

⌈
2DL

ε

⌉
,

then Pr{X̄N
0 (l, u) ⊆ X̄ε} ≥ 1 − δ.

2.2.3. Lipschitz continuous G. We now turn to the problem of using a sample
approximation problem to generate feasible solutions to (Pε) when X is not necessarily
finite and G(x, ξ) does not necessarily have the form G(x, ξ) = g(x)−ξ. In this section,
we assume for simplicity of exposition that G takes values in R. This is without
loss of generality, since if Ḡ : Rn × Rd → Rm, we can define G : Rn × Rd → R
by G(x, ξ) = max{Ḡj(x, ξ) : j = 1, . . . ,m} and the constraints G(x, ξ) ≤ 0 and
Ḡ(x, ξ) ≤ 0 are equivalent. In this section, we shall make the following Lipschitz
continuity assumption on G.

Assumption 1. There exists L > 0 such that

|G(x, ξ) −G(x′, ξ)| ≤ L‖x− x′‖∞ ∀x, x′ ∈ X and ∀ξ ∈ Ξ.
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It is important that the Lipschitz constant L is independent of ξ ∈ Ξ, and this
condition may make Assumption 1 appear rather stringent. There are, however, in-
teresting cases in which the assumption does hold. For example, if Ξ is finite (with
possibly huge cardinality) and G(x, ξ) is Lipschitz continuous with Lipschitz constant
L(ξ) for each ξ ∈ Ξ, then Assumption 1 holds with L = max{L(ξ) : ξ ∈ Ξ}. Alter-
natively, if Ξ is compact, G(x, ξ) = max{Tj(ξ)x : j = 1, . . . ,m}, and Tj : Ξ → Rn is
continuous in ξ for each j, then Assumption 1 holds with

L = sup
ξ∈Ξ

{
max{‖Tj(ξ)‖∞ : j = 1, . . . ,m}

}
.

To generate feasible solutions for this general case, we will also need to modify
the sample approximation problem somewhat. In addition to taking a risk level α less
than the nominal risk level ε, we will require that at least (1−α)N of the constraints
be satisfied strictly. That is, for a fixed γ > 0, we define the sample approximation
feasible region to be

XN
α,γ =

{
x ∈ X :

1

N

N∑
i=1

I
(
G(x, ξ) + γ ≤ 0

)
≥ 1 − α

}
.

Finally, we will assume that X is bounded and let D = sup{‖x − x′‖∞ : x, x′ ∈ X}
be the diameter of X.

Theorem 10. Suppose that X is bounded with diameter D and Assumption 1
holds. Let α ∈ [0, ε), β ∈ (0, ε− α), and γ > 0. Then

Pr
{
XN

α,γ ⊆ Xε

}
≥ 1 − �1/β��2LD/γ�n exp

{
−2N(ε− α− β)2

}
.

Proof. For x ∈ X, let φ(x) = Pr{G(x, ξ) ≤ 0}. Let J = �1/β�, for j = 1, . . . , J−1,
define

Xj =
{
x ∈ X :

j − 1

J
≤ φ(x) <

j

J

}
,

and let XJ = {x ∈ X : (J − 1)/J ≤ φ(x) ≤ 1}. Next, we claim that for each j there
exists a finite set Zγ

j ⊆ Xj such that |Zγ
j | ≤ �2LD/γ�n and for all x ∈ Xj there exists

z ∈ Zγ
j such that ‖x− z‖∞ ≤ γ/L. Indeed, because Xj ⊆ X and X is bounded with

diameter D, there exists a finite set Y ⊆ Rn with |Y | ≤ �2LD/γ�n such that for all
x ∈ X there exists y ∈ Y such that ‖x − y‖∞ ≤ γ/2L. For any y ∈ Rn and η > 0,
define B(y, η) = {x ∈ RN : ‖y−x‖∞ ≤ η}. Now, let Y ′

j = {y ∈ Y : Xj∩B(y, γ/2L) �=
∅}, and for y ∈ Y ′

j select an arbitrary xy ∈ Xj ∩B(y, γ/2L). Then let Zγ
j =

⋃
y∈Y ′

j
xy.

By definition, Zγ
j ⊆ Xj and |Zγ

j | ≤ �2LD/γ�n. In addition, for any x ∈ Xj , there
exists y such that x ∈ B(y, γ/2L), and, because for this y, Xj ∩B(y, γ/2L) �= ∅, there
exists xy ∈ Zγ

j such that ‖xy − y‖∞ ≤ γ/2L. Hence,

‖xy − x‖∞ ≤ ‖xy − y‖∞ + ‖y − x‖∞ ≤ γ/L.

Now define Zγ =
⋃J

j=1 Z
γ
j , and observe that |Zγ | ≤ J�2LD/γ�n. Next, define

Zγ
ε−β =

{
x ∈ Zγ : Pr{G(x, ξ) ≤ 0} ≥ 1 − ε + β

}
and

Zγ,N
α =

{
x ∈ Zγ :

1

N

N∑
i=1

I
(
G(x, ξi) ≤ 0

)}
.
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Since Zγ is finite and α < ε− β, we can apply Theorem 5 to obtain

(12) Pr
{
Zγ,N
α ⊆ Zγ

ε−β

}
≥ 1 − �1/β��2LD/γ�n exp

{
−2N(ε− α− β)2

}
.

Now consider an arbitrary x ∈ XN
α,γ . Let j ∈ {1, . . . , J} be such that x ∈ Xj . By

the definition of Zγ
j there exists z ∈ Zγ

j such that ‖x− z‖∞ ≤ γ/L. By the definition
of Xj and because Zγ

j ⊆ Xj , we have |φ(x) − φ(z)| ≤ β. In addition, Assumption 1

implies that |G(x, ξi) − G(z, ξi)| ≤ γ. Hence, if G(x, ξi) + γ ≤ 0, then G(z, ξi) ≤ 0,

and, because x satisfies
∑N

i=1 I(G(x, ξi)+γ ≤ 0) ≥ N(1−α), it follows that z satisfies∑N
i=1 I(G(z, ξi) ≤ 0) ≥ N(1 − α). Thus z ∈ Zγ,N

α , and so if Zγ,N
α ⊆ Zγ

ε−β , then

φ(z) ≥ 1 − ε + β. Thus, φ(x) ≥ φ(z) − β ≥ 1 − ε when Zγ,N
α ⊆ Zγ

ε−β . Since

x ∈ XN
α,γ was arbitrary, Zγ,N

α ⊆ Zγ
ε−β implies that XN

α,γ ⊆ Xε, and the result follows
from (12).

Once again, for fixed ε and α < ε, β is a free parameter to be chosen in (0, ε−α).
If we choose, for example, β = (ε − α)/2, then we can assure that XN

α,γ ⊆ Xε with
confidence at least 1 − δ by taking

N ≥ 2

(ε− α)2

[
log

(
1

δ

)
+ n log

⌈
2LD

γ

⌉
+ log

⌈
2

ε− α

⌉]
.

Additionally, if α = 0, similar arguments show that XN
0,γ ⊆ Xε occurs with probability

at least 1 − δ if

N ≥ 2

ε

[
log

(
1

δ

)
+ n log

⌈
2LD

γ

⌉
+ log

⌈
2

ε

⌉]
.

Regardless of whether α = 0 or α > 0, the term 1/γ is taken under log, and hence
γ can be made very small without significantly increasing the required sample size,
suggesting that modifying the sample approximation problem to require at least (1−
α)N of the sampled constraints to be satisfied with a slack of at least γ need not
significantly alter the feasible region.

2.2.4. A posteriori feasibility checking. The results of sections 2.2.1–2.2.3
demonstrate that, with appropriately constructed sample approximation problems,
the probability that the resulting feasible region will be a subset of the true feasible
region Xε approaches one exponentially fast. This gives strong theoretical support
for using these sample approximations to yield solutions feasible to Xε. These results
yield a priori estimates on how large the sample size N should be to have high
confidence that the sample approximation feasible region will be a subset of Xε.
However, these a priori estimates are likely to yield required sample sizes which are
very large, and hence the sample approximation problems will still be impractical to
solve. This is particularly true if α > 0 and ε − α is small. However, typically in
sampling approximation results such as these, the a priori estimates of the required
sample size are very conservative, and in fact much smaller sample sizes are sufficient.
See [18] for a computational demonstration of this phenomenon for the case of SAA
applied to two-stage stochastic linear programs. Thus, a natural alternative to using
the sample size suggested by the a priori estimates is to solve a sample approximation
problem with a smaller sample to yield a candidate solution x̂ ∈ X and then conduct
an a posteriori check to see whether Pr{G(x̂, ξ) ≤ 0} ≥ 1 − ε. A simple method for
conducting an a posteriori analysis of the risk of a candidate solution is to take a single
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very large Monte Carlo sample ξ1, . . . , ξN
′

and count how many times G(x̂, ξi) ≤ 0
holds. Bounds on the true risk Pr{G(x̂, ξ) ≤ 0} which hold with high confidence can
then be constructed, and, if N ′ is very large, these bounds should be tight. This
approach will not work well if the allowed risk ε is extremely small, but, on the other
hand, we do not expect the sample approximation approach to be practical in this case
anyway. Of course, if good estimates of Pr{G(x̂, ξ) ≤ 0} can be obtained efficiently by
some other method, then this other method should be used for a posteriori feasibility
checking. For example, if G(x, ξ) = ξ−g(x) and the components of ξ are independent,
then Pr{g(x) ≥ ξ} can be calculated as

∏
i Pr{gi(x) ≥ ξi}.

3. Numerical experiments. We conducted experiments to test the effective-
ness of the sample approximation approach for yielding good feasible solutions and
lower bounds. In particular, our aim is to determine whether using α > 0 in the
sample approximation can yield better solutions than when using α = 0 as in the
scenario approximation approach of [7, 22]. In addition, we test whether reasonable
lower bounds which are valid with high probability can be obtained. We first con-
ducted tests on a probabilistic version of the classical set covering problem, which has
been studied recently in [5, 26, 27]. This problem has both a finite feasible region
and finite distribution (although both are exponentially large) so that, for generating
feasible solutions, the stronger Theorems 5 and 8 apply. These results are given in
section 3.1. We also conducted tests on a probabilistic version of the transportation
problem. For this problem, the feasible region is continuous, and we also use a joint
normal distribution for the right-hand side vector, so that Theorem 9 applies. These
results are presented in section 3.2.

Note that, although Theorem 3 provides support for using the sample approxima-
tion scheme to generate lower bounds, we will use Theorem 4 to actually obtain lower
bounds which are valid with high confidence, because it can be used regardless of how
large the sample size N is (with the possible drawback that using smaller N will yield
weaker lower bounds). Similarly, Theorems 5, 8, and 9 support the use of sample
approximation to yield feasible solutions, but we do not use these theorems to guide
our choice of α and N . Indeed, the bounds implied by these theorems would suggest
using N which is far too large to be able to solve the approximation problem. Instead,
we experiment with different values of α and N and perform an a posteriori test on
each solution generated to determine whether it is feasible (with high confidence).

3.1. Probabilistic set cover problem. The probabilistic set cover problem is
given by

(PSC) min
{
cx : Pr {Ax ≥ ξ} ≥ 1 − ε, x ∈ {0, 1}n

}
,

where c ∈ Rn is the cost vector, A is an m × n zero-one matrix, and ξ is a random
vector taking values in {0, 1}m. We conducted tests on a single instance of (PSC),
with two values of ε: 0.05 and 0.1.

3.1.1. Test instance. Following [5], we based our tests on a deterministic set-
covering instance, scp41, of the OR library [3], which has m = 200 rows and n = 1000
columns. Also following [5], the random vector ξ is assumed to consist of 20 indepen-
dent subvectors, with each subvector having size k = 10 following the circular distri-
bution. The circular distribution is defined by parameters λj ∈ [0, 1] for j = 1, . . . , k.
First, Bernoulli random variables Yj for j = 1, . . . , k are generated independently,
with Pr{Yj = 1} = λi. Then the random subvector is defined by ξj = max{Yj , Yj+1}
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for j < k and by ξk = max{Y1, Yk}. Because of the simple form of this distribu-
tion, given a solution x, it is possible to calculate exactly Pr{Ax ≥ ξ}. Thus, when
a solution is obtained from a sample approximation problem, we test a posteriori
whether it is feasible at a given risk level by exactly calculating Pr{Ax ≥ ξ}. To
illustrate this calculation, we show how to calculate the probability for a single sub-
vector, that is, Pr{ξj ≤ yj , j = 1, . . . , k}. Then, with y = Ax, the overall probability
Pr{Ax ≥ ξ} is calculated as the product of the probabilities for each subvector. Let
J = {1 ≤ j ≤ k : yj = 0}. Then

Pr {ξj ≤ yj , j = 1, . . . , k} = Pr {ξj = 0, j ∈ J} = Pr
{
Yj = 0, j ∈ J+

}
=

∏
j∈J+

(1−λj),

where J+ = ∪j∈J{j, (j + 1) mod k}. Although in this test calculation of the dis-
tribution function is easy, we stress that this is not a necessary condition to use the
sample approximation; it is necessary only that sampling from the distribution can
be done efficiently.

3.1.2. Solving the sample approximation. To solve the sample approxima-
tion of problem (PSC), we used a mixed-integer program (MIP) formulation which is
equivalent to an extended formulation studied in [20] (see also [19]). The formulation
is not exactly the same, since, because the random right-hand side can take on only
two values, it can be simplified somewhat. Let the scenarios obtained in the sample
of size N be denoted by ξi for i = 1, . . . , N , where each ξi ∈ {0, 1}m. Then the
formulation we use is

min cx

subject to Ax ≥ y,

yj + zi ≥ 1 ∀i, j s.t. ξij = 1,(13)

N∑
i=1

zi ≤ p,(14)

x ∈ {0, 1}n, z ∈ {0, 1}N , y ∈ {0, 1}m,

where p = �αN�. We could relax the intregrality restriction on the y variables, but
we found that leaving this restriction and also placing a higher branching priority
on these variables significantly improved performance when solving with CPLEX 9.0.
The intuition behind this is that if we fix yj = 1, then we are enforcing the constraint
Ajx ≥ 1, and, on the other hand, if we fix yj = 0, then any scenario i for which
ξij = 1 will be fixed to 1, and constraint (14) will quickly become binding. We also
found that some simple preprocessing of the formulation significantly helped solution
times. If, for a row j,

∑
i ξ

i
j > p, then we cannot have yj = 0, and so we fixed

yj = 1, and the corresponding inequalities (13) for j were not included. After this
preprocessing, for each j there will be at most p inequalities in (13), so that these
inequalities add at most mp rows and O(mp) nonzeros to the formulation. By using
this formulation, we found that the sample approximation problems could be solved
quickly, in all cases in less than ten seconds and usually much less. However, this may
be due to the particular distribution used (and the simplicity of the underlying set
cover instance), and thus this should not be taken as a study of the effectiveness of
this formulation in general. Rather, we are interested here only in the properties of
the solutions generated by the sample approximation problems.
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Table 1

Solution results for (PSC) sample problems with ε = 0.05.

Solution risk Feasible solutions cost
α N Ave Min Max σ # Ave Min Max σ

0.00 100 0.107 0.048 0.185 0.042 1 425.0 425 425 ***
110 0.071 0.013 0.100 0.029 3 425.7 424 429 2.9
120 0.069 0.013 0.152 0.049 4 424.8 424 427 1.5
130 0.062 0.020 0.124 0.036 5 424.8 420 429 4.3
140 0.042 0.018 0.080 0.017 8 425.6 421 429 2.8
150 0.041 0.005 0.080 0.026 6 427.3 421 429 3.1

0.05 1000 0.056 0.041 0.072 0.009 2 414.0 414 414 0.0
3000 0.044 0.041 0.055 0.005 8 414.0 414 414 0.0
5000 0.044 0.041 0.060 0.006 8 414.0 414 414 0.0
7500 0.041 0.041 0.041 0.000 10 414.0 414 414 0.0

10000 0.044 0.041 0.054 0.005 8 414.0 414 414 0.0

Table 2

Solution results for (PSC) sample problems with ε = 0.1.

Solution risk Feasible solutions cost
α N Ave Min Max σ # Ave Min Max σ

0.0 80 0.203 0.095 0.311 0.076 1 420.0 420 420 ***
90 0.169 0.084 0.239 0.051 1 428.0 428 428 ***

100 0.107 0.048 0.185 0.042 4 426.0 423 428 500.7
110 0.071 0.013 0.100 0.029 9 425.4 421 429 499.8
120 0.069 0.013 0.152 0.049 7 424.6 419 428 534.3
130 0.062 0.020 0.124 0.036 7 425.3 420 429 488.8

0.1 1000 0.111 0.095 0.141 0.015 4 401.3 400 403 1.5
3000 0.101 0.092 0.115 0.006 6 401.0 400 402 1.1
5000 0.101 0.092 0.108 0.005 5 401.2 400 402 1.1
7500 0.099 0.092 0.105 0.004 7 401.1 400 402 1.1

10000 0.097 0.088 0.103 0.004 8 401.8 400 404 1.3

3.1.3. Feasible solutions. We first tested the effectiveness of the sample ap-
proximation approach for generating feasible solutions. To do so, we varied the risk
level of the approximation problem α and the sample size N . For each combination
of α and N , we generated and solved 10 sample approximation problems. Table 1
gives statistics of the solutions generated for the (PSC) instance with ε = 0.05, and
Table 2 gives the same for the (PSC) instance with ε = 0.1. For each combination
of α and N , we report statistics on the risk of the generated solutions, where for a
solution x the risk is Pr{Ax � ξ}, as well as on the costs of the feasible solutions
generated, i.e., those solutions which have risk less than 0.05 and 0.1, respectively.
For the risk of the solutions, we report the average, minimum, maximum, and sam-
ple standard deviation over the 10 solutions. For the solution costs, we report first
how many solutions were feasible, then report the average, minimum, maximum, and
sample standard deviation of the cost taken over these solutions.

We first discuss results for the case of nominal risk level ε = 0.05. When using
α = 0, the best results were obtained with N in the range of 100–150, and these are
the results that we report. With α = 0, as N increases, more constraints are being
enforced, which leads to a smaller feasible region of the approximation and a higher
likelihood that the optimal solution of the approximation is feasible at the nominal
risk level. However, the smaller feasible region also causes the cost to increase, so
that increasing N more would yield overly conservative solutions. We also conducted
tests with α = 0.05, and for this value of α we used significantly larger sample sizes.
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Table 3

Lower bounds (LB) for (PSC) sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
3000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
5000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
7500 414 414 414 414 0.0% 0.0% 0.0% 0.0%

10000 413 414 414 414 0.2% 0.0% 0.0% 0.0%

The best feasible solution found by using α = 0 had cost 420, and the average cost of
the feasible solutions found was significantly greater than this. When α = 0.05, every
sample size N yielded at least one feasible solution in the ten runs, and every feasible
solution found had cost 414. Thus, using α = 0.05 consistently yields solutions which
are closer to the efficient frontier between the objectives of risk and cost.

For ε = 0.1, we observed similar results. In this case, when using α = 0, the
best results were obtained with N in the range of 80–130. The best solution found
by using α = 0 had cost 419, whereas the best solution found by using α = 0.1 was
400, which was obtained by one of the ten runs for every sample size N . In addition,
observe from Table 1 that using α = 0.05 yields solutions with a risk not exceeding
0.05 and a cost of 414, which is also less than the cost of the best solution found that
had a risk not exceeding 0.1 when using α = 0. Thus, by using α > 0 we are able
to get solutions with lower risk and lower cost as compared to those obtained when
using α = 0.

In terms of the variability of the risks and costs of the solutions generated, using
α > 0 and a much larger sample size yielded solutions with much lower variability
than when using α = 0 and small sample size. This is not surprising since using a
larger sample size naturally should reduce variability. On the other hand, constraining
the sample approximation to have α = 0 prohibits the use of a larger sample size, as
the solutions produced then become overly conservative.

3.1.4. Lower bounds. We next discuss the results for obtaining lower bounds
for (PSC). We used the procedure of Theorem 4 with α = ε and M = 10. We use the
same 10 sample approximation problems as when generating feasible solutions. As
argued after Theorem 4, with α = ε, we have ρ(α, ε,N) = ρ(ε, ε,N) � 1/2. Then, if we
take L = 1, the test of Theorem 4 yields a lower bound with confidence 0.999. Taking
L = 1 corresponds to taking the minimum optimal value over all of the M = 10 runs
(not just over the ones which yielded feasible solutions). More generally, we can take
L ∈ {1, . . . , 10} yielding a lower bound with confidence at least

1 −
L−1∑
i=0

(
10

i

)
ρ(ε, ε,N)i

(
1 − ρ(ε, ε,N)

)10−i � 1 −
L−1∑
i=0

(
10

i

)
(1/2)10

to obtain possibly “tighter” lower bounds of which we are less confident.
The results obtained by using varying values of N and ε = α = 0.05 are given

in Table 3. The gaps reported are the percent by which the lower bound is below
the best feasible solution (414, obtained with α = 0.05 and any of the tested sample
sizes N). Thus, for example, by solving 10 problems with sample size N = 1000, we
obtained a feasible solution of cost 414 and a lower bound of 412, which is valid with
probability at least 0.999. In addition, we obtain a lower bound of 414 which is valid
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Table 4

Lower bounds for (PSC) sample problems with α = ε = 0.1.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 397 397 398 398 0.8% 0.8% 0.5% 0.5%
3000 399 400 400 400 0.3% 0.0% 0.0% 0.0%
5000 400 400 400 400 0.0% 0.0% 0.0% 0.0%
7500 400 400 400 400 0.0% 0.0% 0.0% 0.0%

10000 400 400 400 400 0.0% 0.0% 0.0% 0.0%

with probability of at least 0.989. Thus, we have confidence at least 0.989 that 414 is
the optimal value. Similar results were obtained with larger sample sizes.

Table 4 yields the lower bound results obtained with ε = α = 0.1 and varying
sample size N . By solving 10 sample problems with N = 1000, we obtained a feasible
solution of cost 400 and can say with confidence 0.999 that the optimal solution is at
most 0.8% less costly than this solution. By using N = 5000 (or greater), we obtain a
feasible solution of the same cost but a lower bound which states that with confidence
at least 0.999 this feasible solution is optimal.

3.2. Probabilistic transportation problem. We next tested the sampling
approach on a probabilistic version of the classical transportation problem, which we
call the probabilistic transportation problem (PTP). In this problem, we have a set
of suppliers I and a set of customers D, with |D| = m. The suppliers have limited
capacity Mi for i ∈ I. There is a transportation cost cij for shipping a unit of product
from supplier i ∈ I to customer j ∈ D. The customer demands are random and are
represented by a random vector d̃ taking values in Rm. We assume that we must
choose the shipment quantities before the customer demands are known. We enforce
the probabilistic constraint

(15) Pr

{∑
i∈I

xij ≥ d̃j , j = 1, . . . ,m

}
≥ 1 − ε,

where xij ≥ 0 is the amount shipped from supplier i ∈ I to customer j ∈ D. The
objective is to minimize distribution costs subject to (15) and the supply capacity
constraints ∑

j∈D

xij ≤ Mi ∀i ∈ I.

3.2.1. Test instances. We conducted our tests on an instance with 40 sup-
pliers and 50 customers. The supply capacities and cost coefficients were randomly
generated by using normal and uniform distributions, respectively. The demand is
assumed to have a joint normal distribution. The mean vector and covariance matrix
were randomly generated. We considered two cases for the covariance matrix: a low
variance and a high variance case. In the low variance case, the standard deviation of
the one-dimensional marginal random demands is 10% of the mean on average. In the
high variance case, the covariance matrix of the low variance case is multiplied by 25,
yielding standard deviations of the one-dimensional marginal random demands being
50% of the mean on average. In both cases, we consider a single risk level ε = 0.05.

We remark that, for this particular choice of distribution, the feasible region
defined by the probabilistic constraint is convex [24]. However, the dimension of the
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random vector d̃ is m = 50, and so evaluating Pr{y ≥ d̃} for a single vector y ∈ Rm

would present a computational challenge, whereas in our approach we merely need to
generate random samples from the joint normal distribution, which is relatively easy.
On the other hand, we have not conducted experiments using the convex programming
approach, so we cannot comment on whether our approach works better than this.
This would be an interesting future experiment. Our intention here is merely to test
our approach on a problem with a continuous feasible region and distribution.

Once a sample approximation is solved yielding solution x̂, we use a single very
large sample (N ′ = 250000) to estimate Pr{ŷ ≥ d̃}, where ŷ ∈ Rm is the vector
given by ŷj =

∑
i∈I x̂ij for j ∈ D. Letting d1, . . . , dN

′
be the realizations of this large

sample, we calculate
∑N ′

i=1 I(ŷ ≥ di) and use the normal approximation to the binomial
distribution to construct an upper bound α̂ on the true solution risk Pr{ŷ ≥ d̃}, which
is valid with confidence 0.999. Henceforth for this experiment, if we say a solution
is feasible at risk level ε, we mean α̂ ≤ ε, and so it is feasible at this risk level with
confidence 0.999. We used such a large sample to get a good estimate of the true
risk of the solutions generated, but we note that, because this sample was so large,

generating this sample and calculating
∑N ′

i=1 I(ŷ ≥ di) often took longer than solving
the sample approximation itself.

3.2.2. Solving the sample approximation. We solved the sample approxi-
mation problem by using an MIP formulation, augmented with a class of strong valid
inequalities. We refer the reader to [20, 19] for details of this formulation and the
valid inequalities, as well as detailed computational results for solving the sample
approximation problems. However, we mention that, in contrast to the probabilistic
set cover problem, solving the sample approximation problem with the largest sample
size that we consider (N = 10000) and the largest α (0.05) takes a nontrivial amount
of time, in some cases as long as 30 minutes. On the other hand, for N = 5000, the
worst case was again α = 0.05 and usually took less than 4 minutes to solve.

3.2.3. Low variance instance. We begin by presenting results for the instance
in which the distribution of demand has relatively low variance. For generating feasible
solutions, we tested α = 0 with various sample sizes N and report the results for the
sample sizes which yielded the best results. Once again, this means that we use a
relatively small sample size for the case α = 0, as compared to the cases with α > 0.
We tested several values of α > 0 and varying sample size. In contrast to the (PSC)
case, we found that taking α = ε or even α close to ε did not yield feasible solutions,
even with a large sample size. Thus, we report results for several different values of α in
the range 0.03–0.036. The reason that we report results for this many different values
of α is to illustrate that, within this range, the results are not extremely sensitive to
the choice of α (results for more values of α can be found in [19]).

Table 5 gives the characteristics of the solutions generated for the different values
of α and N . We observe that, as in the case of (PSC), the average cost of the feasible
solutions obtained by using α > 0 is always less than the minimum cost of the feasible
solutions obtained with α = 0. However, for this instance, the minimum cost solution
obtained by using α = 0 is not so significantly worse than the minimum cost solutions
using different values of α > 0, being between 0.40% and 0.58% more costly. As in
the case of (PSC), using α > 0 and large N significantly reduced the variability of
the risk and cost of the solutions generated.

We next investigated the quality of the lower bounds that can be obtained for
PTP by solving sample approximation problems. As in the case of (PSC), we obtained
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Table 5

Solution results for low variance PTP sample problems with ε = 0.05.

Solution risk Feasible solutions cost
α N Ave Min Max σ # Ave Min Max σ

0.000 900 0.048 0.036 0.066 0.011 7 2.0266 2.0199 2.0320 0.0045
950 0.047 0.039 0.055 0.005 6 2.0244 2.0185 2.0291 0.0041

1000 0.045 0.040 0.051 0.004 8 2.0253 2.0185 2.0300 0.0039
1500 0.033 0.025 0.043 0.005 10 2.0336 2.0245 2.0406 0.0053

0.030 5000 0.049 0.045 0.050 0.002 6 2.0098 2.0075 2.0114 0.0013
7500 0.045 0.041 0.047 0.002 10 2.0112 2.0094 2.0136 0.0015

10000 0.042 0.041 0.044 0.001 10 2.0129 2.0112 2.0145 0.0010
0.033 5000 0.052 0.049 0.054 0.002 2 2.0080 2.0073 2.0088 0.0011

7500 0.048 0.045 0.051 0.002 7 2.0092 2.0075 2.0107 0.0012
10000 0.045 0.044 0.047 0.001 10 2.0103 2.0089 2.0118 0.0009

0.036 5000 0.055 0.053 0.057 0.002 0 *** *** *** ***
7500 0.052 0.049 0.054 0.002 2 2.0079 2.0077 2.0080 0.0002

10000 0.049 0.047 0.051 0.001 8 2.0080 2.0066 2.0093 0.0008

Table 6

Lower bounds for low variance PTP sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 1.9755 1.9757 1.9775 1.9782 1.55% 1.54% 1.45% 1.42%
3000 1.9879 1.9892 1.9892 1.9910 0.93% 0.87% 0.87% 0.78%
5000 1.9940 1.9943 1.9948 1.9951 0.63% 0.62% 0.59% 0.57%
7500 1.9954 1.9956 1.9959 1.9963 0.56% 0.55% 0.54% 0.52%

10000 1.9974 1.9977 1.9980 1.9981 0.46% 0.45% 0.43% 0.42%

lower bounds by generating and solving 10 sample approximation problems with α =
ε = 0.05. By taking the lowest value of all of the optimal values, we obtain a lower
bound valid with confidence 0.999, and taking the second smallest yields a lower bound
which is valid with confidence 0.989, etc. The results for different values of N are
given in Table 6. For reference, the percentage gap between these lower bounds and
the best feasible solution found (with cost 2.0066) is also given. By using N ≥ 3000 we
obtain lower bounds that are valid with confidence 0.999 and are within one percent
of the best feasible solution, indicating that, for this low variance instance, the lower
bounding scheme yields good evidence that the solutions that we have found are good
quality.

3.2.4. High variance instance. Table 7 gives the characteristics of the solu-
tions generated for the high variance instance. In this case, the maximum cost of a
feasible solution generated by using any combination of α > 0 and N was less than
the minimum cost of any feasible solution generated by using α = 0. The minimum
cost feasible solution generated with α = 0 was between 0.87% and 1.6% more costly
than the best feasible solution generated for the different combinations of α > 0 and
N . Thus, it appears that, for the high variance instance, using α > 0 in a sample
approximation is more important for generating good feasible solutions than for the
low variance instance.

Table 8 gives the lower bounds for different confidence levels and sample sizes, as
well as the gaps between these lower bounds and the best feasible solution found. In
this case, solving 10 instances with sample size N = 1000 yields a lower bound that is
not very tight, 5.11% from the best solution cost at confidence level 0.999. Increasing
the sample size improves the lower bound, but even with N = 10000 the gap between
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Table 7

Solution results for high variance PTP sample problems with ε = 0.05.

Solution risk Feasible solutions cost
α N Ave Min Max σ # Ave Min Max σ

0.000 900 0.050 0.035 0.066 0.010 4 3.5068 3.4672 3.5488 0.0334
950 0.050 0.041 0.058 0.006 6 3.4688 3.4403 3.4917 0.0191

1000 0.045 0.041 0.052 0.004 9 3.4895 3.4569 3.5167 0.0234
1500 0.030 0.022 0.035 0.005 10 3.5494 3.5205 3.6341 0.0368

0.030 5000 0.050 0.045 0.053 0.002 4 3.4014 3.3897 3.4144 0.0101
7500 0.046 0.043 0.050 0.002 9 3.4060 3.3920 3.4235 0.0098

10000 0.043 0.041 0.046 0.001 10 3.4139 3.4001 3.4181 0.0055
0.033 5000 0.053 0.046 0.057 0.003 1 3.4107 3.4107 3.4107 ***

7500 0.049 0.046 0.054 0.002 7 3.3928 3.3865 3.4020 0.0062
10000 0.046 0.042 0.049 0.002 10 3.3982 3.3885 3.4139 0.0086

0.036 5000 0.057 0.049 0.060 0.003 1 3.3979 3.3979 3.3979 ***
7500 0.053 0.050 0.057 0.002 0 *** *** *** ***

10000 0.050 0.046 0.053 0.002 4 3.3927 3.3859 3.3986 0.0054

Table 8

Lower bounds for high variance PTP sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 3.2089 3.2158 3.2178 3.2264 5.11% 4.91% 4.85% 4.59%
3000 3.2761 3.2775 3.2909 3.2912 3.12% 3.08% 2.69% 2.68%
5000 3.3060 3.3075 3.3077 3.3094 2.24% 2.19% 2.19% 2.14%
7500 3.3083 3.3159 3.3165 3.3169 2.17% 1.95% 1.93% 1.92%

10000 3.3200 3.3242 3.3284 3.3299 1.83% 1.70% 1.58% 1.53%

the lower bound at confidence 0.999 and the best solution found is 1.83%. Thus,
it appears that, for the high variance instance, the sample approximation scheme
exhibits considerably slower convergence, in terms of the lower bounds, the feasible
solutions generated, or both.

4. Concluding remarks. We have studied a sample approximation scheme
for probabilistically constrained optimization problems and demonstrated how this
scheme can be used to generate optimality bounds and feasible solutions for very gen-
eral optimization problems with probabilistic constraints. We have also conducted a
preliminary computational study of this approach. This study demonstrates that us-
ing sample approximation problems that allow a choice of which sampled constraints
to satisfy can yield good quality feasible solutions. In addition, the sample approxima-
tion scheme can be used to obtain lower bounds which are valid with high confidence.
We found that good lower bounds could be found in the case of a finite (but possi-
bly exponential) feasible region and distribution and also in the case of a continuous
feasible region and distribution, provided the distribution has a reasonably low vari-
ance. With a continuous feasible region and distribution, if the distribution has a
high variance, the lower bounds were relatively weak. Future work in this area will
include conducting more extensive computational tests and also extending the theory
to allow generation of samples which are not necessarily independent and identically
distributed. For example, the use of variance-reduction techniques such as Latin hy-
percube sampling or quasi-Monte Carlo sampling may yield significantly faster con-
vergence. In addition, to apply the results of this paper to more general probabilistic
programs, such as mixed-integer programming with a random constraint matrix, it
will be necessary to study how to solve the nonconvex sample approximation problem
in these cases.
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Abstract. Let W be an arbitrary subset of R
n and posW the positive hull of W . We are con-

cerned with conditions under which one can guarantee continuity properties for posW as a function
of W . The results are then applied in the context of semi-infinite linear programs and stochastic
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1. Introduction. Let {W ;W ν , ν ∈ N} be a collection of nonempty subsets of
R

m and {posW ; posW ν , ν ∈ N} the positive hulls generated by these sets, i.e.,

posW =

⎧⎨
⎩t =

q∑
j=1

tjxj |tj ∈ W,xj ≥ 0, with q finite

⎫⎬
⎭ ,

and posW ν is defined similarly for each W ν . Our overall concern is with the continuity
of the positive hull mapping W �→ posW , but, more specifically, we are interested in
finding conditions under which

lim sup
ν→∞

posW ν ⊂ posW

when the W ν “converge” to W ; here and throughout, lim supν C
ν designates the outer

limit, in the sense of Painlevé-Kuratowski, of the sets Cν , that is, the set of all limits
of subsequences limνi→∞ tνi , with tνi ∈ Cνi ; cf. [11, Chapter 4].

One can view this work as an extension, in various directions, of a result of
Walkup and Wets [12, Theorem 2] where the sets W and W ν were of constant finite
cardinality, or, more simply, they consist of the points identified by the columns of
constant size matrices. Questions of this type occur in a variety of variational prob-
lems. For example, in the analysis of the stability of the solutions of linear programs,
semi-infinite linear programs [3], linear complementarity problems [7], [8, section 4],
equilibrium and quasi-equilibrium problems [9], generalized linear programs [5, Chap-
ter 22], and stochastic programming problems [2, 10]. Two of these applications are
further analyzed in the last two sections.

2. Outer semicontinuity. Our major objective is to obtain the inclusion
lim supν posW ν ⊂ posW that can be viewed as an outer-semicontinuity result. We
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begin with a characterization of the outer limit of a sequence of sets that could be
deduced from the results in [11, Chapter 4, section H] but isn’t readily available in
the literature. A (closed) ball centered at x and radius ρ is denoted by B(x, ρ) and
the unit ball simply by B, and so, for some positive scalar η, ηB = B(0, η).

Proposition 2.1 (outer limit of sets). A closed set C ⊂ R
m is the outer limit

of a sequence of sets {Cν ⊂ R
m, ν ∈ N} if and only if given any ε > 0, ρ > 0, there is

νε,ρ such that

∀ ν ≥ νε,ρ : Cν ∩ ρB ⊂ C + εB.

Proof. We rely on the criterion provided by [11, Proposition 4.5(b)], namely,
that C ⊃ lim supν C

ν if and only if whenever C ∩ B = ∅ for a compact set B, then
also Cν ∩ B = ∅ for ν large enough. The proof, in both directions, proceeds by
contradiction.

When the asserted inclusion is not satisfied for some pair ε > 0, ρ > 0, then for a
countable collection of indexes, say, for ν ∈ N �, there is a collection{

xν ∈ (Cν ∩ ρB) \ (C + εB), ν ∈ N �
}

converging to some x̄; all these points belong to the compact set ρB. Thus, C ∩B = ∅
for the compact set B = {x̄;xν , ν ∈ N}, whereas there is no νB arbitrarily large so
that Cν ∩ B is empty for all ν ≥ νB . Hence, C can’t contain the outer limit of the
Cν .

On the other hand, if there is a compact set B such that C ∩B = ∅ but for some
countable collection of indexes, say, ν ∈ N �, Cν ∩ B fails to be empty, choose ρ > 0
such that B ⊂ ρB and ε > 0 such that (C + εB) ∩ B = ∅. Then, for all ν ∈ N �,
Cν ∩ ρB �⊂ C + εB; i.e., there is no νε,ρ such that the asserted inclusion holds for all
ν ≥ νε,ρ.

3. The core cone. To obtain the outer semicontinuity of the positive hulls, our
conditions will involve two limit cones associated with a collection of sets {Cν , ν ∈ N}.
The first one, generated by the directions at the “horizon,” is the horizon outer limit
defined as

lim sup∞
ν Cν = {0} ∪

{
t = lim

ν∈N
λνt

ν , tν ∈ Cν , λν ↓ 0

}
,

where N ⊂ N indicates that the limit is conceivable with respect to a subsequence.
This set is a closed cone whose properties are detailed in [11, Chapter 4, section F].
The notation

C∞ = {t|∃ tν ∈ C, λν ↓ 0, with λνt
ν → t}

is reserved for the horizon cone associated with a set C �= ∅ [11, Chapter 3, section
B] (see also [1, Chapter 2]).

The second one, believed to be new, can be interpreted as the “inverse” of the
horizon limit cone, as will be seen below. It’s defined by

lim supo
νC

ν =

{
t = lim

ν∈N
λ−1
ν tν , tν ∈ Cν , λν ↓ 0

}
,

where, again, N ⊂ N suggests that the limit may involve only a subsequence of indexes.
We refer to this limiting set as the core outer limit of the sequence of nonempty sets
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{Cν , ν ∈ N}. So, rather than the direction points at the horizon, it identifies the
“direction points” at the origin. It’s immediate, from the definition, that this (core)
limit set is also a closed cone. We recall that given a set C, the tangent cone of C at
0 is the cone lim supλ↓0λ

−1C. Here are some simple rules of calculus of the core outer
limit.

Proposition 3.1. Let {Cν ⊂ R
m, ν ∈ N} and {Dν ⊂ R

m, ν ∈ N} be two collec-
tions of sets. Then

(i) the core outer limit of Cν coincides with the intersection of the tangent cones
lim supλ↓0λ

−1(∪ν≥kC
ν) for all k ≥ 1. In particular, when the sets Cν are

constant, say, equal to C, the core outer limit is exactly the tangent cone of
C at 0;

(ii) lim supo
νC

ν ⊆ lim supo
νD

ν if Cν ⊆ Dν for all ν;
(iii) lim supo

νC
ν ∪Dν = lim supo

νC
ν ∪ lim supo

νD
ν ;

(iv) lim supo
νC

ν ∩Dν ⊆ lim supo
νC

ν ∩ lim supo
νD

ν ;
(v) lim supo

νC
ν + lim supo

νD
ν ⊆ co lim supo

ν(C
ν + Dν) provided that Cν and Dν

contain the origin;
(vi) lim supo

νC
ν + lim supo

νD
ν ⊇ lim supo

ν(C
ν + Dν) provided that the core outer

limit of Cν and that of −Dν have only the zero vector in common.
Proof. To prove the first assertion let t = limνi λ

−1
νi

tνi , with tνi ∈ Cνi . Then,
for each k, tνi ∈ ∪ν≥kC

ν whenever νi ≥ k. Thus, t belongs to the tangent cone
of ∪ν≥kC

ν for every k. Conversely, let t be a vector such that, for every k ≥ 1,
there is a sequence of positive numbers λk,i converging to 0 as i tends to ∞ and
tνi

k ∈ ∪ν≥kC
ν such that t = limi λ

−1
k,i t

νi

k . For each k, choose i(k), with λk,i(k) ≤ 1
k , and

ν(k) ≥ k, with t
νi(k)

k ∈ Cν(k). By taking a subsequence if necessary, one may assume

that ν(k) > ν(k − 1) for every k > 1. Then t is the limit of λ−1
k,i(k)t

νi(k)

k , with λk,i(k)

tending to 0, and hence belongs to the core outer limit of Cν .
The three assertions that follow are straightforward. The assertion (v) is obtained

from (ii) and the fact that Cν and Dν are contained in the sum Cν +Dν . For the last
assertion, let v = limλi↓0 λi(t

νi + sνi), v �= 0, with tνi ∈ Cνi and sνi ∈ Dνi . Consider
the sequences {λit

νi}i and {λis
νi}i. They are both either bounded or unbounded.

In the first case we may assume that they converge, respectively, to some vector v1

of the core outer limit of Cν and some v2 of the core outer limit of Dν , which yields
v = v1+v2. In the other case we divide the general terms of these sequences by ‖λit

νi‖
and assume that the obtained sequences converge, respectively, to some vector u1 of
the core outer limit of Cν and some u2 of the core outer limit of Dν . Then, u1+u2 = 0,
which contradicts the hypothesis.

Example 3.2. The inclusion of (v) and the containment of (vi) may be strict, and,
without appropriate assumptions, they may fail to hold.

Detail. In R
2, set Cν = {( 1

ν ,
1
ν2 ), (0, 0)} and Dν = {(− 1

ν ,
1
ν2 ), (0, 0)}. Then the

core outer limit of Cν consists of the vectors (x, 0), with x ≥ 0, and the core outer
limit of Dν consists of the vectors (−x, 0), with x ≥ 0. The core outer limit of the sum
Cν + Dν contains the above-mentioned vectors and the vectors (0, y), with y ≥ 0, as
well. This shows that the inclusion of (v) is strict.

By setting Cν
0 = {( 1

ν ,
1
ν2 )} and Dν

0 = {(− 1
ν ,

1
ν2 )} we see that the hypothesis of

(v) is violated for these families. The convex hull of the core outer limit of their sum
is the half-space {(0, y)|y ≥ 0}, which contains neither the core outer limit of Cν

0 nor
the core outer limit of Dν

0 .
For the families Cν and Dν above, the hypothesis of (vi) does not hold, and the

containment is not true. For the families Aν = {( 1
ν ,

1
ν )} and Bν = {(− 1

ν ,
1
ν )}, direct
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calculation shows that the core outer limit of Aν +Bν is the set of the vectors (0, y),
with y ≥ 0, the core outer limit of Aν is the ray (x, x), with x ≥ 0, and the core outer
limit of Bν is the ray (−x, x), with x ≥ 0. Hence, the sum of the latter core outer
limits contains the core outer limit of Aν + Bν as a proper subset.

To see that the core outer limit set can be interpreted as an inverse of a horizon
outer limit set, let’s introduce the mapping

t �→ t− = t/|t|2 for t ∈ R
m, t �= 0,

with 0− = 0. For a set C ⊂ R
m, by definition, C− = {t−|t ∈ C ⊂ R

m}, and obviously
(C−)− = C. The mapping t �→ t− has the following properties:

(a) It’s a homeomorphism on R
m \ {0}.

(b) C is bounded if and only if cl (C \ {0})− does not contain the origin.
(c) With Co = {0} ∪

{
t = limν λ

−1
ν tν |tν ∈ C, λν ↓ 0

}
, the core cone associated

with C, one has Co = (C−)∞ and C∞ = (C−)o.
(d) If C is itself a cone, then C− = C.
Proposition 3.3. For a sequence of nonempty sets {Cν ⊂ R

m, ν ∈ N},

lim supo
νC

ν = lim sup∞
ν (Cν)−

and

lim sup∞
ν Cν = lim supo

ν(C
ν)−.

Proof. Indeed, let t �= 0 belong to the core outer limit. Without loss of generality,
one can assume that |t| = 1 and is the limit of some sequence {tν/|tν |}∞ν=1, with
tν ∈ Cν and limν t

ν = 0. Then (tν)− = tν/|tν |2 ∈ (Cν)−, with |(tν)−| → ∞. Clearly,
t is the limit of the sequence (tν)−/|(tν)−|, and hence t belongs to the horizon outer
limit of the sets Cν . The converse is obtained by the same argument. The second
equality follows from the first one via the identity (C−)− = C.

4. The outer semicontinuity of posW . In addition to the limiting cones
introduced in the previous section, our conditions also involve lilK, the lineality space
of a convex cone K; it’s the maximal linear subspace contained in K.

Theorem 4.1 (the outer semicontinuity of positive hulls). The taking of positive
hulls is outer semicontinuous, more precisely: Given {W ;W ν , ν ∈ N}, a collection of
nonempty subsets of R

m,

lim supνposW ν ⊂ posW

under the following hypotheses:
(a) W includes the outer limit of the sets W ν ,
(b) posW includes the horizon outer limit of the sets W ν ,
(c) posW includes the core outer limit of the sets W ν ,
(d) when 0 �= t ∈ lil(posW ) is a cluster point of a sequence {tν/|tν |, ν ∈ N},

where tν ∈ posW ν \ {0}, then tν ∈ lil(posW ν) for ν sufficiently large and
lil(posW ) ⊃ lim supν lil(posW ν).

Proof. Let {tν ∈ posW ν}∞ν=1 converge to t ∈ R
m. One needs to show that

t ∈ posW . According to Carathéodory’s theorem [11, Theorem 2.29], one can always
express tν as

tν =

m∑
i=1

λν,iw
ν,i, with λν,i ≥ 0, wν,i ∈ W ν ,
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i.e., as a nonnegative linear combination of no more than m vectors in W ν . Fix an
index i ∈ {1, . . . ,m}, and consider the sequence {λν,iw

ν,i}∞ν=1.
Claim 1. Any cluster point, say, t̂i, of

{
λν,iw

ν,i, ν ∈ N
}

belongs to posW .
In all of the arguments that follow, it’s taken for granted that one passes to a

subsequence whenever that’s required or appropriate. Certainly, if t̂i = 0, it belongs to
posW . When t̂i �= 0, one has to consider three possibilities: (i) limν λν,i = 0 (i.e., the
limit of some subsequence is 0), (ii) limν λν,i = λi > 0 is finite, or (iii) limν λν,i = ∞.
In case (i), the sequence {wν,i} must be unbounded, and all of its “cluster points”
belong to the horizon outer limit lim sup∞

ν W ν . From (b) it follows that they also
belong to posW . In case (ii), the (sub)sequence {wν,i, ν ∈ N} must be bounded, and
hence t̂i = λiw

i for some wi ∈ lim supν W
ν . From (a), it then follows that every such

cluster point t̂i also belongs to posW . In the third case (iii), i.e., limν λν,i = ∞, t̂i

then belongs to the core outer limit of the sets W ν , in which case t̂i ∈ posW by (c).
This completes the proof of the assertion.

Let i0 be an index such that

|λν,i0w
ν,i0 | = max

i=1,...,m
|λν,iw

ν,i|,

and consider the sequence {λν,i0w
ν,i0}; i0 is assumed to be common for all ν, again

passing to a subsequence if required. If it is bounded, then all of the sequences
{λν,iw

ν,i}, i = 1, . . . ,m, are bounded, and one can assume that, for each i, they
converge to (cluster at) some t̂i ∈ R

m. In view of the earlier claim, these limits belong
to posW . Thus, also t = t̂1+· · ·+t̂m belongs to posW . There remains only to consider
the case when the sequence {λν,i0w

ν,i0} is unbounded, say, limν |λν,i0w
ν,i0 | = ∞. For

all i = 1, . . . ,m, the sequences {λν,iw
ν,i/|λν,i0w

ν,i0 |} are bounded, and one can assume
that, for each i, they converge to (equivalently, cluster at) some u1, . . . , um. By Claim
1, these ui belong to posW .

Claim 2. These limit points u1, . . . , um belong to lil(posW ). Consequently, if ui

is nonzero, then, for ν sufficiently large, wν,i belong to lilposW ν .
Since |λν,i0w

ν,i0 | → ∞, dividing tν by |λν,i0w
ν,i0 | and passing to the limit when ν

tends to ∞, one obtains u1 + · · ·+um = 0. Since posW is a convex cone, we conclude
that u1, . . . , um must belong to the lineality space of posW . The second part of the
assertion now follows directly from condition (d), and thus Claim 2 is verified.

Let I0 denote the set of all indexes i such that ui = 0 and J0 the set of remaining
indexes. Note that i0 belongs to J0 since |ui0 | = 1. According to Claim 2, if the index
set I0 is empty, then tν belongs to lilposW ν for ν large enough and, consequently, so
does t ∈ posW . Thus, one has only to consider the case when I0 is nonempty. Let’s
write tν as the sum of two following terms:

tν = zν + yν , where zν =
∑
j∈J0

λν,jw
ν,j , yν =

∑
i∈I0

λν,iw
ν,i.

Now, consider the sequence {zν}∞ν=1. It’s bounded or not.
Bounded case: The sequence {zν} is bounded. Let z be a cluster point of this

sequence that necessarily belongs to posW . Then the corresponding (sub)sequence
{yν} converges to t − z. There are two possibilities as far as this latter sequence is
concerned. The first one is when all sequences {λν,iw

ν,i} are bounded; hence, one
may assume that they converge to some wi, with i ∈ I0. In view of Claim 1, these
limits wi belong to posW , the limit t− z =

∑
i∈I0

wi also belongs to posW , and one

may conclude that t ∈ posW . When all of the sequences {λν,iw
ν,i} are not necessarily



POSITIVE HULL MAPPINGS 705

bounded, there is a sequence, again possibly passing to a subsequence, {λν,i1w
ν,i1}

such that

|λν,i1w
ν,i1 | = max

i∈I0
|λν,iw

ν,i| and lim
ν

|λν,i1w
ν,i1 | = ∞.

One can appeal to the same argument as that used earlier for the sequence {λν,i0

wν,i0 , ν ∈ N}, and one can find subsets I1 ⊂ I0 and J1 = I0 \ I1 such that

yν = vν +
∑
i∈I1

λν,iw
ν,i,

where vν =
∑

j∈J1
λν,jw

ν,j belongs to lilposW ν for ν sufficiently large. One can
rewrite tν as follows:

tν = (zν + vν) +
∑
i∈I1

λν,iw
ν,i.

Note that the first term (zν +vν) belongs to lilposW ν for ν sufficiently large and that
the index set I1 has cardinality strictly smaller than that of I0. One can proceed in
this manner, one eventually exhausts all possible indexes, and one is led to conclude
that t ∈ posW .

Unbounded case: The sequence {zν} is unbounded, say, limν |zν | = ∞. Assume
that limν z

ν/|zν | = v ∈ posW, v �= 0, and

0 = lim
ν

tν

|zν | = v + lim
yν

|zν | .

Set μν,i = λν,i/|zν |, and consider the sequences {μν,iw
ν,i}∞ν=1, with i ∈ I0. By the

same argument as in the “bounded case” for the sequences {λν,iw
ν,i}∞ν=1, we come to

the conclusion that either wν,i belong to lilposW ν for ν sufficiently large and i ∈ I0
or there is a nonempty subset J1,ubdd of I0 such that

tν =
∑

j∈J0∪J1,ubdd

λν,jw
ν,j +

∑
i∈I1,ubdd

λν,iw
ν,i,

where the elements of the first sum belong to lilposW ν for ν sufficiently large and
I1,ubdd := I0 \J1,ubdd is of cardinality strictly smaller than that of I0. Continuing this
procedure and remembering that the number of indexes is finite (m), we arrive at the
final step in which either all terms tν belong to lilposW ν for ν sufficiently large or t is
a sum of the limit points that belong to posW . In both cases, t is an element of posW
because the latter set is a convex cone. This completes the proof of the theorem.

Remark 4.2. Let’s record the following observations about the hypotheses of this
theorem:

• (a) When Theorem 4.1(a) holds, so does Theorem 4.1(c), trivially, when either
of the following conditions is satisfied:

(a1) The closure of W does not contain the origin;
(a2) [lim supo

ν W
ν ] \ {0} ⊂ int(posW ).

• (b) If posW is pointed, then Theorem 4.1(d) is trivially satisfied.
• (c) In Theorem 4.1(d), the inclusion lil(posW ) ⊃ lim supν lil(posW ν) when

(c1) posW ⊃ lim infν W
ν ;

(c2) dim lil(posW ν) ≤ dim lil(posW ).
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Clearly, condition 4.1(a) is essential. Next, we give three examples to show that
each of the remaining conditions can’t be neglected either.

Example 4.3 (necessity of condition 4.1(b)). Let W = {(0, y) ∈ R
2 : y ≥ 0},

and let W ν = W ∪ {(ν, ν)}. Then posW = {(0, y) ∈ R
2 : y ≥ 0}, while posW ν =

posW ∪ {(x, x) : x ≥ 0}. All of the conditions of the theorem are fulfilled except for
the second one.

Example 4.4 (necessity of condition 4.1(c)). Let W = {(0, y) : y ≥ 0}, and let
W ν = W ∪ {(1/ν, 1/ν2)}. Then posW coincides with W , but lim supν posW ν is the
positive orthant of R

2. In this example only the third condition is violated.
Example 4.5 (necessity of condition 4.1(d)). Let W = {(−1, 0), (1, 0)}, and let

W ν = {(−1, 1/ν), (1, 1/ν)}. Then posW = {(x, 0) : x ∈ R}, while lim supν posW ν =
{(x, y) : y ≥ 0}. In this example all of the conditions of the theorem are satisfied
except for the fourth one.

When W ν consists of the columns aν,1, . . . , aν,k of a constant size m× k-matrix,
Theorem 4.1 yields the following improvement of [12, Theorem 2].

Corollary 4.6 (positive hull of converging matrices). Assume that the vectors
aν,1, . . . , aν,k converge, respectively, to ai, i = 1 . . . , k. Set W = {a1, . . . , ak}, and
assume further that

(a) for all ν, dim lil(posW ν) = dim lil(posW );
(b) posW includes all of the cluster points of {aν,i/|aν,i|} when ai = 0;
(c) if 0 �= ai ∈ lil(posW ), then aν,i ∈ lil(posW ν) for all ν.

Then lim supν posW ν ⊂ posW .
Proof. The proof combines the observations in Remark 4.2(c) with the assertion

of Theorem 4.1.
The condition (b) of [12, Theorem 2] requires that Corollary 4.6(c) holds even

when ai = 0. It is clear that this condition then implies both conditions 4.6(b) and
4.6(c), but the converse is not the case, as seen by the next example.

Example 4.7 (relaxed outer semicontinuity). Let aν,1 = (0, 1) and aν,2 = ( 1
ν ,

1√
ν
).

Detail. Then a1 = (0, 1) and a2 = (0, 0). The lineality spaces of posW ν and
posW are the null space, and therefore conditions 4.6(a) and 4.6(c) clearly hold.
Since aν,2 �= 0, condition (b) of [12, Theorem 2] is not satisfied. However, one still
has lim supν posW ν ⊂ posW according to the previous corollary.

The outer semicontinuity of the positive hulls can also be characterized in terms
of the inner limits of their positive polar cones. Given a nonempty subset W of R

m

the polar cone of W consists of linear functions that are positive on W , that is,

W ∗ := {u ∈ R
m : 〈u, t〉 ≥ 0, t ∈ W} .

The inner limit of a collection of sets {Cν , ν ∈ N} is denoted by lim infν C
ν , which

consists of those vectors v for which there exist vν ∈ Cν for every ν such that v is the
limit of the sequence {vν}ν .

Proposition 4.8 (limits under polarity). Let C ⊂ R
n be a closed convex cone.

Then the following conditions are equivalent:
(a) lim supν posW ν ⊂ C,
(b) lim infν(posW ν)∗ ⊃ C∗.

Hence, under the assumptions of Theorem 4.1,

lim inf
ν

(W ν)∗ ⊃ W ∗.

Proof. Observe that the outer limit of posWν coincides with the outer limit of
their closures. Now, apply [11, Corollary 11.35] to the closed convex cones cl posWν
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to obtain the first assertion. The second assertion is deduced from (a) and Theorem
4.1.

Let us close up this section by some remarks on lower semicontinuity and upper
semicontinuity of the positive hull mappings. It is clear that the inclusion

lim inf
ν

posW ν ⊃ posW,

which characterizes the lower semicontinuity of the positive hull, is true under a quite
standard assumption that lim infν W

ν ⊃ W . The upper semicontinuity means that,
for any open set A containing posW , one can find an index ν0 such that A contains
all posW ν for ν > ν0. Since posW ν are cones, the above condition implies that posW
contains all of the cones posW ν whenever ν ≥ ν0. This is the reason why we focus
our attention to outer semicontinuity only.

5. Application: Semi-infinite programs. Consider the following semi-infinite
linear program,

min 〈c, x〉(siLP)

so that 〈at, x〉 + βt ≤ 0, t ∈ T,

where at ∈ R
n, βt ∈ R, and T is supposed to be a compact metric space. The system

of constraints 〈at, x〉+βt ≤ 0, t ∈ T , is denoted by σ and its solution set (the feasible
set of (siLP)) is denoted by S. Set

W = {at|t ∈ T} and Ŵ = {(at, βt)|t ∈ T} .

The convex cones generated by W and Ŵ are, respectively, called the first-moment
and the second-moment cone of the system σ (see [6]). We recall also that a sequence
{xν}ν of vectors in R

n is said to be an asymptotic solution of the system σ if for every
t ∈ T one has lim infν→∞〈at, xν〉 + βt ≤ 0. It is clear that the system σ is consistent
(that is, S is nonempty) if and only if it has a bounded asymptotic solution. A
system that has no asymptotic solutions is called strongly inconsistent. Of course, an
inconsistent system may have asymptotic solutions as well.

Now we consider a collection of perturbed problems of the same form: For ν ∈ N,

min 〈cν , x〉(siLPν)

so that 〈aνt , x〉 + βν
t ≤ 0, t ∈ T ν .

As functions of t, at, a
ν
t , βt, and βν

t are continuous. When the spaces C(T ) and C(T ν)
of the continuous functions on T and T ν are equipped with the max-norm topology,
their (topological) duals are the spaces of measures M(T ) and M(T ν), respectively.
The cone of positive measures is denoted by M+(T ν), and MF

+ (T ν) is the cone of

positive measures with finite support. The system σν and the sets Sν , W ν , and Ŵ ν

are defined accordingly as σ, S, W , and Ŵ above.
The first result that can be derived from Theorem 4.1 is on the stability of con-

sistency and strong inconsistency of the system of constraints of (siLP).
Proposition 5.1. Assume that the collection {Ŵ ; Ŵ ν , ν ∈ N} satisfies the hy-

potheses of Theorem 4.1. Then the following assertions hold:
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(a) If the system σ is consistent, then, for ν sufficiently large, the systems σν are
consistent.

(b) If the systems σν are strongly inconsistent, then the system σ is strongly
inconsistent.

Proof. According to the consistency tests (Theorem 4.4 of [6]) the system σ is
consistent if and only if the cone clposŴ does not contain the vector e := (0, . . . , 0, 1)
of the space R

n+1. Since the outer limit of posŴ ν coincides with the outer limit of
clposŴ ν , in view of Theorem 4.1, when ν is sufficiently large, the cone clposŴ ν does
not contain that vector either, and hence the system σν is consistent.

Now, if the systems σν are strongly inconsistent, then again, in view of the con-
sistency tests, the cones posŴ ν contain the vector e. By Theorem 4.1, the vector
e belongs to the cone posŴ , and hence the strong inconsistency of the system σ
follows.

It is known that the horizon cone of the feasible set S (when it is nonempty) is the
solution set to the homogeneous system 〈at, x〉 ≤ 0, t ∈ T . It is exactly the negative
polar cone of the set W . We derive the outer and inner continuity of the horizon cone
of S as follows.

Proposition 5.2. The following assertions hold:
(a) If the collection {W ;W ν , ν ∈ N} satisfies the hypotheses of Theorem 4.1 and

if the problems (siLPν) have feasible solutions, then

S∞ ⊆ lim inf
ν

Sν
∞.

(b) If W ⊆ lim infν W
ν and the problem (siLP) has feasible solutions, then

S∞ ⊇ lim sup
ν

Sν
∞.

Proof. If S is empty, then the inclusion of (a) holds trivially. If S is not empty,
as we have already mentioned, the horizon cone of S is the negative polar cone of the
set W . Then (a) follows from Theorem 4.1 and Proposition 4.8. The second assertion
is obtained from Proposition 4.8 and the remark at the end of section 4 on the inner
semicontinuity of the positive hull mappings.

An immediate consequence of the above proposition is on the boundedness of the
feasible set.

Corollary 5.3. If nonempty, the feasible set S of (siLP) is bounded provided
that the hypotheses of Theorem 4.1 are satisfied and that the feasible sets Sν are
nonempty and bounded. For ν sufficiently large, if nonempty, the sets Sν are bounded
provided that S is nonempty and bounded and that W ⊆ lim infν W

ν .
Proof. It is known that, being nonempty, the set S is bounded if and only if its

horizon cone is trivial. The corollary now follows from Proposition 5.2.
We notice that the hypotheses of Theorem 4.1 do not guarantee that problem

(siLP) has feasible solutions even if (siLPν) have. Next we turn to the stability the
of existence of optimal solutions for (siLP).

Proposition 5.4 (existence of solutions). Assume the following:
(a) (siLP) and (siLPν) satisfy the Slater condition;
(b) the collection {W ;W ν , ν ∈ N} satisfies the hypotheses of Theorem 4.1 and

cν → c;
(c) problems (siLPν) have finite optimal values.

Then the optimal value of (siLP) is finite.
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Proof. Direct calculation, either via the Lagrangian function or conjugate calculus
(see also [3]), yields the dual problem of (siLPν):

max

∫
T ν

βν
t dμ(t)

so that μ ∈ M+(T ν),(siDν)

cν +

∫
T ν

aνt dμ(t) = 0.

The finite support dual, whose (dual) variables are restricted to be measures with
finite support, is

max
∑

t∈supp(μ)

βν
t μ(t)

μ ∈ MF
+ (T ν),(siFDν)

cν +
∑

t∈supp(μ)

aνt μ(t) = 0,

where supp(μ) designates the (finite) support of the measure μ. With v(·) denoting
the optimal value, one has the following weak duality inequalities [3]:

v(siLPν) ≥ v(siDν) ≥ v(siFDν).

By assumption v(siLPν) is finite, and hence the set of feasible solutions of (siFDν) is
nonempty [3, Theorem 5.27], which means that

0 ∈ cν + posW ν .

Passing to the limit and applying Theorem 4.1, one obtains

0 ∈ c + lim sup
ν

posW ν ⊂ c + posW.

Hence, (siFD) is feasible, and in turn this implies that v(siLP) is finite.
Remark 5.5 (convergence of the solutions). The propositions that we have estab-

lished in this section are direct applications of Theorem 4.1. Some more convergence
properties which are less direct from the above-said theorem can also be said about
(siLP). For instance, the convergence of the feasible solutions is stated as follows.

(i) If Ŵ ⊆ lim infν Ŵ
ν , then

S ⊇ lim sup
ν

Sν ;

(ii) if the family Ŵ ν is relaxed upper semicontinuous in the sense that, for every
ε > 0, there is some integer ν0 such that all Ŵ ν , ν ≥ ν0, are within an ε-
neighborhood of Ŵ in the product space R

m × R, and if S admits a strong
Slater point, that is, a point x ∈ S, with 〈at, x〉 + βt ≤ −δ for all t ∈ T and
some δ > 0, then

S ⊆ lim inf
ν

Sν .

The proof of these assertions presents no difficulty, so we omit it. The convergence of
the optimal solutions and the optimal value of (siLP) can also be obtained by using
the methods of [4, 6], in which a rather complete analysis of convergence of (siLP)
has been exposed in the case when the index sets T ν are common for all ν.



710 DINH THE LUC AND ROGER J.-B. WETS

6. Application: Stochastic programs. Here, we consider an extension of the
“linear” stochastic program recourse model [2, 10] to one where the recourse problem
takes on the form of a generalized linear program. This brings us into the realm
of problems with nonlinear recourse, and, for this particular class, we derive rather
explicit expressions for the induced constraints as well as a lower semicontinuity result
for the optimal value function. Let � stand for the random components of the problem
that takes its values, denoted by ξ, in Ξ ⊂ R

d, the (closed) support of the associated
probability measure P . The recourse cost function is

Q(ξ, x) = inf

⎧⎨
⎩

J∑
j=1

qjyj |yj ≥ 0, with ξ − Tx=

J∑
j=1

tjyj , t
j ∈W, j = 1, . . . , J, and J ∈N

⎫⎬
⎭,

where, for j = 1, . . . , J , (
qj
tj

)
∈ C ⊂ R

m+1,

with C convex; it could be the epigraph of (nonlinear) convex functions, for example.
The expected recourse function is

EQ(x) = E{Q(�, x)} =

∫
Ξ

Q(ξ, x)P (dξ),

with the stochastic program

min f0(x) + EQ(x)

so that Ax = b, x ≥ 0,

with f0 : R
n → R. Let

K1 =
{
x ∈ R

n
+|Ax = b

}
and K2 = domEQ.

The problem is said to have relatively complete recourse when K1 ⊂ K2. That’s a
desirable property, but, unfortunately, this is not universally the case. When E{�}
is finite [13], as we now assume, for the set of induced constraints, one has

K2 = domEQ =
⋂
ξ∈Ξ

domQ(ξ, ·) =
⋂
ξ∈Ξ

{x|ξ − Tx ∈ posW} .

Our emphasis here will be on the dependence of the set K2 on perturbations affecting
T,W , and Ξ, in particular when the set of feasible solutions of the stochastic program
is not necessarily bounded. Let’s denote these perturbed versions by T ν , W ν , and
Ξν .

Lemma 6.1 (outer semicontinuity of the induced constraints). When
(a) lim infν Ξν ⊃ Ξ and T ν → T ,
(b) the collection {W ;W ν , ν ∈ N} satisfies the hypotheses of Theorem 4.1,

then lim supν K
ν
2 ⊂ K2.

Proof. Let {xν ∈ Kν
2 }∞ν=1 converge to x and ξ ∈ Ξ. In view of (a), one can find

ξν ∈ Ξν such that limν ξ
ν = ξ. Then limν(ξ

ν −T νxν) = ξ−Tx that belongs to posW
according to Theorem 4.1. It follows that x ∈ K2.

Generally, the inclusion lim supν D
ν ⊂ D does not imply lim sup∞

ν Dν ⊂ D∞. A
remarkable exception is the case of induced constraints.
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Lemma 6.2 (the horizon outer limit of the induced constraints). Under the
hypothesis of Lemma 6.1, one has

lim sup∞
ν Kν

2 ⊂ K∞
2 .

Moreover, when K1 ∩K2 �= ∅, also lim sup∞
ν (K1 ∩Kν

2 ) ⊂ (K1 ∩K2)
∞.

Proof. Observe first that a vector x belongs to the horizon cone K∞
2 if and only if

−Tx belongs to clposW . Let z ∈ lim sup∞
ν Kν

2 , say, z = limk λkz
νk , where zνk ∈ Kνk

2

and λk ↓ 0. For ξ ∈ Ξ, in view of Lemma 6.1(a), one can find ξk ∈ Ξνk such that
ξk → ξ. Thus, ξk − T νkzνk ∈ posW νk and λkξ

k − T νk(λkz
νk) ∈ posW νk , as well.

Passing to the limit when k goes to ∞ yields −Tz ∈ posW via Lemma 6.1. Thus,
z ∈ K∞

2 . The second assertion is obtained from the first one by relying on [11,
Proposition 3.9].

This leads us to a lower-semicontinuity result for the optimal value. Here, we also
allow for perturbations fν

0 of the objective function f0 as well as for perturbations P ν

of the probability measure P . The expected recourse functions EνQ of the perturbed
problems are then defined by

EQν(x) =

∫
Ξν

[
inf

{
J∑

j=1

qjyj |yj ≥ 0 such that ξ − T νx =

J∑
j=1

tjyj , t
j ∈ W ν ,

j = 1, . . . , J,with J finite

}]
P ν(dξ).

Let v and vν denote the optimal values of the given stochastic program and of its
perturbations, respectively.

Proposition 6.3 (lower semicontinuity of the optimal value). When
(a) lim infν Ξν ⊃ Ξ and T ν → T ,
(b) the collection {W ;W ν , ν ∈ N} satisfies the hypotheses of Theorem 4.1,
(c) given (b), EνQ epiconverges to EQ,1

(d) the functions fν = fν
0 + EνQ are quasi-convex,

(e) the functions fν
0 converge continuously to f0,

(f) the set of solutions of our (given) stochastic program is nonempty and bounded,
then lim infν v

ν ≥ v.
Proof. A standard argument about the inf-projection and the summation, or

integration, of convex functions yields the convexity of EQ and EνQ. Assumptions (c)
and (e) imply that the functions fν epiconverge to f [11, Theorem 7.46(b)]. We now
proceed by contradiction. Suppose that one can find xν such that lim infν f

ν(xν) <
v. Let x0 ∈ argminK1∩K2

f . If the sequence {xν , ν ∈ N} is bounded, in view of
Lemma 6.1, one may assume that it converges to some x ∈ K1 ∩ K2. This means,
by epiconvergence, that lim infν f

ν(xν) ≥ f(x) ≥ v, and that’s a contradiction. If
the sequence {xν} is unbounded, we may assume that {xν/|xν |} converges to some
nonzero vector z ∈ lim sup∞

ν (K1 ∩Kν
2 ). By Lemma 6.2, z ∈ (K1 ∩K2)

∞; i.e., given
λ > 0, one can find λν > 0 converging to 0 such that x0 + λν(x

ν − x0) converges to
x0 + λz. Since the fν are quasi-convex, one must have

fν(x0 + λν(x
ν − x0)) ≤ max{fν(x0), fν(xν)} ≤ max{fν(x0), v}.

1This is not a very demanding condition, and it actually occurs under rather minimal assump-
tions; cf. [14, sections 6 and 8] for a brief survey.
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This implies that

f(x0 + λz) ≤ max{f(x0), v} = v.

Thus, for all λ ≥ 0, x0 +λz minimizes f on K1∩K2, in contradiction with assumption
(f).

Example 6.4 (without quasi-convexity). If the functions fν are not quasi-convex,
then the inequality lim infν v

ν ≥ v is no longer valid.
Detail. To see this, let us define the objective function f0 : R → R+ by

f(x) =

⎧⎪⎨
⎪⎩
−x− 1 if x ≤ 0,

x− 1 if 0 < x < 3,

2 if x ≥ 3

and choose the constraints so that the feasible set K1∩K2 = R+. (The set W consists
of one element 1, T is the matrix (−1), and the random variable Ξ takes the values
0, 1, 2, . . . .) The perturbed problems are given with the same feasibility set, and the
objective functions are

fν(x) =

⎧⎪⎨
⎪⎩
f(x) if x ≤ ν,

−x + ν + 1 if ν < x < ν + 3,

−f(x) if x ≥ ν + 3.

Then all of the hypotheses of the proposition are fulfilled except for the quasi convexity
of the fν . The optimal value vν is −2 while the optimal value v = −1.

Example 6.5 (without boundedness of argminf). The conclusion of Proposition 6.3
is no longer true if the set of minimizers of f on K1∩K2 is unbounded as demonstrated
by the following example.

Detail. Again, let K1 ∩K2 = R+. The objective function is

f(x) =

{
−x− 1 if x ≤ 0.

−1 if x > 0,
and fν(x) =

⎧⎪⎨
⎪⎩
f(x) if x ≤ ν,

−x + ν − 1 if ν < x < ν + 1,

x− ν − 3 if x ≥ ν + 1.

Then the set of minimizers of f is unbounded, and the optimal value of the perturbed
problems is vν = −2 while v = −1.

Acknowledgment. The authors are thankful to a referee for bringing their at-
tention to references [4] and [6].
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FINDING BEST APPROXIMATION PAIRS RELATIVE TO A
CONVEX AND PROX-REGULAR SET IN A HILBERT SPACE∗

D. RUSSELL LUKE†

Abstract. We study the convergence of an iterative projection/reflection algorithm originally
proposed for solving what are known as phase retrieval problems in optics. There are two features
that frustrate any analysis of iterative methods for solving the phase retrieval problem: nonconvexity
and infeasibility. The algorithm that we developed, called relaxed averaged alternating reflections
(RAAR), was designed primarily to address infeasibility, though our strategy has advantages for
nonconvex problems as well. In the present work we investigate the asymptotic behavior of the RAAR
algorithm for the general problem of finding points that achieve the minimum distance between two
closed convex sets in a Hilbert space with empty intersection, and for the problem of finding points
that achieve a local minimum distance between one closed convex set and a closed prox-regular
set, also possibly nonintersecting. The nonconvex theory includes and expands prior results limited
to convex sets with nonempty intersection. To place the RAAR algorithm in context, we develop
parallel statements about the standard alternating projections algorithm and gradient descent. All
of the various algorithms are unified as instances of iterated averaged alternating proximal reflectors
applied to a sum of regularized maximal monotone mappings.

Key words. best approximation pair, convex set, prox-regular, inconsistent feasibility prob-
lems, projection, relaxed averaged alternating reflections, fixed point, resolvent, maximal monotone
mappings

AMS subject classifications. 90C26, 49M27, 49M20, 49J53, 65K05

DOI. 10.1137/070681399

1. Introduction. Projection algorithms are simple yet powerful iterative tech-
niques for finding the intersections of sets. Perhaps the most prevalent example of a
projection algorithm is the alternating projections onto convex sets (POCS) dating
back to von Neumann [54]. This and algorithms like it have been applied in im-
age processing [19], medical imaging and economics [14], and optimal control [27] to
name a few. For a review and historical background, see [4]. The theory for these
algorithms is limited mainly to convex setting and to consistent feasibility problems,
that is, problems where the set intersection is nonempty; if the intersection is empty,
then the problem is referred to as an inconsistent feasibility problem; examples are
abound of practitioners using these methods for nonconvex and/or inconsistent prob-
lems. We have in recent years been particularly interested in projection algorithms
in crystallography and astronomy [6, 39], and more recently in inverse scattering
[34, 33, 15, 12, 11]. Until now, we have been forced to rely on convex heuristics to
justify certain strategies [7, 38] for want of an adequate nonconvex theory. In the
absence of a nonconvex theory, practitioners resort to ad hoc stopping criteria and
other strategies to get their algorithms to work according to user defined criteria. De-
pending on the algorithms, iterates tend to either stagnate at an undesirable point, or
“blow up.” We are particularly interested in those algorithms that appear to be un-
stable. Using convex heuristics we were able to provide plausible explanations [8] and
remedies [38] for algorithmic instabilities; however, a general theory was not pursued.
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Our goal in this paper is two-fold: first, to prove the convergence in the convex
setting of an algorithm that we have proposed to solve inconsistent feasibility problems
[38], and second, to modify the theory to accommodate nonconvexity. Our algorithm,
called relaxed averaged alternating reflections (RAAR), can be viewed as a relaxation
of a fixed point mapping used by Lions and Mercier to solve generalized equations
involving the sum of maximal monotone mappings [37] and which is an extension of
an implicit iterative algorithm by Douglas and Rachford [24] for solving linear partial
differential equations.

In section 2 we analyze the RAAR algorithm in the convex setting. Our task
here is to characterize the fixed point set of the mapping, as well as to verify the
assumptions of classical theorems. Our main result for this section is Theorem 2.7
which establishes convergence of the RAAR algorithm with approximate evaluation
of the fixed point operator and variable relaxation parameter. The novelty of our
mapping is that it addresses the crucial instance of inconsistent feasibility problems.
Inconsistency is a source of instability for more conventional strategies. To place our
new algorithm in the context of better-known strategies, we show in Proposition 2.5
that RAAR, alternating projections, and gradient descent are all instances of iterated
alternating averaged proximal reflectors—the Lions–Mercier algorithm—applied to
the problem of minimizing the sum of two regularized maximal monotone mappings.

In section 3 we expand our convex results to accommodate nonconvexity. In ad-
dition to characterizing the fixed point set, we formulate local, nonconvex versions
of convex theorems, in particular formulations where prox-regularity is central. Our
main result in this section is Theorem 3.12 which establishes local convergence of non-
convex applications of the RAAR algorithm. While the nonconvex theory includes the
convex case, we present both separately to highlight the places where nonconvexity re-
quires extra care, and to make the nonconvex theory more transparent. The nature of
nonconvexity requires focused attention to specific mappings; however, we generalize
wherever possible. Failing that, we detail parallel statements about the more conven-
tional alternating projection algorithm; this also allows comparison of our algorithm
with gradient descent methods for solving nonlinear least squares problems.

Our analysis complements other results on the convergence of projection algo-
rithms for consistent nonconvex problems [22, 36, 35]. In particular, we point out
that the key assumption that we rely upon for convergence, namely a type of local
nonexpansiveness of the fixed point mapping, does not appear to yield rates of con-
vergence as are achieved in [36, 35] using notions of regularity of the intersection. On
the other hand, regularity, in addition to assuming the intersection is nonempty, is a
strong condition on the intersection that, in particular, is not satisfied for ill-posed
inverse problems, our principal motivation.

To close this subsection, we would like to clarify the relationship of the present
work to previous work on the phase retrieval problem in crystallography and astron-
omy that has been a major motivation for these investigations. The results developed
in this work apply in principle to the finite-dimensional phase retrieval problem (that
is, discrete bandlimited images), so long as certain regularity of the fixed point map-
ping, namely local firm nonexpansiveness, can be determined. Such an investigation
is beyond the scope of this work. The infinite dimensional phase retrieval problem,
on the other hand, as studied in [13] does not fall within the theory developed here
because the sets generated by the magnitude constraints are not weakly closed [39,
Property 4.1], hence they are not prox-regular.
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1.1. Basic tools and results. We begin with the central tools and basic results
that we will use in our analysis. Throughout this paper H is a real Hilbert space with
inner product 〈·, ·〉 and induced norm ‖ · ‖. For A,B ⊂ H closed, the underlying
problem is to

(1.1) find x ∈ A ∩B.

Note that it could happen that A∩B = ∅, in which case one might naturally formulate
the problem as a nonlinear least squares problem

(1.2) minimize
x

J(x) = 1
2

(
1
2 dist 2

A(x) + 1
2 dist 2

B(x)
)
,

where dist C(x) is the distance of the point x to a set C:

dist C(x) := inf
c∈C

|x− c|.

If x∗ is a locally optimal point, then 0 ∈ ∂J(x∗), where ∂ denotes the subdifferential
[17, 51, 18, 30, 31, 32, 43]. Another characterization of a locally optimal point x∗ is
to associate it with a best approximation pair (a, b) satisfying b ∈ PBx∗ ⊂ PBa and
a ∈ PAx∗ ⊂ PAb, where PC is the projection defined by

PCx := argmin c∈C |x− c| = {y ∈ C ⊂ H | |x− y| = dist C(x)} .

If C is convex, then the projection is single-valued. If in addition C is closed and
nonempty, then PCx is characterized by [23, Theorem 4.1]

(1.3) PCx ∈ C and 〈c− PCx, x− PCx〉 ≤ 0 for all c ∈ C.

If C is not convex, then the projection, if it exists, is a set. If the projection exists
and is single-valued near all points in C, then C is said to be prox-regular [49]. The
relationship between the subdifferential of the squared distance function to a prox-
regular set C and the projection is shown in [49, Proposition 3.1] to be

(1.4) ∂
(
dist 2

C(x)
)

= 2(x− PCx)

for x in a neighborhood of C. If C is convex, then this relationship holds globally. In
particular, for A and B prox-regular and x in a proximal neighborhood of both sets,
we have

∂J(u) = 1
2 ((x− PAx) + (x− PBx)) .

Example 1.1 (gradient descent and averaged projections). Consider the steepest
descent iteration with step length λn where PA and PB are single-valued:

xn+1 = xn − λn∂J(xn)

= (1 − λn)xn + λn
1
2 (PAxn + PBxn) .(1.5)

In other words, gradient descent for least squares minimization is a relaxed averaged
projection algorithm. We will come back to this particular algorithm later.

Projection algorithms seek to find an element in A ∩ B, or best approximation
thereof, by iterated projections, possibly with some relaxation strategy, onto A and
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B separately. The example above interprets the steepest descent algorithm as a re-
laxed averaged projection algorithm. Another elementary projection algorithm is the
well-known alternating projections algorithm: Given x0 ∈ H generate the sequence
{xn}n∈N by

(1.6) xn = (PAPB)xn−1.

Example 1.2 (averaged projections and alternating projections). A standard
formulation in the product space [46] identifies the averaged projections (and hence
steepest descent) given by (1.5) with alternating projections. To see this, consider the
product space H×H with inner product 〈(x1, x2), (y1, y2)〉 := 1

2 ((x1, y1) + (x2, y2)).
Let C = {(x, y) ∈ H ×H |x = y } and D = {(x, y) ∈ H ×H |x ∈ A, y ∈ B }; then

PCPD(x, x) =
(

1
2 (PA + PB)x, 1

2 (PA + PB)x
)
.

Our focus in this paper is on the convergence of projection algorithms, but the above
example serves to emphasize that convergence results about such algorithms can be
very broadly applied.

When A ∩ B = ∅ we say that the feasibility problem (1.1) is inconsistent. The
distinction between inconsistent and consistent feasibility problems has profound im-
plications for the stability and convergence of numerical algorithms. It is convenient
to define difference set B − A. The gap between the sets A and B is the point in
B −A closest to the origin. Specifically,

(1.7) G := B −A, g := PG0, E := A ∩ (B − g), and F := (A + g) ∩B,

where B −A denotes the closure of B − A. Note that these definitions only make
sense when A and B are convex. We will generalize these sets in section 3. Basic
characterizations are given in [3, 8]. We note that if A∩B 	= ∅, then E = F = A∩B.
Even in the case where A∩B = ∅, the gap vector g is unique and always well defined.
A useful characterization of the gap vector g is via the normal cone mapping of G:
for G convex −g ∈ NG(g), where NG(g) is defined by

(1.8) NG : g 
→
{
{y ∈ H | 〈c− g, y〉 ≤ 0 for all c ∈ G} if g ∈ G,

∅ otherwise.

Example 1.3 (projections and normal cone mappings for convex sets). If C is
convex, then the normal cone mapping is the subdifferential of the (infinite) indicator
function, ιC , of the set C:

ιC(x) :=

⎧⎨
⎩

0 for x ∈ C,

∞ else,
(1.9)

∂ιC(x) = NC(x),(1.10)

(I + ρNC)−1x = PCx for all ρ > 0.(1.11)

The mapping (I + NC)−1 is called the resolvent of the normal cone mapping, or
equivalently in this case, the resolvent of ∂ιC . Specializing to C = A∩B, the indicator
function of the intersection is the sum of the indicator functions of the individual sets

ιA+B = ιA + ιB
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and, for A and B convex, the resolvent (I + (NA + NB))
−1

is the projection onto
A ∩ B supposing this is nonempty. In other words, an element of A ∩ B is a zero
of ∂ιA∩B . The parameter ρ in (1.11) is interpreted as a step size consistent with
backward-stepping descent algorithms (see [25]).

Throughout this work we compare the asymptotic properties of alternating pro-
jections to more recent projection strategies. A common framework in the convex
setting that provides an elegant synthesis of these algorithms is through operator
splitting strategies for solving

(1.12) minimize
x∈H

f1(x) + f2(x),

where f1 and f2 are proper, lower semi-continuous (l.s.c.) convex functions from H to
R∪{∞}. The subdifferentials ∂fj are then maximal monotone [44, Proposition 12.b.];
that is, gph ∂fj cannot be enlarged in H×H without destroying the monotonicity of
∂fj defined by

〈v2 − v1, x2 − x1〉 ≥ 0 whenever v1 ∈ ∂fj(x1), v2 ∈ ∂fj(x2).

We then seek points that satisfy the inclusion for the sum of two maximal monotone
mappings:

(1.13) 0 ∈ ∂f1(x) + ∂f2(x).

Iterative techniques for solving (1.13) are built on combinations of forward- and
backward-stepping mappings of the forms (I − λ∂fj) and (I + λ∂fj)

−1, respectively.
For proper, l.s.c. convex functions fj Moreau [44] showed the correspondence between
the resolvent (I + λ∂fj)

−1 and the argmin of the regularized mapping fj centered on
x. In particular, define the Moreau envelope, eλf , and the proximal mapping, proxλ,f ,
of a function f by

eλ,fx := inf
w

{
f(w) +

1

2λ
|w − x|2

}
and

proxλ,f x := argminw

{
f(w) +

1

2λ
|w − x|2

}
.

Then by [44, Proposition 6.a] we have

(1.14) prox1,fj x = J∂fjx := (x + ∂fj(x))
−1

,

where J∂fj is the resolvent of ∂fj . The Moreau envelope at zero, eλ,f0, is perhaps
better known as Tikhonov regularization [53, 52].

Maximal monotonicity of ∂fj is equivalent to firm nonexpansiveness of the re-
solvent J∂fj , whose domain is all of H [42]. A mapping T : dom T = X → X is
nonexpansive on the closed convex subset X ⊂ H if

(1.15) |Tx− Ty| ≤ |x− y| for all x, y ∈ X;

we say that T is firmly nonexpansive on X when

(1.16) |Tx− Ty|2 ≤ 〈x− y, Tx− Ty〉 for all x, y ∈ X.
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Firmly nonexpansive mappings also satisfy the following convenient relation:

(1.17) |Tx− Ty|2 + |(I − T )x− (I − T )y|2 ≤ |x− y|2 for all x, y ∈ X.

For more background, see [28, Theorem 12.1] and [23, Theorem 5.5].
Example 1.4 (projections onto and reflections across convex sets). Let C be a

nonempty closed convex set in H. The projection onto C is firmly nonexpansive on
H [23, Theorem 5.5], and the corresponding reflection, defined by RC := 2PC − I, is
nonexpansive.

The following central result we build upon concerns the convergence of iterated
nonexpansive mappings allowing for approximate evaluation of dynamically relaxed
mappings with variable step sizes. Our formulation follows [20], which is a general-
ization of an analogous result in [25]. Both [25] and [20] synthesize previous work
of Rockafellar [50] and Gol’stein and Tret’yakov [29], and are also related to work of
Martinet [40, 41] and Brezis and Lions [10] concerning resolvents of maximally mono-
tone mappings. The theorem is formulated for a common relaxation of the fixed point
mapping T . For any arbitrary nonexpansive mapping T , the standard relaxation of
the iteration xn+1 = Txn is to a Krasnoselski–Mann iteration [9] given by

(1.18) xn+1 = U(T, λn)xn := λnTxn + (1 − λn)xn, 0 < λn < 2.

By Example 1.1, gradient descent for the squared distance objective (1.2) with step
length λn is equivalent to a Krasnoselski–Mann relaxation of the averaged projection
mapping T := 1

2 (PA + PB). In general, the Krasnoselski–Mann relaxation does not
change the set of fixed points of T denoted Fix T .

Lemma 1.5. Let T = (I+ρS)−1 (ρ > 0) be firmly nonexpansive with dom T = H.
Then Fix T = ∅ if and only if there is no solution to 0 ∈ Sx.

Proof. T with dom T = H is firmly nonexpansive if and only if it is the resolvent
of a maximally monotone mapping F : H → 2H [42]. Direct calculation then shows
that Fix T = ∅ is equivalent to {x ∈ H |Fx = 0} = ∅.

Theorem 1.6 (inexact evaluation of firmly nonexpansive mappings). Let T be
a firmly nonexpansive mapping on H with dom T = H. Given any x0 ∈ H, let the
sequence {xn}n∈N be generated by

(1.19) xn+1 = (1 − λn)xn + λn (Txn + εn) for all n ≥ 0,

where {λn}n∈N ⊂ ]0, 2[ and {εn}n∈N ⊂ H are sequences with

(1.20)

∞∑
n=0

|εn| < ∞, λ− = inf
n≥0

λn > 0, λ+ = sup
n≥0

λn < 2.

Then if T possesses a fixed point, xn converges weakly to a fixed point of T . Conver-
gence is strong if any one of the following holds:

• lim dist Fix T (xn) = 0.
• int Fix T 	= ∅.
• T is demicompact at 0; that is, for every bounded sequence {xn}n∈N with
Txn−xn converging strongly to y, the set of strong cluster points of {xn}n∈N

is nonempty.
If T is firmly nonexpansive with dom T = H and Fix T = ∅, then {xn}n∈N is un-
bounded.

Proof. All but the last statement is the content of Theorem 5.5 in [20]. To show
that xn is unbounded if T does not have a fixed point for T firmly nonexpansive with
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dom T = H, we note that by Lemma 1.5 Fix T = ∅ if and only if there is no solution
to 0 ∈ Fx, where T is the resolvent of the maximally monotone mapping F . The
result now follows from [25, Theorem 3].

For the remainder of this paper we will be concerned with applying the above
results to particular instances of the mapping T for convex and nonconvex settings.
Our principal task, therefore, is to characterize Fix (T ) and to modify the above the-
ory to accommodate nonconvexity. To account for realistic limitations in computing
accuracy, we consider fixed point iterations where T is only approximately evaluated.
With this in mind, and in the context of (1.12), we compare the following approximate
algorithms.

Algorithm 1.7 (approximate alternating proximal mappings). Choose x0 ∈ H.
For n ∈ N set

(1.21) xn+1 = (1 − λn)xn + λn

(
prox1,f1

(
prox1,f2

xn

)
+ εn

)
.

Algorithm 1.8 (approximate averaged alternating proximal reflections). Choose
x0 ∈ H. For n ∈ N set

(1.22) xn+1 = (1 − λn)xn +
λn

2
(Rf1 (Rf2xn + εn) + ρn + xn) ,

where Rfjx := 2 prox1,fj x− x.
The parameter λn is the Krasnoselski–Mann relaxation parameter, and the terms

ρn and εn account for the error made in the calculation of each of the resolvents
separately.

The exact version of Algorithm 1.8 was proposed by Lions and Mercier [37] who
adapted the Douglas–Rachford [24] algorithm to solving 0 ∈ F + G for general max-
imal monotone mappings F and G. Convergence results for the application of this
algorithm hinge on the following assumption.

Assumption 1.9. There exist x ∈ H, a ∈ ∂f1(x), and b ∈ ∂f2(x) such that
a + b = 0.

The key result of Lions and Mercier adapted to our setting is that, if Assump-
tion 1.9 holds, then the sequence of iterates {xn}n∈N generated by Algorithm 1.8 with
εn = ρn = 0 for all n converges weakly to x ∈ H as n → ∞ such that x∗ = J∂f2x
solves (1.12) [37, Theorem 1].

Example 1.10 (specialization of (1.12) to convex feasibility). Let f1 = ιA and
f2 = ιB in (1.12), where A and B are convex. Then, following Example 1.3 we have

prox1,f1
prox1,f2

= PAPB ,(1.23)

1
2 (Rf1

Rf2
+ I) = 1

2 (RARB + I).(1.24)

Specialization of Algorithm 1.7 to this setting yields the classical alternating pro-
jection algorithm. Convergence of the exact algorithm was obtained in [16, Theorem 4]
under the assumption that either (a) one of A or B is compact, or (b) one of A or B is
finite dimensional and the distance between the sets is attained. In other words, A∩B
can be empty. Rates of convergence, however, appear to require a certain regularity
of the intersection [35].

Specialization of Algorithm 1.8 yields the averaged alternating reflection (AAR)
algorithm studied in [8]. It follows immediately from Example 1.4 that 1

2 (RARB + I)
is firmly nonexpansive (see also [8, Proposition 3.1]). Assumption (1.9) reduces to
A ∩ B 	= ∅. If A ∩ B = ∅, then by Theorem 1.6 we have | 12 (RARB + I)xn| → ∞
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as n → ∞. Nevertheless, as long as there exist nearest points in B to A, then
the sequences {PBxn}n∈N and {PAPBxn}n∈N are bounded with weak cluster points
belonging to the sets F and E defined by (1.7) [8, Theorem 3.13]. Indeed, regardless
of whether or not A ∩ B = ∅, the set Fix (TAAR + g) is closed and convex and [8,
Theorem 3.5]

(1.25) F + NG(g) ⊂ Fix (TAAR + g) ⊂ g + F + NG(g).

In other words, if A ∩ B = ∅, then TAAR does not have fixed points, but rather has
fixed directions or velocities. Examples 3.7 and 3.8 of [8] show that the upper and
lower bounds on this fixed point set are tight, consistent with the case A∩B 	= ∅. The
salient point here is that convergence of this algorithm is contingent on the consistency
of the feasibility problem.

Generalizations of Lions and Mercier’s results to approximate evaluation of the
resolvents of maximally monotone mappings have been investigated in [25, 20, 21].
The following theorem, adapted from [21], is a specialization of Theorem 1.6 to Algo-
rithms 1.7 and 1.8.

Corollary 1.11 (specialization to Algorithms 1.7 and 1.8). Let f1 and f2

be proper, l.s.c. convex functions from H to R ∪ {∞}, let {ρn}n∈N and {εn}n∈N be
sequences in H, and let {λn}n∈N be a sequence in ]0, 2[.

(i) Let E := Fix prox1,f1
prox1,f2

	= ∅ and {εn}n∈N and {λn}n∈N satisfy (1.20).
Then every sequence {xn}n∈N of Algorithm 1.7 converges weakly to a point
in E. If int E 	= ∅, then convergence is strong.

(ii) If Assumption 1.9 holds and {λn}n∈N ⊂]0, 2[ with
∑

n∈N
λn(2 − λn) = ∞

and
∑

n∈N
λn (‖ρn‖ + ‖εn‖) < ∞, then the sequence {xn}n∈N generated by

Algorithm 1.8 converges weakly to x ∈ H as n → ∞ such that x∗ = J∂f2x
solves (1.12). If Assumption 1.9 does not hold, then the sequence {xn}n∈N

generated by Algorithm 1.8 is unbounded.
Proof. (i) is an immediate specialization of Theorem 1.6. For (ii), all but the last

statement is [21, Corollary 5.2] with γ = 1. The last statement of (ii) follows from
Theorem 1.6 since 1

2 (Rf1
Rf2

+ I) is firmly nonexpansive.

2. Convex analysis. For this section we will assume that the sets A and B are
closed and convex. Denote

(2.1) TAP := PAPB and TAAR := 1
2 (RARB + I)

discussed in Example 1.10. As discussed in Example 1.10, the existence of fixed points
of TAP is independent of whether or not the feasibility problem is consistent. Indeed,
it is easy to see that Fix TAP = E for E defined by (1.7). This is not the case for
TAAR. We will argue in the nonconvex setting that the fact that TAAR has no fixed
points if A∩B = ∅ has tremendous algorithmic potential since it means that averaged
alternating reflections will not get stuck in a local minimum. Other algorithms for
solving feasibility problems do not suffer from such instabilities with inconsistent
problems (alternating projections for instance), but for nonconvex problems, this
stability is at the cost of getting caught in local minima. It is this resilience of the
AAR algorithm in nonconvex applications that first attracted our attention and, we
believe, warrants a closer look. In the next section we compare the behavior of these
algorithms in the convex setting.

2.1. Relaxations/regularizations. In this subsection we consider relaxations
of TAAR whose associated mappings have fixed points independent of whether or not
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A ∩B = ∅. The common relaxation that we have already discussed is of the form

(2.2) U(T, λ) := λT + (1 − λ)I, 0 < λ < 2,

for the generic mapping T . If the mapping T is firmly nonexpansive (for instance TAP

or TAAR), then this property is preserved under the relaxation U(T, β) for β ∈]0, 1[.
Krasnoselski–Mann iterations have been extensively studied in Hilbert spaces and
more general normed spaces [9] so there is ample theory to draw from for the study
of the relaxation U(T, β).

An advantage and disadvantage of this relaxation is that the fixed points of
U(T, λ) are the same as those of T . In particular, since TAAR has a fixed point if and
only if A ∩ B 	= ∅, it follows immediately that the same holds for U(TAAR, λ): for
inconsistent problems neither mapping has a fixed point. To remedy this we consider
the following alternative relaxation:

(2.3) V (T, β) := βT + (1 − β)PB , 0 < β < 1.

Like the Krasnoselski–Mann relaxation, for A and B convex and T firmly nonexpan-
sive, V (T, β) is also firmly nonexpansive since it is the convex combination of firmly
nonexpansive mappings. Hence if Fix V (TAAR, β) is nonempty, then the associated
approximate fixed point iteration converges to the fixed point set according to The-
orem 1.6. One of the principal advantages of this relaxation is that, as we show in
Lemma 2.1, Fix V (TAAR, β) is independent of whether or not the associated problem
(1.1) is feasible. Moreover, the relaxation parameter β can be used to exert some
control on the iterates (see subsection 2.2).

In characterizing the fixed points we note that the relaxation V (TAAR, β) is funda-
mentally different than the standard relaxation U(TAAR, λ) which has little qualitative
effect on the set of fixed points. The two are independent and may be used together
without any redundancy of effect. There can, however, be diminishing returns to the
addition of parameters to algorithms of this sort. For our application we have found
no significant advantage to employing relaxations of the form (2.2). Nevertheless, by
Example 1.1, for cases where the relaxation is related to a step length in a gradient
descent algorithm, the optimization of λn in (2.2) can clearly lead to improved per-
formance. We therefore retain this relaxation and, for the sake of generality, consider
nested relaxations of the form

(2.4)
U (V (U(TAAR, λ1), β) , λ2) = λ2V (U(TAAR, λ1), β) + (1 − λ2)I,

where λ2 ∈ ]0, 2[ .

The next theorem is a generalization of [38, Theorem 2.2] where we determined the
fixed points of the mapping V (TAAR, β) alone. The following analysis of the nested
relaxations demonstrates the relative importance of the relaxation strategies. This is
discussed in greater detail following the proof of the next observation.

Lemma 2.1 (characterization of fixed points). Let β ∈ ]0, 1[ and λ1, λ2 ∈ ]0, 2[.
Then

(2.5a) Fix U (V (U(TAAR, λ1), β) , λ2) = F − βλ1

1 − β
g,

where F and g are defined by (1.7). Moreover, Fix U (V (U(TAAR, λ1), β) , λ2) is closed
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and convex and, for every x ∈ Fix U (V (U(TAAR, λ1), β) , λ2), we have the following:

x = PBx− βλ1

1 − β
g,(2.5b)

PBx− PARBx = g,(2.5c)

PBx ∈ F, and PAPBx ∈ E.(2.5d)

In the special case where β = 1, we have

(2.5e) F + NG(g) ⊂ Fix (U(TAAR, λ) + λg) ⊂ g + F + NG(g).

By comparison,

(2.6) Fix U(V (U(TAP , λ1), β), λ2) = F − βg.

Proof. For all β ∈ [0, 1[, since Fix (λT +(1−λ)I) = Fix T for any mapping T , the
fixed point set is invariant with respect to the outer relaxation (λ2V (U(T, λ1))+ (1−
λ2)I), so without loss of generality we ignore this relaxation.

Equation (2.6) follows immediately from Fix TAP = E.
What remains, then, is to show (a) that F − βλ1

(1−β)g ⊂ Fix V (U(TAAR, λ1), β)

and, conversely, (b) that Fix V (U(TAAR, λ1), β) ⊂ F − βλ1

(1−β)g.

We first establish the inclusion F − βλ1

1−β g ⊂ Fix V (U(TAAR, λ1), β). Pick f ∈ F ,

let x = f − βλ1

1−β g, and define e := f − g. Now, since f ∈ F and g ∈ PG0, e ∈ E,

−γg ∈ NB(f), and γg ∈ NA(e) for all γ > 0. Hence PBx = f and PA(e + γg) = e;
thus

RBx = 2PBx− x = f +
βλ1

1 − β
g,

and

PARBx = PA

(
f +

βλ1

1 − β
g

)
= PA

(
e +

1 + β(λ1 − 1)

1 − β
g

)
= e = f − g.

Hence PBx− PARBx = g. This together with the observation that

(2.7) x− TAARx = PBx− PARBx for all x ∈ H

implies x − βU(TAAR, λ1)x − (1 − β)PBx = βλ1(x − TAARx) + (1 − β)(x − PBx) =
βλ1g+(1−β)(x−f) = 0. Thus, as previously claimed, F− βλ1

1−β g ⊂ Fix (βU(TAAR, λ1)+

(1 − β)PB).
We show next that Fix (βU(TAAR, λ1)+(1−β)PB) ⊂ F − βλ1

1−β g. To see this, pick

any x ∈ Fix (βU(TAAR, λ1) + (1 − β)PB). Let f = PBx and y = x− f . Recall that

(2.8) PA(2f − x) = PA(2PBx− x) = PARBx.

This, together with the identity (2.7), yields

(2.9) PA(2f − x) = f + TAARx− x.
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For our choice of x we have βU(TAAR, λ1)x+(1−β)PBx = βλ1TAARx+βx−βλ1x+
(1 − β)PBx = x, which yields

(2.10) TAARx− x =
1 − β

βλ1
(x− PBx).

Then (2.9) and (2.10) give

(2.11) PA(2f − x) = f +
1 − β

βλ1
(x− f) = f +

1 − β

βλ1
y.

Now, for any a ∈ A, since A is nonempty, closed, and convex, we have

(2.12) 〈a− PA(2f − u), (2f − u) − PA(2f − u)〉 ≤ 0,

and hence

0 ≥
〈
a−

(
f +

1 − β

βλ1
y

)
, (2f − x) −

(
f +

1 − β

βλ1
y

)〉

=

〈
a−

(
f +

1 − β

βλ1
y

)
, − y − 1 − β

βλ1
y

〉

=
β(λ1 − 1) + 1

βλ1
〈−a + f, y〉 +

(1 − β)(β(λ1 − 1) + 1)

(βλ1)2
|y|2.(2.13)

Here we have used (2.12), (2.11), and the fact that y = x− f . On the other hand, for
any b ∈ B, since B is a nonempty, closed convex set and f = PBx, we have

(2.14) 〈b− PBx, x− f〉 ≤ 0,

which yields

(2.15) 〈b− f, y〉 = 〈b− f, x− f〉 ≤ 0.

Note that, for β ∈ ]0, 1[ and λ1 ∈ ]0, 2[, the numerator β(λ1 − 1) + 1 > 0; thus (2.13)
and (2.15) yield

(2.16) 〈b− a, y〉 ≤ −1 − β

βλ1
|y|2 ≤ 0.

Now take a sequence {an}n∈N in A and a sequence {bn}n∈N in B such that gn =
bn − an → g. Then

(2.17) 〈gn, y〉 ≤ −1 − β

βλ1
|y|2 ≤ 0 for all n ∈ N.

Taking the limit and using the Cauchy–Schwarz inequality yields

(2.18) |y| ≤ βλ1

1 − β
|g|.

Conversely, x−(βU(TAAR, λ1)x+(1−β)PBx) = βλ1 (f − PA(2f − x))+(1−β)y = 0
gives

(2.19) |y| =
βλ1

1 − β

∣∣∣f − PA(2f − x)
∣∣∣ ≥ βλ1

1 − β
|g|.
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Hence |y| = βλ1

1−β |g| and, taking the limit in (2.17), y = − βλ1

1−β g, which confirms the

identity (2.5b). From (2.8) and (2.11) with y = − βλ1

1−β g it follows that f−PARBx = g,

which proves (2.5c) and, by definition, implies that PBx = f ∈ F and PAPBx ∈ E.
This yields identity (2.5d) and proves (2.5a). The closedness and convexity of the
fixed point set then follows from the fact that F is closed and convex. (Generally,
the fixed point set of any nonexpansive map defined everywhere in a Hilbert space is
closed convex; see [28, Lemma 3.4].)

For the special case where β = 1, a straightforward calculation shows that
Fix (TAAR + g) = Fix (U(TAAR, λ) + λg). Since, by [8, Theorem 3.5], we have

(2.20) F + NG(g) ⊂ Fix (TAAR + g) ⊂ g + F + NG(g),

the result follows immediately, which completes the proof.
Remark 2.2. Lemma 2.1 shows that the inner relaxation parameter λ1 has only

a marginal effect on the set of fixed points of TAAR compared to the β relaxation,
which, provided g 	= 0, is unbounded as β → 1; it has no effect on the set of fixed
points of TAP . The outer relaxation parameter λ2 has no effect on either mapping.
In stark contrast to these, the relaxation parameter β in the relaxation V (T, β) has
a profound impact on the set of fixed points of TAAR and marginal impact on the
fixed points of TAP . Indeed, from (2.20) and (2.5a) it is clear that, for all 0 < β <
1, Fix V (TAAR, β) ⊂ Fix (TAAR + g); thus, by definition, xβ − TAARxβ = g, where
xβ ∈ Fix V (TAAR, β). More interestingly, however, the fixed point set becomes vastly
larger at β = 1. Similarly, at β = 0 the fixed point set becomes all of B.

Having characterized the fixed points of V (TAAR, β), we turn our attention to
inexact Relaxed Averaged Alternating Reflections (RAAR) iterations.

Algorithm 2.3 (inexact RAAR algorithm). Choose x0 ∈ H and the sequence
{βn}n∈N ⊂]0, 1[. For n ∈ N set

(2.21) xn+1 =
βn

2
(RA (RBxn + εn) + ρn + xn) + (1 − βn)

(
PBxn +

εn
2

)
.

The analogous algorithm to this for inexact alternating projections is the following.
Algorithm 2.4 (inexact alternating projection algorithm). Choose x0 ∈ H and

the sequence {ηn}n∈N ⊂]0, 1[. For n ∈ N set

(2.22) xn+1 = (1 − ηn)xn + ηn (PA (PBxn + εn) + ρn) .

For fixed relaxation parameter β, additional insight into the relaxation V (TAAR, β)
and the Krasnoselski–Mann-relaxed alternating projection algorithm is gained by con-
sidering regularizations of iterated proximal mappings applied to (1.12).

Proposition 2.5 (unification of algorithms).
(i) Algorithm 1.8 applied to (1.12) with

(2.23) f1(x) =
β

2(1 − β)
dist 2

A(x) and f2(x) = ιB(x)

and λn = 1 for all n is equivalent to Algorithm 2.3 with βn = β for all n.
(ii) Algorithm 1.8 applied to (1.12) with

(2.24) f1(x) = 1
2 dist 2

A(x) and f2(x) = 1
2 dist 2

B(x)

and relaxation parameter λn is equivalent to Algorithm 2.4 with ηn = λn/2.
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(iii) Algorithm 1.8 applied to (1.12) on the product space with f1 and f2 defined
by

(2.25) f1(x, y) = 1
2 dist 2

C(x, y) and f2(x, y) = 1
2 dist 2

D(x, y)

for C = {(x, y) ∈ H ×H |x = y }, D = {(x, y) ∈ H ×H |x ∈ A, y ∈ B },
εn = ρn = 0 for all n and relaxation parameter λn is equivalent to gradient
descent with step length λn/2 applied to the nonlinear least squares problem
(1.2).

Proof. (i) Let

f1(x) =
β

2(1 − β)
dist 2

A(x) and f2(x) = ιB(x);

then prox1,f2
(x) = PBx and a short calculation yields prox1,f1

(x) = x + β(PAx− x).
The result then follows upon substituting these expressions into (1.22) with λn = 1
for all n and ρn of Algorithm 1.8 replaced by ρn of (2.21) scaled by β.

(ii) A similar calculation shows that when f1(x) = 1−β
2β dist 2

A(x) and f2(x) =
β

2(1−β) dist 2
B(x), the recursion (1.22) is equivalent to

xn+1 = (1 − λn)xn

(2.26)

+ λn

(
(1 − β)PAyn + β(2β − 1)PBxn + 2(β − β2)xn + (β − 1

2 )εn + 1
2ρn

)
,

where yn = (1−2β)xn+2βPBxn+εn. In particular, when β = 1/2 we have xn+1 = (1−
λn

2 )xn + λn

2 (PA(PBxn + εn) + ρn), the Krasnoselski–Mann relaxation of approximate
alternating projections given by (2.22) with relaxation parameter ηn = λn/2 for all
n.

(iii) We use the product space formulation as in Example 1.2. By (ii) of this
theorem, Algorithm 1.8, with relaxation parameter λn applied to (1.12), where f1

and f2 are defined by (2.25), is equivalent to alternating projections on the product
space—Algorithm 2.4 with xn+1 = (1−λn/2)xn+λn/2PCPDxn. But by Example 1.2
alternating projections is equivalent to Krasnoselski–Mann-relaxed averaged projec-
tions on the product space with relaxation parameter λn/2. To complete the proof we
note that, by Example 1.1, Krasnoselski–Mann-relaxed averaged projections on the
product space with relaxation parameter λn/2 is equivalent to gradient descent with
step length λn/2 applied to the nonlinear least squares problem (1.2).

In other words, V (TAAR, β) is not a relaxation of TAAR but rather the exact
instance of Algorithm 1.8 applied to (1.12) with f1 and f2 defined by (2.23). Similarly,
alternating projections is also an instance of Algorithm 1.8, which, in turn, yields the
equivalence of this algorithm to gradient descent.

Proposition 2.5 yields a proof of the next theorem by direct application of Corol-
lary 1.11 with λn = 1 for all n.

Theorem 2.6 (the inexact RAAR algorithm with fixed β). Let {ρn}n∈N and
{εn}n∈N be sequences in H such that

∑
n∈N

‖ρn‖ + ‖εn‖ < ∞, and fix β ∈]0, 1[,
x0 ∈ H, and λn = 1 for all n. If F defined by (1.7) is nonempty, then the sequence
{xn}n∈N generated by Algorithm 2.3 with βn = β for all n converges weakly to x ∈ H
as n → ∞ such that x∗ = PBx solves

(2.27) minimize
x∈H

β

2(1 − β)
dist 2

A(x) + ιB(x).
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If F = ∅, then the sequence {xn}n∈N generated by (2.21) is unbounded.
Proof. The result follows from Corollary 1.11(ii) once the equivalence of the

condition F 	= ∅ to Assumption (1.9) is established. To see this, note that by
Proposition 2.5 the recursion (2.21) is equivalent to (1.22) with λn = 1 for all
n applied to (2.27). Moreover, for f1 = β

2(1−β) dist 2
A(x) and f2 = ιB , we have

∂f1(x) = β
1−β (x − PAx) ∂f2(x) = NB(x) (see (1.10) and (1.4)), so the existence of

points x ∈ F implies that β
1−β (x − PAx) = β

1−β g ∈ −NB(x); hence Assumption 1.9

holds. Conversely, the existence of points x ∈ H and a ∈ ∂f1(x) and b ∈ ∂f2(x) such
that a+ b = 0 implies that, for such x, β

1−β (x−PAx) ∈ −NB(x); hence x ∈ F , which
completes the proof.

While Theorem 2.6 takes advantage of regularizations to reinterpret the relaxation
(2.3), it does not easily allow us to verify the effect of variable β. To account for
variable βn we take a different approach.

Theorem 2.7 (the inexact RAAR algorithm with variable β). Fix β ∈ ]0, 1[ and
x0 ∈ H. Let {βn}n∈N be a sequence in ]0, 1[, and let {xn}n∈N ∈ H be generated by
Algorithm 2.3 with corresponding errors {εn}n∈N, {ρn}n∈N ⊂ H. Define

(2.28) νn = 2|βn − β| |(PA − I)RBxn| .

If F 	= ∅ and

(2.29)
∑
n∈N

|εn| + |ρn| + νn < +∞,

then {xn}n∈N converges weakly to a point x∗ ∈ F − βg/(1 − β).
Proof. The mapping V (TAAR, β) = βTAAR + (1 − β)PB . Then V (TAAR, β) is

firmly nonexpansive as a convex combination of the two firmly nonexpansive mappings
TAAR and PB . Accordingly, the mapping R = 2V (TAAR, β)− I is nonexpansive since
V (TAAR, β) is firmly nonexpansive if and only if 2V (TAAR, β)−I is nonexpansive [28,
Theorem 12.1]. Moreover, it follows from Lemma 2.1 that Fix R = Fix V (TAAR, β) =
F − βg/(1− β) 	= ∅. Setting rn = 2xn+1 − xn, an elementary calculation shows that

|rn −Rxn| ≤ βn|RA (RBxn + εn) −RARBxn| + βn|ρn|(2.30)

+ (1 − βn)|εn| + 2|βn − β| |(PA − I)RBxn| .

Now, since RA is nonexpansive

|RA (RBxn + εn) −RARBxn| ≤ |εn|

and from (2.28)

(2.31) |rn −Rxn| ≤ |ρn| + |εn| + νn.

The recursion (2.21) can thus be rewritten as

(2.32) x0 ∈ H and xn+1 = 1
2xn + 1

2rn for all n ∈ N,

where, from (2.29) and (2.31),

(2.33)
∑
n∈N

|rn −Rxn| < +∞.
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It then follows from [20, Theorem 5.5(i)] that {xn}n∈N converges weakly to a fixed
point of R, which proves the result.

Analogous results for the important case of the RAAR algorithm with β = 1,
that is, the AAR algorithm, have been treated extensively in [8]. Surprisingly, the
proof techniques for these two cases are distinct, and it appears that a unification is
not readily available.

A more detailed picture of the behavior of iterates of the exact RAAR algorithm
can be obtained in the following restricted setting.

Corollary 2.8 (exact RAAR algorithm in Euclidean space). Let H be a Eu-
clidean space. Fix β ∈ ]0, 1[ and let

x0 ∈ R
n and xn+1 = V (TAAR, β)xn for all n ∈ N.

Suppose that F 	= ∅. Then {xn}n∈N converges to some point x ∈ F −βg/(1−β) and,
furthermore,

(i) PBxn − PAPBxn → g;
(ii) PBxn → PBx and PAPBxn → PAPBx;
(iii) PBx− PAPBx = g; hence PBx ∈ F and PAPBx ∈ E.
Proof. The convergence of {xn}n∈N follows from Theorem 2.7 (with εn = ρn =

νn := 0); denote the limit by x. From (1.7) we can write x ∈ F − βg/(1 − β) as
x = f − βg/(1− β), where f = PBx ∈ F (see also [8, Proposition 2.4.(ii)]). Since the
mappings PA, PB , RA, RB are continuous, (ii) follows. Next, using (2.5c), we have

(2.34) PBxn − PARBxn → PBx− PARBx = g.

Hence

(2.35) |g| ≤ |PBxn − PAPBxn| ≤ |PBxn − PARBxn| → |g|,

and thus |PBxn − PAPBxn| → |g|. Now (i) follows from [8, Proposition 2.5]. Taking
the limit in (i) yields (iii).

We would like to note in closing this subsection that the duality theory for (1.12)
with f1 and f2 given by (2.23) has been detailed in [2, section 2]. The connection
between algorithms (1.8) and (1.7) and (2.3) allows for an attractive synthesis in the
convex setting. However, at this time the nonconvex theory is much less developed
than the convex theory. A notable exception is the recent work of Moudafi [45],
who studies the convergence of the prox-gradient method in a prox-regular setting.
Nevertheless, the view of the parameter β as a weight in a regularized objective
does not, in our opinion, lead to a natural justification for dynamic βn as does the
interpretation of this parameter as a relaxation. This is discussed in greater detail in
the next subsection.

2.2. Controlling the iterates. The implementation of the RAAR algorithm
that we studied in [38] was motivated by the following observation that indicates that
the relaxation parameter β might be used to steer the iterates.

Proposition 2.9. Let x ∈ H and suppose that F 	= ∅.
(i) dist (x,Fix V (TAP , β)) = dist (x, F + βg) for all β ∈ (0, 1].
(ii) If A∩B 	= ∅, then dist (x,Fix V (TAAR, β)) = dist (x,A∩B) for all β ∈ ]0, 1[;

otherwise, limβ↗1 dist (x,Fix V (TAAR, β)) = +∞.
Proof. The proof of (i) follows immediately from (2.6). To see (ii), note that if

A∩B 	= ∅, then g = 0 and Fix V (TAAR, β) = A∩B, which proves the first part of the
statement. Now assume A∩B = ∅ and fix f0 ∈ F . Then g 	= 0 and F is contained in
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the hyperplane {x ∈ H | 〈x− f0, g〉 = 0} [3, Lemma 2.2(v)]. Hence, it follows from
Lemma 2.1 that

(2.36)

Fix V (TAAR, β) = F − β

1 − β
g ⊂

{
x ∈ H

∣∣∣∣
〈
x +

β

1 − β
g − f0, g

〉
= 0

}
= Hβ .

Accordingly,

dist
(
x,Fix V (TAAR, β)

)
≥ dist (x,Hβ) =

∣∣∣〈x + β
1−β g − f0, g

〉∣∣∣
|g|(2.37)

≥ β

1 − β
|g| − |〈x− f0, g〉|

|g| ,

which proves the second assertion of part (ii).
By Proposition 2.9, for any estimate xn “close” to Fix V (TAAR, βn), there is

a βn+1 such that xn is comparatively distant from Fix V (TAAR, βn+1). It will be-
come clear in the next section that it is the proximity to the set F , rather than
Fix V (TAAR, βn), that is critical to the quality of an iterate xn. We therefore use the
relaxation parameter βn to control the step size of an iterate toward the set F . By
comparison, the relaxation parameter β has very little effect on the iterates xn of the
alternating projection algorithm. The next proposition shows that by varying β the
step size can be regulated in the direction of the gap vector g.

Proposition 2.10. Let x ∈ H satisfy |x− xβ1 | < δ, where xβ1 ∈ Fix V (TAAR, β1),
δ > 0 and β1 ∈ ]0, 1[. Then, for all β2 ∈ ]0, 1[, we have

(2.38)

∣∣∣∣V (TAAR, β2)x−
(
fβ1 −

β2

1 − β1
g

)∣∣∣∣ < δ,

where fβ1
= PBxβ1

∈ F .
Proof. This proof was proved in [38, Proposition 2.3].
This ability to control the step lengths with the relaxation parameter stands out

next to other relaxed projection algorithms. For this reason descent algorithms are
often preferred since there is ample theory for determining optimal step sizes.

3. Nonconvex analysis.

3.1. Prox-regular sets. In this section A is still convex, but we allow the set
B to be nonconvex. Such a situation is encountered in the numerical solution to
the phase retrieval problem in inverse scattering [39, 6, 38], and is therefore of great
practical interest. Indeed, our results form the basis for proving local convergence
of some phase retrieval algorithms for inconsistent (noisy) problems which, to our
knowledge, would be the first such results. The central notion for getting a handle
on this situation is prox-regularity as developed by Poliquin and Rockafellar [48, 47].
Prox-regular sets were, to our knowledge, first introduced by Federer [26] though he
called them sets of positive reach, and are characterized as those sets C for which
the projection is locally single-valued and continuous from the strong topology in the
domain to the weak topology in the range [49, Theorem 3.1]. The main difficulty for
our analysis is that prox-regularity is a local property relative to elements of the set B
while the fixed points of the mapping V (T, β) lie somewhere in the normal cone to B
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at the local best approximation points of this set. A localized normal cone mapping
is obtained through the truncated normal cone mapping

(3.1) Nr
C(x) :=

{
NC(x) ∩ int B(0, r), x ∈ C,

∅, x /∈ C,

where B(0, r) is the closed ball of radius r centered on the origin. The principal result
we draw from can be found in [49, Corollary 2.2 and Proposition 3.1].

Lemma 3.1 (properties of prox-regular sets). Let C ⊂ H be prox-regular at x.
Then for some r > 0 and a neighborhood of x, denoted N (x), the truncated normal
cone mapping Nr

C is hypomonotone on N (x); that is, there is a σ > 0 such that

〈y1 − y2, x1 − x2〉 ≥ −σ|x1 − x2|2 whenever yi ∈ Nr
C(xi) and xi ∈ N (x).

As suggested by Proposition 2.9 we can control to some extent the location of the
fixed points of V (T, β) by adjusting the parameter β. In particular, note that for
β = 0 we have V (T, 0) = PB ; hence we can adjust β so that the fixed points remain
in prox-neighborhoods of the best approximation points in B.

The next result is a prox-regular analogue of (1.3).
Lemma 3.2. For C prox-regular at x there exist ε > 0 and σ > 0 such that

whenever x ∈ C and v ∈ NC(x) with |x− x| < ε and |v| < ε one has

(3.2) 〈x′ − x, v〉 ≤ σ|x′ − x|2 for all x′ ∈ C with |x′ − x| < ε.

Proof. Since C is prox-regular at x, by Lemma 3.1 the truncated normal cone
mapping Nr

C(x) is hypomonotone on a neighborhood N (x), that is, there are σ > 0
and ε > 0 such that

〈x′ − x, v〉 ≤ σ|x′ − x|2,

whenever v ∈ NC(x), and 0 ∈ NC(x′) with |v| < ε and |x′ − x| < ε.
A stronger version (with a different proof) of the above proposition can be found

in [49, Proposition 1.2].
For this prox-regular setting we must define local versions of the sets G, E, and

F defined in (1.7).
Definition 3.3 (local best approximation points). For A convex and B noncon-

vex, a point f ∈ B is a local best approximation point if there exists a neighborhood
N (f) on which |f − PAf | ≤ |b − PAb| for all b ∈ B ∩ N (f). For such a point, we
define

GN (f) := (B ∩N (f)) −A and for g := f − PAf ∈ PGN(f)
0,

EN (f)(g) := A ∩ ((B ∩N (f)) − g), FN (f)(g) := (A + g) ∩ (B ∩N (f)).(3.3a)

If |f − PAf | ≤ |b − PAb| for all b ∈ B, then f ∈ B is a global best approximation
point. Whether or not such a point exists, the following sets are well defined:

G := B −A and for g ∈ PG0,

E(g) := A ∩ (B − g), F (g) := (A + g) ∩B.(3.3b)

From Definition 3.3 it is immediate that any global best approximation point is also
a local best approximation point. Note that PGN(f)

0 and PG0 are now possibly sets
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of gap vectors since, for A convex and B prox-regular, G = B −A is not in general
convex. For any g1, g2 ∈ PGN(f)

0, although it may happen that g1 	= g2, it is still the
case that |g1| = |g2|; hence the (local) gap between the sets A and B in the nonconvex
setting is still well defined.

We will assume the following throughout the rest of this work.

Assumption 3.4 (prox-regularity of G). The set G is prox-regular at all g ∈ PG0,
and, for every local best approximation point f ∈ B, the set GN (f) is prox-regular at
the corresponding point gf := f − PAf ∈ PGN(f)

0.

Example 3.5. Consider the example in R
2 where A = {(0, x2) for x2 ∈ [−2, ε]}

for ε ≥ 0 and

B =

⎧⎪⎨
⎪⎩(x1, x2) ∈ R

2

∣∣∣∣∣∣∣
x1 = ±

√
1 − x2

2 for x2 ≥ 0,

x1 = −1 for x2 ∈ [0,−1],

x1 = −
√

1 − (x2 + 1)2 for x2 ∈ [−2,−1]

⎫⎪⎬
⎪⎭ .

The corresponding set G is not prox-regular everywhere. In particular, if ε = 0 it is
not prox-regular at the point (−

√
3/2, 1/2) since the projection onto G is multivalued

along the line segment (−
√

3/2, 1/2) + τ(1, 0) for all τ ∈ [0,
√

3/2]. For this example,
however, this is the only point in G where prox-regularity fails. Since A and B intersect
at the point (0,−2), the global gap vector is (0, 0), and F = E = {(0,−2)}. Each of

the vectors in the set
{
(x1, x2) ∈ R

2
∣∣∣x1 = ±

√
1 − x2

2 for x2 ≥ 0,
}
, on the other

hand, is a local gap vector relative to some neighborhood of points in B. At the point
f = (0, 1), for example, all of these vectors are local gap vectors of the set GN (f),

where N (f) is a disk of radius
√

2. The corresponding local best approximation
points in B are FN (f)(g) = {g}, while the local best approximation points in A are

EN (f)(g) = {(0, 0)} for all g ∈
{
(x1, x2) ∈ R

2
∣∣x2

1 + x2
2 = 1 for x2 ≥ 0

}
. We call this

collection of best approximation points a fan, characterized by the nonuniqueness of
the gap vector. We shall disallow such regions in what follows. Indeed, if in the
definition of A we set 0 < ε � 1, then there is no such fan region and the unique best
approximation point in B corresponding to (0, ε) ∈ A is f = (0, 1) with corresponding
unique gap vector g = (0, 1 − ε).

The next fact is an adjustment of [8, Proposition 2.5] for B prox-regular.

Proposition 3.6. Let A be closed convex and B prox-regular subsets of H.
Suppose that {an}n∈N and {bn}n∈N are sequences in A and B ∩ N (f), respectively,
with f a local best approximation point, N (f) a suitable neighborhood and bn − an →
g = f − PAf ∈ PGN(f)

0. Then the following hold.

(i) bn − PAbn → g while PBan − an → G̃N (f) ⊂ PGN(f)
0.

(ii) The cluster points of {an}n∈N and {PAbn}n∈N belong to EN (f)(g). The cluster
points of {bn}n∈N belong to FN (f)(g). Consequently, the cluster points of the
sequences {

(an, bn)
}
n∈N

,
{
(PAbn, bn)

}
n∈N

are local best approximation pairs relative to (A,B).
(iii) If g is the unique gap vector on N (f), that is, if PGN(f)

0 = g, then

bn − an → g ⇐⇒ |bn − an| → |g|.
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Proof. Since

|bn − an| ≥ max
{
|bn − PAbn|, |PBan − an|

}
≥ min

{
|bn − PAbn|, |PBan − an|

}
≥ |g|,

we conclude that
{
|bn − PAbn|

}
n∈N

and
{
|PBan − an|

}
n∈N

both converge to |g̃| for
any g̃ ∈ PGN(f)

0. Since A is convex, PAbn is single-valued and continuous; hence
bn−PAbn → g. Since B is prox-regular, PB is possibly set-valued and limn→∞ PBan−
an = G̃N (f), a subset of PGN(f)

0. Hence (i) holds. Let a ∈ A be a cluster point of
{an}n∈N, say ank

→ a. Then bnk
→ g+a ∈ B∩N (f)∩(g+A) = FN (f)(g), and hence

a ∈ A ∩ (B ∩N (f)− g) = EN (f)(g). The arguments for {bn}n∈N and {PAbn}n∈N are
similar. Finally, (iii) follows from (i) and the fact that g is the unique gap vector.

Remark 3.7. Convergence of |bn − an| → |g| does not, in general, imply that
bn − an → g. To see this, consider B and A in Example 3.5 with ε = 0. Construct
the sequences an := (0,−1/n) and bn := (−1,−1/n) for all n and let g = (0, 1). Now,
an → (0, 0), bn → (−1, 0), and bn − an → (−1, 0) = g̃ 	= g, even though both belong
to PGN(f)

0 and |bn−an| → |g| when f = (0, 1) and N (f) is a disk of radius
√

2. Note

also that PBan → (−1, 0) while PBa =
{
(x1, x2) ∈ R

2
∣∣x2

1 + x2
2 = 1 and x2 ≥ 0

}
.

3.2. Relaxed averaged alternating reflections: Prox-regular sets. The
difference between TAP and TAAR is in the control exerted on the fixed points of
the respective mappings by the relaxation strategy V (T, β). As shown in (2.6) in
the case of TAP , the relaxation β ∈ (0, 1] simply shifts the set of fixed points from
best approximation points in A to their corresponding points in B. In the nonconvex
setting this shift property is restricted to local best approximation points. Hence, the
relaxation parameter does not change in any significant way the set of fixed points
and, in particular, it does not change the correspondence between the set of local
best approximation points and the fixed points of V (TAP , β). For TAAR with the
relaxation parameter in (2.21) the nonconvex situation is quite different. Indeed, as
we show in Lemma 3.8, the relaxation parameter β can be chosen to limit the set of
local best approximation points that correspond to fixed points of V (TAAR, β), thus
eliminating bad local best approximation points.

Before proceeding with the prox-regular versions of Theorem 2.7 and Corol-
lary 2.8, we need to define what we mean by V (T, β)x in the case when PBx is
multivalued. We shall define this as

V (TAP , β)x := {v = βPAb + (1 − β)b | b ∈ PBx} ,(3.4a)

V (TAAR, β)x :=

{
v =

β

2
(RA(2b− x) + x) + (1 − β)b | b ∈ PBx

}
.(3.4b)

Lemma 3.8 (characterization of fixed points). For A closed and convex and B
prox-regular, suppose that Assumption 3.4 holds, and define V (TAAR, β) by (3.4b) for
β ∈]0, 1[ fixed. Then

Fix V (TAAR, β)(3.5a)

⊂
{
f − β

1 − β
(f − PAf) | f ∈ B is a local best approximation point

}
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and the two sets are equal for all β ≤ 1/2. Moreover, for every x ∈ Fix V (TAAR, β),
there is a local best approximation point f and corresponding gap vector gf with

x ∈ PBx− β

1 − β
gf ,(3.5b)

gf ∈ PBx− PARBx.(3.5c)

By comparison, for all β ∈]0, 1[ fixed,

(3.6)

Fix V (TAP , β) = {f − β(f − PAf) | f ∈ B is a local best approximation point} .

Proof. The proof is almost identical to that of Lemma 2.1. We skip most of the
details and point only to the main differences.

To prove (3.5a)–(3.5c) we must take account of two issues: first, that PB might
not be single-valued at all x ∈ Fix V (TAAR, β) and second, that the relation (2.14)
does not hold for B prox-regular. The possible multivaluedness of PBx is handled
by choosing f ∈ PBx for a given x ∈ Fix V (TAAR, β) and setting y = x − f . The
corresponding gap vector is uniquely determined by gf = f − PA(f). This changes
(2.8) and (2.9) to inclusions

(3.7) PA(2f − x) ∈ PARBx and PARBx− PBx = TAARx− x

by (2.7). The second equation is actually an expression of set equality. When TAAR

is restricted to the selection f ∈ PBx, which we write as TAAR|f , this yields

(3.8) PA(2f − x) − f = TAAR|fx− x.

For x ∈ Fix (V (TAAR, β)), (3.7) and (3.8) give

(1 − β)(x− f) = β(TAAR|f − x) = β(PA(2f − x) − f);(3.9)

hence, with y = x− f ,

(3.10) f +
1 − β

β
y = PA(2f − x).

This is the same result as (2.11) for the selection f ∈ PBx. As with (2.13), using
(2.12) and (3.10) we have, for any a ∈ A nonempty, closed, and convex,

(3.11)
1

β
〈−a + f, y〉 +

1 − β

β2
|y|2 ≤ 0.

On the other hand, since B is nonempty prox-regular and f ∈ PBx, by Lemma 3.2
we have

(3.12) 〈b− f, x− f〉 ≤ σ|f − b|2,

where x − f ∈ NB(f), and 0 ∈ NB(b) for b close enough to f . This yields (compare
to (2.15))

(3.13) 〈b− f, y〉 = 〈b− f, x− f〉 ≤ σ|b− f |2.
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Now, (3.11) and (3.13) yield

(3.14) 〈b− a, y〉 ≤ 〈b− f, y〉 − 1 − β

β
|y|2 ≤ σ |f − b|2 − 1 − β

β
|y|2.

The right-hand side is nonpositive for all b close enough to f . The rest of the proof
follows the proof of Lemma 2.1 with the caveat that the sequence bn → f be chosen
close enough to f that

σ |f − bn|2 −
1 − β

β
|y|2 ≤ 0 for all n.

The identities (3.5b)–(3.5c) follow immediately since f ∈ PBx is a local best approx-
imation point.

To prove that the set inequality in (3.5a) is not, in general, tight we show that,
given a local best approximation point f ∈ B and corresponding gap vector gf ,

(3.15) f − β

1 − β
gf ∈ Fix V (TAAR, β) if and only if f ∈ PB

(
f − β

1 − β
gf

)
.

The “easy” implication is that the left-hand side of (3.15) implies the right-hand side
(expand 0 ∈ (I − V (TAAR, β)) (f − β

1−β gf ) in terms of PB and PA and “solve” for

PB(f − β
1−β gf )). The other implication follows exactly as in Lemma 2.1 with the

generalization to inclusions since the projection onto B need not be single-valued.
Finally, to show that set equality holds in (3.5a) for all β ≤ 1/2 note that, for

any local best approximation point f ∈ B with B prox-regular, f ∈ PB(f − β
1−β gf )

for all β ∈ [0, 1/2], where gf is the corresponding gap vector. The result then follows
from (3.15).

For TAP , since the parameter β simply shifts the fixed point within the gap of a lo-
cal best approximation pair as β ranges from 0 to 1, the fixed points of V (TAP , β) coin-
cide precisely with the local best approximation points of A and B, whence (3.6).

Corollary 3.9. Fix V (TAAR, β) = ∅ for all β > 0 if and only if B does not
contain a local best approximation point.

Proof. This follows immediately from (3.5).
Remark 3.10. Note that, while in the case of TAAR all local best approximation

points correspond to fixed points of V (TAAR, β) for β ∈ [0, 1/2], this is not the case for
β > 1/2. Indeed, by (3.15) of Lemma 3.8, the fixed points of V (TAAR, β) consist only
of local best approximation points for which f− β

1−β gf is in a proximal neighborhood of

B. This certainly will not hold for all β ∈ [1/2, 1[. One might envision an algorithmic
strategy for filtering out certain local best approximation points by choosing β large
enough. Of course, how such a filtering might work in practice depends entirely on
local proximal properties of the set B. The point is that, by simply increasing β,
one can avoid local minima. This is a potentially powerful algorithmic tool for global
projection algorithms for nonconvex problems.

We finish this section with nonconvex versions of Theorem 2.7 and Corollary 2.8.
The convex results exploited the firm nonexpansiveness of the fixed point mapping,
or equivalently maximal monotonicity. We show that, for the nonconvex problem, if
this property holds locally, then local versions of the results of section 2.1 follow. This
is not an empty assumption as Example 3.5 illustrates. Indeed, for the sets defined
there with ε > 0, an elementary calculation of V (TAAR, 1/2)x for points x on con-
vex neighborhoods of (0, ε) ∈ Fix V (TAAR, 1/2) (not even very small neighborhoods)
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shows that 2V (TAAR, 1/2) − I is nonexpansive, and hence V (TAAR, 1/2) is locally
firmly nonexpansive.

One consequence of such an assumption is the following.
Proposition 3.11. For either T = TAAR or T = TAP , if V (T, β) is firmly

nonexpansive on a neighborhood N (x0) of x0 ∈ Fix V (T, β), then g0 = PBx0−PAPBx0

is the unique gap vector on N (x0); that is, for all x ∈ Fix V (T, β) ∩ N (x0) one has
PBx− PAPBx = PBx0 − PAPBx0. Moreover, PB is single-valued on N (x0).

Proof. We prove the statement for T = TAAR as the proof for T = TAP is almost
identical. Let x1 be any fixed point on N (x0) with corresponding gap vectors g1 ∈
PBx1−PAPBx1, and let bj ∈ PBxj , for j = 0, 1. Then by Lemma 3.8 xj = bj− 1−β

β gj ,
j = 0, 1. Since PA is nonexpansive we have

|g1 − g0|2 = |b1 − b0|2 + |PAb1 − PAb0|2 − 2 〈b1 − b0, PAb1 − PAb0〉(3.16)

≤ |b1 − b0|2 − |PAb1 − PAb0|2

and

(3.17) |PAb1 − PAb0| ≤ |b1 − b0|.

If |PAb1 − PAb0| = |b1 − b0|, then by (3.16) g1 = g0. If, on the other hand, |PAb1 −
PAb0| < |b1 − b0|, then |y1 − x0| < |x1 − x0|, where y1 := b1 −

(
1−β
β + ε

)
g1 for some

ε > 0 small enough. A straightforward calculation shows that

Ry1 = b1 −
(

1 − β

β
+ (2β − 1)ε

)
g1 and Rx0 = x0,

where R := 2V (TAAR, β)−I. So for β < 1, |y1−x0| < |Ry1−Rx0|, which contradicts
the assumption that V (TAAR, β) is firmly nonexpansive. It must hold, then, that
|PAb1 − PAb0| = |b1 − b0|; hence g1 = g0.

To see that the projection PB is single-valued on N (x0), consider any x ∈ N (x0)
and the corresponding vectors y1 = b1 − x and y2 = b2 − x with bj ∈ PBx (j = 1, 2).
The same argument as above applies here with A replaced by {x} to show that y1 = y2

since V (TAAR, β) is firmly nonexpansive; hence b1 = b2. Since x was arbitrarily
chosen, this completes the proof.

The inexact RAAR algorithm, Algorithm 2.3, is modified in the obvious way to
inclusions for B prox-regular. For variable relaxation parameters, we then have the
following generalization of Theorem 2.7.

Theorem 3.12 (inexact prox-regular RAAR algorithm, variable β). For A closed
and convex and B prox-regular, suppose that Assumption 3.4 holds. Let β ∈ ]0, 1[ be
small enough that Fix V (TAAR, β) 	= ∅. Suppose that V (TAAR, β) is firmly nonexpan-
sive on a convex neighborhood N (x) of x ∈ Fix V (TAAR, β) with dom V (TAAR, β) =
H. Choose x0 ∈ N (x), let {βn}n∈N be a sequence in ]0, 1[, and let {xn}n∈N ⊂ H be
generated by Algorithm 2.3 with corresponding errors {εn}n∈N, {ρn}n∈N ⊂ H. Define

(3.18) νn = 2|βn − β| |(PA − I)RBxn|

and suppose that

(3.19)
∑
n∈N

|εn| + |ρn| + νn = M
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for M ∈ R small enough that {xn}n∈N ⊂ N (x). Then {xn}n∈N converges weakly to a
point in

Fix V (TAAR, β) ∩N (x) ⊂
{
f − β

1 − β
(f − PAf)

∣∣ f ∈ FPBN (x)

}
,

where FPBN (x) denotes the set of best approximation points in B corresponding to the
projected neighborhood PBN (x). Convergence is strong if any one of the following
holds:

• lim dist Fix V (TAAR,β)(xn) = 0;
• int Fix V (TAAR, β) 	= ∅;
• V (TAAR, β) is demicompact at 0.

Proof. Let R = 2V (TAAR, β) − I and note that Fix R = Fix V (TAAR, β), which,
by assumption, is nonempty. Moreover, it follows from Lemma 3.8 that

Fix R ∩N (x) = Fix V (TAAR, β) ∩N (x) ⊂
{
f − β

1 − β
(f − PAf)

∣∣ f ∈ FPBN (x)

}
.

Following the proof of Theorem 2.7, let rn = 2xn+1 − xn and rewrite the recursion
(2.21) as

(3.20) x0 ∈ H and xn+1 = 1
2xn + 1

2rn for all n ∈ N,

where, from (3.19) and

(3.21) |rn −Rxn| ≤ |ρn| + |εn| + νn,

it holds that

(3.22)
∑
n∈N

|rn −Rxn| < M

for M small enough that {xn}n∈N ⊂ N (x). Since V (TAAR, β) is firmly nonexpansive
on this neighborhood with dom V (TAAR, β) = H, it follows that R is nonexpansive
on the same neighborhood with dom R = H. The result then follows from [20,
Theorem 5.5].

A more detailed picture of the behavior of iterates of the exact RAAR algorithm
can be obtained in the following restricted setting.

Corollary 3.13 (exact prox-regular RAAR algorithm in Euclidean space). Let
H be a Euclidean space. For the assumptions of Theorem 3.12, fix β ∈ ]0, 1[ small
enough that Fix V (TAAR, β) 	= ∅, and let

x0 ∈ N (x) and xn+1 = V (TAAR, β)xn for all n ∈ N,

where x ∈ Fix V (TAAR, β) with corresponding local best approximation point f = PBx
and gap vector gf = f − PAf . Then {xn}n∈N converges to a point x ∈ FN (f)(gf ) −
βgf/(1 − β) and

(i) PBxn − PAPBxn → gf ;
(ii) PBxn → PBx and PAPBxn → PAPBx;
(iii) PBx− PAPBx = gf ; hence PBx ∈ FN (f)(gf ) and PAPBx ∈ EN (f)(gf ).
Proof. The convergence of {xn}n∈N follows from Theorem 3.12 (with μn := νn :=

0); denote the limit by x. From (3.3a) we can write x ∈ FN (f)(gf ) − βgf/(1 − β) as
x = f − βgf/(1 − β), where f = PBx ∈ FN (f)(gf ) (see also [8, Proposition 2.4.(ii)]).
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Since the mappings PA, PB , RA, RB are continuous, (ii) follows. Next, using (3.5c),
we have

(3.23) PBxn − PARBxn → PBx− PARBx = gf .

Hence

(3.24) |gf | ≤ |PBxn − PAPBxn| ≤ |PBxn − PARBxn| → |gf |,

and thus |PBxn − PAPBxn| → |gf |. Now (i) follows from Propositions 3.6 and 3.11.
Taking the limit in (i) yields (iii).

4. Conclusion and open problems. In this work we have laid some ground-
work for a comprehensive theory of the asymptotic behavior of projection algorithms
in prox-regular settings, with particular focus on the RAAR algorithm. The RAAR
algorithm has many attractive features, namely that it is robust for consistent and
inconsistent problems, the relaxation parameter can be interpreted as a step length
and thus can be optimized, and, moreover, the relaxation parameter can be used
to avoid “bad” local minima. In the convex setting the RAAR algorithm, together
with the classical alternating projections and averaged projections algorithms, can
be viewed as instances of the classical Lions–Mercier/Douglas–Rachford algorithm
applied to the problem of minimizing the sum of two maximal monotone mappings;
hence the analysis of the RAAR algorithm can be broadly applied. We conjecture
that these correspondences carry over to the nonconvex setting; however, the details
of this correspondence are beyond the scope of the present study.

The analytical tools that we use derive from analogues in convex theory. As
one would expect from nonconvex problems, our most general results are local in na-
ture. Our hope is that this analysis can serve as a guide to the analysis of similar
algorithms. For the purpose of proving the convergence of the RAAR algorithm for
the phase retrieval problem in crystallography, it remains to be shown that the fixed
point mapping V (TAAR, β) is firmly nonexpansive on a neighborhood of a fixed point.
This question would be quickly resolved by sufficient conditions under which firm
nonexpansiveness holds in nonconvex settings. Less restrictive notions of firm nonex-
pansiveness, namely quasi-1/2-averaged mappings as studied in [5, 20], could also be
quite fruitful here. Another key assumption for our results was the prox-regularity of
the set GN (f) = B ∩N (f) −A at local best approximation points f . We conjecture
that this assumption as well as the assumption of local firm nonexpansiveness of the
corresponding reflection can be removed on neighborhoods of local best approxima-
tion points. The assumption that one of the sets is convex, not just prox-regular, was
useful for our proofs, but is probably not necessary in general. With the exception
of what we called fan regions, local best approximation points will by definition be
in the proximal neighborhood of the other set. We therefore conjecture that these
results can be extended to two prox-regular sets. Finally, we note that our use of hy-
pomonotonicity defined in Lemma 3.1 might be relaxed to approximate monotonicity
of the closed set C at a point x ∈ C defined by

〈y1 − y2, x1 − x2〉 ≥ −σ|x1 − x2| whenever yi ∈ Nr
C(xi) and xi ∈ N (x)

for all σ > 0. By [35, Corollary 4.11] this is equivalent to the super-regularity of
C [35, Definition 4.4], a weaker condition than prox-regularity. This generalization
would immediately extend our results to sets with other types of regularity such as
subsmooth sets [1].
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Abstract. We prove a general result concerning nonlinear least squares problems in the neigh-
borhood of a singular Hessian. Assuming the Hessian has a one-dimensional null space, we show that
in the neighborhood of such a point, there will be three solutions with small residuals. Counter to
our intuition, assuming certain transversality conditions are satisfied, the solution with the largest
residual is actually the most accurate solution. We illustrate this general theory by applying it to a
time of arrival (TOA) geolocation problem.
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1. Introduction. The results in this paper were motivated by phenomena ob-
served while solving overdetermined systems of equations arising in time of arrival
(TOA) geolocation as described in section 6 and [10, 7, 5]. TOA geolocation is used
in a variety of settings including global positioning systems (GPS). As part of a pro-
gram to make the relevant algorithms as robust as possible, we sought configurations
of satellites where the algorithms were severely tested, in particular, where the Hes-
sian (3.4) was singular or nearly singular. In the language of GPS, we were seeking
out situations where the geometrical dilution of precision (GDOP) was very high.
Here we observed a phenomena that seems counterintuitive, and that we have not
seen reported elsewhere in the literature.

To describe this phenomena, we consider a system of equations

f(z,d) = 0,(1.1)

where z is a vector that we are trying to determine, d is a vector of data, and f is a
nonlinear function of z. Assuming we have more equations than unknowns, this gives
us an overdetermined system of nonlinear equations that can be solved using least
squares [4]. That is, we try to minimize

P (z) =
1

2
fT (z)f(z).(1.2)

Here it is assumed that the weighting has been absorbed into our equations.
In the absence of noise, we have data d0 such that there is a scripted solution z0

that exactly solves the overdetermined system

f(z0,d0) = 0.(1.3)
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We now add noise to our system, but for the sake of analysis, we do this in a
deterministic way. That is, we suppose that the data is given by

d = d0 + εn,(1.4)

where ε gives the level of the noise, and n is a unit vector that is random, but held
fixed during our analysis. We are now ready to state the counterintuitive results that
we have encountered.

When we put the satellites in a configuration where the Hessian evaluated at z0

is singular (with a one-dimensional null space), and then add noise to the data, we
observe that typically there are three critical points of our least squares problem that
are all close to z0. Two of these, which we will call z+ and z−, differ from z0 by an
amount that is proportional to the square root of the noise.

z± = z0 + ν±φ + O(ε), ν± = ±constant×
√
ε.(1.5)

The third answer, which we call zM , differs from the scripted answer by an amount
that is proportional to the noise.

zM = z0 + εq0 + νMφ + O(ε2), νM = constant× ε.(1.6)

In these equations φ is the null vector of the Hessian in the absence of noise. For small
noise levels, ε will be much smaller than

√
ε; hence zM is much more accurate than

the solutions z±, and is clearly the answer that we would like to report. However, of
the three candidates for the solution, we will show that zM always gives the largest
residual P (as defined in (1.2)).

P (zM ,d) > P (z±,d).(1.7)

This clearly violates our intuition since we feel as though the best solution should be
the one with the minimum residual, which it is not.

At first sight it may seem impossible to know which solution to report (since in
practice we do not know z0). However, it can be shown that zM is much less sensitive
to changes in the data. This sensitivity can be computed without knowing the scripted
solution, and hence this offers a viable way of determining which solution to report.
Alternatively, (1.5) and (1.6) show that if we average all three of these solutions we
get a solution that differs from the scripted solution by O(ε). This suggests that if
we see three solutions close to each other, the average may be an accurate estimate
of the solution we seek.

In this paper we use techniques from bifurcation theory to show that this is in
fact a general phenomenon that occurs when solving nonlinear least squares problems.
In particular, we use what is known as the Liapanov–Schmidt reduction [2, 6, 3, 9]
to effectively turn this into a one-dimensional problem. This reduction allows us to
solve a one-dimensional equation for the determination of the constant ν in front of
the eigenvector φ in (1.5) and (1.6). We will see that to leading order, ν satisfies an
equation

c0ε
2 + 2a1εν + 4a3ν

3 = 0,(1.8)

where

a3 > 0,(1.9)
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Fig. 1.1. This is a schematic illustrating the pitchfork bifurcation described by (1.8). Note that
this is not a symmetry breaking bifurcation. That is, it is not symmetrical except for asymptotically
small values of ε.

and the objective function can be written as

P (ν, ε) = a0ε
2 + a1εν

2 + a3ν
4 + Higher order terms.(1.10)

Note that (1.8) is missing the linear term in ε and both the linear and quadratic terms
in ν. This is a general property of nonlinear least squares problems in the vicinity
of a singularity. An analysis of (1.8) shows that it exhibits a pitchfork bifurcation,
having three real solutions for one sign of ε, and one real solution for the opposite
sign. The form in (1.10) for the residual P is noteworthy in that two of the constants
appearing in it are the same as the constants in (1.8). This, along with the fact that
a3 > 0, will allow us to prove that the solutions z± have lower residuals than zM for
small values of ε.

Figure 1.1 illustrates the pitchfork bifurcation described by (1.8). It should be
noted that this is not a symmetry-breaking bifurcation. That is, the bifurcation is
only symmetrical for asymptotically small values of ε.

A relevant question is: How likely are we to see such degenerate configurations?
In order for such a configuration to exist, we will see that we must have a vector φ such
that Jφ = 0, where J is the Jacobian of f . If we have N +1 equations in N unknowns,
J will be an (N+1)×N matrix, and typically we cannot find a nontrivial vector φ that
satisfies Jφ = 0. However, such a solution is generic if we adjust two parameters. For
example, in a GPS problem we have four unknowns: the three-dimensional vector giv-
ing the location of the receiver, and the clock bias. If we have five satellites this gives
us five equations in four unknowns. If we fix the location of the receiver, then it is not
likely that at some point in time the five satellites will pass through such a configura-
tion. However, it is likely that at some point in time there is a point on a curve (such
as the equator) that will see the satellites as being degenerate. On the other hand, if
we have N + 2 equations in N unknowns, we will need to adjust three parameters.

We now describe the outline of this paper. In section 2 we give a review of the
Liapanov–Schmidt reduction in bifurcation theory. In section 3 we apply this theory
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to the case of nonlinear least squares problems, in section 4 we discuss the residuals
of the solutions in the neighborhood of the singular point, and in section 5 we discuss
a criterion for choosing the best solution. In section 6 we give examples of this
phenomena occurring in geolocation problems, and in section 7 we give conclusions.

2. Review of the Liapanov–Schmidt reduction. We will carry out the bi-
furcation analysis using a standard technique in bifurcation theory known as the
Liapanov–Schmidt reduction. Though this procedure can be found in many different
sources [2, 6, 3, 9], we have chosen to review it here for the convenience of the reader,
and to introduce the notation that we will be using. We limit our discussion of this
procedure to systems that have a simple zero eigenvalue. This technique allows us
to analyze an N -dimensional system near a bifurcation point by analyzing a one-
dimensional equation that solves for the component ν of the solution in the direction
of the critical eigenvector.

Suppose we have N nonlinear equations in N unknowns

G(z, ε) = 0,(2.1)

where ε is a parameter, G is an N -dimensional vector, and we are solving for the N -
dimensional vector z. We suppose that for ε = 0 we have a solution z0, and that the
Jacobian of this system is singular at (z, ε) = (z0, 0), with a simple real eigenvector φ,
and adjoint eigenvector ψ. This is equivalent to making the following assumptions:

Assumptions 1 (assumptions for Liapanov–Schmidt reduction). We assume
that for (z, ε) = (z0, 0) we have

G(z0, 0) = 0.(2.2)

The Jacobian ∂G
∂z has a simple zero eigenvector φ

∂G

∂z
(z0, 0)φ = 0(2.3)

and a left eigenvector

ψT ∂G

∂z
(z0, 0) = 0T .(2.4)

The simplicity requirement requires that

ψTφ �= 0.(2.5)

For the problems we will be concerned with, the Jacobian will be symmetric, and
we will have ψ = φ. However, we will not make this assumption in this brief review.

Since our Jacobian is singular at (z0, 0), we have a violation of the conditions of
the implicit function theorem [1], and we are not guaranteed that we can uniquely
solve for z(ε) in the neighborhood of such a point. However, since we have a simple
zero eigenvalue, it can be shown that we can solve for N − 1 of the components of z
in terms of the component ν of z that is in the direction of the critical eigenvector
φ. Once we have expressed the other components in terms of ν, we can reduce the
N -dimensional problem to a one-dimensional problem.

To be precise we will write our solution as

z = z0 + v + νφ(2.6)
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and require that

ψTv = 0.(2.7)

These equations express the fact that ν is the component of z− z0 in the direction of
φ, and that v gives the components in the other directions.

We would like to solve for v(ν, ε) in the neighborhood of (z0, 0). To do that we
will require that all of the components of the equation G(z, ε) = 0 are satisfied, except
for the component in the direction φ. We can do this by using the equation

G(z0 + v + νφ, ε) = κφ.(2.8)

Here κ is a variable that we will solve for. By introducing κ, (2.8) does not require that
G(z, ε) = 0 in the direction of φ. Equations (2.7) and (2.8) give us N + 1 equations
in the N + 1 unknowns v and κ, with ν and ε as parameters. These equations are
satisfied by v = κ = 0, when ε = ν = 0. Furthermore, when we linearize about this
point, it can be shown that the Jacobian of this extended system is nonsingular with
respect to the variables v and κ (we omit the details here). This implies that we can
uniquely solve for v(ν, ε) and κ(ν, ε).

Lemma 2.1. Under the assumptions (1), (2.7) and (2.8) have a unique solution
v(ν, ε), κ(ν, ε) for (ν, ε) in the neighborhood of (0, 0), and v in the neighborhood of 0.

For any values of ν and ε in the neighborhood of (0, 0), we will have

qTG(z0 + v(ν, ε) + νφ, ε) = 0; for qTφ = 0.(2.9)

This implies that z = z0 + v(ν, ε) + νφ will satisfy the equation G(z, ε) = 0 in all
directions except for one, the direction of φ. In order to ensure that z = z0 +v(ν, ε)+
νφ is in fact a solution to G(z, ε) = 0, we need only require that the equation is also
satisfied in the direction φ. To do this we require that

g(ν, ε) = ψTG(z0 + v(ν, ε) + νφ, ε) = 0.(2.10)

This last equation gives us a one-dimensional equation g(ν, ε) = 0 to solve. This is
the end result of the Liapanov–Schmidt reduction. Our main goal is to determine
the topology of the solution space in the neighborhood of (z0, 0). That is, we would
like to know how many solutions there are as a function of ε, and what the leading
order behavior of these solutions is. Through our reduction, this is equivalent to
determining the topology of the solutions to g(ν, ε) = 0 near (ν, ε) = (0, 0). This can
be determined if we know the leading order terms in the Taylor series expansion of
g(ν, ε), which can be found by taking derivatives of g. That is, the process we carry
out in the next section for the case where G comes from a nonlinear least squares
problem.

A general property of this Liapanov–Schmidt reduction is that ∂v
∂ν (0, 0) = 0. This

follows from taking the derivative of (2.7) and (2.8) with respect to ν. If we do this
we get

∂G

∂z

(
∂v

∂ν
+ φ

)
=

∂κ

∂ν
φ,(2.11)

ψT ∂v

∂ν
= 0.(2.12)
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If we evaluate these equations at ν = ε = 0, and use the fact that at that point
∂G
∂z φ = 0, we get the equation

∂G

∂z

∂v

∂ν
=

∂κ

∂ν
φ.(2.13)

If we multiply both sides of this equation on the left by ψT and use (2.4) and (2.5),
we see that ∂κ

∂ν = 0. It follows that ∂G
∂z

∂v
∂ν = 0 and hence ∂v

∂ν is proportional to φ, but
(2.12) shows that the constant of proportionality must in fact be zero.

Lemma 2.2. Under the assumptions (1), we have

∂v

∂ν
= 0 for ν = ε = 0.(2.14)

Collecting all of this we get the following:
Theorem 2.3 (Liapanov–Schmidt). Under the assumptions (1), as ε → 0, any

solution z(ε) (in the neighborhood of z0) to G(z, ε) = 0 can be written as

z(ε) = z0 + v(ε, 0) + ν(ε)φ + . . . ,(2.15)

where ν(ε) is a solution to g(ν, ε) = 0 as defined in (2.10). Similarly, any solution
to g(ν, ε) = 0 gives a solution to G(z, ε) = 0, whose leading order behavior is as in
(2.15).

3. Bifurcation analysis. In this section we apply the Liapanov–Schmidt proce-
dure to the specific case where the function G(z, ε) (as in the last section) comes from
solving an overdetermined system of equations f(z, ε) = 0 in a least squares sense.
The analysis is applied to the case where the Jacobian of our system has a single null
vector. In Lemma (3.2) we show that in this case the function g(ν, ε) (as in (2.10)) is
missing the order ε, ν, and ν2 terms in the Taylor series about (ν, ε) = (0, 0). This
gives us the form as in (1.8). We will see that this implies that for small values of ε
we have three solutions as in (1.5) and (1.6).

We assume we have a suitably differentiable function f(z, ε) where z is an N -
dimensional vector, and f(z, ε) is an M -dimensional vector, with M > N . Here the
parameter ε is meant to specify the level of noise in our system. We will solve this
system of equations using nonlinear least squares. That is, we minimize the objective
function

P (z, ε) =
1

2
fT (z, ε).f(z, ε).(3.1)

The equations for z come from setting the gradient of this to zero. This gives us the
equations

G(z, ε) = JT (z, ε)f(z, ε) = 0,(3.2)

where

J(z, ε) =
∂f(z, ε)

∂z
(3.3)

is the Jacobian of f .
In general, the Hessian matrix is given by

H(z, ε) =
∂JT

∂z
f + JTJ.(3.4)
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Here ∂JT

∂z is a third rank tensor. Since we will always be using the Hessian when
f = 0, we do not need to further specify what we mean by this quantity.

We will assume that when there is no noise, there is a solution z0 that satisfies
the equations exactly. That is, we have

f(z0, 0) = 0.(3.5)

Furthermore, we assume that we are at a point where the Hessian H is singular. Since
f = 0, this means that the Hessian is given by H = JTJ. The only way this can be
singular is if there is a vector φ such that

J(z0, 0)φ = 0.(3.6)

We make the assumption that there is only one vector φ in the null space of J.
We now carry out the Liapanov–Schmidt reduction for equations of the form

(3.2). In particular, we will show that the function g(ν, ε) in the Liapanov–Schmidt
reduction has no linear terms, and that it is missing the term ν2. We will write the
function g(ν, ε) as

g(ν, ε) = φT ĴT (ν, ε)f̂(ν, ε),(3.7)

where

f̂(ν, ε) = f(z0 + v(ν, ε) + νφ, ε) and(3.8)

Ĵ(ν, ε) = J(z0 + v(ν, ε) + νφ, ε).(3.9)

In our case (2.8) can be written as

ĴT (ν, ε)f̂(ν, ε) = κ(ν, ε)φ.(3.10)

The calculation of the low-order derivatives of g(ν, ε) is simple due to the following
lemma.

Lemma 3.1. At ν = ε = 0, we have f̂ = 0, φT ĴT = 0T , and ∂ f̂
∂ν = 0.

Proof. The fact that f̂ = 0 results from the fact that v(0, 0) = 0, and f(z0, 0) = 0.

The fact that φT ĴT = 0T follows from the fact that Jφ = 0 for (z, ε) = (z0, 0). The

last equality in the theorem arises from differentiating f̂ with respect to ν. If we do
this, we get

∂ f̂

∂ν
= Ĵ

(
∂v

∂ν
+ φ

)
.(3.11)

This equation is a direct consequence of the chain rule, and the fact that J is the
gradient of f . However, (2.14) shows that we have ∂v

∂ν = 0 at ν = ε = 0. Using the

fact that Ĵφ = 0 at ν = ε = 0, we conclude that ∂ f̂
∂ν (0, 0) = 0.

The basic structure of the solutions near ε = 0 results from the following lemma.

Lemma 3.2. At ε = ν = 0 we have ∂g
∂ν = ∂g

∂ε = ∂2g
∂ν2 = 0.

Proof. To show that we are missing the linear terms in ν, we differentiate (3.7)
with respect to ν to get

∂g

∂ν
= φT ĴT df̂

dν
+ φT dĴT

dν
f̂ .(3.12)
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When we evaluate this at ν = ε = 0, this clearly vanishes, since φT ĴT (0) = 0T , and

f̂(0, 0) = 0. Identical arguments hold for the vanishing of ∂
∂εg(0, 0). To show that

∂2g
∂ν2 = 0 at ν = ε = 0, we differentiate (3.12) with respect to ν to get

∂2g

∂ν2
= φT

(
ĴT ∂2f̂

∂ν2
+ 2

∂Ĵ

∂ν

T
∂ f̂

∂ν
+

∂2Ĵ

∂ν2

T

f̂

)
.(3.13)

The first term in this sum vanishes at ν = ε = 0 since φT Ĵ = 0T . The second

term vanishes since ∂ f̂
∂ν = 0 (see Lemma 3.1), and the third term vanishes since

f̂ = 0.
Lemma 3.2 shows that near ν = ε = 0, the equation g(ν, ε) = 0 is given by

g(ν, ε) = c0ε
2 + c1εν + c3ν

3 + · · ·(3.14)

We now determine these constants. If we differentiate (3.7) twice with respect to
ε, we get

∂2g

∂ε2
= φT

(
ĴT ∂2f̂

∂ε2
+ 2

∂Ĵ

∂ε

T
∂ f̂

∂ε
+

∂2Ĵ

∂ε2
f̂

)
.(3.15)

If we evaluate this at ε = ν = 0, and use Lemma 3.1 we get

c0 = φT ∂ĴT

∂ε

∂ f̂

∂ε
,(3.16)

where the derivatives are all evaluated at ε = ν = 0. A similar calculation shows that

c1 = φT ∂Ĵ

∂ν

T
∂ f̂

∂ε
(3.17)

and

c3 =
1

2
φT ∂Ĵ

∂ν

T
∂2f̂

∂ν2
.(3.18)

If we ignore the higher order terms in (3.14), and set g(ν, ε) = 0, we get a cubic
equation for ν.

c0ε
2 + c1εν + c3ν

3 = 0.(3.19)

Theorem 3.3. Assuming that none of c0, c1, and c3 vanish, as ε → 0 the three
roots of (3.19) are given by

νM = −c0
c1

ε + · · ·(3.20)

ν± = ±
√

−εc1
c3

+ · · ·(3.21)

Proof. If ν(ε) is a root of (3.19), then when we substitute it into that equation, we
must have two of the terms be of the same order as ε → 0, and these terms must be
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larger than the remaining term. This leaves us with three possibilities for the leading
order behavior, either c0ε

2 + c1εν = 0, c1εν + c3ν
3 = 0, or c0ε

2 + c3ν
3 = 0. It is easily

verified that the first two of these limits results in solutions where the ignored term is
in fact smaller than the terms we kept. For example, if we assume that c0ε

2+c1εν = 0,
then we will have ν = O(ε), and the terms we kept are both order ε, but the term
we did not keep is of order ε3, which is in fact higher order than the terms we kept.
Similar arguments hold for the equation c1εν + c3ν

3 = 0. However, if we assume that
c0ε

2 + c3ν
3 = 0, then ν = O(ε2/3), but in such a solution the terms we kept are order

ε2, but the term we ignored is on the order of ε5/3, so this is not a valid solution.
Definition 3.4. We will refer to zM (ε) as the solution associated with the root

νM in Theorem 3.3, and z±(ε) as the roots associated with ν± in Theorem 3.3.

4. The objective function near the bifurcation point. In order to show
that the residual is larger for zM than for z±, we need to expand the objective
function for ε → 0. In order to do this we introduce the function

P̂ (ν, ε) =
1

2
f̂T (ν, ε)f̂(ν, ε).(4.1)

If we have a solution ν(ε) of (3.7), then the residual of the solution z(ε) associated

with this function will be P̂ (ν(ε), ε). Using the fact that f̂ = ∂ f̂
∂ν = 0, repeated

differentiation shows that

∂P̂

∂ν
=

∂P̂

∂ε
=

∂2P̂

∂ν2
=

∂2P̂

∂ν∂ε
=

∂3P̂

∂ν3
= 0 for ν = ε = 0.(4.2)

It follows that to leading order we have

P̂ (ν, ε) = a0ε
2 + a1εν

2 + a3ν
4 + · · · .(4.3)

The constants a0, a1, and a3 can be computed by computing the appropriate partial
derivatives.

a0 =
1

2

∂ f̂

∂ε

T
∂ f̂

∂ε
for ν = ε = 0,(4.4)

a1 =
1

2

∂2f̂

∂ν2

T
∂ f̂

∂ε
for ν = ε = 0,(4.5)

a3 =
1

8

∂2f̂T

∂ν2

∂2f̂

∂ν2
for ν = ε = 0.(4.6)

In order to compare the residuals for zM and z± we need to express the coefficients
c1 and c3 in (3.14) in terms of a1 and a3. The following lemma will help us do this.

Lemma 4.1. At ν = ε = 0 we have the identities

ĴT ∂ f̂

∂ε
= 0(4.7)

ĴT ∂2f̂

∂ν2
= 0(4.8)

Proof. The first of these results is obtained from taking the derivative of (3.10)

with respect to ε. If we do this and use the fact that f̂ = 0 at ν = ε = 0, we get

ĴT ∂ f̂

∂ε
=

∂κ

∂ε
φ.(4.9)
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If we multiply both sides of this equation by φT , we see that the left-hand side
vanishes, and hence we get ∂κ

∂ε = 0. This implies (4.7). We can derive (4.8) us-
ing a similar argument. In particular, by taking the second derivative of (3.10)

with respect to ν, using the fact that f̂ = ∂ f̂
∂ν = 0 (see Lemma 3.1) for ν = ε =

0, and multiplying through by φT to see that ∂2κ
∂ν2 = 0, and (4.8) follows from

this.
Lemma 4.2. We have the identity

∂2f̂

∂ν2
= Ĵ

∂2v

∂ν2
+

∂Ĵ

∂ν
φ for ν = ε = 0.(4.10)

Proof. If we take the second derivative of (3.8) with respect to ν, we get

∂2f̂

∂ν2
=

∂Ĵ

∂ν

(
∂v

∂ν
+ φ

)
+ Ĵ

∂2v

∂ν2
.(4.11)

If we evaluate this at ν = ε = 0, and use the fact that ∂v
∂ν vanishes at that point

(Lemma 2.2), we prove the lemma.
Lemma 4.3. With a1 and a3 defined as in (4.5) and (4.6), and c1 and c3 defined

as in (3.17) and (3.18), we have

a1 =
1

2
c1,(4.12)

a3 =
1

4
c3.(4.13)

Proof. Using the expression for ∂2 f̂
∂ν2 from (4.10), and the fact that ĴT ∂2 f̂

∂ν2 = 0
(from (4.8)) we can write (4.6) as

a3 =
1

8

(
Ĵ
∂2v

∂ν2
+

∂Ĵ

∂ν
φ

)T
∂2f̂

∂ν2
=

1

8
φT ∂Ĵ

∂ν

T
∂2f̂

∂ν2
=

1

4
c3.(4.14)

Here the last equality has used (3.18). Similarly, if we use the expression for ∂2 f̂
∂ν2 from

(4.10) and the fact that ĴT ∂ f̂
∂ε = 0 from (4.7), we can write (4.5) as

a1 =
1

2

(
Ĵ
∂2v

∂ν2
+

∂Ĵ

∂ν

)T
∂ f̂

∂ε
=

1

2

∂ĴT

∂ν

∂ f̂

∂ε
=

1

2
c1(4.15)

The last equality follows from (3.17).
We can now collect our results to prove the following theorem.
Theorem 4.4. To leading order, we have

P̂ (νM (ε), ε) = a0ε
2,(4.16)

P̂ (ν±(ε), ε) = a0ε
2 + ν2

(
a1ε + a3ν

2
)

= a0ε
2 − ν4

±a3,(4.17)

and since a3 > 0,

P̂ (νM (ε), ε) > P̂ (ν±(ε), ε) as ε → 0.(4.18)



750 LOUIS A. ROMERO AND JEFF MASON

Proof. We compute the objective function using (4.3) with ν(ε) substituted for
ν. Using (3.20), (4.16) follows from the fact that the terms ν4

M and εν2
M are higher

order than a0ε
2. Equation (3.21) and the fact that c1 = 2a1, and c3 = 4a3, implies

that a1εν± + 2a3ν
3
± = 0, and hence a1εν± + a3ν

3
± = −a3ν

3
±, which gives us the last

equation on the right of (4.17). When we compare (4.16) and (4.17), and use the fact
that a3 > 0 (which follows from (4.6)), the inequality in the lemma follows.

In this last theorem we showed that for small values of ε we have P (ν±, ε) ≈
a0ε

2−ν4
±a3. It is not immediately clear that this is a positive quantity (which it must

be). This can be shown to be positive by noting that as in the proof of Theorem 4.4

we have ν2
± = − εa1

2a3
, and hence P (ν±, ε) ≈ ε2(a0 − a2

1

4a3
) = ε2a3(a0a3 − 1

4a
2
1) > 0. The

last inequality follows from using the expressions for a0, a1, and a3 in (4.4), (4.5), and
(4.6) along with the Cauchy–Schwarz inequality.

5. A criterion for choosing the best solution. In this section we address
how we can detect which of the three solutions z± and zM in the neighborhood of
the singularity is actually the best solution. In our analysis, we have assumed that
in the absence of noise, the data is given by d0, and that we have added noise εn to
this vector. We have considered the solutions to be functions of ε, but we could more
generally consider them to be functions of d − d0. In this case the gradient of the
solutions in the direction of n will just be the derivatives of the solutions with respect
to ε. The derivatives of z± with respect to ε will be on the order of 1/

√
ε, while the

derivative of zM will be order one.
On the other hand, if we change the noise in a direction perpendicular to n, then

we will keep ε fixed, but change the constants in (3.14). The gradient of the solutions
in directions perpendicular to n will not be large for any of the three solutions. It
follows that if we compute the gradient of our solutions with respect to the data, and
find the direction where this gradient is largest, then the solutions z± will give a large
gradient, whereas the solution zM will not.

To quantify this reasoning we can write our least squares equations as

G(z,d) = 0.(5.1)

When we change d by an amount δd, the change in the solution z satisfies

∂G

∂z
δz +

∂G

∂d
δd = 0.(5.2)

This shows us that

δz = Rδd(5.3)

where

R = −
(
∂G

∂z

)−1
∂G

∂d
.(5.4)

We can write

(δz)T (δz)

(δd)T (δd)
=

(δd)TRTR(δd)

(δd)T (δd)
.(5.5)

The direction δd that causes the greatest change in the solution is given by the
eigenvector q associated with the largest eigenvalue of RTR. This suggests that we
define the sensitivity as

sensitivity = largest eigenvalue of RTR(5.6)
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It follows that we can determine the sensitivity of the solutions by looking at the
largest eigenvalue of RTR. Using this measure, the solutions z± will have a large
sensitivity, and the solution zM will have an order one sensitivity.

6. Example from TOA geolocation. We will now describe the application
where the bifurcation was observed. The location x of a radio frequency (RF) emitter
can be determined by measuring time of arrival tk of the RF signal at a geographically
dispersed constellation of receivers with positions sk using the relation

| x − sk |= τk − τ for k = 1, N,(6.1)

where τk is the arrival time times the speed of light; i.e., τk = ctk and τ is the
similarly scaled signal transmission time, which is also a solution variable. There are
four unknowns in this problem: the 3 × 1 vector x and τ . We will consider the case
of five receivers giving five equations, which make an overdetermined system.

Equation (6.1) is also used for the navigation problem where an RF receiver
wishes to locate its self using signals transmitted from a constellation of overhead
transmitters, such as GPS. Here the transmit time of any section of the received
signal can be determined from the modulation impressed on the signal. The GPS
satellites carry accurate clocks so that we can assume the transmit time to be known
exactly. The receiver, however, measures the signal arrival time with a clock that
has an unknown bias. For this application τk in (6.1) is the receiver’s estimate of the
range to satellite k using its biased clock and τ is the clock bias, which must be solved
for along with the receiver’s position. Again we will consider the case of five satellites
giving five equations in four unknowns, x and τ .

It is easier to treat these equations algebraically if we square both sides to get
the equations

| x − sk |2= (τk − τ)2 for k = 1, N.(6.2)

This gives us N equations for the four unknowns x and τ . We will write this as a
four-dimensional vector of unknowns

zT = (xT , τ).(6.3)

and keeping with the notation used throughout this paper, the overdetermined system
of (6.2) is written as f(z) = 0. The Jacobian J(z) is obtained by linearizing f(z) about
the vector z.

Jδz = δf(6.4)

If we use the notation δzT = (δxT , δτ), we have

2 (x − sk)
T
δx + 2 (τk − τ) δτ = kth component of Jδz.(6.5)

If the system is singular, this implies that there is a vector φ such that Jφ = 0.
If we write

φ =

(
p
α

)
,(6.6)

this implies that we have

(sk − x)
T

p = (τk − τ)α.(6.7)
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This can be written as

eTk p = α for k = 1, N,(6.8)

where

ek =
sk − x

τk − τ
=

sk − x

| x − sk | .(6.9)

Geometrically, (6.8) implies that the satellites all lie on a cone whose vertex is at the
receiver x.

In GPS the sensitivity to location errors arising from errors in the data is typically
defined using the GDOP. The GDOP is defined as GDOP =

√
tr(H−1). Clearly the

GDOP becomes large when the Hessian H = JTJ becomes nearly singular. Hence, in
the language of GPS, we are considering situations where the satellite configurations
have extremely large GDOP.

In [8] we show that the least squares solution to these equations can be obtained
by solving a ninth order eigenvalue problem. We also show that there is something
quite degenerate about the situation in GPS problems where all of the satellites are
equidistant from the center of the earth. This is a very common situation in GPS
problems, but it is not the only situation of interest. In our singular cases, it turns
out that when the satellites are at equal radius, the coefficient c3 in (3.14) comes out
to be extremely close to zero. This makes such situations even more degenerate than
the case we have discussed in this paper. For this reason we chose examples from
situations where not all of the satellites are at the same radius. In particular, we
will have four satellites at the middle earth orbit (MEO) radius, and one of them at
geosynchronous earth orbit (GEO) radius. This corresponds to a wide area augmen-
tation system (WAAS) augmented GPS contellation of satellites. We use coordinates
made dimensionless by the radius of the earth. In this case, four of our satellites have
a radius of 4.16, and the fifth has a radius of 22/3 times this. In the example we use,
the satellites have the following positions:⎛

⎜⎜⎜⎜⎜⎝

sT1
sT2
sT3
sT4
sT5

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

(.87299, 1.87293, 6.27191)

(2.13601, 0.55425, 3.52644)

(2.39458, 0.13330, 3.39908)

(2.00895, 0.68732, 3.57732)

(2.22186, 0.44388, 3.48882)

⎞
⎟⎟⎟⎟⎟⎠(6.10)

The particular noise vector we are using is

n =

⎛
⎜⎜⎜⎜⎜⎝

0.57112950

0.97354900

0.43808954

0.97092952

0.41250846

⎞
⎟⎟⎟⎟⎟⎠ .(6.11)

Table 6.1 shows the residual, location error, and sensitivity for the three different
solutions, and for different amounts of noise levels. In all cases, the solution zM has
the largest residual, but the smallest location error and sensitivity. Figure 6.1 shows a
log-log plot of the error as a function of ε for the solutions zM and z+. The plot shows
that the error for zM is varying linearly with ε, and that for z+ is varying like

√
ε.
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Table 6.1

This shows the residual, resid = |f(z)|, the location error, eloc, and the sensitivity (as defined
in (5.6) for the three different solutions at noise levels of ε = 1.e − 4, ε = 1.e − 5, and ε = 1.e − 6.
Note that in all cases, the residual for zM is the largest, and the location error and sensitivity are
the smallest.

Solution ε resid eloc σsens

z+ 1.e− 4 1.88e− 4 1.85e− 1 3.67e7
z− 1.e− 4 2.07e− 4 1.86e− 1 6.16e7
zM 1.e− 4 2.32e− 4 1.72e− 2 1.16e6
z+ 1.e− 5 1.94e− 5 5.88e− 2 4.32e8
z− 1.e− 5 2.00e− 5 5.89e− 2 5.09e8
zM 1.e− 5 2.31e− 5 1.71e− 3 1.10e6
z+ 1.e− 6 1.97e− 6 1.86e− 2 4.56e9
z− 1.e− 6 1.98e− 6 1.86e− 2 4.79e9
zM 1.e− 6 2.31e− 6 2.28e− 4 2.14e5
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Fig. 6.1. This gives a log-log plot of the errors of the low residual solution zM and one of the
larger residual solutions z+. The continuous lines have slopes of 1 and .5, and the numerical data
are marked by crosses. The plot shows that the error for zM is linear in ε, and the error for z+

varies as
√
ε. A similar plot would show that the error in z− varies like

√
ε, but we have not shown

it here since it would almost completely overlie the plot for z+.

As mentioned in the introduction, if we have five satellites, the conditions in
(6.8) are generic if we allow two parameters to vary. For example, if we specify the
positions of the satellites, the equations (6.8) specifying that we have a degenerate
configuration can be considered to be five equations for the three components of p/α.
This gives five equations in three unknowns. This shows that generically we do not
expect to have a degenerate configuration. However, if we allow the point x being
located to move around on the surface of the earth, this gives us two more unknowns,
and we get five equations in five unknowns. For a given configuration of satellites, we
are not guaranteed that there will be a point x on the surface of the earth that gives
a degenerate configuration, but it is generic for such a situation to occur. That is, if
we arrange for such a situation, and then perturb the satellites, we can find a new
point on earth that gives us a degenerate configuration.
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Fig. 6.2. This shows a plot of the region surrounding a singularity where the most accurate
solution does not have the smallest residual. In making this plot, the same noise was added to all
of the locations. The noise had a magnitude of 100 nanoseconds, which is equivalent to an error of
about 30 meters. The point where the system is exactly singular is in the middle of the figure.

We have carried out simulations using true satellite trajectories. In these simula-
tions we once again put four of the satellites at MEO radius, and one of the satellites
at the GEO radius. However, rather than purposely putting the satellites in a de-
generate configuration, we generated a million different configurations of satellites
consistent with actual satellite trajectories. When the noise level was 0.001 earth
radii (approximately 21 microseconds), we found that in about one out of every five
thousand trials, we would get situations where the solution with the smallest residual
was not the solution with the smallest error. When such a situation occurred, we
found that we could adjust the position of the point being located (using Newton’s
method) so that we in fact had a degenerate situation where (6.8) was satisfied.

As another illustration, we once again used true satellite trajectories where one
of the satellites was at GEO and the other four satellites were at MEO radius. This
time we added 100 nanosecond noise to the data (equivalent to about a 30 meter error
for a well-conditioned system). Out of a million trials we found four configurations
where the smallest residual did not give the most accurate location. We took one
of these solutions and determined the exact location of the nearby singularity. We
then surrounded this point by a grid of points, and used the TOA equations with the
same fixed satellite positions and fixed TOA noise vector to locate a receiver at each
point on this grid. Figure 6.2 shows the region around the singularity where the most
accurate solution is not the one with the smallest residual. We see that there is a
central core around the singularity where this phenomenon occurs, but it spreads out
in some narrow arms to quite large distances.

7. Conclusions. We have proven a general theorem concerning the solutions to
nonlinear least squares problems in the neighborhood of a singularity of the equations.
We have shown that in the neighborhood of a point where the Hessian has a one-
dimensional null space, we will have three solutions z± and zM . The general theory
shows that the solution zM will have the largest residual when evaluating the objective
function, but it will have the smallest error when compared to the exact scripted
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solution. We have shown that the solution zM can be picked out of the three candidate
solutions based on the fact that it is less sensitive to perturbations in the data.
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Abstract. We present efficiency criteria for multicriteria problems with C(T )-valued maps via
directional derivatives and subdifferentials. It turns out that the essential structure of similar results
known for R

n-valued optimization problems remains valid. As an improvement, our formulas allow
us to distinguish between efficient and weakly efficient elements.
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1. Introduction. We consider the vector-valued optimization problem

f(x) → min, x ∈ X ⊂ X,

with f : X → C(T ). C(T ) denotes the space of continuous real-valued functions on a
compact separated Hausdorff space T . Further, let X be a locally convex space, and
let X be a nonempty subset of X. The aim of our paper is to study efficiency criteria
for this problem via directional derivatives and subdifferentials known from convex
analysis.

There are at least two good reasons for investigating mappings with values in
C(T ):

• Location problems frequently consist of identifying an optimal location x ∈ R
2

for a new facility with respect to n reference facilities a1, . . . , an ∈ R
2 (for

instance customers . . . ). Modeling them as a multicriteria problem, one gets
a goal function f : R

2 → R
n,

f(x) :=

⎛
⎜⎝

d1(x, a1)
...

dn(x, an)

⎞
⎟⎠ ,

with distance functions di : R
2 → R. If we consider a whole service area

(for instance, a complete district of a town) instead of a finite number of
service points ai, this problem finds a natural extension in a multicriteria
problem with goal function g(x)(t) := dt(x, a(t)). Here, t ∈ T represents a
single point in the service area T . In the simpliest version, for instance, with
dt(x, a(t)) := ‖x − t‖, g is a function with values in the space of continuous
functions over the area T . So, at the end, one has to identify efficient elements
in (a subset of) the space C(T ).

• The space C(T ) marks an important stage between the finite-dimensional
Euclidean space R

n and general partially ordered vector spaces. C(T ) with
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its natural componentwise ordering C(T )+ is not order complete; the cone
C(T )+ does not possess the Daniell property and is not nuclear. Therefore,
the space C(T ) lacks essential analytic and order theoretic properties. On
the other hand, componentwise calculus—i.e., using realizations y(t), t ∈ T
of functions y ∈ C(T ), allows us to use definitions and ideas from R

n.
In [22], we proved a characterization of weakly efficient points in C(T ) based on

subdifferentials for convex functions. [2] and [11] presented similar results for general
distance functions on R

n. But these papers contain only results concerning weak
efficiency. Now we add formulas which distinguish efficient points from weak efficient
points.

The extensions of the notion of subdifferential (and its applications) from the
scalar to the vector-valued case have been investigated for more than 30 years. Early
results go back, for instance, to [5, 12, 20, 21]. At a second stage, as the papers of
[1, 8, 17, 18, 19] show, the properties of the partial ordering that guarantee existence of
subgradients moved into the center of attention. Order completeness and/or Daniell
property emerged as essential ingredients for a workable subdifferential theory—the
reason why we can not use these results in C(T ). Finally, [9, 14, 13] proposed efficiency
criteria on the basis of subdifferentials for a different minimality notion.

This paper is divided as follows: In the next section we repeat some basic notions
that we use in this paper, and sections 3–5 contain the main results.

2. Basic notions and preliminaries. Let X be a locally convex space, denote
by X′ its topological dual space. As usual, we denote by intM the topological interior
of a subset M ⊆ X and by clM its closure. M1 + M2 denotes the pointwise sum of
two subsets M1, M2 of a vector space, and we write shortly M + m for M + {m}.
Remember that the algebraic interior of a set M ⊂ X is given by coreM := {x ∈ M :
∀ y ∈ X ∃ λ > 0, x + λy ∈ M}.

Let X ⊂ X be a nonempty convex set. The normal cone at X in x̄ is given by

N(X; x̄) = {p ∈ X
′ : p(x− x̄) ≤ 0 ∀ x ∈ X}.

Note that N(X; x̄) is weak*-closed.
Let T be a compact space. The space C(T ) of all real-valued continuous functions

y : T → R endowed with the maximum norm

‖y‖ := max
t∈T

|y(t)|, y ∈ C(T ),

is a Banach space itself. Together with its order cone

C(T )+ := {y ∈ C(T ) : y(t) ≥ 0 ∀ t ∈ T},

C(T ) is a partially ordered vector lattice. It can be shown that

intC(T )+ := {y ∈ C(T ) : y(t) > 0 ∀ t ∈ T}.

There exist bases for the cone C(T )+, but no bounded base. In general, the space
(C(T ),C(T )+) is not order-complete, does not satisfy the Daniell property, and is not
nuclear (for further details on these properties compare, for instance, the monographs
of [4] and [10]).

Let X ⊂ X be a nonempty subset, and let f : X → C(T ). An element x̄ ∈ X is
called efficient in X with respect to f if

f(X) ∩ (f(x̄) − C(T )+\{0}) = ∅.
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x̄ ∈ X is called weakly efficient in X with respect to f if

f(X) ∩ (f(x̄) − intC(T )+) = ∅.

The set of all (weakly) efficient elements in X with respect to f is denoted by
Eff(f(X),C(T )+), and Effw(f(X),C(T )+), respectively. Obviously Eff(f(X),C(T )+) ⊆
Effw(f(X),C(T )+).

A function f : X → C(T ) is said to be convex iff

∀ x, y ∈ X, ∀ λ ∈ [0, 1], λf(x) + (1 − λ)f(y) ∈ f(λx + (1 − λ)y) + C(T )+,

i.e., if the functions x → f(x)(t) are convex for all t ∈ T . Note that the classical
definitions of generalized derivatives for real-valued convex functions can be applied
to such functions x → f(x)(t): For t ∈ T we denote by

(2.1) f
◦(x̄; d)(t) := lim

τ↓0

f(x̄ + τd)(t) − f(x̄)(t)

τ

the directional derivative of the function x → f(x)(t) in x̄ and direction d. Further,
we call

(2.2) ∂f(x̄)(t) := {p ∈ X
′ : p(x− x̄) ≤ f(x)(t) − f(x̄)(t) ∀ x ∈ X}

the subdifferential (in the sense of convex analysis) of x → f(x)(t) in x̄. If X is a
Banach space and if the function x → f(x)(t) is convex and Lipschitz near x̄ ∈ X,
then we have

(2.3) f
◦(x̄; d)(t) := max {p(d) : p ∈ ∂f(x̄)(t)}, t ∈ T.

Note that f◦(x; d)(.) may be not continuous. In this point, our concept of generalized
derivatives for C(T )-valued functions differs completely from those concepts for vector-
valued functions known in literature.

3. Efficiency conditions via directional derivatives. We start with a ne-
cessary and sufficient condition for weakly efficient elements.

Theorem 3.1. Let X be a locally convex space, X ⊂ X a convex subset, and T a
compact space. Let f : X → C(T ) be a convex map. Then we have for x̄ ∈ X

(3.1) sup
t∈T

f
◦(x̄;x− x̄)(t) ≥ 0 ∀ x ∈ X ⇐⇒ x̄ ∈ Effw(f(X),C(T )+).

Proof. From the definition of weak efficiency, the continuity of the functions
f(x)(.), and the compactness of T we deduce that

x̄ /∈ Effw(f(X),C(T )+)

⇐⇒ ∃ x ∈ X, ∃ M < 0 : f(x)(t) − f(x̄)(t) ≤ M ∀ t ∈ T.(3.2)

With τ = 1, assertion (3.2) can be written as

x̄ /∈ Effw(f(X),C(T )+)

⇐⇒ ∃ x ∈ X, ∃ M < 0 :
f(x̄ + τ(x− x̄))(t) − f(x̄)(t)

τ
≤ M ∀ t ∈ T.
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The convexity of X yields x̄ + τ(x − x̄) ∈ X for 0 < τ ≤ 1. By convexity of f(.)(t),
the difference quotients are monotone-decreasing as a function of τ for τ ↓ 0, hence

x̄ /∈ Effw(f(X),C(T )+)

=⇒ ∃ x ∈ X, ∃ M < 0 : f
◦(x̄, x− x̄)(t) ≤ M ∀ t ∈ T

=⇒ ∃ x ∈ X : sup
t∈T

f
◦(x̄;x− x̄)(t) < 0.

The contraposition of this assertion yields

sup
t∈T

f
◦(x̄;x− x̄)(t) ≥ 0 ∀ x ∈ X =⇒ x̄ ∈ Effw(f(X),C(T )+),

which completes the first part of the proof.
To verify sufficiency, assume supt∈T f◦(x̄;x−x̄) < 0 for some x ∈ X, i.e., f◦(x̄;x−

x̄)(t) < 0 for all t ∈ T . Therefore, for each t ∈ T , there exists some ε(t) > 0 such that

f(x̄ + τ(x− x̄))(t) < f(x̄)(t) ∀ τ, 0 < τ < ε(t), ∀ t ∈ T.

For each τ > 0 with x̄ + τ(x− x̄) ∈ X, we consider the set

Uτ := {t ∈ T : f(x̄ + τ(x− x̄))(t) < f(x̄)(t)}.

Due to the continuity of the functions, the sets Uτ are open in the relative topology.
Further, by the convexity of the functions f(.)(t), t ∈ Uτ implies that t ∈ Uα for
all 0 < α < τ . Therefore

⋃
{τ>0: x̄+τ(x−x̄)∈X} Uτ is an open cover of T . Since T

is compact, there exist a finite number of τ1, . . . , τn > 0, x̄ + τi(x − x̄) ∈ X such
that T =

⋃n
i=1 Uτi . Let τ̄ := min {τ1, . . . , τn}. Then we have x̄ + τ̄(x − x̄) ∈ X and

f(x̄ + τ̄(x− x̄))(t) < f(x̄)(t) for all t ∈ T . This yields x̄ /∈ Effw(f(X),C(T )+).
The idea of the last part is taken from [11].
Since Eff(f(X),C(T )+) ⊆ Effw(f(X),C(T )+), equivalence (3.1) can be interpreted

as a necessary condition for efficient points. In the next theorem, we add a sufficient
condition.

Theorem 3.2. Under the assumptions of Theorem 3.1,

sup
t∈T

f
◦(x̄;x− x̄)(t) > 0 ∀ x ∈ X, f(x) �= f(x̄)

is sufficient for x̄ ∈ Eff(f(X),C(T )+).
Proof. Using the definition of efficiency, we deduce that

x̄ /∈ Eff(f(X),C(T )+)

⇐⇒ ∃ x ∈ X, f(x) �= f(x̄) : f(x)(t) − f(x̄)(t) ≤ 0 ∀ t ∈ T.(3.3)

We continue as in the first part of the proof of Theorem 3.1 and get

x̄ /∈ Eff(f(X),C(T )+)

=⇒ ∃ x ∈ X, f(x) �= f(x̄) : f
◦(x̄, x− x̄)(t) ≤ 0 ∀ t ∈ T

=⇒ ∃ x ∈ X, f(x) �= f(x̄) : sup
t∈T

f
◦(x̄;x− x̄)(t) ≤ 0.

So, if x̄ ∈ X and if for all x ∈ X either f(x) = f(x̄) or supt∈T f◦(x̄;x− x̄) > 0 holds,
then x̄ ∈ Eff(f(X),C(T )+).
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In comparison to Theorem 3.2, the condition for weak efficiency is necessary as
well as sufficient. This agrees with corresponding results in real-valued optimization.
The strict inequality in Theorem 3.2 is not necessary for efficiency: Consider the
example f(x)(t) = x2, t ∈ T , at x̄ = 0.

Example 3.1. We consider the function f : [−1, 1] → C([−1, 1]) defined by

f(x)(t) := max {x, t}, t ∈ T = [−1, 1].

f is C(T )+-convex, Eff(f([−1, 1]),C(T )+) = {−1} and Effw(f([−1, 1]),C(T )+) = [−1, 1].
The directional derivative in direction x− x̄, x ∈ [−1, 1], x �= x̄, can be calculated as

f
◦(x̄;x− x̄)(t) =

{
x− x̄ for −1 ≤ t < x̄ or t = x̄ < x,
0 for x̄ < t ≤ 1 or t = x̄ > x,

sup
t∈T

f
◦(x̄;x− x̄)(t) =

{
0 for −1 ≤ x < x̄,
x− x̄ for x̄ < x ≤ 1.

We deduce that supt∈T f◦(x̄;x − x̄)(t) ≥ 0 for all x̄, x ∈ [−1, 1], but the sufficient
condition for efficiency is fulfilled only for x̄ = −1.

4. Efficiency conditions via subdifferentials—absence of constraints. In
a similar way as in the theorems above we can prove assertions based on convex
subdifferentials. In the following, σ(X′,X) represents the weak* topology on X′.

Theorem 4.1. Let X be a real Banach space, x̄ ∈ X, and T a compact space. Let
f : X → C(T ) be a convex mapping such that the functions x → f(x)(t) are Lipschitz
near x̄. Then we have

0 ∈ cl σ(X′,X)conv
⋃
t∈T

∂f(x̄)(t) ⇐⇒ x̄ ∈ Effw(f(X),C(T )+),

0 ∈ core cl σ(X′,X)conv
⋃
t∈T

∂f(x̄)(t) =⇒ x̄ ∈ Eff(f(X),C(T )+).

Proof. We claim that

x̄ /∈ Effw(f(X),C(T )+)

⇐⇒ ∃ x ∈ X, ∃ M < 0, ∀ p ∈
⋃
t∈T

∂f(x̄)(t) : p(x− x̄) ≤ M.(4.1)

Indeed, the definition of the subdifferential (2.2), together with the characterization
(3.2), yields necessity; sufficiency can be deduced from (2.3) and (3.1). Due to the lin-
earity and the continuity of the functionals p → p(x− x̄), assertion (4.1) remains valid
even if we consider all p in the σ(X′,X)-closure of the convex hull of

⋃
t∈T ∂f(x̄)(t).

Hence

x̄ /∈ Effw(f(X),C(T )+)

⇐⇒ ∃ x ∈ X, ∃ M < 0, ∀ p ∈ cl σ(X′,X) conv
⋃
t∈T

∂f(x̄)(t) : p(x− x̄) ≤ M.

Now we apply a separation theorem (e.g., [6], Theorem 3.18) for a point and a closed
convex set in X′, equipped with the weak* topology σ(X′,X), i.e., with dual space X,
and get

x̄ /∈ Effw(f(X),C(T )+) ⇐⇒ 0 /∈ cl σ(X′,X)conv
⋃
t∈T

∂f(x̄)(t).

Contraposition yields the wanted assertion for weakly efficient elements.
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On the other hand, inserted in (3.3), the definition of the subdifferential (2.2)
yields

x̄ /∈ Eff(f(X),C(T )+)

=⇒ ∃ x ∈ X\{x̄} : p(x− x̄) ≤ 0 ∀ p ∈
⋃
t∈T

∂f(x̄)(t).(4.2)

Again, due to the linearity and the continuity of the functionals p → p(x− x̄), asser-
tion (4.2) remains valid even if we consider all p in the weak*-closed convex hull of⋃

t∈T ∂f(x̄)(t). A restriction to the algebraic interior of cl σ(X′,X)conv
⋃

t∈T ∂f(x̄)(t),
if nonempty, allows us to strengthen the inequality to a strict inequality:

x̄ /∈ Eff(f(X),C(T )+)

=⇒ ∃ x ∈ X\{x̄} : p(x− x̄) < 0 ∀ p ∈ core cl σ(X′,X)conv
⋃
t∈T

∂f(x̄)(t).

Therefore 0 cannot be an element in the convex hull of the subdifferentials. Finally,
contraposition yields that 0 ∈ core cl σ(X′,X)conv

⋃
t∈T ∂f(x̄)(t) is sufficient for x̄ ∈

Eff(f(X),C(T )+).
Remark 4.1. By a result of [15], a convex function f : X → R on a Banach space

is Lipschitz near any point x of an open convex set X ⊂ X if it is bounded above
on a neighborhood of some point of X. So, boundedness can replace the Lipschitz
assumption.

5. Efficiency conditions via subdifferentials—presence of constraints.
Including constraints into the problem, we get the following characterization of (weak)
efficient elements.

Theorem 5.1. Let X be a Banach space, X ⊂ X a closed convex set, x̄ ∈ X
and T a compact space. Assume f : X → C(T ) to be a convex mapping such that the
functions x → f(x)(t) are Lipschitz near x̄. Then we have

0 ∈ cl σ(X′,X)conv

(⋃
t∈T

∂f(x̄)(t)

)
+ N(X; x̄) ⇐⇒ x̄ ∈ Effw(f(X),C(T )+),

0 ∈ core

(
cl σ(X′,X)conv

(⋃
t∈T

∂f(x̄)(t)

)
+ N(X; x̄)

)
=⇒ x̄ ∈ Eff(f(X),C(T )+).

We need two technical results.
Lemma 5.2. Under the assumptions of Theorem 5.1, the set

⋃
t∈T ∂f(x̄)(t) is

norm bounded in X′.
Proof. For h ∈ X we estimate that

sup{p(h) : p ∈
⋃
t∈T

∂f(x̄)(t)} = sup
t∈T

sup {p(h) : p ∈ ∂f(x̄)(t)}

≤ sup
t∈T

(f(x̄ + h)(t) − f(x̄)(t))

= max
t∈T

(f(x̄ + h)(t) − f(x̄)(t))

< +∞.

Hence the set
⋃

t∈T ∂f(x̄)(t) is σ(X′,X)-bounded and finally (since X′ is a Banach
space) norm bounded in X′.
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The idea of this proof is from a paper of [11].
Lemma 5.3. Let M1 and M2 be two subsets of the dual space X′ of a Banach

space X, and let M1 be norm bounded. Then we have

cl σ(X′,X)(M1 + M2) = cl σ(X′,X)M1 + cl σ(X′,X)M2.

Proof. Norm boundedness of M1 implies the σ(X′,X)-compactness of cl σ(X′,X)M1.
Further it is known that the sum of a compact set and an arbitrary closed set is closed
(in the same topology as the compactness is valid in). Therefore, the assertion of the
lemma above is a consequence of the formula

cl σ(X′,X)(M1 + M2) = cl σ(X′,X)

(
cl σ(X′,X)M1 + cl σ(X′,X)M2

)
,

which holds for every topological vector space.
Proof. (Theorem 5.1). To show sufficiency we apply the proof of Theorem 4.1 to

the extended real-valued functions

f̂(x)(t) := f(x)(t) + δX(x), t ∈ T

where δX(.) denotes the indicator function of the set X, δX(x) = 0 if x ∈ X and
δX(x) = +∞ else. We have

∂ f̂(x̄)(t) = ∂f(x̄)(t) + N(X; x̄), t ∈ T

(compare [3], Proposition 2.3.3 together with Corollary 3 and Proposition 2.3.6).
Using the same ideas as in the proof of Theorem 4.1 we can show the following:

x̄ /∈ Effw(f(X),C(T )+) =⇒ 0 /∈ cl σ(X′,X)conv

(⋃
t∈T

∂ f̂(x̄)(t)

)
,

x̄ /∈ Eff(f(X),C(T )+) =⇒ 0 /∈ core cl σ(X′,X)conv

(⋃
t∈T

∂ f̂(x̄)(t)

)
.

Applying the two lemmata above we derive

x̄ /∈ Effw(f(X),C(T )+) =⇒ 0 /∈ cl σ(X′,X)conv

(⋃
t∈T

∂f(x)(t)

)
+ N(X;x),

x̄ /∈ Eff(f(X),C(T )+) =⇒ 0 /∈ core

(
cl σ(X′,X)conv

(⋃
t∈T

∂f(x)(t)

)
+ N(X;x)

)
.

The contraposition of this implications yields the claimed assertions.
To verify necessity, let 0 /∈ cl σ(X′,X)conv

(⋃
t∈T ∂f(x)(t)

)
+N(X;x). By the strong

separation theorem there exist d ∈ X and M < 0 such that

(p1 + p2)(d) ≤ M < 0 ∀ p1 ∈ cl σ(X′,X)conv
⋃
t∈T

∂f(x)(t), ∀ p2 ∈ N(X; x̄).

Since N(X; x̄) is a cone, we get

p2(d) ≤ 0 ∀ p2 ∈ N(X; x̄),

p1(d) ≤ M < 0 ∀ p1 ∈ cl σ(X′,X)conv
⋃
t∈T

∂f(x)(t).
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The convexity of X yields d ∈ T (X; x̄) = cl
⋃

τ>0 τ(X − x̄). Due to Lemma 5.2, the

set
⋃

t∈T ∂f(x)(t) is bounded; therefore there exist for each d̃ ∈ X some ε > 0 such
that

p1(d + εd̃) ≤ M/2 < 0 ∀ p1 ∈
⋃
t∈T

∂f(x)(t).

Further there exist d̄ ∈
⋃

τ>0 τ(X − x̄) such that p1(d̄) ≤ M/2 < 0 for all p1 ∈⋃
t∈T ∂f(x)(t). We get f◦(x̄; d̄)(t) ≤ M/2 < 0 for all t ∈ T and x̄ + τ d̄ ∈ X for

sufficiently small τ > 0. By Theorem 3.1 this is a contradiction to the weak efficiency
of x̄. The contraposition of this result yields the wanted assertion.

Plastria and Carrizosa [11] proved for C(T )+-convex maps f the efficiency cri-
terium

x̄ ∈ Effw(f(X),C(T )+) ⇐⇒ 0 ∈ cl conv

(⋃
t∈T

∂f(x)(t)

)
+ N(X;x).

They choose another idea for their proof: They scalarized the vector-valued optimiza-
tion problem by the functional

F (x) := sup
t∈T

[f(x)(t) − f(x̄)(t)] = max
t∈T

[f(x)(t) − f(x̄)(t)]

(x̄ ∈ X ⊂ R
n fixed) and proved that

∂F (x) = conv
⋃
t∈T

∂f(x)(t).

This idea also influenced our studies. In comparison to [11], we work in a Banach
space X instead of R

n. Nevertheless, we could have applied the results of [16]; there
we found a formula for the subdifferential of the pointwise maxima of infinitely many
convex functions. But by this way it is not possible to distinguish between efficient
and weakly efficient points.

Finally, let us continue Example 3.1.
Example 5.1. We consider the function f : R → C([−1, 1]) defined by

f(x)(t) := max {x, t}, t ∈ T = [−1, 1],

and add now the constraint set X = [−1, 1]. Remember Eff(f(X),C(T )+) = {−1}
and Effw(f(X),C(T )+) = [−1, 1]. Obviously,

N(X; x̄) =

⎧⎨
⎩

R
− for x̄ = −1,

{0} for −1 < x̄ < 1,
R

+ for x̄ = 1.

The subdifferentials of the functions x → f(x)(t) for x̄ ∈ X can be calculated as

∂f(x̄)(t) =

⎧⎨
⎩

{1} for t < x̄,
[0, 1] for t = x̄,
{0} for x̄ < t,

cl conv
⋃
t∈T

∂f(x̄)(t) = [0, 1].

So we verify 0 ∈ cl conv
⋃

t∈T ∂f(x̄)(t) + N(X; x̄) for all x̄ ∈ X, but 0 is contained in
the algebraic interior of cl conv

⋃
t∈T ∂f(x̄)(t) + N(X; x̄) only for x̄ = −1.



764 KRISTIN WINKLER

6. Conclusions. In this paper, we proved geometrical characterizations of effi-
cient and weakly efficient points based on directional derivatives and subdifferentials
in the sense of convex (real-valued) optimization. These assertions extend known
results that provide only weakly efficient points.

In this paper, we focused on convex maps. It is possible to prove similar assertions
for Lipschitz maps using results of [7], concerning optimality criteria for maximum
functions. For more details, compare [23].

Acknowledgments. We are indebted to Prof. C. Zălinescu, University Iaşi (Ro-
mania) and the anonymous referees for helpful comments on the presented results.
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THE PROXIMAL AVERAGE: BASIC THEORY∗
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Abstract. The recently introduced proximal average of two convex functions is a convex func-
tion with many useful properties. In this paper, we introduce and systematically study the proximal
average for finitely many convex functions. The basic properties of the proximal average with re-
spect to the standard convex-analytical notions (domain, Fenchel conjugate, subdifferential, proximal
mapping, epi-continuity, and others) are provided and illustrated by several examples.

Key words. arithmetic average, arithmetic mean, convex analysis, convex function, epi-
convergence, epigraphical average, epi-topology, essential smoothness, essential strict convexity,
Fenchel conjugate, harmonic mean, Legendre function, Moreau envelope, proximal average, prox-
imal mapping, subdifferential operator
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1. Overview. Let f1 and f2 be two functions that are convex, lower semicontin-
uous, and proper, and let λ1 and λ2 be strictly positive real numbers adding up to 1.
How can we average the two functions f1 and f2 with respect to the weights λ1 and
λ2 in a useful way? Perhaps the first approach is to consider the arithmetic average
λ1f1 + λ2f2. However, functions in convex analysis are allowed to take on the value
+∞, for example, to model constraints in optimization problems. Thus, the arith-
metic average can turn out to be +∞ everywhere and then carries little information
about f1 and f2; this happens whenever f1 and f2 are nowhere both finite. How could
we possibly average such functions? A second thought may suggest to construct the
epigraphical average λ1 ✫f1 ✙λ2 ✫f2 obtained by forming a convex combination of the
epigraphs of f1 and f2. Unfortunately, if the functions f1 and f2 lack coercivity, then
the epigraphical average fails to be helpful: For instance, if f1 and f2 are two dis-
tinct linear functions, then their epigraphical average is identically equal to −∞, and
hence of little use. The proximal average, first introduced in [5] in the context of fixed
point theory and recently studied in [3, 4, 6, 8, 13] from various viewpoints, avoids
the mentioned difficulties and possesses numerous properties that are attractive to
convex analysts.

The aim of this paper is to provide the basic theory of the proximal average. In
addition, we extend it to more than two functions, and we allow for an additional
positive parameter. For the reader’s convenience and the sake of completeness, the
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presentation of the theory is largely self-contained. It is shown that the proximal
average has many desirable properties in terms of its domain, Fenchel conjugate,
Moreau envelope, proximal mapping, subdifferential, epi-continuity, and other convex-
analytical notions. Moreover, the arithmetic and epigraphical averages turn out to
be limits of the proximal average as the parameter tends to 0 and +∞, respectively.
Various examples illustrate our results. An interesting topic for future research is the
extension to series and integrals.

The rest of this paper is organized as follows. Section 2 collects the notation used
throughout this paper, and section 3 collects and presents results that simplify later
proofs. The proximal average is introduced in section 4, where its domain is also
characterized. In section 5, we present one very useful result (Theorem 5.1), which
states that the Fenchel conjugate of the proximal average is the proximal average of
the Fenchel conjugates. An important consequence of this result is that the proximal
average is convex, lower semicontinuous, and proper. In section 6 we consider the
Moreau envelope and proximal mapping of the proximal average. In section 7 we
consider its subdifferential operator as well as essential smoothness and essential strict
convexity. In section 8 it is shown that the arithmetic and epigraphical averages are
pointwise limits of the proximal average. Epi-convergence properties are discussed in
section 9, where the arithmetic and epigraphical averages are shown to be limiting
instances of the proximal average with respect to epi-convergence.

2. Standing assumptions and notation. Throughout this paper,
(1)

X is a real Hilbert space with inner product 〈·, ·〉 and corresponding norm ‖ · ‖.

Due to its repeated use, we abbreviate the quadratic energy function by

(2) q = 1
2‖ · ‖

2.

We set

(3) Γ(X) =
{
f : X → ]−∞,+∞] | f is convex, lower semicontinuous, and proper

}
.

We assume throughout that

(4) n ∈ {1, 2, 3, . . . },

that

(5) f1, . . . , fn belong to Γ(X),

that

(6) λ1, . . . , λn are nonnegative real numbers such that λ1 + · · · + λn = 1,

and that

(7) μ is a strictly positive real number.

The Fenchel conjugate of a function f is denoted by f∗. It will be convenient to set

(8) f = (f1, . . . , fn), f∗ = (f∗
1 , . . . , f

∗
n), and λ = (λ1, . . . , λn).
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Other notation not explicitly defined here or later is standard in convex analysis and
as in, e.g., [18, 19, 20]. Let f be a convex function, and let S be a set. Then we
write dom f , epi f , ∂f , cl f , inf f , min f , argmin f , dS , convS, intS, ιS , and NS

to denote the (effective) domain, epigraph, subdifferential operator, lower closure,
infimum value, minimum value if the infimum value is attained, the set of minimizers,
distance function, convex hull, interior, indicator function, and normal cone operator,
respectively. The identity operator is represented by Id.

3. Auxiliary results. We start by reviewing the key notions of epi-multiplication
and epi-addition, following the viewpoint taken in [19, section 1.H]. Let α ≥ 0,
f ∈ Γ(X), g ∈ Γ(X), and h ∈ Γ(X). Then

(9) α✫f =

{
αf(·/α) if α > 0,

ι{0} if α = 0.

The term “epi-multiplication” stems from the fact that epi(α✫f) = α epi(f) when
α > 0. Epi-addition, or infimal convolution, is defined by

(10) f ✙g : X → [−∞,+∞] : x 	→ inf
y+z=x

(
f(y) + g(z)

)
;

and the term “epi-addition” stems from the fact that the strict epigraph of f ✙g
is the Minkowski sum of the strict epigraphs of f and g, i.e.,

{
(x, r) ∈ X × R |

(f ✙g)(x) < r
}

=
{
(y, s) ∈ X × R | f(y) < s

}
+

{
(z, t) ∈ X × R | g(z) < t

}
. The

epi-sum of finitely many functions is defined analogously.
To avoid excessive usage of parentheses, epi-multiplication and regular multipli-

cation are given precedence over epi- and regular addition, i.e., α✫f + g = (α✫f)+ g,
α✫f ✙g = (α✫f) ✙g, αf + g = (αf) + g, and αf ✙g = (αf) ✙g. It will also be con-
venient to give epi-addition a higher precedence than regular addition or subtraction,
i.e., f ✙g + h = (f ✙g) + h and f ✙g − h = (f ✙g) − h.

The next three propositions are elementary. Proofs for the finite-dimensional case
are in [19]; they extend without difficulty to the present Hilbert space setting.

Proposition 3.1. Let f ∈ Γ(X), let α ≥ 0, and let β ≥ 0. Then the following
hold.

(i) α > 0 ⇒ epi(α✫f) = α(epi f).
(ii) dom(α✫f) = α(dom f).
(iii) f ✙ ι{0} = f .
(iv) dom(f1 ✙ · · · ✙fn) = (dom f1) + · · · + (dom fn).
(v) α✫(f1 ✙ · · · ✙fn) = α✫f1 ✙ · · · ✙ α✫fn.
(vi) α(f1 ✙ · · · ✙fn) = αf1 ✙ · · · ✙ αfn.
(vii) α✫(β ✫f) = (αβ) ✫f .
(viii) (α + β) ✫f = α✫f ✙ β ✫f .
(ix) α > 0 ⇒ α(β ✫(α−1f)) = β ✫f .
Proof. The conclusions all follow readily from the definitions; see also [19, Ex-

ercise 1.28(a)] for (i), [19, page 25] for (v) and (vii), and [19, Exercise 2.24(c)] for
(viii).

Proposition 3.2. Let α ≥ 0. Then the following hold.
(i) (αf)∗ = α✫f∗.
(ii) (α✫f)∗ = αf∗.
(iii) (f1 ✙ · · · ✙fn)∗ = f∗

1 + · · · + f∗
n.

Proof. The statements are simple consequences of the definitions; see also [19,
page 475] for (i) and (ii), and [19, Theorem 11.23(a)] for (iii).
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Proposition 3.3. Let f ∈ Γ(X), and let α ≥ 0. Then the following hold.
(i) q∗ = q; in fact, q is the only function equal to its Fenchel conjugate.
(ii) α > 0 ⇒ α−1

✫ q = α q.
(iii) (α✫ q)∗ = α q.
(iv) (α q)∗ = α✫ q.
(v) (f ✙ q) + (f∗

✙ q) = q.
Proof. (i): See, e.g., [19, Example 11.11]. (ii): An immediate consequence of the

definition of q. (iii): Combine Proposition 3.2(ii) with (i). (iv): Combine Proposi-
tion 3.2(i) with (i). (v): See [16] or [19, Example 11.26].

The next result is deep and stated as a fact.
Fact 3.4. The following hold.
(i) If int dom f1 ∩ · · · ∩ int dom fn−1 ∩ dom fn �= ∅, then (f1 + · · · + fn)∗ =

f∗
1 ✙ · · · ✙f∗

n and the epi-sum is exact, i.e., the infimum in the definition of
the epi-sum is attained.

(ii) If int dom f∗
1 ∩ · · · ∩ int dom f∗

n−1 ∩ dom f∗
n �= ∅, then f1 ✙ · · · ✙fn is exact

and epi(f1 ✙ · · · ✙fn) = (epi f1) + · · · + (epi fn).
Proof. This is a consequence of [20, Theorem 2.8.7].
The following result on the conjugate of the difference will be useful.
Fact 3.5. Let g ∈ Γ(X), and let h ∈ Γ(X) such that both h and h∗ have full

domain. Then

(11)
(
∀x∗ ∈ X

)
(g − h)∗(x∗) = sup

y∗∈X

(
g∗(y∗) − h∗(y∗ − x∗)

)
.

Proof. This is a consequence of [9, Theorem 2.2].
Corollary 3.6. Let g ∈ Γ(X). Then

(12) (g − μ✫ q)∗ = μ( q − μ−1g∗)∗ − μ−1
✫ q.

Proof. Set h = μ✫ q. Then h∗ = μ q by Proposition 3.3(iii), and hence both h
and h∗ have full domain. Using Fact 3.5, we deduce that for every x∗ ∈ X

(g − h)∗(x∗) = sup
y∗∈X

(
g∗(y∗) − μ q(y∗ − x∗)

)
= sup

y∗∈X

(
g∗(y∗) − μ q(y∗) − μ q(x∗) + μ〈y∗, x∗〉

)
= −μ q(x∗) + sup

y∗∈X

(
〈y∗, μx∗〉 −

(
μ q(y∗) − g∗(y∗)

))
= −μ q(x∗) + μ sup

y∗∈X

(
〈y∗, x∗〉 −

(
q(y∗) − μ−1g∗(y∗)

))
= −(μ−1

✫ q)(x∗) + μ( q − μ−1g∗)∗(x∗).(13)

The proof is complete.
Lemma 3.7.

(
λ1 ✫(f1 + μ✫ q) ✙ · · · ✙λn ✫(fn + μ✫ q)

)∗
= λ1(f

∗
1 ✙μ q) + · · · +

λn(f∗
n ✙μ q).
Proof. Using Proposition 3.2(iii), Proposition 3.2(ii), Fact 3.4(i), and Proposi-

tion 3.3(iii), we compute that

(14)

(
λ1 ✫(f1 + μ✫ q) ✙ · · · ✙λn ✫(fn + μ✫ q)

)∗
=

(
λ1 ✫(f1 + μ✫ q)

)∗
+ · · · +

(
λn ✫(fn + μ✫ q)

)∗
= λ1(f1 + μ✫ q)∗ + · · · + λn(fn + μ✫ q)∗

= λ1

(
f∗
1 ✙ (μ✫ q)∗

)
+ · · · + λn

(
f∗
n ✙ (μ✫ q)∗

)
= λ1(f

∗
1 ✙μ q) + · · · + λn(f∗

n ✙μ q).

This completes the proof.
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Fact 3.8. Let (∀i) xi ∈ dom fi, and set x = x1 + · · · + xn. Then the following
implications hold.

(i) (f1 ✙ · · · ✙fn)(x) = f1(x1) + · · · + fn(xn) ⇒ ∂(f1 ✙ · · · ✙fn)(x) = ∂f1(x1) ∩
· · · ∩ ∂fn(xn).

(ii) ∂f1(x1) ∩ · · · ∩ ∂fn(xn) �= ∅ ⇒ (f1 ✙ · · · ✙fn)(x) = f1(x1) + · · · + fn(xn).
Proof. See [20, Corollary 2.4.7].
Proposition 3.9. Let f ∈ Γ(X), and let α > 0. Then ∂(0 ✫f) = N{0} and

∂(α✫f) = (∂f) ◦ (α−1 Id).
Proof. Since 0 ✫f = ι{0}, we deduce that ∂(0 ✫f) = ∂ι{0} = N{0}. Also,

∂(α✫f) = ∂(αf ◦ (α−1 Id)); the formula thus follows from convex calculus (see, e.g.,
[20, Theorem 2.8.3]).

4. Definition, reformulations, domain, and exactness. In section 1, we
have seen that the idea of computing the averaged Minkowski sum is doomed in
general, due to the potential lack of coercivity properties of the terms. The proximal
average can be interpreted as a three-step remedy of this idea. First, each function
is “coercified” by epi-adding μ✫ q. Second, the epi-average of the coercified terms is
computed. The third step removes μ✫ q through subtraction. We are now ready to
describe the proximal average.

Definition 4.1 (proximal average). The λ-weighted proximal average of f with
parameter μ is

(15) pμ(f ,λ) = λ1 ✫(f1 + μ✫ q) ✙ · · · ✙λn ✫(fn + μ✫ q) − μ✫ q,

i.e., if I =
{
i ∈ {1, . . . , n} | λi > 0

}
, then

(16)

(∀x ∈ X) pμ(f ,λ)(x) =
1

μ

(
−1

2
‖x‖2 + inf∑

i∈I xi=x

∑
i∈I

λi

(
μfi(xi/λi) +

1

2
‖xi/λi‖2

))
.

We also write p(f ,λ) if μ = 1, pμ(f) if all λi coincide, and p(f) if μ = 1 and all λi

coincide.
Remark 4.2. Some immediate consequences of the definition are the following.
(i) pμ(f1, 1) = f1.

(ii) If I =
{
i ∈ {1, . . . , n} | λi > 0

}
, f̃ = (fi)i∈I and λ̃ = (λi)i∈I , then pμ(f ,λ) =

pμ(f̃ , λ̃).

(iii) If π is a permutation of I = {1, . . . , n}, f̃ = (fπ(i))i∈I and λ̃ = (λπ(i))i∈I ,

then pμ(f ,λ) = pμ(f̃ , λ̃).
(iv) pμ(f ,λ) = μ−1p1(μf ,λ); equivalently, p(μf ,λ) = μpμ(f ,λ).
(v) If Λn−1 = λ1 + · · · + λn−1 > 0, then

p1(f ,λ) = p1

(
(f1, . . . , fn), (λ1, . . . , λn)

)
= p1

((
p1

(
(f1, . . . , fn−1),Λ

−1
n−1(λ1, . . . , λn−1)

)
, fn

)
, (Λn−1, λn)

)
.(17)

The identities in items (iv) and (v) may be useful if one wishes to develop the theory
of results for a general μ > 0 and a general n ≥ 2 from the simpler case μ = 1 and
n = 2; however, the direct approach favored in this paper is not only self-contained,
but it also yields proofs that we found much more readable. Nonetheless, (iv) and (v)
may be convenient for the numerical computation of the proximal average—especially
when the simpler case is already implemented [13].
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Proposition 4.3 (reformulations).

pμ(f ,λ) =
(
λ1(f

∗
1 ✙μ q) + · · · + λn(f∗

n ✙μ q)
)∗ − μ−1

q(18)

=
(
λ1(f1 + μ−1

q)∗ + · · · + λn(fn + μ−1
q)∗

)∗ − μ−1
q(19)

and

(20)
(
∀x ∈ X

)
pμ(f ,λ)(x) = inf∑

λiyi=x

∑
λifi(yi) +

1

μ

((∑
λi q(yi)

)
− q(x)

)
.

Proof. By Proposition 3.1(iv), (∀i) dom(f∗
i ✙μ q) = (dom f∗

1 ) + (domμ q) = X.
Fact 3.4(i), Proposition 3.2(i), Proposition 3.2(iii), and Proposition 3.3(iv) imply that(

λ1(f
∗
1 ✙μ q) + · · · + λn(f∗

n ✙μ q)
)∗

= (λ1(f
∗
1 ✙μ q))∗ ✙ · · · ✙ (λn(f∗

n ✙μ q))∗

= λ1 ✫(f∗
1 ✙μ q)∗ ✙ · · · ✙λn ✫(f∗

n ✙μ q)∗

= λ1 ✫(f∗∗
1 + (μ q)∗) ✙ · · · ✙λn ✫(f∗∗

n + (μ q)∗)

= λ1 ✫(f1 + μ✫ q) ✙ · · · ✙λn ✫(fn + μ✫ q).(21)

This and Proposition 3.3(ii) yield (18). In turn, Fact 3.4(i) and Proposition 3.3(iv)
imply (19). Changing variables, we see that (20) is equivalent to (16).

Remark 4.4 (some history). In [5], the proximal average was considered for n = 2
and μ = 1, and written equivalently as

(22)
(
λ1(f

∗
1 ✙ q) + λ2(f

∗
2 ✙ q)

)∗ − q;

see (18). The function (22) was utilized in [5] to explicitly illustrate Moreau’s obser-
vation [16] that the set of proximal mappings is convex. More recently, the proximal
average was considered in [3], again with n = 2 and μ = 1, though it was written as
(see (19))

(23)
(
λ1(f1 + q)∗ + λ2(f2 + q)∗

)∗ − q.

Example 4.5 (connection to means of numbers). Let α1, . . . , αn be strictly positive
numbers and suppose that (∀i) fi = αi q. Using (19), we see that

(24)

pμ−1(f ,λ) =

( n∑
i=1

λi(αi q + μ q)∗
)∗

− μ q

=

( n∑
i=1

λi

αi + μ
q

)∗
− μ q =

( n∑
i=1

λi

αi + μ

)−1

q − μ q,

and thus

(25) pμ(f ,λ) =

(( n∑
i=1

λi

αi + μ−1

)−1

− μ−1

)
q.

Denote the coefficient of q in (25) by δ. Since δ is the difference of the weighted
harmonic mean of α1 + μ−1, . . . , αn + μ−1 and μ−1, the harmonic-arithmetic mean
inequality implies that δ does not exceed the weighted arithmetic mean

(26)

n∑
i=1

λiαi.
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As μ → +∞, we note that δ converges to the weighted harmonic mean

(27)

( n∑
i=1

λi

αi

)−1

,

while a calculus exercise shows that δ approaches, as μ → 0+, the weighted arithmetic
mean (26). In Remark 8.6, we revisit this example from a more general point of view.

The next result locates the domain of the proximal average exactly; moreover, it
strengthens [3, Theorem 4.11], where equality was observed only for the closures and
interiors.

Theorem 4.6 (domain). dom pμ(f ,λ) = λ1 dom f1 + · · · + λn dom fn.
Proof. Using Proposition 3.1(iv) and Proposition 3.1(ii), we obtain dom pμ(f ,λ) =

dom(λ1 ✫(f1 + μ✫ q)) + · · · + dom(λ1 ✫(f1 + μ✫ q)) = λ1 dom(f1 + μ✫ q) + · · · +
λn dom(fn + μ✫ q) = λ1 dom(f1) + · · · + λn dom(fn).

Corollary 4.7. Suppose that at least one function fi has full domain and that
λi > 0. Then pμ(f ,λ) has full domain.

Example 4.8. Assume each λi > 0 and each fi = ιCi
where Ci is a nonempty

closed convex subset of X. In Xn, set H =
{
(zi) |

∑√
λizi = 0

}
and (∀x ∈ X) Dx

is the Cartesian product ×(√
λiCi −

√
λix

)
. Then

(28) pμ(f ,λ) : X → ]−∞,+∞] : x 	→ 1
2μ

d2
H∩Dx

(0).

Proof. Fix x ∈ X. Using (16), we obtain

pμ(f ,λ)(x) = μ−1

(
−1

2
‖x‖2 + inf∑

i xi=x

∑
λi

(
μ ιCi

(xi/λi) +
1

2
‖xi/λi‖2

))

= μ−1 inf
each ci ∈Ci∑

λici = x

∑
λi

(
1

2
‖ci‖2 − 1

2
‖x‖2

)

= μ−1 inf
z = (zi)∈H ∩Dx

∑
λi

(
1

2

∥∥x + zi/
√
λi

∥∥2 − 1

2
‖x‖2

)

= μ−1 inf
z = (zi)∈H ∩Dx

∑ 1

2
‖zi‖2,(29)

which completes the proof.
Remark 4.9. Consider Example 4.8 with n = 2, μ = 1, λ1 > 0, and λ2 > 0. Then

(28) simplifies to

(30) pμ(f ,λ) : X → ]−∞,+∞] : x 	→ 1

2λ1λ2
d2
(λ1(C1−x))∩(λ2(x−C2))

(0),

which is a formula first observed in [5, Theorem 6.1].
Theorem 4.10 (exactness). For every x ∈ dom pμ(f ,λ) there exist yi ∈ λi dom fi

such that x = y1 + · · ·+ yn and pμ(f ,λ)(x) = (λ1 ✫(f1 +μ✫ q))(y1)+ · · ·+(λn ✫(fn +
μ✫ q))(yn) − (μ✫ q)(x).

Proof. Set (∀i) gi = λi ✫(fi + μ✫ q). If λi = 0, then gi = ι{0}, and hence
g∗i = ιX has full domain. If λi > 0, then using Proposition 3.2(i), Fact 3.4(i), and
Proposition 3.3(iv), we see that

(31) g∗i =
(
λi ✫(fi + μ✫ q)

)∗
= λi(fi + μ✫ q)∗ = λi(f

∗
i ✙ (μ✫ q)∗) = λi(f

∗
i ✙μ q);
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thus, g∗i also has full domain. Therefore, by Fact 3.4(ii), the epi-sum

(32) pμ(f ,λ) + μ✫ q = g1 ✙ · · · ✙gn

is exact. Since dom pμ(f ,λ) = λ1 dom f1 + · · · + λn dom fn by Theorem 4.6, the
existence of the yi is now clear.

5. Fenchel conjugate. In this section, we compute the Fenchel conjugate of the
proximal average. The explicit form obtained has several interesting consequences.
We begin with a reformulation of Lemma 3.7:

(33) (pμ(f ,λ) + μ✫ q)∗ = λ1(f
∗
1 ✙μ q) + · · · + λn(f∗

n ✙μ q).

We are now ready for a useful generalization of [5, Theorem 6.1] where n = 2 and
μ = 1.

Theorem 5.1 (Fenchel conjugate).
(
pμ(f ,λ)

)∗
= pμ−1(f∗,λ).

Proof. Set

(34) g = pμ(f ,λ) + μ✫ q.

By (33), we have

(35) g∗ = λ1(f
∗
1 ✙μ q) + · · · + λn(f∗

n ✙μ q).

In view of (6), (35), Proposition 3.1(vi), Proposition 3.3(v), and Proposition 3.2(i),
we obtain that

q − μ−1g∗ = λ1

(
q − μ−1(f∗

1 ✙μ q)
)

+ · · · + λn

(
q − μ−1(f∗

1 ✙μ q)
)

= λ1

(
q − (μ−1f∗

1 ✙ q)
)

+ · · · + λn

(
q − (μ−1f∗

1 ✙ q)
)

= λ1

(
(μ−1f∗

1 )∗ ✙ q
)

+ · · · + λn

(
(μ−1f∗

n)∗ ✙ q
)

= λ1

(
μ−1

✫f1 ✙ q
)

+ · · · + λn

(
μ−1

✫fn ✙ q
)
.(36)

Consequently, using Fact 3.4(i), Proposition 3.2(i), Proposition 3.2(iii), Proposition
3.2(ii), Proposition 3.3(i), we see that

(
q − μ−1g∗

)∗
=

(
λ1

(
μ−1

✫f1 ✙ q
)

+ · · · + λn

(
μ−1

✫fn ✙ q
))∗

=
(
λ1

(
μ−1

✫f1 ✙ q
))∗

✙ · · · ✙

(
λn

(
μ−1

✫fn ✙ q
))∗

= λ1 ✫
(
μ−1

✫f1 ✙ q
)∗

✙ · · · ✙λn ✫
(
μ−1

✫fn ✙ q
)∗

= λ1 ✫
(
(μ−1

✫f1)
∗ + q

∗)
✙ · · · ✙λn ✫

(
(μ−1

✫fn)∗ + q
∗)

= λ1 ✫
(
μ−1f∗

1 + q
)

✙ · · · ✙λn ✫
(
μ−1f∗

n + q
)
.(37)

Now Proposition 3.1(vi), Proposition 3.1(ix), and Proposition 3.3(ii) imply that

μ
(
q − μ−1g∗

)∗
= μ

(
λ1 ✫

(
μ−1(f∗

1 + μ q)
)

✙ · · · ✙λn ✫
(
μ−1(f∗

n + μ q)
))

= μ
(
λ1 ✫

(
μ−1(f∗

1 + μ q)
))

✙ · · · ✙μ
(
λn ✫

(
μ−1(f∗

n + μ q)
))

= λ1 ✫(f∗
1 + μ q) ✙ · · · ✙λn ✫(f∗

n + μ q)

= λ1 ✫(f∗
1 + μ−1

✫ q) ✙ · · · ✙λn ✫(f∗
n + μ−1

✫ q).(38)
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Combining (34), Corollary 3.6, and (38), we conclude that

(
pμ(f ,λ)

)∗
= (g − μ✫ q)∗

= μ( q − μ−1g∗)∗ − μ−1
✫ q

= λ1 ✫(f∗
1 + μ−1

✫ q) ✙ · · · ✙λn ✫(f∗
n + μ−1

✫ q) − μ−1
✫ q

= pμ−1(f∗,λ),(39)

as claimed.
Corollary 5.2 (lower semicontinuity). pμ(f ,λ) is convex, lower semicontinu-

ous, and proper.
Proof. Applying Theorem 5.1 twice, we deduce that (pμ(f ,λ))∗∗ = (pμ−1(f∗,λ))∗

= p(μ−1)−1(f∗∗,λ) = pμ(f ,λ).
The next result refines the corresponding two-function version [3, Proposition 4.8].
Example 5.3. p(f ,f∗) = q.
Proof. Theorem 5.1 readily implies that the p(f ,f∗) is equal to its conjugate;

consequently, it must be equal to q by Proposition 3.3(i).
Theorem 5.4 (inequalities). (λ1f

∗
1 +· · ·+λnf

∗
n)∗ ≤ pμ(f ,λ) ≤ λ1f1+· · ·+λnfn.

Proof. The right inequality follows from (20) (by setting yi = x). Applying the
right inequality to f∗ and μ−1, we learn that

(40) pμ−1(f∗,λ) ≤ λ1f
∗
1 + · · · + λnf

∗
n.

Taking the Fenchel conjugate of (40) and utilizing Theorem 5.1, we deduce that
pμ(f ,λ) =

(
pμ−1(f∗,λ)

)∗ ≥
(
λ1f

∗
1 + · · · + λnf

∗
n

)∗
.

Corollary 5.5 (infimum value).

(41) λ1 inf f1 + · · · + λn inf fn ≤ inf pμ(f ,λ) ≤ inf(λ1f1 + · · · + λnfn).

Corollary 5.6 (common minimizers). Suppose that
⋂

i : λi>0 argmin(fi) �= ∅.
Then

(42) min pμ(f ,λ) =
∑

i : λi>0

λi min fi and argmin pμ(f ,λ) =
⋂

i : λi>0

argmin(fi).

Proof. Combine Theorem 5.4 and Corollary 5.5.

6. Moreau envelope and proximal mapping.
Definition 6.1. Let f ∈ Γ(X). The Moreau envelope of f with parameter μ is

eμf = f ✙μ✫ q.
Observe that

(43) eμf = (f∗ + μ q)∗.

Theorem 6.2 (Moreau envelope and its Fenchel conjugate).
(i) eμpμ(f ,λ) = λ1eμf1 + · · · + λneμfn.

(ii)
(
eμpμ(f ,λ)

)∗
= λ1 ✫(eμf1)

∗
✙ · · · ✙λn ✫(eμfn)∗.
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Proof. Fix y ∈ X, and set I =
{
i ∈ {1, . . . , n} | λi > 0

}
. Using (16), we obtain

(
eμpμ(f ,λ)

)
(y) = inf

x
pμ(f ,λ)(x) +

1

2μ
‖y − x‖2

= inf
x

inf∑
i∈I xi=x

∑
i∈I

λi

(
fi(xi/λi) +

1

2μ
‖xi/λi‖2

)

+
1

2μ
‖y‖2 − 1

μ
〈x, y〉

= inf
x

inf∑
i∈I xi=x

∑
i∈I

λi

(
fi(xi/λi)

+
1

2μ
‖xi/λi‖2 +

1

2μ
‖y‖2 − 1

μ
〈xi/λi, y〉

)
= inf

x
inf∑

i∈I xi=x

∑
i∈I

λi

(
fi(xi/λi) +

1

2μ
‖y − xi/λi‖2

)

= inf
xi,i∈I

∑
i∈I

λi

(
fi(xi/λi) +

1

2μ
‖y − xi/λi‖2

)

=
∑
i∈I

λi inf
xi

(
fi(xi/λi) +

1

2μ
‖y − xi/λi‖2

)

=
∑
i∈I

λi

(
eμfi

)
(y).(44)

This implies (i), and (ii) follows by Fenchel conjugation. Alternatively, using Defini-
tion 6.1, Proposition 3.2(iii), Theorem 5.1, Proposition 3.3(iv), and Proposition 3.3(ii),
one may prove (ii) via

(
eμpμ(f ,λ)

)∗
=

(
pμ(f ,λ) ✙μ✫ q

)∗
=

(
pμ(f ,λ)

)∗
+ μ q =

pμ−1(f∗,λ) + μ−1
✫ q = λ1 ✫(f∗

1 + μ−1
✫ q) ✙ · · · ✙λn ✫(f∗

n + μ−1
✫ q) = λ1 ✫(f∗

1 +
μ q) ✙ · · · ✙λn ✫(f∗

n + μ q) = λ1 ✫(eμf1)
∗

✙ · · · ✙λn ✫(eμfn)∗ and then deduces (i) by
Fenchel conjugation.

The following result is well known.
Proposition 6.3. Let f ∈ Γ(X). Then argmin eμf = argmin f .
Proof. argmin eμf = ∂(eμf)∗(0) = ∂(f∗ + μ q)(0) = (∂f∗ + μ Id)(0) = ∂f∗(0) =

argmin f .
Corollary 6.4 (minimizers). argmin pμ(f ,λ) = argmin

(
λ1eμf1+· · ·+λneμfn

)
.

Proof. Combine Proposition 6.3 and Theorem 6.2(i).
Example 6.5 (least-squares solutions). Let C1, . . . , Cn be nonempty closed convex

subsets of X, and suppose that (∀i) fi = ιCi . Then argmin pμ(f ,λ) = argmin(λ1d
2
C1

+
· · · + λnd

2
Cn

).
Proof. This is a consequence of Corollary 6.4, since (∀i) eμfi = eμιCi = ιCi ✙μ✫ q =

μ−1ιCi
✙μ−1 q = μ−1(ιCi

✙ q) = μ−1 1
2d

2
Ci

.
Definition 6.6. Let f ∈ Γ(X). The proximal mapping of f with parameter μ

is Pμf = (Id +μ∂f)−1.
Observe that

(45) μ−1(Pμf)−1 = ∂f + μ−1 Id,

that

(46) Pμf =
(
∇(f + μ−1

q)∗
)
◦ (μ−1 Id),
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and that

(47) (Pμf) ◦ (μ Id) = ∇(eμ−1(f∗)).

We now show that the proximal mapping of the proximal average is simply the
average of the individual proximal mappings. This result, which also explains how
the proximal average got its name, was first proved in [5, Theorem 6.1] when n = 2
and μ = 1.

Theorem 6.7 (proximal mapping). Pμ

(
pμ(f ,λ)

)
= λ1Pμf1 + · · · + λnPμfn.

Proof. Theorem 5.1 and Theorem 6.2(i) (the latter applied to f∗ and μ−1) show
that

(48) eμ−1

(
(pμ(f ,λ))∗

)
= eμ−1

(
pμ−1(f∗,λ)

)
= λ1eμ−1(f∗

1 ) + · · · + λneμ−1(f∗
n);

in turn, taking gradients yields

(49) ∇
(
eμ−1

(
(pμ(f ,λ))∗

))
= λ1∇(eμ−1(f∗

1 )) + · · · + λn∇
(
eμ−1(f∗

n)
)
.

Using (47), we see that this is equivalent to

(50)
(
Pμ

(
pμ(f ,λ)

))
◦ (μ Id) = λ1(Pμf1) ◦ (μ Id) + · · · + λn(Pμfn) ◦ (μ Id).

The result follows.

7. Subdifferential.
Theorem 7.1 (subdifferential). Let (∀i) xi ∈ dom fi, and set x = λ1x1 + · · · +

λnxn. Then the following hold.
(i) If pμ(f ,λ)(x) = (λ1 ✫(f1 + μ✫ q))(λ1x1) + · · · + (λn ✫(fn + μ✫ q))(λnxn) −

(μ✫ q)(x), then

∂pμ(f ,λ)(x) = −μ−1x +
⋂
i

∂(λi ✫(fi + μ✫ q))(λixi)(51)

= −μ−1x +
⋂

i : λi>0

(
∂fi(xi) + μ−1xi

)
(52)

= −μ−1x +
⋂

i : λi>0

(
μ−1(Pμfi)

−1(xi)
)
.(53)

(ii) If
⋂

i : λi>0(Pμfi)
−1(xi) �= ∅, then

(54)
pμ(f ,λ)(x) = (λ1 ✫(f1 + μ✫ q))(λ1x1) + · · · + (λn ✫(fn + μ✫j))(λnxn)

− (μ✫ q)(x).
Proof. Set (∀i) gi = λi ✫(fi + μ✫ q). Theorem 4.6, Theorem 4.10, and Proposi-

tion 3.3(ii) imply that

(55) g1 ✙ · · · ✙gn = pμ(f ,λ) + μ✫ q = pμ(f ,λ) + μ−1
q

is exact on dom(g1 ✙ · · · ✙gn) = λ1 dom f1+ · · ·+λn dom fn = dom pμ(f ,λ). (i): (51),
(52), and (53) follow from Fact 3.8(i), Proposition 3.9, and (45), respectively. (ii):
Use Fact 3.8(ii).

Corollary 7.2. (∀x ∈ X)
⋂

i : λi>0 ∂fi(x) ⊆ ∂pμ(f ,λ)(x).
Proof. Take x∗ ∈

⋂
i : λi>0 ∂fi(x). Then (∀i) λi > 0 ⇒ μx∗ + x ∈ μ∂fi(x) +

x = (Pμfi)
−1(x). By Theorem 7.1(ii), pμ(f ,λ)(x) = (λ1 ✫(f1 + μ✫ q))(λ1x) + · · · +
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(λn ✫(fn + μ✫j))(λnx) − (μ✫ q)(x). Using Theorem 7.1(i), we deduce that x∗ =
−μ−1x + μ−1(μx∗ + x) ∈ ∂pμ(f ,λ)(x).

For the following results, it will be convenient to write x = x1 ⊕ · · · ⊕ xn if
x = x1 + · · ·+xn and xi⊥xj for i �= j. We also write K1⊕· · ·⊕Kn =

{
x1 ⊕ · · · ⊕ xn |

each xi ∈ Ki and xi⊥xj for i �= j
}
.

Corollary 7.3. Let K1, . . . ,Kn be nonempty closed convex cones, and set (∀i)
Pi = PKi

, the orthogonal projector onto Ki. Suppose that

(56) (∀x = x1 ⊕ · · · ⊕ xn ∈ K1 ⊕ · · · ⊕Kn)(∀i) Pix = xi,

that

(57) (∀x ∈ X) x = P1x⊕ · · · ⊕ Pnx,

and that (∀i) fi = ιKi and λi > 0. Then

(58) (∀x ∈ X) pμ(f ,λ)(x) =
1

2μ

∑
i

(1 − λi)

λi
‖Pix‖2.

Proof. Observe that (∀i) Pμfi = (Id +μ∂ιKi)
−1 = (Id +∂ιKi)

−1 = Pi. Take
x ∈ X and set

(59) (∀i) xi =
1

λi
Pix = Pi

(
1

λi
x

)
.

Using (57), we obtain that

(60) x = λ1x1 ⊕ · · · ⊕ λnxn.

Now set

(61) z = x1 ⊕ · · · ⊕ xn.

By (56), we have (∀i) Piz = xi. Thus z ∈
⋂

i(Pμfi)
−1(xi). Therefore, by (60) and

Theorem 7.1(ii),

pμ(f ,λ)(x) = (λ1 ✫(f1 + μ✫ q))(λ1x1) + · · · + (λn ✫(fn + μ✫ q))(λnxn) − (μ✫ q)(x)

= μ−1λ1 q(x1) + · · · + μ−1λn q(xn) − μ−1
q(x)

=
1

2μ

(
λ1‖x1‖2 + · · · + λn‖xn‖2 − ‖λ1x1 + · · · + λnxn‖2

)
=

1

2μ

∑
i

λi(1 − λi)‖xi‖2.(62)

The conclusion thus follows from (59).
The following two examples are special cases of Corollary 7.3.
Example 7.4. Let K1, . . . ,Kn be closed subspaces that are pairwise orthogonal

and such that K1 ⊕ · · · ⊕ Kn = X, and suppose that fi = ιKi . Then pμ(f ,λ) =
μ−1

∑
i(λ

−1
i − 1)( q ◦ PKi

).
Example 7.5 (See also [3, Example 4.9]). Let K be a nonempty closed convex

cone in X, and let λ ∈ ]0, 1[. Then

(63)

(∀x ∈ X) p
(
(ιK , ιK�), (1 − λ, λ)

)
(x) =

1

2(1 − λ)λ

(
λ2‖PKx‖2 + (1 − λ)2‖PK�x‖2

)
,

where K� is the polar cone of K.
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Remark 7.6. We are now in a position to show that the inequalities in Theorem 5.4
can be strict. Suppose that n = 2, that f1 = ιK , and that f2 = ιK� where K is a
nonempty closed convex cone in X, and that λ2 = λ ∈ ]0, 1[. Using Example 7.5, we
see that Theorem 5.4 becomes

(64) (∀x ∈ X) ιX(x) ≤ 1

2(1 − λ)λ

(
λ2‖PKx‖2 + (1 − λ)2‖PK�x‖2

)
≤ ι{0}(x).

The inequalities are strict for every x ∈ X � {0}.
Let f ∈ Γ(X). Following [2, section 5], we say that f is essentially smooth if ∂f is

at most single valued and int dom f is nonempty, that f is essentially strictly convex
if f∗ is essentially smooth, and that f is Legendre if f is both essentially smooth
and essentially strictly convex. These notions coincide in our (reflexive) Hilbert space
setting with the well-known notions of the same name in Euclidean space (see [18,
section 26]).

The next three results extend corresponding results in [3, section 6] considerably.
Corollary 7.7 (essential smoothness). Suppose that at least one function fi is

essentially smooth, and that λi > 0. Then pμ(f ,λ) is essentially smooth.
Proof. Since fi is essentially smooth, the set dom fi has a nonempty interior.

Thus λi dom fi and dom pμ(f ,λ) = λ1 dom f1 + · · · + λn dom fn (see Theorem 4.6)
both have nonempty interiors as well. Now take x ∈ dom pμ(f ,λ), and let y1, . . . , yn
be as in Theorem 4.10, say, (∀i) yi = λixi, where xi ∈ dom fi. By Theorem 7.1(i),
∂pμ(f ,λ)(x) ⊆ −μ−1x + ∂fi(xi) + μ−1xi. Because fi is essentially smooth, the set
∂fi(xi) is either empty or singleton. Thus ∂pμ(f ,λ)(x) is either empty or singleton.
Altogether, pμ(f ,λ) is essentially smooth.

Corollary 7.8 (essential strict convexity). Suppose that at least one function
fi is essentially strictly convex, and that λi > 0. Then pμ(f ,λ) is essentially strictly
convex.

Proof. Since fi is essentially strictly convex, its conjugate f∗
i is essentially smooth.

By Corollary 7.7, pμ−1(f∗,λ) is essentially smooth. Hence (pμ−1(f∗,λ))∗ is essentially
strictly convex. This last function is equal to pμ(f ,λ) (by Theorem 5.1), and the proof
is thus complete.

Corollary 7.9 (Legendre function). Suppose that at least one function fi is
essentially smooth, and that λi > 0. Furthermore, suppose that at least one function
fj is essentially strictly convex, and that λj > 0. (It does not matter whether j and
i are identical or distinct.) Then pμ(f ,λ) is both essentially smooth and essentially
strictly convex, i.e., Legendre.

Proof. Combine Corollary 7.7 and Corollary 7.8.
Before we formulate and prove the last result in this section, we briefly return to

the Moreau envelope and the proximal mapping. Let f ∈ Γ(X). Applying Proposi-
tion 3.3(v) to μf , we readily deduce that (see also [19, Example 11.26(b)])

(65) μ(eμf) + μ✫(eμ−1(f∗)) = q.

Taking gradients and recalling (47) yields Id = Pμf + μ(Pμ−1(f∗)) ◦ (μ−1 Id); equiva-
lently, μ Id = (Pμf) ◦ (μ Id) + μPμ−1(f∗), or

(66) Id = μ−1(Pμf) ◦ (μ Id) + Pμ−1(f∗).

The following result generalizes [4, Theorem 4.22] where n = 2, λ1 = λ2 = 1
2 , and

μ = 1.
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Theorem 7.10. Suppose that (a, a∗) ∈ X×X satisfies a∗ ∈ ∂f1(a)∩· · ·∩∂fn(a),
and that {1, 2, . . . , n} is the disjoint union of two sets of indices I and J . Set λJ =∑

j∈J λj, and suppose that λJ > 0. Then for every z ∈ a + (
⋂

i∈I Ndom fi(a) ∩⋂
j∈J Ndom f∗

j
(a∗)), we have

(67) a∗ + μ−1(λ−1
J − 1)(z − a) ∈ ∂pμ(f ,λ)(z).

Consequently, pμ(f ,λ) is differentiable on a+int(
⋂

i∈I Ndom fi(a)∩
⋂

j∈J Ndom f∗
j
(a∗)),

with gradient z 	→ a∗ + μ−1(λ−1
J − 1)(z − a).

Proof. Let z be as in the conclusion, and set y = z − a. Fix i ∈ I. Now a∗ ∈
∂fi(a) and λ−1

J y ∈ Ndom fi(a) = ∂ιdom fi(a) = ∂ιdomμfi(a). Hence μa∗ ∈ μ∂fi(a) =
∂(μfi)(a). Thus μa∗ + λ−1

J y ∈ ∂(μfi)(a) + ∂(ιdomμfi)(a) ⊆ ∂(μfi + ιdomμfi)(a) =
∂(μfi)(a). It follows that

(68) (∀i ∈ I) a = (Pμfi)(μa
∗ + λ−1

J y + a).

Next, fix j ∈ J . Then a + λ−1
J y ∈ ∂f∗

j (a∗), and μ−1a + μ−1λ−1
J y ∈ ∂(μ−1f∗

j )(a∗).

Using (66), we thus have a∗ = (Pμ−1f∗
j )(μ−1a+ μ−1λ−1

J y + a∗) = μ−1a+ μ−1λ−1
J y +

a∗ − μ−1(Pμfj)(a + λ−1
J y + μa∗). Hence

(69) (∀j ∈ J) a + λ−1
J y = (Pμfj)(a + λ−1

J y + μa∗).

Now (68), (69), and Theorem 6.7 imply that

(70) a + y = (Pμpμ(f ,λ))(a + λ−1
J y + μa∗),

equivalently,

(71) a∗ + μ−1(λ−1
J − 1)y ∈ ∂pμ(f ,λ)(a + y).

This verifies (67). Denote the intersection of the n normal cones by N . On a+ intN ,
the mapping z 	→ a∗ +μ−1(λ−1

J −1)(z−a) is thus a continuous selection of ∂pμ(f ,λ);
therefore, ∇pμ(f ,λ)(z) = a∗ + μ−1(λ−1

J − 1)(z − a) by [17, Proposition 2.8].

8. Pointwise limits of the proximal average.
Proposition 8.1. Let f ∈ Γ(X). Then eμ−1

(
f ◦ (μ Id)

)
= (eμf) ◦ (μ Id).

Proof. For every x ∈ X, we have eμ−1

(
f ◦ (μ Id)

)
(x) = infy

(
f(μy)+μ q(x−y)

)
=

infy
(
f(μy) + μ−1 q(μx− μy)

)
= infz

(
f(z) + μ−1 q(μx− z)

)
= eμf(μx).

Proposition 8.2 ([19, Example 11.26(c)]). Let f : X → [−∞,+∞]. Then

(72) (f + μ q)∗ = (μ q − eμ−1f) ◦ (μ−1 Id).

Proof. For every x∗ ∈ X, we obtain that

(f + μ q)∗(x∗) = sup
x

(
〈x, x∗〉 − f(x) − μ q(x)

)
= sup

x

(
〈x, x∗〉 − f(x) − μ q(x− μ−1x∗) + μ−1

q(x∗) − 〈x, x∗〉
)

= μ−1
q(x∗) + sup

x

(
− f(x) − μ q(x− μ−1x∗)

)
= μ−1

q(x∗) − inf
x

(
f(x) + μ q(μ−1x∗ − x)

)
= μ−1

q(x∗) − (f ✙μ q)(μ−1x∗)

= μ q(μ−1x∗) − (f ✙μ−1
✫ q)(μ−1x∗)

=
(
μ q − eμ−1f

)
(μ−1x∗).(73)

The result follows.
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The following alternative expression of the proximal average was discovered by
Hare for the case when n = 2 and μ = 1.

Theorem 8.3 (see [7]). pμ(f ,λ) = −eμ
(
−(λ1eμf1 + · · · + λneμfn)

)
.

Proof. Set g = −(λ1eμf1 + · · · + λneμfn). Taking the Fenchel conjugate on

both sides of (33) leads to pμ(f ,λ) =
(
λ1(f

∗
1 ✙μ q) + · · · + λn(f∗

n ✙μ q)
)∗ − μ✫ q. On

the other hand, (∀i) f∗
i ✙μ q = (fi + μ✫ q)∗ by Fact 3.4(i) and Proposition 3.3(iii).

Altogether,

(74) pμ(f ,λ) =
(
λ1(f1 + μ✫ q)∗ + · · · + λn(fn + μ✫ q)∗

)∗ − μ✫ q.

Using (74), Proposition 3.3(ii), Proposition 8.2, and Proposition 8.1 we deduce that

pμ(f ,λ) =
(
λ1(f1 + μ✫ q)∗ + · · · + λn(fn + μ✫ q)∗

)∗ − μ✫ q

=
(
λ1(f1 + μ−1

q)∗ + · · · + λn(fn + μ−1
q)∗

)∗ − μ✫ q.

=
(
λ1(μ

−1
q − eμf1) ◦ (μ Id) + · · · + λn(μ−1

q − eμfn) ◦ (μ Id)
)∗ − μ✫ q

=
(
μ q + g ◦ (μ Id)

)∗ − μ✫ q

=
(
μ q − eμ−1(g ◦ (μ Id))

)
◦ (μ−1 Id) − μ✫ q

= μ−1
q −

(
eμ−1(g ◦ (μ Id))

)
◦ (μ−1 Id) − μ✫ q

= −
(
(eμg) ◦ (μ Id)

)
◦ (μ−1 Id)

= −eμg.(75)

This verifies the result.
The μ-proximal hull of a function g is defined by hμg = −eμ(−eμg); it satisfies

eμg ≤ hμg ≤ g and eμ(hμg) = eμg (see [19, Example 1.44]). Theorem 8.3 shows that
pμ(f ,λ) can be interpreted as some sort of weighted proximal hull of the functions
f1, . . . , fn. We now turn to the proximal hull of pμ(f ,λ).

Corollary 8.4 (proximal hull). hμpμ(f ,λ) = pμ(f ,λ).
Proof. By Theorem 6.2(i), eμpμ(f ,λ) = λ1eμf1 + · · · + λneμfn. Hence, using

Theorem 8.3, hμ(pμ(f ,λ)) = −eμ(−eμpμ(f ,λ)) = −eμ(−λ1eμf1 − · · · − λneμfn) =
pμ(f ,λ). Since pμ(f ,λ)+μ✫ q is clearly convex and lower semicontinuous (by Corol-
lary 5.2), the result follows alternatively from [19, Example 11.26(d)].

Let us now determine the pointwise behavior of pμ(f ,λ).
Theorem 8.5 (pointwise limits). Let x ∈ X. Then the function

(76) ]0,+∞[ → ]−∞,+∞] : μ 	→ pμ(f ,λ)(x) is decreasing.

Consequently, limμ→0+ pμ(f ,λ)(x) and limμ→+∞ pμ(f ,λ)(x) exist. In fact,

(77) lim
μ→0+

pμ(f ,λ)(x) = sup
μ>0

pμ(f ,λ)(x) =
(
λ1f1 + · · · + λnfn

)
(x)

and

(78) lim
μ→+∞

pμ(f ,λ)(x) = inf
μ>0

pμ(f ,λ)(x) =
(
λ1 ✫f1 ✙ · · · ✙λn ✫fn

)
(x).

Proof. The fact that μ 	→ pμ(f ,λ)(x) is decreasing follows from (20); conse-
quently, the two limits exist and the supremum/infimum descriptions are clear. Now
eμ

(
−(λ1eμf1 + · · ·+λneμfn)

)
≤ −(λ1eμf1 + · · ·+λneμfn). Thus, using Theorem 8.3,
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we deduce that λ1eμf1+· · ·+λneμfn ≤ −eμ
(
−(λ1eμf1+· · ·+λneμfn)

)
= pμ(f ,λ). On

the other hand, Theorem 5.4 implies that pμ(f ,λ) ≤ λ1f1 + · · · + λnfn. Altogether,

(79) λ1eμf1 + · · · + λneμfn ≤ pμ(f ,λ) ≤ λ1f1 + · · · + λnfn.

It is well known that Moreau envelopes converge pointwise to the underlying function
as the parameter approaches 0; see, e.g., [1, Theorem 2.64] or [19, Theorem 1.25 and
Theorem 2.26]. Thus (∀i) limμ→0+ eμfi = fi pointwise, and (77) follows from taking
the pointwise limit in (79) at x as μ → 0+. Using (20), we deduce that

lim
μ→+∞

pμ(f ,λ)(x) = inf
μ>0

pμ(f ,λ)(x)

= inf
μ>0

inf∑
λiyi=x

∑
λifi(yi) +

1

μ

((∑
λi q(yi)

)
− q(x)

)

= inf∑
λiyi=x

inf
μ>0

∑
λifi(yi) +

1

μ

((∑
λi q(yi)

)
− q(x)

)

= inf∑
λiyi=x

∑
λifi(yi)

= inf∑′ xi=x

∑′
λifi(xi/λi)

= inf∑′ xi=x

∑′
(λi ✫fi)(xi)

=
(
λ1 ✫f1 ✙ · · · ✙λn ✫fn

)
(x),(80)

where the indices in the
∑′

sums range over all i such that λi > 0.
The following nice observation, which is based on the comments of an anonymous

referee, builds a bridge to [15].
Remark 8.6 (parallel sums). Suppose that X = R

N , let A1, . . . , An be positive
definite N×N matrices, and suppose that (∀i) fi(x) = 1

2 〈x,Aix〉, i.e., identify each Ai

with its quadratic form. As μ → 0+, pμ(f ,λ) converges pointwise to λ1f1+· · ·+λnfn,
and as μ → +∞, pμ(f ,λ) converges pointwise to λ1 ✫f1 ✙ · · · ✙λn ✫fn. Using [15]
(see also [10, Example IV.2.3.8], [12], and [14]), the matrices corresponding to the
quadratic forms λ1f1+· · ·+λnfn, λ1 ✫f1 ✙ · · · ✙λn ✫fn, and pμ(f ,λ) are, respectively,
the arithmetic average λ1A1 + · · · + λnAn; the harmonic average (λ1A

−1
1 + · · · +

λnA
−1
n )−1, i.e., the parallel sum of the matrices λ−1

1 A1, . . . , λ
−1
n An; and (λ1(A1 +

μ−1 Id)−1 + · · · + λn(An + μ−1 Id)−1)−1 − μ−1 Id, i.e., a μ−1-shifted version of the
harmonic average (in accordance with the comment before Definition 4.1). Note that
this provides another proof of Example 4.5, and that the theory for parallel sum
extends to matrices that are only positive semidefinite.

9. Epi-continuity and epi-limits of the proximal average. We now discuss
the convergence behavior of the proximal average with respect to the epi-topology.
Analogously to [3, section 5], we assume throughout this section that

(81) X is finite-dimensional.

Definition 9.1 (epi-convergence and epi-topology). (See [19, Chapter 6].) Let
g and (gk)k∈N be functions from X to ]−∞,+∞]. Then (gk)k∈N epi-converges to g,

in symbols gk
e→ g, if the following hold for every x ∈ X.

(i)
(
∀ (xk)k∈N

)
xk → x ⇒ g(x) ≤ lim gk(xk).

(ii)
(
∃ (yk)k∈N

)
yk → x and lim gk(yk) ≤ g(x).

The epi-topology is the topology induced by epi-convergence.
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Fact 9.2. Let g and (gk)k∈N be in Γ(X) such that gk
e→ g, and let h and (hk)k∈N

be in Γ(X) such that hk
e→ h. Let ρ and (ρk)k∈N be in [0,+∞[ such that ρk → ρ, and

let q : X → R be continuous. Then the following hold.
(i) gk ± q

e→ g ± q.

(ii) ρ > 0 ⇒ ρkgk
e→ ρg.

(iii) ρ = 0 and dom g = X ⇒ ρkgk
e→ ρg.

(iv) g∗k
e→ g∗.

(v) 0 ∈ int(dom g − domh) ⇒ gk + hk
e→ g + h.

Proof. (i): See [19, Exercise 7.8(a)]. (ii): See [19, Exercise 7.8(d)]. (iii): See
[3] or verify this directly. (iv): See [19, Theorem 11.34]. (v): See [19, Exercise
7.47(b)].

Lemma 9.3. Let g1, . . . , gn, h be in Γ(X), and let (g1,k)k∈N, . . . , (gn,k)k∈N, (hk)k∈N

be sequences in Γ(X) such that (∀i) gi,k
e→ gi and hk

e→ h. Let ρ and (ρk)k∈N be in
[0,+∞[ such that ρk → ρ. Suppose that dom g∗1 = · · · = dom g∗n−1 = domh∗ = X and
that (∀i ∈ {1, . . . , n− 1})(∀k) dom g∗i,k = X. Then the following hold.

(i) g1,k ✙ · · · ✙gn,k
e→ g1 ✙ · · · ✙gn.

(ii) ρk ✫hk
e→ ρ✫h.

Proof. (i): Fact 9.2(iv)&(v) imply that g∗1,k + · · · + g∗n,k
e→ g∗1 + · · · + g∗n. Using

Fact 9.2(iv), we see that (g∗1,k + · · · + g∗n,k)
∗ e→ (g∗1 + · · · + g∗n)∗, which is equivalent

to g1,k ✙ · · · ✙gn,k
e→ g1 ✙ · · · ✙gn by Fact 3.4(i). (ii): Fact 9.2(ii)–(iv) imply that

ρkh
∗
k

e→ ρh∗. Using Fact 9.2(iv) once more, we deduce that (ρkh
∗
k)

∗ e→ (ρh∗)∗, which
is the same as the conclusion in view of Proposition 3.2(i).

Remark 9.4. Using the horizon functions associated with g1, . . . , gn and [19,
Proposition 7.56], one may obtain a stronger version of Lemma 9.3 where the as-
sumption on the functions g∗i,k is less restrictive; however, this is not needed in the
sequel.

The next result extends [3, Theorem 5.4].
Theorem 9.5 (epi-continuity of the proximal average). Let (fi,k)k∈N be sequences

in Γ(X) such that (∀i) fi,k
e→ fi, let (λi,k)k∈N be sequences in [0, 1] such that (∀k)∑

i λi,k = 1 and (∀i) λi,k → λi, and let (μk)k∈N be a sequence in ]0,+∞[ such that
μk → μ. Then

(82)

pμk

(
(f1,k, . . . , fn,k), (λ1,k, . . . , λn,k)

) e→ pμ
(
(f1, . . . , fn), (λ1, . . . , λn)

)
= pμ(f ,λ).

Proof. By Theorem 9.3(ii),

(83) μk ✫ q
e→ μ✫ q.

Furthermore,

(84) (∀i) fi,k + μk ✫ q
e→ fi + μ✫ q

by Fact 9.2(v) because (μ✫ q)∗ = μ q has full domain. Using (84), Lemma 9.3(ii), and
the fact that (∀i) (fi + μ✫ q)∗ = (f∗

i ✙ (μ✫ q)∗)∗∗ = (f∗
i ✙μ q)∗∗ has full domain (and

similarly for (fi,k + μk ✫ q)∗), we deduce that

(85) (∀i) λi,k ✫(fi,k + μk ✫ q)
e→ λi ✫(fi + μ✫ q).
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Since (∀i)
(
λi ✫(fi + μ✫ q)

)∗
= λi(fi + μ✫ q)∗ = λi(f

∗
i ✙μ✫ q) has full domain (and

similarly for (λi,k ✫(fi,k + μk ✫ q))∗), (85) and Lemma 9.3(i) yield

(86)

λ1,k ✫(f1,k+μk ✫ q) ✙ · · · ✙λn,k ✫(fn,k+μk ✫ q)
e→ λ1 ✫(f1+μ✫ q) ✙ · · · ✙λn ✫(fn+μ✫ q).

In turn, (83), (86), and Fact 9.2(i) imply (82).
We now describe the behavior of pμ(f ,λ) when μ approaches either 0 or +∞

while f and λ are fixed.
Corollary 9.6. pμ(f ,λ)

e→ λ1f1 + · · · + λnfn as μ → 0+, and pμ(f ,λ)
e→

cl(λ1 ✫f1 ✙ · · · ✙λn ✫fn) as μ → +∞.
Proof. Theorem 8.5 shows that μ 	→ pμ(f ,λ) is pointwise increasing. In view

of (77) and the lower semicontinuity of pμ(f ,λ) (see Corollary 5.2), an application

of [19, Proposition 7.4(d)] yields that pμ(f ,λ)
e→ λ1f1 + · · · + λnfn as μ → 0+.

Combining (78) with [19, Proposition 7.4(e)], we deduce similarly that pμ(f ,λ)
e→

cl(λ1 ✫f1 ✙ · · · ✙λn ✫fn) as μ → +∞.
Corollary 9.6 and (77) show that, as μ → 0+, the pointwise and epigraphical

limits of pμ(f ,λ) coincide. When μ → +∞, the pointwise and epigraphical limits of
pμ(f ,λ) may differ as we illustrate next.

Example 9.7. Suppose that X = R
2, that n = 2, that λ1 > 0, that λ2 > 0, that

f1 = ιC1 , and that f2 = ιC2 where C1 and C2 are nonempty closed convex subsets
of X such that λ1C1 + λ2C2 is not closed. Concretely, we may let C1 and C2 be the
epigraphs of x 	→ exp(x) and x 	→ exp(−x), respectively. Then the pointwise limit
(see (78))

(87) lim
μ→+∞

pμ(f ,λ) = λ1 ✫f1 ✙λ2 ✫f2 = ιλ1C1+λ2C2

is not lower semicontinuous, and hence different from the epigraphical limit (see
Corollary 9.6) cl(λ1 ✫f1 ✙λ2 ✫f2), which is the indicator function of the closure of
λ1C1 + λ2C2.

We now show that the limiting behavior as μ → +∞ cannot be obtained by
conjugation.

Example 9.8. Suppose that X = R
2, that n = 2, that f1 : (x, y) 	→ −x + ι{0}(y),

that f2 : (x, y) 	→ x + ι{0}(y), that λ1 > 0, and that λ2 > 0. Now fix (x, y) ∈ R
2.

Using (16) and some calculus, we calculate

(88) pμ(f ,λ)(x, y) = (λ2 − λ1)x+ ι{0}(y)− 2μλ1λ2 = (λ1f1 + λ2f2)(x, y)− 2μλ1λ2.

Letting μ → 0+ in (88) and in accordance with (77), we observe that pμ(f ,λ) →
λ1f1 + λ2f2 pointwise. Recalling (78) and letting μ → +∞ in (88), we see that

(89) (λ1 ✫f1 ✙λ2 ✫f2)(x, y) = lim
μ→+∞

pμ(f ,λ)(x, y) =

{
−∞ if y = 0;

+∞ if y �= 0.

Since f∗
1 (x, y) = ι{−1}(x) and f∗

2 (x, y) = ι{1}(x), we have dom(f∗
1 ) ∩ dom(f∗

2 ) = ∅,
and thus λ1f

∗
1 + λ2f

∗
2 ≡ +∞. Altogether,

(90) λ1 ✫f1 ✙λ2 ✫f2 �=
(
λ1f

∗
1 + λ2f

∗
2

)∗ ≡ −∞.

Therefore, due to the absence of a constraint qualification on f∗
1 and f∗

2 , the epi-
graphical convergence of pμ(f ,λ) to the epigraphical average of f1 and f2 as μ →
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+∞ could not have been obtained by conjugating the epigraphical convergence of
pμ−1(f∗

1 , f
∗
2 , λ1, λ2) to λ1f

∗
1 + λ2f

∗
2 as μ → +∞.

In the presence of a constraint qualification, we can use the proximal average to
construct a homotopic curve with very nice properties.

Remark 9.9 (epigraphical and arithmetic averages are homotopic). Suppose that
int dom f∗

1 ∩ · · · ∩ int dom f∗
n−1 ∩ dom f∗

n �= ∅. By Fact 3.4(i) and Proposition 3.2(i),
we have (λ1f

∗
1 + · · · + λnf

∗
n)∗ = λ1 ✫f1 ✙ · · · ✙λn ✫fn. Therefore,

(91) cl(λ1 ✫f1 ✙ · · · ✙λn ✫fn) = λ1 ✫f1 ✙ · · · ✙λn ✫fn,

and hence the pointwise and epigraphical limits of pμ(f ,λ) as either μ → 0+ or
μ → +∞ coincide by Theorem 8.5 and Corollary 9.6. Now set

(92) (∀ρ ∈ [0, 1]) qρ : x 	→

⎧⎪⎨
⎪⎩

(λ1f1 + · · · + λnfn)(x) if ρ = 0;

ptan(ρπ/2)(f ,λ)(x) if 0 < ρ < 1;

(λ1 ✫f1 ✙ · · · ✙λn ✫fn)(x) if ρ = 1.

Then Theorem 8.5, Corollary 9.5, and Corollary 9.6 show that (qρ)ρ∈[0,1] is a decreas-
ing, pointwise convergent, homotopic (with respect to the epi-topology) curve between
the arithmetic average λ1f1+ · · ·+λnfn and the epigraphical average λ1 ✫f1 ✙ · · · ✙λn

✫fn.
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Abstract. We study some methods of subgradient projections for solving a convex feasibility
problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case
and propose a strategy that controls the relaxation parameters in a specific self-adapting manner.
This strategy leaves enough user flexibility but gives a mathematical guarantee for the algorithm’s
behavior in the inconsistent case. We present the numerical results of computational experiments
that illustrate the computational advantage of the new method.
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1. Introduction. In this paper we consider, in an Euclidean space framework,
the method of simultaneous subgradient projections for solving a convex feasibility
problem with general (not necessarily linear) convex sets in the consistent and incon-
sistent cases. To cope with this situation, we propose two algorithmic developments.
One uses steering parameters instead of relaxation parameters in the simultaneous
subgradient projection method, and the other is a strategy that controls the relax-
ation parameters in a specific self-adapting manner that leaves enough user flexibility
while yielding some mathematical guarantees for the algorithm’s behavior in the in-
consistent case. For the algorithm that uses steering parameters there is currently
no mathematical theory. We present the numerical results of computational experi-
ments that show the computational advantage of the mathematically-founded algo-
rithm implementing our specific relaxation strategy. In the remainder of this section
we elaborate upon the meaning of the above-made statements.

Given m closed convex subsets Q1, Q2, . . . , Qm ⊆ Rn of the n-dimensional Eu-
clidean space, expressed as

(1.1) Qi = {x ∈ Rn | fi(x) ≤ 0} ,

where fi : Rn → R is a convex function, the convex feasibility problem (CFP) is

(1.2) find a point x∗ ∈ Q := ∩m
i=1Qi.
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As is well known, if the sets are given in any other form, then they can be represented
in the form (1.1) by choosing, for fi, the squared Euclidean distance to the set. Thus,
it is required to solve the system of convex inequalities

(1.3) fi(x) ≤ 0, i = 1, 2, . . . ,m.

A fundamental question is how to approach the CFP in the inconsistent case
when Q = ∩m

i=1Qi = ∅. Logically, algorithms designed to solve the CFP by finding
a point x∗ ∈ Q are bound to fail and should, therefore, not be employed. But this
is not always the case. Projection methods that are commonly used for the CFP,
particularly in some very large real-world applications (see details below), are applied
to CFPs without prior knowledge whether or not the problem is consistent. In such
circumstances it is imperative to know how would a method, that is originally known
to converge for a consistent CFP, behave if consistency is not guaranteed.

We address this question for a particular type of projection methods. In general,
sequential projection methods exhibit cyclic convergence in the inconsistent case.
This means that the whole sequence of iterates does not converge, but it breaks up
into m convergent subsequences (see Gubin, Polyak, and Raik [25, Theorem 2] and
Bauschke, Borwein and Lewis [3]). In contrast, simultaneous projection methods gen-
erally converge, even in the inconsistent case, to a minimizer of a proximity function
that “measures” the weighted sum of squared distances to all sets of the CFP provided
such a minimizer exists (see Iusem and De Pierro [28] for a local convergence proof
and Combettes [17] for a global one).

Therefore, there is an advantage in using simultaneous projection methods from
the point of view of convergence. Additional advantages are that (i) they are inher-
ently parallel already at the mathematical formulation level due to the simultaneous
nature, and (ii) they allow the user to assign weights (of importance) to the sets of
the CFP. However, a severe limitation, common to sequential as well as simultane-
ous projection methods, is the need to solve an inner-loop distance-minimization step
for the calculation of the orthogonal projection onto each individual set of the CFP.
This need is alleviated only for convex sets that are simple to project onto, such as
hyperplanes or half-spaces.

A useful path to circumvent this limitation is to use subgradient projections that
rely on the calculation of subgradients at the current (available) iteration points;
see Censor and Lent [12] or [13, section 5.3]. Iusem and Moledo [32] studied the
simultaneous projection method with subgradient projections but only for consistent
CFPs. To the best of our knowledge, there does not exist a study of the simultaneous
projection method with subgradient projections for the inconsistent case. Our present
results are a contribution towards this goal.

The CFP is a fundamental problem in many areas of mathematics and the physical
sciences; see, e.g., Combettes [16, 18] and references therein. It has been used to
model significant real-world problems in image reconstruction from projections; see,
e.g., Herman [26], in radiation therapy treatment planning; see Censor, Altschuler,
and Powlis [11] and Censor [9], and in crystallography; see Marks, Sinkler and Landree
[33], to name but a few, and has been used under additional names such as set-theoretic
estimation or the feasible set approach. A common approach to such problems is to use
projection algorithms; see, e.g., Bauschke and Borwein [2], which employ orthogonal
projections (i.e., nearest-point mappings) onto the individual sets Qi. The orthogonal
projection PΩ(z) of a point z ∈ Rn onto a closed convex set Ω ⊆ Rn is defined by

(1.4) PΩ(z) := argmin{‖ z − x ‖ | x ∈ Ω},
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where, throughout this paper, ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and inner
product, respectively, in Rn. Frequently a relaxation parameter is introduced so that

(1.5) PΩ,λ(z) := (1 − λ)z + λPΩ(z)

is the relaxed projection of z onto Ω with relaxation λ. Many iterative projection
algorithms for the CFP were developed; see subsection 1.1 below.

1.1. Projection methods: Advantages and earlier work. The reason why
the CFP is looked at from the viewpoint of projection methods can be appreciated
by the following brief comments, that we made in earlier publications, regarding
projection methods in general. Projections onto sets are used in a variety of methods
in optimization theory, but not every method that uses projections really belongs to
the class of projection methods. Projection methods are iterative algorithms which
use projections onto sets. They rely on the general principle that projections onto the
given individual sets are easier to perform than projections onto other sets derived
from the given individual sets (intersections, image sets under some transformation,
etc.).

A projection algorithm reaches its goal, related to the whole family of sets, by
performing projections onto the individual sets. Projection algorithms employ pro-
jections onto convex sets in various ways. They may use different kinds of projections
and, sometimes, even use different types of projections within the same algorithm.
They serve to solve a variety of problems, which are of either the feasibility or of the
optimization types. They have different algorithmic structures, of which some are
particularly suitable for parallel computing, and they demonstrate nice convergence
properties and/or good initial behavior patterns.

Apart from theoretical interest, the main advantage of projection methods, which
makes them successful in real-world applications, is computational. They commonly
have the ability to handle huge-size problems that are beyond the ability of more
sophisticated and currently available methods. This is so because the building blocks
of a projection algorithm are the projections onto the given individual sets (which are
easy to perform), and the algorithmic structure is either sequential or simultaneous
(or in-between).

The field of projection methods is vast, and we mention here only a few recent
works that can give the reader some good starting points. Such a list includes, among
many others, the works of Crombez [20, 21], the connection with variational inequal-
ities; see, e.g., Noor [34] and Yamada [38], which is motivated by real-world problems
of signal processing, and the many contributions of Bauschke and Combettes; see, e.g.,
Bauschke, Combettes, and Kruk [4] and references therein. Bauschke and Borwein [2]
and Censor and Zenios [13, Chapter 5] provide reviews of the field.

Systems of linear equations, linear inequalities, or convex inequalities are all en-
compassed by the CFP, which has broad applicability in many areas of mathematics
and the physical and engineering sciences. These include, among others, optimization
theory (see, e.g., Eremin [24], Censor and Lent [12], and Chinneck [14]), approxi-
mation theory (see, e.g., Deutsch [22] and references therein), image reconstruction
from projections in computerized tomography (see, e.g., Herman [26, 27]), and control
theory (see, e.g., Boyd et al. [5].)

Combettes [19] and Kiwiel [31] have studied the subgradient projection method
for consistent CFPs. Their work presents more general algorithmic steps and is for-
mulated in Hilbert space. Some work has already been done on detecting infeasibility
with certain subgradient projection methods by Kiwiel [29, 30]. However, our ap-
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proach differs from the latter in that it aims at a subgradient projection method that
“will work” regardless of the feasibility of the underlying CFP and which does not
require the user to study in advance whether or not the CFP is consistent. Further
questions arise such as that of combining our work, or the above quoted results, with
Pierra’s [36] product space formalism, as extended to handle inconsistent situations
by Combettes [17]. These questions are currently under investigation.

2. Simultaneous subgradient projections with steering parameters. Sub-
gradient projections have been incorporated in iterative algorithms for the solution of
CFPs. The cyclic subgradient projections (CSP) method for the CFP was given by
Censor and Lent [12] as follows.

Algorithm 2.1 (The CSP method).

Initialization: x0 ∈ Rn is arbitrary.
Iterative step: Given xk, calculate the next iterate xk+1 by

(2.1) xk+1 =

⎧⎨
⎩ xk − αk

fi(k)(x
k)

‖ tk ‖2 tk if fi(k)(x
k) > 0,

xk if fi(k)(x
k) ≤ 0,

where tk ∈ ∂fi(k)(x
k) is a subgradient of fi(k) at the point xk, and the relaxation

parameters {αk}∞k=0 are confined to an interval ε1 ≤ αk ≤ 2 − ε2, for all k ≥ 0, with
some arbitrarily small ε1, ε2 > 0.

Control: Denoting I := {1, 2, . . . ,m}, the sequence {i(k)}∞k=0 is an almost cyclic
control sequence on I. This means (see, e.g., [13, Definition 5.1.1]) that i(k) ∈ I
for all k ≥ 0, and there exists an integer C ≥ m such that, for all k ≥ 0, I ⊆
{i(k + 1), i(k + 2), . . . , i(k + C)}.

Observe that if tk = 0, then fi(k) takes its minimal value at xk, implying, by

the nonemptiness of Q, that fi(k)(x
k) ≤ 0 so that xk+1 = xk. The relations of the

CSP method to other iterative methods for solving the convex feasibility problem
and to the relaxation method for solving linear inequalities can be found, e.g., in [13,
Chapter 5]; see also, Bauschke and Borwein [2, section 7]. Since sequential projection
methods for CFPs commonly have fully simultaneous counterparts, the simultaneous
subgradient projections (SSP) method of Dos Santos [23] and Iusem and Moledo [32]
is a natural algorithmic development.

Algorithm 2.2 (The SSP method).

Initialization: x0 ∈ Rn is arbitrary.
Iterative step: (i) Given xk, calculate, for all i ∈ I = {1, 2, . . . ,m}, intermediate

iterates yk+1,i by

(2.2) yk+1,i =

⎧⎨
⎩ xk − αk

fi(x
k)

‖ tk ‖2 t
k if fi(x

k) > 0,

xk if fi(x
k) ≤ 0,

where tk ∈ ∂fi(x
k) is a subgradient of fi at the point xk, and the relaxation parameters

{αk}∞k=0 are confined to an interval ε1 ≤ αk ≤ 2 − ε2, for all k ≥ 0, with some
arbitrarily small ε1, ε2 > 0.

(ii) Calculate the next iterate xk+1 by

(2.3) xk+1 =

m∑
i=1

wiy
k+1,i,

where wi are fixed, user-chosen, positive weights with
∑m

i=1 wi = 1.
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The convergence analysis for this algorithm is currently available only for consis-
tent (Q �= ∅) CFPs; see [23, 32]. In our experimental work, reported in what follows,
we applied Algorithm 2.2 to CFPs without knowing whether or not they are consis-
tent. Convergence is diagnosed by performing the plots of a proximity function that
measures, in some manner, the infeasibility of the system. We used the weighted
proximity function of the form

(2.4) p(x) := (1/2)
m∑
i=1

wi ‖ Pi(x) − x ‖2,

where Pi(x) is the orthogonal projection of the point x onto Qi. To combat instabil-
ities in those plots that appeared occasionally in our experiments, we used steering
parameters σk instead of the relaxation parameters αk in Algorithm 2.2. To this end
we need the following definition.

Definition 2.3. A sequence {σk}∞k=0 of real numbers 0 ≤ σk < 1 is called a
steering sequence if it satisfies the following conditions:

(2.5) lim
k→∞

σk = 0,

(2.6)

∞∑
k=0

σk = +∞,

(2.7)

∞∑
k=0

| σk − σk+m |< +∞.

A historical and technical discussion of these conditions can be found in [1].
The sequential and simultaneous Halpern–Lions–Wittmann–Bauschke algorithms dis-
cussed in Censor [10] employ the parameters of a steering sequence to “force” (steer)
the iterates towards the solution of the best approximation problem. This steering fea-
ture of the steering parameters has a profound effect on the behavior of any sequence
of iterates {xk}∞k=0. We return to this point in section 6.

Algorithm 2.4 (The SSP method with steering).

Initialization: x0 ∈ Rn is arbitrary.
Iterative step: (i) Given xk, calculate, for all i ∈ I = {1, 2, . . . ,m}, intermediate

iterates yk+1,i by

(2.8) yk+1,i =

⎧⎨
⎩ xk − σk

fi(x
k)

‖ tk ‖2 t
k if fi(x

k) > 0,

xk if fi(x
k) ≤ 0,

where tk ∈ ∂fi(x
k) is a subgradient of fi at the point xk, and {σk}∞k=0 is a sequence

of steering parameters.
(ii) Calculate the next iterate xk+1 by

(2.9) xk+1 =

m∑
i=1

wiy
k+1,i,

where wi are fixed, user-chosen, positive weights with
∑m

i=1 wi = 1.
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3. Subgradient projections with strategical relaxation: Preliminaries.
Considering the CFP (1.2), the envelope of the family of functions {fi}mi=1 is the
function

(3.1) f(x) := max{fi(x) | i = 1, 2, . . . ,m},

which is also convex. Clearly, the consistent CFP is equivalent to finding a point in

(3.2) Q = ∩m
i=1Qi = {x ∈ Rn | f(x) ≤ 0}.

The subgradient projections algorithmic scheme that we propose here employs
a strategy for controlling the relaxation parameters in a specific manner, leaving
enough user flexibility while giving some mathematical guarantees for the algorithm’s
behavior in the inconsistent case. It is described as follows.

Algorithm 3.1.

Initialization: Let M be a positive real number, and let x0 ∈ Rn be any initial
point.

Iterative step: Given the current iterate xk, set

(3.3) I(xk) := {i | 1 ≤ i ≤ m and fi(x
k) = f(xk)},

and choose a nonnegative vector wk = (wk
1 , w

k
2 , . . . , w

k
m) ∈ Rm such that

(3.4)
m∑
i=1

wk
i = 1 and wk

i = 0 if i /∈ I(xk).

Let λk be any nonnegative real number such that

(3.5) max
(
0, f(xk)

)
≤ λkM

2 ≤ 2 max
(
0, f(xk)

)
and calculate

(3.6) xk+1 = xk − λk

∑
i∈I(xk)

wk
i ξ

k
i ,

where, for each i ∈ I(xk), we take a subgradient ξki ∈ ∂fi(x
k).

It is interesting to note that any sequence {xk}∞k=0 generated by this algorithm
is well defined, no matter how x0 and M are chosen. Similarly to other algorithms
described above, Algorithm 3.1 requires computing the subgradients of convex func-
tions. In case a function is differentiable, this reduces to gradient calculations. Oth-
erwise, one can use the subgradient computing procedure presented in Butnariu and
Resmerita [8].

The procedure described above was previously studied in Butnariu and Mehrez
[7]. The main result there shows that the procedure converges to a solution of the
CFP under two conditions: (i) that the solution set Q has a nonempty interior, and
(ii) that the envelope f is uniformly Lipschitz on Rn, that is, there exists a positive
real number L such that

(3.7) |f(x) − f(y)| ≤ L ‖x− y‖ for all x, y ∈ Rn.

Both conditions (i) and (ii) are restrictive, and it is difficult to verify their validity
in practical applications. In the following we show that this method converges to the
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solutions of consistent CFPs under less demanding conditions. In fact, we show that
if the solution set Q of the given CFP has a nonempty interior, then the convergence
of Algorithm 3.1 to a point in Q is ensured even if the function f is not uniformly
Lipschitz on Rn (i.e., even if f does not satisfy condition (ii) above). However,
verifying whether intQ �= ∅ prior to solving a CFP may be difficult or even impossible.
Therefore, it is desirable to have alternative conditions, which may be easier to verify
in practice, that can ensure convergence of our algorithm to solutions of the CFP,
provided that such solutions exist. This is why we prove the convergence of Algorithm
3.1 to the solutions of consistent CFPs whenever the envelope f of the functions fi
involved in the given CFP is strictly convex. The strict convexity of the envelope
function f associated with a consistent CFP implies that either the solution set Q
of the CFP is a singleton, in which case intQ = ∅, or that Q contains (at least) two
different solutions of the CFP implying that int Q �= ∅. The verification of whether Q
is a singleton or not is as difficult as deciding whether int Q �= ∅. By contrast, since
f is strictly convex whenever each fi is strictly convex, the verification of the strict
convexity of f may be relatively easily done in some situations of practical interest,
such as when each fi is a quadratic convex function. In the latter case, strict convexity
of fi amounts to the positive definiteness of the matrix of its purely quadratic part.

It is interesting to note in this context that, when the envelope f of the CFP is
not strictly convex, one may consider a “regularized” CFP in which each fi, which is
not strictly convex, is replaced by

(3.8) fi(x) := fi(x) + α‖x‖2

for some positive real number α. Clearly, all fi are strictly convex, and thus so is
the envelope f of the regularized problem. Therefore, if the regularized problem has
solutions, then our Algorithm 3.1 will produce the approximations of such solutions.
Moreover, any solution of the regularized problem is a solution of the original problem,
and thus by solving the regularized problem, we implicitly solve the original problem.
The difficult part of this approach is that, even if the original CFP is consistent, then
the regularized version of it may be inconsistent for all, or for some, values α > 0.
How to decide whether an α > 0 exists such that the corresponding regularized CFP
is consistent, and how to compute such an α (if any) are questions whose answers we
do not know.

4. Subgradient projections with strategical relaxation: Convergence
analysis. In order to discuss the convergence behavior of the subgradient projections
method with strategical relaxation, recall that convex functions defined on the whole
space Rn are continuous and, consequently, are bounded on bounded sets in Rn.
Therefore, the application of Butnariu and Iusem [6, Proposition 1.1.11] or Bauschke
and Borwein [2, Proposition 7.8] to the convex function f shows that it is Lipschitz on
bounded subsets of Rn, i.e., for any nonempty bounded subset S ⊆ Rn, there exists a
positive real number L(S), called a Lipschitz constant of f over the set S, such that

(4.1) |f(x) − f(y)| ≤ L(S) ‖x− y‖ for all x, y ∈ S.

Our next result is a convergence theorem for Algorithm 3.1 when applied to a con-
sistent CFP. It was noted in the previous section that Algorithm 3.1 is well defined
regardless of how the initial point x0 or the positive constant M involved in the algo-
rithm are chosen. However, this is no guarantee that a sequence {xk}∞k=0 generated
by Algorithm 3.1 for the random choices of x0 and M will converge to the solutions
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of the CFP, even if such solutions exist. The theorem below shows a way of choos-
ing x0 and M , which ensures that, under some additional conditions for the problem
data, the sequence {xk}∞k=0 generated by Algorithm 3.1 will necessarily approximate
a solution of the CFP (provided that solutions exist). As shown in section 5 below,
determining x0 and M as required in the next theorem can be quite easily done for
practically significant classes of CFPs. Also, as shown in section 6, determining x0

and M in this manner enhances the self-adaptability of the procedure to the problem
data and makes Algorithm 3.1 produce the approximations of the solutions of the
CFP which, in many cases, are more accurate than those produced by other CFP
solving algorithms. We denote with B(x, r) the ball centered at x with radius r.

Theorem 4.1. If a positive number M and an initial point x0 in Algorithm 3.1
are chosen so that M ≥ L(B(x0, r)) for some positive real number r satisfying the
condition

(4.2) B(x0, r/2) ∩Q �= ∅

and if at least one of the following conditions holds:
(i) B(x0, r/2) ∩ int Q �= ∅,
(ii) the function f is strictly convex,

then any sequence {xk}∞k=0, generated by Algorithm 3.1, converges to an element of
Q.

We present the proof of Theorem 4.1 as a sequence of lemmas. To do so, note
that, if {xk}∞k=0 is generated by Algorithm 3.1, then for each integer k ≥ 0, we have

(4.3) xk+1 = xk − λkν
k,

where

(4.4) νk :=
∑

i∈I(xk)

wk
i ξ

k
i ∈ conv∪i∈I(xk)∂fi(x

k).

Using (4.3), for any z ∈ Rn, we have

(4.5)
∥∥xk+1 − z

∥∥2
=

∥∥xk − z
∥∥2

+ λk

(
λk

∥∥νk∥∥2 − 2
〈
νk, xk − z

〉)
.

By Clarke [15, Proposition 2.3.12] we deduce that

(4.6) ∂f(xk) = conv∪i∈I(xk)∂fi(x
k),

and this implies that νk ∈ ∂f(xk) because of (4.4). Therefore,

(4.7)
〈
νk, z − xk

〉
≤ f ′

+(xk; z − xk),

where f ′
+(u; v) denotes the right-sided directional derivative at u in the direction v.

Now suppose that M, r, and x0 are chosen according to the requirements of Theorem
4.1, that is,

(4.8) r > 0,M ≥ L(B(x0, r)) and B(x0, r/2) ∩Q �= ∅.

Next we prove the following basic fact.
Lemma 4.2. If (4.8) is satisfied and if z ∈ B(x0, r/2) ∩ Q, then, for all k ≥ 0,

we have, for any sequence {xk}∞k=0, generated by Algorithm 3.1,

(4.9) xk+1 ∈ B(x0, r) and
∥∥xk+1 − z

∥∥ ≤
∥∥xk − z

∥∥ ≤ r/2.
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Proof. We first show that, if for some integer k ≥ 0,

(4.10) xk ∈ B(x0, r) and
∥∥xk − z

∥∥ ≤ r/2,

then (4.9) holds. If λk = 0 or νk = 0, then, by (4.3), we have xk+1 = xk, which
combined with (4.10), implies (4.9). Assume now that λk �= 0 and νk �= 0. Since, by
(4.10), xk ∈ B(x0, r) by (4.8) and by [15, Proposition 2.1.2(a)], we deduce that

(4.11) M ≥ L(B(x0, r)) ≥
∥∥νk∥∥ .

According to (3.5), we also have f(xk) > 0 (otherwise λk = 0). Since f(z) ≤ 0 we
obtain from the subgradient inequality

(4.12)
〈
νk, xk − z

〉
≥ f(xk) − f(z) ≥ f(xk) > 0.

This and (4.11) imply that

(4.13) 2
〈
νk, xk − z

〉
≥ 2f(xk) ≥ λkM

2 ≥ λk

∥∥νk∥∥2

showing that the quantity inside the parentheses in (4.5) is nonpositive. Thus, we
deduce that

(4.14)
∥∥xk+1 − z

∥∥ ≤
∥∥xk − z

∥∥ ≤ r/2

in this case too. This proves that if (4.10) is true for all k ≥ 0, then so is (4.9). Now,
we prove by induction that (4.10) is true for all k ≥ 0. If k = 0, then (4.10) obviously
holds. Suppose that (4.10) is satisfied for some k = p. As shown above, this implies
that condition (4.9) is satisfied for k = p, and thus we have that

(4.15) xp+1 ∈ B(x0, r) and
∥∥xp+1 − z

∥∥ ≤ r/2.

Hence, condition (4.10) also holds for k = p + 1. Consequently, condition (4.9) holds
for k = p + 1, and this completes the proof.

Observe that, according to Lemma 4.2, if {xk}∞k=0 is a sequence generated by Al-
gorithm 3.1 and if the conditions (4.8) are satisfied, then there exists z ∈ B(x0, r/2)∩Q
and for any such z the sequence {‖xk − z‖}∞k=0 is nonincreasing and bounded from
below and therefore convergent. Since the sequence {‖xk − z‖}∞k=0 is convergent, it
is also bounded, and consequently, the sequence {xk}∞k=0 is bounded too. This shows
that the next result applies to any sequence {xk}∞k=0 generated by Algorithm 3.1
under the assumptions of Theorem 4.1.

Lemma 4.3. If {xk}∞k=0 is a bounded sequence generated by Algorithm 3.1, then
the sequence {xk}∞k=0 has accumulation points, and, for each accumulation point x∗

of {xk}∞k=0, there exists a sequence of natural numbers {ks}∞s=0 such that the following
limits exist:

x∗ = lim
s→∞

xks , λ∗ = lim
s→∞

λks
,(4.16)

ξ∗i = lim
s→∞

ξks
i , w∗

i = lim
s→∞

wks
i for all i = 1, 2, . . . ,m,(4.17)

ν∗ = lim
s→∞

νks ,(4.18)

and we have

(4.19) w∗ := (w∗
1 , w

∗
2 , . . . , w

∗
m) ∈ Rm

+ and
∑

i∈I(x∗)

w∗
i = 1
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and

(4.20) ν∗ =
∑

i∈I(x∗)

w∗
i ξ

∗
i ∈ ∂f(x∗).

Moreover, if λ∗ = 0, then x∗ is a solution of the CFP.
Proof. The sequence {xk}∞k=0 is bounded, and thus has accumulation points.

Let x∗ be an accumulation point of {xk}∞k=0, and let {xps}∞s=0 be a convergent subse-
quence of {xk}∞k=0 such that x∗ = lims→∞ xps . The function f is continuous (since it is
real-valued and convex on Rn); hence, it is bounded on bounded subsets of Rn. There-
fore, the sequence {f(xps)}∞s=0 converges to f(x∗), and the sequence {f(xk)}∞k=0 is
bounded. By (3.5), the boundedness of {f(xk)}∞k=0 implies that the sequence {λk}∞k=0

is bounded. Since, for every i = 1, 2, . . . ,m, the operator ∂fi : Rn → 2R
n

is monotone,
it is locally bounded (cf. Pascali and Sburlan [35, Theorem on p. 104]).

Consequently, there exists a neighborhood U of x∗ on which all ∂fi, i = 1, 2, . . . ,m
are bounded. Clearly, since x∗ = lims→∞ xps , the neighborhood U contains all but
finitely many terms of the sequence {xps}∞s=0. This implies that the sequences {ξps

i }∞s=0

are uniformly bounded, and therefore the sequence {νps}∞s=0 is bounded too.
Therefore, there exists a subsequence {ks}∞s=0 of {ps}∞s=0 such that the limits in

(4.16)–(4.18) exist. Obviously, the vector w∗ = (w∗
1 , w

∗
2 , . . . , w

∗
m) ∈ Rm

+ , and according
to [7, Lemma 1], we also have

∑
i∈I(x∗) w

∗
i = 1. This and (4.4) imply that ν∗ =∑

i∈I(x∗) w
∗
i ξ

∗
i .

Observe that, since νks ∈ ∂f(xks) for all s ≥ 0 and since ∂f is a closed mapping
(cf. Phelps [37, Proposition 2.5]), we have that ν∗ ∈ ∂f(x∗). Now, if λ∗ = 0, then
according to (3.5) and the continuity of f, we deduce that

(4.21) 0 ≤ max{0, f(x∗)} = lim
s→∞

max{0, f(xks)} ≤ lim
s→∞

λksM
2 = λ∗M

2 = 0,

which implies that f(x∗) ≤ 0, that is, x∗ ∈ Q.
Lemma 4.4. Let {xk}∞k=0 be a sequence generated by Algorithm 3.1. If (4.8) is

satisfied and if at least one of the conditions (i) or (ii) of Theorem 4.1 holds, then the
sequence {xk}∞k=0 has accumulation points, and any such point belongs to Q.

Proof. As noted above, when (4.8) is satisfied, then the sequence {xk}∞k=0 is
bounded, and hence it has accumulation points. Let x∗ be such an accumulation
point, and let {ks}∞s=0 be the sequence of natural numbers associated with x∗ whose
existence is guaranteed by Lemma 4.3. Since, for any z ∈ C∩B(x0, r/2), the sequence
{‖xk − z‖}∞k=0 is convergent (cf. Lemma 4.2), we deduce that

‖x∗ − z‖ = lim
s→∞

∥∥xks − z
∥∥ = lim

k→∞

∥∥xk − z
∥∥ = lim

s→∞

∥∥xks+1 − z
∥∥(4.22)

= ‖x∗ − λ∗ν
∗ − z‖ .

This implies that

(4.23) ‖x∗ − z‖2
= ‖x∗ − z‖2

+ λ∗

(
λ∗ ‖ν∗‖2 − 2 〈ν∗, x∗ − z〉

)
.

If λ∗ = 0, then x∗ ∈ Q by Lemma 4.3. Suppose that λ∗ > 0. Then, by (4.23), we have

(4.24) λ∗ ‖ν∗‖2 − 2 〈ν∗, x∗ − z〉 = 0

for all z ∈ C ∩B(x0, r/2). We distinguish now between two possible cases.
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Case I: Assume that condition (i) of Theorem 4.1 is satisfied. According to (4.24),
the set Q ∩B(x0, r/2) is contained in the hyperplane

(4.25) H :=
{
x ∈ Rn | 〈ν∗, x〉 = (1/2)

(
2 〈ν∗, x∗〉 − λ∗ ‖ν∗‖2

)}
.

By condition (i) of Theorem 4.1, it follows that int (Q ∩ B(x0, r/2)) �= ∅, and this
is an open set contained in intH. So, unless ν∗ = 0 (in which case H = Rn), we
have reached a contradiction because intH = ∅. Therefore, we must have ν∗ = 0.
According to Lemma 4.3, we have 0 = ν∗ ∈ ∂f(x∗), which implies that x∗ is a global
minimizer of f. Consequently, for any z ∈ Q, we have f(x∗) ≤ f(z) ≤ 0, that is,
x∗ ∈ Q.

Case II: Assume that condition (ii) of Theorem 4.1 is satisfied. According to
(4.24), we have

(4.26) λ∗ ‖ν∗‖2
= 2 〈ν∗, x∗ − z〉 .

By (3.5), the definition of M , and [15, Proposition 2.1.2] we deduce that

(4.27) 2f(xks) ≥ λks
M2 ≥ λks

∥∥νks
∥∥2

for all integers s ≥ 0. Letting s → ∞ we get

(4.28) 2f(x∗) ≥ λ∗M
2 ≥ λ∗ ‖ν∗‖2

= 2 〈ν∗, x∗ − z〉 ,

where the last equality follows from (4.26). Consequently, we have

(4.29) f(x∗) ≥ 〈ν∗, x∗ − z〉 for all z ∈ Q ∩B(x0, r/2).

The convexity of f implies that, for all z ∈ Q ∩B(x0, r/2),

(4.30) −f(x∗) ≤ 〈ν∗, z − x∗〉 ≤ f(z) − f(x∗) ≤ −f(x∗).

Therefore, we have that

(4.31) −f(x∗) = 〈ν∗, z − x∗〉 = f(z) − f(x∗) for all z ∈ Q ∩B(x0, r/2).

Thus f(z) = 0, for all z ∈ Q ∩ B(x0, r/2). Hence, using again the convexity of f, we
deduce that, for all z ∈ Q ∩B(x0, r/2),

(4.32) f ′
+(x∗; z − x∗) ≤ f(z) − f(x∗) = −f(x∗) = 〈ν∗, z − x∗〉 ≤ f ′

+(x∗; z − x∗).

This implies that

(4.33) f ′
+(x∗; z − x∗) = 〈ν∗, z − x∗〉 = f(z) − f(x∗) for all z ∈ Q ∩B(x0, r/2).

Since, by condition (ii) of Theorem 4.1, f is strictly convex, we also have (see [6,
Proposition 1.1.4]) that

(4.34) f ′
+(x∗; z − x∗) < f(z) − f(x∗) for all z ∈

(
Q ∩B(x0, r/2)

)
\{x∗}.

Hence, the equalities in (4.33) cannot hold unless Q ∩ B(x0, r/2) = {x∗}, and thus
x∗ ∈ Q.
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The previous lemmas show that if (4.8) holds and if one of the conditions (i) or
(ii) of Theorem 4.1 is satisfied, then the sequence {xk}∞k=0 is bounded, and all of its
accumulation points are in Q. In fact, the results above say something more. Namely,
in view of Lemma 4.2, they show that if (4.8) holds and if one of the conditions (i) or
(ii) of Theorem 4.1 is satisfied, then all of the accumulation points x∗ of {xk}∞k=0 are
contained in Q∩B(x0, r) because all xk are in B(x0, r) by (4.9). In order to complete
the proof of Theorem 4.1, it remains to show that the following result is true.

Lemma 4.5. Under the conditions of Theorem 4.1 any sequence {xk}∞k=0, gener-
ated by Algorithm 3.1, has at most one accumulation point.

Proof. Observe that, under the conditions of Theorem 4.1, the conditions (4.8) are
satisfied, and therefore the sequence {xk}∞k=0 is bounded. Let x∗ be an accumulation
point of {xk}∞k=0. By Lemma 4.4 we deduce that x∗ ∈ Q, i.e., f(x∗) ≤ 0. Consequently,
for any natural number k we have〈

νk, xk − x∗〉 ≥ f(xk) − f(x∗) ≥ f(xk).

Now, using this fact, a reasoning similar to that which proves (4.13) but made with
x∗ instead of z leads to

2
〈
νk, xk − x∗〉 ≥ λk

∥∥νk∥∥2

for all natural numbers k. This and (4.5) combined imply that the sequence {‖xk −
x∗‖}∞k=0 is nonincreasing and therefore convergent. Consequently, if {xkp}∞p=0 is a
subsequence of {xk}∞k=0 such that limp→∞ xkp = x∗, we have

lim
k→∞

∥∥xk − x∗∥∥ = lim
p→∞

∥∥xkp − x∗∥∥ = 0

showing that any accumulation point x∗ of {xk}∞k=0 is exactly the limit of
{xk}∞k=0.

The application of Theorem 4.1 depends on our ability to choose numbers M and
r and a vector x0 such that condition (4.8) is satisfied. We show below that this can
be done when the functions fi of the CFP (1.2) are quadratic or affine, and there is
some a priori known ball which intersects Q. In actual applications it may be difficult
to a priori decide whether the CFP (1.2) has or does not have solutions. However,
as noted above, Algorithm 3.1 is well defined and will generate sequences {xk}∞k=0

no matter how the initial data M, r, and x0 are chosen. This leads to the question
whether it is possible to decide if Q is empty or not by simply analyzing the behavior
of sequences {xk}∞k=0 generated by Algorithm 3.1. A partial answer to this question
is contained in the following result.

Corollary 4.6. Suppose that the CFP (1.2) has no solution, and that the
envelope f is strictly convex. Then, no matter how the initial vector x0 and the
positive number M are chosen, any sequence {xk}∞k=0 generated by Algorithm 3.1, has
the following properties:

(i) If {xk}∞k=0 is bounded and

(4.35) lim
k→∞

∥∥xk+1 − xk
∥∥ = 0,

then f has a (necessarily unique) minimizer, and {xk}∞k=0 converges to that minimizer,
while

(4.36) lim
k→∞

f(xk) = inf{f(x) | x ∈ Rn}.
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(ii) If f has no minimizer, then the sequence {xk}∞k=0 is unbounded, or the se-
quence {‖xk+1 − xk‖}∞k=0 does not converge to zero.

Proof. Clearly, (ii) is a consequence of (i). In order to prove (i) observe that, since
the CFP (1.2) has no solution, all values of f are positive. Also, if f has a minimizer,
then this minimizer is unique because f is strictly convex.

If {xk}∞k=0 is bounded, then it has an accumulation point, say, x∗. By Lemma 4.3
there exists a sequence of positive integers {ks}∞s=0 such that (4.16) and (4.19)–(4.20)
are satisfied. Using Lemma 4.3 again, we deduce that, if the limit λ∗ in (4.16) is
zero, then the vector x∗ = lims→∞ xks is a solution of the CFP (1.2), i.e., f(x∗) ≤ 0,
contradicting the assumption that the CFP (1.2) has no solution. Hence, λ∗ > 0. By
(4.3), (4.35), and (4.16) we have that

(4.37) 0 = lim
s→∞

λks
νks = λ∗ν

∗.

Thus, we deduce that ν∗ = 0. From (4.19)–(4.20) and [15, Proposition 2.3.12] we
obtain

(4.38) 0 = ν∗ =
∑

i∈I(x∗)

w∗
i ξ

∗
i ∈ ∂f(x∗)

showing that x∗ is a minimizer of f. So, all of the accumulation points of {xk}∞k=0

coincide because f has no more than one minimizer. Consequently, the bounded
sequence {xk}∞k=0 converges, and its limit is the unique minimizer of f.

Remark 4.7. Checking numerically a condition such as (ii) in Corollary 4.6 or
the condition in Corollary 4.9 below seems virtually impossible. But there is no
escape from such situations in such mathematically oriented results. Condition (ii)
in Corollary 4.6 is meaningful in the inconsistent case in which a feasible point does
not exist, but a proximity function that “measures” the feasibility violation of the
limit point can be minimized. An easy adaptation of the proof of Corollary 4.6 shows
that, if the sequence {xk}∞k=0 has a bounded subsequence {xkt}∞t=0 such that the
limit limt→∞(xkt+1 − xkt) = 0, then all of the accumulation points of {xkt}∞t=0 are
the minimizers of f (even if f happens to be not strictly convex).

Remark 4.8. The fact that, for some choice of x0 and M , a sequence {xk}∞k=0,
generated by Algorithm 3.1, has the property that limk→∞ f(xk) = 0 does not imply
that the CFP (1.2) has a solution. For example, take in (1.2) m = n = 1 and
f1(x) = e−x. Clearly, in this case (1.2) has no solution, and f = f1. However, for
x0 = 0, M = 1, and λk = (3/2)f(xk), we have limk→∞ f(xk) = 0.

A meaningful implication of Corollary 4.6 is the following result.
Corollary 4.9. Suppose that the CFP (1.2) has no solution, and that f is

strictly convex. Then, no matter how the initial vector x0 and the positive num-
ber M are chosen in Algorithm 3.1, the following holds: If the series

∑∞
k=0 ‖xk −

xk+1‖ converges, then the function f has a unique global minimizer and the sequence
{xk}∞k=0, generated by Algorithm 3.1, converges to that minimizer, while the sequence
{f(xk)}∞k=0 converges to inf{f(x) | x ∈ Rn}.

Proof. When
∑∞

k=0 ‖xk − xk+1‖ converges to some number S we have

(4.39)
∥∥x0 − xk+1

∥∥ ≤
k∑

�=0

∥∥x� − x�+1
∥∥ ≤ S

for all integers k ≥ 0. This implies that the sequence {xk}∞k=0 is bounded, and
limk→∞ ‖xk − xk+1‖ = 0. Hence, by applying Corollary 4.6, we complete the
proof.
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Remark 4.10. Finding an initial vector x0, the radius r and a positive number
M satisfying condition M ≥ L(B(x0, r)) (and satisfying (4.2) provided that Q is
nonempty) when there is no a priori knowledge about the existence of a solution of
the CFP can be quite easily done when at least one of the sets Qi, say Qi0 , is bounded
and the functions fi are differentiable. In this case it is sufficient to determine a
vector x0 and a positive number r large enough so that the ball B(x0, r/2) contains
Qi0 . Clearly, for such a ball, if Q is nonempty, then condition (4.2) holds. Once the
ball B(x0, r) is determined, finding a number M ≥ L(B(x0, r)) can be done by taking
into account that the gradients of the differentiable convex functions fi : Rn → R are
necessarily continuous, and therefore the numbers

(4.40) Li = sup{‖∇fi(x)‖ | x ∈ B(x0, r)}

are necessarily finite. Since L := max{Li | 1 ≤ i ≤ m} is necessarily a Lipschitz
constant of f over B(x0, r), one can take M = L.

Remark 4.11. The method of choosing x0, r, and M presented in Remark 4.10
does not require a priori knowledge of the existence of a solution of the CFP and
can be applied even when Q is empty. In such a case one should compute, along the
iterative procedure of Algorithm 3.1, the sums Sk =

∑k
�=0 ‖x� − x�+1‖. Theorem 4.1

and Corollary 4.9 then provide the following insights and tools for solving the CFP,
provided that f is strictly convex:

• If along the computational process the sequence Sk remains bounded from
above by some number S∗, while the sequence {f(xk)}∞k=0 stabilizes itself
asymptotically at some positive value, then the given CFP has no solution,
but the sequence {xk}∞k=0 still approximates a global minimum of f , which
may be taken as a surrogate solution of the given CFP.

• If along the computational process the sequence Sk remains bounded from
above by some number S∗, while the sequence {f(xk)}∞k=0 stabilizes itself
asymptotically at some nonpositive value, then the given CFP has a solution,
and the sequence {xk}∞k=0 approximates such a solution.

5. Implementation of Algorithm 3.1 for linear or quadratic functions.
The application of Algorithm 3.1 does not require a priori knowledge of the constant r.
However, in order to implement this algorithm so that the conditions for convergence
will be guaranteed, we have to determine numbers r and M as required by Theo-
rem 4.1. The method proposed in Remark 4.10 might yield a very large value of r.
This is due to the mathematical generality of Remark 4.10. The quadratic and affine
cases treated next seem to be restrictive from the theoretical/mathematical point of
view, but their importance lies in the fact that they cover many significant real-world
applications.

We deal first with the problem of determining a number M such that

(5.1) M ≥ L(B(x0, r))

provided that an r > 0 is given. Recall that, if g : Rn → R is a continuously differ-
entiable function, then by Taylor’s formula, we have that, whenever x, y ∈ B(x0, r),
there exists a u ∈ [x, y] such that

| g(y) − g(x) | =| 〈∇g(u), y − x〉 |≤ ‖∇g(u)‖ ‖y − x‖
≤ ‖y − x‖max{‖∇g(u)‖ | u ∈ B(x0, r)}.(5.2)
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This shows that

(5.3) max{‖∇g(u)‖ | u ∈ B(x0, r)}

is a Lipschitz constant for g on B(x0, r). Suppose now that each function fi is either
linear or quadratic. Denote I1 = {i | 1 ≤ i ≤ m, fi is linear} and I2 = {i | 1 ≤ i ≤ m,
fi is quadratic}. Namely,

(5.4) fi(x) =
〈
ai, x

〉
+ bi for all i ∈ I1,

with ai ∈ Rn\{0} and bi ∈ R, and

(5.5) fi(x) = 〈x, Uix〉 +
〈
ai, x

〉
+ bi for all i ∈ I2,

where Ui = (ui
�,k) is a symmetric positive semidefinite n × n matrix, ai ∈ Rn, and

bi ∈ R. We have, of course,

(5.6) ∇fi(x) =

{
ai if i ∈ I1,

2Uix + ai if i ∈ I2,

so that (5.3) can give us Lipschitz constants for each fi over B(x0, r). Denote

(5.7) Li :=

{ ∥∥ai∥∥ if i ∈ I1,
2 ‖Ui‖∞

(∥∥x0
∥∥ + r

)
+
∥∥ai∥∥ if i ∈ I2,

where ‖Ui‖∞ is the operator norm of Ui. Due to (4.6), this implies that ∪x∈B(x0,r)∂f(x)
⊆ B(0, L), where

(5.8) L := max{Li | 1 ≤ i ≤ m}.

Taking ξ ∈ ∂f(x) and ζ ∈ ∂f(y), for some x, y ∈ B(x0, r), we have

L ‖x− y‖ ≥ ‖ζ‖ ‖x− y‖ ≥ 〈ζ, y − x〉 ≥ f(y) − f(x)

≥ 〈ξ, y − x〉 ≥ −‖ξ‖ ‖x− y‖ ≥ −L ‖x− y‖ ,(5.9)

which implies that

(5.10) |f(y) − f(x)| ≤ L ‖x− y‖ for all x, y ∈ B(x0, r).

In other words, L is a Lipschitz constant of f over B(x0, r). Thus, given an r > 0,
we can take M to be any number such that M ≥ L. Note that choosing x0 such that
the corresponding r is small may speed up the computational process by reducing
the number of iterations needed to reach a reasonably good approximate solution of
the CFP. In general, determining a number r is straightforward when one has some
information about the range of the variation of the coordinates of some solutions to
the CFP.

For instance, if one knows a priori that the solutions of the CFP are vectors
x = (xj)

n
j=1 such that

(5.11) 
j ≤ xj ≤ uj , 1 ≤ j ≤ n,

where, 
j , uj ∈ R for all j, then the set Q is contained in the hypercube of edge length
δ = umax − 
min, whose faces are parallel to the axes of the coordinates, and centered
at the point x0 whose coordinates are x0

j = 1
2 (
min + umax), where

(5.12) 
min := min{
j | 1 ≤ j ≤ n} and umax := max{uj | 1 ≤ j ≤ n}.

Therefore, by choosing this x0 as the initial point for Algorithm 3.1 and choosing
r =

√
nδ, condition (4.2) holds.
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6. Computational results. In this section, we compare the performance of
Algorithms 2.2, 2.4, and 3.1 by examining a few test problems. There are a number
of degrees-of-freedom used to evaluate and compare the performance of the algorithms.
These are the maximum number of iterations, the number of constraints, the lower
and upper bounds of the box constraints, the values of the relaxation parameters,
the initial values of the steering parameters, and the steering sequence. In all our
experiments, the steering sequence of Algorithm 2.4 assumed the form

(6.1) σk =
σ

k + 1
,

with a fixed user-chosen constant σ. The main performance measure is the value of
f(xk) plotted as a function of the iteration index k.

6.1. Test problem description. There are three types of constraints in our
test problems: box constraints, linear constraints, and quadratic constraints. Some
of the numerical values used to generate the constraints are uniformly distributed
random numbers lying in the interval τ = [τ1, τ2], where τ1 and τ2 are user-chosen
predetermined values.

The n box constraints are defined by

(6.2) 
j ≤ xj ≤ uj , j = 1, 2, . . . , n,

where 
j , uj ∈ τ are the lower and upper bounds, respectively. Each of the Nq

quadratic constrains is generated according to

(6.3) Gi(x) = 〈x, Uix〉 + 〈vi, x〉 + βi, i = 1, 2, . . . , Nq.

Here Ui are the n× n matrices defined by

(6.4) Ui = WiΛiW
T
i ,

where the n× n matrices Λi are diagonal and positive definite, given by

(6.5) Λi = diag
(
δi1, δ

i
2, . . . , δ

i
n

)
,

where 0 < δi1 ≤ δi2 ≤ · · · ≤ δin ∈ τ are generated randomly. The matrices Wi are
generated by orthonormalizing an n×n random matrix whose entries lie in the interval
τ . Finally, the vector vi ∈ Rn is constructed so that all of its components lie in the
interval τ , and similarly, the scalar βi ∈ τ . The N� linear constraints are constructed
in a similar manner according to

(6.6) Li(x) = 〈yi, x〉 + γi, i = 1, 2, . . . , N�.

Thus, the total number of constraints is n + Nq + N�.
Table 6.1 summarizes the test cases used to evaluate and compare the performance

of Algorithms 2.2, 2.4, and 3.1. In these eight experiments, we modified the value
of the constant σ in (6.1), the interval τ , the number of constraints, the number
of iterations, and the relative tolerance ε, used as a termination criterion between
subsequent iterations.

In Table 6.1, Cases 1 and 2 represent small-scale problems with a total of 13
constraints, whereas Cases 4–6 represent midscale problems with a total of 130 con-
straints. Cases 6–8 examine the case of overrelaxation, wherein the initial steering
(relaxation) parameter is at least 2.
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Table 6.1

Test cases for performance evaluation.

Case α/σ/λ τ n Nq N� Iterations ε

1 1.1 3 5 5 1,000
2 1.1 3 5 5 1,000
3 1.98 3 5 5 1,000
4 1.98 [−0.1, 0.1] 30 50 50 1,000 0.1
5 1.98 [−10, 10] 30 50 50 100,000 0.1
6 2 [−0.1, 0.1] 30 50 50 1,000 0.1
7 3 [−10, 10] 3 5 5 1,000 0.1
8 5 [−0.1, 0.1] 3 5 5 1,000 0.1
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Fig. 1. Simulation results for a small-scale problem, comparing Algorithms 2.2, 2.4, and 3.1.

6.2. Results. The results of our experiments are depicted in Figures 1–3. The
results of Cases 1–3 are shown in Figures 1(a)–1(c), respectively. It is seen that, in
Case 1, Algorithm 2.2 has better initial convergence than Algorithms 2.4 and 3.1.
However, in Case 2, Algorithm 2.4 yields fast and smooth initial behavior, while
Algorithm 2.2 oscillates chaotically. Algorithm 3.1 exhibits slow initial convergence,
similarly to Case 1. In Case 3, Algorithm 3.1 supersedes the performance of the other
two algorithms, since it continues to converge toward zero. However, none of the algo-
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(b) Case 5.

Fig. 2. Simulation results for a midscale problem, comparing Algorithms 2.2, 2.4, and 3.1.
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Fig. 3. Simulation results for small-scale and midscale problems with overrelaxation, comparing
Algorithms 2.2, 2.4, and 3.1.
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rithms detects a feasible solution, since none converged to the tolerance threshold
after the maximum number of iterations.

The midsized problems of Cases 4 and 5 are depicted by Figures 2(a) and 2(b).
Figure 2(a) shows that Algorithm 3.1 detects a feasible solution, while both Algo-
rithms 2.2 and 2.4 fail to detect such a solution. The curve of Algorithm 3.1 in Figure
2(a) stops when it reaches the feasible point detection tolerance, which is 0.1. Once
the point is detected, there is no need to further iterate, and the process stops. The
curve for Algorithm 2.2 in this figure shows irregular behavior since it searches for
a feasible solution without reaching the detection threshold of 0.1, and accumulated
numerical errors start to affect it. Figure 2(b) shows a phenomenon similar to the one
observed in the small-scale problem: Algorithm 3.1 continues to seek a feasible solu-
tion, while Algorithms 2.2 and 2.4 converge to a steady state, indicating the failure
to detect a feasible solution.

In the experiments Cases 6–8, Algorithm 3.1 outperforms the other algorithms,
arriving very close to finding feasible solutions. It should be observed that the behav-
ior of Algorithm 3.1 observed above is the result of the way in which the relaxation
parameters λk are self-regulating their sizes. In Algorithm 3.1 the relaxation param-
eter λk can be chosen (see (3.6)) to be any number of the form

(6.7) λk = βk
max(0, f(xk))

M2
+ 2(1 − βk)

max(0, f(xk))

M2
= (2 − βk)

max(0, f(xk))

M2
,

where βk runs over the interval [0, 1]. Consequently, the size of λk can be very close
to zero when xk is close to a feasible solution (no matter how βk is chosen in [0, 1]).
Also, λk may happen to be much larger than 2 when xk is far from a feasible solution,
and the number f(xk) is large enough (note that 2 − βk stays between 1 and 2). So,
Algorithm 3.1 is naturally underrelaxing or overrelaxing the computational process
according to the relative position of the current iterate xk to the feasibility set of the
problem. As our experiments show, in some circumstances, this makes Algorithm 3.1
behave better than the other procedures we compare with it. At the same time, the
self-regulation of the relaxation parameters, which is essential in Algorithm 3.1, may
happen to reduce the initial speed of convergence of this procedure, that is, Algorithm
3.1 may require more computational steps in order to reach a point xk, which is close
enough to the feasibility set such that its self-regulatory features are to be really
advantageous for providing a very precise solution of the given problem (which the
other procedures may fail to do since they may become stationary in the vicinity of
the feasibility set). Another interesting feature of Algorithm 3.1, which differentiates
it from the other algorithms we compare it with, is its essentially nonsimultaneous
character: Algorithm 3.1 does not necessarily ask for wk

i > 0 for all i ∈ {1, . . . ,m}.
The set of positive weights wk

i , which condition the progress of the algorithm at step
k, essentially depends on the current iterate xk (see (3.4)) and allows reducing the
number of subgradients needed to be computed at each iterative step (in fact, one can
content himself with only one wk

i > 0, and thus with a single subgradient ξki ). This
may be advantageous in cases when computing subgradients is difficult and therefore
time consuming.

The main observations can be summarized as follows:
1. Algorithm 3.1 exhibits faster initial convergence than the other algorithms

in the vicinity of points with very small f(xk). When the algorithms reach
points with small f(xk) values, then Algorithm 3.1 tends to further reduce the
value of f(xk), while the other algorithms tend to converge onto a constant
steady-state value.
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2. The problem dimensions in our experiments have little impact on the behavior
of the algorithms.

3. All the examined small-scale problems have no feasible solutions. This can
be seen from the fact that all three algorithms stabilize around f(xk) = 50.

4. The chaotic oscillations of Algorithm 2.2 in the underrelaxed case is due to the
fact that this algorithm has no internal mechanism to self-adapt its progress
to the distance between the current iterates and the sets whose intersections
are to be found. This phenomenon can hardly happen in Algorithm 3.1
because its relaxation parameters are self-adapting to the size of the current
difference between successive iterations. This is an important feature of this
algorithm. However, this feature also renders it somewhat slower than the
other algorithms.

5. In some cases, Algorithms 2.2 and 2.4 indicate that the problem has no so-
lution. In contrast, Algorithm 3.1 continues to make progress and seems to
indicate that the problem has a feasible solution. This phenomenon is again
due to the self-adaptation mechanism and can be interpreted in one of the
following ways: (a) The problem indeed has a solution, but Algorithms 2.2
and 2.4 are unable to detect it (because they stabilize too fast). Algorithm
3.1 detects a solution provided that it is given enough running time; (b) The
problem has no solution, and then Algorithm 3.1 will stabilize close to zero,
indicating that the problem has no solution, but this may be due to com-
puting (round-off) errors. Thus, a very small perturbation of the functions
involved in the problem may render the problem feasible.

7. Conclusions. We have studied here mathematically and experimentally sub-
gradient projections methods for the convex feasibility problem. The behavior of
the fully simultaneous subgradient projections method in the inconsistent case is not
known. Therefore, we studied and tested two options. One is the use of steering
parameters instead of relaxation parameters, and the other is a variable relaxation
strategy, which is self-adapting. Our small-scale and midscale experiments are not,
decisive in all aspects and call for further research. But one general feature of the
algorithm with the self-adapting strategical relaxation is its stability (nonoscillatory)
behavior, and its relentless improvement of the iterations towards a solution in all
cases. At this time we have not yet refined enough our experimental setup. For
example, by the iteration index k on the horizontal axes of our plots we consider
a whole sweep through all the sets of the convex feasibility problem, regardless of
the algorithm. This is a good first approximation by which to compare the different
algorithms. More accurate comparisons should use actual run times. Also, several
numerical questions still remain unanswered in this report. These include the effect
of various values of the constant σ as well as algorithmic behavior for higher itera-
tion indices. In light of the applications mentioned in section 1, higher dimensional
problems must be included. These and other computational questions are currently
investigated.
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Abstract. We propose a new iterative approach for solving linear programs over convex cones.
Assuming that Slater’s condition is satisfied, the conic problem is transformed to the minimization
of a convex differentiable function in the primal-dual space. This function shows similarities with the
augmented Lagrangian function and is called “augmented primal-dual function” or “apd-function”.
The evaluation of the function and its derivative is cheap if the projection of a given point onto the
cone can be computed cheaply, and if the projection of a given point onto the affine subspace defining
the primal problem can be computed cheaply. For the special case of a semidefinite program, a certain
regularization of the apd-function is analyzed. Numerical examples minimizing the apd-function with
a conjugate gradient method illustrate the potential of the approach.
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1. Introduction. We present a new method for solving convex conic programs.
The method is based on minimizing a convex differentiable “augmented primal-dual
function” (apd-function) that is related to the augmented Lagrangian but less prob-
lem dependent and does not require any penalty parameter. If Slater’s condition
is satisfied, the problem of solving the conic program is equivalent to minimizing
the apd-function. The evaluation of function value and gradient of the apd-function
requires two conic projections and two projections on an affine subspace. If these pro-
jections are cheap, it is possible to minimize the apd-function by any descent method
such as a conjugate gradient type method or a limited memory BFGS method. In our
numerical examples we report results obtained with a conjugate gradient approach.

When applying this algorithm to the apd-function of a linear program in standard
form with a system matrix A ∈ R

m×n, a factorization of the matrix AAT can be
computed in a preprocessing phase. Given this factorization the cost per iteration
is of order O(mn) arithmetic operations. When minimizing the apd-function of a
linear program by Newton’s method—at a cost of order O(n3) arithmetic operations
per iteration—this algorithm converges in a finite number of iterations. We therefore
anticipate that a conjugate gradient or BFGS approach will converge rapidly as well.

When applied to a semidefinite program having a unique and strictly complemen-
tary solution the algorithm is sublinearly convergent. We therefore derive a simple
modification of the apd-function for which Newton’s method is locally quadratically
convergent. Generalizations of this modification to Cartesian products of the semidef-
inite cone, the second-order cone, and the positive orthant are straightforward.
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Our approach is related to projection methods such as considered, for example,
in [1]. New elements of this paper are a transformation of a conic problem into an
affine-convex pair with cheap projections onto the affine set, a conjugate gradient
acceleration, a regularization for the case of semidefinite programs, and promising
numerical examples.

Several methods have been proposed in the literature to overcome the limits
of interior point methods for solving large-scale semidefinite programs. We recall
the spectral bundle method [8] which uses eigenvalue optimization. The low-rank
factorization approach of Burer and Monteiro [2] treats semidefinite programs using
nonlinear optimization techniques. The currently strongest computational results
are reported in the papers by Toh [22] and by Kocvara and Stingl [11]. Toh uses
an iterative solver for the augmented KKT system, and Kocvara and Stingl apply
an iterative solver to a modified barrier problem. The approach presented in the
current paper is closely related to the “boundary point method” from [18] and the
regularization approaches in [13].

2. Linear conic programs. We consider linear conic programs of the form

(P ) minimize 〈c, x〉 s.t. x ∈ K ∩ (L + b),

where K is a closed convex cone in a finite dimensional Euclidean space E, L is a
linear subspace, and b, c ∈ E are given data. We always assume that the dimension
of E is denoted by n. Our practical applications refer to the cases where K is the
positive orthant in E = R

n and where K is the cone of symmetric positive semidefinite
matrices in E = Sl = {X ∈ R

l×l | X = XT }. Here, n = l(l + 1)/2.
We always assume that K has a nonempty interior (no hidden equality con-

straints) and that K is pointed (in LP-notation this assumption means there are no
free variables).

Often the set L is given in the form

(1) L = {x̃ | Ax̃ = 0} and L + b = {x | Ax = Ab},

where A is a matrix or some other representation of a linear operator. In particular,
our analysis yields an algorithm applicable to linear programs of the form

minimize cTx s.t. Ax = b̄, x ≥ 0,

where b̄ := Ab.
We use the dual program as introduced in [14], section 4.2,

(D) minimize 〈b, s〉 s.t. s ∈ KD ∩ (L⊥ + c),

where L⊥ is the orthogonal complement of L and

KD = {s ∈ E | 〈s, x〉 ≥ 0 ∀x ∈ K}

is the dual cone of K.
It is easily verified that weak duality holds, namely

〈b, c〉 ≤ 〈c, x〉 + 〈b, s〉

for all x, s that are feasible for (P ) and (D). When (P ) satisfies Slater’s condition
and (D) has a feasible solution, then strong duality holds; see [14], Theorem 4.2.1. In
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this case, a point x is optimal for (P ) if, and only if, there exists a point s feasible for
(D) with

(2) 〈b, c〉 = 〈c, x〉 + 〈b, s〉.

We denote such x and s by xopt and sopt.

3. Decomposing the conic program. The linear constraints of (P ) and (D)
(including (2)) are satisfied for all points in the affine space

A := (L + b) × (L⊥ + c) ∩ {(x; s) | 〈c, x〉 + 〈b, s〉 = 〈b, c〉} ⊂ E × E,

and the conic constraints are satisfied for all points in the cone

C := K ×KD ⊂ E × E.

By the assumption on K, it follows that C is full dimensional, dim(C) = 2n. We
assume that A is of dimension n− 1. (In the case that b ∈ L and c ∈ L⊥ the set A is
of dimension n. As we do not provide solutions in the relative interior of the solution
set, this case is trivial with optimal solution xopt = sopt = 0.)

Solving (P ) is equivalent to finding z := (x; s) ∈ A ∩ C where A is an affine
subspace and C a convex cone. Moreover, as we will see, projections onto A and C
are easily computable for the case of linear or semidefinite programming.

For a closed set C and a vector z̄ we denote the distance of z̄ to C by

d(z̄, C) := min{‖z − z̄‖2 | z ∈ C}.

Thus, solving (P ) is also equivalent to finding z such that

(3) φ(z) :=
1

2
(d(z,A)2 + d(z,C)2) = 0,

i.e., such that the differentiable convex function φ is minimized. (Differentiability of
φ is shown in Lemma 1 below.)

When (P ) is a linear program in standard form, the function d(z,C)2 is of the
form

∑
i((zi)

−)2 where (zi)
− := min{0, zi} . Thus, φ is closely related to the aug-

mented Lagrangian function. We therefore call φ an augmented primal-dual function.
It differs from the augmented Lagrangian in that the representation of the linear sub-
space L (i.e., the matrix A when L is of the form (1)) does not enter the representation
of φ. In other words, φ is less “data dependent” than the augmented Lagrangian, and
it depends on a larger number of unknowns. As we will see, however, the depen-
dence on a large number of unknowns does not imply that computations with φ are
numerically expensive.

Lemma 1. For a closed convex set C let

ΠC be the orthogonal projection

(with respect to the Euclidean norm) onto C. Then, given an algorithm for the eval-
uation of ΠC, the distance d(z, C) = ‖z − ΠC(z)‖2 is easily computed. Moreover, a
steepest descent step of step length 1 starting at z for minimizing the differentiable
function φC with

φC(z) :=
1

2
d(z, C)2

will lead to the nearest point minimizing d (i.e., to ΠC(z)).
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Proof. For completeness we provide an elementary proof of Lemma 1. It is easy to
verify that ΠC is well defined (single-valued) and Lipschitz continuous with Lipschitz
constant 1. We show that φC(z) is a differentiable function and ∇φC(z) = z −ΠC(z).
Let ẑ := ΠC(z). Let Δz be arbitrary. We show that

φC(z + λΔz) = φC(z) + λΔzT (z − ẑ) + o(|λ|).

First note that

2φC(z + λΔz) ≤ ‖ẑ − (z + λΔz)‖2
2 = ‖ẑ − z‖2

2 − 2λ(ẑ − z)TΔz + O(λ2).

On the other hand, let ẑ(λ) := ΠC(z+λΔz). As ẑ(λ) ∈ C it follows (ẑ(λ)−ẑ)T (z−ẑ) ≤
0, and ‖ẑ(λ) − ẑ‖2 ≤ ‖λΔz‖2. It follows

2φC(z + λΔz) = ‖ẑ(λ) − (z + λΔz)‖2
2 = ‖(ẑ(λ) − ẑ) + (ẑ − z) − λΔz‖2

2

≥ ‖ẑ − z‖2
2 − 2λ(ẑ − z)TΔz −O(λ2).

This completes the proof of Lemma 1.
Unfortunately, the one-step convergence of the steepest descent method in Lemma 1

is lost when minimizing the sum φ(z) = 1
2 (d(z,A)2 + d(z,C)2) in (3).

Note that the projections onto A and C—and thus the function φ—are easy to
compute for the case of linear and semidefinite programming:

For the case of linear programming, C is the positive orthant in R
2n, and the

projection onto C can be performed in O(n) arithmetic operations. In the case of
semidefinite programming, C is the Cartesian product of the semidefinite cone with
itself, and the projection onto C can be computed by performing the eigenvalue
decompositions of two symmetric matrices (order l3 operations).

In section 6 it is shown that also the projection onto A can be done efficiently
for these two examples. If L is given as in (1) with Ab ∈ R

m and the Cholesky
factorization of AAT is computed in a preprocessing step before starting the algorithm,
then the projection can be evaluated in O(mn) operations.

4. Solving (P ) and (D). As shown in the previous section, solving (P ) and
(D) is reduced to finding a point in the intersection of the two convex sets A and C,
both of which are explicitly given. In this section we assume that the intersection of
A and C is nonempty.

4.1. Minimizing the distance between A and C. Standard projection meth-
ods solve the problem of finding a point in A ∩ C by the following simple algorithm:

Algorithm 1 (Alternating projections).
Initialization: Let z0 ∈ A be given. Set k = 0.

1. Set ẑk := ΠC(zk).
2. Set zk+1 := ΠA(ẑk). Set k = k + 1. Go to Step 1.

By Lemma 1, one iteration of Algorithm 1 can be interpreted as one steepest descent
step for minimizing 1

2d( . ,C)2 followed by a steepest descent step for minimizing
1
2d( . ,A)2. In general, such method converges very slowly. We therefore consider an
acceleration minimizing the sum of both functions by a conjugate gradient scheme:

4.2. Minimizing φ. The first simple approach for minimizing φ is a conjugate
gradient type method with Polak–Ribière type update or Fletcher–Reeves type up-
date of the search direction. For descent methods it is important to understand the
behavior of the second derivative of the objective function.
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For linear and semidefinite programming, the function φ is twice differentiable
almost everywhere. (It is differentiable everywhere.) For linear programming the
eigenvalues of the Hessian H of φ at any point z such that H(z) exists are at most
2 (as each of the Hessians of 1

2d( . ,A)2 and 1
2d( . ,C)2 only has the eigenvalues

zero and one.) The eigenvalues of H are nonnegative, but unfortunately, they may
be zero or arbitrarily close to zero. This makes the application of descent methods
for minimizing φ difficult. Before continuing our analysis of the function φ we reduce
the number of degrees of freedom by restricting φ to a lower dimensional subspace:

Note that A is an affine subspace. We restrict φ to A and define the function φ̃
by

(4) φ̃(z̃) := φ(z̃) =
1

2
d(z̃,C)2 for z̃ ∈ A.

We stress that φ̃ is not defined outside A. To emphasize this fact we also denote the
variable by z̃ rather than just z.

Lemma 2. The function φ̃ is differentiable, and for z̃ ∈ A its gradient is given
by

∇φ̃(z̃) = z̃ − ΠA(ΠC(z̃)).

Proof. Let A = z + L where z is a fixed vector and L a linear subspace. Note
that

z̃ − ΠA(ΠC(z̃)) = ΠL(z̃ − ΠC(z̃)).

By Lemma 1 it therefore suffices to recall the following more general simple statement:
If ϕ : E × E → R is a differentiable function, then the gradient of the restriction

ϕ̃ of ϕ to A is given by

∇ϕ̃(z̃) = ΠL(∇ϕ(z̃)).

The gradient of ϕ̃ at z̃ ∈ A is a vector w̃ ∈ L such that

ϕ̃(z̃ + Δz̃) = ϕ̃(z̃) + w̃TΔz̃ + o(Δz̃)

for all sufficiently small Δz̃ ∈ L. The vector w := ΠL(∇ϕ(z̃)) certainly lies in L. For
Δz̃ ∈ L it follows from symmetry of ΠL that

ϕ̃(z̃) + wTΔz̃ = ϕ(z̃) + (ΠL(∇ϕ(z̃)))TΔz̃

= ϕ(z̃) + (∇ϕ(z̃))TΠLΔz̃

= ϕ(z̃) + (∇ϕ(z̃))TΔz̃

= ϕ(z̃ + Δz̃) + o(Δz̃)

= ϕ̃(z̃ + Δz̃) + o(Δz̃).

This completes the proof.
A steepest descent step with line search for minimizing φ̃ starting at a point

z̃ = zk ∈ A is the same as the computation of zk+1 with Algorithm 1 followed by an
extrapolation along the line zk + λ(zk+1 − zk). We briefly list a conjugate gradient
acceleration of the steepest descent approach:
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Algorithm 2 (CG-method for minimizing φ̃).

Let z̃0 ∈ A be given. Let Δz̃0 := −∇φ̃(z̃0). Set k = 0.
1. Let λk := argmin{φ̃(z̃k + λΔz̃k) | λ > 0}.
2. Set z̃k+1 := z̃k + λkΔz̃k.
3. Compute Δz̃k+1 from Δz̃k and ∇φ̃(z̃k+1) using an update formula such as

Polak–Ribière.
4. If k is a multiple of (n− 1), set Δz̃k+1 := −∇φ̃(z̃k+1) (restart).
5. Set k := k + 1. Go to Step 1.

The Polak–Ribière update introduced in [16] is analyzed in [4, 3]. Global conver-
gence of suitable modifications of the algorithm can be established under rather weak
conditions; see e.g. section 5.2 of [15].

Remark 1. The concept of Algorithm 2 is in some sense “complementary” to
the boundary point method of [18]. The latter algorithm generates iterates within
the primal-dual cone approaching the set of linear constraints, while the iterates in
Algorithm 2 always satisfy the linear constraints and approach the primal-dual cone.
The restriction to an affine space (rather than the nonlinear primal-dual cone) opens
the door for CG- or limited memory BFGS-accelerations.

Remark 2. When C is polyhedral, and (P ), (D) have a unique optimal solution
zopt, then the Hessian of φ̃ is piecewise linear and positive definite near zopt (since zopt

is necessarily strictly complementary!), and thus, Newton’s method for minimizing φ̃
converges in a finite number of iterations; see e.g., [7].

Now consider the case where C is not polyhedral. Below we give a very simple
example with a unique, strictly complementary optimal solution zopt of (P ) and (D)
such that there are directions zopt +λΔz̃ through zopt along which the intersection of
A and C is “tangential” (the function φ̃ in (4) growing in the order of λ4) and other
directions along which the intersection of A and C is “transversal” (φ̃ growing in the
order of λ2). This implies that the condition number of the Hessian of φ̃ near zopt

is unbounded and the conjugate gradient method is likely to converge sublinearly!
For the case of semidefinite programs, we therefore derive an acceleration for this
situation.

5. Application to semidefinite programs. In this section we use the follow-
ing notation common for semidefinite programs: The space of real symmetric l × l-
matrices is denoted by Sl. The dimension of Sl is n := l(l+1)/2. The notation X  0
(X � 0) is used to indicate that X ∈ Sl is positive semidefinite (positive definite).
The standard scalar product on the space of l × l-matrices is given by

〈C,X〉 := C •X := trace(CTX) =

l∑
i,j=1

Ci,jXi,j .

For given matrices A(i) ∈ Sl, i = 1, 2, . . . ,m, we define a linear map A : Sl → R
m by

A(X) :=

⎡
⎢⎣
A(1) •X

...
A(m) •X

⎤
⎥⎦ , X ∈ Sl.

The adjoint operator A∗ : R
m → Sl is given by

A∗(y) =

m∑
i=1

yiA
(i), y ∈ R

m.
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With these definitions, the standard pair of primal and dual linear semidefinite
programs can now be stated as follows:

(P ) minimize C •X subject to A(X) = b̄, X  0

and

(D′) maximize b̄T y subject to A∗(y) + S = C, S  0.

The dual program is equivalent (in the sense that the optimal solutions coincide) to

(D) minimize B • S subject to S ∈ L⊥ + C, S  0,

where B ∈ Sl is such that A(B) = b̄ and L = {X ∈ Sl | A(X) = 0}.
Assumption 1. Throughout this section we assume that the matrices A(i) are lin-

early independent and that (P ) and (D) are strictly feasible and that there is a unique
and strictly complementary solution Zopt = (Xopt, Sopt) of (P ) and (D) satisfying
Xopt + Sopt � 0.
Simple example: We give a simple example of a pair of semidefinite programs
(P ) and (D) satisfying Assumption 1 such that the Hessian of φ̃ (see (4)) has an
unbounded condition number for Z̄ near Zopt. (The Hessian is not defined at Zopt.)
Let m = 1 and the data of (P ) and (D) be given by

C :=

(
0 0
0 1

)
, B :=

(
1 0
0 0

)
, and A(1) :=

(
1 1
1 0

)
.

The primal-dual optimal solution Zopt = (Xopt, Sopt) = (B,C) is unique and strictly
complementary. The space L := L × L⊥ ∩ {(ΔX,ΔS) | C • ΔX + B • ΔS = 0} is
given by

L =

{
ΔZ = (ΔX,ΔS) =

((
2a −a
−a b

)
,

(
−b −b
−b 0

))
| a, b ∈ R

}
.

By construction, Zopt + ΔZ ∈ A for ΔZ ∈ L, and for small |a|, |b| it is easily verified
that

d(Zopt + ΔZ,C) = O(|b|) if a = 0, d(Zopt + ΔZ,C) = O(a2) if b = 0.

Thus, the second directional derivative of φ̃ is zero Zopt along the direction b = 0 and
positive along the direction a = 0. Minimizing φ̃ by some conjugate gradient scheme
will result in a very slow algorithm.
Discussion: Of course, the above example is not surprising. We have given a convex
characterization of the optimal solution of a convex program as the intersection of two
convex sets A and C, each of which is easily computable. We do not have the property
that this characterization is well conditioned under “reasonable assumptions.” So far,
a computable characterization of the optimal solution of a convex program with both
properties—convexity and well conditionedness—is unknown. (The KKT conditions
are well conditioned under suitable assumptions, see, e.g., [5], but the complemen-
tarity part of the KKT conditions is nonconvex.) This lack of a convex and well
conditioned characterization of the optimal solution is responsible for the fact that
most polynomial-time methods for convex programs use some homotopy approach to
compute an optimal solution.



AN AUGMENTED PRIMAL-DUAL METHOD 815

5.1. A local acceleration. We propose an acceleration that can be applied
locally near the optimal solution Zopt = (Xopt, Sopt) of (P ) and (D), e.g., when the
minimization of φ̃ is turning slow.

Let f̂(Z) = f̂(X,S) := ‖XS −SX‖2
F . The nonconvex function f̂ is minimized at

Zopt. It is differentiable and the derivative

∇Z f̂(Z) = 2

(
S2X + XS2 − 2SXS
X2S + SX2 − 2XSX

)

can be computed in order n3 operations. More precisely, by exploiting the fact that
XS = (SX)T , it can be evaluated with three matrix-matrix multiplications: two for
evaluating 2XSX −XXS−SXX = X(SX−XS)+ (X(SX−XS))T , and one more

for the second block of ∇f̂(Z). Also the derivative of the restriction of f̂ to A can be
computed as in the proof of Lemma 2.

We therefore propose to solve (P ) and (D) in two stages, the first one minimizing
φ̃ for Z̃ ∈ A, and when convergence of this stage is slow, starting a second stage
minimizing φ̃ + f̂ for Z̃ ∈ A. For both stages we may use a nonlinear CG-method
as in Algorithm 2. The CG-method is n-step locally quadratically convergent if the
objective function is three times differentiable near Zopt and if the Hessian at Zopt is
positive definite; see e.g. [4, 3, 17]. In Theorem 1 below, we show a slightly weaker
statement.
Note: In the following we will consider only points in A. For compactness of notation
we omit the additional identification Z̃ to indicate that Z̃ ∈ A and shortly write
Z ∈ A. The restriction of φ + f̂ to A will be denoted by Ψ,

Ψ(Z) := φ(Z) + f̂(Z) for Z ∈ A.

Again, we emphasize the restriction to A.
Theorem 1. The gradient of Ψ is strongly semismooth and the generalized Hes-

sian is positive definite at Zopt.
In short, G( . ) := ∇ZΨ( . ) is strongly semismooth at the point Z, if for small

‖H‖ the relation G(Z+H) = G(Z)+∂G(Z+H)[H]+O(‖H‖2) holds true, where ∂G
denotes any element of the generalized Jacobian of G in the sense of Clarke; see, e.g.,
Section 2.1 in [21]. By Theorem 3.2 in [19], Theorem 1 implies quadratic convergence
of Newton’s method for minimizing Ψ. We therefore anticipate that also conjugate
gradient-type algorithms or limited-memory BFGS algorithms will converge rapidly.

Proof. Strong semismoothness of the gradient of Ψ at Zopt follows from [20]; here,
we prove positive definiteness of the generalized Hessian.

We start by noting that in spite of f̂ not being convex, the eigenvalues of the
Hessian of f̂ at Zopt are nonnegative since Zopt is a minimizer of f̂ . Hence it suffices
to show that either φ or f̂ has a positive curvature along any given direction through
Zopt.

Let a perturbation ΔZ = (ΔX,ΔS) with Zopt+ΔZ ∈ A and ‖ΔX‖2
F +‖ΔS‖2

F =
1 be given. It suffices to show that there exists a ρ > 0 independent of ΔZ such that

φ(Zopt + λΔZ) + f̂(Zopt + λΔZ) ≥ λ2ρ

for sufficiently small λ > 0. To this end we proceed in four steps.
Step 1: We apply ΔZ to the linearized primal dual system and relate the norm

of ΔZ to the norm of the right-hand side:
By complementarity, XoptSopt = 0 = SoptXopt, and thus the matrices Xopt  0

and Sopt  0 commute. This guarantees that there exists a unitary matrix U and
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diagonal matrices

(5) Λ = diag (λ1, λ2, . . . , λl)  0 and Σ = diag (σ1, σ2, . . . , σl)  0

such that

(6) Xopt = UΛUT and Sopt = UΣUT .

By strict complementarity we may assume without loss of generality that there exists
a k ≤ l such that

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 = λk+1 = · · · = λl

and

σ1 = σ2 = · · · = σk = 0 < σk+1 ≤ · · · ≤ σl.

As shown in Corollary 1 in [6], the following system of m + 2n linear equations for
2n + m unknowns (ΔX,ΔS,Δy):

(7)

A(ΔX) = p,

A∗(Δy) + ΔS = Q,

Πup(UT (ΔXSopt + XoptΔS)U) = r,

is nonsingular. Here, Πup(UT (ΔXSopt + XoptΔS)U) denotes the upper triangular
part of the matrix UT (ΔXSopt + XoptΔS)U ; the right-hand side of (7) consists of
p ∈ R

m, Q ∈ Sl, and the upper triangular part r of an l × l-matrix. For brevity we
write r ∈ R

n.
We eliminate the variable Δy from the second equation of (7). To this end let

F : Sl → R
n−m be a linear operator of full rank such that F(A∗(y)) = 0 for all

y ∈ R
m. Let q := F(Q). By construction of F , also the linear system

(8) M

(
ΔX
ΔS

)
:=

⎛
⎝ A(ΔX)

F(ΔS)
Πup(UT (ΔXSopt + XoptΔS)U)

⎞
⎠ =

⎛
⎝p
q
r

⎞
⎠

has full rank. Here, (pT , qT )T ∈ R
n and r ∈ R

n.
First note that ‖(pT , qT , rT )T ‖ = ‖MΔZ‖ ≥ 1/‖M−1‖2 since ‖ΔZ‖ = 1. From

Zopt + ΔZ ∈ A it follows that p = 0 and q = 0. Hence, ‖r‖2 ≥ 1/‖M−1‖2.
Step 2: We now perform a change of basis.
Note that problems (P ) and (D) remain invariant when replacing B with Xopt

and C with Sopt. Hence, from Zopt + ΔZ ∈ A it follows that

(9)
0 = C • ΔX + B • ΔS

= Sopt • ΔX + Xopt • ΔS.

Let Δ̃X := UTΔXU and Δ̃S := UTΔSU . The last equation in (8) then states that

(10) Πup(Δ̃XΣ + ΛΔ̃S) = r,

while relation (9) and UUT = I imply that

(11) 0 = Δ̃X • Σ + Δ̃S • Λ.

As U is unitary, ‖Δ̃X‖F = ‖ΔX‖F , ‖Δ̃S‖F = ‖ΔS‖F .
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We partition Δ̃X conforming with the zero-structure of Λ and Σ,

Δ̃X =

(
Δ̃X11 Δ̃X12

Δ̃X
T

12 Δ̃X22

)
,

where Δ̃X11 ∈ Sk and Δ̃X22 ∈ Sl−k. Likewise we partition Δ̃S.
Step 3: Let

ε := min{λk, σk+1, 1/λ1, 1/σl} and μ := ε/(2‖M−1‖2).

We show that φ(Zopt+λΔZ) grows at least as 1
2 (λε2μ/2n2)2 whenever ‖Δ̃X22‖F ≥

μ or ‖Δ̃S11‖F ≥ μ.

Assume that ‖Δ̃X22‖F ≥ μ. We distinguish two cases:

1. The maximum diagonal element of Δ̃X22 is at least μ/2n. It then follows
from (11) and the definition of ε that the smallest diagonal element (and hence the

smallest eigenvalue) of the 2× 2-block matrix Diag(Δ̃X22, Δ̃S11) is less than or equal
to −ε2μ/2n2. (Straightforward proof by contradiction.)

2. The maximum diagonal element of Δ̃X22 is less than μ/2n. Since ‖Δ̃X22‖F ≥
μ there is an element of Δ̃X22 of absolute value at least μ/n. If this is a diagonal
element, it must be negative, and in particular, the most negative diagonal element is
less than −ε2μ/2n2 as in Case 1 above. If it is an off-diagonal element, the associated

2 by 2 submatrix of Δ̃X22 has diagonal elements ≤ μ/2n and off-diagonal elements
with absolute value ≥ μ/n. Straightforward calculations show that it therefore must

have an eigenvalue ≤ −μ/2n. By the interlacing property, Δ̃X22 has an eigenvalue
less than or equal to −μ/2n.

Thus, in both cases, the distance of Zopt + λΔZ to C is at least λε2μ/2n2, and
the function φ grows quadratically with λ.

The same argument holds when ‖Δ̃S11‖F ≥ μ.

Step 4: Now assume that ‖Δ̃X22‖F < μ and ‖Δ̃S11‖F < μ, so that Step 3

cannot be applied. In this case we show that f̂(Zopt + λΔZ) locally grows at least as
λ2/2‖M−1‖2

2.
From (10) follows

(12) ‖r‖2 ≤ ‖Λ11Δ̃S11‖2
F + ‖Δ̃X12Σ22 + Λ11Δ̃S12‖2

F + ‖Δ̃X22Σ22‖2
F .

The inequality ‖r‖2 ≥ 1/‖M−1‖2, relation (12), and the definition of ε imply

(13) ‖Δ̃X12Σ22 + Λ11Δ̃S12‖2
F ≥ 1/‖M−1‖2

2 − 2μ2/ε2 ≥ 1/2‖M−1‖2
2.

Observe that

f̂(Zopt + λΔZ) = ‖(Λ + λΔ̃X)(Σ + λΔ̃S) − (Σ + λΔ̃S)(Λ + λΔ̃X)‖2
F

= λ2(‖ΛΔ̃S + Δ̃XΣ − ΣΔ̃X − Δ̃SΛ‖2
F ) + O(λ3)

≥ 2λ2‖Λ11Δ̃S12 + Δ̃X12Σ22‖2
F + O(λ3).

For small λ, the third-order term is dominated, and

f̂(Zopt + λΔZ) ≥ λ2‖Λ11Δ̃S12 + Δ̃X12Σ22‖2
F ≥ λ2/2‖M−1‖2

2,

which completes the proof.
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6. Cheap computation of the projection onto A. First note that a projec-
tion onto an n−1-dimensional affine subspace of R

2n can (after an initial factorization
of the projection matrix) generally be done in order n2 operations. To make our algo-
rithm practical, we show that it can be done in a cheaper way for the particular sets A
arising in linear programming. (Of course, the same reasoning applies to semidefinite
programming replacing AT with the adjoint A∗.)

The computation of the projection below is closely related to rank-one update
formulae for inverse matrices. There are two differences: We update a projection
rather than an inverse matrix, and the matrix defining the projection is never explicitly
formed. (The matrix defining the projection may be nonsparse while A and the
Cholesky factor of AAT used below may be sparse.)

We assume that L + b = {x | Ax = Ab} ⊂ R
n where A has full row rank. Let a

point x ∈ R
n be given. Then it is easy to verify that

x−ΠL+b(x) = AT (AAT )−1A(x−b) and ‖x−ΠL+b(x)‖2
2 = (x−b)TAT (AAT )−1A(x−b).

Likewise, for s ∈ R
n we have

s− ΠL⊥+c(s) = (I −AT (AAT )−1A)(s− c)

and

‖s− ΠL⊥+c(s)‖2
2 = (s− c)T (I −AT (AAT )−1A)(s− c).

The factorization of AAT can be computed once in a preprocessing stage at the
beginning of Algorithm 2 and can then be used without modification throughout. It
is the same matrix that is usually factored in interior-point methods. For semidefinite
programs, however, the factorization of AA∗ may be substantially cheaper than the
systems factored at each iteration of an interior point algorithm; prime examples
are semidefinite programs arising from the semidefinite relaxation [12] of the max
clique problem [10] that results in the factorization of dense matrices in interior point
methods while AA∗ is a diagonal matrix.

After this preprocessing the projection of a point z = (x; s) onto

A1 := (L + b) × (L⊥ + c)

can be computed (separately for x and s) in order mn operations, namely two back-
solves using the factorization of AAT and two matrix vector products of the form Ax,
two matrix products of the form AT y, as well as some order-n-operations.

Let

A2 := {(x; s) | 〈c, x〉 + 〈b, s〉 = 〈b, c〉},

so that A = A1∩A2 �= ∅. We now compute the projection onto A given the projection
onto A1. To this end first observe that for any affine space A1 = L1 + b1 and any
hyperplane A2 written in the form A2 = {z | 〈a, z〉 = α} we have

A1 ∩ A2 = L1 + b1 ∩ {z | 〈a, z〉 = α}

= (L1 ∩ {z | 〈a, z〉 = α− 〈a, b1〉}) + b1

= (L1 ∩ {z | 〈a,ΠL1z〉 = α− 〈a, b1〉}) + b1

= (L1 ∩ {z | 〈ΠL1a, z〉 = α− 〈a, b1〉}) + b1

= L1 + b1 ∩ {z | 〈ΠL1a, z〉 = α− 〈a− ΠL1a, b1〉},
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where the third line is trivially true for z ∈ L1 and the fourth line holds since ΠL1

is symmetric. Hence, in a first step we may project a onto L1 and update α. In
our case, we project b onto L⊥ and c onto L and replace 〈b, c〉 with 0. Just like the
factorization of AAT , this form of preprocessing is done only once for the algorithm;
see section 7.1.

We therefore assume without loss of generality that A1 ⊥ A2. In this case, the
projection onto A1 ∩ A2 is particularly simple; it is the projection onto A1 followed
by the projection onto A2. (The order in which the projections are applied plays no
role.) We recall that the projection onto a hyperplane A2 can be carried out in order
n operations,

z �→ z +
α− 〈a, z〉
〈a, a〉 a.

As we have just seen, the projection onto A at each iteration of Algorithm 2 takes
two back-solves with the factorization of AAT , two matrix vector multiplications Ax,
and two matrix vector multiplications AT y.

Next, we show by adding slack variables that the intersection of two cones can be
decomposed into the Cartesian product of two cones at the expense of additional linear
equations. These additional linear equations merely double the computational effort of
the projection onto the affine manifold. (This is in contrast to interior point methods
where additional inequalities for the Lovász–Schrijver relaxation of the max-clique
problem imply a very substantial increase in computation time at each iteration.)

6.1. The intersection of two cones. A very rewarding application targeted
by the apd approach is the Lovász relaxation of the max-clique problem for which
the matrix AA∗ is a diagonal matrix, while interior point methods factor a full ma-
trix of the same size at each iteration. The Lovász–Schrijver relaxation is a sharper
relaxation for which the semidefinite cone is replaced with the intersection of the
semidefinite cone and the cone of matrices with nonnegative entries. Unfortunately,
while the projection onto either of the two cones is straightforward, the projection
onto their intersection is less trivial. We therefore present an approach that allows
the application to problems of the form

(P̂ ) minimize 〈c, x〉 s.t. x ∈ K ∩ K̂ ∩ (L + b),

where K and K̂ are both pointed closed convex cones such that the interior of K ∩ K̂
is nonempty. Again, we assume that L+ b is given by a set of linear equations Ax = b̄
for which a factorization of AAT is computed once, and that projections onto K and
K̂ are easy to compute.

Problem (P̂ ) is equivalent to

minimize

〈(
c

0

)
,

(
x

x̂

)〉
s.t.

(
x

x̂

)
∈ (K × K̂) ∩

(
L̂ +

(
b

b

))
,

where

L̂ +

(
b

b

)
=:

{(
x

x̂

)
| Ax = b̄, x = x̂

}
.

This is a problem of the form (P ). By our assumption, projections onto K × K̂—and
hence also projections onto its dual—are easy to compute. Thus, in order to apply
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the apd algorithm it suffices to verify that projections onto L̂ are easily computable
given a factorization of AAT .

This, however, is readily seen as

(
A 0
I −I

)(
AT I
0 −I

)
=

(
AAT A
AT 2I

)
=

(
2(AAT )−1 −(AAT )−1A

−AT (AAT )−1 1
2 (I + AT (AAT )−1A)

)−1

provides the desired factorization.

7. Numerical results. Algorithm 2 has been implemented in Matlab and tested
on some randomly generated linear semidefinite programs (SDP) as well as on some
SDP coming from combinatorial optimization. Initially, the algorithm can be applied
to minimize the function φ̃ for z ∈ A, and when this minimization slows down, a
Phase 2 is started, where a “regularizing” function f̂ is added to φ̃.

Under standard assumptions, Theorem 1 guarantees that the term ‖XS −SX‖2
F

may serve as a regularizing function. Note that also the term ‖XS + SX‖2
F is min-

imized at the optimal solution of the problem (P ). Thus, at the point Zopt it has
nonnegative curvature as well and hence, Theorem 1 also applies to the function

f̂(X,S) := ‖XS‖2
F =

1

4
(‖XS − SX‖2

F + ‖XS + SX‖2
F ).

This term yielded the best numerical results in our examples, and the results listed
below refer to this regularizing term – while Theorem 1 is proved under slightly weaker
conditions (namely just the term ‖XS − SX‖2

F ).

7.1. Rescaling. We emphasize that Algorithm 2 is essentially a first-order
method, and hence, it is sensitive to scaling of the data. Even for data that “looks
nice” (all data integers of absolute value less than 10), the following rescaling may
turn out to be crucial:

First, replace b with ΠL⊥b. (The set L + b remains invariant with this change!)
Likewise, replace c with ΠLc. Then set b = b/‖b‖2, c = c/‖c‖2, and rescale x, s
accordingly. Note that by this normalization, the duality simplifies to 〈b, s〉+ 〈c, x〉 =
0, and in particular, the set A2 now is a linear subspace perpendicular to A1.

Moreover, the origin x = 0 has distance exactly 1 from L + b, and likewise s = 0
has distance exactly 1 from L⊥ + c. For a semidefinite program, the point x(0) =
s(0) = I/

√
n is a canonical starting point: Its duality gap satisfies 〈x(0), s(0)〉 = 1, and

the distance of x(0) from L + b is bounded by 2, same as the distance of s(0) from
L⊥ + c.

While the above rescaling of b and c appears to be natural, it is certainly far from
optimal. When convergence slows down, it may be possible to identify a more suitable
scaling based on the current iterate. The numerical results below simply refer to the
above scaling.

7.2. Preconditioning. We point out that the above rescaling may be gener-
alized slightly. Indeed, let M be a nonsingular matrix, then the preconditioning
X → MXMT , B → MBMT , L → MLMT and S → M−TSM−1, C → M−TCM−1

results in an equivalent semidefinite program, and the solution of either program can
easily be recovered from the solution of the other. Of course, the functions φ̃ and f̂
change when replacing X,S with MXMT ,M−TSM−1, and thus the performance of
Algorithm 2 will vary. It is still an open question how to determine suitable scalings
that accelerate Algorithm 2. When M is a diagonal matrix, the projections onto
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Table 1

Randomly generated SDP. The column labeled apd contains the function value after 50 iterations
of our augmented primal-dual method. The normalized primal and dual errors, multiplied by 1000
are given in columns 4 and 5, and the column labeled mprw provides the value computed by the
boundary point method from [13].

n m seed 103 · errP 103 · errD apd mprw
400 30000 4003030 −0.11 −0.12 1072.06 1072.14
500 30000 5003030 −0.09 −0.27 1108.21 1107.63
600 40000 6004030 −0.08 −0.23 307.45 306.62
700 50000 7005030 −0.14 −0.33 315.48 313.20
800 70000 8007030 −0.08 −0.22 2332.98 2331.39
900 100000 90010030 −0.06 −0.15 955.33 954.22

1000 100000 100010030 −0.11 −0.23 3099.51 3096.36

MLMT and its orthogonal complement can be performed just as cheaply as for L
and L⊥.

Likewise, one may look at preconditionings of the form ‖XS‖2
F → ‖MXSM̃‖2

F

for some nonsingular M, M̃ . Here, the function φ̃ is not changed, and here as well,
the selection of suitable preconditionings is subject to further research.

7.3. Preliminary computational results. To give some impressions of the
practical behavior of our approach, we provide some computational results both on
randomly generated SDP used in [13], and on instances from the DIMACS collection
[9], related to the Lovász theta number in graphs.

We first give a short description of the random instances from [13]. The linear
constraints are generated to have a sparse Cholesky factor of AAT . To achieve this,
each Ai is generated to have nonzero support only on a submatrix of small order.
Then a positive definite matrix X is generated, defining b := A(X). On the dual side,
the selection of y and S � 0 gives C = AT (y) + S. This insures strong duality. The
generator is written in MATLAB and is available at http://www.math.uni-klu.ac.
at/or/Software.

In Table 1 we provide some preliminary computational results. The parameters
n and m indicate the size of the problem as defined before. The parameter “seed” is
used to initialize the random number generator and makes the instances reproducible
using MATLAB. The column “mprw” contains the optimal value of the SDP, com-
puted with a relative error tolerance of 10−7. These values can therefore be considered
as reasonably accurate. We provide the objective value of our approach (in column
“apd”) after 50 function evaluations. We have used a “quick-and-dirty” implementa-
tion of our approach, without any parameter tuning. Therefore we stop after a preset
number of iterations to give a first impression of the potential of our approach. We
reach optimality, once the smallest eigenvalues of X and S are nonnegative. Therefore
we also provide the following (relative) error measures in the table.

errP :=
λmin(X)

1 + ‖X‖ , errD :=
λmin(S)

1 + ‖S‖ .

We note that in all these instances, the most negative normalized eigenvalue (which
keeps us away from optimality) is of order 10−4.

The second table contains results on computing the Lovász theta number of a
graph G, given through its edge list. The problem is of the form:

max
∑
ij

xij such that xij = 0∀i �= j, [ij] /∈ E(G), trace(X) = 1, X  0.
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Table 2

The theta number for some DIMACS graphs. The first column gives the name of the graph.

name n m 103 · errP 103 · errD apd mprw
brock400-1 400 20078 −0.30 −0.57 39.67 39.70
p-hat500-1 500 93182 −0.36 −0.68 13.13 13.07
keller5 776 74711 −0.96 −1.66 30.69 31.00
brock800-1 800 112096 −0.26 −0.33 42.19 42.22
p-hat1000-3 1000 127755 −2.15 −8.61 77.83 84.80

Here E(G) denotes the edge set of G. In this SDP, one therefore asks to have a
zero in each position of X outside the main diagonal corresponding to non-edges.
In addition, the trace of X should be one. These constraints have the nice feature
that AAT is in fact diagonal. In Table 2 we include as before the total number of
equations in the column labeled m. We note that again after 50 iterations, we get
rather good approximations of the theta number in all instances except keller5 and
p-hat1000-3. For these two instances, the most negative eigenvalues are much bigger
(in absolute value), as in the other cases. This would indicate that further iterations
are necessary to come closer to optimality. Indeed, running the keller5 instance for
150 iterations, we obtain a value of 30.98 with relative errors -0.49e-3 and -0.58e-3.
The theta number of these instances was only recently computed in [13]; the resulting
SDPs seem to be beyond the capabilities of standard SDP solvers.

A final word on computation times and number of iterations is in order. First,
the number of iterations of “mprw” to reach the required accuracy level is typically
around 200 for the instances in the first table. For the instances in Table 2, the
number of iterations varies greatly, depending on the instance. It took about 500
iterations for keller5 and more than 1000 for the last instance. So it should come as
no surprise that our approach also has a harder time on these instances. We should
also mention that the computational effort for a single iteration of our method is at
least twice the effort of the boundary point method from [13], because we project
X and S individually, while in the boundary point method, only one projection is
necessary.

All computations were done on a Pentium IV (2.1 Ghz, 2G memory) using Matlab.
It took about 45 minutes for the largest instance, and a few minutes for the smallest
one. Since this is a preliminary implementation, we expect that there is quite a bit
of room for improvement. The present paper sets the theoretical stage for the new
approach. A competitive implementation is beyond the scope of the current paper
and will be presented in a separate study.

8. Concluding remarks. This paper proposes a reformulation of a linear pro-
gram over a convex cone into the problem of minimizing a differentiable convex apd-
function in a certain primal-dual space. The apd-function is related to the augmented
Lagrangian function, but is slightly less data dependent. For large classes of conic
programs including linear, semidefinite, and SOC problems, its function and gradi-
ent evaluations are rather cheap. For the case of a semidefinite program, a certain
regularization of the apd-function is analyzed. Numerical examples minimizing the
function with a conjugate gradient method illustrate the potential of the approach.
Extensions for the case that Slater’s condition is not satisfied and to other cones are
the subject of future research.

Acknowledgments. The authors thank the anonymous referees for their com-
ments that helped to improve the presentation of the paper.
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Abstract. A class of nonlinear operators in Banach spaces is proposed. We call each operator in
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1. Introduction. Let C be a nonempty closed convex subset of a (real) Hilbert
space H. Then a mapping T : C → C is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖
for all x, y ∈ C. The mapping T is also said to be firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉(1.1)

for all x, y ∈ C; see Bruck and Reich [7], Goebel and Kirk [14], and Goebel and Reich
[15]. It is known that a mapping T : C → C is firmly nonexpansive if and only if

‖Tx− Ty‖2 + ‖(I − T )x− (I − T )y‖2 ≤ ‖x− y‖2(1.2)

for all x, y ∈ C, where I is the identity operator on H. Martinet [23] showed that
if C is a nonempty bounded closed convex subset of H and T : C → C is a firmly
nonexpansive mapping, then for all x ∈ C, {Tnx} converges weakly to an element of
F (T ), where F (T ) is the set of fixed points of T . Since every firmly nonexpansive
mapping T is asymptotically regular, that is, ‖Tn+1x − Tnx‖ → 0 for all x ∈ C, the
result of Martinet is a corollary of Opial’s theorem [28]; see Goebel and Kirk [14] and
Takahashi [41] on fixed point theory for nonexpansive mappings.

Fixed point theory for nonexpansive mappings can be applied to the problem of
finding a point u ∈ H satisfying

0 ∈ Au,(1.3)

where A : H → 2H is a maximal monotone operator defined in a Hilbert space
H. This problem is related to convex optimization problems, minimax problems,
variational inequality problems, equilibrium problems, and so on. We always identify

∗Received by the editors April 19, 2007; accepted for publication (in revised form) February 15,
2008; published electronically August 1, 2008.

http://www.siam.org/journals/siopt/19-2/68871.html
†Department of Information Environment, Tokyo Denki University, Muzai Gakuendai, Inzai,

Chiba, 270-1382, Japan (kohsaka@sie.dendai.ac.jp).
‡Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-

okayama, Meguro-ku, Tokyo, 152-8552, Japan (wataru@is.titech.ac.jp).

824



FIXED POINTS OF FIRMLY NONEXPANSIVE-TYPE MAPPINGS 825

the set-valued mapping A with its graph G(A) = {(x, x∗) : x∗ ∈ Ax}. Thus we write
A : H → 2H as follows: A ⊂ H×H. By Browder [6] and Rockafellar [37], the maximal
monotonicity of A implies that R(I + rA) = H for all r > 0. Thus, for all r > 0, we
can define the resolvent Jr of A by

Jrx = {z ∈ H : x ∈ z + rAz} = (I + rA)−1(x)(1.4)

for all x ∈ H. It is well known that Jr : H → H is a single-valued firmly nonexpansive
mapping and (1.3) is equivalent to Jru = u; see Rockafellar [38] and Takahashi [40,
41]. Therefore the problem (1.3) is reduced to a fixed point problem for a firmly
nonexpansive mapping in the setting of Hilbert spaces.

In contrast to the case of Hilbert spaces, the resolvent of a maximal monotone
operator is not generally a nonexpansive mapping in the case of Banach spaces. Re-
cently, Matsushita and Takahashi [24, 25] introduced the class of relatively nonex-
pansive mappings in Banach spaces. They proved that if A ⊂ E × E∗ is a maximal
monotone operator defined in a strictly convex and uniformly smooth Banach space
E such that A−10 is nonempty, J : E → E∗ is the normalized duality mapping, r > 0,
and Jr = (J + rA)−1J , then Jr is a relatively nonexpansive mapping from E onto the
domain D(A) of A. They obtained weak and strong convergence theorems for a single
relatively nonexpansive mapping in Banach spaces. See also Butnariu, Reich, and
Zaslavski [9, 10], Censor and Reich [12], and Reich [33] for similar classes of nonlinear
operators in Banach spaces.

The purpose of the present paper is to study the existence and approximation
of fixed points of firmly nonexpansive-type mappings in Banach spaces. The class
of firmly nonexpansive-type mappings contains the classes of firmly nonexpansive
mappings in Hilbert spaces and resolvents of maximal monotone operators in Banach
spaces. As we see below, the class of firmly nonexpansive-type mappings that have
fixed points is contained in the class of strongly relatively nonexpansive mappings.
Let E be a smooth Banach space, C be a nonempty closed convex subset of E, and J
be the normalized duality mapping from E into E∗. Then we say that T is of firmly
nonexpansive type if

〈Tx− Ty, JTx− JTy〉 ≤ 〈Tx− Ty, Jx− Jy〉(1.5)

for all x, y ∈ C. Note that we do not assume the existence of fixed points of T . If E
is a Hilbert space, then J is the identity operator on H, and hence (1.5) is reduced
to (1.1). Since J is a monotone operator, every firmly nonexpansive-type mapping
satisfies 〈Tx− Ty, Jx− Jy〉 ≥ 0 for all x, y ∈ C; that is, it is d-accretive in the sense
of Alber and Reich [2].

Our paper is organized as follows: Section 2 is devoted to preliminaries. In
section 3, we obtain a fixed point theorem for firmly nonexpansive-type mappings in
Banach spaces (Theorem 3.2). In section 4, we prove some lemmas needed in section
5. In section 5, we show that every firmly nonexpansive-type mapping which has a
fixed point is strongly relatively nonexpansive (Theorem 5.2) and then obtain a weak
convergence theorem (Theorem 5.3). In section 6, we apply the obtained results to
the proximal point algorithm for a monotone operator satisfying the range condition
in Banach spaces.

2. Preliminaries. Throughout the present paper, every Banach space is real.
Let N and R denote the sets of positive integers and real numbers, respectively. For a
sequence {xn} in a Banach space E, the strong convergence and the weak convergence
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of {xn} to x ∈ E are denoted by xn → x and xn ⇀ x, respectively. For a sequence
{x∗

n} of the dual space E∗ of E, the weak* convergence of {x∗
n} to x∗ ∈ E∗ is also

denoted by x∗
n

∗
⇀ x∗.

Let E be a Banach space and let J : E → E∗ be the normalized duality mapping
defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}(2.1)

for all x ∈ E. Let S(E) be the unit sphere centered at the origin of E. Then the
space E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.2)

exists for all x, y ∈ S(E). The space E is said to be uniformly smooth if the limit
(2.2) converges uniformly in x, y ∈ S(E). The norm of E is also said to be uniformly
Gâteaux differentiable if for all y ∈ S(E), the limit (2.2) converges uniformly in
x ∈ S(E). A Banach space E is said to be strictly convex if ‖(x+y)/2‖ < 1 whenever
x, y ∈ S(E) and x 
= y. The space E is also said to be uniformly convex if for
all ε ∈ (0, 2], there exists δ > 0 such that x, y ∈ S(E) and ‖x − y‖ ≥ ε imply
‖(x + y)/2‖ ≤ 1 − δ. The duality mapping J from a smooth Banach space E into

E∗ is said to be weakly sequentially continuous if Jxn
∗
⇀ Jx whenever xn ⇀ x. We

know the following; see Cioranescu [13], Reich [32], and Takahashi [41] on geometry
of Banach spaces:

1. If E is smooth, then J is single-valued;
2. if E is reflexive, then J is onto;
3. if E is strictly convex, then J is one-to-one; that is, Jx∩ Jy 
= ∅ implies that

x = y;
4. if E is strictly convex, then J is strictly monotone, that is, if (x, x∗), (y, y∗) ∈

J and 〈x− y, x∗ − y∗〉 = 0, then x = y.
Let E be a smooth Banach space. Following Alber [1] and Kamimura and Taka-

hashi [18], let φ : E × E → R be the mapping defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2(2.3)

for all x, y ∈ E. Note that φ is the Bregman distance corresponding to ‖ · ‖2; see
Bregman [4], Butnariu and Iusem [8], and Censor and Lent [11]. If E is a Hilbert
space, then we have φ(x, y) = ‖x− y‖2 for all x, y ∈ E. We know that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2(2.4)

for all x, y ∈ E. If E is strictly convex, then

φ(x, y) = 0 ⇐⇒ x = y.(2.5)

It is also well known that

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉(2.6)

for all x, y, z ∈ E. If E is a Hilbert space, then this equality is reduced to

‖x− y‖2 = ‖x− z‖2 + ‖z − y‖2 + 2〈x− z, z − y〉(2.7)
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for all x, y, z ∈ E. It is easy to see from (2.6) that

〈x− y, Jz − Jw〉 =
1

2
{φ(x,w) + φ(y, z) − φ(x, z) − φ(y, w)}(2.8)

for all x, y, z, w ∈ E. It is also easy to see that if {xn} and {yn} are bounded sequences
of a smooth Banach space E, then ‖xn − yn‖ → 0 implies that φ(xn, yn) → 0. The
converse is also true if E is additionally assumed to be uniformly convex.

Lemma 2.1 (Kamimura and Takahashi [18]). Let E be a smooth and uniformly
convex Banach space and let {xn} and {yn} be sequences of E such that {xn} or {yn}
is bounded. If φ(xn, yn) → 0, then ‖xn − yn‖ → 0.

Let E be a smooth, strictly convex and reflexive Banach space. A set-valued map-
ping A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax 
= ∅} and range R(A) =

⋃
{Ax :

x ∈ D(A)} is said to be monotone if 〈x−y, x∗−y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ A.
A monotone operator A ⊂ E × E∗ is also said to be maximal monotone if A = B
whenever B ⊂ E × E∗ is a monotone operator such that A ⊂ B. The following
theorem is well known:

Theorem 2.2 (Browder [6] and Rockafellar [37]; see also Barbu [3] and Takahashi
[40]). Let E be a smooth, strictly convex and reflexive Banach space and let A ⊂
E×E∗ be a monotone operator. A is maximal monotone if and only if R(J+rA) = E∗

for all r > 0.
Let E be a smooth, strictly convex and reflexive Banach space, let C be a

nonempty closed convex subset of E, and let A ⊂ E × E∗ be a monotone opera-
tor satisfying

D(A) ⊂ C ⊂ J−1R(J + rA)(2.9)

for all r > 0. In view of Theorem 2.2, if A is maximal monotone, then (2.9) holds for

C = D(A). Note that the result due to Rockafellar [36] ensures that D(A) is closed
and convex; see also Barbu [3], Reich [30] and Takahashi [41]. If A satisfies (2.9), then
for all r > 0, we can define the resolvent Jr : C → D(A) of A by

Jrx = {z ∈ E : Jx ∈ Jz + rAz}(2.10)

for all x ∈ C. In other words, Jrx = (J + rA)−1Jx for all x ∈ C. For all r > 0, the
Yosida approximation Ar : C → E∗ of A is also defined by Arx = (Jx − JJrx)/r
for all x ∈ C. We also denote by A−10 the set {z ∈ D(A) : 0 ∈ Az}. We know
the following; see, for instance, Butnariu and Iusem [8], Kamimura [16], Kohsaka and
Takahashi [19] and Matsushita and Takahashi [24]:

1. Jr is a single-valued mapping from C into D(A) such that

φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x)(2.11)

for all (x, u) ∈ C ×A−10;
2. (Jrx,Arx) ∈ A for all x ∈ C;
3. F (Jr) = A−10, where F (Jr) is the set of fixed points of Jr.

Let C be a nonempty closed convex subset of a smooth Banach space E and let
T : C → C be a mapping. The set of fixed points of T is denoted by F (T ). The
mapping T is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A
point u ∈ C is said to be an asymptotic fixed point of T if C contains a sequence {xn}
such that xn ⇀ u and ‖xn − Txn‖ → 0; see [33]. The set of asymptotic fixed points

of T is denoted by F̂ (T ). Following [24, 25], we say that a mapping T : C → C is
relatively nonexpansive if the following conditions are satisfied:
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1. F (T ) is nonempty;
2. φ(u, Tx) ≤ φ(u, x) for all (x, u) ∈ C × F (T );

3. F̂ (T ) = F (T ).
If C is a nonempty closed convex subset of a Hilbert space and T : C → C is a
nonexpansive mapping such that F (T ) is nonempty, then T is relatively nonexpan-
sive. Following Reich [33], we say that a mapping T : C → C is strongly relatively
nonexpansive if the following conditions are satisfied:

1. T is relatively nonexpansive;
2. if {xn} is a bounded sequence of C such that

φ(u, xn) − φ(u, Txn) → 0(2.12)

for some u ∈ F (T ), then φ(Txn, xn) → 0.
Examples of relatively or strongly relatively nonexpansive mappings can be found in
Kohsaka and Takahashi [20, 21], Matsushita and Takahashi [24, 25] and Reich [33].

Let C be a nonempty closed convex subset of a smooth Banach space E. Then a
mapping T : C → C is said to be of firmly nonexpansive type if (1.5) is satisfied.

Lemma 2.3. Let E be a smooth, strictly convex and reflexive Banach space, let C
be a nonempty closed convex subset of E, and let A ⊂ E×E∗ be a monotone operator
satisfying (2.9). Let r be a positive real number and let Jrx = (J + rA)−1Jx for all
x ∈ C. Then Jr : C → D(A) is of firmly nonexpansive type.

Proof. Let x, y ∈ C be given. Then we have (Jrx,Arx), (Jry,Ary) ∈ A. Since A
is monotone, we have

1

r
〈Jrx− Jry, Jx− JJrx− (Jy − JJry)〉 ≥ 0.(2.13)

Thus we have

〈Jrx− Jry, JJrx− JJry〉 ≤ 〈Jrx− Jry, Jx− Jy〉.(2.14)

This shows that Jr is of firmly nonexpansive type.
If C is a nonempty closed convex subset of a smooth, strictly convex and reflexive

Banach space E, then for all x ∈ E, there exists a unique z ∈ C (denoted by ΠC(x))
such that

φ(z, x) = min
y∈C

φ(y, x).(2.15)

The mapping ΠC is called the generalized projection from E onto C; see Alber [1] and
Alber and Reich [2]; see also Kamimura and Takahashi [18].

Lemma 2.4. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty closed convex subset of E, and let ΠC be the generalized projection
from E onto C. Then ΠC : E → C is of firmly nonexpansive type.

Proof. Let iC be the indicator function for C; that is, iC(x) = 0 if x ∈ C and ∞
otherwise. Then iC : E → (−∞,∞] is a proper lower semicontinuous convex function.
Rockafellar’s maximal monotonicity theorem [34, 35] ensures that the subdifferential
∂iC ⊂ E×E∗ of iC is maximal monotone. In this case, it is known that ∂iC is reduced
to the normality operator NC for C; that is,

NC(x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ 0 (∀y ∈ C)}(2.16)
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if x ∈ C and ∅ if x ∈ E \ C. We also know that ΠC is the resolvent of NC . In fact,
we have

z = ΠC(x) ⇐⇒ z = arg min
y∈C

φ(y, x)(2.17)

⇐⇒ z = arg min
y∈E

{φ(y, x) + iC(x)}

⇐⇒ 0 ∈ ∂(φ(·, x) + iC)(z)

⇐⇒ 0 ∈ 2Jz − 2Jx + NC(z)

⇐⇒ Jx ∈ Jz + 2−1NC(z)

⇐⇒ z = (J + 2−1NC)−1Jx.

Thus, Lemma 2.3 implies that ΠC is of firmly nonexpansive type.

3. Fixed point theorem for firmly nonexpansive-type mappings. In this
section, we study the existence of fixed points for firmly nonexpansive-type mappings
in Banach spaces (Theorem 3.2). We need the following lemma:

Lemma 3.1. Let E be a smooth Banach space, let C be a nonempty closed convex
subset of E, and let T : C → C be a mapping. Then T is of firmly nonexpansive type
if and only if

φ(Tx, Ty) + φ(Ty, Tx) + φ(Tx, x) + φ(Ty, y) ≤ φ(Tx, y) + φ(Ty, x)(3.1)

for all x, y ∈ C.
Proof. Let x, y ∈ C be given. Then it follows from (2.8) that

〈Tx− Ty, JTx− JTy〉 ≤ 〈Tx− Ty, Jx− Jy〉(3.2)

is equivalent to

1

2
{φ(Tx, Ty) + φ(Ty, Tx) − φ(Tx, Tx) − φ(Ty, Ty)}(3.3)

≤ 1

2
{φ(Tx, y) + φ(Ty, x) − φ(Tx, x) − φ(Ty, y)} .

This is also equivalent to (3.1). This completes the proof.
Using the technique developed by Takahashi [39], we can prove the following fixed

point theorem for firmly nonexpansive-type mappings in Banach spaces:
Theorem 3.2. Let E be a smooth, strictly convex and reflexive Banach space,

let C be a nonempty closed convex subset of E, and let T : C → C be a firmly
nonexpansive-type mapping. Then the following are equivalent:

1. There exists x ∈ C such that {Tnx} is bounded;
2. F (T ) is nonempty.

Proof. It is obvious that (2) implies (1). We show that (1) implies (2). Suppose
that there exists x ∈ C such that {Tnx} is bounded and let

Sn(z) =
1

n

n−1∑
k=0

T kz(3.4)

for all z ∈ C and n ∈ N. Let y ∈ C and k ∈ N ∪ {0} be given. Then it follows from
Lemma 3.1 and (2.6) that

φ(T k+1x, Ty) + φ(Ty, T k+1x) + φ(T k+1x, T kx) + φ(Ty, y)(3.5)

≤ φ(T k+1x, y) + φ(Ty, T kx)

= φ(T k+1x, Ty) + φ(Ty, y) + 2〈T k+1x− Ty, JTy − Jy〉 + φ(Ty, T kx).
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This implies that

0 ≤ 2〈T k+1x− Ty, JTy − Jy〉(3.6)

+φ(Ty, T kx) − φ(Ty, T k+1x) − φ(T k+1x, T kx)

≤ 2〈T k+1x− Ty, JTy − Jy〉 + φ(Ty, T kx) − φ(Ty, T k+1x).

Summing these inequalities with respect to k = 0, 1, . . . , n− 1, we have

0 ≤ 2

〈
n−1∑
k=0

T k+1x− nTy, JTy − Jy

〉
+ φ(Ty, x) − φ(Ty, Tnx).(3.7)

Dividing (3.7) by n, we obtain

0 ≤ 2〈Sn(Tx) − Ty, JTy − Jy〉 +
1

n
{φ(Ty, x) − φ(Ty, Tnx)} .(3.8)

Since {Sn(Tx)} is bounded, we have a subsequence {Sni
(Tx)} such that Sni

(Tx) ⇀
u ∈ C. Tending ni → ∞ in (3.8), we have 0 ≤ 2〈u− Ty, JTy − Jy〉. Thus we have

0 ≤ 〈u− Ty, JTy − Jy〉(3.9)

for all y ∈ C. Putting y = u in (3.9), we have

0 ≤ 〈u− Tu, JTu− Ju〉 = −〈u− Tu, Ju− JTu〉.(3.10)

Hence we have 〈u− Tu, Ju− JTu〉 ≤ 0. On the other hand, since J is monotone, we
have 〈u− Tu, Ju− JTu〉 ≥ 0. Therefore 〈u− Tu, Ju− JTu〉 = 0. Since E is strictly
convex, we obtain Tu = u. Thus T has a fixed point and the proof is completed.

As direct consequences of Theorem 3.2, we obtain the following corollaries. Note
that Corollary 3.4 actually holds for nonexpansive mappings in Hilbert spaces; see
Reich [29] and Takahashi [41]:

Corollary 3.3. Let E be a smooth, strictly convex and reflexive Banach space,
let C be a nonempty bounded closed convex subset of E and let T : C → C be a firmly
nonexpansive-type mapping. Then F (T ) is nonempty.

Corollary 3.4. Let H be a Hilbert space, let C be a nonempty closed convex
subset of a Hilbert space H and let T : C → C be a firmly nonexpansive mapping.
Then there exists x ∈ C such that {Tnx} is bounded if and only if F (T ) is nonempty.

4. Lemmas. In this section, we show some properties for relatively nonexpansive
mappings needed in section 5. For a bounded sequence {xn} of a reflexive Banach
space E, let ωw({xn}) be the set defined by

ωw({xn}) = {z ∈ E : ∃{xni
} ⊂ {xn} s.t. xni

⇀ z} .(4.1)

We first show the following lemmas:
Lemma 4.1. Let E be a smooth, strictly convex and reflexive Banach space and let

{xn} be a bounded sequence of E such that limn φ(u, xn) exists for all u ∈ ωw({xn}).
If J is weakly sequentially continuous, then {xn} converges weakly.

Proof. It suffices to show that A = ωw({xn}) consists of one point. Since E is
reflexive and {xn} is bounded, A is nonempty. Let u, v ∈ A. Then, by assumption,

lim
n→∞

{φ(u, xn) − φ(v, xn)}(4.2)
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exists. This implies that limn〈v − u, Jxn〉 exists. Let xni
⇀ u and xmj

⇀ v. Since

J is weakly sequentially continuous, we have Jxni

∗
⇀ Ju and Jxmj

∗
⇀ Jv. Then we

have

〈v − u, Ju〉 = lim
i→∞

〈v − u, Jxni〉(4.3)

= lim
n→∞

〈v − u, Jxn〉

= lim
j→∞

〈v − u, Jxmj 〉 = 〈v − u, Jv〉.

Thus we obtain 〈u− v, Ju− Jv〉 = 0. Since E is strictly convex, we have u = v. This
completes the proof.

Lemma 4.2. Let E be a smooth and uniformly convex Banach space, let C be
a nonempty closed convex subset of E, and let T : C → C be a strongly relatively
nonexpansive mapping. Then T is asymptotically regular; that is,

‖Tn+1x− Tnx‖ → 0(4.4)

for all x ∈ C.
Proof. Let x ∈ C and u ∈ F (T ) be given. By the relative nonexpansiveness of T ,

we have

φ(u, Tn+1x) ≤ φ(u, Tnx)(4.5)

for all n ∈ N. Thus limn φ(u, Tnx) exists. By (‖u‖ − ‖Tnx‖)2 ≤ φ(u, Tnx) for all
n ∈ N, {Tnx} is bounded. On the other hand, we have

lim
n→∞

{φ(u, Tnx) − φ(u, Tn+1x)} = 0.(4.6)

Since T is strongly relatively nonexpansive, we have limn φ(Tn+1x, Tnx) = 0. By
Lemma 2.1, we obtain the desired conclusion.

Using Lemma 4.1, we can prove the following lemma, which is an analogous result
of Opial [28] for relatively nonexpansive mappings in Banach spaces:

Lemma 4.3. Let E be a smooth and uniformly convex Banach space, let C be a
nonempty closed convex subset of E, and let T : C → C be a relatively nonexpansive
mapping which is asymptotically regular. Then for all x ∈ C, the following hold:

1. {Tnx} is bounded and ωw({Tnx}) ⊂ F (T );
2. if J is weakly sequentially continuous, then {Tnx} converges weakly to an

element of F (T ).
Proof. We first show the part (1). As in the proof of Lemma 4.2, it follows

that {Tnx} is bounded for all x ∈ C. Since T is asymptotically regular, we have

ωw({Tnx}) ⊂ F̂ (T ). Since T is relatively nonexpansive, we have F̂ (T ) = F (T ). Thus
we have the conclusion.

We next show part (2). Assume that J is weakly sequentially continuous and let
u ∈ ωw({Tnx}) be given. By the part (1), we have u ∈ F (T ). As in the proof of
Lemma 4.2, we can show that limn φ(u, Tnx) exists. Thus limn φ(u, Tnx) exists for all
u ∈ ωw({Tnx}). By Lemma 4.1, {Tnx} converges weakly. Consequently, it converges
weakly to an element of F (T ).

5. Convergence theorem for firmly nonexpansive-type mappings. In
this section, we prove a weak convergence theorem for firmly nonexpansive-type map-
pings in Banach spaces (Theorem 5.3). Before proving it, we show that every firmly
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nonexpansive-type mapping with a fixed point is strongly relatively nonexpansive
(Theorem 5.2).

Lemma 5.1. Let E be a strictly convex Banach space whose norm is uniformly
Gâteaux differentiable, let C be a nonempty closed convex subset of E, and let T :
C → C be a firmly nonexpansive-type mapping. Then F̂ (T ) = F (T ).

Proof. Since F̂ (T ) ⊃ F (T ) is obvious, we prove F̂ (T ) ⊂ F (T ). Let u ∈ F̂ (T ) be

given. By the definition of F̂ (T ), we have a sequence {xn} of C such that xn ⇀ u and
‖xn−Txn‖ → 0. Then we have Txn ⇀ u. Since the norm of E is uniformly Gâteaux
differentiable, J is uniformly norm-to-weak* continuous on each bounded subset of
E; see Reich [31] and Takahashi [41]. Hence it follows from ‖xn − Txn‖ → 0 that

〈y, JTxn − Jxn〉 → 0(5.1)

for all y ∈ E.
On the other hand, since T is of firmly nonexpansive type, it follows from Lemma

3.1 that

φ(Txn, Tu) + φ(Tu, Txn) + φ(Txn, xn) + φ(Tu, u) ≤ φ(Txn, u) + φ(Tu, xn)(5.2)

for all n ∈ N. This implies that

φ(Tu, u)(5.3)

≤ φ(Txn, u) − φ(Txn, Tu) + φ(Tu, xn) − φ(Tu, Txn) − φ(Txn, xn)

= 2〈Txn, JTu− Ju〉 + ‖u‖2 − ‖Tu‖2

+ 2〈Tu, JTxn − Jxn〉 + ‖xn‖2 − ‖Txn‖2 − φ(Txn, xn)

≤ 2〈Txn, JTu− Ju〉 + ‖u‖2 − ‖Tu‖2

+ 2〈Tu, JTxn − Jxn〉 + (‖xn‖ + ‖Txn‖)‖xn − Txn‖

for all n ∈ N. Tending n → ∞ in (5.3), it follows from (5.1) that

φ(Tu, u) ≤ 2〈u, JTu− Ju〉 + ‖u‖2 − ‖Tu‖2(5.4)

= φ(u, u) − φ(u, Tu) = −φ(u, Tu).

Hence we have

φ(Tu, u) + φ(u, Tu) ≤ 0,(5.5)

and hence φ(Tu, u) = φ(u, Tu) = 0. By the strict convexity of E, we obtain Tu = u.

Therefore, F̂ (T ) ⊂ F (T ). This completes the proof.
Using Lemma 5.1, we can show the following theorem:
Theorem 5.2. Let E be a strictly convex Banach space whose norm is uniformly

Gâteaux differentiable, let C be a nonempty closed convex subset of E, and let T :
C → C be a firmly nonexpansive-type mapping such that F (T ) is nonempty. Then T
is strongly relatively nonexpansive.

Proof. Let (x, u) ∈ C × F (T ) be given. Then it follows from Lemma 3.1 that

φ(Tx, Tu) + φ(Tu, Tx) + φ(Tx, x) + φ(Tu, u) ≤ φ(Tx, u) + φ(Tu, x).(5.6)

This implies that

φ(u, Tx) + φ(Tx, x) ≤ φ(u, x).(5.7)
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So, we have φ(u, Tx) ≤ φ(u, x). On the other hand, it also follows from Lemma

5.1 that F̂ (T ) = F (T ). By assumption, F (T ) is nonempty. Thus T is relatively
nonexpansive.

We finally show that T is strongly relatively nonexpansive. Let {xn} be a bounded
sequence of C such that

φ(u, xn) − φ(u, Txn) → 0(5.8)

for some u ∈ F (T ). By (5.7), we have

φ(Txn, xn) ≤ φ(u, xn) − φ(u, Txn)(5.9)

for all n ∈ N. Then it follows from (5.8) and (5.9) that limn φ(Txn, xn) = 0. Thus T
is strongly relatively nonexpansive and the proof is completed.

By Lemmas 4.2 and 4.3 and Theorem 5.2, we obtain the following weak conver-
gence theorem for firmly nonexpansive-type mappings in Banach spaces:

Theorem 5.3. Let E be a uniformly convex Banach space whose norm is uni-
formly Gâteaux differentiable, let C be a nonempty closed convex subset of E, and let
T : C → C be a firmly nonexpansive-type mapping such that F (T ) is nonempty. Then
for all x ∈ C, the following hold:

1. {Tnx} is bounded and ωw({Tnx}) ⊂ F (T );
2. if J is weakly sequentially continuous, then {Tnx} converges weakly to an

element of F (T ).
As a direct consequence of Theorem 5.3, we have the following result due to

Martinet [23]; see also Bruck and Reich [7]:
Corollary 5.4 (Martinet [23]). Let C be a nonempty closed convex subset of a

Hilbert space H and let T be a firmly nonexpansive mapping from C into itself such
that F (T ) is nonempty. Then for all x ∈ C, {Tnx} converges weakly to an element
of F (T ).

6. Applications to the proximal point algorithm. In the final section, we
study the proximal point algorithm for monotone operators in Banach spaces first
introduced by Martinet [22] and generally studied by Rockafellar [38] in Hilbert spaces;
see also Brézis and Lions [5], Bruck and Reich [7], and Nevanlinna and Reich [27]. This
is an iterative procedure, which generates a sequence {xn} by the rule x1 = x ∈ H
and

xn+1 = Jrnxn (n = 1, 2, . . .),(6.1)

where A ⊂ H × H is a maximal monotone operator defined in a Hilbert space H,
Jr = (I + rA)−1 for all r > 0, and {rn} is a sequence of positive real numbers.
Rockafellar’s theorem [38] ensures that if A−10 is nonempty and lim infn rn > 0, then
{xn} converges weakly to an element of A−10.

Using Lemma 2.3 and Theorem 3.2, we can study the existence of zeros of mono-
tone operators in Banach spaces. This result is closely related to the result due to
Matsushita and Takahashi [26].

Theorem 6.1. Let E be a smooth, strictly convex and reflexive Banach space and
let A ⊂ E×E∗ be a monotone operator and C be a nonempty closed convex subset of
E satisfying (2.9). Let r be a positive real number and Jrx = (J + rA)−1Jx for all
x ∈ C. Then A−10 is nonempty if and only if there exists x ∈ C such that {Jn

r x} is
bounded. In particular, if D(A) is bounded, then A−10 is nonempty.
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Proof. Let r be a positive real number. From Lemma 2.3, we know that Jr : C →
D(A) is a firmly nonexpansive-type mapping. Since D(A) ⊂ C from (2.9), we obtain
the desired result from Theorem 3.2. If D(A) is bounded, then {Jn

r x} is bounded for
all x ∈ C. So, A−10 is nonempty.

Using Lemma 2.3 and Theorem 5.3, we finally study the convergence of the prox-
imal point algorithm for monotone operators in Banach spaces; see Kamimura [16]
and Kamimura, Kohsaka and Takahashi [17] for similar results on this subject.

Theorem 6.2. Let E be a uniformly convex Banach space whose norm is uni-
formly Gâteaux differentiable, let A ⊂ E×E∗ be a monotone operator such that A−10
is nonempty and let C be a nonempty closed convex subset of E satisfying (2.9). Let
r be a positive real number and let Jrx = (J + rA)−1Jx for all x ∈ C. If J is weakly
sequentially continuous, then for all x ∈ C, {Jn

r x} converges weakly to an element of
A−10.

Proof. Let r be a positive real number. Since E is uniformly convex, E is reflexive
and strictly convex. So, from Lemma 2.3, we have that Jr : C → D(A) is a firmly
nonexpansive-type mapping. From (2.9) and the part (2) of Theorem 5.3, we have
the desired result.
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Abstract. We develop in this article a geometric approach to duality in multiple objective linear
programming. This approach is based on a very old idea, the duality of polytopes, which can be
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1. Introduction. Duality for multiple objective linear programs seems to have
its origin in the 1970s; see, e.g., Kornbluth [13], Rödder [17], Isermann [9, 10], and
Brumelle [2]. More recent expositions are Jahn [11, 12], Luc [15], and Göpfert and
Nehse [4], where nonlinear problems are also considered.

As noticed in [4, p. 64], the practical relevance of vectorial duality theory is quite
low in comparison with the relevance of duality in scalar optimization. Moreover, in
the linear case there occurs some difficulties, such as a duality gap in the case b = 0
(where b is the right-hand side of the inequality constraints). In [6], this duality gap
could be closed by using a set-valued approach. In [14, 7, 8], this set-valued approach
is revisited from a lattice theoretic point of view. The aim of these papers is to work
in an appropriate complete lattice in order to have a duality theory which can be
formulated along the lines of the scalar duality theory. In particular, the infimum
and supremum can be used to define solutions. Another goal (especially in [8]) is to
have a “simple” dual problem. This means that the dual problem should not be more
complicated than the primal problem.

Nevertheless, in all the mentioned references there is a basic difference from the
present article. Instead of speaking about strong duality if the optimal values of a
pair of dual optimization problems are equal, we deal with a duality relation between
the polyhedral image set of the primal problem and the polyhedral image of the dual
problem, which is similar to duality of polytopes (see Figure 1.1).

It is well known from the theory of convex polytopes (see, e.g., [5]) that two
polytopes P and P∗ in R

q are said to be dual to each other provided that there exists
a one-to-one mapping Ψ between the set of all faces of P and the set of all faces of
P∗ such that Ψ is inclusion-reversing; i.e., faces F1 and F2 of P satisfy F1 ⊆ F2 if
and only if the faces Ψ(F1) and Ψ(F2) satisfy Ψ(F1) ⊇ Ψ(F2).

Denoting by P and D the images of the objective functions of our given problem
(P) and its dual problem (D), respectively, we show that there is an inclusion reversing
one-to-one map Ψ between the set of all K-maximal proper faces of D and the set
of all weakly C-minimal proper faces of P, where K and C are appropriate ordering
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P
P∗

Fig. 1.1. Example of a pair of dual polytopes in R
3.

cones. With the aid of such a map Ψ we can compute the weakly C-minimal faces of
P whenever we know the K-maximal faces of D and vice versa. In particular, we are
given by Ψ a one-to-one correspondence between weakly C-minimal vertices (facets)
of P and K-maximal facets (vertices) of D. It is worth mentioning that there is a
connection between the lattice theoretic duality in [8] and the geometric duality in
the present article. This is briefly discussed at the end of section 3.

In a forthcoming paper [3] we give an application of geometric duality, a dual
variant of Benson’s outer approximation algorithm [1].

2. Preliminaries. Let A ⊆ R
q, and let C ⊆ R

q be a closed convex cone. Denot-
ing by ri C the relative interior of C, we set

MinCA := {y ∈ A | ({y} − ri C) ∩ A = ∅} and MaxCA := Min(−C)A.

In the following we consider two special ordering cones, namely,

C := R
q
+ and K := R+ · (0, 0, . . . , 0, 1)T = {y ∈ R

q | y1 = · · · = yq−1 = 0, yq ≥ 0} .

Note that throughout this article elements of the vector space R
q (or R

m and R
n,

respectively) are considered to be column vectors.
For the choice C = C = R

q
+ we have ri C = intC; hence

MinCA = {y ∈ A | ({y} − intC) ∩ A = ∅}

coincides with the set of weakly C-minimal elements of A. In case of C = K we have
riK = K \ {0}; hence

MaxKA = {y ∈ A | ({y} + K \ {0}) ∩ A = ∅}

coincides with the set of K-maximal elements of A.
For the convenience of the reader, we recall some facts concerning the facial

structure of polyhedral sets [18, section 3.2]. A polyhedral set is defined to be the
intersection of a finite collection of closed half-spaces. Clearly, polyhedral sets are
closed and convex. Let A ⊆ R

q be a convex set. A convex subset F ⊆ A is called a
face of A if(

y1, y2 ∈ A, λ ∈ (0, 1), λy1 + (1 − λ)y2 ∈ F
)

⇒ y1, y2 ∈ F .

A face F of A is called proper if ∅ 	= F 	= A. A set E ⊆ A is called an exposed
face of A if there are c ∈ R

q and γ ∈ R such that A ⊆
{
y ∈ R

q | cT y ≥ γ
}

and

E =
{
y ∈ R

q | cT y = γ
}
∩A. The proper (r−1)-dimensional faces of an r-dimensional
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polyhedral convex set A are called facets of A. A point y ∈ A is called a vertex of A
if {y} is a face of A. Let A be a polyhedral set in R

q. Then A has a finite number
of faces, each of which is exposed, and a polyhedral set. Every proper face of A is
the intersection of those facets of A that contain it, and the relative boundary of A
is the union of all the facets of A. If A has a nonempty face of dimension s, then A
has faces of all dimensions from s to dimA (see [18, Theorem 3.2.2]).

If intA 	= ∅, then A is a q-dimensional polyhedral set; hence the facets of A are
the (q − 1)-dimensional faces of A, i.e., the maximal (w.r.t. inclusion) proper faces.
A subset F ⊆ A is a proper face if and only if it is a proper exposed face, i.e., there
is a supporting hyperplane H to A such that F = H ∩ A. We call a hyperplane
H :=

{
y ∈ R

q | cT y = γ
}

(i.e., c 	= 0) supporting to A if

∀y ∈ A : cT y ≥ γ ∧ ∃y0 ∈ A : cT y0 = γ.

3. Main result. Throughout the article, let m,n, q ∈ N and A ∈ R
m×n, M ∈

R
q×n, b ∈ R

m be given, and let the ordering cones C and K be defined as above.
Further we set k = (1, . . . , 1)T ∈ R

q. We consider the following vector optimization
problem:

(P) MinCM [X ], X := {x ∈ R
n | Ax ≥ b} .

We define a dual linear objective function by D : R
m × R

q → R
q, D(u, c) :=(

c1, . . . , cq−1, b
Tu

)T
and consider the following dual vector optimization problem:

(D) MaxKD[U ], U :=
{
(u, c) ∈ R

m × R
q | (u, c) ≥ 0, ATu = MT c, kT c = 1

}
.

Remark. The fact that the primal and dual problems are not symmetric is a
feature shared by all attempts at duality for vector optimization problems. The
special choice of the cone K for the dual problem reflects a parametric character of
the dual problem. In fact, a point D(ū, c̄) is a K-maximal point of D[U ] if and only
if, for c̄ fixed, ū maximizes bTu over the set {u ∈ R

m | (u, c̄) ∈ U}.
It is our goal to show a duality relation between the sets

P := M [X ] + C = {y ∈ R
q | ∃x ∈ X : y ∈ {Mx} + C } and

D := D [U ] −K = {y ∈ R
q | ∃(u, c) ∈ U : y ∈ {D(u, c)} −K } .

To this end we construct an inclusion-reversing one-to-one map Ψ between the K-
maximal proper faces of D and the weakly C-minimal proper faces of P.

Consider the coupling function ϕ : R
q × R

q → R, defined by

ϕ(y, v) :=

q−1∑
i=1

yivi + yq

(
1 −

q−1∑
i=1

vi

)
− vq.

Note that ϕ(·, v) and ϕ(y, ·) are affine. Choosing the values of the primal and dual
objective functions as arguments, we just get

(3.1) ϕ(Mx,D(u, c)) = cTMx− bTu.

The coupling function ϕ is used to define the following two set-valued maps:

H : R
q ⇒ R

q, H(v) := {y ∈ R
q | ϕ(y, v) = 0} ,

H∗ : R
q ⇒ R

q, H∗(y) := {v ∈ R
q | ϕ(y, v) = 0} .
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Of course, H(v) and H∗(y) are hyperplanes in R
q for all v, y ∈ R

q. Using the notation

c(v) :=

(
v1, . . . , vq−1, 1 −

q−1∑
i=1

vi

)T

and c∗(y) :=
(
y1−yq, . . . , yq−1−yq,−1

)T
,

it is easy to see that

H(v) =
{
y ∈ R

q | c(v)T y = vq
}

and H∗(y) =
{
v ∈ R

q | c∗(y)T v = −yq
}
.

Obviously, the set-valued maps H and H∗ are injective. The map H is now used to
define the function Ψ : 2R

q → 2R
q

:

Ψ(F∗) :=
⋂

v∈F∗

H(v) ∩ P.

Now we have the main result, which shows that Ψ is a duality map between P and D.
Theorem 3.1. Ψ is an inclusion-reversing one-to-one map between the set of all

K-maximal proper faces of D and the set of all weakly C-minimal proper faces of P,
and the inverse map is given by

(3.2) Ψ−1(F) =
⋂
y∈F

H∗(y) ∩ D.

Moreover, for every K-maximal proper face F∗ of D it holds that dimF∗ +
dim Ψ(F∗) = q − 1.

The proof of this theorem is given in the last section.
Let us consider an important special case. Vertices as well as facets are actually

the most important faces from the point of view of applications. Therefore we extract
some corresponding conclusions from the above theorem.

Corollary 3.2. The following statements are equivalent.
(i) v is a K-maximal vertex of D.
(ii) H(v) ∩ P is a weakly C-minimal (q − 1)-dimensional facet of P.

Moreover, if F is a weakly C-minimal (q − 1)-dimensional facet of P, there is some
uniquely defined point v ∈ R

q such that F = H(v) ∩ P.
Proof. (i) ⇒ (ii). Since H(v)∩P = Ψ({v}), Theorem 3.1 implies that H(v)∩P is

a weakly C-minimal proper face of P. Theorem 3.1 also implies that dim(H(v)∩P) =
q − 1 − dim {v} = q − 1.

(ii) ⇒ (i). Let H(v) ∩ P be a weakly C-minimal (q − 1)-dimensional facet of
P. By Theorem 3.1, Ψ−1(H(v) ∩ P) is a K-maximal vertex of D, denoted by v̄. It
follows that Ψ ◦ Ψ−1(H(v) ∩ P) = Ψ({v̄}) and hence H(v) ∩ P = H(v̄) ∩ P, implying
H(v) = H(v̄) as dim(H(v)∩P) = q−1. The mapping H being injective implies v = v̄.

To show the last statement, let F be a weakly C-minimal (q − 1)-dimensional
facet of P. Hence Ψ−1(F) is a K-maximal vertex of D, denoted by v. It follows that
F = Ψ ◦ Ψ−1(F) = Ψ({v}) = H(v) ∩ P. By dim(H(v) ∩ P) = q − 1 and H being
injective, v is uniquely defined.

Corollary 3.3. The following statements are equivalent.
(i) y is a weakly C-minimal vertex of P.
(ii) H∗(y) ∩ D is a K-maximal (q − 1)-dimensional facet of D.

Moreover, if F∗ is a K-maximal (q−1)-dimensional facet of D, there is some uniquely
defined point y ∈ R

q such that F∗ = H∗(y) ∩ D.
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Proof. (i) ⇒ (ii). Let y be a weakly C-minimal vertex of P. By Theorem 3.1, the
set F∗ := Ψ−1({y}) = H∗(y) ∩ D is a K-maximal face of D. From Theorem 3.1 we
also conclude that dimF∗ = q − 1 − dim {y} = q − 1. Thus F∗ is a facet of D.

(ii) ⇒ (i). Let H∗(y) ∩ D be a K-maximal (q − 1)-dimensional facet of D. By
Theorem 3.1 Ψ(H∗(y) ∩ D) is a weakly C-minimal vertex of P, denoted by ȳ. It
follows that Ψ−1 ◦ Ψ(H∗(y) ∩ D) = Ψ−1({ȳ}) and hence H∗(y) ∩ D = H∗(ȳ) ∩ D.
Since dim(H∗(y) ∩ D) = q − 1 and H∗ is injective, we get y = ȳ.

To show the last statement, let F∗ be a K-maximal (q − 1)-dimensional facet
of D. Hence Ψ(F∗) is a C-minimal vertex of P, denoted by y. It follows that
F∗ = Ψ−1 ◦ Ψ(F∗) = Ψ−1({y}) = H∗(y) ∩ D. By dim(H∗(y) ∩ D) = q − 1 and
H∗ being injective, y is uniquely defined.

Remark. In addition to the correspondence between the faces of P and D, Theo-
rem 3.1 provides a relationship between the optimal values of (P) and (D) in the fol-
lowing way. If y ∈ MinCM [X ], then there exists some v ∈ MaxKD[U ] with ϕ(y, v) = 0
and if v ∈ MaxKD[U ], then there exists some y ∈ MinCM [X ] with ϕ(y, v) = 0.

In [8] we developed a duality theory based on a lattice theoretic approach. The
dual problem (D) in the present article is related to the set-valued dual problem
in [8]. Indeed, both problems have the same constraints, given by U . The set-valued
objective map of the dual problem in [8] can be expressed by the objective function
of (D) as (u, c) �→ H(D(u, c)). Moreover, (u, c) being a weakly efficient solution for
the dual problem (LD) in [8] is equivalent to D(u, c) being a K-maximal point of D.

4. Examples. The geometric duality is illustrated by the following two exam-
ples.

Example 1. Consider problem (P) with the following data:

M =

(
1 0

0 1

)
, A =

⎛
⎜⎜⎜⎝

0 -1

2 1

1 1

1 2

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

-4

4

3

4

⎞
⎟⎟⎟⎠ .

The set D can be easily calculated as D = co
{
( 1
3 ,

4
3 )T , ( 1

2 ,
3
2 )T , ( 2

3 ,
4
3 )T , (1, 0)T

}
−K,

where coA denotes the convex hull of a set A (see Figure 4.1).

P

1

2

3

4

1 2 3 4

y2

y1 v1

v2

D

1

2

1

Fig. 4.1. The three weakly C-minimal vertices of P correspond to the three K-maximal facets
of D, and the four weakly C-minimal facets of P correspond to the four K-maximal vertices of D.
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Example 2. Consider problem (P) with the following data:

M =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ , A =

⎛
⎜⎜⎜⎝

1 1 1

-1 -1 1

-1 1 -1

1 -1 -1

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

1

-1

-1

-1

⎞
⎟⎟⎟⎠ .

An easy computation shows that D = co
{
(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T , ( 1

3 ,
1
3 ,

1
3 )T

}
−

K (see Figure 4.2).

y1

y2

y3

v1

v2

v3

P D

1

1
1

1

1

1
3

Fig. 4.2. The three weakly C-minimal vertices of P correspond to the three K-maximal facets
of D, the six weakly C-minimal edges of P correspond to the six K-maximal edges of D, and the
four weakly C-minimal facets of P correspond to the four K-maximal vertices of D.

5. Proof of the main result. The proof of the main result is based on several
auxiliary assertions, which are given below. There, the following pairs of dual scalar
linear optimization problems, depending on parameters v, y ∈ R

q, play an important
role:

(P1(v)) min
x∈X

c(v)TMx X := {x ∈ R
n | Ax ≥ b} ,

(D1(v)) max
u∈T (v)

bTu T (v) :=
{
u ∈ R

m | u ≥ 0, ATu = MT c(v)
}
,

(P2(y)) min
(x,z)∈S(y)

z S(y) := {(x, z) ∈ R
n × R | Ax ≥ b, Mx− kz ≤ y} ,

(D2(y)) max
(u,c)∈U

(bTu− yT c)

U :=
{
(u, c) ∈ R

m × R
q | (u, c) ≥ 0, ATu = MT c, kT c = 1

}
.

Note that with the above notation it holds that

(5.1) D =
{
v ∈ R

q | c(v) ≥ 0,∃u ∈ T (v) : bTu ≥ vq
}
.

We start with a characterization of weakly C-minimal points of P.
Lemma 5.1. The following three statements are equivalent.
(i) y0 ∈ MinC P.
(ii) There is some x0 ∈ R

n such that (x0, 0) solves (P2(y
0)).
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(iii) There is some (u0, c0) ∈ U with bTu0 = y0T c0 solving (D2(y
0)).

Proof. (ii)⇒(i). If (x0, 0) solves (P2(y
0)), then x0 ∈ X and Mx0 ≤ y0; hence

y0 ∈ P. Assume that there is some y ∈ P (i.e., there is some x ∈ X with Mx ≤ y) with
y < y0; then there is some z < 0 such that y ≤ y0+kz, whence Mx−kz ≤ y−kz ≤ y0.
Thus we have (x, z) ∈ S(y0), where z < 0. This contradicts the optimality of (x0, 0).

(i)⇒(ii). If y0 ∈ MinC P, then there exists some x0 ∈ X with Mx0 ≤ y0; i.e.,
(x0, 0) ∈ S(y0). Assume that there is some (x, z) ∈ S(y0) with z < 0. Let y := y0+zk.
Then y < y0 and Mx ≤ y0 + kz = y; i.e., y ∈ P. This contradicts y0 being weakly
C-minimal.

(ii)⇔(iii). This holds by duality of (P2(y
0)) and (D2(y

0)).
Lemma 5.2. Every K-maximal proper face of D contains a vertex.
Proof. Let F∗ be a K-maximal proper face of D. It suffices to show that F∗

contains no lines ([16, Cor. 18.5.3]). Assume on the contrary that F∗ contains a line;
i.e., there are v̄ ∈ F∗ and ψ ∈ R

q \ {0} such that v̄ +λψ ∈ F∗ for all λ ∈ R. Since for
every v ∈ F∗ ⊆ D it holds that v1 ≥ 0, . . . , vq−1 ≥ 0, we have ψ1 = · · · = ψq−1 = 0.
Thus, ψ 	= 0 implies K ⊆ {λψ | λ ∈ R}. We get {v̄} + K ⊆ F∗, contradicting the
K-maximality of F∗.

Lemma 5.3. Consider a hyperplane H∗ := {v ∈ R
q | c∗T v = γ}. Then the

following statements are equivalent.
(i) H∗ is a supporting hyperplane to D such that H∗ ∩ D is K-maximal.
(ii) H∗ is a supporting hyperplane to D[U ], and c∗q < 0.
Proof. (i) ⇒ (ii). If H∗ is a supporting hyperplane to D, then there is some

v0 ∈ D with c∗T v0 = γ, and for v ∈ D it holds that c∗T v ≥ γ. By definition of D
we have v̄ := v0 − eq ∈ D (eq = (0, . . . , 0, 1)T ), implying that c∗q ≤ 0. Since c∗q = 0
would imply v̄ ∈ H∗ ∩ D and v0 ∈ (v̄ + K \ {0}) ∩ D, contradicting the maximality
of H∗ ∩ D, we conclude that c∗q < 0. As v0 ∈ D, there are v1 ∈ D[U ] ⊆ D and z ≥ 0

such that v0 = v1 − eqz. Hence c∗T v1 = c∗T v0 + c∗qz ≤ γ. This implies c∗T v1 = γ.
Therefore H∗ is a supporting hyperplane to D[U ].

(ii) ⇒ (i). If H∗ is a supporting hyperplane to D[U ], then there is some v0 ∈ D[U ]

with c∗T v0 = γ and for all v ∈ D[U ] it holds that c∗T v ≥ γ. Since c∗q < 0, it follows

that c∗T v ≥ γ for all v ∈ D[U ]−K = D. By v0 ∈ D and c∗T v0 = γ we conclude that
H∗ is a supporting hyperplane to D.

In order to show that H∗ ∩ D is K-maximal, let v0 ∈ H∗ ∩ D be given. Hence,
c∗T v0 = γ. For every v ∈ v0 + K \ {0} it holds that c∗T v < γ, because of c∗q < 0.

Since c∗T v ≥ γ for all v ∈ D, we obtain (v0 + K \ {0}) ∩ D = ∅.
Lemma 5.4. Let y ∈ R

q. The following statements are equivalent.
(i) y is a weakly C-minimal point of P.
(ii) H∗(y) ∩ D is a K-maximal proper face of D.

Moreover, for every K-maximal proper face F∗ of D there exists some y ∈ R
q such

that F∗ = H∗(y) ∩ D.
Proof. By Lemma 5.1, (i) is equivalent to the following:
(iii) There exists some (u0, c0) ∈ U with yT c0 = bTu0 solving (D2(y)).

Taking into account (3.1), we see that (iii) is equivalent to the following:
(iv) ϕ(y, v) ≥ 0 for all v ∈ D[U ], and there exists some v0 ∈ D[U ] with

ϕ(y, v0) = 0.
Statement (iv) is equivalent to the following:

(v) H∗(y) is a supporting hyperplane to D[U ].
Regarding the fact that H∗(y) =

{
v ∈ R

q | c∗(y)T v = −yq
}

with c∗(y)q = −1 < 0,
(v) is equivalent to (ii) by Lemma 5.3.



GEOMETRIC DUALITY 843

Let F∗ be a K-maximal proper face of D. Then there exists a supporting hyper-
plane H∗ := {v ∈ R

q | c∗T v = γ} (i.e., c∗ 	= 0) to D such that F∗ = H∗ ∩ D. By
Lemma 5.3, we have c∗q < 0. Setting

y :=

(
γ − c∗1
c∗q

, . . . ,
γ − c∗q−1

c∗q
,
γ

c∗q

)T

,

we obtain H∗ = H∗(y). Hence F∗ = H∗(y) ∩ D.
Lemma 5.5. Consider a hyperplane H :=

{
y ∈ R

q | cT y = γ
}
. The following

statements are equivalent.
(i) H is a supporting hyperplane to P.
(ii) c ≥ 0, and H is a supporting hyperplane to M [X ].
Proof. (i) ⇒ (ii). If H is a supporting hyperplane to P, then there is some y0 ∈ P

with cT y0 = γ and for all y ∈ P it holds that cT y ≥ γ. By the definition of P we
have y0 + w ∈ P for all w ∈ C = R

q
+; hence cTw ≥ 0 for all w ∈ R

q
+. This implies

c ≥ 0. Since y0 ∈ P, there is y1 ∈ M [X ] ⊆ P and w ∈ C such that y0 = y1 + w.
Hence cT y1 = cT y0 − cTw ≤ γ. This implies cT y1 = γ. Therefore H is a supporting
hyperplane to M [X ].

(ii) ⇒ (i). If H is a supporting hyperplane to M [X ], then there is some y0 ∈ M [X ]
with cT y0 = γ, and for all y ∈ M [X ] it holds that cT y ≥ γ. Since c ≥ 0, it follows
that cT y ≥ γ for all y ∈ M [X ] + R

q
+. By y0 ∈ P and cT y0 = γ we conclude that H is

a supporting hyperplane to P.
Lemma 5.6. Every proper face of P is weakly C-minimal.
Proof. Let F be a proper face of P. There is a supporting hyperplane H :={

y ∈ R
q | cT y = γ

}
(i.e., c 	= 0) to P such that F = H ∩ P. By Lemma 5.5 we have

c ≥ 0. Let y ∈ F ; then y ∈ P implying the existence of x0 ∈ X such that Mx0 ≤ y;
i.e., (x0, 0) ∈ S(y) and cT y = γ. Suppose that there are x ∈ X and z < 0 such that
Mx−kz ≤ y, i.e., Mx < y. Since H =

{
y ∈ R

q | cT y = γ
}

is a supporting hyperplane
to P and Mx ∈ P, we have γ ≤ cTMx < cT y = γ, a contradiction. Hence (x, 0)
solves (P2(y)). By Lemma 5.1 this implies that y ∈ MinC P.

Lemma 5.7. Let v ∈ R
q. The following statements are equivalent.

(i) v is a K-maximal point of D.
(ii) H(v) ∩ P is a weakly C-minimal proper face of P.

Moreover, for every proper face F of P there exists some v ∈ R
q such that F =

H(v) ∩ P.
Proof. Taking into account (5.1), we conclude that (i) is equivalent to the follow-

ing:
(iii) c(v) ≥ 0, and there exists some u0 ∈ R

m solving (D1(v)) such that vq = bTu0.
By duality between (P1(v)) and (D1(v)), (iii) is equivalent to the following:

(iv) c(v) ≥ 0, and there exists some x0 ∈ R
n solving (P1(v)) such that vq =

c(v)TMx0.
Statement (iv) is equivalent to the following:

(v) c(v) ≥ 0, and H(v) is a supporting hyperplane to M [X ].
By Lemmas 5.5 and 5.6, (v) is equivalent to (ii).

To show the last conclusion, let F be a proper face of P. Hence there exists
some supporting hyperplane H :=

{
y ∈ R

q | cT y = γ
}

(i.e., c 	= 0) to P such that
F = H∩P. By Lemma 5.5, we have c ≥ 0. Without loss of generality we can assume
that kT c = 1 (k = (1, . . . , 1)T ). Setting vi := ci for i = 1, . . . , q − 1 and vq := γ, we
have H = H(v). Hence F = H(v) ∩ P.

Now we are able to give the proof of our main result.
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Proof of Theorem 3.1. (a) We show that if F∗ is a K-maximal proper face of
D, then Ψ(F∗) is a weakly C-minimal proper face of P. By Lemma 5.7, H(v) ∩ P
is a weakly C-minimal proper face of P for each v ∈ F∗; hence Ψ(F∗) is a weakly
C-minimal face of P. It remains to show that Ψ(F∗) is nonempty. By Lemma 5.4
there is some y0 ∈ MinC P such that F∗ = H∗(y0) ∩ D; hence y0 ∈ Ψ(F∗).

(b) We prove that Ψ∗(F) :=
⋂

y∈F H∗(y)∩D is a K-maximal proper face of D if
F is a weakly C-minimal proper face of P. By Lemma 5.4, H∗(y)∩D is a K-maximal
proper face of D for each y ∈ F . Hence Ψ∗(F) is a K-maximal proper face of D if
this set is nonempty. Indeed, by Lemma 5.7, there is some v0 ∈ MaxK D such that
F = H(v0) ∩ P implying v0 ∈ Ψ∗(F).

(c) In order to show that Ψ is a bijection and that Ψ−1(F) =
⋂

y∈F H∗(y)∩D =:
Ψ∗(F), we have to show the following two statements: (c1) Ψ∗(Ψ(F∗)) = F∗ for all
K-maximal proper faces F∗ of D and (c2) Ψ(Ψ∗(F)) = F for all weakly C-minimal
proper faces F of P.

(c1) First we show that F∗ ⊆ Ψ∗(Ψ(F∗)). Assume the contrary; i.e., there is
some v0 ∈ F∗ such that v0 	∈ Ψ∗(Ψ(F∗)). Hence there exists some y0 ∈ Ψ(F∗)
such that v0 	∈ H∗(y0) ∩ D. This implies v0 	∈ H∗(y0) since v0 ∈ D. It follows that
y0 	∈ H(v0), whence y0 	∈ Ψ(F∗), a contradiction. To show the opposite inclusion, let
y0 ∈ MinC P such that F∗ = H∗(y0)∩D. The existence of such a point y0 is ensured
by Lemma 5.4. It follows that y0 ∈ Ψ(F∗). Hence Ψ∗(Ψ(F∗)) ⊆ H∗(y0) ∩ D = F∗.

(c2) The proof works analogously using Lemma 5.7 instead of Lemma 5.4.
(d) Obviously, Ψ is inclusion-reversing.
(e) It remains to prove that dimF∗+ dim Ψ(F∗) = q−1 for all K-maximal proper

faces F∗ of D. Consider some fixed F∗, and set r := dimF∗ and s := dim Ψ(F∗). By
the first part of the proof, F := Ψ(F∗) is a weakly C-minimal face of P. Hence there
exist proper faces F � F1 � F2 � · · · � Fq−1−s (all of them being weakly C-minimal
by Lemma 5.6) such that dimFq−1−s = q− 1. From the properties of Ψ, we conclude
that 0 ≤ dim Ψ−1(Fq−1−s) ≤ r − (q − 1 − s). Hence r + s ≥ q − 1. Since every
K-maximal face of D has a vertex (Lemma 5.2), there are K-maximal faces F∗

�

F∗
1 � F∗

2 � · · · � F∗
r such that dimF∗

r = 0. It follows that s+r ≤ dim Ψ(F∗
r ) ≤ q−1.

Together we have s + r = q − 1.
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Abstract. A new active set algorithm for minimizing quadratic functions with separable convex
constraints is proposed by combining the conjugate gradient method with the projected gradient. It
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1. Introduction. We shall be concerned with solving

min
x∈Ω

f(x),(1.1)

where f(x) = 1
2 x

�Ax − x�b, A ∈ R
n×n is symmetric positive definite, b ∈ R

n,
Ω = Ω1 × · · · × Ωm, and Ωi = {xi ∈ R

ni : fi(xi) ≤ 0} are defined by continuously
differentiable convex functions fi : R

ni → R so that ni ≥ 1,
∑m

i=1 ni = n. Let us note
that the feasible set Ω is separable in the sense that each part xi of x = (x�

1 , . . . ,x
�
m)�

is subject to one constraint xi ∈ Ωi.
This problem includes several independently investigated subproblems originat-

ing, for instance, in duality-based methods for the solution of contact problems of
linear elasticity:

– If ni = 1 and fi(xi) ≡ li − xi with li given, we obtain the simple bound

li ≤ xi(1.2)

arising from two-dimensional contact problems [4].
– If ni = 2, xi = (x2i−1, x2i)

� and fi(xi) ≡ x2
2i−1 + x2

2i − r2
i with ri given, we

arrive at

x2
2i−1 + x2

2i ≤ r2
i(1.3)

that can be interpreted as the circular constraint. A source of such constraints
is an isotropic friction law for three-dimensional (3D) contact problems [8].

– If an anisotropic friction law is considered and if a finite element tearing and
interconnecting (FETI) domain decomposition method is used for solving 3D
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contact problems [11], then (1.3) is replaced by the ellipsoidal constraint,

(xi − si)
�F i(xi − si) ≤ r2

i ,

with F i ∈ R
2×2 positive definite and si = (s2i−1, s2i)

� given.
– Finally let us note that the unconstrained case may be described by fi(xi) =
−1.

Through the whole paper, we shall have in mind large-scale problems in which
the Hessian matrix A is not formed explicitly. In this case, an iterative method is a
suitable tool for solving (1.1) since it is the only action of A which is needed. A class
of efficient algorithms appropriate for our research is based on the active set strategy
that dates back at least to Polyak [13]. His algorithm solves quadratic programming
problems constrained by simple bounds (1.2) using a restarted conjugate gradient
method. After each start, a subset of variables is fixed at bounds (the active set) and
the conjugate gradient method minimizes f with respect to remaining variables. The
“inner” minimization is terminated if either the minimum is reached or an infeasible
iteration is generated. In the first case, some of the fixed variables are released while,
in the second case, new variables are added to the active set. In both cases, the value
of f decreases so that the active set can never reappear, and therefore the algorithm
converges in a finite number of steps.

As the Polyak algorithm suffers from several drawbacks, it was modified in order
to exclude doubts about its efficiency; see discussions in [1, 5]. Here, we mention two
improvements relevant for our more general constraints. Firstly, the exact solution of
auxiliary “inner” problems can be replaced by an inexact one. We shall use a theo-
retically supported strategy of an adaptive precision control presented by Friedlander
and Mart́inez [6] and by Dostál [2]. The basic idea is to control the “inner” precision
by a ratio of the norms of a violation of the Karush–Kuhn–Tucker (KKT) conditions
at fixed and free variables. Secondly, the qualitative progress has been achieved by
Dostál and Schöberl [5] using the projected gradient for expanding the active set. It
permits rapid changes in the active set without the necessity to perform computa-
tionally expensive steps (e.g., backtracking). Moreover, the algorithm has a linear
convergence rate in terms of the spectral condition number of the Hessian matrix A.

The scheme of the later algorithm was successfully extended for solving 3D contact
problems with an isotropic friction in [11]. As the constraints are circular (1.3), the
algorithm does search not only for the active set corresponding to the solution, but
also for the positions of the pairs (x2i−1, x2i)

� lying on the boundaries of the circles
x2

2i−1 + x2
2i = r2

i . It is easily seen that the finite terminating property cannot be
expected in such cases, and therefore the convergence was proven in [10] by different
arguments. On the other hand, it is relatively surprising that a linear convergence rate
may be derived like for the simple bound case. This proof is the main goal of the paper.

Let us briefly outline the structure of the paper. After introducing notations in
section 2, we prove that the KKT optimality conditions are equivalent to the zero
projected gradient. Our algorithm for solving (1.1) is proposed in section 3 in a form
suitable for theoretical analysis. Section 4 summarizes auxiliary statements on the
projected gradient, while section 5 gives the main result of the paper concerning a lin-
ear convergence rate. A practical implementation of the algorithm for simple bounds
(1.2) and circular constraints (1.3) is discussed in section 6, and finally, section 7
presents the results of numerical experiments.

2. Preliminaries and notations. We shall always assume that the feasible set
Ω in (1.1) is nonempty. As f is the strictly convex function and Ω is the convex set,
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the existence of a unique solution to (1.1) is guaranteed. We shall denote it by x∗. It
is well known that x∗ is fully determined by the KKT conditions [12]. Before giving
their appropriate form, we shall introduce notations.

Recall that a continuously differentiable function F : Ω → R is convex iff

F (y) − F (x) ≥ (y − x)�∇F (x) ∀x, y ∈ Ω,(2.1)

where ∇F denotes the gradient of F . The gradient of the objective function f at x
shall be denoted by

g = g(x) = Ax− b.

Let M denote the set of indices so that

M = {1, . . . ,m}.

We shall use the following convention: if x ∈ R
n is a vector, then xi ∈ R is its ith

entry, 1 ≤ i ≤ n, and xi ∈ R
ni is its ith segment, i ∈ M, so that x = (x�

1 , . . . ,x
�
m)�.

We shall denote by ‖xi‖ the Euclidean norm of xi.
In order to exclude pathological situations, we shall assume without loss of gen-

erality that fi are not identically zero in Ωi. In that case Ωi has a nonempty
interior, int Ωi = {xi ∈ R

ni : fi(xi) < 0}, and a possibly nonempty boundary
∂Ωi = {xi ∈ R

ni : fi(xi) = 0}. The convexity of fi implies that if ∂Ωi 
= ∅ and
xi ∈ ∂Ωi, then ∇fi(xi) is the outward normal vector to ∂Ωi at xi; see Figure 2.1.a.

It is well known that the solution x∗ to (1.1) is characterized by the existence of
Lagrange multipliers λ∗

i , i ∈ M, such that [12]

g∗
i + λ∗

i∇fi(x
∗
i ) = 0, fi(x

∗
i ) ≤ 0, λ∗

i ≥ 0, λ∗
i fi(x

∗
i ) = 0, i ∈ M,

where g∗
i denotes the ith segment of g∗ = g(x∗). After eliminating λ∗

i , we obtain the
following theorem.

Theorem 2.1. The vector x∗ ∈ Ω is the solution to (1.1) iff for i ∈ M:

fi(x
∗
i ) < 0 implies g∗

i = 0,(2.2)

fi(x
∗
i ) = 0 implies g∗

i +
‖g∗

i ‖
‖∇fi(x∗

i )‖
∇fi(x

∗
i ) = 0.(2.3)

Conditions (2.2) and (2.3) are called the inner KKT conditions and the boundary
KKT conditions, respectively.

As the feasible set Ω is separable, the projection PΩ : R
n �→ Ω can be put together

by the projections PΩi : R
ni �→ Ωi, i ∈ M. Thus we define PΩ(x) for any x ∈ R

n by

PΩ(x) =

⎛
⎜⎝

PΩ1
(x1)
...

PΩm(xm)

⎞
⎟⎠ ,(2.4)

where PΩi
(xi) are defined by

PΩi(xi) =

{
xi for xi ∈ Ωi,

zi for xi 
∈ Ωi,
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∇fi(xi)

xi

Ωi

∂Ωi ∇fi(zi)

zi = PΩi(xi)

Ωi

∂Ωi

xi

a b

Fig. 2.1. (a) The outward normal vector to ∂Ωi; (b) The projection to ∂Ωi.

xi

xi − α̃gi

xi − α̃ g̃i

Ωi

∂Ωi

Fig. 2.2. The projected gradient on Ωi.

with (see Figure 2.1.b)

fi(zi) = 0,(2.5)

zi +
‖xi − zi‖
‖∇fi(zi)‖

∇fi(zi) = xi.(2.6)

Let us note that zi is well defined by (2.5) and (2.6) because Ωi is convex. The
equality (2.6) yields orthogonality of PΩi and, consequently, of PΩ that is equivalent
to the variational inequality

(x− PΩ(x))�(y − PΩ(x)) ≤ 0 ∀x ∈ R
n ∀y ∈ Ω.

Let us define the projected gradient g̃ = g̃(x) at x ∈ Ω for fixed α̃ > 0 by

g̃(x) =
1

α̃
(x− PΩ (x− α̃g(x))) .(2.7)

This definition enables us to describe the projection of the gradient step without PΩ

so that

PΩ(x− α̃g(x)) = x− α̃g̃(x);

see Figure 2.2. In the next theorem, we prove that the zero project gradient represents
an alternative optimality criterion to KKT conditions.

Theorem 2.2. The vector x∗ ∈ Ω solves (1.1) iff g̃(x∗) = 0.
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Proof. The equality g̃(x∗) = 0 is equivalent to

x∗
i = PΩi(x

∗
i − α̃g∗

i ), i ∈ M.(2.8)

We shall prove that the KKT conditions (2.2) and (2.3) are equivalently satisfied. We
distinguish two cases. (i) Let fi(x

∗
i ) < 0. Then x∗

i ∈ int Ωi, which is equivalent by
(2.8) to x∗

i − α̃g∗
i ∈ int Ωi. Therefore

x∗
i = PΩi(x

∗
i − α̃g∗

i ) = x∗
i − α̃g∗

i

so that g∗
i = 0, and therefore (2.2) holds. (ii) Let fi(x

∗
i ) = 0. Using (2.6) with xi

replaced by x∗
i − α̃g∗

i and with zi replaced by x∗
i , we obtain after simple manipulation

g∗
i +

‖g∗
i ‖

‖∇fi(x∗
i )‖

∇fi(x
∗
i ) = 0

so that (2.3) holds.
We shall decompose M at x ∈ Ω on the free set F(x) and the active set A(x) as

F(x) = {i ∈ M : fi(xi) < 0},
A(x) = {i ∈ M : fi(xi) = 0}.

Analogously, we can decompose g̃ on the projected free gradient ϕ̃ = ϕ̃(x) and the

projected boundary gradient β̃ = β̃(x) so that

ϕ̃i = g̃i for i ∈ F(x), ϕ̃i = 0 for i ∈ A(x),(2.9)

β̃i = 0 for i ∈ F(x), β̃i = g̃i for i ∈ A(x).(2.10)

Thus, the inner KKT conditions (2.2) are satisfied iff ϕ̃(x) = 0, and the boundary

KKT conditions (2.3) are satisfied iff β̃(x) = 0. Moreover, we define the free gradient
ϕ = ϕ(x) so that

ϕ̃i = g̃i for i ∈ F(x), ϕ̃i = 0 for i ∈ A(x).(2.11)

Finally let us denote the A-energy norm of x ∈ R
n by ‖x‖A. Thus ‖x‖A =

(x�Ax)1/2, and ‖x‖ = ‖x‖I = (x�x)1/2 is the Euclidean norm. The analogous
notation will be used for the induced matrix norm so that

κ(A) = ‖A‖‖A−1‖

is the spectral condition number of A.

3. Algorithm. In this section we present our algorithm for solving (1.1) in a
form convenient for the analysis, while technical details are postponed to section 6.
The algorithm exploits a given constant Γ > 0 to decide on interrupting conjugate
gradient iterations and a fixed steplength α̃ ∈ (0, ‖A‖−1] defining the projected gra-
dient.

We shall combine three steps to generate a sequence of iterates {xk} that approx-
imates the solution to (1.1):

– the expansion step, which may add indices to the active set, is defined by

xk+1 = xk − α̃ϕ̃(xk);(3.1)
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– the proportioning step, which may release indices from the active set, reads as

xk+1 = xk − α̃β̃(xk);(3.2)

– the conjugate gradient step is given by

xk+1 = xk − αk
cgp

k, αk
cg =

g(xk)�pk

(pk)�Apk
,(3.3)

where the conjugate gradient directions pk are constructed recurrently [7].
The conjugate gradient steps are used to carry out a minimization of the objective

function f efficiently on the interior of the face

WA(xs) = {x ∈ Ω : xi = xs
i for i ∈ A(xs)},

where xs is determined by the expansion step or by the proportioning step. It requires
that the parts of pk corresponding to the indices of A(xs) vanish, i.e., pk

i = 0 for
i ∈ A(xs). We can easily fulfill this requirement by adapting the classical recurrence
generating pk. We start (or restart) from ps = ϕ(xs) and use

pk = ϕ(xk) − γkpk−1, γk =
ϕ(xk)�Apk−1

(pk−1)�Apk−1
, k > s.(3.4)

The formulae (3.4) is used while the sequence of the conjugate gradient steps is un-
broken. After changing the active set, we must always restart.

Later on, we shall need the following lemma.
Lemma 3.1. Let xk+1 be generated by the conjugate gradient step. Then

f(xk+1) ≤ f(xk − αϕ(xk)) ∀α ∈ R.

Proof. It is a well-known property of the conjugate gradient method [7] that

f(xk+1) = min
x∈xs+Span{ps,...,pk}

f(x).(3.5)

As (3.4) implies ϕ(xk) ∈ Span{ps, . . . , pk} and xk ∈ xs + Span{ps, . . . , pk−1}, we
obtain xk − αϕ(xk) ∈ xs + Span{ps, . . . , pk}. The lemma follows using (3.5).

The last ingredient of our algorithm is the releasing criterion:

β̃(xk)�g(xk) ≤ Γ2ϕ̃(xk)�g(xk).(3.6)

If this inequality holds, we call the iterate xk strictly proportional. The criterion (3.6)
is used to decide which of the steps will be performed.

Algorithm 3.1. Let x0 ∈ Ω, Γ > 0, and α̃ ∈ (0, ‖A‖−1] be given. For k ≥ 0
and xk known, choose xk+1 by the following rules:
(i) If g̃(xk) = 0, set xk+1 = xk.
(ii) If xk is strictly proportional and g̃(xk) 
= 0, try to generate xk+1 by the conjugate

gradient step. If xk+1 ∈ Ω and if it does not change the active set, then accept
it, else generate xk+1 by the expansion step.

(iii) If xk is not strictly proportional, then define xk+1 by the proportioning step.
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4. Properties of the projected gradient. In this section we summarize re-
sults necessary for the next analysis.

Lemma 4.1. It holds that

‖ϕ̃(x)‖2 ≤ ϕ̃(x)�g(x),(4.1)

‖β̃(x)‖2 ≤ β̃(x)�g(x),(4.2)

ϕ̃(x)�g(x) ≤ ϕ(x)�g(x).(4.3)

Proof. The definition of the projected gradient (2.7) implies that

PΩi
(xi − α̃gi) = xi − α̃g̃i.

As PΩi
is orthogonal, we obtain

0 ≥ (xi − α̃gi − PΩi(xi − α̃gi))
�(xi − PΩi(xi − α̃gi)) = α̃2(g̃i − gi)

�g̃i

so that

‖g̃i‖2 ≤ g̃�
i gi.(4.4)

Summing (4.4) over the indices of F(x) or A(x), we obtain (4.1) or (4.2), respectively.
Using the well-known Cauchy inequality in (4.4), we get ‖g̃i‖ ≤ ‖gi‖, and therefore

ϕ̃(x)�g(x) =
∑

i∈F(x)

g̃�
i gi ≤

∑
i∈F(x)

‖g̃i‖‖gi‖ ≤
∑

i∈F(x)

g�
i gi = ϕ(x)�g(x).

Lemma 4.2. Let d ∈ R
n, d 
= 0, and x ∈ Ω. Then

f(x) − f(x− αd) ≤ αd�g(x) ∀α ∈ R.(4.5)

Moreover, let d�g(x) ≥ 0, and αd = d�g(x)/d�Ad. Then

f(x) − f(x− αd) ≥ 1

2
αd�g(x) ∀α ∈ [0, αd].(4.6)

Proof. The assertion (4.5) is equivalent to the convexity of f (compare with (2.1)).
For α ∈ [0, αd], we derive

f(x− αd) = f(x) − αd�g(x) +
1

2
α2d�Ad

≤ f(x) − αd�g(x) +
1

2
ααdd

�Ad

= f(x) − 1

2
αd�g(x).

Corollary 4.3. If d is replaced in (4.6) by ϕ, ϕ̃, and β̃, then the corresponding
three inequalities hold for all α ∈ [0, ‖A‖−1].

Proof. For d = ϕ(x), we have

αd =
ϕ(x)�g(x)

ϕ(x)�Aϕ(x)
≥ ϕ(x)�ϕ(x)

‖A‖‖ϕ(x)‖2
= ‖A‖−1.

The same follows using Lemma 4.1 for d = ϕ̃(x) and d = β̃(x).
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Lemma 4.4. Let x ∈ Ω. Then

f(x) − f(x− αg̃(x)) ≤ α(ϕ̃(x)�g(x) + β̃(x)�g(x)) ∀α ∈ R.

Proof. Using (4.5), we obtain

f(x) − f(x− αg̃(x)) ≤ αg̃(x)�g(x) = α

⎛
⎝ ∑

i∈F(x)

g̃�
i gi +

∑
i∈A(x)

g̃�
i gi

⎞
⎠ ,

and the definitions (2.9) and (2.10) complete the proof.
Lemma 4.5. Let x∗ ∈ Ω denote the solution to (1.1), λ1 denote the smallest

eigenvalue of A, and x ∈ Ω. Then

f(x) − f(x− α̃g̃(x)) ≥ α̃λ1(f(x) − f(x∗)) ∀α̃ ∈ [0, ‖A‖−1].

Proof. For α̃ ∈ (0, ‖A‖−1], we define

F (y) = α̃f(y) +
1

2
(y − x)�(I − α̃A)(y − x).

Notice that I − α̃A is positive semidefinite. Therefore

F (y) ≥ α̃f(y),

∇F (y) = α̃g(y) + (I − α̃A)(y − x) = y − x + α̃g(x),(4.7)

and F (x) = α̃f(x), ∇F (x) = α̃g(x). Let us note that the Hessian of F is the identity I.
Let y ∈ Ω be arbitrary. The convexity of F , (4.7), and the orthogonality of PΩ yields

F (y) − F (PΩ(x− α̃g(x))) ≥ (y − PΩ(x− α̃g(x)))�∇F (PΩ(x− α̃g(x)))

= −(y − PΩ(x− α̃g(x)))�(x− α̃g(x) − PΩ(x− α̃g(x)))

≥ 0

so that

F (y) ≥ F (PΩ(x− α̃g(x))) ∀y ∈ Ω.

Using α̃λ1 ≤ ‖A‖−1λ1 ≤ 1 and denoting d = x∗ − x, we derive

f(x− α̃g̃(x)) = f(PΩ(x− α̃g(x)))

≤ α̃−1F (PΩ(x− α̃g(x))) ≤ α̃−1 min
y∈Ω

F (y) ≤ α̃−1 min
t∈[0,1]

F (x + td)

≤ α̃−1F (x + α̃λ1d) = f(x) + α̃λ1d
�g(x) +

1

2
α̃λ2

1d
�d

≤ (1 − α̃λ1)f(x) + α̃λ1f(x) + α̃λ1d
�g(x) +

1

2
α̃λ1d

�Ad

= (1 − α̃λ1)f(x) + α̃λ1f(x∗).

Lemma 4.4 and Lemma 4.5 immediately imply the following result.
Corollary 4.6. Let x∗ ∈ Ω denote the solution to (1.1), λ1 denote the smallest

eigenvalue of A, and x ∈ Ω. Then

λ1(f(x) − f(x∗)) ≤ ϕ̃(x)�g(x) + β̃(x)�g(x)

for all α̃ ∈ (0, ‖A‖−1] defining ϕ̃ and β̃.
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5. Rate of convergence.
Theorem 5.1. Let x0 ∈ Ω, Γ > 0, and α̃ ∈ (0, ‖A‖−1] be given. Let x∗ ∈

Ω denote the solution to (1.1), λ1 denote the smallest eigenvalue of A, and Γ̂ =
max{Γ,Γ−1}. Let {xk} be the sequence generated by Algorithm 3.1. Then

f(xk+1) − f(x∗) ≤ η
(
f(xk) − f(x∗)

)
,(5.1)

where

η = 1 − α̃λ1

2 + 2Γ̂2
< 1.(5.2)

The error in the A-energy norm is bounded by

‖xk − x∗‖2
A ≤ 2ηk

(
f(x0) − f(x∗)

)
.(5.3)

Proof. We shall estimate separately all three possible steps of Algorithm 3.1. As
α̃ ∈ (0, ‖A‖−1], we can use the bound (4.6) for each of the steps due to Corollary 4.3.

Let us first assume that xk+1 is generated by the expansion step (3.1). Using
(4.6), we obtain

f(xk+1) = f(xk − α̃ϕ̃(xk)) ≤ f(xk) − 1

2
α̃ϕ̃(xk)�g(xk).(5.4)

If xk+1 is generated by the conjugate gradient step (3.3), we use Lemma 3.1, (4.6),
and (4.3) so that

f(xk+1) ≤ f(xk − α̃ϕ(xk))

≤ f(xk) − 1

2
α̃ϕ(xk)�g(xk) ≤ f(xk) − 1

2
α̃ϕ̃(xk)�g(xk).(5.5)

Comparing (5.4) and (5.5), we may observe that we have the same estimates for
both of the expansion and conjugate gradient steps. These steps are taken only when
xk is strictly proportional, i.e., when

β̃(xk)�g(xk) ≤ Γ2ϕ̃(xk)�g(xk).

After using Corollary 4.6, we get

ϕ̃(xk)�g(xk) ≥ λ1

1 + Γ2
(f(xk) − f(x∗)).(5.6)

The estimates (5.4), (5.5) combined with (5.6) imply that

f(xk+1) − f(x∗) ≤ f(xk) − f(x∗) − 1

2
α̃ϕ̃(xk)�g(xk)

≤
(

1 − α̃λ1

2 + 2Γ2

)
(f(xk) − f(x∗)).(5.7)

Let us finally assume that xk+1 is generated by the proportioning step (3.2).
Again using (4.6), we obtain

f(xk+1) = f(xk − α̃β̃(xk)) ≤ f(xk) − 1

2
α̃β̃(xk)�g(xk).(5.8)
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As the proportioning step is taken when

β̃(xk)�g(xk) > Γ2ϕ̃(xk)�g(xk),

Corollary 4.6 yields

β̃(xk)�g(xk) ≥ λ1

1 + Γ−2
(f(xk) − f(x∗)).(5.9)

The estimate (5.8) combined with (5.9) implies that

f(xk+1) − f(x∗) ≤
(

1 − α̃λ1

2 + 2Γ−2

)
(f(xk) − f(x∗)).(5.10)

Comparing the inequalities (5.10) and (5.7), and taking into account that by

definition Γ ≤ Γ̂ and Γ−1 ≤ Γ̂, we can see that (5.1) holds.
In order to prove the error bound (5.3), we use (5.1) and the fact that the solution

x∗ to (1.1) is characterized by the variational inequality (x − x∗)�g(x∗) ≥ 0 for all
x ∈ Ω. We obtain

‖xk − x∗‖2
A = 2(f(xk) − f(x∗) − (xk − x∗)�g(x∗))

≤ 2(f(xk) − f(x∗)) ≤ 2ηk(f(x0) − f(x∗)).

Theorem 5.1 yields the best estimate for Γ = Γ̂ = 1 and α̃ = ‖A‖−1 when

η = 1 − 1

4
κ(A)−1.

We shall see that this result is in agreement with numerical experiments.

6. Implementation. We shall give the details of the implementation of Algo-
rithm 3.1. Firstly, we describe a general scheme of the algorithm independently on
the type of constraints. Then we show how to compute projections on the feasible set
in our numerical experiments.

6.1. A general algorithmic scheme. The presented implementation differs
from Algorithm 3.1 in that it exploits the current conjugate gradient direction to
generate an intermediate iteration xk+1/2 before the expansion step that generates
xk+1 from xk+1/2. Such modification does not require any additional matrix-vector
multiplication, and the estimate (5.1) remains valid [5].

We describe the algorithm in an easily understandable variant of the Matlab
language, in which we do not distinguish a generation of variables by indices unless it
is convenient for further references.

It should be noted that the presented implementation is not influenced by the
type of constraints defining the feasible set Ω. The relation to constraints is hidden
in the components β̃, ϕ̃ of the projected gradient g̃, and in the feasible steplength αf .
The projected gradient can be directly evaluated by its definition (2.7) using PΩ.
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Algorithm 6.1. Let x0 ∈ Ω, Γ > 0, α̃ ∈ (0, ‖A‖−1], and ε > 0 be given.

Set k = 0, g = Ax0 − b, p = ϕ(x0). % Initialization.

while ‖g̃(xk)‖ > ε

if β̃(xk)�g(xk) ≤ Γ2ϕ̃(xk)�g(xk)

αcg = g�p/p�Ap % Conjugate gradient steplength.

αf = max{α : xk − αp ∈ Ω} % Feasible steplength.

if αcg < αf % Conjugate gradient step.

xk+1 = xk − αcgp, g = g − αcgAp, γ = ϕ(xk+1)�Ap/p�Ap, p = ϕ(xk+1) − γp

else % Expansion step.

xk+1/2 = xk − αfp

xk+1 = xk+1/2 − α̃ϕ̃(xk+1/2), g = Axk+1 − b, p = ϕ(xk+1)

endif

else % Proportioning step.

xk+1 = xk − α̃β̃(xk), g = Axk+1 − b, p = ϕ(xk+1)

endif

k = k + 1

endwhile

x = xk. % Return step.

6.2. Projections and the feasible steplength. In the previous sections, we
have exploited the implicit definition of the projections given by (2.5) and (2.6). Now
we shall show how to compute PΩi for simple bounds (1.2) and circular constraints
(1.3).

Let us consider the following variant of the problem (1.1):⎧⎪⎨
⎪⎩

minimize f(x),

subject to xi ≥ li, i = 1, . . . ,m1,

x2
m1+2i−1 + x2

m1+2i ≤ r2
i , i = 1, . . . ,m2,

(6.1)

where m1 + 2m2 < n and li, ri are given. The feasible set Ω in (6.1) is described
by Ωi, i = 1, . . . ,m, m = m1 + m2 + 1, of three different types. Recall that each of
Ωi is defined by Ωi = {xi ∈ R

ni : fi(xi) ≤ 0} where fi : R
ni → R is continuously

differentiable and convex. Let us denote the feasible steplength with respect to the
ith constraint by

αf,i = max{α : xi − αpi ∈ Ωi}.
(1) Let ni = 1, and fi(xi) ≡ li − xi. Then xi ∈ Ωi, i = 1, . . . ,m1 represent the

simple bounds in (6.1). The set Ωi describes the half-line so that the projection is
given by

PΩi(xi) =

{
xi for li ≤ xi,

li for li > xi

and the feasible steplength by

αf,i =

{
(xi − li)/pi for pi > 0,

∞ for pi ≤ 0.
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(2) Let nm1+i = 2, fm1+i(xm1+i) ≡ x�
m1+ixm1+i − r2

i , and xm1+i = (xm1+2i−1,

xm1+2i)
�. Then xm1+i ∈ Ωm1+i, i = 1, . . . ,m2 represent the circular constraints in

(6.1). The set Ωm1+i describes the circle with the center at the origin of R
2 and with

the radius ri so that the projection is given by

PΩm1+i(xm1+i) =

⎧⎪⎨
⎪⎩

xm1+i for ‖xm1+i‖ ≤ ri,

ri
‖xm1+i‖

xm1+i for ‖xm1+i‖ > ri

and the feasible steplength by

αf,m1+i =

⎧⎨
⎩ (x�

i pi +
√

(x�
i pi)

2 − (‖xi‖2 − r2
i )‖pi‖2 )/‖pi‖2 for pi 
= 0,

∞ for pi = 0.

(3) Let nm = n − m1 − 2m2, xm = (xm1+2m2+1, . . . , xn)�, and fm(xm) = −1.
Then Ωm = R

nm , i.e., the components of xm are unconstrained. For completeness,
we define

PΩm(xm) = xm and αf,m = ∞.

Let us conclude that the projection PΩ is put together by PΩi as in (2.4) and the
feasible steplength αf is given by

αf = min{αf,i : i = 1, . . . ,m}.

7. Numerical tests. We shall assess the performance of the algorithm by three
examples. The first one is the benchmark of [10], in which only circular constraints
occur. The second example represents a one-dimensional obstacle problem comprising
both simple bounds and circular constraints. A more realistic third example shows the
solution of frictional 3D contact problems of linear elasticity by means of a sequence
of problems (6.1).

Let us note that either we shall use Algorithm 6.1 with x0 = 0, Γ = 1, α̃ = ‖A‖−1,
and ε = 10−5‖b‖, or we shall comment different choices.

Example 7.1. Let us consider the problem (6.1) for n = 12, m1 = 0, and m2 = 6
with the five-diagonal matrix A:

A = (aij), aii = 4, aii±1 = aii±2 = −1,

b = Ay,

r = (2, 1, 0.5, 2, 10−3, 154)�,

and y = (2, 1, 0.5, 0, 0, 11, 10−5,−1,
√

2,−0.1, 4.1 · 10−4, 143)�. The solution x∗ ∈
R

12 has three active constraints so that A(x∗) = {2, 3, 5}. Here, we shall denote
Algorithm 6.1 by QPC and the algorithm of [10] by QPQ. In Table 7.1 we compare
QPQ and QPC by the number of matrix-vector multiplications for various Γ. The
algorithm QPC has better performance in all cases. Moreover, the experiments are
in agreement with the conclusions of Theorem 5.1.

In order to explain the progress, we mention the ideas of QPQ. This algorithm is
constructed by the KKT conditions that are given here in Theorem 2.1. Introducing
the turned boundary gradient β = β(x) at x ∈ Ω as

βi = 0 for i ∈ F(x), βi = gi +
‖gi‖

‖∇fi(xi)‖
∇fi(xi) for i ∈ A(x),
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Table 7.1

Comparisons of the algorithms QPQ and QPC.

Γ 100 10 5 1 0.5 0.4 0.2 0.1 0.05 0.01 0.001
QPQ 43 41 39 32 37 40 48 41 38 36 36
QPC 30 24 21 19 20 20 22 22 26 37 50
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QPQ iterations QPC iterations

Fig. 7.1. The iteration history of QPQ and QPC (logarithmic scale).

we can define the turned gradient by ν = ν(x) = ϕ(x) + β(x) where ϕ(x) is the free
gradient (2.9). The solution x∗ to the problem (1.1) is then characterized by ν(x∗) = 0.
The proportioning step of QPC is replaced in QPQ by the step deactivation, in which
β replaces β̃ (for a different steplength). It is easy to show that the deactivation
step releases all indices from the current active set, for which the boundary KKT
conditions (2.3) are not satisfied. After each release, the inner KKT conditions are
violated usually on the same level. This observation is a practical consequence of
the fact that the functions β(x) and ν(x) are discontinuous (in contrast to β̃ and g̃).
The typical situation is drawn in Figure 7.1 (left), where the norm of the projected
gradient (solid) and the turned gradient (dotted) are depicted. In Figure 7.1 (right)
we can see that oscillations arising in QPQ are eliminated in QPC. Comparing the
stagnation levels, we can conclude that QPC is considerably more robust. Notice that
the turned gradient did not curiously recognize the solution in QPQ due to round-off
errors.

Example 7.2. In the second example, we solve

minimize
1

2

∫ 1

0

‖x′(t)‖2 dt−
∫ 1

0

x(t)�f(t) dt

subject to x = (X1, X2)
� ∈ K, where

K = {x ∈ (H1
0 (0, 1))2 : X2(t) ≥ l on (0, 0.5), ‖x(t)‖ ≤ r on (0.5, 1)},

and f(t) = (36π2 sin 6πt,−4π2 sin 2πt)�. This problem describes the loaded wire (see
Figure 7.2) that is partially above the plan far off the distance l and partially inside
the cylindrical tube of the radius r. A finite element discretization on a regular grid
with n degrees of freedom leads to the problem (6.1) where m1 = m2 = n/4, li = l,
and ri = r. In tables below we summarize numbers of matrix-vector multiplications
and information on active and free constraints as

nb,A : nb,F/nc,A : nc,F ,
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Fig. 7.2. Geometry of the wire.

Table 7.2

r = 2, only simple bounds are active in the solution.

n l = −1.5 l = −1 l = −0.8 l = −0.5 l = −0.1 l = 0
0:8/0:8 1:7/0:8 1:7/0:8 3:5/0:8 4:4/0:8 5:3/0:8

32 3 16 26 24 24 24
0:16/0:16 1:15/0:16 1:15/0:16 4:12/0:16 6:10/0:16 9:7/0:16

64 3 25 57 57 72 62
0:32/0:32 1:31/0:32 3:29/0:32 6:26/0:32 12:20//0:32 19:13/0:32

128 3 41 92 137 167 112
0:64/0:64 1:63/0:64 4:60/0:64 10:54/0:64 23:41/0:64 37:27/0:64

256 3 68 262 307 369 269
0:128/0:128 1:127/0:128 8:120/0:128 21:107/0:128 45:83/0:128 73:55/0:128

512 3 4 494 556 876 710
0:256/0:256 1:255/0:256 16:240/0:256 40:216/0:256 89:167/0:256 146:110/0:256

1024 3 4 1305 1641 1966 1530

Table 7.3

l = 0, both simple bounds and circular constraints are active in the solution.

n r = 1.4 r = 1 r = 0.5 r = 0.3 r = 0.01 r = 0.001
5:3/2:6 6:2/4:4 7:1/5:3 7:1/5:3 8:0/8:0 8:0/8:0

32 89 80 54 42 17 19
10:6/2:14 11:5/5:11 13:3/6:10 14:2/9:7 16:0/16:0 16:0/16:0

64 205 240 132 90 23 27
20:12/4:28 22:10/5:27 26:6/10:22 29:3/16:16 32:0//31:1 32:0/32:0

128 608 620 324 239 96 41
39:25/4:60 45:19/8:56 52:12/18:46 57:7/26:38 64:0/58:6 64:0/64:0

256 1677 1764 951 695 215 121
77:51/4:124 89:39/12:116 104:24/33:95 114:14/49:79 127:1/111:17 128:0/126:2

512 4117 5248 3755 1960 646 309
155:101/6:250 177:79/22:234 208:48/60:196 228:28/95:161 253:3/219:37 256:0/249:7

1024 12084 16851 10516 7065 2051 793

where nb,A, nb,F , nc,A, and nc,F are numbers of active simple bounds, free simple
bounds, active circular constraints, and free circular constraints, respectively.

(i) Let r = 2 so that no circular constraint is active in the solution; see Table 7.2.
In this case, Algorithm 6.1 reduces to a variant of the algorithm of [5] with the finite
terminating property. Let us note that the column labeled l = −1.5 corresponds to
the unconstrained problem, in which our algorithm became the conjugate gradient
method.

(ii) Let l = 0 so that both simple bounds and circular constraints may be ac-
tive in the solution; see Table 7.3. It turns out that the algorithm is more efficient
in situations when the constraints are tighter, i.e., when r and l are near zero so
that the number of active constraints is considerably higher than the number of free
constraints.



860 RADEK KUČERA
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Fig. 7.3. Geometry of the brick.

Example 7.3. Let us consider the steel brick lying on a rigid foundation as it is
shown in Figure 7.3. The brick occupies in the reference configuration the domain
ω ⊂ R

3, whose boundary ∂ω is split into three nonempty disjoint parts γu, γp, and
γc with different boundary conditions. The zero displacements are prescribed on γu,
whereas the surface tractions act on γp. On γc, we consider the contact conditions,
i.e., the nonpenetration and the effect of friction. The elastic behavior of the brick
is described by Lamé equations that, after finite element discretization, lead to a
symmetric positive definite stiffness matrix K ∈ R

3nc×3nc and to a load vector f ∈
R

3nc . Moreover, we introduce full rank matrices N,T1, T2 ∈ R
mc×3nc projecting

displacements at contact nodes to normal and tangential directions, respectively, and

we denote B =
(
N�, T�

1 , T�
2

)� ∈ R
3mc×3nc . For more details about this model

problem, we refer to [8]. Here, we shall use the dual formulation in terms of contact
stresses.

We start with the contact problem with Tresca friction that reads as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minimize 1
2λ

�Qλ− λ�h,

subject to λν,i ≥ 0, λ2
t1,i

+ λ2
t2,i

≤ r2
i , i = 1, . . . ,mc,

λ = (λ�
ν , λ

�
t1 , λ

�
t2)

�, λν , λt1 , λt2 ∈ R
mc ,

(7.1)

where Q = BK−1B�, h = BK−1f , and ri ≥ 0 are given slip bound values at contact
nodes. Let us point out that λν and λt1 , λt2 represent normal and tangential contact
stresses, respectively. It should be noted that the problem (7.1) can be solved by
Algorithm 6.1 after rearranging the unknowns. In order to simplify notations, we
denote R

mc
+ = {s ∈ R

mc : si ≥ 0}.
The contact problem with Coulomb friction uses the friction law, in which the

slip bound r ∈ R
mc
+ depends on the normal contact stress λν ∈ R

mc
+ by

r ≡ Fλν ,

where F > 0 is a coefficient of friction. As r is the input for (7.1) and λν is the output,
the problem with Tresca friction defines the mapping

Ψ : R
mc
+ �−→ R

mc
+ : r �−→ Fλν .

It is easily seen that a fixed point of Ψ solves the problem with Coulomb friction, i.e.,
a point r such that Ψ(r) = r. Notice that Ψ is contractive for sufficiently small F ,
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Table 7.4

Contact problem with Coulomb friction.

dof F = 0.3 F = 0.6
3nc 3mc Time Iter nQ nQ/n Time Iter nQ nQ/n
900 180 4 5 535 2.97 6 7 801 4.45

2646 378 24 5 638 1.68 35 6 906 2.40
5832 648 104 5 758 1.17 136 6 1001 1.54

10890 990 317 5 814 0.82 443 6 1145 1.16
18252 1404 789 5 854 0.61 1122 6 1232 0.88
28350 1890 1833 5 947 0.50 2222 6 1169 0.62

and then there is a unique fixed point. Moreover, successive approximations can be
used for its computation:

r0 ∈ R
mc
+ given; for k = 1, 2, . . . set rk = Ψ(rk−1).

As the evaluation of Ψ requires us to solve (7.1), we can repeatedly apply Algo-
rithm 6.1. In order to perform these computations efficiently, we initialize each itera-
tion by results from the previous one. Finally we terminate if

‖rk − rk−1‖/‖rk‖ ≤ 10−4.

In our numerical experiments, we consider the steel brick ω = (0, 3)×(0, 1)×(0, 1)
partitioned into 3N ×N ×N cubes by trilinear finite elements for N = 4, 6, 8, 10, 12,
and 14. The size of problems solved by Algorithm 6.1 is n = 3mc = 9N(N + 1). In
Table 7.4, we report CPU time in seconds (time), the number of successive approx-
imations (iter), the total complexity by matrix-vector multiplications (nQ), and the
relative complexity (nQ/n). The computations are carried out in Matlab 7 on Pen-
tium(R)4, 3GHz, 512MB. The obtained results are promising; especially, nQ is only
mildly dependent on the finite element discretization so that the relative complexity
considerably decreases for finer grids.

8. Comments and conclusions. We have analyzed a new active set algorithm
for minimizing strictly convex quadratic functions with separable convex constraints.
It generalizes a recently developed algorithm of quadratic programming constrained
by simple bounds [5]. It should be noted that we did not need any requirement on
nondegeneracy of the problem so that our algorithm is globally convergent for both
the nondegenerate as well as the degenerate case.

The main goal is the proof of a linear convergence rate, which is in an optimal
case described by the factor η = 1− 1

4κ(A)−1 in terms of the condition number of the
Hessian matrix A. Notice that η is not influenced by constraints. The key assumption
is the restricted steplength α̃ defining the projected gradient g̃, i.e., α̃ ≤ ‖A‖−1, which

means that the components ϕ̃ and β̃ of g̃ are descent directions. We use them for
adding/releasing indices to/from the active set in the step expansion/proportioning.
Unfortunately, our analysis requires us to replace the conjugate gradient steplengths
by α̃, which seems to be too restrictive, and the obtained convergence rate may be
a bit pessimistic. That is the case for simple bound problems. If the constraints are
conic (e.g., circular), the algorithm usually performs few valuable conjugate gradient
steps combined with expansion steps, and then it alternates many proportioning steps
with short conjugate gradient steps. The convergence rate is more realistic in such
situations.
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The algorithm presented here is an important ingredient in the numerical solution
of 3D contact problems. It was shown in [3] that FETI domain decomposition methods
are scalable for the frictionless contact. Our paper enables us to extend this result for
frictional problems. It will be published in forthcoming papers.

Another class of algorithms relevant for our research (contact problems) is based
on a specific semismooth Newton method that is identical again with an active set
strategy [9]. The fundamental discrepancy is the fact that it allows infeasible iterates.
In this case, the convergence rate is superlinear but requires a sufficiently accurate
initial approximation. In general, the computational performance is comparable.
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Abstract. We provide a rule to calculate the subdifferential set of the pointwise supremum
of an arbitrary family of convex functions defined on a real locally convex topological vector space.
Our formula is given exclusively in terms of the data functions and does not require any assumption
either on the index set on which the supremum is taken or on the involved functions. Some other
calculus rules, namely chain rule formulas of standard type, are obtained from our main result via
new and direct proofs.
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1. Introduction. Many operations with convex functions preserve convexity,
and so it is natural to ask if the subdifferential of the resulting function can be written
in terms of the data functions. Specific to convex analysis is the classical operation of
taking the pointwise supremum of an arbitrarily indexed family of convex functions.
It has no equivalence in the classical theory of differentiable analysis and constitutes
a largely used tool in convex optimization, in theory as well as in practice (see, for
instance, [1], [10], and the references therein). In [5] and [8] certain specific techniques
relying on the supremum function were applied in the framework of semi-infinite linear
optimization.

In this paper, we provide explicit characterizations for the subdifferential map-
ping of the supremum function of an arbitrarily indexed family of convex functions,
exclusively in terms of the data functions. The main virtue of our approach is that
the index set over which the supremum is taken is arbitrary, without any algebraic or
topological structure. Also the convex functions we consider in this paper are general,
defined on a separated locally convex space, and not necessarily lower semicontinuous
(lsc) or even proper. Further, we do not assume regularity conditions such as the
continuity of the supremum function, the continuity of the data functions, conditions
on their domains, and the like.

Since many convex functions can be written as the supremum of continuous affine
mappings, numerous operations dealing with such (convex) functions can be formu-
lated as a pointwise supremum of other functions whose subdifferentials can easily
be characterized. Specifically, we have proved that our formulas also lead to other
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calculus rules for the subdifferentials of certain operations with convex functions, such
as the sum and the composition with affine applications. In this way, our approach
gives rise to a unifying view of many well-known calculus rules in convex analysis.

Deriving calculus rules for subdifferentials is one of the first issues raised in convex
analysis. Consequently, many earlier contributions dealing with pointwise supremum
functions can be found in the literature. See, for instance, [26] to trace out the
historical origins of the issue, as well as [2], [3], [4], [12], [13], [15], [20], [21], and [27].
This is why we make a short historical review of some of these results.

Consider the pointwise supremum f := supt∈T ft of a collection of convex func-
tions ft : X → R ∪ {+∞}, t ∈ T �= ∅, defined on a separated locally convex space X,
and let z ∈ dom f . When T is finite and each ft is continuous at z, a basic result due
to Dubovitskij and Milyutin asserts that (see, e.g., [13])

∂f(z) = co
(⋃

t∈T (z)∂ft(z)
)
,

where

T (z) := {t ∈ T | ft(z) = f(z)},

and co stands for the convex hull. When T is a separated compact topological space
and the function (t, x) → ft(x) is upper semicontinuous with respect to t for each x,
then assuming that each ft is continuous at z, the following formula can be found, for
instance, in [32, Thm. 2.4.18]:

∂f(z) = cl
(
co

⋃
t∈T (z)∂ft(z)

)
,

where the closure, cl, is taken in the topological dual space X∗ with respect to the
weak∗ topology w∗ = σ(X∗, X).

According to [26], the last result was first established by Levin [15] for a finite-
valued convex function defined on R

n. The continuity assumption on the data func-
tions is weakened in [29] and [21, Thm. 4].

Even in simple situations dealing with finitely many functions, the problem is
involved so that simple examples in the Euclidean space show that these nice formu-
lae above do not hold in general. Nevertheless, in order to overcome this difficulty,
Brøndsted [2] used the concept of ε-subdifferential to establish the following formula,
which is valid when T = {1, 2, . . . , k} and all of the functions fi, i = 1, 2, . . . , k agree
at z :

∂f(z) =
⋂

ε>0 cl
(
co

⋃k
i=1∂εfi(z)

)
.

In the case of an infinite collection of convex functions (T infinite), and following
[10, p. 405], the most elaborated results are due to Valadier in [27] where, in the
context of normed vector spaces and assuming that the supremum function f is con-
tinuous at z, the subdifferential ∂f(z) is expressed by considering not only z but all
nearby points around it. More precisely, denoting by ‖·‖ the corresponding norm in
X, the following formula is given in [27]:

∂f(z) =
⋂

ε>0 cl [co (
⋃
{∂ft(y) | y ∈ X, t ∈ T : ‖y − z‖ ≤ ε, ft(z) ≥ f(z) − ε})] .

By using the concept of ε-subdifferential, Volle [28] obtained another characteriza-
tion of ∂f(z) where only the nominal point z appears but in terms of approximate
subgradients:

∂f(z) =
⋂

ε>0 cl [co (
⋃
{∂εft(z) | t ∈ T : ft(z) ≥ f(z) − ε})] .
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It is worth noting that if either all of the functions ft are affine or if the space X
is Banach, then the last two formulas above are equivalent. The equivalence for
affine functions is clear while in the Banach spaces setting this observation is partly
due to Brøndsted–Rockafellar’s theorem, expressing the ε-subdifferential by means of
exact subdifferentials at nearby points. As it can be seen, the advantage of using
such an enlargement of the subdifferential, namely, the ε-subdifferential, is to avoid
qualifications type conditions. Such an idea is exploited in the survey paper [11]
(see also references therein) to provide many calculus rules without requiring any
regularity condition.

Recently, in [7], the following characterization for the subdifferential ∂f is given
when ft : R

n → R ∪ {+∞}, t ∈ T , are proper convex functions and T is arbitrary:

∂f(z) =
⋂

ε>0 cl
[
co (

⋃
{∂εft(z) | t ∈ T : ft(z) ≥ f(z) − ε}) + Ndom f (z)

]
,

where Ndom f (z) stands for the normal cone to the domain of f (dom f) at z, provided
that either the ft’s are lsc or that the relative interiors of their (effective) domains
have a common point. In this setting, the formula above implies the one given by Volle
[28], since Ndom f (z) = {θ} whenever z is a continuity point of the supremum function
f . Further, when dealing with a finite number of functions the term Ndom f (x) can be
removed from the formula above which, consequently, entails the one of Brøndsted [2].

At this step, the purpose of the present paper is twofold. First, we extend the last
formula from [7] to the setting of convex functions defined on locally convex spaces
and which are not necessarily proper or lsc. To this aim, we consider those collections
of functions satisfying the following closedness criterion, which holds for a broad class
of convex functions and obviously covers the case of lsc functions:

(1) cl f = sup
t∈T

cl ft,

where cl f and cl ft stand for the lsc hull of the convex functions f and ft, respectively.
Second, we give a unified approach for the framework of calculus rules in convex
analysis. In fact, our characterization of ∂f also allows us to obtain formulas for
the subdifferential of the resulting function in many operations as the sum of convex
functions and the composition of an affine continuous mapping with a convex function.
In this way, we provide direct and easier proofs for the basic chain rules when some
supplementary qualification conditions are assumed.

The summary of the paper is as follows. In section 2 we introduce the main tools
and basic results used in the paper. In section 3 we give the aimed formula for the
subdifferential of the supremum of an arbitrary family of convex functions. After a
series of auxiliary lemmas the main result is stated in Theorem 4. In it we use a
closedness criterion which is studied in Corollary 9. We close this section by deriving
some other formulae in Corollaries 7 (for affine functions), 8 (for finite-dimensional
spaces or, more generally, when the relative interior of the domain of the supremum
function f is not empty), 10 (Volle’s formula), and 12 (Brøndsted’s formula). In
section 4 we introduce a unifying framework for deriving subdifferential calculus rules.
Namely, in Theorem 13 we give a formula for the subdifferential of the sum of a convex
function and another convex function precomposed with a continuous affine mapping.
Theorem 13 constitutes a slight extension of Hiriart-Urruty–Phelps formula (Corollary
14). It also yields an easy derivation of the basic chain rule (Corollary 16) when some
supplementary conditions are assumed, namely, the Moreau–Rockafellar constraint
qualification.
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2. Notations and basic tools. In this paper X and Y stand for (real) separated
locally convex spaces. Their topological dual spaces are respectively denoted by X∗

and Y ∗. The spaces X and X∗ (Y and Y ∗) are paired in duality by the bilinear
form (x∗, x) ∈ X∗ × X �→ 〈x∗, x〉 := 〈x, x∗〉 := x∗(x) ((y∗, y) ∈ Y ∗ × Y �→ 〈y∗, y〉,
respectively). Throughout the paper, the sole topology defined on the dual spaces
is the w∗–topology. The zero vectors in the involved spaces are all denoted by θ,
and the neighborhoods of θ are called θ–neighborhoods. We use the notation R :=
R ∪ {−∞,+∞}.

We first recall some basic results of convex analysis which can be found, e.g.,
in the books [17] and [32] and the references therein (see also [10] and [22]). Given
two nonempty sets A and B in X (or in X∗, Y , Y ∗), we define the algebraic (or
Minkowski) sum by

(2) A + B := {a + b | a ∈ A, b ∈ B}, A + ∅ := ∅ + A := ∅;

moreover, if ∅ �= Λ ⊂ R we set

ΛA := {λa | λ ∈ Λ, a ∈ A}, Λ∅ := ∅.

Furthermore, Λx := Λ{x}, λA := {λ}A, and x + A := {x} + A.
By coA, coneA, and aff A, we denote the convex hull, the conic hull, and the

affine hull of the set A, respectively. Moreover, intA is the interior of A, and clA
and A are indistinctly used for denoting the closure of A (w∗–closure if A ⊂ X∗ or
A ⊂ Y ∗). In this way, we set coA := cl(coA) and coneA := cl(coneA). We use riA to
denote the (topological) relative interior of A (i.e., the interior of A in the topology
relative to aff A if aff A is closed, and the empty set otherwise). We shall use Greek
letters for denoting real numbers.
The following properties are applied very often:

(3) cl(A + B) = cl(A + clB),

and if A is convex,

(4) λ riA + (1 − λ) clA ⊂ riA for every λ ∈ ]0, 1].

Associated with A �= ∅ we consider the sets

A◦ := {x∗ ∈ X∗ | 〈x∗, x〉 ≥ −1 for all x ∈ A} ,
A− := − (coneA)

◦
= {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0 for all x ∈ A} , and

A⊥ := (−A−) ∩A− = {x∗ ∈ X∗ | 〈x∗, x〉 = 0 for all x ∈ A} ,

i.e., the (one-sided) polar, the negative dual cone, and the orthogonal subspace (or
annihilator) of A, respectively. Observe that A◦ is a closed convex set containing
θ, A− is a closed convex cone, and A⊥ is a closed linear subspace. Further, by the
bipolar theorem, we have

(5) A◦◦ = co(A ∪ {θ}) and A−− = cone(coA).

If A ⊂ X is convex and x ∈ X, we define the normal cone to A at x as

NA(x) :=

{
(A− x)− if x ∈ A,
∅ if x ∈ X \A.
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As a consequence of this definition N∅(x) = ∅ for every x ∈ X. If A �= ∅ is convex
and closed, A∞ represents its recession cone defined as

A∞ := {y ∈ X | x + λy ∈ X for some x ∈ X and all λ ≥ 0} .

Given a function f : X −→ R, its (effective) domain and epigraph are defined by

dom f := {x ∈ X | f(x) < +∞},
epi f := {(x, α) ∈ X × R | f(x) ≤ α};

moreover, when f is proper, that is, dom f �= ∅ and f(x) > −∞ for all x ∈ X, we
consider the graph of f as being defined by

gph f := {(x, f(x)) ∈ X × R | x ∈ dom f}.

So, for f proper one has epi f = gph f + R+(θ, 1). We say that f is convex if epi f is
convex. In what follows we shall use the convention +∞−∞ := +∞+(−∞) := +∞.
Assume that f is convex. The lower closure of f is the function cl f : X −→ R defined
by

(cl f)(x) := inf{t | (x, t) ∈ cl(epi f)}.

Clearly we have epi (cl f) = cl (epi f), which implies that cl f is a lsc convex function
dominated by f ; i.e., cl f ≤ f . Equivalently, we have

(cl f)(x) = lim inf
y→x

f(y) ∀x ∈ X.

Further, it can be checked that cl (dom (cl f)) = cl (dom f). If (cl f) (x) = f(x), then
f is lsc at x. If there exists x0 ∈ X such that (cl f) (x0) = −∞, then (cl f) (x) = −∞
for all x ∈ dom (cl f). We shall denote by Λ(X) the set of all the proper convex
functions on X, and by Γ(X) the subset of Λ(X) consisting of the lsc functions; the
sets Λ(X∗) and Γ(X∗) are defined in a similar way.

The Fenchel conjugate of f is the function f∗ : X∗ −→ R given by

f∗(x∗) := sup{〈x∗, x〉 − f(x) | x ∈ X}.

The functions f and cl f have the same conjugate; i.e., f∗ = (cl f)∗. The biconjugate
of f is the function f∗∗ : X −→ R given by

f∗∗(x) := sup{〈x∗, x〉 − f∗(x∗) | x∗ ∈ X∗}.

Let us recall here that f∗ ∈ Γ(X∗) if and only if dom f �= ∅ and there exist x∗ ∈ X∗

and α ∈ R such that f(x) ≥ 〈x∗, x〉 + α for all x ∈ X; this happens, for instance,
when f ∈ Γ(X) in which case we have f∗∗ = f .

The support and the indicator functions of A �= ∅ are, respectively, defined as

σA(x∗) := sup{〈x∗, a〉 | a ∈ A} for x∗ ∈ X∗,

and

IA(x) :=

{
0 if x ∈ A,
+∞ if x ∈ X \A.
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The function σA is sublinear, lsc, and satisfies

(6) σA = σcoA = I∗coA.

Moreover, it is known that (domσA)
−

= (coA)∞ (e.g., [29, p. 142]) or equivalently,
by using (5),

(7) cl(domσA) = [(coA)∞]
−
.

If A1, . . . , Am ⊂ X are nonempty sets (m ≥ 2), then clearly σA1 + · · · + σAm =
σA1+···+Am and max {σA1 , . . . , σAm} = σA1∪···∪Am ; moreover, if 1 ≤ k < m, then

σA1 + · · · + σAk
+ max

{
σAk+1

, . . . , σAm

}
= σA1+···+Ak+(Ak+1∪···∪Am).

Hence

domσA1+···+Am
= domσA1∪···∪Am

= domσA1+···+Ak+(Ak+1∪···∪Am).

Using (6) and (7) we get

[co(A1 + · · · + Am)]∞ = [co(A1 ∪ · · · ∪Am)]∞
= [co (A1 + · · · + Ak + (Ak+1 ∪ · · · ∪Am))]∞ .(8)

If f is convex and ε ≥ 0, the ε-subdifferential of f at a point x ∈ X such that
f(x) ∈ R is the w∗–closed convex set

∂εf(x) := {x∗ ∈ X∗ | f(y) − f(x) ≥ 〈x∗, y − x〉 − ε for all y ∈ X}.

If f(x) /∈ R, then we set ∂εf(x) := ∅. In particular, for ε = 0 we get ∂f(x) :=
∂0f(x), the subdifferential of f at x. Given x ∈ X and ε ≥ 0 we recall the following
properties: ∂f(x) = ∩ε>0∂εf(x) and ∂εf(x) = ∂εf(x) + Ndom f (x); moreover, as a
simple computation shows (see also [32, Exer. 2.23]),

(9) [∂εf(x)]∞ = Ndom f (x) for all x ∈ dom f and ε ≥ 0 with ∂εf(x) �= ∅.

If f is not proper, then ∂εf(x) = ∅ for all x ∈ X. If f is lsc at x and f(x) ∈ R, then

(10) ∂ε (cl f) (x) = ∂εf(x).

If ∂f(x) �= ∅, then we have

(11) (cl f)(x) = f(x) and ∂ (cl f) (x) = ∂f(x).

If f ∈ Λ(X) and f(x) ∈ R, then we have ∂εf(x) �= ∅ for all ε > 0 if and only if f is
lsc at x. Moreover, we have

(12) ∂εf(x) = {x∗ ∈ X∗ | f(x) + f∗(x∗) ≤ 〈x∗, x〉 + ε} for all ε ≥ 0.

If A is convex and x ∈ A,

∂IA(x) = (cone(A− x))− = NA(x).

Finally, if f ∈ Γ(X), then for every x ∈ dom f , u ∈ X and ε > 0, we have (see [32,
Thm. 2.4.11])

(13) f ′
ε(x, u) := inf

λ>0

f(x + λu) − f(x) + ε

λ
= σ∂εf(x)(u).
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3. Calculus rules for the subdifferential of the supremum function. In
this section we consider a nonempty family {ft | t ∈ T} of convex functions ft : X → R

defined on a (separated) real locally convex space X. The corresponding pointwise
supremum function f : X → R, given by

(14) f(x) := sup{ft(x) | t ∈ T},

is also convex; our main purpose in this section is to provide a formula for the subd-
ifferential ∂f of f in terms exclusively of the data functions ft, t ∈ T . The following
simple example draws aside, in general, the possibility of writing ∂f in terms of ∂ft,
t ∈ T .

Example 1. [11, Ex. 2.1] Let f1, f2 : R → R ∪ {+∞} be defined by

f1(x) =

{
−2

√
x if x ≥ 0,

+∞ if x < 0,
and f2(x) = f1(−x)

so that f := max{f1, f2} = I{0}. Then, we easily check that ∂f(0) = R while both
∂f1(0) and ∂f2(0) are empty.

Nevertheless, Theorem 4 below provides a characterization of ∂f , which involves
the approximate subdifferentials of the data functions. To start with, we first establish
two elementary lemmas.

Lemma 1. Let h ∈ Λ(X) and A ⊂ domh be a convex set. If riA �= ∅, then
infA h = infclA h.

Proof. Set μ := infA h. Fix some x0 ∈ riA and consider x ∈ clA. Take xn :=
(1 − 1

n )x + 1
nx0 for n ≥ 1; then

μ ≤ h(xn) ≤ (1 − 1
n )h(x) + 1

nh(x0).

Taking the limit we get μ ≤ h(x); hence μ ≤ infclA h.
The following simple result is an immediate consequence of (10) and (11).
Lemma 2. Let h ∈ Λ(X) and x ∈ domh. If clh ∈ Λ(X), then

∂εh(x) = ∂clh(x)−h(x)+ε clh(x) for all ε ∈ R.

Hence ∂εh(x) �= ∅ for ε > h(x) − clh(x), and ∂εh(x) = ∅ for ε < h(x) − clh(x).
From now on, we fix the following notations. Given z ∈ X and ε > 0 we set

Fz := {L ⊂ X | L is a finite-dimensional linear subspace, with z ∈ L},

and

Tε(z) := {t ∈ T | ft(z) ≥ f(z) − ε},

where ft and f are defined as in (14).
The following lemma provides the first extension of Proposition 3 in [7] to general

locally convex spaces; [7, Prop. 3] is established in R
n using subdifferential calculus

for support functions. Here we give a direct proof, which, in particular, does not
appeal to the Fenchel linearization of the functions ft.

Lemma 3. Let ft ∈ Γ(X) for t ∈ T �= ∅ and set f := supt∈T ft. Assume that
z ∈ dom f and that ri(dom f) �= ∅, then

∂f(z) =
⋂
ε>0

cl

(
co

( ⋃
t∈Tε(z)

∂αεft(z)

)
+ Ndom f (z)

)
∀α > 0.
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Proof. Fix α > 0. Denote by A the set in the right-hand side of the above equality.
Without loss of generality (w.l.o.g.) we assume that z = θ and f(θ) = 0. Set

Tε := Tε(θ), Aε := co
(⋃

t∈Tε(z)
∂αεft(z)

)
.

Note first that, Aε ⊂ ∂(1+α)εf(θ), which together with Ndom f (θ) = (∂(1+α)εft(θ))∞,
implies that cl (Aε + Ndom f (θ)) ⊂ ∂(1+α)εf(θ). Indeed,

〈x, x∗〉 ≤ ft(x) − ft(θ) + αε(15)

≤ f(x) + (1 + α)ε ∀t ∈ Tε, ∀x∗ ∈ ∂αεft(θ), ∀x ∈ X,

whence x∗ ∈ ∂(1+α)εf(θ). Hence A ⊂ ∩ε>0∂(1+α)εf(θ) = ∂f(θ).
Let us prove now that ∂f(θ) ⊂ A. Notice that f = h∗, where h := inft∈T f∗

t ≥
f∗ ≥ 0. Moreover, for x∗ �∈ Aε and ε > 0, we have that h(x∗) ≥ (1∧α)ε := min{1, α}ε.
Indeed, if t ∈ Tε, then x∗ �∈ ∂αεft(θ), and so f∗

t (x∗) ≥ ft(θ) + f∗
t (x∗) > 〈θ, x∗〉+αε =

αε, while, for t ∈ T \Tε we have that f∗
t (x∗) ≥ 〈θ, x∗〉−ft(θ) > −f(θ)+ ε = ε. Hence

f∗
t (x∗) ≥ (1∧α)ε for every t ∈ T , and so h(x∗) ≥ (1∧α)ε. Take now x̄∗ ∈ X∗, which

is not in cl (Aε + Ndom f (θ)) for (some) ε > 0. Using a separation theorem, there exist
x̄ ∈ X and γ > 0 such that

(16) 〈x̄, x̄∗〉 > γ + 〈x̄, x∗〉 + 〈x̄, u∗〉 for all x∗ ∈ Aε and all u∗ ∈ Ndom f (θ).

It follows that x̄ ∈ (Ndom f (θ))− = cl(R+ dom f). Furthermore, note that from (15)
we get dom f ⊂ domσAε

, and so C := R+(dom f) ⊂ domσAε
= dom(σAε

− x̄∗).
Since aff C = aff(dom f) and ri(dom f) �= ∅, we have that riC �= ∅. Using Lemma 1
for σAε − x̄∗ and C we obtain that one can take x̄ ∈ dom f .

For λ ∈ ]0, 1[ we have

f(λx̄) = sup{〈λx̄, x∗〉 − h(x∗) | x∗ ∈ X∗}

= max

{
sup

x∗∈Aε

[〈λx̄, x∗〉 − h(x∗)] , sup
x∗∈X∗\Aε

[〈λx̄, x∗〉 − h(x∗)]

}
.

But, h ≥ 0 and 〈x̄, x̄∗〉 ≥ γ + σAε
(x̄) (being a consequence of (16)) allow us to write

sup
x∗∈Aε

[〈λx̄, x∗〉 − h(x∗)] ≤ sup
x∗∈Aε

〈λx̄, x∗〉 = λσAε(x̄)

≤ λ(−γ + 〈x̄, x̄∗〉) < 〈λx̄, x̄∗〉,

while the fact that h ≥ (1 ∧ α)ε on X∗ \Aε implies that

sup
x∗∈X∗\Aε

[〈λx̄, x∗〉 − h(x∗)] ≤ sup
x∗∈X∗\Aε

λ [〈x̄, x∗〉 − h(x∗)] + sup
x∗∈X∗\Aε

(1 − λ) [−h(x∗)]

≤ λh∗(x̄) − (1 − λ)(1 ∧ α)ε = λf(x̄) − (1 − λ)(1 ∧ α)ε.

Thus, since

λf(x̄) − (1 − λ)(1 ∧ α)ε < 〈λx̄, x∗〉

for λ ∈ ]0, 1[ sufficiently small, for such λ we have f(λx̄) < 〈λx̄, x∗〉, whence x∗ �∈ ∂f(θ)
because f(θ) = 0. The proof is complete.

Now we are ready to give the main result of the paper in which we establish the
formula of the subdifferential of the supremum function f defined in (14).
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Theorem 4. Let {ft | t ∈ T} be a nonempty family of convex functions ft : X →
R and set f := supt∈T ft. Assume that

cl f = sup{cl ft | t ∈ T}.

Then, for every z ∈ X, we have

∂f(z) =
⋂

L∈Fz,ε>0

cl

(
co

( ⋃
t∈Tε(z)

∂αεft(z)

)
+ NL∩dom f (z)

)
for all α > 0.

Proof. Fix α > 0 and denote by A the set in the right-hand side of the preceding
equality.

Note first that the conclusion holds if f(z) /∈ R. Indeed, if f(z) = +∞, then
∂f(z) = ∅ = NL∩dom f (z) for every L ∈ Fz, and the conclusion holds trivially (taking
into account (2)). If f(z) = −∞, then ft(z) = −∞ for all t ∈ T , and so ∂f(z) =
∂αεft(z) = ∅ for all t ∈ T and all ε > 0, and again the conclusion holds trivially.

In the rest of the proof we assume that f(z) ∈ R and so, w.l.o.g., we take z = θ
and f(θ) = 0. To simplify the writing we use the notation

Tε := Tε(θ), Aε := co
(⋃

t∈Tε
∂αεft(θ)

)
, F := Fθ.

The inclusion A ⊂ ∂f(θ) easily follows by the definition of Aε. Indeed, fix x ∈
dom f , and let L ∈ F . Then, by setting E := L + Rx we get

〈x, x∗ + u∗〉 ≤ 〈x, x∗〉 ≤ ft(x) − ft(θ) + αε ≤ f(x) + (1 + α)ε

for all t ∈ Tε, x
∗ ∈ ∂αεft(θ), and u∗ ∈ NE∩dom f (θ), whence

〈x, v∗〉 ≤ f(x) + (1 + α)ε for all v∗ ∈ cl (Aε + NE∩dom f (θ)) .

Because E ∈ F and NE∩dom f (θ) ⊂ NL∩dom f (θ), we deduce that

〈x, v∗〉 ≤ f(x) + (1 + α)ε for all ε > 0 and v∗ ∈ A.

Hence 〈x, v∗〉 ≤ f(x) − f(θ) for all x ∈ dom f and v∗ ∈ A. Therefore, A ⊂ ∂f(θ). To
prove the inclusion ∂f(θ) ⊂ A it suffices to assume that ∂f(θ) �= ∅ in which case, by
(11),

(17) ∂f(θ) = ∂ (cl f) (θ) and (cl f)(θ) = f(θ) = 0.

For this aim we shall introduce a family of functions satisfying the assumptions
of Lemma 3.

Let us set S := {t ∈ T | cl ft is not proper}. Then cl ft takes its values in
{−∞,+∞} for t ∈ S and so, because (cl ft)(θ) ≤ (cl f)(θ) = 0 for t ∈ T , we obtain
that (cl ft)(θ) = −∞ for t ∈ S; using our hypothesis we get T \ S �= ∅.

Fix L ∈ F and define the family of functions {gt | t ∈ T} ⊂ Γ(X) by

gt(x) :=

{
max{(cl ft)(x),−1} for t ∈ S,
(cl ft)(x) for t ∈ T \ S

and set

g(x) := sup{gt(x) + 〈x, x∗〉 | x∗ ∈ L⊥, t ∈ T}.



872 A. HANTOUTE, M. A. LÓPEZ, AND C. ZĂLINESCU

(Observe that g = supt∈T gt + IL.) Then, since gt ≥ cl ft for every t ∈ T , the current
assumption yields

g = sup
t∈T

gt + IL ≥ sup
t∈T

cl ft + IL = cl f + IL.

Furthermore, thanks to (17), there exists a convex neighborhood U of θ such that
(cl f)(x) > −1 for every x ∈ U . Hence for x ∈ U ∩ L we have either (cl f)(x) =
+∞ ≥ g(x) or (cl f)(x) < +∞; in this case for t ∈ S one has (cl ft)(x) = −∞, and so
gt(x) = −1 ≤ (cl f)(x), while for t ∈ T \ S one has gt(x) = (cl ft)(x) ≤ (cl f)(x). We
deduce that g(x) ≤ (cl f)(x) for x ∈ U ∩ L. Therefore,

(18) g(x) = (cl f)(x) + IL(x) for every x ∈ U.

Moreover, because L ∩ U ∩ dom f ⊂ L ∩ U ∩ dom(cl f) = U ∩ dom g, we get

(19) Ndom g(θ) ⊂ NL∩dom f (θ).

Now set

T ′
ε := {t ∈ T | gt(θ) ≥ −ε}.

Then T ′
ε ⊂ Tε \ S for ε ∈ ]0, 1[. In fact, since gt(θ) = −1 for t ∈ S, we have that

T ′
ε ⊂ T \ S. Hence, for t ∈ T ′

ε we write 0 ≥ ft(θ) ≥ (cl ft)(θ) = gt(θ) ≥ −ε, and
so t ∈ Tε. Moreover, for t ∈ T ′

ε we have that ∂αε(cl ft)(θ) ⊂ ∂(1+α)εft(θ). Indeed,
since we have ft(θ) − (cl ft)(θ) ≤ f(θ) − gt(θ) = g(θ) − gt(θ) ≤ ε, Lemma 2 yields
∂αε(cl ft)(θ) = ∂αε+ft(θ)−(cl ft)(θ)ft(θ) ⊂ ∂(1+α)εft(θ). In view of these observations
we get

(20) co

( ⋃
t∈T ′

ε

∂αεgt(θ)

)
⊂ co

( ⋃
t∈T ′

ε

∂(1+α)εft(θ)

)
for all ε ∈ ]0, 1[.

Now we go back to the proof of the inclusion ∂f(θ) ⊂ A. We apply Lemma 3
for the family {g(t,x∗) | (t, x∗) ∈ T × L⊥} ⊂ Γ(X) with g(t,x∗) := gt + x∗ and α

(this is possible because g = sup{g(t,x∗) | (t, x∗) ∈ T × L⊥} and dom g ⊂ L, and so
ri(dom g) �= ∅, L being a finite-dimensional space). We obtain

∂g(θ) =
⋂
ε>0

cl

(
co

( ⋃
t∈T ′

ε,x
∗∈L⊥

∂αε(gt + x∗)(θ)

)
+ Ndom g(θ)

)

=
⋂
ε>0

cl

(
co

( ⋃
t∈T ′

ε

∂αεgt(θ)

)
+ L⊥ + Ndom g(θ)

)
.

Then in view of the evident fact that L⊥ + NL∩dom f (θ) ⊂ NL∩dom f (θ), and using
(19) and (20), we get

∂g(θ) ⊂
⋂

ε∈]0,1[

cl

(
co

( ⋃
t∈T ′

ε

∂αεgt(θ)

)
+ NL∩dom f (θ)

)

⊂
⋂

ε∈]0,1[

cl

(
co

( ⋃
t∈Tε

∂(1+α)εft(θ)

)
+ NL∩dom f (θ)

)
.
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Hence, for each ε ∈ ]0, 1[ we obtain that, taking into account (17) and (18),

∂f(θ) ⊂ ∂(cl f)(θ) + L⊥ = ∂(cl f)(θ) + ∂IL(θ) ⊂ ∂ (cl f + IL) (θ)

= ∂g(θ) ⊂ cl

(
co

( ⋃
t∈Tε

∂(1+α)εft(θ)

)
+ NL∩dom f (θ)

)

for all ε ∈ ]0, 1[. Since δ := α
1+αε ∈ ]0, ε[ ⊂ ]0, 1[ (for ε ∈ ]0, 1[), we also have that

∂f(θ) ⊂ cl

(
co

( ⋃
t∈Tδ

∂αεft(θ)

)
+ NL∩dom f (θ)

)
⊂ cl (Aε + NL∩dom f (θ))

for all ε ∈ ]0, 1[. Since ε ∈ ]0, 1[ and L ∈ F were arbitrarily chosen, we obtain that

∂f(θ) ⊂
⋂

L∈F,ε∈]0,1[

cl (Aε + NL∩dom f (θ)) =
⋂

L∈F,ε>0

cl (Aε + NL∩dom f (θ)) = A.

The proof is complete.
Theorem 4 provides a complete description for ∂f only in terms of the data

functions ft, t ∈ T . Other descriptions will be provided in Theorem 6 below. We first
establish the following lemma, which provides a straightforward infinite-dimensional
extension of the corresponding statements in [7, Prop. 4].

Lemma 5. Let T �= ∅ and {ft | t ∈ T} ⊂ Γ(X), and set f := sup{ft | t ∈ T}.
Then, for every z ∈ dom f , we have that

Ndom f (z) = {v∗ ∈ X∗ | (v∗, 〈v∗, z〉) ∈ [co (∪t∈T gph f∗
t )]∞}(21)

= {v∗ ∈ X∗ | (v∗, 〈v∗, z〉) ∈ [co (∪t∈T epi f∗
t )]∞}(22)

= {v∗ ∈ X∗ | (v∗, 〈v∗, z〉) ∈ (epi f∗)∞}(23)

= {v∗ ∈ X∗ | (v∗, 〈v∗, z〉) ∈ epi(σdom f )} .(24)

Proof. We assume that f is proper. Statement (24) is just the definition of
Ndom f (z). As seen in Lemma 3, we have that

(inft∈T f∗
t )

∗
= supt∈T f∗∗

t = supt∈T ft = f.

Since f is proper we obtain that

f∗ = (inft∈T f∗
t )

∗∗
= co

(
inf
t∈T

f∗
t

)
,

that is, epi f∗ = co(∪t∈T epi f∗
t ); moreover, by [32, Exer. 2.23] one has (epi f∗)∞ =

epi(σdom f ). Using these two relations we get statements (22) and (23). To finish
the proof, it suffices to establish the equality between the sets appearing in the right-
hand sides of (21) and (22), say, E1(z) and E2(z), respectively, or simply the inclusion
E2(z) ⊂ E1(z), since the opposite inclusion is trivial. Indeed, because for any proper
function g : X → R one has gph g + R+(θ, 1) = epi g, we obtain that

co (∪t∈T gph f∗
t ) ⊂ cl [co (∪t∈T gph f∗

t ) + R+(θ, 1)] = co (∪t∈T epi f∗
t ) = epi f∗.

Since f∗ is proper, we have [co (∪t∈T gph f∗
t )]∞ ∩− [R+(θ, 1)]∞ = {(θ, 0)}, and so by

[30, Cor. 3.12] (see also [16, Thm. 1.1]), we obtain that co (∪t∈T gph f∗
t ) + R+(θ, 1) is

closed, whence co (∪t∈T gph f∗
t ) + R+(θ, 1) = co (∪t∈T epi f∗

t ), and

[co (∪t∈T epi f∗
t )]∞ = [co (∪t∈T gph f∗

t ) + R+(θ, 1)]∞
= [co (∪t∈T gph f∗

t )]∞ + R+(θ, 1).
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Take v∗ ∈ E2(z); using the preceding relation, (v∗, 〈v∗, z〉) = (x∗, η + λ) for some
(x∗, η) ∈ [co (∪t∈T gph f∗

t )]∞, and λ ≥ 0. Moreover, since dom f×{−1} ⊂dom (σepi f∗)

⊂ [(epi f∗)∞]
−

, we obtain that

dom f × {−1} ⊂ [(co (∪t∈T epi f∗
t ))∞]

− ⊂ [(co (∪t∈T gph f∗
t ))∞]

−
,

and so 〈(x∗, η), (z,−1)〉 ≤ 0. Since v∗ = x∗, it follows that

λ = 〈(v∗, η), (z,−1)〉 = 〈(x∗, η), (z,−1)〉 ≤ 0;

hence λ = 0, and so (v∗, 〈v∗, z〉) = (x∗, η) ∈ [co (∪t∈T gph f∗
t )]∞. This shows that

v∗ ∈ E1(z).
We have the following theorem in which, for simplicity, we suppose that ft ∈ Γ(X)

for all t ∈ T .
Theorem 6. Let T �= ∅ and {ft | t ∈ T} ⊂ Γ(X), and set f := supt∈T ft. Then,

for every z ∈ X and every α > 0, we have that

∂f(z) =
⋂

L∈Fz,ε>0

co

(
AL +

⋃
t∈Tε(z)

∂αεft(z)

)
=

⋂
L∈Fz,ε>0

co

(
BL +

⋃
t∈Tε(z)

∂αεft(z)

)
,

where

AL :=

{
v∗ ∈ X∗

∣∣∣∣(v∗, 〈v∗, z〉) ∈
[
co

(
(L⊥ × R+) ∪

( ⋃
t∈T

epi f∗
t

))]
∞

}
,

BL :=

{
v∗ ∈ X∗

∣∣∣∣(v∗, 〈v∗, z〉) ∈
[
co

(
(L⊥ × {0}) ∪

( ⋃
t∈T

gph f∗
t

))]
∞

}
.

Proof. According to Theorem 4 it suffices to write NL∩dom f (z) in terms of the data
functions ft for each L ∈ Fz. Indeed, by Lemma 5 applied to the family {ft | t ∈ T}∪
{IL} ⊂ Γ(X), we have NL∩dom f (z) = AL = BL; we used the fact that (IL)

∗
= IL⊥ ,

and so epi (IL)
∗

= epi (IL⊥) = L⊥ × R+ and gph (IL)
∗

= gph (IL⊥) = L⊥ × {0}.
In the affine case (ft affine) our formula takes a simpler form.
Corollary 7. Assume that T �= ∅ and f := sup{〈a∗t , ·〉 − βt | t ∈ T}, with

a∗t ∈ X∗ and βt ∈ R. Then, for every z ∈ X, we have that

∂f(z) =
⋂

L∈Fz,ε>0

cl (co{a∗t | t ∈ Tε(z)} + BL) ,

where Tε(z) := {t ∈ T | 〈a∗t , z〉 − βt ≥ f(z) − ε} and

BL :=
{
v∗ ∈ X∗ ∣∣ (v∗, 〈v∗, z〉) ∈

[
co

(
(L⊥ × {0}) ∪ {(a∗t , βt) | t ∈ T}

)]
∞
}
.

In particular, for a given nonempty set A ⊂ X∗, we have that

∂σA(z) =
⋂

L∈Fz,ε>0

cl
(
co(Aε) +

[
co

(
L⊥ ∪A

)]
∞ ∩ {z}⊥

)
,

where Aε := {a∗ ∈ A | 〈z, a∗〉 ≥ σA(z) − ε}.
Proof. These formulae easily follow by Theorem 6, similarly as in

[7, Prop. 1].
The following corollary gives us a simplified representation for the subdifferential

set of f when ri(dom f) �= ∅. This is also an extension of Lemma 3 when the functions
ft are not necessarily lsc.
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Corollary 8. Let {ft | t ∈ T} be a nonempty family of convex functions
ft : X → R, and set f := supt∈T ft. Assume that ri(dom f) �= ∅. Then, for every
z ∈ X and α > 0, we have that

∂f(z) =
⋂
ε>0

cl

(
co

( ⋃
t∈Tε(z)

∂αεft(z)

)
+ Ndom f (z)

)
.

Proof. The inclusion “⊃” follows immediately by Theorem 4, since we have
Ndom f (z) ⊂ NL∩dom f (z) for every L ∈ Fz. To prove the inclusion “⊂”, let α > 0 be
fixed, and let ∂f(z) �= ∅ (otherwise the inclusion is obvious). We (may) assume that
z = θ and f(θ) = 0. Then it suffices to show that ∂f(θ) ⊂ cl

(
co

(⋃
t∈Tε(θ)

∂αεft(θ)
)
+

Ndom f (θ)
)

for any given ε > 0. Let V ∈ V, that is, V is a θ–neighborhood in X∗,
and L ∈ Fθ be such that L⊥ ⊂ V. We may suppose w.l.o.g. that L ∩ ri(dom f) �= ∅,
which in particular, implies that L ∩ ri(R+ dom f) �= ∅. Using (4) we obtain that
cl (L ∩ R+ dom f) = L ∩ cl(R+ dom f); this implies that (see [32, p. 7])

NL∩dom f (θ) = (L ∩ cl(R+ dom f))− = cl(L− + (R+ dom f)−) = cl
(
L⊥ + Ndom f (θ)

)
.

So, by using once again Theorem 4 and (3), we obtain that

∂f(θ) ⊂ cl
[
co

(⋃
t∈Tε(θ)∂αεft(θ)

)
+ NL∩dom f (θ)

]
= cl

[
co

(⋃
t∈Tε(θ)∂αεft(θ)

)
+ L⊥ + Ndom f (θ)

]
⊂ co

(⋃
t∈Tε(θ)

∂αεft(θ)
)

+ Ndom f (θ) + V.

As V is an arbitrary θ–neighborhood, we get that

∂f(θ) ⊂
⋂

V ∈V

(
co

( ⋃
t∈Tε(θ)

∂αεft(θ)

)
+ Ndom f (θ) + V

)

= cl
(
co

(⋃
t∈Tε(θ)

∂αεft(θ)
)

+ Ndom f (θ)
)
,

which finishes the proof.
From a geometric point of view the closedness criterion given in Theorem 4 is

equivalent to

(25) cl

( ⋂
t∈T

epi ft

)
=

⋂
t∈T

cl (epi ft) ,

which is itself satisfied by a wide variety of convex functions as the following result
shows.

Corollary 9. Let {ft | t ∈ T} be a nonempty family of convex functions
ft : X → R, and set f := supt∈T ft. Assume that one of the following conditions
holds:

(i) All of the functions ft, with t ∈ T are lsc.
(ii) There exists x0 ∈ dom f such that ft is continuous at x0 for every t ∈ T .
(iii) T := {1, . . . , k, k + 1}, and there exists x0 ∈ ∩k+1

i=1 dom fi such that f1, . . . , fk
are continuous at x0.

(iv) X = R
n and dom f ∩ (∩t∈T ri(dom ft)) is nonempty.

Then, we have that

cl f = sup{cl ft | t ∈ T},
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and, consequently, for every z ∈ X and α > 0, it holds that

∂f(z) =
⋂

L∈Fz,ε>0

cl

(
co

( ⋃
t∈Tε(z)

∂αεft(z)

)
+ NL∩dom f (z)

)
.

Proof. Setting At := epi ft for t ∈ T and A := epi f , one has always A = ∩t∈TAt,
and we have to show that clA = ∩t∈T cl(At). The inclusion clA ⊂ ∩t∈T cl(At) being
obvious, it remains to prove that clA ⊃ ∩t∈T cl(At) in each of the following cases.

(i) It is immediate.
(ii) First observe that [31, Lem. 13] is valid even if f is not proper. Consider

μ > f(x0). Applying this result we obtain that y0 := (x0, μ) ∈
⋂

t∈T intAt.
Now if x ∈

⋂
t∈T clAt, then (1 − λ)x + λy0 ∈

⋂
t∈T intAt ⊂ A for every

λ ∈ ]0, 1[, whence x ∈ clA.

(iii) Set B :=
⋂k

t=1At. Then, similarly as in (ii), we can show that y0 := (x0, μ) ∈
Ak+1 ∩ intB. Hence

cl
(⋂

t∈TAt

)
= cl (Ak+1 ∩B) = clAk+1∩clB = clAk+1∩

(⋂k
t=1 clAt

)
=

⋂
t∈T clAt.

(iv) This is practically [22, Thm. 9.4].
Taking into account Theorem 4, the final conclusion follows.

The following result (for α = 1) is due to Volle (see, e.g., [28, Thm. A]) and is
originally established in the context of normed spaces.

Corollary 10. Let {ft | t ∈ T} be a nonempty family of convex functions
ft : X → R, and set f := supt∈T ft. Assume that f is finite and continuous at z ∈ X.
Then, we have

∂f(z) =
⋂

ε>0co
(⋃

t∈Tε(z)∂αεft(z)
)

for all α > 0.

Proof. Because f is finite and continuous at z, we have that z ∈ int(dom f), and
so Ndom f (z) = {θ}. Further, as z ∈ ∩t∈T int(dom f) Condition (ii) of Corollary 9
yields cl f = sup{cl ft | t ∈ T}. Of course, ri(dom f) = int(dom f) �= ∅, and so the
conclusion follows from Corollary 8.

In order to derive Brøndsted’s formula (Corollary 12 below) we shall need the
following result on normal cones.

Lemma 11. (i) Let g1, . . . , gk ∈ Γ(X), f ∈ Γ(Y ), and consider a continuous
affine mapping A : X → Y , where X and Y are (separated) locally convex spaces.
Then, for every z ∈ dom (g1 + · · · + gk + f ◦A) and all ε, ε1, . . . , εk > 0, we have that

Ndom(g1+···+gk+f◦A)(z) = [cl (∂ε1g1(z) + · · · + ∂εkgk(z) + A∗
0∂εf(Az))]∞ ,

where A0 is the linear part of A, and A∗
0 is the adjoint of A0.

(ii) Let {f1, . . . , fm} ⊂ Γ(X), with m ≥ 2 and 0 ≤ k ≤ m. Then, for all
z ∈

⋂
m
t=1 dom ft and all ε1, . . . , εm > 0, we have that

N∩m
t=1 dom ft(z) =

[
cl
(
∂ε1f1(z)+· · ·+∂εkfk(z)+co

(
∂εk+1

fk+1(z)∪· · ·∪∂εmfm(z)
))]

∞,

where C1 + · · · + Ck := ∅ if k = 0 and Ck+1 ∪ · · · ∪ Cm := ∅ if k = m.



SUBDIFFERENTIAL CALCULUS RULES IN CONVEX ANALYSIS 877

Proof. (i) Using (7) and (13), as well as the fact that R+(B ∩ C) = R+B ∩ R+C
when B and C are convex sets containing θ, we get that

[(cl (∂ε1g1(z) + · · · + ∂εkgk(z) + A∗
0∂εf(Az)))∞]

−

= cl(dom(σ∂ε1g1(z) + · · · + σ∂εk
gk(z) + σ∂εf(Az) ◦A0))

= cl
(
dom((g1)

′
ε1(z, ·)) ∩ · · · ∩ dom((gk)

′
εk

(z, ·)) ∩A−1
0 dom(f ′

ε(Az, ·))
)

= cl
(
R+ (dom g1 − z) ∩ · · · ∩ R+(dom gk − z) ∩A−1

0 (R+(dom f −Az))
)

= cl (R+ (dom(g1 + · · · + gk + f ◦A) − z)) ,

whence the conclusion follows using (5).
(ii) Taking f = 0 in (i) and observing that dom(g1 + · · ·+ gk) =

⋂
k
t=1 dom gt, we

get that N∩k
t=1 dom gt(z) = [cl (∂ε1g1(z) + · · · + ∂εkgk(z))]∞. The conclusion follows

now using (8).
The following result is due to Brøndsted (e.g., [2]); see also [7, Prop. 7] where

such a formula is extended to families of infinitely many convex functions defined on
R

n.
Corollary 12. Consider the convex functions fi : X → R for i = 1, . . . , k, and

set f := max{f1, . . . , fk}. Assume that

cl f = max{cl f1, . . . , cl fk}.

Given z ∈ X such that (cl f)(z) = (cl fi)(z) for i = 1, . . . , k, we have that

∂f(z) =
⋂

ε>0co
(⋃k

i=1∂εfi(z)
)
.

Proof. It suffices to establish the inclusion “⊂” in the nontrivial case ∂f(z) �= ∅.
According to (11), the function f is proper and satisfies f(z) = (cl f)(z) ∈ R and
∂f(z) = ∂ (cl f) (z). Because

(cl fi)(z) ≤ fi(z) ≤ f(z) = (cl f)(z) = (cl fi)(z),

we obtain that (cl fi)(z) = fi(z) = f(z) ∈ R for all i ∈ T := {1, . . . , k}; hence the
functions cl fi, with i ∈ T , are proper. Furthermore, using (10) we get

(26) ∂ε(cl fi)(z) = ∂εfi(z) for all ε > 0 and i ∈ T.

Fix ε > 0; it is clear that Tε(z) = T . Let V ∈ V, that is, V is a convex θ–
neighborhood in X∗, and take L ∈ Fz such that L⊥ ⊂ V (⇔ L⊥ ⊂ 1

2V ). Applying
Theorem 4 for {cl f1, . . . , cl fk} and α = 1, we have that

∂ (cl f) (z) ⊂ cl
(
co

(⋃
i∈T∂ε(cl fi)(z)

)
+ NL∩dom(cl f)(z)

)
.

But Lemma 11(ii) applied to {cl f1, . . . , cl fk, IL} implies that

NL∩dom(cl f)(z) =
[
co

(
L⊥ +

(⋃
i∈T∂ε(cl fi)(z)

))]
∞ ,

where we used the property ∂εIL(z) = L⊥. Thus, taking into account (3) and (26),
we get that

∂f(z) = ∂ (cl f) (z) ⊂ cl
(
co

(⋃
i∈T∂ε(cl fi)(z)

)
+
[
co

(
L⊥ +

(⋃
i∈T∂ε(cl fi)(z)

))]
∞
)

⊂ cl
(
co

(
L⊥ +

(⋃
i∈T∂εfi(z)

))
+
[
co

(
L⊥ +

(⋃
i∈T∂εfi(z)

))]
∞
)

= co
(
L⊥ +

(⋃
i∈T∂εfi(z)

))
= cl

(
L⊥ + co

(⋃
i∈T∂εfi(z)

))
⊂ L⊥ + co

(⋃
i∈T∂εfi(z)

)
+ 1

2V ⊂ co
(⋃

i∈T∂εfi(z)
)

+ V.
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Consequently,

∂f(z) ⊂
⋂

V ∈V
(
co

(⋃
i∈T∂εfi(z)

)
+ V

)
= co

(⋃
i∈T∂εfi(z)

)
.

Finally, the conclusion follows by taking the intersection over ε > 0.

4. Other calculus rules. Throughout this section, we consider two convex func-
tions f : Y → R and g : X → R, where X and Y are (separated) real locally convex
spaces, and a continuous affine mapping A : X → Y defined by

Ax = A0x + b,

where A0 is the linear part of A and b ∈ Y . We denote by A∗
0 the adjoint operator of

A0.
We show that our rule given in Theorem 4, providing formulas for the subdifferen-

tial of the supremum function, also gives calculus rules for other operations expressed
by means of the convex function g+f ◦A. The resulting formulas are not new, but our
aim here is to highlight the unifying character of Theorem 4, which also yields alter-
native proofs that do not rely on the commonly used approach based on conjugation
theory [23].

At the first stage, we derive in the following theorem a slight extension of the
Hiriart-Urruty–Phelps formula [11]. This allows us to express the subdifferential of
g + f ◦ A in terms of the approximate subdifferentials of f and g. For comparative
purposes, when the involved spaces X and Y are Banach, this is equivalent to writing
∂(g + f ◦ A) in terms of the subdifferentials of the data functions at nearby points
(e.g., [14], [18], and [25]).

Theorem 13. Let us consider two convex functions f : Y → R and g : X → R,
where X and Y are (separated) real locally convex spaces, and a continuous affine
mapping A : X → Y , i.e., Ax = A0x+ b, where A0 is the linear part of A and b ∈ Y .
Assume that the following holds (when it makes sense):

cl(g + f ◦A) = (cl g) + (cl f) ◦A.

Then, for every z ∈ X, we have that

∂(g + f ◦A)(z) =
⋂
ε>0

cl
(
∂εg(z) + A∗

0∂εf(Az)
)
,

where A∗
0 is the adjoint operator of A0.

Proof. Let us set ϕ := g + f ◦ A, and ψ := (cl g) + (cl f) ◦ A. The inclusion
“ ⊃ ” always holds, and consequently, it suffices to establish the opposite one when
∂ϕ(z) �= ∅. In such a case, by (11) and the current assumption, we have

(cl g) (z) + (cl f) (Az) = (clϕ) (z) = ϕ(z) = g(z) + f(Az) ∈ R,

and

(27) ∂ϕ(z) = ∂ (clϕ) (z) = ∂ ((cl g) + (cl f) ◦A) (z) = ∂ψ(z).

Hence, (cl g) (z) = g(z) ∈ R and (cl f) (Az) = f(Az) ∈ R, and so cl f ∈ Γ(Y ) and
cl g ∈ Γ(X). Furthermore, according to (10), for every ε ≥ 0, one has ∂ε (cl g) (z) =
∂εg(z) and ∂ε (cl f) (Az) = ∂εf(Az).
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Now, by the Legendre–Fenchel linearization of cl f , we write that for every x ∈ X,

ψ(x) = (cl g) (x) + (cl f) (Ax)

= (cl g) (x) + sup{〈y∗, Ax〉 − f∗(y∗) | y∗ ∈ dom f∗}
= sup{(cl g) (x) + 〈A∗

0y
∗, x〉 + 〈y∗, b〉 − f∗(y∗) | y∗ ∈ dom f∗}.

So, applying Theorem 4 (with α = 1) together with Corollary 9(i),

∂ψ(z) =
⋂

L∈Fz,ε>0

cl

(
co

( ⋃
y∗∈Tε(z)

(
∂ε(cl g)(z) + A∗

0y
∗)) + NL∩domψ(z)

)
,

where, by (12),

Tε(z) = {y∗ ∈ Y ∗ | (cl g) (z) + 〈A∗
0y

∗, z〉 + 〈y∗, b〉 − f∗(y∗) ≥ ψ(z) − ε}
= {y∗ ∈ Y ∗ | (cl f) (Az) + f∗(y∗) ≤ 〈y∗, Az〉 + ε} = ∂ε (cl f) (Az).

Hence

∂ψ(z) =
⋂

L∈Fz,ε>0

cl
(
∂ε(cl g)(z) + A∗

0∂εf(Az) + NL∩domψ(z)
)
.

Now let V ∈ V (that is, V is a convex θ–neighborhood in X∗), and let L ∈ Fz be such
that L⊥ ⊂ V . Then, for every ε > 0, from Lemma 11(i) we get

NL∩domψ(z) =
[
cl
(
∂ε(cl g)(z) + A∗

0∂ε(cl f)(Az) + L⊥)]
∞ ,

so that, by taking into account (3), (27) leads us to

∂ϕ(z) = ∂ψ(z) ⊂ cl
(
cl
(
∂ε(cl g)(z) + A∗

0∂ε (cl f) (Az) + L⊥)
+
[
cl
(
∂ε(cl g)(z) + A∗

0∂ε (cl f) (Az) + L⊥)]
∞
)

= cl
(
∂ε(cl g)(z) + A∗

0∂ε (cl f) (Az) + L⊥)
⊂ ∂ε(cl g)(z) + A∗

0∂ε (cl f) (Az) + V

= ∂εg(z) + A∗
0∂εf(Az) + V,

and consequently,

∂ϕ(z) ⊂
⋂

ε>0

⋂
V ∈V (∂εg(z) + A∗

0∂εf(Az) + V ) =
⋂

ε>0 cl (∂εg(z) + A∗
0∂εf(Az)) .

The proof is complete.
Taking f and g to be lsc in Theorem 13 we obtain the following result of Hiriart-

Urruty–Phelps [9].
Corollary 14. Let f , g, and A be as in Theorem 13. If f and g are, in addition,

lsc, then for every z ∈ X, we have that

∂(g + f ◦A)(z) =
⋂
ε>0

cl
(
∂εg(z) + A∗

0∂εf(Az)
)
.

In Corollary 16 below we derive the well-known Moreau–Rockafellar’s formula on
the sum (e.g., [19], p. 47). But, first, we need the following lemma, which gives us
information about the closure of convex functions. Its proof does not appeal to the
framework of Fenchel duality.
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Lemma 15. Let f : Y → R and g : X → R be convex functions, and A : X → Y
be a continuous affine mapping. Assume that f is finite and continuous at Ax0 for
some x0 ∈ (dom g) ∩A−1 (dom f). Then

cl(f ◦A + g) = (cl f) ◦A + (cl g).

Proof. Because cl f ≤ f , cl g ≤ g, and (cl f) ◦ A + (cl g) is lsc, one has (cl f) ◦
A + (cl g) ≤ cl (f ◦A + g). Moreover, in our hypothesis f and cl f are proper. To
establish the converse inequality it suffices to take

x ∈ (dom (cl g)) ∩A−1 (dom (cl f)) ⊂ (dom (cl g)) ∩A−1 (cl (dom f))

such that (cl (f ◦A + g))(x) > −∞.
Let us fix λ ∈ ]0, 1[ and set xλ := λx0+(1−λ)x [∈ (dom (cl g))∩A−1 (cl (dom f))].

Since Ax0 ∈ int (dom f) and Ax ∈ cl (dom f), (4) yields

Axλ = A(λx0 + (1 − λ)x) = λAx0 + (1 − λ)Ax ∈ int (dom f) ,

and so f is continuous at Axλ. Now let (xi)i∈I ⊂ X be a net which converges to x
and satisfies (cl g) (xλ) = limi g(λx0 + (1 − λ)xi). Since limi f(λAx0 + (1 − λ)Axi) =
f(Axλ) = (cl f) (Axλ), we obtain that

(cl(f ◦A + g))(xλ) ≤ lim inf
i

(
f(λAx0 + (1 − λ)Axi) + g(λx0 + (1 − λ)xi)

)
= (cl f) (λAx0 + (1 − λ)Ax) + (cl g) (xλ)

≤ λ
(
(cl f) (Ax0) + (cl g) (x0)

)
+ (1 − λ)

(
(cl f)(Ax) + (cl g) (x)

)
.

Whence, as λ ↓ 0 we get

lim inf
λ→0

(cl (f ◦A + g))(xλ) ≤ (cl f) (Ax) + (cl g) (x),

and so (cl (f ◦A + g))(x) ≤ (cl f) (Ax) + (cl g) (x). The proof is complete.
Corollary 16. Let f : Y → R and g : X → R be convex functions, and

A : X → Y be a continuous affine mapping with linear part A0. Assume that f is
finite and continuous at Ax0 for some x0 ∈ (dom g) ∩ A−1 (dom f). Then, for every
z ∈ X, we have that

∂(f ◦A + g)(z) = A∗
0∂f(Az) + ∂g(z).

Proof. It is enough to show that ∂(f ◦ A + g)(z) ⊂ A∗
0∂f(Az) + ∂g(z). Taking

into account Theorem 13 and Lemma 15, it suffices to prove that

(28)
⋂
ε>0

cl
(
A∗

0∂εf(Az) + ∂εg(z)
)
⊂ A∗

0∂f(Az) + ∂g(z)

for the nontrivial case ∂(g + f ◦ A)(z) �= ∅; hence z ∈ (dom g) ∩ A−1 (dom f) and
g(z), f(Az) ∈ R.

Indeed, for x∗ in the set from the left-hand side of (28) and for each r = 1, 2, . . . ,
there are nets (v∗i )i∈I ⊂ ∂1/rf(Az) and (u∗

i )i∈I ⊂ ∂1/rg(z) such that u∗
i +A∗

0v
∗
i → x∗;

thus we may assume that, for every i ∈ I,

〈u∗
i + A∗

0v
∗
i , z − x0〉 ≤ 〈x∗, z − x0〉 + 1.
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Since u∗
i ∈ ∂1/rg(z) and r ≥ 1, this implies that

〈v∗i , Az −Ax0〉 ≤ 〈u∗
i , x0 − z〉 + 〈x∗, z − x0〉 + 1 ≤ g(x0) − g(z) + 〈x∗, z − x0〉 + 2.

Because f is continuous at Ax0, there exists a symmetric θ–neighborhood U ⊂ Y
such that supy∈U f(y + Ax0) ≤ f(Ax0) + 1. Hence, for all y ∈ U ,

〈v∗i , y〉 = 〈v∗i , Az −Ax0〉 + 〈v∗i , y + Ax0 −Az〉
≤ 〈v∗i , Az −Ax0〉 + f(y + Ax0) − f(Az) + 1

≤ g(x0) − g(z) + 〈x∗, z − x0〉 + f(Ax0) − f(Az) + 4 ≤ μ

for some μ > 0. This shows that inf{〈v∗i , y〉 | y ∈ U} ≥ −μ, and so (v∗i )i∈I ⊂ (μ−1U)◦.
Hence, by Alaoglu–Bourbaki’s Theorem we may suppose w.l.o.g. that (v∗i )i∈I and
(u∗

i )i∈I w∗–converge to some v∗r ∈ ∂1/rf(Az) ∩ (μ−1U)◦ and u∗
r ∈ ∂1/rg(z), respec-

tively, and so x∗ = u∗
r +A∗

0v
∗
r . By the same argument we may suppose that (v∗r )r and

(u∗
r)r also w∗–converge to some v∗ ∈ ∂f(Az) and u∗ ∈ ∂g(z) and x∗ = u∗ + A∗

0v
∗ ∈

∂g(z) + A∗
0∂f(Az). The proof is complete.

Concluding remarks. (1) The preceding proof still works under more general
regularity conditions, as those studied in Theorem 2.8.3 of [32].

(2) It should be noted that Lemma 5 can be easily deduced from Corollary 2.6.3
of [32], which is itself an extension of Corollary 14.

(3) Our main result in section 3 gives the formula for the subdifferential of
the pointwise supremum f := supt∈T ft of an arbitrary family of convex functions
ft : X → R, t ∈ T . An important special case, which commonly appears in applica-
tions, corresponds to the so-called continuous model (e.g., [13], [24], and [32, Thm.
2.4.18]); see also [6]. There, the index set T is a (separated) compact space, and the
parametrized mappings t → ft(x) are upper semicontinuous for every x ∈ X. Such
a situation is intermediate between the finite ([29]) and the general cases, and it is
approached in a forthcoming paper.

(4) For further examples (in R
n) in relation with our formula given in Theorem

4, the reader is addressed to references [6] and [7].
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A CLASS OF INTERIOR PROXIMAL-LIKE ALGORITHMS FOR
CONVEX SECOND-ORDER CONE PROGRAMMING∗

SHAOHUA PAN† AND JEIN-SHAN CHEN‡

Abstract. We propose a class of interior proximal-like algorithms for the second-order cone
program, which is to minimize a closed proper convex function subject to general second-order
cone constraints. The class of methods uses a distance measure generated by a twice continuously
differentiable strictly convex function on (0,+∞), and includes as a special case the entropy-like
proximal algorithm [Eggermont, Linear Algebra Appl., 130 (1990), pp. 25–42], which was originally
proposed for minimizing a convex function subject to nonnegative constraints. Particularly, we
consider an approximate version of these methods, allowing the inexact solution of subproblems. Like
the entropy-like proximal algorithm for convex programming with nonnegative constraints, we, under
some mild assumptions, establish the global convergence expressed in terms of the objective values for
the proposed algorithm, and we show that the sequence generated is bounded, and every accumulation
point is a solution of the considered problem. Preliminary numerical results are reported for two
approximate entropy-like proximal algorithms, and numerical comparisons are also made with the
merit function approach [Chen and Tseng, Math. Program., 104 (2005), pp. 293–327], which verify
the effectiveness of the proposed method.

Key words. proximal method, measure of distance, second-order cone, second-order cone-
convexity
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1. Introduction. We consider the following convex second-order cone program-
ming (CSOCP):

min f(ζ)
subject to (s.t.) Aζ + b �K 0,

(1)

where f : R
m → (−∞,+∞] is a closed proper convex function; A is an n×m matrix,

with n ≥ m; b is a vector in R
n; x �K 0 means x ∈ K; and K is the Cartesian product

of second-order cones (SOCs), also called Lorentz cones [14]. In other words,

K = Kn1 ×Kn2 × · · · × KnN ,(2)

where N,n1, . . . , nN ≥ 1, n1 + n2 + · · · + nN = n, and

Kni :=
{
(x1, x2) ∈ R × R

ni−1 | x1 ≥ ‖x2‖
}
,

with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative reals
R+. The CSOCP, as an extension of the standard second-order cone programming,
has a wide range of applications from engineering, control, and finance to robust
optimization and combinatorial optimization; see [1, 21, 23] and references therein.
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Recently, the second-order cone programming (SOCP) and the SOC complemen-
tarity problem have received much attention in optimization. There exist many meth-
ods for solving the CSOCP, including the smoothing methods [10, 15], the smoothing-
regularization method [17], the semismooth Newton method [22], and the merit func-
tion approach [8]. All of these methods are proposed by using some SOC comple-
mentarity function or merit function to reformulate the KKT optimality conditions of
the CSOCP as a nonsmooth (or smoothing) system of equations or an unconstrained
minimization problem. Notice that the CSOCP is a typical convex programming prob-
lem which has extensive applications. But, to the best of our knowledge, there are
few convex programming methods developed for (or extended to) the CSOCP except
the interior point method [33]. Hence, it is worthy to explore other types of convex
programming methods for the CSOCP which are different from the aforementioned
methods.

One such method is the proximal point algorithm for minimizing a convex function
f(ζ) over R

m, which generates a sequence {ζk} by the following iterative scheme:

ζk = argmin
ζ∈Rm

{
f(ζ) +

1

2μk
‖ζ − ζk−1‖2

}
,(3)

where μk is a sequence of positive numbers. The method was originally introduced by
Martinet [24] with the Moreau proximal approximation of f (see [25]), and then further
developed by Rockafellar [30, 31]. Later, some researchers [5, 13, 32] proposed and
studied nonquadratic proximal point algorithms by replacing the quadratic distance
in (3) with a Bregman distance or an entropy-like distance.

The entropy-like proximal algorithm was designed for minimizing a convex func-
tion f(ζ) subject to nonnegative constraints ζ ≥ 0. In [12], Eggermont first introduced
the Kullback–Leibler relative entropy, defined by

1d(ζ, ξ) =

m∑
i=1

ζi ln(ζi/ξi) + ζi − ξi ∀ζ ≥ 0, ξ > 0,

and established the following entropy-like proximal point algorithm:{
ζ0 > 0,

ζk = argmin
ζ>0

{
f(ζ) + μk

−1d(ζk−1, ζ)
}
.(4)

Later, Teboulle [32] proposed to replace the usual Kullback–Leibler relative entropy
with a new type of distance-like function, called ϕ-divergence, to define the entropy-
like proximal map. Let ϕ : R → (−∞,+∞] be a closed proper convex function
satisfying certain conditions (see [18, 32]). The ϕ-divergence induced by ϕ is defined
as

dϕ(ζ, ξ) :=

m∑
i=1

ξiϕ(ζi/ξi).(5)

Based on the ϕ-divergence, Isume et al. [18, 19] generalized Eggermont’s algorithm as{
ζ0 > 0,

ζk = argmin
ζ>0

{
f(ζ) + μk

−1dϕ(ζ, ζk−1)
}
,(6)

1The convention of 0 ln 0 = 0 is used throughout this paper.
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and they obtained the convergence theorems under weaker assumptions. Clearly,
when

ϕ(t) = − ln t + t− 1 (t > 0),

we have that dϕ(ζ, ξ) = d(ξ, ζ), and consequently the algorithm reduces to Egger-
mont’s.

Observing that the proximal-like algorithm (6) associated with ϕ(t) = − ln t+t−1
inherits the features of the interior point method as well as the proximal point method,
Auslender [2] extended the algorithm to general linearly constrained convex minimiza-
tion problems and variational inequalities on polyhedra. Then, is it possible to extend
the algorithm to nonpolyhedra symmetric conic optimization problems and establish
the corresponding convergence results? In this paper, we will explore its extension
to the setting of SOCs and establish a class of interior proximal-like algorithms for
the CSOCP. We should mention that the algorithm (6) with the entropy function
t ln t− t + 1 (t ≥ 0) was recently extended to convex semidefinite programming [11].

For simplicity, in the rest of this paper, we focus on the case where K = Kn. All
of the analysis can be carried over to the general case where K has the direct product
structure as (2). It is known that Kn is a closed convex cone with the interior given
by

int(Kn) :=
{
(x1, x2) ∈ R × R

n−1 | x1 > ‖x2‖
}
.

For any x, y in R
n, we write x �Kn y if x−y ∈ Kn; and write x 	Kn y if x−y ∈ int(Kn).

In other words, we have that x �Kn 0 if and only if x ∈ Kn and x 	Kn 0 if and only
if x ∈ int(Kn). We denote F by the constraint set of the CSOCP, i.e.,

F :=
{
ζ ∈ R

m | Aζ + b �Kn 0
}
.(7)

It is not difficult to verify that F is convex, and its interior int(F) is given by

int(F) :=
{
ζ ∈ R

m | Aζ + b 	Kn 0
}
.

The proximal-like algorithm that we propose for the CSOCP is defined as follows:{
ζ0 ∈ int(F),

ζk = argmin
ζ∈int(F)

{
f(ζ) + μ−1

k D(Aζ + b, Aζk−1 + b)
}
,(8)

where D : R
n × R

n → (−∞,+∞] is a closed proper convex function generated by
a class of twice continuously differentiable strictly convex functions on (0,+∞), and
the specific expression is given in section 3. The class of distance measures, as will
be shown in section 3, includes as a special case the natural extension of dϕ(x, y),
with ϕ(t) = − ln t + t − 1 to the SOCs. For the proximal-like algorithm (8), we par-
ticularly consider an approximate version which allows an inexact minimization of
the subproblem (8) and establish its global convergence results under some mild as-
sumptions. Numerical results are reported for two approximate entropy-like proximal
algorithms, which verify the effectiveness of the proximal method proposed. In ad-
dition, numerical comparisons with the merit function approach [8] indicate that the
condition number of the Hessian matrix ∇2f(ζ) has a great influence on the numerical
performance of the proximal-like algorithm and the merit function approach, but the
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former seems to have no direct relation with the dense degree of test problems, but
the latter tends to more function evaluations as the density increases.

The outline of this paper is as follows. In section 2, we review some basic con-
cepts and properties associated with SOCs. In section 3, we state the definition of
D(x, y) and present some specific examples. Some favorable properties of D(x, y)
are investigated in section 4. In section 5, we describe an approximate proximal-like
algorithm allowing inexact minimization in (8) and establish the global convergence
of the algorithm. In section 6, we report our numerical experiences for the proposed
proximal-like algorithm by solving some convex SOCPs. Finally, we conclude this
paper in section 7.

Throughout this paper, I represents an identity matrix of suitable dimension,
and R

n denotes the space of n-dimensional real column vectors. For a differentiable
function h on R, we denote h′, h′′, and h′′′ by its first, second, and third derivative,
respectively. Given a set S, we denote S̄, int(S), and bd(S) by the closure, the interior
and the boundary of S, respectively. Note that a function is closed if and only if it is
lower semicontinuous, and a function is proper if f(ζ) < ∞ for at least one ζ ∈ R

m and
f(ζ) > −∞ for all ζ ∈ R

m. For a closed proper convex function f : R
m → (−∞,+∞],

we denote its domain by domf := { ζ ∈ R
m | f(ζ) < ∞} and the subdifferential of f

at ζ̂ by

∂f(ζ̂) :=
{
w ∈ R

m | f(ζ) ≥ f(ζ̂) + 〈w, ζ − ζ̂〉 ∀ζ ∈ R
m
}
.

If f is differentiable at ζ, the notation ∇f(ζ) represents the gradient at ζ of f .

2. Preliminaries. This section recalls some basic concepts and preliminary re-
sults related to SOCs that will be used in the subsequent analysis. For any x =
(x1, x2) ∈ R × R

n−1 and y = (y1, y2) ∈ R × R
n−1, we define their Jordan product as

x ◦ y := (〈x, y〉, y1x2 + x1y2).(9)

We write x2 to mean x◦x and write x+ y to mean the usual componentwise addition
of vectors. Then ◦, +, and e = (1, 0, . . . , 0)T ∈ R

n have the following basic properties
(see [14, 15]): (1) e ◦ x = x for all x ∈ R

n. (2) x ◦ y = y ◦ x for all x, y ∈ R
n. (3)

x◦(x2◦y) = x2◦(x◦y) for all x, y ∈ R
n. (4) (x+y)◦z = x◦z+y◦z for all x, y, z ∈ R

n.
The Jordan product is not associative. For example, for n = 3, let x = (1,−1, 1) and
y = z = (1, 0, 1), then we have that (x ◦ y) ◦ z = (4,−1, 4) �= x ◦ (y ◦ z) = (4,−2, 4).
However, it is power associated, i.e., x ◦ (x ◦ x) = (x ◦ x) ◦ x for all x ∈ R

n. Thus,
we may, without fear of ambiguity, write xm for the product of m copies of x and
xm+n = xm ◦ xn for all positive integers m and n. We stipulate that x0 = e. Besides,
Kn is not closed under Jordan product. For example, x = (1, 1, 0), y = (2,−1, 3) ∈ Kn,
but x ◦ y = (1, 1, 3) �∈ Kn.

For each x = (x1, x2) ∈ R×R
n−1, the determinant and the trace of x are defined

by

det(x) = x2
1 − ‖x2‖2, tr(x) = 2x1.(10)

In general, det(x ◦ y) �= det(x) det(y) unless x2 = αy2 for some α ∈ R. A vector
x = (x1, x2) ∈ R × R

n−1 is said to be invertible if det(x) �= 0. If x is invertible, then
there exists a unique y = (y1, y2) ∈ R × R

n−1 satisfying x ◦ y = y ◦ x = e. We call
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this y the inverse of x and denote it by x−1. In fact, we have that

x−1 =
1

x2
1 − ‖x2‖2

(x1,−x2) =
1

det(x)
(tr(x)e− x).(11)

Hence, x ∈ int(Kn) if and only if x−1 ∈ int(Kn), and (xk)−1 is well-defined if x ∈
int(Kn).

In the following, we recall from [15] that each x = (x1, x2) ∈ R × R
n−1 admits a

spectral factorization associated with Kn of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x ,

where λi(x) and u
(i)
x for i = 1, 2 are the spectral values and the associated spectral

vectors of x, respectively, given by

λi(x) = x1 + (−1)i‖x2‖,

u(i)
x =

⎧⎪⎨
⎪⎩

1

2

(
1, (−1)i

x2

‖x2‖

)
if x2 �= 0;

1

2

(
1, (−1)ix̄2

)
if x2 = 0,

(12)

with x̄2 being any vector in R
n−1 such that ‖x̄2‖ = 1. If x2 �= 0, then the factorization

is unique. The spectral decomposition along with the Jordan algebra associated with
SOC has some basic properties, whose proofs can be found in [14, 15]. Here, we list
four of them that will often be used in the subsequent sections.

Property 2.1. For any x = (x1, x2) ∈ R × R
n−1 with the spectral values

λ1(x), λ2(x) and spectral vectors u
(1)
x , u

(2)
x given as in (12), the following results hold:

(a) u
(1)
x and u

(2)
x are orthogonal under Jordan product and have length 1/

√
2, i.e.,

u(1)
x ◦ u(2)

x = 0, ‖u(1)
x ‖ = ‖u(2)

x ‖ = 1/
√

2.

(b) u
(1)
x and u

(2)
x are idempotent under Jordan product, i.e., u

(i)
x ◦ u(i)

x = u
(i)
x for

i = 1, 2.
(c) The determinant, the trace, and the Euclidean norm of x can be denoted by

λ1(x), λ2(x):

det(x) = λ1(x)λ2(x), tr(x) = λ1(x) + λ2(x), ‖x‖2 =
[λ1(x)]2 + [λ2(x)]2

2
.

(d) λ1(x) are nonnegative (positive) if and only if x ∈ Kn (x ∈ int(Kn)).
Lemma 2.1.

(a) For any x ∈ R
n, x �Kn 0 ⇐⇒ 〈x, y〉 ≥ 0 for any y �Kn 0.

(b) For any x ∈ R
n, x 	Kn 0 ⇐⇒ 〈x, y〉 > 0 for any y �Kn 0 and y �= 0.

(c) For any x, y ∈ R
n, let λi(x) and λi(y) for i = 1, 2 be their spectral values.

Then,

λ1(x)λ2(y) + λ2(x)λ1(y) ≤ tr(x ◦ y) ≤ λ1(x)λ1(y) + λ2(x)λ2(y).

Proof. Part (a) is direct by the self-duality of Kn, and we next consider parts (b)
and (c).

(b) Let x = (x1, x2), y = (y1, y2) ∈ R × R
n−1. The necessity follows from

〈x, y〉 = x1y1 + xT
2 y2 ≥ x1y1 − ‖x2‖‖y2‖ ≥ x1y1 − y1‖x2‖ = y1(x1 − ‖x2‖) > 0,
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where the first inequality is by Cauchy–Schwartz, the second is due to y �Kn 0, and
the third is since x 	Kn 0 and y �= 0, y �Kn 0. Next, we prove the sufficiency. First,
from 〈x, y〉 > 0 for any y �Kn 0 and y �= 0, we deduce that x1 > 0 by setting y = e.
If x2 = 0, then the conclusion follows. If x2 �= 0, then we set y = (1,− x2

‖x2‖ ). Clearly,

y �Kn 0, y �= 0, and 0 < 〈x, y〉 = x1 − ‖x2‖ = λ1(x). By Property 2.1 (d), we then
have x 	Kn 0.

(c) For any x = (x1, x2), y = (y1, y2) ∈ R × R
n−1, by (12) we can compute that

λ1(x)λ2(y) + λ2(x)λ1(y) = 2x1y1 − 2‖x2‖‖y2‖ ≤ 2(x1y1 + xT
2 y2) = tr(x ◦ y),

λ1(x)λ1(y) + λ2(x)λ2(y) = 2x1y1 + 2‖x2‖‖y2‖ ≥ 2(x1y1 + xT
2 y2) = tr(x ◦ y) .

Combining with the two inequalities above then yields the desired result.
For any h : R → R, the following vector-valued function was considered in [6, 15]:

hsoc(x) = h[λ1(x)] · u(1)
x + h[λ2(x)] · u(2)

x ∀x = (x1, x2) ∈ R × R
n−1.(13)

If h is defined only on a subset of R, then hsoc is defined on the corresponding subset
of R

n. The definition in (13) is unambiguous whether x2 �= 0 or x2 = 0. For the
vector-valued function hsoc induced by h, we have the following results.

Lemma 2.2. Given a function h : IR → R, let hsoc : S → R
n be the vector-valued

function induced by h as in (13), where IR ⊆ R and S ⊆ R
n. Then, the following

results hold:
(a) For any x ∈ S, λi[h

soc(x)] = h[λi(x)] for i = 1, 2 and tr[hsoc(x)] =∑2
i=1 h[λi(x)].

(b) If h is continuously differentiable on IR, then hsoc is continuously differen-
tiable on the set S, and its transposed Jacobian at x = (x1, x2) ∈ S is given
by the formula

∇hsoc(x) = h′(x1)I(14)

if x2 = 0, and otherwise

∇hsoc(x) =

⎡
⎢⎢⎣

b c
xT

2

‖x2‖
c

x2

‖x2‖
aI + (b− a)

x2x
T
2

‖x2‖2

⎤
⎥⎥⎦ ,(15)

where

a =
h[λ2(x)] − h[λ1(x)]

λ2(x) − λ1(x)
, b =

h′[λ2(x)] + h′[λ1(x)]

2
, c =

h′[λ2(x)] − h′[λ1(x)]

2
.

(c) If h is continuously differentiable on IR, then tr[hsoc(x)] is continuously dif-
ferentiable on the set S, and its gradient ∇tr[hsoc(x)] = 2∇hsoc(x) · e =
2(h′)soc(x).

(d) If h is (strictly) convex on IR, then tr[hsoc(x)] is (strictly) convex on the set
S.

Proof. (a) The proof is direct by the definition of hsoc and the spectral value.
(b) The conclusion follows directly from [15, Propostion 5.2] or [6, Proposition 4].
(c) Since tr[hsoc(x)] = 2〈hsoc(x), e〉, by part (b) tr[hsoc(x)] is obviously continu-

ously differentiable. Applying the chain rule for the inner product of two functions
yields

∇tr[hsoc(x)] = 2∇hsoc(x) · e,
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where ∇hsoc(x) is given by (14)–(15). By a simple computation, it is easy to verify
that

∇hsoc(x) · e = h′[λ1(x)]u(1)
x + h′[λ2(x)]u(2)

x = (h′)soc(x).

Combining the last two equalities immediately gives the second part of the conclusions.
(d) The proof is similar to that of [26, Lemma 3.2 (d)], and so we omit it.
To close this section, we review the definition of SOC-convexity and SOC-mono-

tonicity. The two concepts, such as the matrix-convexity and the matrix-monotonicity
in the semidefinite programming, play an important role in the solution methods of
SOCPs.

Definition 2.1 (see [7]). Given a function h : IR → R, let hsoc : S → R
n be the

vector-valued function defined as in (13), where IR ⊆ R and S ⊆ R
n. Then,

(a) h is said to be SOC-monotone of order n on IR if for any x, y ∈ S,

x �Kn y =⇒ hsoc(x) �Kn hsoc(y).

(b) h is said to be SOC-convex of order n on IR if for any x, y ∈ S and 0 ≤ β ≤ 1,

hsoc
(
βx + (1 − β)y

)
�Kn βhsoc(x) + (1 − β)hsoc(y).(16)

We say that h is SOC-convex (respectively, SOC-monotone) on IR if h is SOC-convex
of all order n (respectively, SOC-monotone of all order n) on IR. A function h is said
to be SOC-concave on IR whenever −h is SOC-convex on IR. When h is continuous
on IR, the condition in (16) can be replaced by the more special condition:

hsoc

(
x + y

2

)
�Kn

1

2

(
hsoc(x) + hsoc(y)

)
.(17)

Obviously, the set of SOC-monotone functions and the set of SOC-convex functions
are both closed under positive linear combinations and under pointwise limits.

3. Distance-like functions in SOCs. In this section, we present the definition
of the distance-like function D(x, y) involved in the proximal-like algorithm (8) and
some specific examples. Let φ : R → (−∞,+∞] be a closed proper convex function
with domφ = [0,+∞) and assume that

(C.1) φ is strictly convex on its domain.
(C.2) φ is twice continuously differentiable on int(domφ), with limt→0+ φ′′(t) =

+∞.
(C.3) φ′(t)t− φ(t) is convex on int(domφ).
(C.4) φ′ is SOC-concave on int(domφ).

In what follows, we denote by Φ the class of functions satisfying Conditions C.1–C.4.
Given a φ ∈ Φ, let φsoc and (φ′)soc be the vector-valued function given as in (13).

We define D(x, y) involved in the proximal-like algorithm (8) by

D(x, y) :=

{
tr
[
φsoc(y) − φsoc(x) − (φ′)soc(x) ◦ (y − x)

]
∀x ∈ int(Kn), y ∈ Kn,

+∞ otherwise.
(18)
The function, as will be shown in the next section, possesses some favorable properties.
Particularly, D(x, y) ≥ 0 for any x, y ∈ int(Kn), and D(x, y) = 0 if and only if x = y.
Hence, D(x, y) can be used to measure the distance between the two points in int(Kn).
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In the following, we concentrate on the examples of the distance-like function
D(x, y). For this purpose, we first give another characterization for Condition C.3.

Lemma 3.1. Let φ : R → (−∞,+∞] be a closed proper function with domφ =
[0,+∞). If φ is thrice continuously differentiable on int(domφ), then φ satisfies Con-
dition C.3 if and only if its derivative function φ′ is exponentially convex,2 or

φ′(t1t2) ≤
1

2

(
φ′(t21) + φ′(t22)

)
∀t1, t2 > 0.(19)

Proof. Since the function φ is thrice continuously differentiable on int(domφ), φ
satisfies Condition C.3 if and only if

φ′′(t) + tφ′′′(t) ≥ 0 (∀t > 0).

Observe that the inequality is also equivalent to

tφ′′(t) + t2φ′′′(t) ≥ 0 (∀t > 0),

and hence substituting by t = exp(θ) for θ ∈ R into the inequality yields that

exp(θ)φ′′(exp(θ)) + exp(2θ)φ′′′(exp(θ)) ≥ 0 ∀θ ∈ R.

Since the left-hand side of this inequality is exactly [φ′(exp(θ))]′′, it means that
φ′(exp(·)) is convex on R. Consequently, the first part of the conclusions follows.

Note that the convexity of φ′(exp(·)) on R is equivalent to saying, for any θ1, θ2 ∈
R,

φ′(exp(rθ1 + (1 − r)θ2)) ≤ rφ′(exp(θ1)) + (1 − r)φ′(exp(θ2)), r ∈ [0, 1],

which, by letting t1 = exp(θ1) and t2 = exp(θ2), can be rewritten as

φ′(tr1t
1−r
2 ) ≤ rφ′(t1) + (1 − r)φ′(t2) ∀t1, t2 > 0 and r ∈ [0, 1].

This is clearly equivalent to the statement in (19) due to the continuity of φ′.
Remark 3.1. The exponential convexity was also used in the definition of the

self-regular function [27] in which the authors denote Ω by the set of functions whose
elements are twice continuously differentiable and exponentially convex on (0,+∞).

By Lemma 3.1, clearly, if h ∈ Ω, then the function
∫ t

0
h(θ)dθ necessarily satisfies

Condition C.3. For example, ln t belongs to Ω, and so
∫ t

0
ln θdθ = t ln t satisfies

Condition C.3.
For the characterizations of the SOC-concavity, interested readers may refer to

[7, 9]. Here, we present a lemma which states that the composition of two SOC-
concave functions is SOC-concave under some conditions. By this lemma, we may
conveniently obtain some new SOC-concave functions from the existing ones.

Lemma 3.2. Let g : JR → R and h : IR → JR, where JR ⊆ R and IR ⊆ R. If g
is SOC-concave and SOC-monotone on JR and h is SOC-concave on IR, then their
composition g(h(·)) is also SOC-concave on IR. If, in addition, h is SOC-monotone
on IR, then g(h(·)) is also SOC-monotone on IR.

Proof. For the sake of notation, let gsoc : Ŝ → R
n and hsoc : S → Ŝ be the vector-

valued functions associated with g and h, respectively, where S ⊆ R
n and Ŝ ⊆ R

n.

2Which means the function φ′(exp(·)) : R → R is convex on R,
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Define ĝ(t) = g(h(t)). Then, for any x ∈ S, it follows from (11) and (13) that

gsoc(hsoc(x)) = gsoc
[
h(λ1(x))u(1)

x + h(λ2(x))u(2)
x

]
= g[h(λ1(x))]u(1)

x + g[h(λ2(x))]u(2)
x

= ĝsoc(x).(20)

We next prove that ĝ(t) is SOC-concave on IR. For any x, y ∈ S and 0 ≤ β ≤ 1, from
the SOC-concavity of h(t) it follows that

hsoc(βx + (1 − β)y) �Kn βhsoc(x) + (1 − β)hsoc(y).

Using the SOC-monotonicity and SOC-concavity of g, we then obtain that

gsoc
[
hsoc(βx + (1 − β)y)

]
�Kn gsoc

[
βhsoc(x) + (1 − β)hsoc(y)

]
�Kn βgsoc[hsoc(x)] + (1 − β)gsoc[hsoc(y)].

This together with (20) implies that for any x, y ∈ S and 0 ≤ β ≤ 1,

ĝsoc
(
βx + (1 − β)y

)
�Kn βĝsoc(x) + (1 − β)ĝsoc(y).

Consequently, the function ĝ(t), i.e., g(h(·)) is SOC-concave on IR. The second part
of the conclusions is obvious.

Proposition 3.1. (a) The function h(t) = tr, with 0 ≤ r ≤ 1 is both SOC-
concave and SOC-monotone on [0,+∞).

(b) h(t) = −t−r, with 0 ≤ r ≤ 1 is SOC-concave and SOC-monotone on (0,+∞).
(c) For all u ≤ 0, h(t) = 1

u−t is SOC-concave as well as SOC-monotone on
(0,+∞).

(d) The function ln t is SOC-concave and SOC-monotone on (0,+∞).
Proof. (a) The proof has been given by [7, Proposition 3.7], and we here omit it.
(b) The conclusion follows directly from [9, Corollary 4.2].

(c) Let g(t) = −1/t and ĥ(t) = t − u. Then, h(t) = 1/(u − t) is exactly the

composition of the two functions, i.e., h(t) = g(ĥ(t)). From part (b), g(t) is SOC-

monotone and SOC-concave on (0,+∞); whereas by [7, Proposition 3.1 (b)] ĥ(t) is
SOC-monotone and SOC-concave on (0,+∞). Thus, applying Lemma 3.2, we readily
obtain the conclusion.

(d) The proof can be found in [9]. In view of the importance of ln t, we here
present a different proof by following the same line as [3]. Noting that

ln t =

∫ 0

−∞

[
1

u− t
− u

u2 + 1

]
du (t > 0),

we have for any x ∈ int(Kn) that

lnx =

∫ 0

−∞

[
(ue− x)−1 − u

u2 + 1
e

]
du.(21)

For any x = (x1, x2), y = (y1, y2) ∈ int(Kn) and any 0 ≤ β ≤ 1, let

w = ln(βx + (1 − β)y) − β lnx− (1 − β) ln y.
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Then, by the definition of SOC-concavity, proving the SOC-concavity of ln t on
(0,+∞) is equivalent to showing that w ∈ Kn. From (21) and (11), it follows that

w =

∫ 0

−∞

[
(ue− βx− (1 − β)y)−1 − β(ue− x)−1 − (1 − β)(ue− y)−1

]
du

=

⎛
⎜⎜⎝

∫ 0

−∞

[
u− βx1 − (1 − β)y1

det(ue− βx− (1 − β)y)
− β(u− x1)

det(ue− x)
− (1 − β)(u− y1)

det(ue− y)

]
du∫ 0

−∞

[
βx2 + (1 − β)y2

det(ue− βx− (1 − β)y)
− βx2

det(ue− x)
− (1 − β)y2

det(ue− y)

]
du

⎞
⎟⎟⎠

:=

(
w1

w2

)
,

where w1 ∈ R and w2 ∈ R
n−1. However, by Proposition 3.1 (c) and Definition 2.1,(

ue− βx− (1 − β)y
)−1

− β(ue− x)−1 − (1 − β)(ue− y)−1 ∈ Kn,

which implies that

u− βx1 − (1 − β)y1

det(ue− βx− (1 − β)y)
− β(u− x1)

det(ue− x)
− (1 − β)(u− y1)

det(ue− y)
≥ 0

and ∥∥∥∥ βx2 + (1 − β)y2

det(ue− βx− (1 − β)y)
− βx2

det(ue− x)
− (1 − β)y2

det(ue− y)

∥∥∥∥
≤ u− βx1 − (1 − β)y1

det(ue− βx− (1 − β)y)
− β(u− x1)

det(ue− x)
− (1 − β)(u− y1)

det(ue− y)
.

As a consequence,

w1 =

∫ 0

−∞

[
u− βx1 − (1 − β)y1

det(ue− βx− (1 − β)y)
− β(u− x1)

det(ue− x)
− (1 − β)(u− y1)

det(ue− y)

]
du

≥ 0

and

‖w2‖ ≤
∫ 0

−∞

∥∥∥∥
[

βx2 + (1 − β)y2

det(ue− βx− (1 − β)y)
− βx2

det(ue− x)
− (1 − β)y2

det(ue− y)

]∥∥∥∥ du
≤

∫ 0

−∞

[
u− βx1 − (1 − β)y1

det(ue− βx− (1 − β)y)
− β(u− x1)

det(ue− x)
− (1 − β)(u− y1)

det(ue− y)

]
du

= w1.

This shows that w ∈ Kn, and consequently ln t is SOC-concave on (0,+∞). By a
similar argument, we can prove that ln t is SOC-monotone on (0,+∞).

From Lemma 3.2 and Proposition 3.1, we may obtain the following corollary,
which particularly shows that the modified logarithmic barrier function is SOC-
concave.

Corollary 3.1. (a) The modified logarithmic barrier function ln(α+t) for α > 0
is both SOC-concave and SOC-monotone on (−α,+∞).

(b) For any α > 0 and β > 0, the functions ln(α + βtr), with 0 ≤ r ≤ 1 are
SOC-concave and SOC-monotone on [0,+∞).
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(c) For any u > 0, the functions t
u+t are SOC-concave and SOC-monotone on

(0,+∞).
(d) For all u > 0, the functions −1√

u+t
are SOC-concave and SOC-monotone on

(−u,+∞).
Proof. (a) The proof is due to Proposition 3.1(d), [7, Proposition 3.1], and Lemma

3.2 by letting g : (0,+∞) → R be g(t) = ln t, and h : (−a,+∞) → (0,+∞) be
h(t) = a + t.

(b) Let g : (0,+∞) → R be g(t) = ln t, and h : (0,+∞) → (0,+∞) be h(t) = a+
βtr. The result follows from Proposition 3.1(a), Proposition 3.1(d), and Lemma 3.2.

(c) Let g : (−1, 0) → (0, 1) be g(t) = 1 + t, and h : (0,+∞) → (−1, 0) be
h(t) = −u/(u+t). Then, we obtain the result from Proposition 3.1(c), [7, Proposition
3.1], and Lemma 3.2. The result also extends the conclusion of [7, Proposition 3.4].

(d) Let g : (0,+∞) → (0,+∞) be g(t) =
√
t, and h : (−u,+∞) → (0,+∞) be

h(t) = u+ t. Then, from Lemma 3.2 it follows that g(h(t)) =
√
u + t is SOC-concave

and SOC-monotone on (−u,+∞). Using Lemma 3.2 again with g(t) = −1/t and
h(t) =

√
u + t, we obtain the desired result.

Now we present serval examples of D(x, y) to close this section. From these
examples, we may see that the conditions required by φ ∈ Φ are not so strict, and the
construction of the distance-like functions in SOCs can be completed by selecting a
class of single variate convex functions.

Example 3.1. Let φ(t) = t ln t− t+ 1 if t ≥ 0, and φ(t) = +∞ if t < 0. It is easy
to verify that φ satisfies Conditions C.1–C.3. Also, by Proposition 3.1(d), Condition
C.4 also holds. From formula (13), it follows that, for any y ∈ Kn and x ∈ int(Kn),

φsoc(y) = y ◦ ln y − y + e and (φ′)soc(x) = lnx.

Consequently, the distance-like function induced by φ is given by

D1(x, y) = tr (y ◦ ln y − y ◦ lnx + x− y) ∀x ∈ int(Kn), y ∈ Kn.

This function is precisely the natural extension of the entropy-like distance dϕ(·, ·),
with ϕ(t) = − ln t + t − 1 to the SOCs. In addition, comparing D1(x, y) with the
distance-like function H(x, y) in Example 3.1 of [26], we note that D1(x, y) = H(y, x),
but the proximal-like algorithms corresponding to them are completely different.

Example 3.2. Let φ(t) = t ln t + (1 + t) ln(1 + t) − (1 + t) ln 2 if t ≥ 0, and
φ(t) = +∞ if t < 0. By computing, we can show that φ satisfies Conditions C.1–
C.3. Furthermore, from Proposition 3.1(d) and Corollary 3.1(a), we learn that φ also
satisfies Condition C.4. This means that φ ∈ Φ. For any y ∈ Kn and x ∈ int(Kn), we
can compute that

φsoc(y) = y ◦ ln y + (e + y) ◦ ln(e + y) − ln 2(e + y),

(φ′)soc(x) = (2 − ln 2)e + lnx + ln(e + x).

Therefore, the distance-like function generated by such a φ is given by

D2(x, y) = tr
[
− ln(e + x) ◦ (e + y) + y ◦ (ln y − lnx) + (e + y) ◦ ln(e + y) − 2(y − x)

]
for any x ∈ int(Kn) and y ∈ Kn. It should be pointed out that D2(x, y) is not the
extension of dϕ(·, ·), with ϕ(t) = φ(t) given by [18] to the SOCs.

Example 3.3. Take φ(t) = t
2r+3

2 + t2, with 0 ≤ r < 1
2 if t ≥ 0, and φ(t) = +∞

if t < 0. It is easy to verify that φ satisfies Conditions C.1–C.3. Furthermore, from
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Proposition 3.1(a) it follows that φ satisfies Condition C.4. Thus, φ ∈ Φ. By a simple
computation,

φsoc(y) = y
2r+3

2 + y2 ∀y ∈ Kn and (φ′)soc(x) =
2r + 3

2
x

2r+1
2 + 2x ∀x ∈ int(Kn).

Hence, the distance-like function induced by φ has the following expression:

D3(x, y) = tr

[
2r + 1

2
x

2r+3
2 + x2 − y ◦

(2r + 3

2
x

2r+1
2 + 2x

)
+ y

2r+3
2 + y2

]
.

Example 3.4. Let φ(t) = ta+1+at ln t−at, with 0 < a ≤ 1 if t ≥ 0, and φ(t) = +∞
if t < 0. It is easily shown that φ satisfies Conditions C.1–C.3. By Proposition 3.1(a)
and Proposition 3.1(d), φ′ is SOC-concave on (0,+∞). Hence, φ ∈ Φ. For any y ∈ Kn

and x ∈ int(Kn),

φsoc(y) = ya+1 + ay ◦ ln y − ay and (φ′)soc(x) = (a + 1)xa + a lnx.

Consequently, the distance-like function induced by φ has the following expression:

D4(x, y) = tr
[
axa+1 + ax− y ◦

(
(a + 1)xa + a lnx

)
+ ya+1 + ay ◦ ln y − ay

]
.

4. Properties of distance-like functions. In what follows, we study some
favorable properties of the function D(x, y). We begin with two technical lemmas
that will be used in the subsequent analysis. Among others, the first lemma is a
direct consequence of Lemma 2.2 and the definition of Φ.

Lemma 4.1. Given a φ ∈ Φ, let φsoc and (φ′)soc be the vector-valued functions
given as in (13). Then, we have the following results:

(a) φsoc(x) and (φ′)soc(x) are well-defined on Kn and int(Kn), respectively, and

λi[φ
soc(x)] = φ[λi(x)], λi[(φ

′)soc(x)] = φ′[λi(x)], i = 1, 2.

(b) φsoc(x) and (φ′)soc(x) are continuously differentiable on int(Kn), with the
transposed Jacobian at x given as in formulas (14)–(15).

(c) tr[φsoc(x)] and tr[(φ′)soc(x)] are continuously differentiable on int(Kn), and

∇tr
[
φsoc(x)

]
= 2∇φsoc(x) · e = 2(φ′)soc(x),

∇tr
[
(φ′)soc(x)

]
= 2∇(φ′)soc(x) · e = 2(φ′′)soc(x).(22)

(d) The function tr[φsoc(x)] is strictly convex on int(Kn).
Lemma 4.2. Given a φ ∈ Φ and a fixed point z ∈ R

n, let φz : int(Kn) → R be
given by

φz(x) := tr
[
− z ◦ (φ′)soc(x)

]
.(23)

Then, the function φz(x) possesses the following properties:
(a) φz(x) is continuously differentiable on int(Kn), with ∇φz(x) = −2∇(φ′)soc(x)·

z.
(b) φz(x) is convex over int(Kn) when z ∈ Kn, and furthermore, it is strictly

convex over int(Kn) when z ∈ int(Kn).
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Proof. (a) Since φz(x) = −2〈(φ′)soc(x), z〉 for any x ∈ int(Kn), we have that
φz(x) is continuously differentiable on int(Kn) by Lemma 4.1(c). Moreover, apply-
ing the chain rule for the inner product of two functions readily yields ∇φz(x) =
−2∇(φ′)soc(x) · z.

(b) By the continuous differentiability of φz(x), to prove the convexity of φz on
int(Kn), it suffices to prove the following inequality:

φz

(
x + y

2

)
≤ 1

2

(
φz(x) + φz(y)

)
∀x, y ∈ int(Kn).(24)

By Condition C.4, φ′ is SOC-concave on (0,+∞). Therefore, we have that

−(φ′)soc

(
x + y

2

)
�Kn −1

2

[
(φ′)soc(x) + (φ′)soc(y)

]
,

i.e.,

(φ′)soc

(
x + y

2

)
− 1

2
(φ′)soc(x) − 1

2
(φ′)soc(y) �Kn 0.

Using Lemma 2.1(a) and the fact that z ∈ Kn, we then obtain that〈
z, (φ′)soc

(
x + y

2

)
− 1

2
(φ′)soc(x) − 1

2
(φ′)soc(y)

〉
≥ 0,(25)

which in turn implies that

〈
− z, (φ′)soc

(
x + y

2

)〉
≤ 1

2

〈
− z, (φ′)soc(x)

〉
+

1

2

〈
− z, (φ′)soc(y)

〉
.

The last inequality is exactly the one in (24). Hence, φz is convex on int(Kn) for
z ∈ Kn.

To prove the second part of the conclusions, we need only to prove that the
inequality in (25) holds strictly for any x, y ∈ int(Kn) and x �= y. By Lemma 2.1(b),
this is also equivalent to proving the vector (φ′)soc

(
x+y

2

)
− 1

2 (φ′)soc(x) − 1
2 (φ′)soc(y)

is nonzero, since

(φ′)soc

(
x + y

2

)
− 1

2
(φ′)soc(x) − 1

2
(φ′)soc(y) ∈ Kn and z ∈ int(Kn).

From Condition C.4, it follows that φ′ is concave on (0,+∞), since the SOC-concavity
implies the concavity. This, together with the strict monotonicity of φ′, implies that φ′

is strictly concave on (0,+∞). Using Lemma 2.2(d), we then have that tr[(φ′)soc(x)]
is strictly concave on int(Kn). This means that, for any x, y ∈ int(Kn) and x �= y,

tr

[
(φ′)soc

(x + y

2

)]
− 1

2
tr [(φ′)soc(x)] − 1

2
tr [(φ′)soc(y)] > 0.(26)

In addition, we note that the first element of (φ′)soc
(
x+y

2

)
− 1

2 (φ′)soc(x)− 1
2 (φ′)soc(y)

is

φ′
(
λ1

(
x+y

2

))
+ φ′

(
λ2

(
x+y

2

))
2

− φ′(λ1(x)) + φ′(λ2(x))

4
− φ′(λ1(y)) + φ′(λ2(y))

4
,
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which, by Property 2.1(c), can be rewritten as

1

2
tr

[
(φ′)soc

(x + y

2

)]
− 1

4
tr [(φ′)soc(x)] − 1

4
tr [(φ′)soc(y)] .

This together with (26) shows that (φ′)soc
(
x+y

2

)
− 1

2 (φ′)soc(x)− 1
2 (φ′)soc(y) is nonzero

for any x, y ∈ int(Kn) and x �= y. Consequently, φz is strictly convex on int(Kn).
Now we are in a position to study the properties of the distance-like function

D(x, y).
Proposition 4.1. Given a φ ∈ Φ, let D(x, y) be defined as in (18). Then,
(a) D(x, y) ≥ 0 for any x ∈ int(Kn) and y ∈ Kn, and D(x, y) = 0 if and only if

x = y;
(b) for any fixed y ∈ Kn, D(·, y) is continuously differentiable on int(Kn), with

∇xD(x, y) = 2∇(φ′)soc(x) · (x− y);(27)

(c) for any fixed y ∈ Kn, the function D(·, y) is convex over int(Kn), and for any
fixed y ∈ int(Kn), D(·, y) is strictly convex over int(Kn);

(d) for any fixed y ∈ int(Kn), the function D(·, y) is essentially smooth;
(e) for any fixed y ∈ Kn, the level sets LD(y, γ) := {x ∈ int(Kn) : D(x, y) ≤ γ}

for all γ ≥ 0 are bounded.
Proof. (a) By Lemma 4.1(c), for any x ∈ int(Kn) and y ∈ Kn, we can rewrite

D(x, y) as

D(x, y) = tr[φsoc(y)] − tr[φsoc(x)] − 〈∇tr[φsoc(x)], y − x〉.

Notice that tr[φsoc(x)] is strictly convex on int(Kn) by Lemma 4.1(d), and hence
D(x, y) ≥ 0 for any x ∈ int(Kn) and y ∈ Kn, and D(x, y) = 0 if and only if x = y.

(b) By Lemma 4.1(b) and Lemma 4.1(c), the functions tr[φsoc(x)] and 〈(φ′)soc(x), x〉
are continuously differentiable on int(Kn). Noting that, for any x ∈ int(Kn) and
y ∈ Kn,

D(x, y) = tr[φsoc(y)] − tr[φsoc(x)] − 2〈(φ′)soc(x), y − x〉;

we then have the continuous differentiability of D(·, y) on int(Kn). Furthermore,

∇xD(x, y) = −∇tr[φsoc(x)] − 2∇(φ′)soc(x) · (y − x) + 2(φ′)soc(x)

= −2(φ′)soc(x) + 2∇(φ′)soc(x) · (x− y) + 2(φ′)soc(x)

= 2∇(φ′)soc(x) · (x− y).

(c) By the definition of φz given as in (23), D(x, y) can be rewritten as

D(x, y) = tr[(φ′)soc(x) ◦ x− φsoc(x)] + φy(x) + tr[φsoc(y)].

Thus, to prove the (strict) convexity of D(·, y) on int(Kn), it suffices to show that

tr[(φ′)soc(x) ◦ x− φsoc(x)] + φy(x)

is (strictly) convex on int(Kn). Let ψ : (0,+∞) → R be the function defined by

ψ(t) := φ′(t)t− φ(t).(28)
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Then, the vector-valued function induced by ψ via (13) is (φ′)soc(x) ◦x−φsoc(x), i.e.,

ψsoc(x) = (φ′)soc(x) ◦ x− φsoc(x).(29)

From Condition C.3 and Lemma 2.2(d), it follows that tr[(φ′)soc(x) ◦ x − φsoc(x)] is
convex over int(Kn). In addition, by Lemma 4.2(b), φy(x) is convex on int(Kn) if
y ∈ Kn, and it is strictly convex if y ∈ int(Kn). Thus, we get the desired results.

(d) From [29, p. 251] and parts (a)–(b), to prove that D(·, y) is essentially smooth
for any fixed y ∈ int(Kn), it suffices to show that ‖∇xD(xk, y)‖ → +∞ for any {xk} ⊂
int(Kn), with xk → x ∈ bd(Kn). We next prove the conclusion by the following two
cases: x1 > 0 and x1 = 0. For the sake of notation, let xk = (xk

1 , x
k
2) ∈ R × R

n−1.
Case 1. x1 > 0. In this case, ‖x2‖ = x1 > 0, since x ∈ bd(Kn). Noting that

xk → x, we have that xk
2 �= 0 for all sufficiently large k. From the gradient formula

(27),

‖∇xD(xk, y)‖ = ‖2∇(φ′)soc(xk) · (xk − y)‖ ≥
∣∣∣2[∇(φ′)soc(xk) · (xk − y)]1

∣∣∣,(30)

where [∇(φ′)soc(xk) · (xk − y)]1 denotes the first element of the vector ∇(φ′)soc(xk) ·
(xk − y). By the gradient formula (15), we can compute that

2[∇(φ′)soc(xk) · (xk − y)]1 = [φ′′(λ2(x
k)) + φ′′(λ1(x

k))](xk
1 − y1)

+[φ′′(λ2(x
k)) − φ′′(λ1(x

k))]
(xk

2 − y2)
Txk

2

‖xk
2‖

= φ′′(λ2(x
k))

(
λ2(x

k) − y1 − yT2 x
k
2/‖xk

2‖
)

−φ′′(λ1(x
k))

(
y1 − yT2 x

k
2/‖xk

2‖ − λ1(x
k)
)
.(31)

Therefore,∣∣∣2[∇(φ′)soc(xk) · (xk − y)]1

∣∣∣ ≥ ∣∣φ′′(λ1(x
k))

(
y1 − yT2 x

k
2/‖xk

2‖ − λ1(x
k)
)∣∣

−
∣∣φ′′(λ2(x

k))
(
λ2(x

k) − y1 − yT2 x
k
2/‖xk

2‖
)∣∣

≥
∣∣∣φ′′(λ1(x

k))
∣∣∣ · (∣∣y1 − yT2 x

k
2/‖xk

2‖
∣∣− λ1(x

k)
)

−
∣∣∣φ′′(λ2(x

k))
∣∣∣ · ∣∣λ2(x

k) − y1 − yT2 x
k
2/‖xk

2‖
∣∣

≥
∣∣∣φ′′(λ1(x

k))
∣∣∣ · (λ1(y) − λ1(x

k)
)

−
∣∣∣φ′′(λ2(x

k))
∣∣∣ · ∣∣λ2(x

k) − y1 − yT2 x
k
2/‖xk

2‖
∣∣ .

Noting that λ1(x
k) → λ1(x) = 0, λ2(x

k) → λ2(x) > 0, and
yT
2 xk

2

‖xk
2‖

→ yT
2 x2

‖x2‖ as k → +∞,

the second term in the right-hand side of the last inequality converges to a finite value,
whereas the first term approaches to +∞, since |φ′′(λ1(x

k))| → +∞ by Condition C.2
and λ1(y) − λ1(x

k) → λ1(y) > 0. This implies that as k → +∞,∣∣∣2[∇(φ′)soc(xk) · (xk − y)]1

∣∣∣ → +∞.

Combining with the inequality (30) immediately yields ‖∇xD(xk, y)‖ → +∞.
Case 2. x1 = 0. In this case, we necessarily have that x = 0, since x ∈ Kn.

Considering that xk → x, it then follows that xk
2 = 0 or xk

2 > 0 for all sufficiently
large k. If xk

2 = 0 for all sufficiently large k, then from (14) we have that

‖∇xD(xk, y)‖ = ‖2φ′′(xk
1)(xk − y)‖ ≥ 2|φ′′(xk

1)| · |xk
1 − y1|.
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Since y1 > 0 by y ∈ int(Kn) and xk
1 → x1 = 0, applying Condition C.2 yields that the

right-hand side tends to +∞, and consequently ‖∇xD(xk, y)‖ → +∞ when k → +∞.
Next, we consider the case that xk

2 > 0 for all sufficiently large k. In this case,
the inequalities (30)–(31) still hold. By Cauchy–Schwarz inequality,

λ2(x
k) − y1 − yT2 x

k
2/‖xk

2‖ ≥ λ2(x
k) − y1 − ‖y2‖ = λ2(x

k) − λ2(y),

y1 − yT2 x
k
2/‖xk

2‖ − λ1(x
k) ≥ y1 − ‖y2‖ − λ1(x

k) = λ1(y) − λ1(x
k).

Since λ1(x
k), λ2(x

k) → 0 as k → +∞ and λ1(y), λ2(y) > 0 by y ∈ int(Kn), the last
two inequalities imply that

λ2(x
k) − y1 − yT2 x

k
2/‖xk

2‖ → −λ2(y) < 0,

y1 − yT2 x
k
2/‖xk

2‖ − λ1(x
k) → λ1(y) > 0.

On the other hand, by Condition C.2, when k → +∞,

φ′′(λ2(x
k)) → +∞, φ′′(λ1(x

k)) → +∞.

The two sides show that the right-hand side of (31) approaches to −∞ as k → +∞,
and consequently, 2|[∇(φ′)soc(xk) · (xk−y)]1| → +∞. Thus, from (30), it follows that
‖∇xD(xk, y)‖ → +∞ as k → +∞.

(e) From the definition of D(x, y), it follows that, for any x, y ∈ int(Kn),

D(x, y) = tr[φsoc(y)] − tr[φsoc(x)] − tr[(φ′)soc(x) ◦ y] + tr[(φ′)soc(x) ◦ x]

=

2∑
i=1

φ(λi(y)) −
2∑

i=1

φ(λi(x)) − tr[(φ′)soc(x) ◦ y] + tr[(φ′)soc(x) ◦ x],(32)

where the second equality is from Lemma 4.1(a) and Property 2.1(c). Since

(φ′)soc(x) ◦ x =
[
φ′(λ1(x))u(1)

x + φ′(λ2(x))u(2)
x

]
◦
[
λ1(x)u(1)

x + λ2(x)u(2)
x

]
= φ′(λ1(x))λ1(x)u(1)

x + φ′(λ2(x))λ2(x)u(2)
x ,

we have from Lemma 2.2(a) that

tr[(φ′)soc(x) ◦ x] =

2∑
i=1

φ′(λi(x))λi(x).

In addition, by Lemma 2.1(c) and Lemma 4.1(a), we have that

tr[(φ′)soc(x) ◦ y] ≤
2∑

i=1

φ′(λi(x))λi(y).

Combining the last two inequalities with (32) yields that

D(x, y) ≥
2∑

i=1

[
φ(λi(y)) − φ(λi(x)) − φ′(λi(x))λi(y) + φ′(λi(x))λi(x)

]

=

2∑
i=1

[
φ(λi(y)) − φ(λi(x)) − φ′(λi(x))(λi(y) − λi(x))

]

=

2∑
i=1

dB(λi(y), λi(x)),
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where dB : R+ × R++ → R is the function defined by

dB(s, t) = φ(s) − φ(t) − φ′(t)(s− t).

This implies that, for any fixed y ∈ Kn and γ ≥ 0,

LD(y, γ) ⊆
{
x ∈ int(Kn)

∣∣∣ 2∑
i=1

dB(λi(y), λi(x)) ≤ γ

}
.(33)

Note that, for any fixed s ≥ 0, the set {t > 0 : dB(s, t) ≤ 0} equals to {s} or ∅, and
hence it is bounded. Thus, from [29, Corollary 8.7.1] and Condition C.3, it follows that
the level sets {t > 0 : dB(s, t) ≤ γ} for any fixed s ≥ 0 are bounded. This together
with (33) implies that the level sets LD(y, γ) are bounded for all γ ≥ 0.

Proposition 4.2. Given a φ ∈ Φ, let D(x, y) be defined as in (18). Then, for
all x, y ∈ int(Kn) and z ∈ Kn, we have the following inequality:

D(x, z) −D(y, z) ≥ 2〈∇(φ′)soc(y) · (z − y), y − x〉
= 2〈∇(φ′)soc(y) · (y − x), z − y〉.(34)

Proof. From the definition of D(x, y) and φz(x) and equality (29), it follows that

D(x, z) −D(y, z) = tr[(φ′)soc(x) ◦ x− φsoc(x)] + φz(x)

−tr[(φ′)soc(y) ◦ y − φsoc(y)] − φz(y)

= tr[ψsoc(x)] − tr[ψsoc(y)] + φz(x) − φz(y)

≥ 〈∇tr[ψsoc(y)], x− y〉 + 〈∇φz(y), x− y〉
= 〈2(ψ′)soc(y), x− y〉 − 〈2∇(φ′)soc(y) · z, x− y〉,(35)

where the inequality is due to the convexity of tr[ψsoc(x)] and φz(x), and the last
equality follows from Lemma 2.2(c) and Lemma 4.2(a). From the definition of ψ
given as in (28), it is easy to compute that

〈(ψ′)soc(y), x− y〉 = 〈(φ′′)soc(y) ◦ y, x− y〉.(36)

In addition, by the gradient formulas in (14)–(15), we can compute that

∇(φ′)soc(y) · y = (φ′′)soc(y) ◦ y,(37)

which in turn implies that

〈∇(φ′)soc(y) · z, x− y〉
= 〈∇(φ′)soc(y) · (y + z − y), x− y〉
= 〈∇(φ′)soc(y) · y, x− y〉 + 〈∇(φ′)soc(y) · (z − y), x− y〉
= 〈(φ′′)soc(y) ◦ y, x− y〉 + 〈∇(φ′)soc(y) · (z − y), x− y〉.

This, together with (36) and (35), yields the first inequality in (34), whereas the
second inequality follows from the symmetry of the matrix ∇(φ′)soc(y).

Propositions 4.1–4.2 indicate that D(x, y) possesses some favorable properties
similar to those for dϕ. In the next section, we will employ these properties to establish
the convergence for an approximate version of the proximal-like algorithm (8).
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5. Approximate proximal-like algorithm. The proximal-like algorithm de-
scribed as (8) for the CSOCP consists of a sequence of exact minimization. How-
ever, in practical computations, it is impossible to obtain the exact solution of these
minimization problems. In this section, we consider an approximate version of this
algorithm, which allows the inexact solution of the subproblems (8). Throughout this
section, we make the following assumptions for the CSOCP:

(A1) inf {f(ζ) | ζ ∈ F} := f∗ > −∞ and domf ∩ int(F) �= ∅.
(A2) The matrix A is of maximal rank m.
Remark 5.1. Assumption A1 is elementary for the existence of the solution of

the CSOCP. Assumption A2 is common in the solution of the SOCPs, which is clearly
satisfied when F = {ζ ∈ R

n | ζ �Kn 0}. Moreover, if we consider the linear SOCP

min c̄Tx
s.t. Āx = b̄, x ∈ Kn,

(38)

where Ā ∈ R
m×n, with m ≤ n, b̄ ∈ R

m and c̄ ∈ R
n, the assumption that Ā has full

row rank m is standard. Consequently, its dual problem, given by

max b̄T y
s.t. c̄− ĀT y �Kn 0

(39)

satisfies assumption A2. This shows that we can solve the linear SOCP by applying
the approximate proximal-like algorithm described below to the dual problem (39).
In addition, from Lemma 1 in the appendix, we know that the recession cone of F
is given by 0+F = {d ∈ R

m| Ad �Kn 0}. This implies that assumption A2 is also
satisfied when F is supposed to be bounded, since its recession cone 0+F now reduces
to zero.

For the sake of notation, in what follows, we denote D : int(F) ×F → R by

D(ζ, ξ) := D(Aζ + b, Aξ + b).(40)

From Proposition 4.1, we readily obtain the following properties of D(ζ, ξ).
Lemma 5.1. Let D(ζ, ξ) be defined by (40). Then, under assumption A2, we have

that
(a) D(ζ, ξ) ≥ 0 for any ζ ∈ int(F) and ξ ∈ F , and D(ζ, ξ) = 0 if and only if

ζ = ξ;
(b) the function D(·, ξ) for any fixed ξ ∈ F is continuously differentiable on

int(F), with

∇ζD(ζ, ξ) = 2AT∇(φ′)soc(Aζ + b)A(ζ − ξ);(41)

(c) for any fixed ξ ∈ F , the function D(·, ξ) is convex on int(F), and for any
fixed ξ ∈ int(F), then D(·, ξ) is strictly convex over int(F);

(d) for any fixed ξ ∈ int(F), the function D(·, ξ) is essentially smooth;

(e) for any fixed ξ ∈ F , the level sets L(ξ, γ) =
{
ζ ∈ int(F) : D(ζ, ξ) ≤ γ

}
for

all γ ≥ 0 are bounded.
Now we describe an approximate version of the proximal-like algorithm (APM) (8).
The APM. Given a starting point ζ0 ∈ int(F) and constants εk ≥ 0 and μk > 0,

generate the sequence {ζk} ⊂ int(F) satisfying

gk ∈ ∂εkf(ζk),(42)

μkg
k + ∇ζD(ζk, ζk−1) = 0,(43)

where ∂εf represents the ε-subdifferential of f .
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Remark 5.2. The APM can be regarded as an approximate version of the proxi-
mal algorithm (8) in the following sense. From the relation in (42) and the convexity
of D(·, ξ) over int(F) for any fixed ξ ∈ int(F), it follows that, for any u ∈ int(F),

f(u) ≥ f(ζk) + 〈u− ζk, gk〉 − εk

and

μ−1
k D(u, ζk−1) ≥ μ−1

k D(ζk, ζk−1) + μ−1
k 〈∇ζD(ζk, ζk−1), u− ζk〉.

Adding the last two inequalities and using (43) yields that

f(u) + μ−1
k D(u, ζk−1) ≥ f(ζk) + μkD(ζk, ζk−1) − εk.

This implies that

ζk ∈ εk − argmin
{
f(ζ) + μ−1

k D(ζ, ζk−1)
}
,(44)

where, for a given function F and ε ≥ 0, the notation

ε− argmin F (ζ) :=
{
ζ∗ : F (ζ∗) ≤ inf F (ζ) + ε

}
.(45)

In the rest of this section, we focus on the convergence of the APM under assump-
tions A1 and A2. First, we prove that the APM generates a sequence {ζk} ⊂ int(F),
and consequently the APM is well-defined. This is implied by the following lemma.

Lemma 5.2. For any ξ ∈ int(F) and μ > 0, we have that the following results
hold:

(a) The function F (·) := f(·) + μ−1D(·, ξ) has bounded level sets under assump-
tion A1.

(b) If, in addition, assumption A2 holds, then there has a unique ζ̂ ∈ int(F) such
that

ζ̂ = argmin
ζ∈int(F)

{
f(ζ) + μ−1D(ζ, ξ)

}
,(46)

and moreover, the minimum in the right-hand side is attained at ζ̂ satisfying

−2μ−1AT∇(φ′)soc(Aζ̂ + b)A(ζ̂ − ξ) ∈ ∂f(ζ̂).(47)

Proof. (a) Fix ξ ∈ int(F) and μ > 0. By assumption A1 and the nonnegativity
of D(ζ, ξ), to show that F (ζ) has bounded level sets, it suffices to show that, for
all ν ≥ f∗, the level sets L(ν) := {ζ ∈ int(F) | F (ζ) ≤ ν} are bounded. Notice that
L(ν) ⊆ L(ξ, μ(ν − f∗)) and L(ξ, γ) := {ζ ∈ int(F) | D(ζ, ξ) ≤ γ} are bounded for all
γ ≥ 0 by Lemma 5.1 (e). Therefore, the sets L(ν) all ν ≥ f∗ are bounded.

(b) By Lemma 5.1(b), F (ζ) is a closed proper strictly convex function. Hence, if

the minimum exists, it must be unique. From part (a), the minimizer ζ̂ exists, and
so it is unique. Under assumption A2, using the gradient formula in (41) and the
optimality conditions for (46) then yields that

0 ∈ ∂f(ζ̂) + 2μ−1AT∇(φ′)soc(Aζ̂ + b)A(ζ̂ − ξ) + ∂δ(ζ̂ | F),(48)

where δ(u | F) = 0 if u ∈ F and +∞ otherwise. By Lemma 5.1(c) and [29, Theorem
26.1], we have that ∂ζD(ζ, ξ) = ∅ for all ζ ∈ bd(F). Hence, the relation in (48) implies

that ζ̂ ∈ int(F). On the other hand, from [29, p. 226], we know that

∂δ(u | F) = {v ∈ R
n | v �Kn 0, tr(v ◦ u) = 0} .

Using Lemma 2.1, we then obtain ∂δ(ζ̂ |F) = {0}. Thus, the proof is complete.
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Next, we investigate the properties of the sequence {ζk} generated by the APM.
Proposition 5.1. Let {μk} be any sequence of positive numbers and σn =∑n

k=1 μk. Let {ζk} be the sequence generated by the APM. Then,
(a) μk[f(ζk) − f(ζ)] ≤ D(ζk−1, ζ) −D(ζk, ζ) + μkεk for all ζ ∈ F .
(b) D(ζk, ζ) ≤ D(ζk−1, ζ) + μkεk for all ζ ∈ F subject to f(ζ) ≤ f(ζk).
(c) σn(f(ζn) − f(ζ)) ≤ D(ζ0, ζ) −D(ζn, ζ) +

∑n
k=1 σkεk for all ζ ∈ F .

Proof. (a) For any ζ ∈ F , using the definition of the ε-subdifferential, we have
that

f(ζ) ≥ f(ζk) + 〈gk, ζ − ζk〉 − εk,(49)

where gk ∈ ∂εkf(ζk). However, from (43) and (41), it follows that

gk = −2μ−1
k AT∇(φ′)soc(Aζk + b)A(ζk − ζk−1).

Substituting this gk into (49), we then obtain that

μk[f(ζk) − f(ζ)] ≤ 2
〈
AT∇(φ′)soc(Aζk + b)A(ζk − ζk−1), ζ − ζk

〉
+ μkεk.

On the other hand, applying Proposition 4.2 at the points x = Aζk−1+b, y = Aζk+b,
and z = Aζ + b and using the definition of D(ζ, ξ) given by (40) yields that

D(ζk−1, ζ) −D(ζk, ζ) = 2
〈
AT∇(φ′)soc(Aζk + b)A(ζk − ζk−1), ζ − ζk

〉
.

Combining the last two equations, we immediately obtain the result.
(b) The result follows directly from part (a) for any ζ ∈ F such that f(ζk) ≥ f(ζ).
(c) First, from (44), it follows that

ζk ∈ εk − argmin
{
f(ζ) + μ−1

k D(ζ, ζk−1)
}
.

This implies that, for any ζ ∈ int(F),

f(ζ) + μ−1
k D(ζ, ζk−1) ≥ f(ζk) + μ−1

k D(ζk, ζk−1) − εk.

Setting ζ = ζk−1 in this inequality and using Lemma 5.1(d) then yields that

f(ζk−1) − f(ζk) ≥ μ−1
k D(ζk, ζk−1) − εk ≥ −εk.

Multiplying the above inequality by σk−1 and summing over k = 1, 2, . . . , n, we get

n∑
k=1

[
σk−1f(ζk−1) − (σk − μk)f(ζk)

]
≥ −

n∑
k=1

σk−1εk,

which, by noting that σk = μk + σk−1 (with σ0 ≡ 0), can be reduced to

σnf(ζn) −
n∑

k=1

μkf(ζk) ≤
n∑

k=1

σk−1εk.

On the other hand, using part (a) and summing over k = 1, 2, . . . , n, we have that

−σnf(ζ) +

n∑
k=1

μkf(ζk) ≤ D(ζ0, ζ) −D(ζn, ζ) +

n∑
k=1

μkεk ∀ζ ∈ F .
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Adding the last two inequalities yields

σn(f(ζn) − f(ζ)) ≤ D(ζ0, ζ) −D(ζn, ζ) +

n∑
k=1

(μk + σk−1)εk,

which proves (c) because μk + σk−1 = σk.
We are now in a position to prove our main convergence result for the APM. For

convenience, we denote the optimal set of the CSOCP by X := {ζ | f(ζ) = f∗}.
Proposition 5.2. Let {ζk} be the sequence generated by the APM and σn =∑n

k=1 μk. Then, under assumptions A1 and A2, the following results hold.
(a) If σn → +∞ and μ−1

k σkεk → 0, then limn→+∞ f(ζn) → f∗.
(b) If the optimal set X �= ∅, σn → ∞ and

∑∞
k=1 μkεk < ∞, then the sequence

ζk is bounded, and every accumulation point is a solution of the CSOCP.
Proof. (a) From Proposition 5.1(c) and the nonnegativity of D(ζn, ζ), it follows

that

f(ζn) − f(ζ) ≤ σ−1
n D(ζ0, ζ) + σ−1

n

n∑
k=1

σkεk ∀ζ ∈ F .

Taking the limit σn → +∞ to the two sides of the last inequality, we immediately
have that the first term in the right-hand side goes to zero. In addition, applying
Lemma 2 in the appendix with ank := σ−1

n μk if k ≤ n and ank := 0 otherwise and
uk := μ−1

k σkεk, we obtain the second term in the right-hand side:

σ−1
n

n∑
k=1

σkεk =
∑
k

ankuk → 0

because σn → +∞ and μ−1
k σkεk → 0. Therefore, we have that the

lim
n→+∞

f(ζn) ≤ f∗.

This, together with the fact that f(ζn) ≥ f∗, implies the desired result.
(b) Suppose that ζ∗ ∈ X . For any k, we have that f(ζk) ≥ f(ζ∗). From Proposi-

tion 5.1(b), it then follows that

D(ζk, ζ∗) ≤ D(ζk−1, ζ∗) + μkεk.

Since
∑∞

k=1 μkεk < +∞, using Lemma 3 in the appendix with vk := D(ζk, ζ∗) ≥ 0 and
βk := μkεk ≥ 0 yields that the sequence {D(ζk, ζ∗)} converges. Thus, by Proposition
5.1(e), the sequence {ζk} is bounded and consequently has an accumulation point.

Without any loss of generality, let ζ̂ ∈ F be an accumulation point of {ζk}. Then

{ζkj} → ζ̂ for some kj → +∞. Since f is lower semicontinuous, we get f(ζ̂) =
lim infkj→∞ f(ζkj ). On the other hand, f(ζkj ) → f∗ by part (a). The two sides

imply that f(ζ̂) = f∗. Therefore, ζ̂ is a solution of the CSOCP. The proof is thus
complete.

6. Numerical experiments. In this section, we present some preliminary nu-
merical results for CSOCPs with a specific version of the concept APM, described
as Algorithm 6.1 below, and compare the numerical performance of the algorithm
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with that of the merit function approach [8]. The purpose of our numerical experi-
ments is to verify the theoretical results obtained in the last section and to illustrate
the effectiveness of the proximal-like method proposed.

Algorithm 6.1.

Given a sufficiently small τ > 0, a sufficiently large M0, and constants ρ > 1 and
μ1 > 0. Choose a starting point ζ0 ∈ int(F) and set k := 1.

For k = 1, 2, · · · until μk ≥ M0 do
1. Use an unconstrained minimization method to solve approximately the

problem

min
ζ∈Rm

Fk(ζ) := f(ζ) + μ−1
k D(ζ, ζk−1)(50)

and obtain a ζk such that ‖∇f(ζk) + μ−1
k ∇ζD(ζk, ζk−1)‖ ≤ τ .

2. Set μk+1 = ρμk and k := k + 1, and then go back to Step 1.
End

Algorithm 6.1 is in fact a special APM with εk = τ‖ζk − ζ̂k‖ and μk = ρk−1μ1,

where ζ̂k is the solution of the subproblem (44), since using the strict convexity of
Fk(ζ), we have that

Fk(ζ̂
k) ≥ Fk(ζ

k) + 〈∇Fk(ζ
k), ζ̂k − ζk〉 ≥ Fk(ζ

k) − τ‖ζk − ζ̂k‖,

which implies that

ζk ∈ εk − argminFk(ζ), with εk = τ‖ζk − ζ̂k‖.

Furthermore, such εk and μk at least satisfy the assumptions of Proposition 5.2(a),
since

σn =

n∑
k=1

μk → +∞, μ−1
k σk → ρ

ρ− 1
, and εk → 0.

In our experiments, we employed the entropy-like distance functions from Exam-
ple 3.1 and Example 3.2, respectively, for Algorithm 6.1. For convenience, let

D1(ζ, ξ) := D1(Aζ + b, Aξ + b) and D2(ζ, ξ) := D2(Aζ + b, Aξ + b).

All numerical experiments were done on a personal computer with 2.8GHz CPU and
512MB memory. The computer codes were all written in Matlab 6.5. We chose a
limited-memory BFGS method with 5 limited-memory vector-updates [4] to solve the
minimization subproblem (50). In addition, we adopted a nonmonotone line search
described as in [16] to seek a suitable steplength, i.e., we computed the smallest
nonnegative integer l such that

Fk(ζ
k + βldk) ≤ Wk + σβl∇Fk(ζ

k)T dk,

where dk denotes the search direction at the kth iterate, and Wk = maxj=k−mk,...,k

Fk(ζ
j) and where, for a given nonnegative integer m̂ and s,

mk =

{
0 if k ≤ s,

min
{
mk−1 + 1, m̂

}
otherwise.
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Unless otherwise stated, we chose β = 0.5, σ = 10−4, m̂ = 5, and s = 5 for the
nonmontone line search, and the following parameters for Algorithm 6.1:

τ = 10−5, M0 = 1000, ρ = 10, and μ1 = 1.

We applied Algorithm 6.1 for the following quadratic convex SOC program:

min
1

2
ζTMζ + qT ζ

s.t. ζ �Kn 0,
(51)

where M ∈ R
n×n is a symmetric positive semidefinite matrix and q ∈ R

n is a vector.
In the experiment, the matrix M and the vector q were generated as follows: elements
of q were chosen randomly from the interval [−1, 1], and M was obtained by setting
M = DDT , where D was a sparse matrix with approximately density ·n · n nonzero
entries, which were chosen from a normal distribution with mean −1 and variance
4. In this procedure, the number of nonzero entries of D is determined so that the
nonzero density of M can be approximately estimated. To construct different types
of K, we chose ni and N such that n1 + · · · + nN = 1000 and n1 = · · · = nN =
100. For each type of K, we have solved 10 test problems with the matrix M of
nonzero density 0.5%, 1% and 10%, respectively, and started Algorithm 6.1 from the
initial point ζ0 = (ζ̄ni , . . . , ζ̄nN ), where ζ̄ni = (2, ωi/‖ωi‖) for i = 1, 2, . . . , N , with
ωi ∈ R

ni−1 generated randomly by Matlab’s randn.m. We also employed the merit
function approach [8] to solve these test problems. In other words, we chose the same
limited-memory BFGS method as used by Algorithm 6.1 to solve the unconstrained
minimization reformulation for the KKT conditions of (51):

min
ζ∈Rn

ΨFB(ζ) :=
1

2

∥∥∥(ζ2 + (Mζ + q)2)1/2 − ζ − (Mζ + q)
∥∥∥2

.(52)

For the merit function approach, we used the same starting point ζ0 as Algorithm 6.1
and terminated the iterates once

√
2ΨFB(ζ) ≤ 10−4.

The numerical results were listed in Tables 1–3 (see the appendix), where Rcond
denotes the condition number of the matrix M computed by Matlab’s rcond.m, Gap
means the absolute dual gap, i.e., the value of the function |ζT (Mζ + q)| at the final
iteration, NF represents the number of function evaluations for Fk(ζ) or ΨFB(ζ) to
solve each problem, which for Algorithm 6.1 is the total sum of the function evaluations
used for every subproblem, and Cpu represents the CPU time in seconds for solving
each problem.

From Tables 1–3, we see that Algorithm 6.1 with D1(x, y) and D2(x, y) can solve
almost all of the test problems within 105 function evaluations, except three test
problems in Table 1 for which the merit function approach cannot yield the desired
result within 5× 104 function evaluations, too. Algorithm 6.1 requires more function
evaluations than the merit function approach, especially for the problems with the
matrix M of nonzero density 0.5% and 1%. This is reasonable since the APM is only
a primal algorithm, whereas the merit function approach is a primal-dual one. When
comparing Table 1 with Tables 2–3, we find that the condition number of M has a
great influence on the numerical performance of Algorithm 6.1 and the merit function
approach; for example, the two methods have the worst robustness when the condition
number of M equals 0. In addition, from Tables 1–3, it seems that the number of
function evaluations of Algorithm 6.1 is not influenced by the nonzero density of
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Table 1

Numerical results for the matrix M with 0.5% nonzero density.

D1(ζ, ξ) D2(ζ, ξ) Merit function approach

N0. Rcond Gap Nf Time Gap Nf Time Gap Nf Time

1 0 2.32e–3 28524 84.8 7.76e–3 37480 127.1 1.72e–4 6034 47.2

2 0 – > 105 – – > 105 – – >50000 –

3 0 – > 105 – – > 105 – – >50000 –

4 0 – > 105 – – > 105 – – >50000 –

5 0 1.62e–3 17436 50.9 4.34e–3 25882 100.9 8.91e–4 957 7.56

6 0 1.36e–3 20516 62.4 3.56e–3 25125 91.2 6.35e–4 883 5.76

7 0 4.79e–3 53555 168.0 1.58e–2 53460 194.3 8.24e–4 1506 12.9

8 0 4.95e–3 79164 236.8 1.64e–2 99687 378.2 1.97e–5 4343 36.0

9 0 1.93e–3 29433 91.2 4.74e–3 31655 112.8 3.98e–4 795 6.43

10 0 6.75e–4 57670 168.0 – > 105 – 7.39e–4 1492 11.4

Table 2

Numerical results for the matrix M with 1% nonzero density.

D1(ζ, ξ) D2(ζ, ξ) Merit function approach

N0. Rcond Gap Nf Cpu Gap Nf Cpu Gap Nf Cpu

1 0 2.65e–3 24966 117.4 5.48e–3 26395 142.4 1.19e–3 1695 23.0

2 1.64e–8 3.44e–3 32540 161.5 6.35e–3 33246 200.4 1.14e–3 1666 23.1

3 8.88e–11 1.94e–3 22785 123.7 3.45e–3 24865 137.9 3.42e–4 1421 18.8

4 2.45e–9 6.89e–3 60638 325.1 1.34e–2 66483 392.9 4.78e–4 2360 35.3

5 6.19e–10 2.97e–3 29612 157.3 5.62e–3 37027 230.3 8.53e–4 1594 24.4

6 5.22e–11 5.05e–3 22620 116.5 1.05e–2 26916 166.1 8.09e–4 1259 20.8

7 7.50e–11 2.09e–3 12419 63.6 3.75e–3 19326 121.7 2.70e–4 1728 21.2

8 4.97e–9 2.63e–3 20661 106.4 5.27e–3 30375 187.9 6.14e–4 1497 19.8

9 5.16e–11 4.32e–3 29157 153.9 7.85e–3 42502 266.1 4.04e–4 1734 24.7

10 1.96e–9 2.48e–3 23804 119.5 4.81e–3 34085 201.2 1.26e–3 1550 22.4

M , but the merit function approach clearly requires more function evaluations as
the nonzero density of M increases. Moreover, the merit function approach needs
more CPU time at each iteration than Algorithm 6.1 due to an extra multiplication
of the matrix M and the vector ∇yψFB(ζ,Mζ + q) involved in the computation of
∇ΨFB(ζ). This accounts for the fact that Algorithm 6.1 is superior to the merit
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Table 3

Numerical results for the matrix M with 10% nonzero density.

D1(ζ, ξ) D2(ζ, ξ) Merit function approach

N0. Rcond Gap Nf Cpu Gap Nf Cpu Gap Nf Cpu

1 4.99e–9 1.12e–3 21486 671.4 1.37e–3 23255 755.6 5.81e–4 15208 1486.4

2 1.05e–8 1.03e–3 27822 896.8 1.24e–3 36318 1225.4 1.19e–3 21823 2054.5

3 2.63e–9 1.08e–3 32345 1031.8 1.33e–3 18571 603.6 1.57e–3 15770 1495.0

4 9.11e–9 1.03e–3 30856 714.6 1.20e–3 38199 890.0 7.05e-4 14742 1372.5

5 4.68e–10 1.11e–3 26957 869.5 1.34e–3 49756 1713.8 1.52e–3 16949 1691.5

6 1.13e–8 1.08e–3 33621 799.1 1.26e–3 38470 904.0 1.10e–3 17071 1591.9

7 1.20e–9 8.33e–4 19452 623.7 9.76e–4 22501 728.7 1.17e–3 23102 2140.7

8 1.21e–8 1.04e–3 24345 763.0 1.21e-3 33600 1185.9 1.46e–3 16011 1492.9

9 1.26e–8 1.04e-3 35613 821.3 1.22e-3 38723 923.2 1.15e–3 27110 2528.3

10 1.16e–8 8.43e-4 13580 410.8 1.00e-3 33869 1204.9 1.61e–3 17883 1655.3

function approach by the CPU time for the problems with the matrix M of nonzero
density 10%.

We also applied Algorithm 6.1 for a nonlinear convex SOCP taken from [17].
Example 6.1. Consider the following nonlinear convex SOCP:

min exp(ζ1 − ζ3) + 3(2ζ1 − ζ2)
4 +

√
1 + (3ζ2 + 5ζ3)2

s.t.

(
4 6 3
−1 7 −5

)
ζ +

(
−1
2

)
∈ K2, ζ ∈ K3.

(53)

In order to obtain an initial interior point ζ0 ∈ int(F) for Algorithm 6.1, we con-
structed the following conic optimization problem:

min w

Aζ + b + wê �K 0,

−w + w∗ ≥ 0,

K = K3 ×K2,

(54)

where w∗ ∈ R is a constant and ê =

(
e1

e2

)
, A =

[
A1

A2

]
, b =

(
b1
b2

)
, with

A1 =

(
4 6 3
−1 7 5

)
, A2 = I, b1 = (−1, 2)T , b2 = (0, 0, 0)T , e1 = (1, 0)T , e2 = (1, 0, 0)T.

It is easy to see that ζ = 0, w = w0 belongs to int(F) only if w0 > −λ1(bi), i =
1, 2 and w∗ > w0, and furthermore, when solving (54) with Algorithm 6.1 from
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Table 4

Numerical results for Example 6.1.

D1(ζ, ξ) D2(ζ, ξ)

ζ0 fopt Nf Time fopt Nf Time

(1.8860,−0.1890,−0.4081)T 2.597580 89804 79.65 2.597584 65165 62.46

(4.3425, 0.0875,−0.2332)T 2.597591 40402 32.42 2.597610 35820 31.79

(4.6972,−0.4294,−1.3931)T 2.597587 50889 44.36 2.597601 40404 39.59

(12.3337,−2.6206,−6.2167)T 2.597585 67835 50.06 2.597599 64551 66.98

(3.7282, 0.2875, 0.2737)T 2.597591 30763 26.58 2.597611 26485 24.48

ζ = 0, w = w0, if some iterate (ζk, wk) satisfying wk < 0, then the corresponding ζk

can be used as the starting point to solve (53). This way can also be used to find the
starting interior point ζ0 when applying Algorithm 6.1 for other problems with the
form of (1). We have solved the test problem with Algorithm 6.1 from several starting
points. The parameters for Algorithm 6.1 were the same as above except M0 = 10000
and τ = 10−6. The numerical results were listed in Table 4, where fopt denotes the
objective value at the final iteration. We see that the choice of ζ0 has an influence on
the numerical behavior of Algorithm 6.1.

From Tables 1–4, we may draw the following conclusions: the approximate
proximal-like algorithm using D1(x, y) has the better numerical behavior than the
one using D2(x, y) whether by the accuracy of solution or the number of function
evaluations required, and the proximal-like algorithm with an appropriate distance
measure is superior to the merit function approach by the CPU time for those dense
problems.

7. Conclusions. In this paper, we extended the entropy-like proximal algo-
rithm proposed by Eggermont [12] for convex programming subject to nonnegative
constraints and proposed a class of interior proximal-like algorithms for solving the
CSOCPs. These algorithms are based on a distance-like function generated by a
closed proper convex function φ satisfying domφ = [0,+∞) and Conditions (C.1)–
(C.4). The given examples illustrated that the conditions required by φ are not very
stringent. For the proposed proximal-like algorithm, we particularly considered an
approximate version which allows inexact minimization steps, and we established the
convergence properties under some mild assumptions. Numerical results were also re-
ported for the algorithm with the entropy-like distance functions from Examples 3.1
and 3.2, and we made comparisons with those yielded by the merit function approach
[8], which verify the effectiveness of the proposed method.

In our future research works, we will analyze the convergence rate of the proposed
algorithms and investigate some practical versions of the algorithms. In addition, we
will consider the extension of the class of interior proximal-like algorithms to general
convex symmetric cone programming problems. It should be pointed out that the
extension is not direct. The main difficulty is how to extend the characterizations of
SOC-convexity [7, 9] to the setting of symmetric cones.
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Appendix A.
Lemma 1. Let F be the set defined as in (8). Then its recession cone 0+F is

given by

0+F =
{
d ∈ R

m | Ad �Kn 0
}
.(55)

Proof. Assume that d ∈ R
m such that Ad �Kn 0. Then, for any λ > 0, λAd �Kn

0. Considering that Kn is closed under the “+” operation, we have that, for any
ζ ∈ F ,

A(ζ + λd) + b = (Aζ + b) + λ(Ad) �Kn 0.(56)

By [29, p. 61], this shows that every element in the set of the right-hand side of (55)
is a recession direction of F . Consequently, {d ∈ R

m | Ad �Kn 0} ⊆ 0+F .
Now take any d ∈ 0+F and ζ ∈ F . Then, for any λ > 0, equation (56) holds. By

Property 2.1(d), we then have λ1

[
(Aζ + b) + λAd

]
≥ 0 for any λ > 0. This implies

that λ1(Ad) ≥ 0, since otherwise letting λ → +∞ and using the fact that

λ1

[
(Aζ + b) + λAd

]
= (Aζ + b)1 + λ(Ad)1 − ‖(Aζ + b)2 + λ(Ad)2‖

≤ (Aζ + b)1 + λ(Ad)1 −
(
λ‖(Ad)2‖ − ‖(Aζ + b)2‖

)
= λλ1(Ad) + λ2(Aζ + b),

we obtain that λ1[(Aζ + b) + λAd] → −∞. Thus, we prove that Ad �Kn 0, and
consequently 0+F ⊆ {d ∈ R

m | Ad �Kn 0}. Combining with the above discussions
then yields the result.

Lemma 2 (see [20, Theorem 2]). Let {ank} be a sequence of real numbers satis-
fying

(i) ank ≥ 0 ∀n = 1, 2, . . . , k = 1, 2, . . . .
(ii)

∑∞
k=1 ank = 1 ∀n = 1, 2, . . . , and limn→+∞

∑n
k=1 ankuk = u ∀k = 1, 2, . . . .

If {uk} is a sequence such that limk→+∞ uk = u, then limk→+∞ ankuk = u.
Lemma 3 (see [28, Chapter 2]). Let {υk} and {βk} be nonnegative sequences of

real numbers satisfying (i) υk+1 ≤ υk + βk, (ii)
∑∞

k=1 βk < +∞. Then the sequence
{υk} is convergent.
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DECENTRALIZED RESOURCE ALLOCATION IN DYNAMIC
NETWORKS OF AGENTS∗

HARIHARAN LAKSHMANAN† AND DANIELA PUCCI DE FARIAS‡

Abstract. We consider the problem of n agents that share m common resources. The objective
is to derive an optimal allocation that maximizes a global objective expressed as a separable concave
objective function. We propose a decentralized, asynchronous gradient-descent method that is suit-
able for implementation in the case where the communication between agents is described in terms
of a dynamic network. This communication model accommodates situations such as mobile agents
and communication failures. The method is shown to converge provided that the objective function
has Lipschitz-continuous gradients. We further consider a randomized version of the same algorithm
for the case where the objective function is nondifferentiable but has bounded subgradients. We
show that both algorithms converge to near-optimal solutions and derive convergence rates in terms
of the magnitude of the gradient of the objective function. We show how to accommodate nonnega-
tivity constraints on the resources using the results derived. Experimental results with the problems
of varying dimensions suggest that the algorithms are competitive with centralized approaches and
scale well with problem size.

Key words. decentralized algorithms, resource allocation, nondifferentiable optimization
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1. Introduction. We consider the problem of n agents that share m common
resources. Agent i has utility function fi. The optimal allocation of resources for max-
imizing the average of the utilities among agents is given by the following optimization
problem:

max
λi∈�m,i=1,...,n

f(λ) =
1

n

n∑
i=1

fi(λi)

such that (s.t.)

n∑
i=1

λi = B,(1)

where B ∈ �m corresponds to the total amount of resources.
We propose decentralized, asynchronous algorithms for a solution of (1). The

first method applies in the case where fi, i = 1, . . . , n are concave and differentiable
with Lipschitz-continuous gradients. The second method applies in the case where
fi, i = 1, . . . , n are concave but not necessarily differentiable. We establish asymp-
totic convergence and convergence rates of both algorithms under mild conditions for
communications among agents.

We assume that agents communicate through a network of dynamic topology in
order to solve (1). At each iteration t, communication is represented by an undirected
graph G(t), where nodes correspond to agents and edges correspond to communication
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links. We assume that communication is symmetric, so that if agent i communicates
with agent j, then agent j also communicates with agent i. We also assume that the
union of the communication graphs is connected over any sufficiently large, bounded
period of time. This ensures that resource allocation to every agent is periodically
influenced either directly or indirectly by the resource allocation to every other agent.
This model of communication accommodates several practical scenarios, arising for
instance, if agents are mobile and have limited communication range, or if communi-
cation links are subject to failure.

The decentralized algorithm for solving (1) in the case of differentiable utility
functions has a simple gradient-descent structure. Starting with an initial feasible
resource allocation, agents trade resources with their neighbors at each iteration in
proportion to the difference in gradient for the respective utility functions. The algo-
rithm has a natural interpretation. The local gradient computed by each agent can
be thought of as the price the agent is willing to pay for additional resources. At each
iteration, agents trade resources with their neighbors in proportion to the prices each
is willing to pay for the resources.

It can be shown that a large class of separable convex optimization problems
with linear constraints can be transformed to equivalent resource allocation problems.
However, the functions fi in the transformed resource allocation problem are usually
not differentiable. Motivated by this setting, we consider the case where fi is no
longer differentiable but has bounded subgradients. It is shown in this case that a
randomized version of a decentralized subgradient-descent algorithm converges with
probability one to a near-optimal solution.

The subgradient-descent algorithm for the case of nondifferentiable utility func-
tions can be interpreted as a stochastic approximation version of the gradient-descent
method for differentiable functions applied to a smoothed version of the problem. The
particular form of smoothing developed in this paper is motivated by several consid-
erations. Adequate smoothing schemes must lead to a close approximation to the
original function. Furthermore, as we build on the results for differentiable problems
with a Lipschitz-continuous gradient, the gradient of the resulting smooth function
must satisfy the same assumption with an adequate Lipschitz constant. Finally, an-
other consideration in this paper is the computational effort involved in computing
the gradient for the smoothed function. With this in mind, we propose a smooth
approximation of the form f̂i = E[fi(λi + Zi)], where Zi are vectors of zero-mean
normal random variables. We show that, with an appropriate choice for the variance
of Zi, f̂i is within ε of fi, and its gradient is Lipschitz-continuous, with a Lipschitz
constant on the order of O(

√
logm/ε) so that it scales gracefully on the dimension m

of variable λi. In addition, this form of smoothing lends itself to an application of a
stochastic approximation scheme for gradient descent which, at each iteration, only
requires an evaluation of a subgradient of fi at a single point λi.

A comprehensive treatment of algorithms for various classes of resource allocation
problems can be found in [13]. The algorithms introduced and analyzed in [13] are
centralized in the sense that a central agent is assumed to have complete information
about the problem and computes the optimal solution. In [1] and [5], decentralized
resource allocation problems in the context of economics are investigated. The main
difference in the approaches of [1, 5] as compared to the one presented here is the
presence of a central agent who coordinates the computations performed by individ-
ual agents. A setting that is closer to ours is presented in [11], which introduces
a completely decentralized algorithm for a resource allocation problem with twice
differentiable separable convex objective functions. The algorithm assumes a sym-
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metric and fixed communication graph for the agents at all iterations and performs
a gradient projection at each iteration onto a subspace related to the communica-
tion graph. The same setting is considered in [8], which proposes a decentralized,
weighted gradient algorithm for resource allocation problems with objective functions
that are twice differentiable with bounded second derivatives. Dynamic communica-
tion graphs are considered in [6], which proposes an application-specific decentralized
gradient algorithm for the problem of file allocation in distributed computer systems.
Asynchronous gradient-descent methods are also considered in [14] for problems of
unconstrained optimization with differentiable objective.

Most of the references regarding resource allocation problems in the literature, in-
cluding the ones mentioned above, contain nonnegativity constraints on the resources
(i.e., they require λi ≥ 0 ∀i), whereas in our formulation resources may be negative.
In Section 4, we show how the results in this paper can be applied to problems with
nonnegativity constraints. The main motivation for problem (1) is that this formula-
tion arises naturally in problems where a single, generic optimization problem must be
solved in a decentralized way; this is the case, for instance, in problems of sequential
decision making in teams of mobile agents as considered in [7].

A distributed algorithm for nondifferentiable optimization is presented in [9]. It is
shown that a projected subgradient algorithm applied by each agent converges to the
optimal solution. An important difference between the work presented in [9] and the
work presented here is that the first requires that the long-run frequency of updates
performed by each agent to be the same. Smoothing schemes for nondifferentiable
optimization can also be found in the literature. [10] proposes a smoothing scheme
for functions fi described as the maximum of differentiable functions. The smoothed
function is within ε of fi and has Lipschitz constant on the order of O(1/ε), indepen-
dent of the dimensions of the problem. A caveat of this approach is that computing
the gradient of the smoothed function may require multiple evaluations of the sub-
gradients of the original function. The particular form of smoothing considered here
can also be found in the literature (see, e.g., [12]); however, we are unaware of re-
sults concerning the Lipschitz constant of the resulting smoothed function, which we
develop in this paper.

The paper is organized as follows. In section 2, we describe the structure of com-
munication among agents. In section 3, we introduce and we analyze the decentralized
gradient-descent algorithm for problem (1) with differentiable objective functions that
have Lipschitz-continuous gradients and its randomized version for problem (1) with
nondifferentiable objective functions. In section 4 we describe a method to accom-
modate the nonnegativity constraints on the variables based on the results developed
in section 3. In section 5, we present the results of numerical experiments, which
illustrate the practical performance of the developed algorithms. In section 6, we
conclude the paper. All proofs can be found in the appendix.

2. Communication between agents. In this section we describe the commu-
nication structure between agents. At iteration t, each agent i communicates with a
set of agents denoted by Ni(t). We assume that communication is symmetric; i.e.,
whenever agent i communicates with agent j, agent j also communicates with agent
i. The communication between agents at time t can be represented by an undirected
graph G(t) = (N,E(t)), where N = {1, . . . , n} represents the set of agents and the
edge (i, j) ∈ E(t) if and only if agent i communicates with agent j at time t. Let
Ek,l = ∪t=l−1

t=k E(t). For a decentralized scheme to converge, the update of the variable
associated with any agent must be periodically influenced by information from every
other agent. This is ensured by the following assumption.
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Assumption 2.1. There exists a strictly increasing sequence {Tz} of natural
numbers, with T1 = 1 such that G = (N,ETz,Tz+1

) is connected for all z and (Tz+1 −
Tz) ≤ κ, where κ is some natural number.

3. Decentralized resource allocation. We assume that (1) has an optimal
solution. Let λ ∈ �nm = (λ1, λ2, . . . , λn), where λi ∈ �m for i = 1, . . . , n.

Assumption 3.1. There exists an optimal solution λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
n) to (1).

For the rest of the paper, we let ‖ · ‖ denote the Euclidean norm.

3.1. The differentiable case. We now develop a decentralized algorithm for
the case where fi is concave and differentiable with a Lipschitz-continuous gradient.

Assumption 3.2. There exists a constant L > 0 such that ‖∇fi(λi)−∇fi(λ̄i)‖ ≤
L‖λi − λ̄i‖, ∀λi, λ̄i ∈ �m.

Recall that f(λ) = 1
n

∑n
i=1 fi(λi). Hence

‖∇f(λ) −∇f(λ̄)‖ =
1

n

√√√√ n∑
i=1

‖∇fi(λi) −∇fi(λ̄i)‖2

≤ 1

n

√√√√ n∑
i=1

L2‖λi − λ̄i‖2

=
L

n
‖λ− λ̄‖.

The second equality follows from the fact that ‖λ − λ̄‖ =
√∑n

i=1 ‖λi − λ̄i‖2. Hence
L
n is a Lipschitz constant for the function f . The decentralized algorithm that we
develop is based on the following lemma, which characterizes an optimal solution to
(1) when functions fi are all differentiable.

Lemma 3.1. A feasible solution λ∗ of (1) is an optimal solution if and only if
∇fi(λ

∗
i ) = ∇fj(λ

∗
j ) for all i, j.

Let λt
i be the value of the variable associated with agent i at iteration t. We

consider the following gradient-descent update rule for each agent i:

λt+1
i = λt

i + γ
∑

j∈Ni(t)

1

n
(∇fi(λ

t
i) −∇fj(λ

t
j)).(2)

Here γ is a common constant step size that all of the agents use for updates. It
should be noted that, to perform updates at iteration t, agent i uses only the gradient
information corresponding to its neighbors Ni(t) for iteration t. Furthermore, each
intermediate allocation λt generated by the algorithm is a feasible solution of (1).

Lemma 3.2. Suppose λ1 is a feasible solution for (1). Then λt, where λt
i is

defined by (2), is a feasible solution to (1) for all t.
In order to analyze the convergence properties of the proposed algorithm, it is

convenient to define ṽ(λ) for any allocation λ as follows:

ṽi(λ) =
∑
j∈N

1

n
(∇fi(λi) −∇fj(λj)).

Note that ṽ(λt) is the direction of update when the communication graph E(t)
is complete. It can be verified that ṽ(λt) is also a scaled version of the projection of
∇f(λt) onto the subspace

∑n
i=1 λ

t
i = B, hence it represents the centralized update
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direction at time t. From Lemma 3.1 it can be seen that a feasible solution λ is optimal
if and only if ‖ṽ(λ)‖ = 0. We now derive a theorem establishing the convergence of
the algorithm based on (2). Under mild conditions on the set of optimal solutions,
convergence to optimality is guaranteed. We also derive an upper bound on the rate
at which the sequence {‖ṽ(λTz )‖} converges to zero. Recall that Tz is a sequence of
strictly increasing natural numbers such that the union of the communication graphs
between iterations Tz and Tz+1 is connected. In what follows, let ṽt = ṽ(λt).

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. With a step size of
γ = 1

2L ,
1. the sequence {f(λt)} is monotonically nondecreasing;
2. the sequence {‖ṽTz‖} converges to 0;

3. minz=1,...,p(‖ṽTz‖2) ≤ 3Ln4κ(f(λ∗)−f(λ1))
4p ∀p;

4. if the set of optima is bounded, {f(λt)} converges to f(λ∗).

3.2. The nondifferentiable case. In this section we consider concave objective
functions that are not required to be differentiable at all points. To motivate our
interest in such functions we consider the following optimization problem:

max
xi,i=1,...,n

1

n

n∑
i=1

gi(xi)

s.t.
n∑

i=1

Aixi ≤ B,(3)

where xi ∈ �q, Ai ∈ �m×q, i = 1, . . . , n, B ∈ �m, and gi(xi) is a concave function,
i = 1, . . . , n. Define fi(λi) as the optimal value for the following optimization problem:

fi(λi) = max
xi∈�q

gi(xi)

s.t. Aixi ≤ λi.(4)

With this definition of fi we see that problem (3) is equivalent to problem (1). Note
that, if there are linear constraints that involve only the variables xij , j = 1, . . . , q
for some i, then these constraints could be included directly in the problem defining
fi. Suppose that fi(λi) is well defined and is finite for all λi. It can then be shown
that fi(λi) is a concave function. Thus we can potentially apply the decentralized
algorithm developed in the previous section for finding an optimal solution to (3).
However, fi(λi) is typically nondifferentiable even when gi(xi) is. Hence Theorem 3.1
does not immediately apply to (3), as it relies on the assumption that the objective
function is differentiable with a Lipschitz-continuous gradient. This motivates us to
consider cases where fi, i = 1, . . . , n are not necessarily differentiable at all points.

In this section, we relax Assumption 3.2 and consider the case where fi, i =
1, . . . , n are nondifferentiable. We introduce a smooth approximation for fi that is
amenable to optimization via stochastic approximations and propose a randomized
version of (2) to solve the smoothed problem. We show that the new scheme converges
to a near-optimal solution of the original problem in a tractable number of iterations.

We assume that fi, i = 1, . . . , n are concave and differentiable outside a set of
measure zero. Denote by ∂fi(λi) the set of the subgradients of fi at λi. Let ∇fi(λi)
be an element chosen arbitrarily from ∂fi(λi) for each λi. Let ‖·‖1 denote the l1 norm
and recall that ‖ · ‖ denotes the Euclidean norm. We make the following assumption.

Assumption 3.3. For all i and λi, supi,λi
{‖v‖1 : v ∈ ∂fi(λi)} ≤ L < ∞.
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Note that supi,λi
{‖v‖ : v ∈ ∂fi(λi)} ≤ L < ∞, since ‖v‖ ≤ ‖v‖1 for all v. We

now consider approximating fi by a suitable differentiable function. In particular, let

f̂i(λi) = E[fi(λi + Zi)],

where each Zi = (Zij)j=1,...,m is a vector of m independently and identically dis-
tributed (i.i.d.) normal random variables [4], with a zero mean and variance equal
to

σ =

√
2ε√

π log(m + 1)
,

where ε is a parameter related to the accuracy of the approximation as will be clear
from the following lemma. The following lemma shows that f̂i is a concave and
differentiable approximation to fi and that its gradient ∇f̂i can be expressed in terms
of ∇fi.

Lemma 3.3. Let fi and f̂i be as given above. Then the following hold:
1. f̂i is concave and differentiable, with gradient ∇f̂i(λi) = E[∇fi(λi + Zi)];

2. fi(λi) ≥ f̂i(λi) ≥ fi(λi) − 2.8εL;

3. ‖∇f̂i(λi) −∇f̂i(λ̄i)‖ ≤
√

log(m+1)L

ε ‖λi − λ̄i‖.
Bearing in mind the previous lemma, we consider the problem of maximizing

max
λ

f̂(λ) =

n∑
i=1

1

n
f̂i(λi)(5)

s.t.

n∑
i=1

λi = B.

Since f̂i is differentiable with a Lipschitz-continuous gradient, Theorem 3.1 ensures
that the update rule (2) leads to convergence. However, note that computing the

gradient of f̂i requires evaluating the expected value ∇f̂i(λi) = E[∇fi(λi+Zi)], which
is, in general, computationally expensive. Due to the special form of the smoothing
scheme and, in particular, the fact that ∇f̂i is expressed as the expected value of the
subgradient of fi, we consider instead of (2) a stochastic approximation version of the
update. In particular, we let

λt+1
i = λt

i + γt
∑

j∈Ni(t)

1

n
(∇fi(λ

t
i + Zt

i ) −∇fj(λ
t
j + Zt

j)),(6)

where Zt
i , t = 1, 2, . . . is a sequence of i.i.d. vectors with the same distribution as Zi.

For each λ, let ṽ(λ) be given by

ṽi(λ) =
∑
j∈N

1

n
(∇f̂i(λi) −∇f̂j(λj)).

Let ṽt = ṽ(λt), and note that ṽt corresponds to the expected direction of update when
the communication graph is complete. From Lemma 3.1, it is clear that a feasible
solution λ is optimal for (5) if and only if ‖ṽ(λ)‖ = 0. Furthermore, from Lemma 3.3,
if λ is optimal for (5), then it is also near-optimal for (1). The following theorem
establishes that, if all agents apply (6), then ‖ṽt‖ converges to zero.
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We make the following assumption on the step sizes γt.
Assumption 3.4. The step sizes γt satisfy γt = ε

(2L
√

log(m+1))
βt, where 0 ≤

βt+1 ≤ βt ≤ 1∀t,
∑

t βt = ∞, and
∑

t β
2
t < ∞.

Theorem 3.2. Suppose that Assumptions 3.3 and 3.4 hold. Then with probability
1:

1. the sequence {‖ṽTz‖} converges to 0;

2. minz=1,...,p E[‖ṽTz‖2] ≤
n4κL

√
log(m+1)

ε

[
3(f(λ∗)−f(λ1)+2.8εL)+

∑t=κp

t=1

4Lβ2
t
ε√

log(m+1)

]
4
∑p+1

z=2
βκz

∀p;
3. if the set of the optima of (1) is bounded, then limt→∞ f(λt) ≥ f(λ∗)−2.8εL.

It is worth noting some aspects of Theorem 3.2. Unlike in the differentiable
case, we cannot guarantee a monotonic increase in the objective function values.
Hence the rate of convergence of the sequence {E[‖ṽTz‖]} to zero does not have as
far-reaching implications as its counterpart in Theorem 3.1. Nevertheless, Theorem
3.2 ensures convergence to a near-optimal solution with probability one. Another
substantial difference is on the assumption on step sizes and the corresponding effect
on convergence rates. It is easy to see that convergence is ensured if βt = 1

tq for
0.5 < q ≤ 1. The resulting theoretical rate of convergence is clearly dependent on
q; when 0.5 < q < 1, 1

xq is a decreasing function for x ≥ 1. Hence, for k ≥ 1, 1
kq ≥∫ k+1

k
1
xq dx, and so

∑c
k=1

1
kq ≥

∫ c+1

1
1
xq dx = (c+1)1−q−1

1−q . Thus the number of iterations

needed for E[‖ṽTz‖2] ≤ ε is polynomial in the problem parameters. Similarly, when
q = 1, 1

xq is just 1
x and is a decreasing function as well for x ≥ 1. Hence, for k ≥ 1,

1
k+1 ≤

∫ k+1

k
1
xdx, and so

∑c
k=1

1
k ≤ 1 +

∫ c

1
1
xdx = log(c) + 1, and so the number of

iterations needed for E[‖ṽTz‖2] ≤ ε is exponential in the problem parameters. As is
often observed in stochastic approximation methods, the impact of the choice of step
sizes on the speed of the convergence of the algorithm is also verified in the numerical
experiments.

4. Decentralized resource allocation with nonnegativity constraints. In
this section, we use the results developed for (1) to solve the following resource allo-
cation problem with nonnegativity constraints:

max
λi∈�m,i=1,...,n

f(λ) =
1

n

n∑
i=1

fi(λi)

s.t.

n∑
i=1

λi = B,

λi ≥ 0, i = 1, . . . , n.(7)

We assume that fi is concave and differentiable outside a set of measure zero. Also
let Assumption 3.3 hold for f .

We now define gi(λi) as follows:

gi(λi) = fi(λi) +

m∑
j=1

Lg min(λij , 0),

where Lg > 2L. The following lemma shows that the function g(λ) satisfies Assump-
tion 3.3 and is necessary for applying the stochastic approximation version of the
gradient-descent algorithm developed in 3.2.
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Lemma 4.1. Under assumption 3.3 for f ,
1. for all i, gi(λi) is concave and differentiable outside a set of measure zero;
2. for all i and λi, supi,λi

{‖v‖1 : v ∈ ∂gi(λi)} ≤ Lm < ∞, where Lm = L+mLg.
It can be noted from the definition of gi that if λi ≥ 0, then gi(λi) = fi(λi). The

term Lg min(λij , 0) in the above definition can be thought of as a penalty for negative
λij . This term ensures that solving (1) with g has a nonnegative optimal solution and
is equivalent to solving (7) with f .

Lemma 4.2. The set of optimal solutions for (1) with g as the objective function
is the same as the set of optimal solutions to (7) with f as the objective function.

Since the set of the feasible solutions of (7) is bounded and closed and since f is
assumed to be continuous, there exists an optimal solution to (7). Thus any algorithm
that finds an optimal solution to (1) with g as the objective function also yields an
optimal solution to (7) with f as the objective function.

Lemma 4.1 ensures that we can apply the stochastic approximation version of
the gradient-descent algorithm for (1) with g as the objective function. Hence an
optimal solution for (7) with f as the objective function can be found by applying the
stochastic approximation version of the gradient-descent algorithm developed in 3.2
for (1) with g as the objective function. It should be pointed out that the Lipschitz
constant of the smoothed problem, and consequently the convergence rate, is now of

the order O(m
√
m

ε ) as compared to O(
√
m
ε ) for the results of section 3.2.

5. Numerical experiments. In this section, we present the results of numerical
experiments, which illustrate the performance of the algorithms presented in the previ-
ous sections. We compare the proposed algorithms to centralized algorithms that use
direction ṽ(λ) as the direction of update. Recall that ṽ(λ) is the direction of update if
the current resource allocation is λ and the communication graph is complete. Recall
also that, when fi is differentiable, ṽ(λ) is the projection of ∇f onto the subspace∑n

i=1 λ
t
i = B. Thus the centralized algorithm reduces to the classic gradient-descent

method of nonlinear optimization in this case. We define pt = ( ft−f0

f∗−f0 )×100, where f t

is the objective function value after t iterations and f∗ is the objective function value
of the optimal solution, and we investigate how pt converges to 100 in the centralized
and decentralized algorithms.

5.1. Problem with differentiable objective function. We first consider a
problem studied in [8], which is an instance of (1), with

fi(xi) = −
(

1

2
ai(xi − ci)

2 + log(1 + ebi(xi−di))

)
, i = 1, . . . , n.

The second derivative f
′′

i is given by

f
′′

i (xi) = −
(
ai + b2i

ebi(xi−di)

(1 + ebi(xi−di))2

)
, i = 1, . . . , n.

It can be verified that f
′′

i (xi) has a lower bound −(ai + 1
4b

2
i ), i = 1, . . . , n. It

can be shown that, if a one-dimensional function is differentiable and its gradient is
bounded by some constant, then the function is Lipschitz-continuous with the same
constant. Since fi is twice differentiable and f

′′

i is bounded, it follows that f
′

i is
Lipschitz-continuous, with constant (ai + 1

4b
2
i ), if we assume that ai ≥ 0. It follows

that f
′
is Lipschitz-continuous, with constant L

n , where L = maxi(ai + 1
4b

2
i ). Thus f

satisfies Assumption 3.2.
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Fig. 1. A comparison of the convergence behavior of the decentralized and centralized algorithms
for various κ.

We choose problem instances with 20 agents and as in [8]; the coefficients ai, bi, ci,
and di are generated randomly, with uniform distributions on [0, 2], [−2, 2], [−10, 10],
and [−10, 10], respectively. Recall that, for our algorithm to converge, the union of
communication graphs should be connected periodically. For a chosen κ, we let the
edges (i, i + 1), i = 1, . . . , n− 1 be a part of the communication graph E(t) for some
arbitrarily chosen t such that mκ < t ≤ (m + 1)κ,m = 0, 1, . . . . This ensures that
G = (N,Emκ+1,m(κ+1)+1) is connected (recall that Ek,l = ∪t=l−1

t=k E(t)). We let every
other edge (i, j), with j �= i + 1, be a part of at the most one communication graph
between iterations mκ + 1 and (m + 1)κ, with a probability ep. The parameter ep
controls the density of the graph, G = (N,Emκ+1,m(κ+1)+1). The step size is chosen

to be 1
2L , with L as defined above. Figure 1 shows the convergence behavior of the

algorithm for various values of the parameter κ, with ep = 0.1. pt in the figure
represents the average of pt for 10 randomly chosen problems. It can be seen from
the figure that the performance of the decentralized algorithm is comparable to the
centralized algorithm for κ = 1, even though the communication graph is not dense
(ep = 0.1).

Figure 2 shows a comparison of the convergence behavior of the algorithms for
problems with a varying number of agents. We fix κ = 1 in these problems, and
ep = 0.1. The other parameters are chosen as described above. We notice from Figure
2 that the scaling of the performance of decentralized algorithms with increasing
number of agents is much better than O(n4) promised by Theorem 3.1.

5.2. Decentralized optimization of linear programming problems. We
now consider a decentralized solution of linear programming problems using the ran-
domized version of the decentralized subgradient-descent algorithm developed in this
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Fig. 2. A comparison of the convergence behavior of the decentralized and centralized algorithms
for various n.

paper. This problem arises naturally in sequential decision-making problems in teams
of mobile agents [7]. Consider the following linear programming problem:

max
xi,i=1,...,n

1

n

n∑
i=1

CT
i xi

s.t.

n∑
i=1

Aixi ≤ B,(8)

where Ci, xi ∈ �q, Ai ∈ �m×q, i = 1, . . . , n, and B ∈ �m. It can be seen that (8)
belongs to the class of problems identified by (3). Recall that, for a given λi ∈ �m,
fi(λi) is the optimal value of the following optimization problem:

max
xi∈�q

CT
i xi

s.t. Aixi ≤ λi.(9)

Suppose that the dual feasible sets defined by Si = {νi|AT
i νi = Ci, νi ≥ 0} are

nonempty and bounded. It is known from linear programming theory that fi(λi) =
minp=1,...,P λT

i νip, where νip are the extreme points of the polyhedra defined by Si.
Hence fi(λi) is nondifferentiable and concave. Further ν′i is a subgradient of fi(λi)
at λi if and only if it is an optimal solution to the dual problem [3]. Thus if Si is
bounded, it can be seen that Assumption 3.3 is satisfied, and the convergence analysis
of section 3.2 holds.

Let the columns of Ai be denoted as aij, j = 1, . . . , q. Also let Ci = [Cij ], j =
1, . . . , q. Suppose that the column aik > 0 and Cik > 0 for some k such that 1 ≤ k ≤ q,
and suppose Si is nonempty. The corresponding dual constraint is aik

T νi = Cik

showing that Si is bounded. For the experiments we choose ai1 = 1, i = 1, . . . , n,
where 1 is a vector of ones of the appropriate size. We also choose Ci1 = 200, i =
1, . . . , n. The rest of the constraint matrix and the cost vector are chosen arbitrarily
while ensuring that Si is nonempty.

Although the theoretical results require a randomization of the direction of up-
date, it was observed that both of the decentralized and the centralized versions of
the algorithm converge without the required randomization. Unlike the decentralized
algorithm for the differentiable case, there is flexibility in choosing step sizes. It was
observed in the experiments that the practical performance of both the centralized
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Fig. 3. A comparison of the convergence behavior of the decentralized and centralized algorithms
for various κ.

algorithm and the decentralized algorithm, with or without the randomization of the
direction of update, depends dramatically on the choice of step sizes. We present the
results of the experiments where the direction of update was not randomized, as it
provides better insight into the convergence behavior of the algorithm. It was observed
that convergence was obtained in this case so long as

∑
t γt = ∞ and

∑
t γ

2
t < ∞. We

choose step sizes of the form γt = θ(t)

2L
√

logm+1
βt, where L is the common Lipschitz

constant of the functions fi, i = 1, . . . , n. Since Ci1 = 200 and ai1 = 1 for all i, it can
be verified from the dual constraint ai1

T νi = Ci1 that L = Ci1 = 200. βt was chosen
to be of the form 1

1+w(t)t0.51 . Thus θ(t) and w(t) control the rate at which γt goes to 0.

We chose w(t) as a monotonically nondecreasing function bounded above, and θ(t) as
a monotonically nonincreasing function bounded below. This ensures that

∑
t γt = ∞

and
∑

t γ
2
t < ∞. For our experiments, we chose w(0) = 0 and w(zκ + j) = w(zκ)

for z = 0, 1, . . . , j = 1, 2, . . . , κ − 1, and w((z + 1)κ) = min{w(zκ) + rw, wmax}.
For all of the experiments we chose rw = 0.0001 and wmax = 0.1. We also chose
θ(t+ 1) = max{θ(t)− rθ, θmin}. For these experiments, we chose θ(0) = 30, θmin = 3,
and rθ = 0.1. We ensured that the union of the communication graphs are connected
periodically in the same manner as described in section 5.1. For these experiments,
we choose ep = 0.5. Figure 3 presents a comparison of the performance of the de-
centralized algorithm with the centralized algorithm, for varying κ. In the figures, n
represents the number of agents, q represents the number of variables per agent, and
m represents the number of constraints.

Figure 4 presents a comparison of the performance of the decentralized algorithm,
with the centralized algorithm for varying n. All parameters except θ(0) were chosen
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Fig. 4. A comparison of the convergence behavior of the decentralized and centralized algorithms
for various n.

as described previously. θ(0) was chosen to be 50 for the experiments of Figure 4. It
can be observed that the performance of the decentralized algorithm scales well with
increasing n. The numerical experiments suggest that κ has a greater effect on the
practical performance of the algorithm than n.

6. Discussion. In this paper, we proposed a decentralized gradient-descent al-
gorithm for a general class of resource allocation problems. We first considered the
case where the objective functions have Lipschitz-continuous gradients. We showed
that the proposed algorithm converges and established that the rate at which the
gradient projection converges to zero as a function of the number of agents in the net-
work. Motivated by the need to develop decentralized algorithms for general convex
optimization problems, we proposed a randomized subgradient-descent algorithm for
the resource allocation problem with a possibly nondifferentiable objective function.
We established an asymptotic convergence of the algorithm to a near-optimal solu-
tion and derived a convergence rate. Numerical experiments, both in the differentiable
and in the nondifferentiable settings, suggested that the decentralized algorithms are
competitive with the centralized versions of gradient and subgradient descent. The
experiments also suggested that the performance of the decentralized randomized
subgradient-descent algorithm depends dramatically on the choice of step sizes; how
to set them up optimally while taking into account the structure of the communication
network is a topic for future research.

An appealing feature of the developed algorithms is that the communication topol-
ogy of the network of agents is allowed to be dynamic provided that the union of
communication graphs of the agents is connected within a bounded time. This makes
the algorithm particularly suitable in settings involving mobile agents or communi-
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cation failures. We finally note that the formulation considered here goes beyond
traditional resource allocation problems. In particular, we show in a related paper
[7] that this algorithm is particularly suitable for a decentralized solution of a linear
programming-based method for approximate dynamic programming for the problems
of sequential decision making in the systems of mobile agents.

Appendix A. Proofs.
Lemma 3.1. A feasible solution λ∗ of (1) is an optimal solution if and only if

∇fi(λ
∗
i ) = ∇fj(λ

∗
j ) for all i, j.

Proof. First note that we can eliminate one of the variables in (1) to make it

unconstrained. For instance, if we let λn = B −
∑n−1

i=1 λi, (1) is equivalent to

min
λ

f̄(λ) =
1

n

n−1∑
i=1

(
fi(λi) + fn

(
B −

n−1∑
i=1

λi

))
.

This is an unconstrained convex and differentiable optimization problem; hence a
solution λ∗ is optimal if and only if ∇f̄(λ∗) = 0. Noting that

∇λi f̄(λ∗) =
1

n

⎛
⎝∇fi(λ

∗
i ) −∇fn

⎛
⎝B −

n−1∑
j=1

λ∗
j

⎞
⎠
⎞
⎠ ,

we conclude that λ∗ is optimal if and only if

∇fi(λ
∗
i ) = ∇fj(λ

∗
j ) = ∇fn

⎛
⎝B −

n−1∑
j=1

λ∗
j

⎞
⎠ = ∇fn(λ∗

n) ∀i, j < n.

Lemma 3.2. Suppose λ1 is a feasible solution for (1). Then λt, where λt
i is defined

by (2), is a feasible solution to (1) for all t.
Proof. Suppose λt is a feasible solution for (1). Then∑

i

λt+1
i =

∑
i

λt
i −

γ

n

∑
i

∑
j∈Ni(t)

(∇fi(λ
t
i) −∇fj(λ

t
j))

= B − γ

n

∑
(i,j)∈E(t)

(∇fi(λ
t
i) −∇fj(λ

t
j) + ∇fj(λ

t
j) −∇fi(λ

t
i))

= B.

The second equality follows from the assumption that communication is symmetric.
Thus λt+1 is a feasible solution for (1), and the lemma follows by induction.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. With a step size of
γ = 1

2L ,
1. the sequence {f(λt)} is monotonically nondecreasing;
2. the sequence {‖ṽTz‖} converges to 0;

3. minz=1,...,p(‖ṽTz‖2) ≤ 3Ln4κ(f(λ∗)−f(λ1))
4p ∀p;

4. if the set of optima is bounded, {f(λt)} converges to f(λ∗).
The proof is based on a series of lemmas. Let the direction of update at time t

be vt. It can be seen from (2) that

vti =
1

n

∑
j∈Ni(t)

(∇fi(λ
t
i) −∇fj(λ

t
j)).

We first show that vt is aligned to the direction of the gradient.



924 HARIHARAN LAKSHMANAN AND DANIELA PUCCI DE FARIAS

Lemma A.1. ∇f(λt)T vt = 1
n2

∑
(i,j)∈E(t) ‖∇fi(λ

t
i) −∇fj(λ

t
j)‖2.

Proof. We have that

∇f(λt)T vt =
∑
i∈N

1

n
∇fi(λ

t
i)

T

⎛
⎝ 1

n

∑
j∈Ni(t)

∇fi(λ
t
i) −∇fj(λ

t
j)

⎞
⎠

=
1

n2

∑
i∈N

∇fi(λ
t
i)

T

⎛
⎝ ∑

j∈Ni(t)

∇fi(λ
t
i) −∇fj(λ

t
j)

⎞
⎠ .(10)

Since communication is symmetric, for every term of the form ∇fi(λ
t
i)

T (∇fi(λ
t
i) −

∇fj(λ
t
j)) in the above summation, there is a corresponding term of the form ∇fj(λ

t
j)

T

(∇fj(λ
t
j) −∇fi(λ

t
i)). Hence,

∇f(λt)T vt =
1

n2

∑
(i,j)∈E(t)

∇fi(λ
t
i)

T (∇fi(λ
t
i) −∇fj(λ

t
j))

+∇fj(λ
t
j)

T (∇fj(λ
t
j) −∇fi(λ

t
i))

=
1

n2

∑
(i,j)∈E(t)

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2.

We now prove a lemma that establishes a relationship between ‖vt‖ and ∇f(λt)T vt.
We can interpret γ∇f(λt)T vt as the approximate increase in the objective of (1) when
using the direction vt and a sufficiently small step size γ.

Lemma A.2. ‖vt‖2 ≤ 2n∇f(λt)T vt.

Proof. Using the Cauchy–Schwarz inequality, (
∑k

i=1 ci)
2 ≤ k

∑k
i=1 c

2
i ,

‖vti‖2 ≤ |Ni(t)|
∑

j∈Ni(t)

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2

n2

≤ n
∑

j∈Ni(t)

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2

n2
,

‖vt‖2 =
∑
i

‖vti‖2

≤ n
∑
i

∑
j∈Ni(t)

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2

n2

= 2n
∑

(i,j)∈E(t)

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2

n2

= 2n∇f(λt)T vt.

The last equality comes from Lemma A.1.
We now prove a lemma that establishes a relationship between ‖ṽt‖ and ∇f(λt)T ṽt.
Lemma A.3. ‖ṽt‖2 = n∇f(λt)T ṽt.
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Proof. We first have that

‖ṽti‖2 =
‖
∑

j∈N (∇fi(λ
t
i) −∇fj(λ

t
j))‖2

n2

=
∑
j∈N

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2

n2

+ 2
∑

((j,l)∈N2,j<l)

(∇fi(λ
t
i) −∇fj(λ

t
j))

T (∇fi(λ
t
i) −∇fl(λ

t
l))

n2

=
∑
j∈N

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2

n2

+
∑

((j,l)∈N2,j<l)

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2 + ‖∇fi(λ

t
i) −∇fl(λ

t
l)‖2 − ‖∇fj(λ

t
j) −∇fl(λ

t
l)‖2

n2

= (n− 1)

⎛
⎝∑

j∈N

‖(∇fi(λ
t
i) −∇fj(λ

t
j))‖2

n2

⎞
⎠

−
∑

((j,l)∈N2,j<l,(j,l 
=i))

‖∇fj(λ
t
j) −∇fl(λ

t
l)‖2

n2
,

‖ṽt‖2 =
∑
i∈N

‖ṽti‖2

=
∑
i∈N

⎛
⎝(n− 1)

⎛
⎝ ∑

(j∈N)

‖(∇fi(λ
t
i) −∇fj(λ

t
j))‖2

n2

⎞
⎠

−
∑

((j,l)∈N2,j<l,j,l 
=i)

‖∇fj(λ
t
j) −∇fl(λ

t
l)‖2

n2

⎞
⎠ .

We note that ‖ṽt‖2 =
∑

((i,j)∈N2,i<j) cij((‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2)/n2). To determine

cij , note that the term ‖∇fi(λ
t
i) − ∇fj(λ

t
j)‖2 appears with a coefficient (n − 1) in

‖ṽti‖2, (n − 1) in ‖ṽtj‖2, and with a coefficient −1 in ‖ṽtk‖2 for all (k ∈ N, k �= i, j).
Hence, cij = (n− 1) + (n− 1) − (n− 2) = n. Therefore,

‖ṽt‖2 =
∑

((i,j)∈N2,i<j)

cij

(
‖∇fi(λ

t
i) −∇fj(λ

t
j)‖2

n2

)

= n
∑

((i,j)∈N2,i<j)

‖∇fi(λ
t
i) −∇fj(λ

t
j)‖2

n2

= n∇f(λt)T ṽt.

Consider a decentralized direction of update vt derived from an arbitrary con-
nected graph G = (N,E(t)). We now compare the ratio of the approximate increase
in the objective of (1) using vt as the direction of update and for a sufficiently small
step size γ to the approximate increase in the objective using ṽt as the direction of
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update for the same step size. This ratio is given by

(∇f(λt)T vt)

(∇f(λt)T ṽt)
=

∑
(i,j)∈E(t)(‖∇fj(λ

t
j) −∇fi(λ

t
i)‖2)∑

((i,j)∈N2,i<j)(‖∇fj(λt
j) −∇fi(λt

i)‖2)
.(11)

The following lemma shows that this ratio is bounded away from 0 by a factor that
depends only on the number of agents.

Lemma A.4. For all connected graphs G = (N,E),∑
(i,j)∈E

‖∇fj(λ
t
j) −∇fi(λ

t
i)‖2 ≥ 8

n3

∑
((i,j)∈N2,i<j)

‖∇fj(λ
t
j) −∇fi(λ

t
i)‖2.

For any vector X, let (X)k denote its kth component. We note that
(
∑

(i,j)∈E ‖∇fj(λ
t
j)−∇fi(λ

t
i)‖2)/(

∑
((i,j)∈N2,i<j) ‖∇fj(λ

t
j)−∇fi(λ

t
i)‖2) is of the form

(
∑m

k=1 bk)/(
∑m

k=1 ck), where bk =
∑

(i,j)∈E((∇fj(λ
t
j))k − (∇fi(λ

t
i))k)

2 and ck =∑
((i,j)∈N2,i<j)((∇fj(λ

t
j))k − (∇fi(λ

t
i))k)

2, and we recall that λt
j ∈ �m for all j ∈ N .

Let rk = bk
ck

. We show that if ck > 0, then rk ≥ 8
n3 . We define r(E) = (

∑
(i,j)∈E(pj −

pi)
2)/(

∑
((i,j)∈N2,i<j)(pj − pi)

2) for arbitrary values of the scalars pi, i = 1, . . . , n,

such that
∑

((i,j)∈N2,i<j)(pj − pi)
2 > 0. We show that r(E) ≥ 8

n3 , which establishes

that when ck > 0, rk ≥ 8
n3 . This result is based on a series of lemmas. We first

establish that, for any fixed value of pi, i = 1, . . . , n, the worst possible value of r is
achieved when G corresponds to a chain whose nodes have monotone values of pi.
Then we compute the worst possible value of r with respect to possible values of pi.

We also assume that pi �= pj for all i �= j, without loss of generality; since∑
((i,j)∈N2,i<j)(pj − pi)

2 > 0 by assumption, for any set of values pi, i = 1, . . . , n, we

can always perturb the values to make them strictly distinct while making r(E) in
the resulting graph arbitrarily close to that in the original problem.

Lemma A.5. The graph G = (N,E) that minimizes r over all possible sets E,
under the constraint that G is a connected graph, is a tree.

Proof. Take an arbitrary graph (N,E), and suppose that it is not a tree. Then
we can convert it into a tree (N,E′) by removing some edges from E. It is clear that
r(E′) ≤ r(E), therefore (N,E) cannot be optimal.

Lemma A.6. If a certain graph (N,E) contains edges ij and jk such that pj <
min(pi, pk) or pj > max(pi, pk), then it does not minimize r.

Proof. Consider the first situation and suppose, without loss of generality, that
pj < pi < pk. Let E′ = E\{jk} ∪ {ik}. The difference in the numerator of r(E) and
r(E′) is equal to (pj − pk)

2 − (pi − pk)
2, which is greater than 0. Therefore (N,E)

cannot be optimal. A similar analysis holds when pj > max(pi, pk).
Lemma A.7. If a node j contains more than two neighbors, then it has two

neighbors i and k such that pj < min(pi, pk) or pj > max(pi, pk).
Proof. Suppose that i, k, and l are neighbors of j. Then at least two among the

three values pi, pk, and pl must be less than or greater than pj .
Lemma A.8. Consider the chain that links nodes 1, . . . , n in increasing order of

pi. Then it minimizes r over all possible connected graphs.
Proof. From the previous lemmas, we conclude that the optimal graph is a tree.

Moreover, each node in the optimal tree must have at most two neighbors. We
conclude that the optimal graph is a chain. From Lemma A.6, the nodes in the chain
are in increasing or decreasing order of pi, and the lemma follows.

Proof of Lemma A.4. Without loss of generality, suppose that p1 < p2 < · · · < pn.
Let Δi = pi+1−pi. Note that, for all j > i, pj−pi =

∑j−1
k=i Δk. In view of the previous
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lemmas, we have the following for every connected graph (N,E):

r(E) =

∑
(i,j)∈E(pi − pj)

2∑
((i,j)∈N2,i<j)(pi − pj)2

≥
∑n−1

i=1 (pi+1 − pi)
2∑n−1

i=1

∑n
j=i+1(pi − pj)2

=

∑n−1
i=1 Δ2

i∑n−1
i=1

∑n
j=i+1

(∑j−1
k=i Δk

)2

≥
∑n−1

i=1 Δ2
i∑n−1

i=1

∑n
j=i+1

∑j−1
k=i(j − i)Δ2

k

=

∑n−1
i=1 Δ2

i∑n−1
i=1

∑n−1
k=i

∑n
j=k+1(j − i)Δ2

k

=

∑n−1
i=1 Δ2

i∑n−1
k=1 Δ2

k

∑k
i=1

∑n
j=k+1(j − i)

=

∑n−1
i=1 Δ2

i∑n−1
k=1 Δ2

k

∑k
i=1

∑n−k
j=1 (j + k − i)

=

∑n−1
i=1 Δ2

i∑n−1
k=1 Δ2

k

∑k
i=1

(n−k)(n−k+1)
2 + (k − i)(n− k)

=

∑n−1
i=1 Δ2

i∑n−1
k=1 Δ2

k(
k(n−k)(n−k+1)

2 + (n−k)(k)(k−1)
2 )

=

∑n−1
i=1 Δ2

i∑n−1
k=1 Δ2

k
k(n−k)(n)

2

≥
∑n−1

i=1 Δ2
i∑n−1

k=1 Δ2
k
n3

8

=
8

n3
.

The second inequality follows from the Cauchy–Schwarz inequality.
We note from the definitions that if ck = 0, then bk = 0. Thus for k = 1, . . . ,m,

either bk = ck = 0, or rk ≥ 8
n3 . The Lemma is trivially true, if for k = 1, . . . ,m,

bk = ck = 0. Suppose there exist some k̄ ∈ (1, . . . ,m) such that ck̄ > 0. Let K be
the set of integers from 1 to m such that ck > 0 for k ∈ K. K is not empty since it
contains k̄. ∑

(i,j)∈E(‖∇fj(λ
t
j) −∇fi(λ

t
i)‖2)∑

((i,j)∈N2,i<j)(‖∇fj(λt
j) −∇fi(λt

i)‖2)
=

∑m
k=1 bk∑m
k=1 ck

=

∑
k∈K bk∑
k∈K ck

≥
∑

k∈K
8
n3 ck∑

k∈K ck

=
8

n3
.

Let ETz be a subset of the edge set ETz,Tz+1 such that the graph (N,ETz ) is a
tree. By Assumption (2.1), the graph (N,ETz,Tz+1) is connected, and so ETz is well
defined. Let the decentralized direction of update derived using G = (N,ETz ) be
denoted by v̄Tz . The following lemma shows that the approximate increase in the
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objective in period [Tz, Tz+1] using the direction of update vt and a sufficiently small
step size γ is comparable to the approximate increase in objective when the direction
v̄Tz is used for update at time Tz.

Lemma A.9. ∇f(λTz )T v̄Tz ≤ 3
2κ
∑Tz+1−1

t=Tz
∇f(λt)T vt.

Proof. We have that

‖∇f(λt+1) −∇f(λt)‖2 ≤ L2

n2
‖γvt‖2 =

1

4n2
‖vt‖2

≤ 1

4n2
2n(∇f(λt)T vt) =

1

2n
∇f(λt)T vt.(12)

The first inequality is true because of Assumption 3.2. The first equality is true
because γ = 1

2Ln . The second inequality follows from Lemma A.2. Let tiTz
be the

earliest time between time periods Tz and Tz+1 − 1 such that there is an edge (i, j) ∈
ETz

for agent i. It is clear that Tz ≤ tiTz
≤ Tz+1 − 1. Also, by definition, for

l = Tz, Tz + 1, . . . , (tiTz
− 1), there is no edge (i, p) ∈ E(l). Thus λ

tiTz
i = λTz

i , and

∇fi(λ
tiTz
i ) = ∇fi(λ

Tz
i ). Letting wij(t) = 1

n (∇fi(λ
t
i) −∇fj(λ

t
j)), we have that

‖wij(Tz)‖ =
1

n
‖∇fi(λ

tiTz
i ) −∇fj(λ

Tz
j )‖

≤ 1

n
(‖∇fi(λ

tiTz
i ) −∇fj(λ

tiTz
j )‖ + ‖∇fj(λ

tiTz
j ) −∇fj(λ

Tz
j )‖)

≤ 1

n

⎛
⎝‖∇fi(λ

tiTz
i ) −∇fj(λ

tiTz
j )‖ +

tiTz
−1∑

t=Tz

‖∇fj(λ
t+1
j ) −∇fj(λ

t
j)‖

⎞
⎠ .

From the Cauchy–Schwarz inequality,

‖wij(Tz)‖2 ≤
(tiTz

− Tz + 1)

n2

⎛
⎝‖∇fi(λ

tiTz
i ) −∇fj(λ

tiTz
j )‖2

+

tiTz
−1∑

t=Tz

‖∇fj(λ
t+1
j ) −∇fj(λ

t
j)‖2

⎞
⎠

≤ κ

⎛
⎝‖∇fi(λ

tiTz
i ) −∇fj(λ

tiTz
j )‖2

n2
+

tiTz
−1∑

t=Tz

‖∇fj(λ
t+1
j ) −∇fj(λ

t
j)‖2

n2

⎞
⎠

≤ κ

⎛
⎝‖∇fi(λ

tiTz
i ) −∇fj(λ

tiTz
j )‖2

n2
+

1

2n

Tz+1−1∑
t=Tz

∇f(λt)T vt

⎞
⎠ .
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The last inequality comes from (12) and from the fact that ‖∇f(λt+1)−∇f(λt)‖2 =∑n
i=1

‖∇f(λt+1
i

)−∇f(λt
i)‖

2

n2 . We finally have that

∇f(λTz )T v̄Tz =
∑

(i,j)∈ETz

‖wij(Tz)‖2

≤
∑

(i,j)∈ETz

κ

⎛
⎝‖∇fi(λ

tiTz
i ) −∇fj(λ

tiTz
j )‖2

n2
+

1

2n

Tz+1−1∑
t=Tz

∇f(λt)T vt

⎞
⎠

≤ κ

⎛
⎝Tz+1−1∑

t=Tz

∇f(λt)T vt +
n− 1

2n

Tz+1−1∑
t=Tz

∇f(λt)T vt

⎞
⎠

≤ 3

2
κ

⎛
⎝Tz+1−1∑

t=Tz

∇f(λt)T vt

⎞
⎠ .

The first equality comes from Lemma A.1, with vt replaced by v̄Tz . The second
inequality comes from the fact that ETz is a subset of ETz,Tz+1 and from Lemma A.1.
It is clear that Lemma A.1 is valid for all decentralized directions of update v derived
using some communication graph G, where vi =

∑
j∈N(i)

1
n (∇fi(λi) −∇fj(λj)) and

N(i) is the set of neighbors of i in G. Hence Lemma A.1 is valid for v̄Tz . The second
inequality holds because of Lemma A.1 and because there are exactly n− 1 edges in
the set ETz , as G = (N,ETz ) is a tree.

Proof of Theorem 3.1.
Proof of 1 of Theorem 3.1. First note that

f(λt+1) − f(λt) ≥ γ∇f(λt)T vt − L

2n
‖γvt‖2

≥ γ∇f(λt)T vt − γ2L

2n
2n∇f(λt)T vt

=
1

2L
∇f(λt)T vt − 1

4L
∇f(λt)T vt =

1

4L
∇f(λt)T vt.(13)

The first inequality comes from the descent lemma for differentiable functions [2].
The second inequality comes from Lemma A.2. The first equality comes from the fact
that γ = 1

2L . Since ∇f(λt)T vt is nonnegative, the sequence {f(λt)} is monotonic and
nondecreasing establishing the first part of the theorem.

Proof of 2 of Theorem 3.1. Since (1) is assumed to have an optimal solution, f(λt)
is bounded from above. We conclude from the first claim that {f(λt)} converges, and
{∇f(λt)T vt} must converge to zero.

We now have that

‖ṽTz‖2 = n∇f(λTz )T ṽTz

≤ n4

8
∇f(λTz )T v̄Tz ≤ 3n4

16
κ

⎛
⎝Tz+1−1∑

t=Tz

∇f(λt)T vt

⎞
⎠ ,

where the first equality follows from Lemma A.3, the first inequality follows from
Lemma A.4 and Lemma A.1, and the second inequality follows from Lemma A.9. The
last inequality and the convergence of {∇f(λt)T vt} to zero establishes the second part
of the theorem.
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Proof of 3 of Theorem 3.1. Note that

f(λTz+1) − f(λTz ) ≥ 1

4L

t=Tz+1−1∑
t=Tz

∇f(λt)T vt

≥ 1

6Lκ
∇f(λTz )T v̄Tz

≥ 4

3Ln3κ
∇f(λTz )T ṽTz

=
4

3Ln4κ
‖ṽTz‖2.

The first inequality comes from (13). The second inequality comes from Lemma A.9.
The third inequality comes from Lemma A.4 and Lemma A.1, and the equality comes
from Lemma A.3. Thus,

p∑
z=1

f(λTz+1) − f(λTz ) ≥ 4

3Ln4κ

p∑
z=1

‖ṽTz‖2

f(λTp+1) − f(λ1) ≥ 4

3Ln4κ

p∑
z=1

‖ṽTz‖2

f(λ∗) − f(λ1) ≥ 4

3Ln4κ

p∑
z=1

‖ṽTz‖2.

The last inequality, together with the fact that p(minz=1,...,p ‖ṽTz‖2) ≤
∑p

z=1

‖ṽTz‖2, proves the third claim.
Proof of 4 of Theorem 3.1. If the set of optima of (1) is bounded, {λ : ‖ṽ(λ)‖ ≤ C}

is a bounded set for some C > 0. We conclude that λTz has a converging subsequence
λTzk . Let λ̄ be the limit of λTzk . Since ‖ṽ(·)‖ is a continuous function and ‖ṽ(λTzk )‖
converges to zero, we conclude that ṽ(λ̄) = 0 and λ̄ is optimal. Since f is continuous,
we conclude that {f(λTzk )} converges to f(λ̄) = f(λ∗). Since {f(λt)} converges, we
conclude that it must converge to f(λ∗).

Lemma 3.3. Let fi and f̂i be as defined in section 3.2. Then the following hold:
1. f̂i is concave and differentiable, with gradient ∇f̂i(λi) = E[∇fi(λi + Zi)];

2. fi(λi) ≥ f̂i(λi) ≥ fi(λi) − 2.8εL;

3. ‖∇f̂i(λi) −∇f̂i(λ̄i)‖ ≤
√

log(m+1)L

ε ‖λi − λ̄i‖.
Proof of 1 of Lemma 3.3. For all a ∈ [0, 1], we have that

f̂i(aλi + (1 − a)λ̄i) = E[fi(aλi + (1 − a)λ̄i + Zi)]

≥ E[afi(λi + Zi) + (1 − a)fi(λ̄i + Zi)] = af̂i(λi) + (1 − a)f̂i(λ̄i).

It follows that f̂i is concave. Since fi is nondifferentiable only on a set of measure
zero, we have that

(∇fi(λi + Zi))j = lim
δ↑0

fi(λi + Zi + δej) − fi(λi + Zi)

δ

= lim
δ↓0

fi(λi + Zi + δej) − fi(λi + Zi)

δ
,
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with probability 1, where ej is the vector with all entries equal to zero except for the
jth entry, which is equal to one. Hence

lim
δ↑0

E[fi(λi + Zi + δej)] − E[fi(λi + Zi)]

δ
= E

[
lim
δ↑0

fi(λi + Zi + δej) − fi(λi + Zi)

δ

]
= E[(∇fi(λi + Zi))j ]

= E

[
lim
δ↓0

fi(λi + Zi + δej) − fi(λi + Zi)

δ

]

= lim
δ↓0

E[fi(λi + Zi + δej)] − E[fi(λi + Zi)]

δ
.

Note that | fi(λi+Zi+δej)−fi(λi+Zi)
δ | ≤ L. Hence the exchanges between limit and

expectation are valid by the bounded convergence theorem. It follows that f̂i is
differentiable, and its gradient is given by

∇f̂i(λi) = E[∇fi(λi + Zi)].

Proof of 2 of Lemma 3.3. First, we have that

f̂i(λi) = E[fi(λi + Zi)]

≤ fi(λi + EZi) = fi(λi),

where the inequality follows from the concavity of fi and Jensen’s inequality [4].

For the lower bound on f̂i, we have that

f̂i(λi) = E[fi(λi + Zi)]

= E[fi(λi − Zi)]

≥ E[fi(λi) − ZT
i ∇fi(λi − Zi)]

≥ fi(λi) − E[max
j

|Zij |]L,(14)

where |Zij | is the modulus function. The first inequality follows from the concavity
of f and the fact that ∇fi(λi − Zi) is a subgradient of f at λi − Zi. The second
inequality follows from the fact that ‖∇fi(λi − Zi)‖1 ≤ L.

We now show that E[maxj |Zij |] ≤ 2.8ε. Note that this inequality and (14) prove
the claim.

We first place a bound on P (|Zij | > c), for c > 0. We have that

P (|Zij | > c) =

∫ ∞

c

1√
2πσ

e−
z2

2σ2 dz +

∫ −c

−∞

1√
2πσ

e−
z2

2σ2 dz = 2

∫ ∞

c

1√
2πσ

e−
z2

2σ2 dz

= 2e−
c2

2σ2

∫ ∞

0

1√
2πσ

e−
z2+2zc

2σ2 dz

= 2e−
c2

2σ2

(∫ c

0

1√
2πσ

e−
z2+2zc

2σ2 dz +

∫ ∞

c

1√
2πσ

e−
z2+2zc

2σ2 dz

)

≤ 2e−
c2

2σ2

(∫ c

0

1√
2πσ

e−
zc
σ2 dz +

∫ ∞

c

1√
2πσ

e−
z2

2σ2 dz

)

= 2e−
c2

2σ2

(
σ√
2πc

(
1 − e−

c2

σ2

)
+

1

2
P (|Zij | > c)

)
.
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Hence

P (|Zij | > c) ≤ 2

⎛
⎜⎜⎜⎝

e
− c2

2σ2 σ√
2πc

(
1 − e−

c2

σ2

)

1 − e−
c2

2σ2

⎞
⎟⎟⎟⎠

=
2e−

c2

2σ2 σ√
2πc

(
1 + e−

c2

2σ2

)
≤ 2e−

c2

2σ2
√

2σ√
πc

.

It follows that, for all c ≥ 2ε√
π
,

P (max
j

|Zij | > c) ≤ 2m
e−

c2

2σ2
√

2σ√
πc

≤ 2(m + 1)
e−

c2π log(m+1)

4ε2√
π log(m + 1)

=
2e−

(
c2− 4ε2

π

)
π log(m+1)

4ε2√
π log(m + 1)

≤ 2e−

(
c− 2ε√

π

)2
π log(m+1)

4ε2√
π log(m + 1)

.

The first inequality follows from the union bound [4]. The second inequality follows

from c ≥ 2ε√
π
. The last inequality follows from (c− 2ε√

π
)2 ≤ c2 − 4ε2

π for all c > 2ε√
π
.

Finally,

E[max
j

|Zij |]

=

∫ ∞

0

P (max
j

|Zij | > z)dz

=

∫ 2ε√
π

0

P (max
j

|Zij | > z)dz +

∫ ∞

2ε√
π

P (max
j

|Zij | > z)dz

≤ 2ε√
π

+

∫ ∞

2ε√
π

2e−

(
z− 2ε√

π

)2
π log(m+1)

4ε2√
π log(m + 1)

dz

=
2ε√
π

+
4ε√

π log(m + 1)

∫ ∞

2ε√
π

√
log(m + 1)

2ε
e−

(
z− 2ε√

π

)2
π log(m+1)

4ε2 dz

=
2ε√
π

+
4ε√

π log(m + 1)

∫ ∞

2ε√
π

1√
2π

√
π log(m + 1)√

2ε
e−

(√
π log(m+1)

(
z− 2ε√

π

)
√

2ε

)2

2 dz

=
2ε√
π

+
2ε√

π log(m + 1)

≤ 2.8ε.

The last equality comes from the identity 1√
2π

∫∞
0

e−
t2

2 dt = 1
2 .

Proof of 3 of Lemma 3.3. Denote by p(·) the probability density function for Zi;
i.e., the joint probability density function for Zi1, . . . , Zim. Then we have that

∇f̂i(λi) =

∫
�m

p(z)∇fi(λi + z)dz

=

∫
�m

p(z − λi)∇fi(z)dz.
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It follows that

‖∇f̂i(λi) −∇f̂i(λ̄i)‖ =

∥∥∥∥
∫
�m

(p(z − λi) − p(z − λ̄i))∇fi(z)dz

∥∥∥∥
≤
∫
�m

|p(z − λi) − p(z − λ̄i)|‖∇fi(z)‖dz

≤ L

∫
�m

|p(z − λi) − p(z − λ̄i)|dz.(15)

Since p(·) is the joint distribution of m i.i.d. zero-mean Gaussian random variables,
p(z) is strictly decreasing on ‖z‖. Hence∫

�m

|p(z − λi) − p(z − λ̄i)|dz

=

∫
{z∈�m:‖z−λi‖<‖z−λ̄i‖}

(
p(z − λi) − p(z − λ̄i)

)
dz

+

∫
{z∈�m:‖z−λi‖>‖z−λ̄i‖}

(
p(z − λ̄i) − p(z − λi)

)
dz

= 2

∫
{z∈�m:‖z−λi‖<‖z−λ̄i‖}

(
p(z − λi) − p(z − λ̄i)

)
dz

= 2

∫
{z∈�m:‖z‖<‖z−(λ̄i−λi)‖}

p(z)dz − 2

∫
{z∈�m:‖z‖>‖z−(λi−λ̄i)‖}

p(z)dz

= 2P (‖Zi‖ < ‖Zi − (λ̄i − λi)‖) − 2P (‖Zi‖ > ‖Zi − (λi − λ̄i)‖)
= 2P (2ZT

i (λ̄i − λi) < ‖λ̄i − λi‖2) − 2P (2ZT
i (λ̄i − λi) < −‖λ̄i − λi‖2)

= 2P (−0.5‖λ̄i − λi‖ < V < 0.5‖λ̄i − λi‖),(16)

where

V =
ZT
i (λ̄i − λi)

‖λ̄i − λi‖
.

It is easy to verify that V is normal with a zero mean and variance equal to σ =√
2ε√

π log(m+1)
. It follows that

P (−0.5‖λ̄i − λi‖ < V < 0.5‖λ̄i − λi‖) ≤
1√
2πσ

‖λ̄i − λi‖

=

√
log(m + 1)

2ε
‖λ̄i − λi‖.(17)

The claim follows from (15), (16), and (17).
Theorem 3.2. Suppose that Assumptions 3.3 and 3.4 hold. Then with probability

1:
1. the sequence {‖ṽTz‖} converges to 0;

2. minz=1,...,p E[‖ṽTz‖2] ≤
n4κL

√
log(m+1)

ε

[
3(f(λ∗)−f(λ1)+2.8εL)+

∑t=κp

t=1

4Lβ2
t
ε√

log(m+1)

]
4
∑p+1

z=2
βκz

∀p;
3. if the set of the optima of (1) is bounded, then limt→∞ f(λt) ≥ f(λ∗)−2.8εL.
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The proof has the same structure as the proof of Theorem 3.1. Let the expected
direction of update at time t be vt:

vti =
1

n

∑
j∈Ni(t)

(∇f̂i(λ
t
i) −∇f̂j(λ

t
j)).

Let δt be the random variable denoting the difference between the actual and the
expected directions of update:

δti =
∑

j∈Ni(t)

1

n
(∇fi(λ

t
i + Zt

i ) −∇fj(λ
t
j + Zt

j)) − vti .

Let Ft be the sigma-algebra [4] generated by Zτ
i , i = 1, . . . , n, τ = 1, . . . , t. We have

the following result about δti .
Lemma A.10. For all t, E[δt|Ft−1] = 0 and E[‖δt‖2|Ft−1] < 8nL2, with proba-

bility 1.
Proof. E[δti |Ft−1] = 0 follows from ∇f̂i(λi) = E[∇fi(λi +Zt

i )] for all i. Moreover,

E[‖δti‖2|Ft−1]

= E

⎡
⎢⎣
∥∥∥∥∥∥
∑

j∈Ni(t)

∇fi(λ
t
i + Zt

i ) −∇f̂i(λ
t
i) −∇fj(λ

t
j + Zt

j) + ∇f̂j(λ
t
j)

n

∥∥∥∥∥∥
2

|Ft−1

⎤
⎥⎦

=

E

[∥∥∥Ni(t)
(
∇fi(λ

t
i +Zt

i ) −∇f̂i(λ
t
i)
)
−
∑

j∈Ni(t)

(
∇fj(λ

t
j + Zt

j)−∇f̂j(λt
j)
)∥∥∥2

|Ft−1

]
n2

≤
Ni(t)

2E[‖∇fi(λt
i +Zt

i )−∇f̂i(λt
i)‖2|Ft−1]+

∑
j∈Ni(t)

E[‖∇fj(λt
j +Zt

j)−∇f̂j(λt
j)‖2|Ft−1]

n2

< 8L2.

The last inequality follows from Ni(t) < n and

‖∇fj(λ
t
j + Zt

j) −∇f̂j(λ
t
j)‖ ≤ ‖∇fj(λ

t
j + Zt

j)‖ + ‖∇f̂j(λ
t
j)‖ ≤ 2L.

Finally,

E[‖δt‖2|Ft−1] =
∑
i

E[‖δti‖2|Ft−1] < 8nL2.

The following results follow immediately from Lemmas A.1–A.4 applied with f̂i
replacing fi for all i:

∇f̂(λt)T vt =
1

n2

∑
(i,j)∈E(t)

‖∇f̂i(λ
t
i) −∇f̂j(λ

t
j)‖2(18)

‖vt‖2 ≤ 2n∇f̂(λt)T vt(19)

‖ṽt‖2 = n∇f̂(λt)T ṽt(20) ∑
(i,j)∈E

‖∇f̂j(λ
t
j) −∇f̂i(λ

t
i)‖2 ≥ 8

n3

∑
((i,j)∈N2,i<j)

‖∇f̂j(λ
t
j) −∇f̂i(λ

t
i)‖2

∀E : (N,E) is connected.(21)
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Let ETz
be a subset of the edge set ETz,Tz+1

such that the graph (N,ETz
) is a tree.

By Assumption 2.1, the graph (N,ETz,Tz+1
) is connected and so ETz is well defined.

As before, let the decentralized direction of update derived using G = (N,ETz ) be
denoted by v̄Tz . The following result is the counterpart of Lemma A.9.

Lemma A.11. Let Lε =

√
log(m+1)L

ε .

∇f̂(λTz )T v̄Tz ≤ κ
∑t=Tz+1−1

t=Tz
[(1 + 2L2

εγ
2
t )E[∇f̂(λt)T vt|FTz−1] + 8L2L2

εγ
2
t ].

Proof. We have that

E[‖∇f̂(λt+1) −∇f̂(λt)‖2|Ft−1] ≤
L2
ε

n2
E[‖γt(vt + δt)‖2|Ft−1]

=
L2
εγ

2
t

n2
(‖vt‖2 + E[‖δt‖2|Ft−1])

≤ L2
εγ

2
t

n2
(2n∇f̂(λt)T vt + 8nL2).(22)

It follows from Lemma 3.3 that Lε is a Lipschitz constant for the functions f̂i,
i = 1, . . . , n. Hence Lε

n is a Lipschitz constant for f̂ , and the first inequality follows
from this. The second inequality follows from (19) and Lemma A.10.

Let tiTz
be the earliest time between the time periods Tz and Tz+1 − 1 such that

there is an edge (i, j) ∈ ETz for agent i. It is clear that Tz ≤ tiTz
≤ Tz+1 − 1. Also,

by definition, for l = Tz, Tz + 1, . . . , (tiTz
− 1), there is no edge (i, p) ∈ E(l). Thus

λ
tiTz
i = λTz

i , and ∇f̂i(λ
tiTz
i ) = ∇f̂i(λ

Tz
i ). Let wij(t) = 1

n (∇f̂i(λ
t
i) −∇f̂j(λ

t
j)). Then

‖wij(Tz)‖ =
1

n
‖∇f̂i(λ

tiTz
i ) −∇f̂j(λ

Tz
j )‖

≤ 1

n
(‖E[∇f̂i(λ

tiTz
i ) −∇f̂j(λ

tiTz
j )|FTz−1]‖

+ ‖E[∇f̂j(λ
tiTz
j ) −∇f̂j(λ

Tz
j )|FTz−1]‖)

≤ 1

n

⎛
⎝‖E[∇f̂i(λ

tiTz
i ) −∇f̂j(λ

tiTz
j )|FTz−1]‖

+

t=tiTz
−1∑

t=Tz

‖E[∇f̂j(λ
t+1
j ) −∇f̂j(λ

t
j)|FTz−1]‖

⎞
⎠ .

From the Cauchy–Schwarz inequality,

‖wij(Tz)‖2 ≤
(tiTz

− Tz + 1)

n2

⎛
⎝‖E[∇f̂i(λ

tiTz
i ) −∇f̂j(λ

tiTz
j )|FTz−1]‖2

+

t=tiTz
−1∑

t=Tz

‖E[∇f̂j(λ
t+1
j ) −∇f̂j(λ

t
j)|FTz−1]‖2

⎞
⎠

≤ κ

n2

⎛
⎝E[‖∇f̂i(λ

tiTz
i ) −∇f̂j(λ

tiTz
j )‖2|FTz−1]

+

t=tiTz
−1∑

t=Tz

E[‖∇f̂j(λ
t+1
j ) −∇f̂j(λ

t
j)‖2)|FTz−1]

⎞
⎠
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≤ κ

⎛
⎝E[‖∇f̂i(λ

tiTz
i ) −∇f̂j(λ

tiTz
j )‖2|FTz−1]

n2

+
L2
ε

n2

t=Tz+1−1∑
t=Tz

γ2
t (E[2n∇f̂(λt)T vt|FTz−1] + 8nL2)

⎞
⎠ .

The last inequality follows from the fact that ‖∇f̂(λt+1)−∇f̂(λt)‖2 = 1
n2

∑n
k=1 ‖∇f̂k

(λt+1
k )−∇f̂k(λ

t
k)‖2 ≥ 1

n2 ‖∇f̂j(λ
t+1
j )−∇f̂j(λ

t
j)‖2 and from (22). We finally have that

∇f̂(λTz )T v̄Tz =
∑

(i,j)∈ETz

‖wij(Tz)‖2

≤
∑

(i,j)∈ETz

κ

⎛
⎝E[‖∇f̂i(λ

tiTz
i ) −∇f̂j(λ

tiTz
j )‖2|FTz−1]

n2

+
L2
ε

n2

t=Tz+1−1∑
t=Tz

γ2
t (E[2n∇f̂(λt)T vt|FTz−1] + 8nL2)

⎞
⎠

≤ κ

t=Tz+1−1∑
t=Tz

[
(1 + 2L2

εγ
2
t )E[∇f̂(λt)T vt|FTz−1] + 8L2L2

εγ
2
t

]
.

In the last inequality, we have used the fact that

∑
(i,j)∈ETz

E[‖∇f̂i(λ
tiTz
i ) −∇f̂j(λ

tiTz
j )‖2|FTz−1]

n2

=

t=Tz+1−1∑
t=Tz

∑
((i,j)∈ETz ,t

i
Tz

=t)

E[‖∇f̂i(λ
tiTz
i ) −∇f̂j(λ

tiTz
j )‖2|FTz−1]

n2

≤
t=Tz+1−1∑

t=Tz

E[∇f̂(λt)T vt|FTz−1].

Proof of Theorem 3.2.
Proof of 1 of Theorem 3.2. We first have that

E[f̂(λt+1)|Ft−1] ≥ f̂(λt) + γt∇f̂(λt)T vt − Lε

2n
E[‖γt(vt + δt)‖2|Ft−1]

= f̂(λt) + γt∇f̂(λt)T vt − Lε

2n
‖γtvt‖2 − Lε

2n
E[‖γtδt‖2|Ft−1]

≥ f̂(λt) + (γt − Lεγ
2
t )∇f̂(λt)T vt − 4LεL

2γ2
t .(23)

The first inequality comes from the descent lemma for differentiable functions [2]. The
equality follows from E[δ|Ft−1] = 0 from Lemma A.10. The second inequality follows
from Lemma A.10 and (19).

Note that ∇f̂(λt)T vt ≥ 0. This and Assumption 3.4 imply that the second term
in (23) is also greater than or equal to zero. Moreover,∑

t

4LεL
2γ2

t < ∞.
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Since f̂ is bounded from above, we conclude by the supermartingale convergence theo-
rem [4] that f̂(λt) converges with probability 1. Moreover,

∑
t(γt−Lεγ

2
t )∇f̂(λt)T vt <

∞ with probability 1 and since
∑

t γt = ∞, we conclude that ∇f̂(λt)T vt converges to
zero with probability 1. Note that

E[∇f̂(λt)T vt|Ft−1] = ∇f̂(λt)T vt

with probability 1, and we conclude that E[∇f̂(λt)T vt|Ft−1] also converges to zero
with probability 1.

We now have that

‖ṽTz‖2 = n∇f̂(λTz )T ṽTz

≤ n4

8
∇f̂(λTz )T v̄Tz

≤ n4

8
κ

t=Tz+1−1∑
t=Tz

[
(1 + 2L2

εγ
2
t )E[∇f̂(λt)T vt|FTz−1] + 8L2L2

εγ
2
t

]

≤ n4

8
κ

t=Tz+1−1∑
t=Tz

[
1.5E[∇f̂(λt)T vt|FTz−1] + 2L2β2

t

]
.(24)

The equality follows from (20). The first inequality follows from (21) and (18). The
second inequality follows from Lemma A.11. The third inequality follows from As-
sumption 3.4 on the step sizes γt. We conclude that ‖ṽTz‖ converges to zero with
probability 1.

Proof of 2 of Theorem 3.2. From (23), we have that

∇f̂(λt)T vt ≤ E[f̂(λt+1)|Ft−1] + 4LεL
2γ2

t − f̂(λt)

γt(1 − Lεγt)

≤
2(E[f̂(λt+1)|Ft−1] − f̂(λt)) +

(
2L2β2

t

Lε

)
γt

.(25)

In the second inequality we have used γt ≤ 1
2Lε

from Assumption 3.4.
Combining (24) and (25), we have that

E[‖ṽTz‖2] ≤ n4

8
κ

t=Tz+1−1∑
t=Tz

⎛
⎝3E[f̂(λt+1) − f̂(λt)] +

(
3L2β2

t

Lε

)
γt

+ 2L2β2
t

⎞
⎠

≤ n4

8γκz
κ

t=Tz+1−1∑
t=Tz

[
3E[f̂(λt+1) − f̂(λt)] +

3L2β2
t

Lε
+

L2β2
t

Lε

]
.

The last inequality follows from Assumption 3.4 on the step sizes. It follows that

p∑
z=1

γκzE[‖ṽTz‖2] ≤ n4

8
κ

t=Tp+1−1∑
t=1

[
3E[f̂(λt+1) − f̂(λt)] +

4L2β2
t

Lε

]

≤ n4

8
κ

[
3(f̂(λ̂) − f̂(λ1)) +

t=κp∑
t=1

4L2β2
t

Lε

]
,
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where λ̂ denotes an optimal solution of (5). From Lemma 3.3, we have that f̂(λ1) ≥
f(λ1) − 2.8εL. We also have that f̂(λ̂) ≤ f(λ̂) ≤ f(λ∗). It follows that

min
z=1,...,p

E[‖ṽTz‖2] ≤

n4κL
√

log(m+1)

ε

[
3(f(λ∗) − f(λ1) + 2.8εL) +

∑t=κp
t=1

4Lβ2
t ε√

log(m+1)

]
4
∑p+1

z=2 βκz

∀p.

Proof of 3 of Theorem 3.2. Since f ≥ f̂ ≥ f − 2.8εL, if (1) has a bounded set of

optima, so does (5). Recall from the proof of the first claim that f̂(λt) converges with
probability 1. Using the same argument as in the proof of the fourth claim of Theorem
3.1, we conclude that f̂(λt) converges to f̂(λ̂) with probability 1. We conclude that

lim sup
t→∞

f(λt) ≥ f̂(λ̂)

≥ f̂(λ∗)

≥ f(λ∗) − 2.8εL.

The first inequality follows from f(λt) ≥ f̂(λt) for all t from Lemma 3.3. The second

inequality follows from the optimality of λ̂. The third inequality follows from Lemma
3.3.

Lemma 4.1. Under assumption 3.3 for f ,
1. for all i, gi(λi) is concave and differentiable outside a set of measure zero;
2. for all i and λi, supi,λi

{‖v‖1 : v ∈ ∂gi(λi)} ≤ Lm < ∞, where Lm = L+mLg.
Proof of 1 of Lemma 4.1. Let hj(λi) = Lg min(λij , 0). It is clear that hj is a

piecewise linear function. Recall that

gi(λi) = fi(λi) +

m∑
j=1

hj(λi).

The concavity of gi follows from the concavity of f and the functions hj , j =
1, . . . ,m. The points of the nondifferentiability of fi form a set of measure zero. The
other points of nondifferentiability of gi are points λi, where λij = 0 for some j. These
points form a set of measure zero. Thus gi is differentiable outside a set of measure
zero.

Proof of 2 of Lemma 4.1. Let ej be the vector whose jth component is 1 and
other components are 0. It is clear that, for λi with λij �= 0, hj is differentiable and
∇hj(λi) = Lgej if λij < 0 and ∇hj(λi) = 0 if λij > 0, where 0 is the m-dimensional
zero vector. For λi with λij = 0, ∂hj(λi) consists of vectors of the form L̄ej , where
0 ≤ L̄ ≤ Lg. Thus, for all j, supλi

{‖v‖1 : v ∈ ∂hj(λi)} = Lg. It is known from the

theory of convex functions that if u =
∑k

j=1 uj where uj , j = 1, . . . , k are convex

functions, then ∂u(x) =
∑k

j=1 ∂uj(x). Thus, if supx{‖v‖1 : v ∈ ∂uj(x)} ≤ Lj , then

supx{‖v‖1 : v ∈ ∂u(x)} ≤
∑k

j=1 Lj . By assumption, supλi
{‖v‖1 : v ∈ ∂fi(λi)} ≤ L.

Hence supλi
{‖v‖1 : v ∈ ∂gi(λi)} ≤ L +

∑m
i=1 Lg = L + mLg.

Lemma 4.2. The set of optimal solutions for (1) with g as the objective function
is the same as the set of optimal solutions to (7) with f as the objective function.

Proof. Without loss of generality assume that B > 0. Consider some optimal
solution λ∗ for (7) with f as the objective function. Suppose there exists some feasible

solution λ̂ to (1), with λ̂ij < 0 for some i, j. We show that g(λ̂) < g(λ∗). This implies
that solving (7) with g as the objective function is equivalent to solving (1) with g as
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the objective function. Since g(λ) = f(λ) when λ ≥ 0, solving (7) with g is equivalent
to solving (7) with f . Thus the set of optimal solutions for (1) with g and for (7) with
f are the same proving the lemma.

Consider the following problem,

max
λp∈�m,p=1,...,n

g(λ) =
1

n

n∑
p=1

gp(λp)

s.t.

n∑
p=1

λp = B,

λp ≥ −|λ̂p|, p = 1, . . . , n.(26)

It can be seen that λ∗ and λ̂ are feasible solutions to (26). We now show that λ̂
cannot be an optimal solution to (26). Since B > 0, there exists some k such that

λ̂kj > 0. Define λ̄ so that it differs from λ̂ only in the ij and kj components as follows:

λ̄ij = λ̂ij + δ,

λ̄kj = λ̂kj − δ.

We choose a δ > 0 such that λ̄kj > 0 and λ̄ij < 0. It is clear that λ̄ is a feasible
solution to (26). We now have

gi(λ̄i) = fi(λ̄i) +

m∑
l=1

hl(λ̄i)

≥ gi(λ̂i) + δ
(
Lg +

(
∇fi(λ̄i)

)
j

)
.

The inequality comes from the concavity of gi and from the definition of λ̄. Similarly

gk(λ̄k) = fk(λ̄k) +

m∑
l=1

hl(λ̄k)

≥ gk(λ̂k) − δ
(
∇fk(λ̄k)

)
j
.

Hence

gi(λ̄i) + gk(λ̄k) ≥ gi(λ̂i) + gk(λ̂k) + δ
(
Lg +

(
∇fi(λ̄i)

)
j
−
(
∇fk(λ̄k)

)
j

)
.

Since Lg > 2L, we can conclude from the above that g(λ̄) > g(λ̂), and hence λ̂ cannot
be an optimal solution to (26).

It can be seen from the definition of (26) that its feasible set is bounded. Since g
is continuous and since the feasible set of (26) is bounded and closed, it has at least
one optimal solution by the extreme value theorem. The above argument, presented
to establish the nonoptimality of λ̂ for (26), holds for any feasible solution for (26)
with at least one nonnegative component. Hence all optimal solutions of (26) are
nonnegative. Since g(λ) = f(λ) when λ ≥ 0, solving (26) with g is equivalent to

solving (7) with f , and hence λ∗ is an optimal solution for (26). Hence g(λ̂) < g(λ̄) ≤
g(λ∗).
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GLOBAL OPTIMIZATION OF POLYNOMIALS USING THE
TRUNCATED TANGENCY VARIETY AND SUMS OF SQUARES∗
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Abstract. This paper proposes a method for finding the global infimum of a multivariate
polynomial f via sum of squares (SOS) relaxation over its truncated tangency variety. This variety
is truncated of the set of all points x ∈ R

n where the level sets of f are tangent to the sphere in R
n

centered in the origin and with radius ‖x‖. It is demonstrated that:
• The infimum of f on R

n and on its truncated tangency variety coincide.
• A sums of squares certificate for nonnegativity of f on its truncated tangency variety.

These facts imply that we can find a natural sequence of semidefinite programs whose optimal values
converge monotonically, increasing to the infimum of f. This opens up the possibility of solving
previously intractable polynomial optimization problems.

Key words. global optimization, polynomials, sum of squares (SOS), semidefinite program
(SDP), tangency variety.
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1. Introduction. We consider the global optimization problem

f∗ := inf{f(x) | x ∈ R
n} ∈ R ∪ {−∞},

where x := (x1, x2, . . . , xn) ∈ R
n is a real vector, and f is a multivariate polynomial.

As is well known, the above optimization problem is NP-hard even when the degree
of f is fixed to be four [16]. Since f∗ is the greatest lower bound of f, it is equivalent
to compute

f∗ = sup{a ∈ R | f − a ≥ 0 on R
n} ∈ R ∪ {−∞}.

A lower bound can be computed efficiently using the sum of squares (SOS) relaxation

fsos := sup{a ∈ R | f − a �sos 0} ∈ R ∪ {−∞},

where the inequality g �sos 0 means that the polynomial g is SOS, i.e., a sum of
squares of other polynomials. We refer to [10], [11], [18] [19], [20], and [21] for intro-
ductions to SOS techniques and their applications. The above SOS relaxation can be
expressed as a semidefinite program (SDP for short), i.e., as the problem of minimiz-
ing (or maximizing) an affine linear function over the intersection of the cone of all
positive semidefinite matrices with an affine subspace. In recent years, SDPs (see [27]
for an introduction) have become more and more popular for obtaining good lower
bounds (or even an optima solution) for global optimization problems with polyno-
mials. For instance, in papers [3], [12], [17], [20], and [25], the authors have proposed
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several methods to find semidefinite relaxations relying on sums of squares certificates
and critical point theory. As one could expect, polynomials that do not attain a min-
imum on R

n (that are either unbounded from below or have a finite infimum that
is not attained) are particularly hard to handle. In [3], this problem (among others)
was solved by perturbing the coefficients of the polynomial to guarantee a minimum
(in particular, boundedness from below). Though the results in [3] are quite good, we
are convinced that one should also look for other methods that avoid perturbations
and the danger of numerical ill-conditioning that comes along with them.

By proving SOS representations for polynomials positive on their real gradient
variety, it was shown by Nie, Demmel and Sturmfels [17] that an approach without
perturbation is possible. Recall that, the real gradient variety of a polynomial f,
denoted by V (∇f), is defined to be the following algebraic set:

V (∇f) := {x ∈ R
n | ∇f(x) = 0};

the gradient ideal of f is the ideal in R[x] generated by all partial derivatives of f :

(∇f) :=

〈
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

〉
⊆ R[x].

Here and in the following, we write R[x] := R[x1, x2, . . . , xn] for the ring of all polyno-
mials in n variables x with real coefficients. It has been shown that if the polynomial
f ∈ R[x] is nonnegative on V (∇f), then f is a SOS modulo its gradient ideal in the
case where the ideal is radical. In the general case where the gradient ideal is not
necessarily radical, the same thing still holds for polynomials positive on their real
gradient variety. The following is essentially [17, Theorems 8 and 9] (confer also with
recent works [13] and [25]).

Theorem 1.1 (Nie, Demmel, and Sturmfels [17]). For every f ∈ R[x] attaining
a minimum on R

n, the following are equivalent.
(i) f ≥ 0 on R

n;
(ii) f ≥ 0 on V (∇f);
(iii) For all ε > 0, there exists a SOS s in R[x] and polynomials φ1, φ2, . . . , φn

such that

f(x) + ε = s(x) + φ1(x)
∂f

∂x1
+ φ2(x)

∂f

∂x2
+ · · · + φn(x)

∂f

∂xn
.

Moreover, (ii) and (iii) are equivalent for all f ∈ R[x].
For each degree restriction k ∈ N, the problem of computing the supremum over

all a ∈ R such that

f(x) − a = s(x) + φ1(x)
∂f

∂x1
+ φ2(x)

∂f

∂x2
+ · · · + φn(x)

∂f

∂xn

for some SOS s in R[x] and polynomials φ1, φ2, . . . , φn of degree at most k can be
expressed as an SDP. Theorem 1.1 shows that the optimal values of the corresponding
sequence of SDPs (indexed by k) tend to f∗ provided that f attains a minimum on
R

n. However, for polynomials that do not attain a minimum, their method yields
wrong answers (see, for example, [25]). In [17, section 7], the authors write:

“This paper proposes a method for minimizing a multivariate poly-
nomial f(x) over its gradient variety. We assume that the infimum
f∗ is attained. This assumption is nontrivial, and we do not address
the (important and difficult) question of how to verify that a given
polynomial f(x) has this property.”
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Shortly thereafter, combining considerable machinery from differential geometry
and real algebraic geometry, Schweighofer [25] has shown that part of this limitation
can be removed. Let us outline Schweighofer’s approach. First, we introduce some
definitions.

Definition 1.1. For any polynomial f ∈ R[x] and subset S ⊂ R
n, the set

R∞(f, S) of asymptotic values of f on S consists of all y ∈ R for which there
exists a sequence {xk}k∈N of points xk ∈ S such that limk→∞ ‖xk‖ = +∞ and
limk→∞ f(xk) = y.

Definition 1.2. The preordering generated by polynomials g1, g2, . . . , gm ∈ R[x],
denoted by T (g1, g2, . . . , gm), is defined to be the following set of polynomials:

T (g1, g2, . . . , gm) :=

⎧⎨
⎩

∑
δ∈{0,1}m

sδg
δ1
1 gδ22 . . . gδmm | sδ is a sum of squares in R[x]

⎫⎬
⎭ .

By definition, the elements of T (g1, g2, . . . , gm) have obviously the geometric prop-
erty that they are nonnegative on the basic closed semialgebraic set

{x ∈ R
n | g1(x) ≥ 0, g2(x) ≥ 0, . . . , gm(x) ≥ 0}.

The next theorem is a partial converse.
Theorem 1.2 (see [25, Theorem 9]). Let f, g1, g2, , . . . , gm ∈ R[x] and set

S := {x ∈ R
n | g1(x) ≥ 0, g2(x) ≥ 0, . . . , gm(x) ≥ 0}.

Suppose that
(i) f is bounded on S;
(ii) R∞(f, S) is a finite subset of R>0 := {y ∈ R | y > 0}; and
(iii) f > 0 on S.

Then f ∈ T (g1, g2, . . . , gm).
Definition 1.3. For a polynomial f ∈ R[x], we call

S(∇f) := {x ∈ R
n | 1 − ‖∇f(x)‖2‖x‖2 ≥ 0}

the principal gradient tentacle of f. Here and in the following, we use the notation
‖x‖ :=

√
x2

1 + x2
2 + · · · + x2

n.
Given a polynomial f for which you want to compute f∗, the game will consist

in finding a tentacle such that two things will hold at the same time:
• There exist suitable sums of squares certificates for nonnegativity on the

tentacle; and
• The infimum of f on R

n and on the tentacle coincide.
These two properties seem to be hardly compatible. However, there is a sufficient
condition to ensure that it is indeed the case.

Definition 1.4 (see [22]). We say that a polynomial f ∈ C[x] has only isolated
singularities at infinity if f ∈ C (i.e., f is constant) or d := deg f ≥ 1 and there are
only finitely many z ∈ P

n−1(C) such that

∂fd
∂x1

=
∂fd
∂x2

= · · · =
∂fd
∂xn

= fd−1 = 0,

where f =
∑d

i=0 fi and each fi ∈ C[x] is zero or homogeneous of degree i.
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The above notion appears in the study of the topology of polynomial mappings.
One may consult, for example, [1], [7], or [26] for more details.

The following result is a sums of squares certificate for nonnegativity of f on its
principal gradient tentacle, which is suitable for optimization purposes. Its proof is
based on Theorem 1.2.

Theorem 1.3 (see [25, Theorem 25]). Let f ∈ R[x] be bounded from below.
Furthermore, suppose that f has only isolated singularities at infinity (which is always
true in the case n = 2) or the principal gradient tentacle S(∇f) is compact. Then the
following are equivalent.

(i) f ≥ 0 on R
n;

(ii) f ≥ 0 on S(∇f);
(iii) For every ε > 0, there are sums of squares of polynomials s and t in R[x]

such that

f(x) + ε = s(x) + t(x)[1 − ‖∇f(x)‖2‖x‖2].

For each k ∈ N, we define f∗
k ∈ R ∪ {±∞} as the supremum over all a ∈ R such

that f − a can be written as a sum

f(x) − a = s(x) + t(x)[1 − ‖∇f(x)‖2‖x‖2],

where s and t are sums of squares of polynomials with deg t ≤ 2k. Here and in the
following, we use the convention that the degree of the zero polynomial is −∞ so that
t = 0 is allowed in the above definition. Then it is easy to see that Theorem 1.3 can
be expressed in terms of the sequence f∗

0 , f
∗
1 , f

∗
2 , . . . as follows.

Theorem 1.4 (see [25, Theorem 30]). Let f ∈ R[x] be bounded from below.
Suppose that f has only isolated singularities at infinity (e.g., n = 2) or the principle
gradient tentacle S(∇f) is compact. Then the sequence {f∗

k}k∈N converges monoton-
ically increasing to f∗.

As is well known, the problem of computing the supremum f∗
k can be translated

into an SDP as described in [19], [20], and [21]. Theorem 1.4 shows that the optimal
values of the corresponding sequence of SDPs (indexed by k) tend to f∗ provided that
f has only isolated singularities at infinity or the principal gradient tentacle S(∇f) is
compact. Unfortunately, it is not clear that these technical assumptions are necessary
or not. So, Schweighofer presented in [25] a collection of higher gradient tentacles (see
[25, Definition 41]) defined by the polynomial inequalities

1 − ‖∇f(x)‖2N (1 + ‖x‖2)N+1 ≥ 0, N ∈ N.

Their advantage is that we have a sums of squares representation theorem ([25, The-
orem 46]) applicable for all f ∈ R[x] bounded from below and N is large enough.
However, the degree of the defining polynomial inequality for the Nth tentacle in this
sequence will be roughly 2N times the degree of f. This has the disadvantage that
the corresponding SDP relaxations get very big for large N. Also, we have to deal for
each N with a sequence of SDPs. All in all, we have, therefore, a double sequence of
SDPs. The following was formulated by Schweighofer as an open problem [25, Open
Problem 33]:

Problem. Do Theorems 1.3 and 1.4 hold without the hypothesis that f has only
isolated singularities at infinity or the principal gradient tentacle S(∇f) is compact?

The aim of this paper is to find a solution valid to this problem in the general
case, that is, when
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• polynomials do not necessarily attain a minimum; and
• polynomials do not necessarily have isolated singularities at infinity.

Although we do not provide a direct answer to the problem, we will replace gradient
tentacles by a semialgebraic subset of R

n for which a new sums of squares representa-
tion result of nonnegative polynomials is established. This semialgebraic subset will
be called the truncated tangency variety. We show that the infimum of any polyno-
mial f ∈ R[x] on R

n will coincide with the infimum on its truncated tangency variety
(see Theorem 2.1 and Corollary 3.1). Then, we prove a general sums of squares cer-
tificate for nonnegativity of f on its truncated tangency variety which is suitable for
optimization purposes. This representation theorem (Theorem 3.1) is of independent
interest, and its proof is mainly based on Theorem 1.2.

The paper is organized as follows. The notion about the tangency variety, which
plays an important role in the results, is recalled in section 2. The main result and its
proof are given in section 3. In section 4 we discuss numerical experiments. Section 5
draws some conclusions.

2. The tangency variety. Throughout this paper let f ∈ R[x] be a nonconstant
polynomial function. Adapting Durfee’s definition [2] (see also [8]), let us define the
tangency variety of f by

Γ(f) :=

{
x ∈ R

n | rank

(
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

x1 x2 · · · xn

)
≤ 1

}
.

Geometrically, the tangency variety Γ(f) of f consists of all points x ∈ R
n where the

level sets of f are tangent to the sphere in R
n centered in the origin and with radius

‖x‖.
Remark 2.1. It is worth noting that we can replace the tangency variety Γ(f) by

the following algebraic set

Γ(a, f) :=

{
x ∈ R

n | rank

(
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

x1 − a1 x2 − a2 · · · xn − an

)
≤ 1

}
,

where a := (a1, a2, . . . , an) ∈ R
n. Then all subsequent results will still hold with

obvious modifications. The advantage is that if the center a is general enough, then
the semialgebraic set Γ(a, f) \ V (∇f) is a one-dimensional submanifold of R

n. For
details the reader may consult [8].

As expressed by the notation Γ(f), polynomials f with the same gradient ∇f
have the same tangency variety; in other words,

Γ(f + c) = Γ(f) for all c ∈ R.

The following is a simple fact about the tangency variety Γ(f).
Lemma 2.1. The tangency variety Γ(f) is a nonempty, unbounded, and algebraic

set.
Proof. Obviously, Γ(f) is an algebraic set. Let

A := {x ∈ R
n | f(x) = min{f(y) | ‖y‖ = ‖x‖, y ∈ R

n}}.

Then, the set A is nonempty and unbounded in R
n. Moreover, it follows from La-

grange’s multipliers theorem that A ⊂ Γ(f). These facts prove the lemma.
Another property of the tangency variety Γ(f) is stated in the following result.
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Theorem 2.1. We have

inf{f(x) | x ∈ R
n} = inf{f(x) | x ∈ Γ(f)}.

Proof. The statement follows immediately from the fact that the set

A = {x ∈ R
n | f(x) = min{f(y) | ‖y‖ = ‖x‖, y ∈ R

n}}.
is contained in Γ(f).

Corollary 2.1. Let f ∈ R[x] be bounded from below. Then f∗ is either a critical
value of f or f∗ is an asymptotic value of f on Γ(f).

Proof. It is an immediate consequence of Theorem 2.1.
Lemma 2.2. R∞(f,Γ(f)) is a finite set.
Proof. This proof is adapted from [5] (see also [6]). Let us define the set of

asymptotic critical values of f by

K∞(f) := {y ∈ R|there exists a sequence {xk}k∈N ⊂ R
n such that

lim
k→∞

‖xk‖ = +∞, lim
k→∞

f(xk) = y, and lim
k→∞

‖xk‖‖∇f(xk)‖ = 0}.

As is well known, the set K∞(f) is always finite [9]. Hence, it suffices to show that
R∞(f,Γ(f)) ⊂ K∞(f). Assume that y ∈ R∞(f,Γ(f)); i.e., there exists a sequence
{xk}k∈N of points xk ∈ Γ(f) such that limk→∞ ‖xk‖ = +∞ and limk→∞ f(xk) = y.
Then we can write ∇f(xk) = λkx

k for some λk ∈ R. By using a version at infinity
of the Curve Selection Lemma (see [14], [15]), there exist a meromorphic curve ϕ(τ)
and an analytic function λ(τ), τ ∈ (0, ε), such that

(a) ∇f [ϕ(τ)] = λ(τ)ϕ(τ) for τ ∈ (0, ε);
(b) limτ→+0 ‖ϕ(τ)‖ = +∞; and
(c) limτ→+0 f [ϕ(τ)] = y.
We can write

f [ϕ(τ)] − y = c1τ
ν + higher order terms in τ,

‖ϕ(τ)‖ = c2τ
ρ + higher order terms in τ,

where c1, c2 are nonzero real numbers and

ν > 0, ρ < 0.

We have

df [ϕ(τ)]

dτ
=

〈
∇f [ϕ(τ)],

dϕ(τ)

dτ

〉

= λ(τ)

〈
ϕ(τ),

dϕ(τ)

dτ

〉
.

(The second equality follows from Condition (a).) Hence,

2
df [ϕ(τ)]

dτ
= λ(τ)

d‖ϕ(τ)‖2

dτ
.

This, together with Condition (a), implies that

2

∣∣∣∣df [ϕ(τ)]

dτ

∣∣∣∣ =
‖∇f [ϕ(τ)]‖
‖ϕ(τ)‖

d‖ϕ(τ)‖2

dτ
.

Then it is easy to see that

‖∇f [ϕ(τ)]‖‖ϕ(τ)‖ = cτν + higher order terms in τ

for some constant c �= 0, which shows that y ∈ K∞(f). The lemma is proved.
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3. Main results. Let f ∈ R[x] be a nonconstant polynomial function, and
consider the following polynomials

gij(x) := xj
∂f

∂xi
(x) − xi

∂f

∂xj
(x), 1 ≤ i < j ≤ n.

In what follows, we shall fix a real number M ∈ f(Rn) (for instance, we can set
M := f(0)). Then by the truncated tangency variety of f we mean the set

ΓM (f) := {x ∈ R
n | M − f(x) ≥ 0, gij(x) = 0, 1 ≤ i < j ≤ n}.

We begin with the following result of its own interest.
Corollary 3.1. We have

inf{f(x) | x ∈ R
n} = inf{f(x) | x ∈ ΓM (f)}.

Proof. Indeed, if M = infx∈Rn f(x), then the truncated tangency variety ΓM (f)
contains a global minimizer of f and there is nothing to prove. Otherwise, the result
follows immediately from Theorem 2.1.

Lemma 3.1. Let f be a polynomial in n real variables. If

inf{f(x) | x ∈ ΓM (f)} > 0,

then f can be written as a sum

f(x) = s(x) + t(x)[M − f(x)] +
∑

1≤i<j≤n

φij(x)gij(x),

where s, t, φij ∈ R[x], 1 ≤ i < j ≤ n, and s, t are sums of squares in R[x].
Proof. It is clear from the assumption that f is bounded and strictly positive on

the truncated tangency variety ΓM (f). Moreover, the following inclusion holds:

R∞(f,ΓM (f)) ⊂ R∞(f,Γ(f)).

This, together with Lemma 2.2, implies that R∞(f,ΓM (f)) is a finite set of R>0.
On the other hand, we can write

ΓM (f) = {x ∈ R
n | M − f(x) ≥ 0, gij(x) ≥ 0, −gij(x) ≥ 0, 1 ≤ i < j ≤ n}.

Therefore f ∈ T (M − f, gij ,−gij) by Theorem 1.2, which completes the proof.
Here comes one of the main results of this article, which is interesting on its own,

but can later be read as a convergence result for a sequence of optimal values of SDPs
(Theorem 3.2 below).

Theorem 3.1. Let f be a polynomial in n real variables. Then the following
conditions are equivalent:

(i) f ≥ 0 on R
n;

(ii) f ≥ 0 on ΓM (f);
(iii) For every ε > 0, there are sums of squares of polynomials s and t in R[x] and

polynomials φij , 1 ≤ i < j ≤ n, such that

f(x) + ε = s(x) + t(x)[M − f(x)] +
∑

1≤i<j≤n

φij(x)gij(x).
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Proof. The implications (i) ⇔ (ii) and (iii) ⇒ (ii) are straightforward. For the
implication (ii) ⇒ (iii), we only have to apply Lemma 3.1 to f + ε instead of f.

Definition 3.1. For all polynomials f ∈ R[x] and all k ∈ N, we define f∗
k ∈

R ∪ {±∞} as the supremum over all a ∈ R such that f − a can be written as a sum

f(x) − a = s(x) + t(x)[M − f(x)] +
∑

1≤i<j≤n

φij(x)gij(x),

where s, t, φij are polynomials of degree at most 2k and s, t are sums of squares in
R[x].

As is well known, the problem of computing the supremum f∗
k can be reduced to

an SDP. Moreover, by Theorem 3.1, the number f∗
k is a lower bound for the infimum

f∗ of the polynomial f , and this lower bound gets better as k increases

· · · ≤ f∗
k−1 ≤ f∗

k ≤ f∗
k+1 ≤ · · · ≤ f∗.

We have the following general result concerning the convergence of the lower
bounds.

Theorem 3.2. Let f be a polynomial in n real variables. Then the sequence
{f∗

k}k∈N converges monotonically increasing to the infimum f∗.
Proof. In fact, if f∗ = −∞, then it is easily seen from Theorem 3.1 that for every

positive integer k, f∗
k = −∞ and there is nothing to prove. Thus, we may as well

assume that f∗ > −∞. Let ε be any positive constant. The polynomial f − f∗ + ε
is strictly positive on its truncated tangency variety ΓM (f − f∗ + ε) = ΓM (f). By
Theorem 3.1, there are sums of squares of polynomials s and t in R[x] and polynomials
φij , 1 ≤ i < j ≤ n, such that

f(x) − f∗ + ε = s(x) + t(x)[M − f(x)] +
∑

1≤i<j≤n

φij(x)gij(x).

Hence, there exists an integer k(ε) such that

f∗
k ≥ f∗ − ε for all k ≥ k(ε).

Since the sequence {f∗
k}k∈N is monotonically increasing, it follows that limk→∞ f∗

k =
f∗, which completes the proof of Theorem 3.2.

4. Numerical results. In this section we set M = f(0), and the examples have
been computed using the software MATLAB 7 and SOSTOOLS [23]. Most of the
computations took a few seconds.

Example 4.1. Let us consider the following polynomial

f(x, y) := 2y4(y + x)4 + y2(y + x)2 + 2y(y + x) + y2.

We have f∗ = − 5
8 = −0.6250 and the polynomial f does not attain its infimum

value. The computed optimal values of the truncated tangency relaxations are f∗
0 =

−0.614, f∗
1 = −0.59314, f∗

2 = −0.57259, and f∗
3 = −0.54373. By Theorem 3.2, the

sequence f∗
0 , f

∗
1 , f

∗
2 , . . . , converges monotonically to f∗. However, the computed values

are larger than f∗ so that there are obviously numerical problems. Confer [4] and [5,
Example 2.1].
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Example 4.2. Let us consider the following polynomial of two real variables:

f(x, y) := (xy − 1)2 + (x− 1)2.

It is easy to see that f∗ = f(1, 1) = 0. The computed optimal values of the truncated
tangency relaxations are f∗

0 = 0.87482 · 10−9, f∗
1 = 0.67891 · 10−8, and f∗

2 = 0.87081 ·
10−8. Confer [6, Example 4.2].

Example 4.3. Let us consider the Motzkin polynomial

f(x, y) := x2y4 + x4y2 − 3x2y2 + 1,

which is nonnegative but not a sum of squares: f∗ = 0 and fsos = −∞. The com-
puted optimal values of the truncated tangency relaxations are f∗

0 = −30394, f∗
1 =

−0.67174, f∗
2 = −0.15122, and f∗

3 = 0.62693 · 10−8. Confer [20, Example 2] and [25,
Example 35].

Example 4.4. Let us consider the Berg polynomial f := x2y2(x2+y2−1) ∈ R[x, y].
This polynomial is taken from [10]. It has global infimum value f∗ = −1/27 =
−0.037037037 . . . . However fsos = −33.157325 is considerably smaller than f∗. If
we minimize f over its truncated tangency variety with k = 3, then we get f∗

3 =
−0.037037. Confer [3, Example 4], [10, Example 3], [17, Example 3], and [25, Example
37].

Example 4.5. Let f := (x2 + 1)2 + (y2 + 1)2 − 2(x + y + 1)2 ∈ R[x, y]. By
computation, we obtain for all values f∗

0 , f
∗
1 , f

∗
2 approximately −11.458. Confer [3,

Example 3], [10, Example 2], and [25, Example 38].
Example 4.6. Consider the polynomial f := (x+x2y+x4yz)2 ∈ R[x, y, z]. It was

shown by Schweighofer [25, Example 34] that the set R∞(f, S(∇f)) of asymptotic
values of f on S(∇f) is infinite. This fact implies that f has nonisolated singularities
at infinity, and hence, it does not satisfy the assumptions of Theorem 1.3. On the
other hand, it is clear that f∗ = 0. By computation, we get f∗

0 = −0.49293·10−9, f∗
1 =

−0.17651 · 10−6, and f∗
2 = −0.28173 · 10−8.

Example 4.7. The Motzkin polynomial

f := x2y2(x2 + y2 − 3z2) + z6 ∈ R[x, y, z]

is nonnegative but not a sum of squares (see [24], [20]). We have f∗ = 0 but fsos =
−∞. The latter follows from the fact that f is homogeneous and not a sum of squares.
By computation, we obtain for all values f∗

0 = −0.30767, f∗
1 = −0.41528 · 10−2, f∗

2 =
−0.33994 · 10−3, and f∗

3 = −0.15803 · 10−3. Confer [17, Example 1] and [25].
Example 4.8. Consider once more the polynomial f = (1−xy)2 + y2. It does not

attain its infimum f∗ = 0 on R
2 (see also [5], [6], and [25]). Since this polynomial is

by definition a sum of squares, we have fsos = 0 = f∗ and therefore f∗
k = 0 for all

k ∈ N by definition. By computation, we get fsos � 1.5142 · 10−12, which is almost
zero, but also f∗

0 = −0.12641 · 10−3, f∗
1 = 0.12732 · 10−1, and f∗

2 = 0.49626 · 10−1,
which shows that there are big numerical problems. In [25, Example 40], the author
wrote:

“We have verified that the corresponding SDPs have nevertheless
been solved quite accurately. The problem is that small numerical
errors in the coefficients of a polynomial can perturb its infimum
quite a lot whenever the infimum is not attained (or attained very
far from the origin). It should be subject to further research how to
fight this problem.”

Remark 4.1. One question still unanswered is whether the truncation is necessary.
Numerical experiments seem to indicate that the truncation is not needed.
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5. Conclusions. This paper proposes a method for computing numerically the
infimum of a multivariate polynomial f over its truncated tangency variety. We have
shown

• The infimum of f on R
n and on its truncated tangency variety coincide.

• A sums of squares certificate for nonnegativity of f on its truncated tangency
variety.

These facts imply that we can find a natural sequence of SDPs whose optimal values
f∗
k converge monotonically increasing to f∗.

Our method has two major problems (see also [25]). First, it turns out that solving
semidefinite programs that arise from a polynomial that does not attain a minimum
takes sometimes a surprisingly long time. Second, small numerical inaccuracies might
lead to big changes in the infimum of a polynomial if the infimum is not attained.
All two problems should be subject to further research. Polynomials not attaining a
minimum remain hard to handle in practice. On the theoretical side, we have obtained
new interesting characterizations of nonnegative polynomials.
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ON STABILITY OF MULTISTAGE STOCHASTIC PROGRAMS∗
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Abstract. We study the quantitative stability of linear multistage stochastic programs under
perturbations of the underlying stochastic processes. It is shown that the optimal values behave
Lipschitz continuously with respect to an Lp-distance. In order to establish continuity of the recourse
function with respect to the current state of the stochastic process, we assume continuity of the
conditional distributions in terms of a Fortet–Mourier metric. The main stability result holds for
nonanticipative approximations of the underlying process and thus represents a rigorous justification
of established discretization techniques.
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Introduction. Many stochastic optimization problems of practical interest do
not allow for an analytic solution, and numerical approaches require the underlying
probability measure to have finite support. Whenever the initial probability measure
does not meet these demands, it has to be approximated by an auxiliary measure.
Thereby, it is reasonable to choose the approximating measure such that the optimal
value and the set of optimal decisions of the auxiliary problem are close to those of
the originial problem. Consequently, perturbation and stability analysis of stochastic
programs is necessary for the development of reliable techniques for discretization and
scenario reduction. While stability properties are well understood for nondynamic
chance constrained and two-stage problems, cf. the recent survey by [18], it turned
out that the multistage case is more intricate. Recently, the latter situation has
been studied by a variety of authors, and thus the following references should not be
considered to be exhaustive. Statistical bounds have been provided by [20]. Reference
[13] established asymptotic stability of specific approximations for a general class of
convex multistage problems in terms of epi-convergence. In doing so, he noticed that
such quantitative results, as we discuss in this paper, require stronger assumptions.
Indeed, the restriction on models with continuous decisions allowed [12] to establish
such a quantitative stability result for their tree approximations. Reference [8] did
not require regularity conditions on decisions and underlying processes. Consequently,
their quantitative stability result, obtained by considering arbitrary perturbations of
the underlying process, incorporates a term measuring the distance of the filtrations
induced by the initial and the auxiliary process, respectively. Vanishing in the two-
stage case, this filtration distance reflects the relevance of the information structure
and of the nonanticipativity constraints for multistage decision problems. We refer
also to [2] who studied the role of information in stochastic optimization problems
and introduced and reviewed several concepts of distances between filtrations.

The recent approach of [7] aims to incorporate filtration distances into the con-
struction of scenario trees. However, this requires some extra effort and, to the best

∗Received by the editors May 2, 2007; accepted for publication (in revised form) May 8, 2008;
published electronically October 16, 2008.

http://www.siam.org/journals/siopt/19-2/69036.html
†Humboldt–Universität zu Berlin, Unter den Linden 6, D–10099 Berlin, Germany (ckuechler@

math.hu-berlin.de). Support by the Wiener Wissenschafts-, Forschungs- und Technologiefonds
(WWTF) and by the Bundesministerium für Bildung und Forschung (BMBF) under the grant
03SF0312E is gratefully acknowledged.

952



ON STABILITY OF MULTISTAGE STOCHASTIC PROGRAMS 953

of our understanding, these distances are not taken into account by a variety of es-
tablished techniques. Thus, the main purpose of this paper is to provide general
conditions under which these somewhat delicate terms may be omitted.

One of the main difficulties seems to be that without additional assumptions
neither the recourse function nor an optimal decision depend continuously on the
current state of the underlying process in general. Reference [16] showed that under
weak conditions, the optimal value can be approximated by continuous decisions.
However, while this allows one to deduce convergence results, such as those due to
[13], it does not lead to quantitative estimates. For deriving continuity of the recourse
function and bounds based on a barycentric approximation scheme, [11] required the
underlying processes to be autoregressive. He also indicated that the key element
in any scenario tree construction is the discretization of the conditional probabilities.
In particular, continuous dependency of these probabilities on the current state of
the underlying process is necessary for potential continuity of the recourse function
and can be seen as continuity of the available information with respect to the current
state. It is illustrated by Example 2.6 of [8] that the latter property is indispensable in
order to omit any filtration distances and to obtain a good approximation of the initial
process by usual techniques which are based on stagewise clustering. Thus, we impose
Lipschitz continuity of the conditional distributions to verify the same regularity for
the recourse function in Theorem 1. With this at hand, we estimate in Theorem 2
the gap between the optimal value and the costs of a decision that is locally calm.
This leads to our main result, Theorem 3, which provides an upper bound for the
perturbation of the optimal value.

Notation and conventions. Random variables are denoted by bold letters,
for example ξ or x, in contrast to their realizations (i.e., elements of their support)
which are denoted by ξ or x, respectively. Given some vectors ξ1, . . . , ξt in R

s with
s, t ∈ N, the notation ξt is used for the vector (ξ1, . . . , ξt). Furthermore, ‖·‖ denotes the
maximum norm on R

n for the respective value n ∈ N, and we set ‖ξt‖ � maxi≤t ‖ξi‖.

1. Problem formulation. On a probability space (Ω,F ,P) we consider an R
s-

valued stochastic process ξ = (ξt)Tt=1 with time horizon T ∈ N and the associated
filtration (Ft)Tt=1 defined through Ft � σ(ξt) for t = 1, . . . , T . We assume that
F1 = {Ω, ∅}, ξ ∈ Lp(Ω,F ,P) for every p ∈ [1,+∞), and set for t = 1, . . . , T ,

Pt � P [ξt ∈ · ] , P
t � P

[

ξt ∈ ·
]

and Ξt � supp Pt ⊂ R
s, Ξt � supp P

t ⊂ R
s·t.

Furthermore, we consider the costs bt(·), the technology matrices At,1(·), and the right-
hand sides ht(·), which all are assumed to depend affinely on ξt ∈ Ξt and map into
R
m, R

n·m, and R
n, respectively, for some m,n ∈ N and t = 1, . . . , T . Together with

the nonrandom recourse matrices At,0 ∈ R
m·n they define the set-valued mappings

Mt : Xt−1 × Ξt ⇒ Xt,

Mt(xt−1, ξt) � {xt ∈ Xt : At,0xt +At,1(ξt)xt−1 = ht(ξt)},

where Xt ⊂ R
m are certain nonempty, closed, and polyhedral sets, with t = 1, . . . , T .

We assume complete recourse; i.e., Mt(xt−1, ξt) is nonempty for every xt−1 ∈ Xt−1

and every ξt ∈ Ξt. The objective function is given by

ϕ : R
m·T × ΞT → R,

ϕ
(

x1, . . . , xT , ξ
T
)

�
T
∑

t=1

〈bt(ξt), xt〉 .
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A tuple x = (x1, . . . ,xT ) of Borel-measurable mappings xt : Ξt → Xt, t = 1, . . . , T ,
is called a feasible decision with respect to ξ, if the recourse condition

(1) xt
(

ξt
)

∈Mt

(

xt−1

(

ξt−1
)

, ξt
)

is fulfilled P−a.s. for t = 1, . . . , T . The class of feasible decisions x will be denoted by
S(ξ) and, for the sake of notational convenience, we set x0 = 1.

We study the following multistage stochastic optimization problem:

(2) v(ξ) � inf
x ∈ S(ξ)

E [ϕ(x(ξ), ξ)] ,

and aim to establish an upper bound for the perturbation of v(ξ) when ξ is replaced
by another process ξ̃.

Complete recourse and the polyhedral form of Mt allow one to conclude (see
Example 9.35 of [17]) that Mt is Lipschitz continuous on Xt−1 × Ξt with respect to
the Pompeiu–Hausdorff distance � in the following sense. There exists a constant
M ≥ 0 with

� (Mt(xt−1, ξt),Mt (x̂t−1, ξt)) ≤M · max{1, ‖ξt‖} · ‖x̂t−1 − xt−1‖ and

�

(

Mt(xt−1, ξt),Mt

(

xt−1, ξ̂t

))

≤M · max{1, ‖xt−1‖} ·
∥

∥ξ̂t − ξt
∥

∥,

for every (xt−1, ξt), (x̂t−1, ξ̂t) ∈ Xt−1 × Ξt. We recall that the Pompeiu–Hausdorff
distance between two sets A,B ⊂ R

m is defined by

�(A,B) � max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}

.

Remark 1.1. Throughout this paper, the linearity of Mt is used only to obtain
the claimed Lipschitz continuity. Analogously, we assume linear costs 〈bt(ξt), xt〉 only
to ensure the existence of a constant B ≥ 0 with

‖〈bt(ξt), xt〉 −
〈

bt

(

ξ̂t

)

, xt

〉

‖ ≤ B
∥

∥ξt − ξ̂t
∥

∥‖xt‖ and

‖〈bt(ξt), xt〉 − 〈bt(ξt), x̂t〉‖ ≤ Bmax{1, ‖ξt‖}‖xt − x̂t‖.

The integrability condition on ξ is assumed for notational simplicity. Actually, it
suffices to have ξ ∈ Lp(Ω,F ,P) for a sufficiently large p ∈ R+.

Furthermore, all results remain valid if Mt, ht, and bt depend on ξt instead of ξt.

2. Continuity of the recourse function. Let Vt : Ξt × Xt−1 → R be the
recourse function at time t, which is defined recursively by VT+1 � 0 and the dynamic
programming equation

Vt
(

ξt, xt−1

)

� inf
xt∈Mt(xt−1,ξt)

〈bt(ξt), xt〉+E
[

Vt+1

(

ξt+1, xt
)∣

∣ ξt = ξt
]

for t = T, . . . , 1,

where the mapping (xt, ξt) �→ E[Vt+1(ξt+1, xt)|ξt = ξt] denotes the regular condi-
tional expectation of Vt+1(·, ·) relative to Ft. The value Vt(ξt, xt−1) represents the
minimal achievable expected future costs after having chosen xt−1 = xt−1, having
observed {ξt = ξt}, and before deciding on xt. In particular, we have the iden-
tity v(ξ) = V1(ξ1, x0), and complete recourse implies that Vt < +∞ holds true on
Ξt × Xt−1. It was proved by [6] that Vt is well-defined and measurable under the
following assumption.



ON STABILITY OF MULTISTAGE STOCHASTIC PROGRAMS 955

Assumption 2.1.

(i) There exists an integrable random variable η such that ϕ(x, ξ) ≥ η holds
P−a.s. for every x ∈ R

m·T .
(ii) For each c ∈ R the random level set {x ∈ R

m·T : ϕ(x, ξ) ≤ c} is compact
P−a.s.

A decision x ∈ S(ξ) is optimal if and only if the equality

(3) Vt(ξt,xt−1(ξt−1)) =
〈

bt(ξt),xt(ξt)
〉

+ E
[

Vt+1

(

ξt+1,xt(ξt)
)∣

∣ ξt = ξt
]

holds for P
t−almost every ξt ∈ Ξt and t = 1, . . . , T . Moreover, for every Borel

measurable mapping xt−1 : Ξt−1 → Xt−1, there exists a measurable xt : Ξt → Xt

such that relation (3) holds true for P
t−almost every ξt ∈ Ξt. Actually, [6] allows one

to show that the P
t-null sets on which the latter property does not hold coincide for

all measurable xt−1. Indeed, the following corollary is an immediate consequence of
applying Lemma 4 of [6] within the proof of his Theorem 2.

Corollary 2.2. For t = 1, . . . , T , there is a Borel set At′ ⊂ Ξt with P
t[At′] = 1

such that the following property holds.
For every Borel measurable mapping xt−1 : Ξt−1 → Xt−1 there exists a measur-

able xt : Ξt → Xt such that identity (3) holds true for every ξt ∈ At
′.

We assume the decision xt can be chosen to fulfill a certain growth condition:
Assumption 2.3. For t = 1, . . . , T , there is a Borel set At′ ⊂ Ξt with P

t[At′] = 1
and a constant L ≥ 1 such that the following property holds.

For every Borel measurable mapping xt−1 : Ξt−1 → Xt−1 there exists a measur-
able xt : Ξt → Xt such that identity (3) and the growth condition

(4) ‖xt(ξt)‖ ≤ L · max
{

1, ‖xt−1(ξt−1)‖
}

· max
{

1, ‖ξt‖
}

hold true for every ξt ∈ At
′.

Remark 2.4. Unfortunately, the existence of decisions which are bounded in the
above sense may be hard to verify, in general. However, (4) holds true for every
xt ∈Mt(xt−1, ξt) if Xt is bounded, or, more generally, whenever the projection of Xt

onto the kernel of the recourse matrix At,0 is bounded.
Furthermore, the linear growth condition (4) could be relaxed to polynomial

growth, and then the growth rate in ξt of the Lipschitz constant in Theorem 1 and
the subsequent results would change accordingly.

Assumptions 2.1 and 2.3 imply the existence of an optimal decision x satisfying

(5) ‖xt(ξt)‖ ≤ Lt · max
{

1, ‖ξt‖
}t−1

P − a.s. for t = 1, . . . , T.

Indeed, a tuple x = (x1, . . . ,xT ) of mappings with (1) and (3)–(5) can be constructed
by recursion, and from Theorem 14.37 of [17] it follows that every xt can be chosen
to be measurable. Consequently, x is an optimal decision. Decisions fulfilling (4) and
(5) will be denoted as bounded in the following.

To establish a quantitative stability result, we will study the continuity of Vt.
Thereby, regularity properties of the mapping xt−1 �→ Vt(ξt, xt−1) are well-known.
We refer to [3] and [19] who derived convexity as well as piecewise linearity for the
case of finite ΞT and to [11] who proved continuity under compactness assumptions
on ΞT and X1, . . . , XT . Thus, the following proposition can be seen as an adaption
of these results to our Lipschitz continuous framework.

Proposition 2.5. The recourse function Vt is Lipschitz continuous with respect
to the decision xt−1 in the following sense. For t = 1, . . . , T , there exists a constant
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M̄ > 0 and a Borel set At′′ ⊂ Ξt with P
t[At′′] = 1, such that for every ξt ∈ At

′′ the
relation

(6)
∣

∣Vt(ξt, xt−1) − Vt(ξt, x̂t−1)
∣

∣ ≤ [Vt]
x
Lip (ξt) · ‖xt−1 − x̂t−1‖

holds true for every xt−1, x̂t−1 ∈ Xt−1 with a (random) Lipschitz constant [Vt]
x
Lip (ξt)

satisfying

(7) [Vt]
x
Lip (ξt) ≤ M̄ · E

[

max
{

1,
∥

∥

∥ξ
T
∥

∥

∥

}2+T−t
∣

∣

∣

∣

ξt = ξt
]

.

Proof. The assertion is true for VT+1 ≡ 0. Assume it is true also for s = t+1, . . . , T
with Lipschitz constants [Vs]

x
Lip and that the difference on the left side of (6) is

negative. Then, due to (3), there exists an x∗
t (ξt) ∈ Mt(xt−1, ξt), such that the left

side of (6) coincides for P
t-a.e. ξt with

−
〈

bt(ξt),x∗
t

(

ξt
)〉

− E
[

Vt+1

(

ξt+1,x∗
t

(

ξt
))∣

∣ ξt = ξt
]

+ inf
x̂t∈Mt(x̂t−1,ξt)

{

〈bt(ξt), x̂t〉 + E
[

Vt+1

(

ξt+1, x̂t
)∣

∣ ξt = ξt
]}

.(8)

Moreover, it follows from Corollary 2.2 that we may assume that the P
t(dξt)-null sets

on which this identity does not hold coincide for all xt−1 ∈ Xt−1. Due to Theo-
rem 14.37 of [17] we can choose a measurable x̂∗

t with

x̂∗
t (ξ

t) ∈ arg min
z∈Mt(x̂t−1,ξt)

∥

∥z − x∗
t (ξ

t)
∥

∥

to estimate (8) from above by

|
〈

bt(ξt),x∗
t

(

ξt
)

− x̂∗
t

(

ξt
)〉

| + |E
[

Vt+1

(

ξt+1, x∗t
)

− Vt+1

(

ξt+1, x̂∗t
)∣

∣ ξt = ξt
]

|.

From the linear growth of bt and the Lipschitz continuity of Vt+1 with respect to xt,
one concludes that this term is not greater than

(

Bmax{1, ‖ξt‖} + E

[

[Vt+1]xLip
(

ξt+1
)

∣

∣

∣ ξt = ξt
])

·
∥

∥x∗
t

(

ξt
)

− x̂∗
t

(

ξt
)∥

∥,

again P
t(dξt)–a.s. for every xt−1, x̂t−1 ∈ Xt−1. By definition of x̂∗

t and Lipschitz
continuity of Mt, the latter term is bounded from above by
(

MBmax
{

1, ‖ξt‖2
}

+M max{1, ‖ξt‖} · E

[

[Vt+1]xLip
(

ξt+1
)

∣

∣

∣ ξ
t = ξt

])

·‖xt−1 − x̂t−1‖.

An analoguous estimate holds whenever the difference on the left side of (6) is positive.
Hence, [Vt]

x
Lip (ξt) is given by the term in parentheses, from which we conclude by

recursion that we can put

[Vt]
x
Lip (ξt) � B

T
∑

i=t

M i−t+1
E

[

max{1, ‖ξi‖
2} ·

i−1
∏

k=t

max{1, ‖ξk‖}
∣

∣

∣

∣

∣

ξt = ξt

]

.

Thus, the asserted bound for [Vt]
x
Lip results from a straightforward estimate.

Establishing continuity of ξt �→ Vt(ξt, xt−1) is more subtle since, unlike the deci-
sion variable xt−1, the observation ξt impacts not only the Lipschitz continuous time
coupling constraints at time t, but also the expectations about future realizations of
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ξ. Therefore, one can hardly expect Vt to be Lipschitz continuous with respect to ξt

without having that the conditional distribution of (ξs)Ts=t+1 under {ξt = ξt} depends
continuously on ξt with respect to some appropriate measure of distance. It is illus-
trated by Example 2.6 of [8] that without such a continuous dependency stability of
optimal values in terms of an Lp-distance does not hold in general. Thus, for estab-
lishing recursively the continuity of Vt, we need that continuity of Vt+1 with respect
to ξt+1 is passed down to the mapping ξt �→ E

[

Vt+1(ξt+1, xt)
∣

∣ ξt = ξt
]

. To this end,
we introduce for p ≥ 1 and a given Borel set At+1 ⊂ Ξt+1 with P

t+1[At+1] = 1 the
class of functions

F
At+1

p (Ξt+1) �
{

f : Ξt+1 → R : (9) holds for ξt+1, ξ̂t+1 ∈ At+1
}

along with the Lipschitz condition

(9)
∣

∣

∣f
(

ξt+1
)

− f
(

ξ̂t+1
)∣

∣

∣ ≤ max
{

1,
∥

∥ξt+1
∥

∥,
∥

∥ξ̂t+1
∥

∥

}p−1 ∥
∥ξt+1 − ξ̂t+1

∥

∥.

We consider the following distance between probability measures P,Q on Ξt+1:

ζA
t+1

p (P,Q) � sup
f∈FAt+1

p (Ξt+1)

∣

∣

∣

∣

∫

Ξt+1
f
(

ξt+1
)

P
(

dξt+1
)

−
∫

Ξt+1
f
(

ξt+1
)

Q
(

dξt+1
)

∣

∣

∣

∣

.

Recall that, with the exception that we disregard the P
t+1-null set Ξt+1 \At+1 within

the definition of F
At+1

p , the functional ζA
t+1

p corresponds to the p-th order Fortet–
Mourier distance; see [15], [18]. Using this notation, the claimed continuity of the
conditional distributions is specified by the following assumption.

Assumption 2.6. There exist constants W,K > 0, and r ≥ 0, such that with

(10) mt � 1 + (T − t)(1 + r) for t = 1, . . . , T,

the following conditions are fulfilled.
(i) For every t = 1, . . . , T − 1, every Borel set At+1 ⊂ Ξt+1 with P

t+1[At+1] = 1,
and P

t-a.e. ξt, ξ̂t ∈ Ξt

ζA
t+1

m(t+1)+1

(

P
[

ξt+1 ∈ ·
∣

∣ ξt = ξt
]

,P
[

ξt+1 ∈ ·
∣

∣ ξt = ξ̂t
])

≤ K max
{

1, ‖ξt‖, ‖ξ̂t‖
}mt−1

‖ξt − ξ̂t‖.

(ii) For every t = 1, . . . , T − 1 and P
t-a.e. ξt ∈ Ξt

E

[

max
{

1,
∥

∥

∥ξT
∥

∥

∥

}1+T−t
∣

∣

∣

∣

ξt = ξt
]

≤W · max
{

1,
∥

∥ξt
∥

∥

}mt
.

Since the above assumption is crucial for the following continuity and stability
results, it is discussed in the following remark.

Remark 2.7. Condition (i) is related to terms usually related to Markov pro-
cesses, namely the coefficient of ergodicity and the Feller property; see, e.g., [4], [5],
respectively. A similar assumption has been made by [1] to ensure stability of an
optimal-stopping problem in a Markovian framework and by [12] for their study of
consistency of tree approximations. It is also made implicitly by [11] by focusing on
autoregressive processes. The more involved formulation of Assumption 2.6, allowing
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for polynomially growing Lipschitz constants, is due to the fact that neither 〈bt(ξt), xt〉
nor Mt+1 are uniformly Lipschitz continuous in ξt and xt, unless both the support
ΞT and the sets Xt, t = 1, . . . , T are bounded. Indeed, under such a boundedness
condition (i) may be significantly simplified; see Remark 2.8 below.

Lemma A.1 in the appendix provides conditions on ξ, under which both (i) and
(ii) hold true. In particular, this is the case if ΞT is finite. In the latter case one
sees that ζp is the optimal value of a linear optimization problem that can be solved
numerically to determine the constants K and r.

The following theorem shows that Assumption 2.6 indeed provides Lipschitz conti-
nuity of Vt with respect to ξt. We also refer to Proposition 2.7 of [11] which represents
a corresponding continuity result.

Theorem 1. Suppose the Assumptions 2.1, 2.3, and 2.6 are fulfilled. For every
t = 1, . . . , T there is a constant Ct > 0 and a Borel set At ⊂ Ξt with P

t[At] = 1 such
that

1
Ct max {1, ‖xt−1‖}

Vt( · , xt−1) ∈ F
At

mt+1

(

Ξt
)

holds true for every xt−1 ∈ Xt−1.
Proof. The assertion holds true for VT+1 ≡ 0; we show that it follows recursively

for t ≤ T . To this end, we proceed as in the proof of Proposition 2.5 and choose
a measurable x∗

t with x∗
t (ξ

t) ∈ Mt(xt−1, ξt) that fulfills (3) and ‖x∗
t (ξ

t)‖ ≤ L ·
max {1, ‖xt−1‖} · max {1, ‖ξt‖}. Thus, we obtain

∣

∣

∣
Vt
(

ξt, xt−1

)

− Vt

(

ξ̂t, xt−1

)∣

∣

∣

=

∣

∣

∣

∣

∣

〈

bt (ξt) ,x∗
t

(

ξt
)〉

+ E
[

Vt+1

(

ξt+1,x∗
t

(

ξt
))∣

∣ ξt = ξt
]

− inf
x̂t∈Mt(xt−1,ξ̂t)

{〈

bt(ξ̂t), x̂t
〉

+ E

[

Vt+1(ξt+1, x̂t)
∣

∣ ξt = ξ̂t
]}

∣

∣

∣

∣

∣

,(11)

which holds, due to Assumption 2.3, for every ξt, ξ̂t ∈ At
′ with P

t[At′] = 1 for all
xt−1 ∈ Xt−1. We consider the case when the term under the norm is negative and
choose a measurable x̂∗

t with

x̂∗
t (ξ̂

t) ∈ argminz∈Mt(xt−1,ξ̂t)
‖z − x∗

t (ξ
t)‖

to obtain the following upper bound for (11):

−
〈

bt(ξt),x∗
t

(

ξt
)〉

− E
[

Vt+1

(

ξt+1,x∗
t

(

ξt
))∣

∣ ξt = ξt
]

+
〈

bt

(

ξ̂t

)

, x̂∗
t

(

ξ̂t
)〉

+ E

[

Vt+1

(

ξt+1, x̂∗
t

(

ξ̂t
))∣

∣

∣ ξt = ξ̂t
]

.(12)

Using linearity of bt and Lipschitz continuity ofMt, the difference of the scalar product
terms can be estimated by

∣

∣

∣

〈

bt (ξt) ,x∗
t

(

ξt
)〉

−
〈

bt

(

ξ̂t

)

,x∗
t

(

ξt
)

〉∣

∣

∣

+
∣

∣

∣

〈

bt

(

ξ̂t

)

,x∗
t

(

ξt
)

〉

−
〈

bt

(

ξ̂t

)

, x̂∗
t

(

ξ̂t
)〉∣

∣

∣

≤ B‖ξt − ξ̂t‖ · L · max {1, ‖xt−1‖}max
{

1, ‖ξt‖
}

+Bmax
{

1,
∥

∥ξ̂t
∥

∥

}

·M max{1, ‖xt−1‖}‖ξt − ξ̂t‖

≤ B(L+M) max {1, ‖xt−1‖}max
{

1, ‖ξt‖, ‖ξ̂t‖
}

‖ξt − ξ̂t‖.(13)
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The difference of the conditional expectations in (12) is bounded by

|E
[

Vt+1

(

ξt+1,x∗
t

(

ξt
)) ∣

∣ ξt = ξt
]

− E

[

Vt+1

(

ξt+1,x∗
t

(

ξt
)) ∣

∣ ξt = ξ̂t
]

|

+ |E
[

Vt+1

(

ξt+1,x∗
t

(

ξt
)) ∣

∣ ξt = ξ̂t
]

− E

[

Vt+1

(

ξt+1, x̂∗
t

(

ξ̂t
)) ∣

∣

∣ ξt = ξ̂t
]

|

≤ Ct+1 max
{

1, ‖x∗
t

(

ξt
)

‖
}

ζA
t+1

m(t+1)+1

(

P
[

ξt+1 ∈ ·
∣

∣ ξt = ξt
]

,P
[

ξt+1 ∈ ·
∣

∣ ξt = ξ̂t
])

+ E

[

[Vt+1]xLip
(

ξt+1
)

∣

∣

∣ ξt = ξ̂t
]

M max {1, ‖xt−1‖} ·
∥

∥ξt − ξ̂t
∥

∥,(14)

whereby the last inequality follows from the assertion for Vt+1, Proposition 2.5, and
the Lipschitz continuity of Mt. This estimate holds true for every ξt, ξ̂t ∈ At

′′ for all
xt−1 ∈ Xt−1, where At′′ denotes the sets on which the assertions of Proposition 2.5
hold. Applying now condition (i) of Assumption 2.6 and the estimate (7), we see that
the sum (14) does not exceed

KCt+1 max
{

1,
∥

∥x∗
t (ξ

t)
∥

∥

}

max
{

1,
∥

∥ξt
∥

∥,
∥

∥ξ̂t
∥

∥

}mt−1 ∥
∥ξt − ξ̂t

∥

∥

+ M̄ · E
[

max
{

1,
∥

∥

∥ξT
∥

∥

∥

}1+T−t
∣

∣

∣

∣

ξt = ξt
]

M max {1, ‖xt−1‖} ·
∥

∥ξt − ξ̂t
∥

∥

for every ξt, ξ̂t ∈ At
′′′. Thereby, At′′′ denotes the set of P

t-probability one on which
Assumption 2.6 holds.

From condition (ii) of Assumption 2.6 and the boundedness of ‖x∗
t ‖, we conclude

that the latter sum is again bounded from above by

(15)
(

KCt+1L+ M̄WM
)

max
{

1,
∥

∥xt−1

∥

∥

}

max
{

1,
∥

∥ξt
∥

∥,
∥

∥ξ̂t
∥

∥

}mt

· ‖ξt − ξ̂t‖.

The upper bounds (13) and (15) remain valid if the term under the norm in (11) is
positive. Piecing this all together, the assertion for Vt follows with At � At

′ ∩ At′′ ∩
At

′′′, and the Lipschitz constant Ct can be chosen by collecting the constants from
(13) and (15); i.e.,

Ct � B(M + L) +KCt+1L+ M̄WM.

In the following remark we sketch what can be simplified whenever the sets Xt

and ΞT are bounded.
Remark 2.8. The constant mt is chosen to be equal to the growth rate of the

term max{1, ‖ξt‖, ‖ξ̂t‖} within an upper bound of (14). Assuming boundedness of
the sets Xt for t = 1, . . . , T allows one to estimate the term max {1, ‖x∗

t (ξ
t)‖} in the

first summand of (14) by some constant instead of estimating it by max{1, ‖ξt‖, ‖ξ̂t‖}.
Consequently, one can allow the growth rate of the ζ-terms in (14) and in Assumption
2.6 to increase from mt − 1 to mt.

If the set ΞT is bounded as well, then [Vt+1]xLip (ξt+1) is bounded by a constant,
condition (i) of Assumption 2.6 may be simplified to

ζA
t+1

1

(

P
[

ξt+1 ∈ ·
∣

∣ ξt = ξt
]

,P
[

ξt+1 ∈ ·
∣

∣ ξt = ξ̂t
])

≤ K
∥

∥ξt − ξ̂t
∥

∥,

condition (ii) of Assumption 2.6 may be omitted, and the assertion of Theorem 1 can
be written as (1/Ct)Vt( · , xt−1) ∈ F

At

1 (Ξt), i.e., (ξt, xt−1) �→ Vt(ξt, xt−1) is uniformly
Lipschitz continuous.
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The optimality and boundedness conditions (3)–(5), as well as the continuity
properties claimed in Assumption 2.6 and Theorem 1, hold on some Borel set A ⊂ ΞT

with P
T [A] = 1. Since an approximation ξ̃ may have its support in the set ΞT \ A,

it is reasonable to modify the considered random variables on this P
T -null set to

appropriate versions which fulfill the claimed properties for every ξT ∈ ΞT . To this
end, we recall that P

T [A] = 1 and ΞT = supp P
T imply that A is a dense subset of ΞT .

For every ξ̂T ∈ ΞT \ A we then consider a sequence (ξT(n))n∈N ⊂ A converging to ξ̂T

as n goes to infinity. The recourse function and the regular conditional distributions
are modified in ξ̂T by setting Vt(ξ̂t, xt−1) � limn→∞ Vt(ξt(n), xt−1) and

E[g
(

ξt+1
)

|ξt = ξ̂t] � lim
n→∞

E[g
(

ξt+1
)

|ξt = ξt(n)]

for every Lipschitz continuous mapping g. A bounded optimal solution x∗ can be ap-
propriately modified in ξ̂t by considering a subsequence (ξT(nk))k∈N such that x∗

t (ξt(nk))
converges toward some

zt

(

ξ̂t
)

∈ Xt

for t = 1, . . . , T . Then we put x∗
t (ξ̂t) � zt(ξ̂t), and we obtain that the above stated

conditions and properties indeed hold for every ξT ∈ ΞT .

3. Approximations. Whenever an auxiliary process ξ̃ is expected to approx-
imate ξ with regard to the optimization problem (2), it is indispensable that ξ̃ is
nonanticipative with respect to ξ. This is illustrated, for the sake of completeness, by
Example A.3 in the appendix. Nonanticipativity is ensured in the following.

Definition 3.1. A stochastic process ξ̃ on (Ω,F ,P) is called an approximation
of ξ, if there exist Borel-measurable mappings

ft : Ξt → Ξt for t = 1, . . . , T,

fulfilling the following conditions:
(i) ξ̃t = ft(ξt) for t = 1, . . . T ,
(ii) fT (ΞT ) ⊂ ΞT ,

(iii) f1(ξ1) = ξ1 for every ξ1 ∈ Ξ1, and
(iv) fT (ξ) ∈ Lp(Ω,F ,P) for every p ∈ [1,∞).

Thereby, f t(ξt) denotes the vector (fi(ξi))ti=1 ∈ R
s·t for t = 1, . . . , T . In the following,

we use the notation f for the mapping fT (·).
Remark 3.2. The nonanticipativity condition (i) is equivalent to σ(ξt)-measur-

ability of the random variable ξ̃t. Condition (ii) ensures that fT maps onto realizations
ξT ∈ ΞT of the initial process and thus implies that the restriction of a decision
x(·) ∈ S(ξ) on the set fT (ΞT ) is a ξ̃-feasible decision. The integrability condition
(iv) is assumed again for the sake of simplicity. For the following results, it suffices
that fT (ξ) ∈ Lp(Ω,F ,P) for a constant p ∈ R+ that is sufficiently large.

The following proposition relies heavily on the continuity of the recourse function
stated in Theorem 1. It is shown that, although an optimal decision x∗(·) is not
continuous in general, its expected costs can be approximated by the decision x∗(f(·))
(which is piecewise constant whenever ξ̃ has finite support). Although x∗(f(·)) may
fail to fulfill the time-coupling constraints (1) with respect to ξ, it can be used to
construct a feasible decision. This will be carried out in the next section.

Proposition 3.3. Consider an optimal decision x∗ which is bounded in the sense
of (5) and an approximation mapping f according to Definition 3.1.
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Then there exists a constant D > 0 such that the following estimate holds:

(16) |ϕ(x∗(ξ), ξ) − ϕ(x∗(f(ξ)), ξ)| ≤ DE [max{1, ‖ξ‖, ‖f(ξ)‖}m1 · ‖ξ − f(ξ)‖] ,

where the constant m1 is defined by (10).
Proof. Due to f1(ξ1) = ξ1, we have to estimate

∣

∣

∣

∣

∣

E

[

T
∑

t=2

〈

bt(ξt),x
∗
t

(

ξt
)〉

]

− E

[

T
∑

t=2

〈

bt(ξt),x
∗
t

(

f t
(

ξt
))〉

]∣

∣

∣

∣

∣

.

By the optimality of x∗, the first expectation is equal to E
[

V2(ξ2,x∗
1)
]

, and it follows
from Theorem 1 and the boundedness of x∗

1 (and x∗
0 � 1) that

(17) E
[∣

∣V2

(

ξ2,x∗
1

)

− V2

(

f2
(

ξ2
)

,x∗
1

)∣

∣

]

≤ LC2E

[

max
{

1, ‖ξ2‖, ‖f2
(

ξ2
)

‖
}m2 ‖ξ2 − f2

(

ξ2
)

‖
]

Thus, it remains to estimate
∣

∣

∣

∣

∣

E

[

V2

(

f2
(

ξ2
)

,x∗
1

)

−
T
∑

t=2

〈

bt(ξt),x
∗
t

(

f t
(

ξt
))〉

]∣

∣

∣

∣

∣

.(18)

To this end, we consider the following inequality

(19)
∣

∣

∣E

[

V2

(

f2
(

ξ2
)

,x∗
1

)

−
t−1
∑

s=2

〈bs(ξs),x∗
s(f

s(ξs))〉

− Vt
(

f t
(

ξt
)

,x∗
t−1

(

f t−1
(

ξt−1
)))

]∣

∣

∣ ≤ Dt,

whose left side coincides with (18) for t = T + 1. It holds trivially for t = 2 with
D2 = 0, and we assume that it is also true for some t ∈ {2, . . . , T} with a constant
Dt ≥ 0. To prove it recursively for t+ 1, we have to find an upper bound for

(20)
∣

∣

∣

∣

E
[

Vt
(

f t
(

ξt
)

,x∗
t−1

(

f t−1
(

ξt−1
)))

−
〈

bt (ξt) ,x
∗
t

(

f t
(

ξt
))〉

− Vt+1

(

f t+1
(

ξt+1
)

,x∗
t

(

f t
(

ξt
))) ]

∣

∣

∣

∣

.

To this end, we use again x∗’s optimality to expand the first summand:

(21) E
[

Vt
(

f t
(

ξt
)

,x∗
t−1

(

f t−1
(

ξt−1
)))]

=
∫

〈

bt
(

ft
(

ξt
))

,x∗
t

(

f t
(

ξt
))〉

+E
[

Vt+1

(

ξt+1,x∗
t

(

f t
(

ξt
)))∣

∣ ξt = f t
(

ξt
)]

P
t
(

dξt
)

.

Now, to estimate (20), we have to replace bt(ft(ξt)) by bt(ξt). The Lipschitz continuity
of bt(·) implies
∣

∣

〈

bt
(

ft
(

ξt
))

,x∗
t

(

f t
(

ξt
))〉

−
〈

bt (ξt) ,x∗
t

(

f t
(

ξt
))〉∣

∣ ≤ B·
∥

∥x∗
t

(

f t
(

ξt
)) ∥

∥·
∥

∥ξt−f t
(

ξt
) ∥

∥.
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To estimate the difference of the Vt+1-terms in (20) and (21), we add and subtract
the term E

[

Vt+1(f t+1(ξt+1),x∗
t (f t(ξt)))

∣

∣ ξt = ξt
]

and use the triangle inequality to
estimate

∣

∣E
[

Vt+1

(

ξt+1,x∗
t

(

f t
(

ξt
)))∣

∣ ξt = f t
(

ξt
)]

−E
[

Vt+1

(

f t+1
(

ξt+1
)

,x∗
t

(

f t
(

ξt
)))∣

∣ ξt = ξt
] ∣

∣

≤
∣

∣E
[

Vt+1

(

ξt+1,x∗
t

(

f t
(

ξt
)))∣

∣ ξt = f t
(

ξt
)]

−E
[

Vt+1

(

ξt+1,x∗
t

(

f t
(

ξt
)))∣

∣ ξt = ξt
] ∣

∣

+
∣

∣E
[

Vt+1

(

ξt+1,x∗
t

(

f t
(

ξt
)))∣

∣ ξt = ξt
]

−E
[

Vt+1

(

f t+1
(

ξt+1
)

,x∗
t

(

f t
(

ξt
)))∣

∣ ξt = ξt
] ∣

∣.

By applying Theorem 1 and Assumption 2.6 we conclude that this term is bounded
for P

t-almost every ξt by

KCt+1 max
{

1,
∥

∥x∗
t

(

f t
(

ξt
)) ∥

∥

}

max
{

1,
∥

∥ξt
∥

∥,
∥

∥f t
(

ξt
) ∥

∥

}mt−1 ∥
∥ξt − f t

(

ξt
) ∥

∥

+Ct+1 max
{

1,
∥

∥x∗
t

(

f t
(

ξt
)) ∥

∥

}

·E
[

max
{

1,
∥

∥ξt+1
∥

∥,
∥

∥f t+1
(

ξt+1
) ∥

∥

}mt+1 ∥
∥ξt+1 − f t+1

(

ξt+1
) ∥

∥

∣

∣ ξt = ξt
]

≤ (K + 1)Ct+1L
t
E

[

max
{

1,
∥

∥ξt+1
∥

∥,
∥

∥f t+1
(

ξt+1
) ∥

∥

}mt+t−1 ∥
∥ξt+1

− f t+1
(

ξt+1
) ∥

∥|ξt = ξt
]

,

where the inequality follows from boundedness of x∗
t and the relation mt+1 ≤ mt− 1.

Integration with respect to P
t(dξt) and combining these estimates with (21) entails

that (20) does not exceed

(22)
(B+(K+1)Ct+1)LtE

[

max
{

1,
∥

∥ξt+1
∥

∥,
∥

∥f t+1
(

ξt+1
) ∥

∥

}mt+t−1 ·
∥

∥ξt+1 − f t+1
(

ξt+1
) ∥

∥

]

.

Hence, (19) holds for t+ 1 with Dt+1 being equal to the sum of Dt and (22).
Due to the fact that both mt+ t−1 and m2 are smaller than m1, the sum of (17)

and (18) does not exceed

DE [max{1, ‖ξ‖, ‖f(ξ)‖}m1 · ‖ξ − f(ξ)‖]

with D � LC2 +DT+1. This completes the proof.

4. Calm decisions. One of the main difficulties in establishing the stability of
the optimal value v(ξ) with respect to perturbations of ξ is that optimal solutions
do not depend continuously on the realization of ξ, in general. Furthermore, the gap
between v(ξ) and the minimal expected costs which can be realized by, e.g., Lipschitz
continuous solutions may be hard to estimate. In this section we shall introduce
specific calm decisions and estimate the minimal expected costs realized by those
decisions.

We consider an optimal decision x∗ which is bounded in the sense of (5). The
calm modification of x∗ is defined by

x̄∗
1 � x∗

1 and x̄∗
t

(

ξt
)

∈ argminz∈Mt(x̄
∗
t−1(ξt−1), ξt)

∥

∥x∗
t

(

f t
(

ξt
))

−z
∥

∥ for t = 2, . . . , T,



ON STABILITY OF MULTISTAGE STOCHASTIC PROGRAMS 963

where, again due to Theorem 14.37 of [17], the latter mappings can be chosen to be
measurable. Observe that x∗

t and x̄∗
t coincide on the set f t(Ξt), i.e.,

(23) x̄∗
t

(

f t
(

ξt
))

= x∗
t

(

f t
(

ξt
))

for every ξt ∈ Ξt.

Due to the Lipschitz continuity of Mt, the local variability of x̄∗
t (·) in ξt can be

estimated recursively, and x̄∗
t (·) is indeed calm locally around f t(ξt) for every ξt ∈ Ξt

in the following sense.
Proposition 4.1. For every t = 1, . . . , T and every ξT ∈ ΞT we have

(24)
∥

∥x̄∗
t

(

ξt
)

−x̄∗
t

(

f t
(

ξt
)) ∥

∥ ≤ (T−1)MT−1 max
{

1,
∥

∥ξT
∥

∥,
∥

∥fT
(

ξT
) ∥

∥

}T−1 ∥
∥ξT−fT

(

ξT
) ∥

∥.

Proof. For t = 1, the difference on the left side of (24) vanishes. For t > 1 we use
the identity (23) and the definition of x̄∗

t (ξ
t) to write

(25) ‖x̄∗
t

(

ξt
)

− x̄∗
t

(

f t
(

ξt
))

‖ = inf
z∈Mt(x̄

∗
t−1(ξt−1), ξt)

∥

∥z − x̄∗
t

(

f t
(

ξt
)) ∥

∥.

Using the inclusion x̄∗
t (f

t(ξt)) ∈ Mt(x̄∗
t−1(f t−1(ξt−1)), ft(ξt)), we obtain that the

right-hand side of (25) is not greater than the Pompeiu–Hausdorff distance of the
sets Mt(x̄∗

t−1(ξt−1), ξt) and Mt(x̄∗
t−1(f t−1(ξt−1)), ft(ξt)). We then apply the trian-

gle inequality with respect to this metric and use the Lipschitz continuity of Mt to
conclude that the right-hand side of (25) is bounded from above by

M max
{

1,
∥

∥ξt
∥

∥

} ∥

∥x̄∗
t−1

(

ξt−1
)

− x̄∗
t−1

(

f t−1
(

ξt−1
)) ∥

∥

+M max
{

1,
∥

∥x̄∗
t−1

(

f t−1
(

ξt−1
)) ∥

∥

} ∥

∥f t
(

ξt
)

− ξt
∥

∥.

By boundedness of xt−1, the latter sum does not exceed

M max{1, ‖ξt‖}
∥

∥x̄∗
t−1

(

ξt−1
)

− x̄∗
t−1

(

f t−1
(

ξt−1
)) ∥

∥

+MLmax
{

1,
∥

∥f t−1
(

ξt−1
) ∥

∥

}t−1 ∥
∥f t

(

ξt
)

− ξt
∥

∥.

Recursively, we obtain that the left side of (24) is bounded by

L
t
∑

i=2

M t+1−i max
{

1,
∥

∥f i−1
(

ξi−1
) ∥

∥

}i−1
max

{

1,
∥

∥ξt
∥

∥

}t−i ∥
∥ξi − f i

(

ξi
) ∥

∥.

The assertion follows by a straightforward estimate.
By combining Propositions 3.3 and 4.1, one immediately concludes the following

theorem, which shows that the difference of the expected costs generated by x∗ and
x̄∗ can be estimated in terms of the deviation between ξ and f(ξ).

Theorem 2. Suppose Assumptions 2.1, 2.3, and 2.6 are fulfilled. Consider an
optimal decision x∗ which is bounded in the sense of (5) and its calm modification x̄∗.

Then there exists a constant C > 0 such that the following estimate holds:

|Eϕ(x∗(ξ), ξ) − Eϕ(x̄∗(ξ), ξ)| ≤ C E [max{1, ‖ξ‖, ‖f(ξ)‖}m1 · ‖ξ − f(ξ)‖] ,

where the constant m1 is defined by (10).
Proof. To prove the assertion, we have to estimate the following term:

(26)

∣

∣

∣

∣

∣

E

[

T
∑

t=2

〈

bt(ξt),x
∗
t

(

ξt
)〉

−
T
∑

t=2

〈

bt(ξt), x̄
∗
t

(

ξt
)〉

]∣

∣

∣

∣

∣

.
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Recall that, by Proposition 3.3, x∗(ξ) and x∗(f(ξ)) produce comparable costs. On
the other hand, the difference between x∗(f(ξ)) and x̄∗(ξ) can be estimated due to
the calmness of the latter decision. Thus, we add and subtract the term

E

[

T
∑

t=2

〈

bt(ξt),x
∗
t

(

f t
(

ξt
))〉

]

to the expectation within (26). Using then the triangle inequality as well as Proposi-
tion 3.3, we conclude that (26) is not greater than the sum of

(27)

∣

∣

∣

∣

∣

E

[

T
∑

t=2

〈

bt(ξt),x
∗
t

(

f t
(

ξt
))〉

−
T
∑

t=2

〈

bt(ξt), x̄
∗
t

(

ξt
)〉

]∣

∣

∣

∣

∣

and the right-hand side of (16). It thus remains to estimate (27). By applying
identity (23) as well as the calmness property of x̄∗ from Proposition 4.1, we obtain
the following upper bound:

E

[

T
∑

t=2

Bmax
{

1,
∥

∥ξt
∥

∥

}

(T − 1)MT−1 max
{

1,
∥

∥ξT
∥

∥,
∥

∥

∥fT
(

ξT
)∥

∥

∥

}T−1∥
∥

∥ξT − fT
(

ξT
)∥

∥

∥

]

≤ (T − 1)2BMT−1
E

[

max
{

1,
∥

∥ξT
∥

∥,
∥

∥

∥fT
(

ξT
)∥

∥

∥

}T ∥
∥

∥ξ
T − fT

(

ξT
) ∥

∥

∥

]

.

Finally, the sum of the latter term and the right-hand side of (16) is smaller than

C E

[

max
{

1,
∥

∥ξT
∥

∥,
∥

∥

∥fT
(

ξT
)∥

∥

∥

}m1

·
∥

∥

∥ξT − fT
(

ξT
)∥

∥

∥

]

,

with a constant C � D + (T − 1)2BMT−1.

5. Stability. In order to address the question of stability, we have to consider
the following issue. Although we assume the existence of bounded optimal solutions to
the initial problem (2), the perturbed problem may be unbounded. This is illustrated,
for the sake of completeness, by Example A.4 in the Appendix. Heitsch, Römisch,
and Strugarek [8] avoid such unfavorable cases by their Assumption (A2) of level-
boundedness of the objective, locally around ξ. We proceed by assuming that ξ̃
fulfills Assumption 2.3 too; i.e., the perturbed problem v(ξ̃) admits a bounded optimal
solution. We now state our main result.

Theorem 3. Suppose Assumptions 2.1, 2.3, and 2.6 are fulfilled. Let ξ̃ be an
approximation of ξ according to Definition 3.1, which fulfills Assumption 2.3, too, and
consider the constant m1 defined by (10).

Then there exists a constant γ > 0, such that
∣

∣

∣
v(ξ) − v

(

ξ̃
)∣

∣

∣
≤ γ E

[

max
{

1,
∥

∥ξ
∥

∥,
∥

∥ξ̃
∥

∥

}m1

·
∥

∥ξ − ξ̃
∥

∥

]

holds.
Proof. We denote the approximation mapping corresponding to ξ̃ by f and con-

sider a bounded optimal decision x∗ ∈ S(ξ) and the corresponding calm modification
x̄∗ from section 4.

Applying Theorem 2 yields the following inequality:

v
(

ξ̃
)

− v(ξ) = v
(

ξ̃
)

− Eϕ(x∗(ξ), ξ)

≤ v
(

ξ̃
)

− Eϕ(x̄∗(ξ), ξ) + CE

[

max
{

1, ‖ξ‖,
∥

∥ξ̃
∥

∥

}m1

·
∥

∥ξ − ξ̃
∥

∥

]

.(28)
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Since the restriction of x̄∗ on f(Ξ) is contained in S(ξ̃), we can write

v
(

ξ̃
)

− Eϕ(x̄∗(ξ), ξ)

≤ Eϕ
(

x̄∗
(

ξ̃
)

, ξ̃
)

− Eϕ(x̄∗(ξ), ξ)

=
T
∑

t=2

E

[〈

bt

(

ξ̃t

)

− bt(ξt), x̄
∗
t

(

ξ̃
t
)〉

+
〈

bt(ξt), x̄∗
t

(

ξ̃
t
)

− x̄∗
t

(

ξt
)

〉]

≤ B

T
∑

t=2

E

[

∥

∥ξ̃t − ξt
∥

∥

∥

∥

∥x̄∗
t

(

ξ̃
t
) ∥

∥

∥+max
{

1,
∥

∥ξt
∥

∥

}

∥

∥

∥x̄∗
t

(

ξ̃
t
)

− x̄∗
t

(

ξt
)

∥

∥

∥

]

.(29)

Due to the fact that x̄∗ and x∗ coincide on the set f(ΞT ), see (23), we obtain that
x̄∗ fulfills the boundedness condition (5) on f(ΞT ). Using this boundedness as well
as the calmness of x̄∗, each of the T − 1 summands in (29) can be estimated. Thus,
(29) is bounded from above by

(30) HE

[

max
{

1,
∥

∥ξ
∥

∥,
∥

∥ξ̃
∥

∥

}T

·
∥

∥ξ − ξ̃
∥

∥

]

,

with an appropriate constant H > 0, and we can use the relation T ≤ m1 to obtain

v
(

ξ̃
)

− v(ξ) ≤ (C +H)E
[

max
{

1,
∥

∥ξ
∥

∥,
∥

∥ξ̃
∥

∥

}m1

·
∥

∥ξ − ξ̃
∥

∥

]

.

Now, we consider a bounded optimal decision x̃∗ of v(ξ̃). Following exactly the
construction of section 4, we obtain a decision ¯̃x∗ ∈ S(ξ) that is calm in the sense
of Proposition 4.1 and whose restriction on f(ΞT ) is optimal for v(ξ̃). As in (29), it
follows that

v(ξ) − v
(

ξ̃
)

≤ Eϕ
(

¯̃x∗(ξ), ξ
)

− Eϕ
(

¯̃x∗
(

ξ̃
)

, ξ̃
)

≤ B

T
∑

t=2

E

[

max {1, ‖ξt} ‖
∥

∥

∥

¯̃x∗
t

(

ξ̃
t
)

− ¯̃x∗
t

(

ξt
)

∥

∥

∥+
∥

∥ξ̃t − ξt

∥

∥

∥

∥

∥

¯̃x∗
t

(

ξ̃
t
)∥

∥

∥

]

≤ HE

[

max
{

1,
∥

∥ξT
∥

∥,
∥

∥

∥ξ̃
T
∥

∥

∥

}T

·
∥

∥

∥ξT − ξ̃
T
∥

∥

∥

]

.

Applying again T ≤ m1 and setting γ � C +H completes the proof.
Remark 5.1. Since the purpose of this paper is to establish a stability result

rather than the development of new approximation techniques, we restrict ourselves
to refer to existing approaches based on conditional or unconditional clustering, which
can be used to control the upper bound on |v(ξ)−v(ξ̃)| from Theorem 3. We mention
here the recent approaches of [7], [1], [9], and [14].

Other approximation techniques, e.g., those proposed by [10], [12], are not based
on projections of the initial process ξ. Consequently, neither the joint distribution
of ξ and ξ̃ nor the underlying probability spaces are necessarily specified. However,
under some weak regularity conditions our results may be applied to such cases as
well. Indeed, one may choose the sample space (ΞT ×ΞT ,B(ΞT )⊗B(ΞT ),PT ⊗ P̃

T ) as
underlying probability space for both processes and define a nonanticipative coupling
mapping f : ΞT → ΞT by, e.g., using successive projections. Thereby, B(ΞT ) denotes
the Borel sets of ΞT , and P̃

T denotes the distribution of the approximating process ξ̃.
Determining such a mapping f is closely related to Lp-minimal metrics and to mass
transportation problems, see also Remark 2.3 of [8].
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Appendix. The following lemma provides conditions under which the conditions
of Assumption 2.6 hold true.

Lemma A.1. Assume the dynamics of the process ξ are given by the following
scheme:

(31) ξt+1 = gt
(

ξt, εt+1

)

,

where εt+1 is a R
n-valued random variable that is independent of ξt, and gt are

measurable mappings from R
s·t × R

n to R
s which satisfy the following Lipschitz and

linear growth conditions:
(i) ‖gt(ξt, ε) − gt(ξ̂t, ε)‖ ≤ max{1, ‖ξt‖, ‖ξ̂t‖}r ‖ξt − ξ̂t‖ h(‖ε‖),,

(ii) ‖gt(ξt, ε)‖ ≤ max{1, ‖ξt‖} k(‖ε‖),
for all ε ∈ R

n and ξt, ξ̂t ∈ R
s·t, some constant r ≥ 1 and Borel-measurable mappings

h, k ≥ 1, such that h(‖εt+1‖) and k(‖εt+1‖) are in Lp for every p ∈ [1,+∞).
Then ξ fulfills both conditions of Assumption 2.6 with the constants

K � E [k(‖εt+1‖)m1h(‖εt+1‖)] and W � E

[

T
∏

i=t+1

k(‖εi‖)1+T−t

]

.

Proof. Consider f ∈ F1+mt+1(Ξt+1). Then we obtain
∣

∣

∣E
[

f
(

ξt+1
)∣

∣ ξt = ξt
]

− E

[

f
(

ξt+1
)∣

∣ ξt = ξ̂t
]∣

∣

∣

=
∣

∣

∣E
[

f
(

gt
(

ξt, εt+1

))]

− E

[

f
(

gt
(

ξ̂t, εt+1

))

]∣

∣

∣

≤ E

[

max
{

1,
∥

∥gt
(

ξt, εt+1

) ∥

∥,
∥

∥gt
(

ξ̂t, εt+1

)∥

∥

}mt+1 ∥
∥gt
(

ξt, εt+1

)

− gt
(

ξ̂t, εt+1

)∥

∥

]

≤ E

[

max
{

1,
∥

∥gt
(

ξt, εt+1

) ∥

∥,
∥

∥gt
(

ξ̂t, εt+1

)∥

∥

}mt+1

h(‖εt+1‖)
]

·max
{

1,
∥

∥ξt
∥

∥,
∥

∥ξ̂t
∥

∥

}r ∥
∥ξt − ξ̂t

∥

∥

≤ E

[

max
{

1,
∥

∥ξt
∥

∥,
∥

∥ξ̂t
∥

∥

}mt+1

k(‖εt+1‖)mt+1h(‖εt+1‖)
]

max
{

1,
∥

∥ξt
∥

∥,
∥

∥ξ̂t
∥

∥

}r∥
∥ξt − ξ̂t

∥

∥

= E [k(‖εt+1‖)mt+1h(‖εt+1‖)] · max
{

1,
∥

∥ξt
∥

∥,
∥

∥ξ̂t
∥

∥

}r+mt+1 ∥
∥ξt − ξ̂t

∥

∥.

Due to the identity r + mt+1 = mt − 1, this entails condition (i) of Assumption 2.6.
The asserted form of K follows from m1 ≥ mt for t = 1, . . . , T .

Furthermore, we apply (31) recursively to obtain the following estimate:

∥

∥ξT
∥

∥ ≤ max
{

1,
∥

∥ξt
∥

∥

}

T
∏

i=t+1

k(‖εi‖),

Raising both sides to the power of 1 + (T − t) and taking conditional expectations,
E[ · |ξt = ξt] verifies condition (ii) of Assumption 2.6.

The conditions of Lemma A.1 are fulfilled, e.g., by a variety of time-series models.
We provide the following simple example.

Example A.2. Let ξ be a GARCH process defined by the following difference
equations:

ξt = (wt,vt, εt) with

vt+1 �
s
∑

i=0

(βivt−i + γiεt−i) and wt+1 �
s
∑

i=0

αiwt−i + vt+1 · εt+1
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for certain parameters αi, βi, γi ∈ R. Thereby, v represents the stochastic volatility
process of w and (εt)t≥0 is a sequence of i.i.d. random variables, following a standard
normal distribution. It is easy to see that ξ fulfills the conditions of Lemma A.1 with
r = 1 and h(·), k(·) being affine functions.

The following example shows that nonanticipativity with respect to the initial
process is indispensable for an approximating process.

Example A.3. Consider T = 3 and the process ξ that is given by ξ1 ≡ 0 and
the two independent random variables ξ2 and ξ3, both uniformly distributed on [0, 1].
For n ∈ N and 0 < ε < 1 we introduce the grids A(n) � { in : i = 1, . . . , n} and the
associated (right-continuous) projections πA(n) : [0, 1] → A(n), defined by

πA(n)(z) � max
{

i

n
∈ A(n) :

∣

∣

∣

∣

z − i

n

∣

∣

∣

∣

≤
∣

∣

∣

∣

z − j

n

∣

∣

∣

∣

for all
j

n
∈ A(n)

}

.

Furthermore, we define processes ξ(n), n ∈ N, given by ξ
(n)
1 ≡ 0, ξ

(n)
3 � πA(n)ξ3, and

ξ
(n)
2 �

{

πA(n)ξ2 if ξ3 ≤ 1/2,
(πA(n)ξ2) + ε

n if ξ3 > 1/2.

We remark that by observing ξ
(n)
2 one knows whether ξ3 > 1/2 or not. Furthermore,

the sequence ξ(n) can be seen as an approximation of ξ, since E[‖ξ − ξ(n)‖] ≤ 1+2ε
2n

holds.
We consider the following optimization problem

v(ξ) � min
{

E [x2 · ξ2 + x3 · ξ3] : xt ≥ 0, xt ∈ σ(ξt), t = 2, 3, x2 + x3 = 1 a.s.
}

,

which is solved by x∗
2 = �{ξ2≤1/2} and x∗

3 = 1 −x∗
2 with optimal value v(ξ) = 12/32.

When replacing ξ by ξ(n), we use the decisions

x
(n)
2 = �{ξ

(n)
2 ≤1/4} + �{ξ

(n)
2 ∈ ]1/4, 3/4[ \A(n)} and x

(n)
3 = 1 − x

(n)
2

to obtain lim supn→∞ v(ξ(n)) ≤ 11/32. Obviously, convergence of v(ξ(n)) to v(ξ) does
not hold since the processes ξ(n) do not fulfill the nonanticipativity condition (i) of
Definition 3.1. With regard to the results of [8] and [12], convergence fails since the
conditional distributions

P[ξ(n)
3 ∈ · |ξ(n)

2 = z]

do not converge toward P[ξ3 ∈ · |ξ2 = z], and the filtration distance between ξ(n) and
ξ does not converge toward 0, respectively.

The following example shows that the perturbed problem v(ξ̃) may be unbounded,
even if the initial problem v(ξ) admits a bounded optimal solution.

Example A.4. Consider some ε ∈ (0, 1
4 ), T = 2, and the stock prices ξ1 ≡ 1

2 + ε
and ξ2, where the latter is uniformly distributed on [0, 1]. The optimal investment
problem v(ξ) = minx≥0 x ·ξ1−E[x ·ξ2] = minx≥0 x ·ε is solved by x = 0. The process
ξ̃, defined by ξ̃1 � ξ1 and

ξ̃2 �
{

1 if ξ2 ≥ 1
2 − 2 ε,

0 else ,

is an approximation of ξ according to Definition 3.1. However, we see that E[ξ̃2] =
1
2 + 2 ε and, consequently, v(ξ̃) = minx≥0 −x · ε = −∞.
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CONVERGENCE OF A CLASS OF SEMI-IMPLICIT
TIME-STEPPING SCHEMES FOR NONSMOOTH RIGID

MULTIBODY DYNAMICS∗

BOGDAN I. GAVREA† , MIHAI ANITESCU‡ , AND FLORIAN A. POTRA§

Abstract. In this work we present a framework for the convergence analysis in a measure
differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts,
joints, and friction. This class of methods solves one linear complementarity problem per step
and contains the semi-implicit Euler method, as well as trapezoidal-like methods for which second-
order convergence was recently proved under certain conditions. By using the concept of a reduced
friction cone, the analysis includes, for the first time, a convergence result for the case that includes
joints. An unexpected intermediary result is that we are able to define a discrete velocity function of
bounded variation, although the natural discrete velocity function produced by our algorithm may
have unbounded variation.

Key words. rigid body, contact dynamics, friction, measure differential inclusion, complemen-
tarity problems
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1. Introduction. The dynamic rigid multibody contact problem is concerned
with predicting the motion of several rigid bodies in contact, and it is one of the
fundamental paradigms in modern computational science. It appears in the descrip-
tion of fuel motion in the pebble bed reactor [21], in the compaction of nanopowders
[27, 9], and in the study of biological membranes [41, 26, 52, 22]. Such simulations are
also used extensively in structural engineering [16], pedestrian evacuation dynamics
[24], granular matter [40], robotics simulation and design [17], and virtual reality [1].

The problem of multibody rigid systems involving contact and friction is a dif-
ferential complementarity problem (DCP). The DCP is part of a broader class of
problems known as differential variational inequalities, which were recently intro-
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duced in [36, 37]. Approaches used in the past for the numerical approximation of
rigid multibody dynamics with contact and friction include piecewise DAE approaches
[23], nonsmooth contact dynamics method [31, 25, 40, 11, 10], acceleration-force linear
complementarity problem (LCP) approaches [8, 38, 50, 18, 19], penalty approaches
[15, 43, 44, 35], and velocity-impulse LCP-based time-stepping methods [45, 48, 4, 3].

The DCP gives rise to event-driven time-stepping schemes that are solved in an
acceleration-force framework. These types of schemes will detect the discontinuity
events; and, if these events are isolated, they will treat the dynamics as differential
algebraic equations (DAEs) on each smooth piece. For the corresponding DAEs,
numerical schemes of high accuracy may be used. This approach is natural and
appealing because it leads to high-order time-stepping schemes. The major weakness
of such an approach is that it excludes the presence of impulsive forces in the absence
of an impact. One fairly simple example where such forces occur was pointed out in
1895 by Painlevé [34], who argued that the equations of classical rigid body dynamics
are incompatible with the Coulomb friction model. Recently it was shown that a
solution of Painlevé’s example exists in the sense of measure differential inclusions
(MDIs) [46].

Time-stepping schemes that are not vulnerable to Painlevé-type examples inte-
grate the dynamics at a velocity-impulse level, thereby allowing for impulsive forces
at any time instant. Most of the time-stepping schemes that build a discrete model
at a velocity-impulse level are based on Euler’s method for solving ordinary differen-
tial equations (ODEs). In this context, the methods of Anitescu and Potra [4] and
Stewart and Trinkle [45] are based on a semi-implicit Euler scheme, while the model
of [5] is based on a linearly implicit Euler scheme. All three formulations require the
solution of one LCP at each time step (see [14] for an extensive analysis of LCPs).

Recently, we proposed a new time-stepping scheme based on the trapezoidal
method for solving ODEs [39]. The scheme solves one LCP at each noncollisional
integration step. We have shown that the numerical velocity is uniformly bounded as
the integration step approaches zero, and that the scheme has global second-order con-
vergence under additional restrictions. In order to globally achieve this convergence,
events such as collision, take-off (contact deletion), and stick-slip transitions have to
be detected with sufficient accuracy. To do so, we have proposed detection strategies
that use information only at the position-velocity level, thereby remaining consistent
with the solution concept of MDIs. We have demonstrated that the scheme behaves
well (its energy stays bounded for arbitrary large stiffness parameters) for stiffness
introduced by springs and dampers attached to pairs of bodies in the system. The
scheme was implemented in the simulation framework UMBRA [20] and has proved
successful in industrial-scale applications.

1.1. Our contribution. The treatment of joints in time-stepping schemes is
not new [4, 2]. What is novel in this work is that we prove that the solution produced
by a class of time-stepping schemes that solves one LCP per step and that includes
the methods presented in [4] and [39] converges to a solution of an MDI, in a sense to
be defined in section 6, even when joint constraints are present. The main conceptual
novelty is the reduced friction cone which allows us to reduce the treatment of bilateral
constraints to one of unilateral constraints, without altering the pointedness property.
It is conceivable that a proof of the convergence of linearized backward Euler schemes
can be obtained from the one in the jointless case [47] for configurations with joints
if the system is represented in coordinates which eliminate the joint constraints [23].
Nonetheless, from a practical perspective, this is inadvisable for the following reasons:
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• The representation of the system using only independent coordinates can
rarely be done explicitly, and a difficult nonlinear system needs to be solved
at each time step [23, section 7.2]

• The equations governing the dynamics of the system where joints are (lo-
cally) eliminated by the use of independent coordinates involve second-order
derivatives of the joint functions [7, section 9.2.1] which may be costly to
obtain.

We note that the same reasons have prompted the search for methods that are specific
to differential algebraic, as opposed to ordinary differential, equations [7].

In addition, we prove for the first time that certain trapezoidal-like methods [39]
converge in the sense of MDIs. In doing that, we are able to define a discrete ve-
locity function of bounded variation, although the natural discrete velocity function
produced by our algorithm may have unbounded variation. Here, the natural dis-
crete velocity function is defined as the unweighted discrete velocity obtained by the
algorithm in section 4 (see (4.11) for the exact definition).

2. Notation and model. In our analysis, we use the notation and framework
from [47, 4]. We assume that the state of the system of rigid bodies can be described
by a generalized position vector q ∈ R

s and a generalized velocity vector v ∈ R
s. We

assume that the system is subject to equality, nonpenetration, contact, and Coulomb
friction.

The equality constraints that we consider in this work are described by equations

(2.1)
Θ(i)(q) = 0, i = 1, 2, . . . ,mJ ,

ν(i)(q)T v = 0, i = mJ + 1,mJ + 2, . . . ,m,

where Θ(i), i = 1, 2, . . . ,mJ and ν(i)(q), i = mJ + 1,mJ + 2, . . . ,m are sufficiently
smooth functions. The first mJ equality constraints are holonomic and usually orig-
inate from the transcription of joint constraints [23], whereas the last m −mJ con-
straints are Pfaffian constraints [32]. A holonomic constraint can be represented as a
Pfaffian constraint, but the reverse is not necessarily true [32].

The force exerted by constraint (i), i = 1, 2, . . . ,mJ on the system is c(i)ν ν(i)(q),
where ν(i)(q) = ∇qΘ(i)(q) is the gradient of Θ(i)(q) and c

(i)
ν is the appropriate La-

grange multiplier [23]. To simplify our discussion we may refer to the constraints (2.1)
as joint constraints, even if only the first mJ are technically such constraints.

The nonpenetration constraints are generated by the rigid body hypothesis ac-
cording to which the bodies constituting the system cannot penetrate each other. We
assume that, for any pair of bodies, we can define a signed distance function Φ(j)(q)
so that the noninterpenetration constraints can be written as

(2.2) Φ(j)(q) ≥ 0, j = 1, 2, . . . , p ,

where p is the number of pairs of bodies of the system that could get in contact, which
in most applications is substantially smaller than the number of all possible pairs of
bodies. Details of how the functions Φ(j) can be defined and calculated are presented
in [1].

The contact and frictional constraints may be introduced by means of the active
set and the friction cone. If Φ(j)(q) > 0, then the jth constraint doesn’t contribute
to the dynamics of the system. When Φ(j)(q) = 0, however, the contact impulse
generated by the jth noninterpenetration constraint must lie inside the contact friction
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cone:

(2.3) FC(j)(q) =
{
zc = n(j)cn

(j) +D
(j)
β(j)

∣∣∣cn(j) ≥ 0, ‖β(j)‖2 ≤ μ(j)c(j)n

}
,

where we used the simplified notation n(j) := n(j)(q) = ∇qΦ(j)(q) andD
(j)

:= D
(j)

(q).
Here the columns of D

(j) ∈ R
s×2 span the friction space, and β(j) ∈ R

2 is the
corresponding tangential impulse due to friction. The parameter μ(j) ≥ 0, which may
be different for each contact, is the friction coefficient, and the second inequality that
involves it in (2.3) is the first part of the Coulomb law. By including the joint forces
in the above multivalued map, we obtain what we call the constraint friction cone
FC(j)(q) corresponding to the jth contact. More precisely, we have

(2.4) FC(j)(q) =
{
z = ν̃ c̃ν + n(j)cn

(j) +D
(j)
β(j)

∣∣∣cn(j) ≥ 0, ‖β(j)‖2 ≤ μ(j)c(j)n

}
,

where

(2.5) ν̃ =
[
ν(1), ν(2), . . . , ν(m)

]
, c̃ν =

⌈
c(1)ν , c(2)ν , . . . , c(m)

ν

⌋
,

with ν(i) := ν(i)(q). Here we have used [·, ·, . . . , ·] to denote a block matrix with the
same number of rows as its blocks and �·, ·, . . . , ·� to denote a block matrix with the
same number of columns as its blocks. The total friction cones are then defined by

(2.6) FC(q) =
∑

Φ(j)(q)=0

FC(j)(q)

for the total contact friction cone and by

(2.7) FC(q) =
∑

Φ(j)(q)=0

FC(j)(q)

for the total constraint friction cone. To simplify terminology, we will refer, unless
specified in advance, to the cone in (2.7) as the total friction cone. Note that the
definition above implies that the set of active contact constraints A is determined by

A =
{
j ∈ {1, . . . , p} : Φ(j)(q) = 0

}
for given position q. The total friction cone can be approximated by a polyhedral
cone [45]. That is, FC(j)(q) is replaced by

(2.8)

F̂C
(j)

(q) =
{
z = ν̃c̃ν + n(j)cn

(j) +D(j)β(j)
∣∣∣cn(j) ≥ 0, β(j) ≥ 0, ‖β(j)‖1 ≤ μ(j)c(j)n

}
,

where D(j) := D(j)(q) ∈ Rs×mC is a balanced matrix in the sense that if di(j) is a
column of D(j), then there is another index k such that di(j) = −dk(j). In this way
we can represent the frictional impulses by using a nonnegative vector of multipliers
β(j) = (β(j))i ≥ 0, with the 2-norm being replaced by the 1-norm. Here the nonnega-
tive integer mC represents the number of edges used in the approximation of the full
cone. The polyhedral approximation of the friction cone is then given by

(2.9) F̂C(q) =
∑
j∈A

F̂C
(j)

(q) =
{
z = ν̃c̃ν + ñc̃n + D̃β̃

∣∣∣ c̃n ≥ 0, β̃

≥ 0, ‖β(j)‖1 ≤ μ(j)c(j)n ∀j ∈ A
}
,
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where the block matrices ñ, c̃n, D̃, and β̃ are defined by

(2.10)
ñ =

[
n(j1), n(j1), . . . , n(ja)

]
, c̃n =

⌈
c
(j1)
n , c

(j2)
n , . . . , c

(ja)
n

⌋
,

D̃ =
[
D(j1), D(j2), . . . , D(ja)

]
, β̃ =

⌈
β(j1), β(j2), . . . , β(ja)

⌋
for an active set A = {j1, j2, . . . , ja}.

3. Total friction cone and regularity assumptions. A regularity assump-
tion, the pointedness of the friction cone, is used to obtain convergence results in the
contact-only case [6, 47]. We present here an extension of the pointedness assumption
to the case including bilateral constraints.

Definition 3.1. We say that

(3.1)
FC(q) is pointed ⇔ ∀

(
c̃ν , c̃n ≥ 0, β̃

)
�= 0 such that

∥∥β(j)
∥∥

2
≤ μ(j)c

(j)
n ∀j ∈ A

we must have that ν̃c̃ν + ñc̃n + D̃β̃ �= 0.

(3.2)
F̂C(q) is pointed ⇔ ∀

(
c̃ν , c̃n ≥ 0, β̃ ≥ 0

)
�= 0 such that

∥∥β(j)
∥∥

1
≤ μ(j)c

(j)
n ∀j ∈ A

we must have that ν̃ c̃ν + ñc̃n + D̃β̃ �= 0.

This definition clearly implies that the joint-constraint matrix ν̃ is of full rank.
Moreover, the pointed friction cone assumption is weaker than the linear independence
of the columns of the matrix (ν̃T , ñT , D̃T )T . Its name originates in the fact that,
when there are no joint constraints, the condition is equivalent to the cone’s not con-
taining any proper linear subspace and thus being “pointed.” An equivalent definition
of the pointed friction cone assumption is given by the following condition [6]:

(3.3)
FC(q) is pointed ⇔ there exists cFC > 0, such that

∥∥(c̃ν , c̃n, β̃)∥∥ ≤ cFC‖z‖

with z = ν̃c̃ν + ñc̃n + D̃β̃ ∈ FC(q).

(3.4)
F̂C(q) is pointed ⇔ there exists cF̂C > 0, such that

∥∥(c̃ν , c̃n, β̃)∥∥ ≤ cF̂C‖z‖

with z = ν̃c̃ν + ñc̃n + D̃β̃ ∈ F̂C(q).

We say that the total friction cone FC(q) (F̂C(q)) is uniformly pointed if the con-
stant cFC (cF̂C) can be taken the same for all possible configurations q. As noted in
[2], the pointedness assumption is equivalent (in the frictionless case) to the existence
of a force that will dissasemble all contacts without breaking the joints.

Lemma 3.2. Assume that FC(q) is pointed. Let

z = ñc̃n + D̃β̃, where c̃n ≥ 0, c̃n �= 0,
∥∥β(j)

∥∥
2
≤ μ(j)c(j)n ∀j ∈ A.

That is, z is an element of the (full) friction cone obtained by excluding the bilateral
constraints, with the normal impulses not all equal to 0. Then,

z �= 0 and z /∈ Range(ν̃).

Proof. As suggested by the claim above, consider the set

(3.5) FC(q) =
{
zc = ñc̃n + D̃β̃

∣∣∣c̃n ≥ 0,
∥∥β(j)

∥∥
2
≤ μ(j)c(j)n ∀j ∈ A

}
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(note the difference in notation: caligraphic characters denote the friction cone that
includes all constraint impulses, while roman letters denote the cone that containins
only the contact impulses). Clearly the pointedness of FC(q) implies the pointedness
of FC(q). Therefore, by taking z ∈ FC(q) with the normal impulses not all zero
(c̃n �= 0), we obtain z �= 0. If z ∈ Range(ν̃), then z = ν̃u, u �= 0, and therefore by
taking z = −ν̃u + z, we have z ∈ FC(q), z = 0 with a nonzero constraint impulse, a
contradiction to the pointedness of FC(q).

We will use this lemma to analyze the properties of the set

ν̃T⊥FC(q) =
{
ν̃T⊥z : z ∈ FC(q)

}
.

Here ν̃⊥ denotes the orthogonal complement of ν̃ ∈ R
s×m. More precisely, ν̃⊥ ∈

R
s×(s−m) such that ν̃T⊥ν̃ = 0 and ν̃T⊥ν̃⊥ = I. It follows that, for any x ∈ R

s, there
exist unique vectors u ∈ R

m and w ∈ R
s−m such that the decomposition

(3.6) x = ν̃u+ ν̃⊥w

holds. We have the following simple results.
Lemma 3.3. Assume that FC(q) is pointed. Then for all j ∈ A, we have

ν̃T⊥n
(j) �= 0.

Proof. The proof follows immediately from Lemma 3.2. More precisely, assume
that ν̃T⊥n

(j) = 0 for some j ∈ A. Take z = c
(j)
n n(j), with cn

(j) > 0 (note that
n(j) �= 0). It follows that ν̃T⊥z = 0. Therefore, by the decomposition above, we must
have z ∈ Range(ν̃), which contradicts the conclusion of Lemma 3.2.

Remark 3.4. We cannot say the same thing about ν̃T⊥di
(j)

, where di
(j)

is a column
of D

(j)
. Actually it is possible to have ν̃T⊥di

(j)
= 0, which shows once again that the

pointedness assumption is weaker than the linear independence of the active set (active
set here includes all constraints).

Let us define

Wn
(j) = ν̃T⊥n

(j) and WD
(j)

= ν̃T⊥D
(j)
.

As discussed above, all of the Wn
(j) are nonzero vectors; thus, by adjoining all of

them, we obtain a matrix that we denote by W̃n. By taking only those WD
(j)

that
are nonzero and adjoining we obtain, in a similar fashion, a matrix denoted by W̃D.
Now let us define the full reduced friction cone FCr(q) by

(3.7) FCr(q) =
{
zr = W̃nc̃n + W̃Dβ̃

∣∣∣̃cn ≥ 0,
∥∥∥β(j)

∥∥∥
2

≤ μ(j)c(j)n ,
[
∀j ∈ A such that (s.t.) (ν̃⊥(q))T D

(j)
(q) �= 0

]}
,

where the matrix W̃D is assumed to have only nonzero columns. In a similar fashion
we introduce the polyhedral reduced friction cone F̂Cr(q):

(3.8) F̂Cr(q) =
{
zr = W̃nc̃n + W̃Dβ̃

∣∣∣̃cn ≥ 0, β̃ ≥ 0,
∥∥∥β(j)

∥∥∥
1

≤ μ(j)c(j)n ,
[
∀j ∈ A s.t. (ν̃⊥(q))T D(j)(q) �= 0

]}
.
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The active set used for the reduced friction cone is the same as the one used for the
nonreduced one. However, the number of frictional contacts in the reduced cone may
be smaller than the number in the nonreduced cone. We have the following result.

Lemma 3.5. If FC(q) (F̂C(q)) is pointed for all q, then the full (polyhedral)
reduced friction cone FCr(q) (F̂Cr(q)) is pointed for all q. Here the pointedness
of FCr(q) (F̂Cr(q)) is to be understood in the sense of Definition 3.1 where the
joint constraints are omitted. This is the same with applying this definition to the
representations (3.7) and (3.8).

Proof. Let q be any possible system configuration, and let zr be an arbitrary
element of FCr(q). Then zr can be written as

zr = ν̃T⊥ñc̃n + ν̃T⊥D̃β̃,

where we have already eliminated those columns of D̃ that are in the range of ν̃. This
new matrix is denoted by D̃, and the corresponding frictional impulses are given by the
vector β̃. Note that, as shown above, all of the columns of ñ have nonzero components
outside the range of ν̃. The normal and tangential impulses (c̃n, β̃) satisfy c

(j)
n ≥ 0

for all j ∈ A and ‖β(j)‖2 ≤ μ(j)c
(j)
n for all j ∈ A such that (ν̃⊥(q))TD

(j)
(q) �= 0.

Assume now that zr = 0, with c̃n �= 0 (a necessary condition for (c̃n, β̃) �= 0).
We want to reach a contradiction to the pointedness of the nonreduced cone. This
immediately follows from the fact that

zr = 0, c̃n �= 0 ⇒ zc = ñc̃n + D̃β̃ ∈ FC(q) satisfies zc = ν̃u, u �= 0.

Here β̃ is obtained from β̃ by adding zeros to the columns of D̃ missing in D̃. By
taking c̃ν = −u, we obtain that z := −ν̃u + zc ∈ FC(q) is zero, but (c̃ν , c̃n, β̃) �= 0,
which contradicts the pointedness of FC(q). Given that the argument can be carried
out for any q for which FC(q) is pointed, we obtained the pointedness for FCr(q).
Following the same argument, one proves the pointedness of the polyhedral reduced
friction cone F̂Cr(q).

Remark 3.6. The pointedness of the reduced cones is equivalent to the usual
notion of pointedness, that is, “a cone K is pointed ⇔ K ∩ (−K) = {0}.”

Now let z = ν̃c̃ν + ñc̃n + D̃β̃ ∈ FC(q). From the pointedness of the reduced cone
there exists [47] a unitary vector u0 := u0(q) and the constants C2 := C2(q) > 0,
C3 := C3(q) > 0 such that, for any z = ν̃ c̃ν + ñc̃n + D̃β̃ ∈ FC(q), we have

(3.9) u0
T ν̃T⊥z ≥ C2‖zr‖ ≥ C3‖c̃n‖,

where zr = ν̃T⊥z. This estimate is one of the main ingredients that will be later used
in proving the uniform bound on the variation of the velocities.

We can visualize the friction cones FC(q) and F̂C(q) as mappings from R
s to the

subsets of R
s, that is, FC(q), F̂C(q) : R

s → P(Rs). The graph of FC(·) is defined by

(3.10) graph(FC) = {(q, z(q)) | z(q) ∈ FC(q)} ,

and similarly for F̂C(q). Clearly, from the constructions above, FC(q) and its ap-
proximation F̂C(q) are convex sets for each fixed q. Under the uniform pointedness
assumption we obtain that these mappings have closed graphs.
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Lemma 3.7 (closed graph property of the friction cones). Assume that FC(q)
(F̂C(q)) is uniformly pointed. Then the graph of FC(·) (F̂C(·)) is closed.

Proof. We will prove the result for FC(·). A similar argument is used for the
polyhedral approximation F̂C(·). Consider a sequence (qn, zn) ∈ graph(FC(qn)),

where zn has the form zn = ν̃(qn)cnν + ñ(qn)c̃nn + D̃(qn)β̃n. Assume that qn → q and
zn → z as n → ∞. We want to show that z ∈ FC(q). From the uniform pointedness
of FC(·) we obtain that ∥∥(c̃nν , c̃nn, β̃n)∥∥ ≤ CFC‖zn‖,

where CFC is independent of qn. Given that zn → z, it follows from the above
inequality that ‖(c̃nν , c̃

n
n, β̃

n)‖ is bounded, and therefore we can extract convergent
subsequences c̃nk

ν → c̃∗ν , c̃nk
n → c̃∗n, and β̃nk → β̃∗, where c̃∗n ≥ 0 and ‖β(j),∗‖2 ≤

μ(j)‖c(j),∗n ‖ due to the similar inequalities satisfied by the corresponding subsequence.
Using the fact that ν̃(·), ñ(·), and D̃(·) are continuous, we have that the subsequence
znk converges to z∗ = ν̃(q)c∗ν + ñ(q)c̃∗n + D̃(q)β̃∗ ∈ FC(q). Given that znk , with
znk → z∗, is a subsequence of the convergent sequence zn, with zn → z, we conclude
that z = z∗ ∈ FC(q), which proves our claim.

Note that the closed graph property implies that the values of the multivalued
mappings are closed. This can be easily seen by taking qn = q and zn ∈ FC(q). An
immediate consequence of the above lemma is the following corollary.

Corollary 3.8. Assume that FC(q) (F̂C(q)) is uniformly pointed. Then the
graph of FCr(·) (F̂Cr(·)) is closed.

Proof. Consider a sequence (qn, znr ) such that znr ∈ FCr(qn) and qn → q, znr → zr,
as n→ ∞. By definition, znr = (ν̃⊥(qn))T zn for some zn ∈ FC(qn). Taking the limit,
as n→ ∞, we conclude that zn → z. The fact that FC(·) has a closed graph implies
that z ∈ FC(q), which immediately leads to zr = (ν̃⊥(q))T z ∈ FCr(q).

4. The time-stepping scheme. We are interested in convergence properties for
a family of linearly implicit time-stepping schemes that accommodate methods based
on semi-implicit Euler methods [4, 46] as well as various instances of the trapezoidal
method from [39]. The time-stepping scheme solves at each integration step an LCP.
We will assume that only inelastic collisions are solved. In terms of the collision
rule given in [4] which involves a Poisson rule with a compression phase followed
by a decompression phase, for inelastic collisions only the former LCP needs to be
solved, and therefore the algorithm will solve only one LCP per time step. The main
difference between a noncollisional and a collisional integration step is that the latter
uses a zero time step to get out of the compression phase.

Some of the results that we obtain, such as the uniform boundedness of the
velocity sequence, will hold even in the case of partially elastic collisions, since we will
assume that the number of collisions is bounded above with respect to the time step.
Such a proof has been obtained for a different, though related, time-stepping scheme
[4]. The problem, however, is that the Poisson rule is very difficult to prove (or, indeed,
to state) in the framework of MDIs from section 6, where the notion of instantaneous
reaction impulse does not truly appear. A possibility may be to consider the case
of collisions with a Newton rule [19, 51], though the weak convergence concept we
are using results in only almost everywhere convergence of the velocity. In turn, this
results in difficulties when dealing with statements involving instantaneous velocity
as is the case of Newton rules. We defer convergence issues involving partially elastic
collisions to future research.
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To write the integration step as a mixed linear complementarity problem (MLCP),
we use the following approximations. The joint constraints are written at the velocity
level and approximated by(

ν(i)
(
ql
))T (

αvl+1 + (1 − α)vl
)

= 0, i = 1, . . . ,m,

where α is a scalar parameter α ∈ (0, 1].
The nonpenetration and frictional constraints are approximated in the same fash-

ion. We can write these as the following complementarity conditions:

0 ≤ ρ(j),l+1 :=
(
n(j)

(
ql
))T (

αvl+1 + (1 − α)vl
)
⊥ c

(j),l+1
n ≥ 0, j ∈ A,

0 ≤ σ(j),l+1 := λ(j),l+1e(j) +
(
D(j)

(
ql
))T (

αvl+1 + (1 − α)vl
)
⊥ β(j),l+1 ≥ 0, j ∈ A,

0 ≤ ζ(j),l+1 := μ(j)c
(j),l+1
n − e(j)

T

β(j),l+1 ⊥ λ(j),l+1 ≥ 0, j ∈ A .

Here e(j) is a vector of dimension m
(j)
C whose every entry is 1. The equations of

motion in implicit form can be written as

(4.1) M
(
vl+1 − vl

)
− zl+1 = hk

(
tl+1, q

l+1, vl+1
)
.

Here M is the mass matrix, which is assumed to be a constant symmetric positive
definite matrix, zl+1 represent the contact and joint impulses, and k(tl+1, q

l+1, vl+1)
are the inertial and applied forces acting at time tl+1. Since the goal is to formulate
the integration step as an LCP, we will linearize (4.1) as follows. The term

zl+1 = ν̃
(
ql+1

)
c̃l+1
ν + ñ

(
ql+1

)
c̃l+1
n + D̃

(
ql+1

)
β̃l+1

is replaced by

zl+1 = ν̃lc̃l+1
ν + ñlc̃l+1

n + D̃lβ̃l+1,

where ν̃l = ν̃(ql), ñl = ñ(ql) and D̃l = D̃(ql). To linearize the term k(tl+1, q
l+1, vl+1)

in (4.1), we first introduce the position update formula. Given a parameter γ ∈ [0, 1]
(fixed at the beginning of the simulation), we obtain the position at time tl+1 by the
formula

ql+1 = ql + h
(
(1 − γ)vl + γvl+1

)
.

For the term k(tl+1, q
l+1, vl+1) we have

k
(
tl+1, q

l+1, vl+1
)

= fC
(
vl+1

)
+ k1

(
tl+1, q

l+1, vl+1
)

= F
(
vl+1

)
vl+1 + k1

(
tl+1, q

l+1, vl+1
)
,

where fC(vl+1) = F (vl+1)vl+1 are the Coriolis forces and k1(tl+1, q
l+1, vl+1) are the

external forces. A discussion related to this representation of the Coriolis forces is
given at the end of this section. We replace the Coriolis term by

(4.2) F
(
vl+1

)
vl+1 ≈ F

(
vl
) (

(1 − α)vl + αvl+1
)

= F
(
vl
)
vl + αF

(
vl
) (
vl+1 − vl

)
.

The term k1(tl+1, q
l+1, vl+1) is approximated as follows:

(4.3)

k1

(
tl+1, q

l+1, vl+1
)
≈ (1 − α)k1

(
tl, q

l, vl
)

+ αk1

(
tl+1, q

l+1, vl+1
)
,

≈ (1 − α)k1

(
tl, q

l, vl
)

+ αk1

(
tl+1, q

l, vl
)

+ α
(
k̃1q

(
ql+1 − ql

)
+ k̃l1v

(
vl+1 − vl

))
,

≈ (1 − α)k1

(
tl, q

l, vl
)

+ αk1

(
tl+1, q

l, vl
)

+ αhk̃l1qv
l + α

(
k̃l1v + γhk̃l1q

) (
vl+1 − vl

)
,
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where

k̃l1q ≈ k1q

(
tl+1, q

l, vl
)
, k̃l1v ≈ k1v

(
tl+1, q

l, vl
)

are approximations of the Jacobians k1q and k1v, respectively. Combining the equa-
tions of motion with the joint constraints described at the velocity level and the
frictional contact constraints, we obtain the following time-stepping scheme:

ql+1 = ql + h
(
(1 − γ)vl + γvl+1

)
,(4.4a)

(4.4b)

M̃ lvl+1 −
m∑
i=1

ν(i),lc(i),l+1
ν −

∑
j∈A

(n(j),lc(j),l+1
n +D(j),lβ(j),l+1) = M̃ lvl + k̃l,

(
ν(i),l

)T (
αvl+1 + (1 − α)vl

)
= 0 , i = 1, 2, . . .m,(4.4c)

0 ≤ ρ(j),l+1 :=
(
n(j),l

)T (
αvl+1 + (1 − α)vl

)
⊥ c(j),l+1

n ≥ 0, j ∈ A,(4.4d)

(4.4e)

0 ≤ σ(j),l+1 := λ(j),l+1e(j) +
(
D(j),l

)T (
αvl+1 + (1 − α)vl

)
⊥ β(j),l+1 ≥ 0, j ∈ A,

0 ≤ ζ(j),l+1 := μ(j)c(j),l+1
n − e(j)

T

β(j),l+1 ⊥ λ(j),l+1 ≥ 0, j ∈ A,(4.4f)

where ν(i),l = ν(i)(ql), n(j),l = n(j)(ql), D(j),l = D(j)(ql), and

M̃ l =
(
M − αh

(
F (vl) + k̃l1v

)
− αγh2 k̃l1q

)
,

k̃l = h
(
(1 − α)k1

(
tl, q

l, vl
)

+ αk1

(
tl+1, q

l, vl
))

+ (1 − α)hF (vl)vl + αh2k̃l1qv
l.(4.5)

We note that (4.4a)–(4.4f) represent an MLCP. If at time-step l the index set of
active contact constraints is given by A = {j1, j2, . . . , ja} and if we use (2.5), (2.10)
together with

(4.6)
λ̃ =

[
λ(j1), λ(j2), . . . , λ(ja)

]
, ζ̃ =

[
ζ(j1), ζ(j2), . . . , ζ(ja)

]
, Ẽ = diag

(
e(j1), e(j2), . . . , e(ja)

)
σ̃ =

[
σ(j1), σ(j2), . . . , σ(ja)

]
, ρ̃ =

[
ρ(j1), ρ(j2), . . . , ρ(ja)

]
, μ̃ = diag

(
μ(j1), μ(j2), . . . , μ(ja)

)
,

then the matrix form of the integration step is given by

(4.7)

⎡⎢⎢⎢⎢⎢⎢⎣
M̃ l −ν̃l −ñl −D̃l 0(
ν̃l
)T 0 0 0 0(

ñl
)T 0 0 0 0(

D̃l
)T

0 0 0 Ẽ

0 0 μ̃ −ẼT 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
vl+1

c̃l+1
ν

c̃l+1
n

β̃l+1

λ̃l+1

⎤⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎣
M̃ lvl + k̃l

0
0
0
0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
0

ρ̃l+1

σ̃l+1

ζ̃l+1

⎤⎥⎥⎥⎥⎦ ,

(4.8) 0 ≤
⌈
c̃l+1
n , β̃l+1, λ̃l+1

⌋
⊥
⌈
ρ̃l+1, σ̃l+1, ζ̃l+1

⌋
≥ 0 .

We denote by L(ql, vl, k̃, h, α, γ) the solution set of the MLCP (4.7).
We note that the choice α = γ = 1 results in the scheme from [4, 5] (the former

is obtained once we choose k̃1q = 0 and k̃1v = 0), and the choice α = γ = 1
2 results in

a variant of the scheme from [39]. The choice γ = 1
2 , α = 1 is similar to the midpoint
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rule proposed by Moreau in [30, 31]. The time-stepping scheme in [39] detects (behind
collisions) other type of events such as stick-slip transitions, take-off transitions, and
changes in the active friction components. If the number of such changes is uniformly
bounded as h → 0, these transitions could be resolved in the same fashion in which
collisions are here dealt with. For simplicity we restrict ourselves to collision detection
only.

A collision occurs in the interval (lh, (l + 1)h] if Φ(j)(ql) > 0 and Φ(j)(ql+1) ≤ 0,
where ql+1 is the position computed by the time-stepping scheme without including
j in the active set at time tl+1. The active set at tl+1 is taken as

A(tl+1) = Al+1 =
{
j : Φ(j)(ql) ≤ 0

}
.

Whenever a collision is encountered, cubic interpolation is used to determine
the precollision velocity and the position at which the collision occurs [39]. The
detected position q− and the precollision velocity v− are used in the compression
phase to obtain the new velocity. An MLCP of the same type as (4.7) is solved in
the compression phase. More precisely, the solution set of the MLCP modeling the
compression phase is L(q−, v−, 0, 0, 1, 1).

Collision detection may result in a nonuniform partition of the simulation interval
[0, T ]. More precisely, a collision may be detected at time t∗ such that, for a given
time-step h, t∗ �= lh for any integer l. To make the upcoming proofs easier to follow,
we enforce a uniform partition of [0, T ]. When collision is detected at time t∗,l+1 ∈
(lh, (l + 1)h], the collision is solved, resulting in the collision position q−,l+1 and
postcollision velocity v+,l+1 ∈ L(q−,l+1, v−,l+1, 0, 0, 1, 1). Instead of introducing the
collision time t∗ in the time partition of [0, T ] or solving another MLCP in the interval
(t∗, (l + 1)h], we take

tl+1 = (l + 1)h, ql+1 = q−,l+1, and vl+1 = v+,l+1.

Assuming that we do this for every collision and that the first integration step is not
a collisional one, we have tl = lh, for all l, and the scheme will keep a fixed time step
throughout the integration process.

Note that, while this simplification possibly affects the accuracy of the scheme, our
choice essentially represents only a notation convention. Indeed, if the external force
k1 does not depend on time, then the sequence of velocities and positions is identical
to the one with the normal convention (where the collision time is considered one of
the time points). If the force does depend on time, then the change in its value is only
order O(h), since from Assumption (H7), which will be defined shortly, the number
of collisions is bounded above and does not affect the convergence proofs.

We extend the numerical solution to time instants different from the ones given
by the discrete solution, as follows. The velocity sequence vh,α(t) is defined by

(4.9)

vh,α(t) =

⎧⎨⎩v
l+1,α if t ∈ (lh, (l + 1)h] and no collision in (lh, (l + 1)h],
vl+1 := v+,l+1 if t ∈ (lh, (l+ 1)h] and collision detected in (lh, (l + 1)h],
v0 if t = 0,

where v+,l+1 denotes the velocity at the end of the compression phase and where

(4.10) vl+1,α = (1 − α)vl + αvl+1.

The velocity function that uses no weighting is denoted by vh(·) and is defined in a
similar fashion:
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(4.11)

vh(t) =
{
vl+1 if t ∈ (lh, (l + 1)h] and no collision in (lh, (l + 1)h],
vl+1 := v+,l+1 if t ∈ (lh, (l + 1)h] and collision detected in (lh, (l + 1)h].

For the position sequence, we take qh,α(t) to be

(4.12a)

qh,α(t) =
{

1
h

(
(t− tl)q(l+1) + (tl+1 − t)ql

)
if t ∈ (tl = lh, tl+1 = (l + 1)h],

q0 if t = 0,

(4.12b)

where ql+1 =
{
q(l) + hvl+1,α if t ∈ (lh, (l + 1)h] and no collision in (lh, (l + 1)h],
q−,l+1 if t ∈ (lh, (l + 1)h] and collision detected in (lh, (l + 1)h].

Here ql+1 is computed by the position update formula (4.4a), except for collisional
instants (that is, a collision occurred in the (lh, (l + 1)h] interval), in which case
ql+1 := q−,l+1, where q−,l+1 is the estimated collision position. Since the collision
time t∗,l+1 is detected by solving

Φ(j)(q̃(t)) = 0,

where q̃ : [lh, (l+1)h] → R
s is the cubic interpolant of the data q̃(lh) = ql, dq̃dt (lh) = vl,

q̃((l + 1)h) = ql+1, dq̃
dt ((l + 1)h) = vl+1 (ql+1 and vl+1 are obtained by applying a

regular step with j /∈ A), and ql+1 = q−,l+1 = q̃(t∗,l+1), we can guarantee that

(4.13) Φ(j)
(
ql+1

)
= Φ(j)

(
q−,l+1

)
≥ −Cch2

for a fixed constant Cc.
To obtain the convergence results, we use the following assumptions.

(H1) The nonpenetration constraints are twice continuously differentiable, and
there exists BH such that

(4.14)
∥∥∇qqΦ(j)(q)

∥∥ ≤ BH for all q and j = 1, . . . , p.

(H2) The functions Θ(i)(q), i = 1, . . . ,m are sufficiently smooth functions.
(H3) The generalized mass matrix M is constant, symmetric, and positive definite.
(H4) The total friction cone FC(q) is uniformly pointed with respect to all config-

urations q.
(H5) The norm of the external force increases at most linearly with the position

and the velocity. That is,

(4.15) ‖k1(t, q, v)‖ ≤ c1 + c2‖q‖ + c3‖v‖.

Here k1(q, v) denotes the external and inertial forces.
The Coriolis force is given by a bilinear operator

[fC(v)]i =
∑
jk

fijkvjvk .

This is certainly true if the system is described by Newton–Euler equations
in body coordinates [32, section 2.4], where the matrix F (v) of entries

[F (v)]ij =
∑
k

fijkvk
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is antisymmetric in the sense that

uTF (v)u = 0 ∀u .

We also assume that the approximations k̃1q and k̃1v are bounded. More
precisely,

(4.16)
∥∥k̃1q

∥∥ ≤ c4,
∥∥k̃1v

∥∥ ≤ c5.

(H6) The contact data given by ñ(q), D̃(q) are globally Lipschitz continuous func-
tions.

(H7) The number of collisions solved by the algorithm is uniformly upper bounded
as h→ 0.

(H8) The external forces k1(t, q, v) are linear in v, and the approximation k̃1v is
constant.

Remark 4.1.

• Assumption (H3) is satisfied if we use the Newton–Euler formulation in body
coordinates; see [32].

• Assumption (H4) implies that ν̃(q) has uniform full rank. That is, there
exists a constant κ > 0 such that

σmin(ν̃(q)) ≥ κ ∀ q,

where σmin(A) denotes the smallest singular value of the matrix A.
• Assumption (H7) is related to and implied by the assumption of non-Zeno

behavior of the system: that the number of switching points in the dynamics
(collisions and stick-slip transitions) is finite in any bounded time interval.
[12, 42, 13]. While this is not unreasonable to expect when the restitution
coefficient is 0 (as we assume here), we do not have a method of guaranteeing
it a priori. We note that this is an issue only with trapezoidal-type schemes,
and does not need to be assumed in the case of first-order schemes [6].

• The first part of assumption (H8) is fairly standard in a stability analysis
of the time-stepping scheme. The second part is not needed to prove all of
the results. More precisely, uniform boundedness of the numerical velocities
as well as a uniform bound on the variation of the numerical velocities can
be obtained without this assumption. We note that the (H8) assumption
is satisfied when external forces include linear damping terms, by far the
prevailing type of external velocity-dependent passive force.

The MLCP (4.7) has the same structure as the ones in [4, 39], and therefore the
same solvability results can be used to show that the solution set L(ql, vl, k̃, h, α, γ)
is not empty whenever the matrix M̃ is positive definite. Since the mass matrix M is
positive definite, the matrix F (·) is antisymmetric and the approximations used are
bounded, it follows from (4.5) that M̃ will be positive definite for sufficiently small
values of h and for any value of the velocity.

Note also that in the presence of stiff forces the use of exact Jacobians k1q and
k1v may force the simulation to choose a very small time-step h in order to ensure the
positive definiteness of the matrix M̃ . In order to allow the simulation to proceed by
using moderate values of the time-step h, appropriate negative semidefinite Jacobian
approximations k̃1q and k̃1v may be used [39].
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It is convenient for the proofs of the upcoming sections to separate the terms
involving Coriolis forces in (4.4c). To this end, we introduce the following notation:

(4.17)
M

l
=
(
M − αhk̃l1v − αγh2 k̃l1q

)
,

k
l

= h
(
(1 − α)k1

(
tl, q

l, vl
)

+ αk1

(
tl+1, q

l, vl
))

+ αh2k̃l1qv
l.

In terms of the new notation, (4.4c) is rewritten as

(4.18)

M
l
vl+1−

m∑
i=1

ν(i),lc(i),l+1
ν −

∑
j∈A

(
n(j),lc(j),l+1

n +D(j),lβ(j),l+1
)

=Mvl+k
l
+hF

(
vl
)
vl+1,α.

5. Kinetic energy estimates. The following result establishes a uniform bound
for the numerical velocities, as h → 0. Since we are dealing only with inelastic
collisions and the friction cone is uniformly pointed, the compression phase guarantees
that the postcollision kinetic energy will be less than the precollision kinetic energy.
Therefore we restrict the proof of the next result to the noncollisional case.

Theorem 5.1. If (H1)–(H8) are satisfied and 1
2 ≤ α ≤ 1, then there is a

constant c such that

(
vl
)T
Mvl ≤ max

{(
v0
)T
Mv0, ‖q0‖ + 1

}
ectl , l = 0, 1, . . . , �T/h�

for all sufficiently small h.
Proof. Suppose that no collisions are detected in the interval [tl, tl+1]. The new

velocity vl+1 will be determined by solving the LCP (4.4c)–(4.4f).
Left multiplying (4.18) by (vl+1,α)T and using the fact that F (vl) is a skew-

symmetric matrix, we get that

(5.1)(
vl+1,α

)T
M

l
vl+1 =

m∑
i=1

c(i),l+1
ν

(
ν(i),l

)T
vl+1,α +

∑
j∈A

{
c(j),l+1
n

(
n(j),l

)T
vl+1,α

+
(
β(j),l+1

)T (
D(j),l

)T
vl+1,α

}
+
(
vl+1,α

)T
k
l
+
(
vl+1,α

)T
M

l
vl.

Using (4.4c), we deduce that (ν(i),l)T vl+1,α = 0, i = 1, 2, . . . ,m. Also, using the
contact constraints (4.4d), we obtain c

(j),l+1
n (n(j),l)T vl+1,α = 0, j ∈ A. Finally, from

the frictional constraints (4.4e) and (4.4f), we get that

(
β(j),l+1

)T (
D(j),l

)T
vl+1,α = −λ(j),l+1

(
β(j),l+1

)T
e(j)

= −μ(j)c(j),l+1
n λ(j),l+1 ≤ 0 ∀j ∈ A.

Then (5.1) implies that

(5.2)
(
vl+1,α

)T
M

l
vl+1 ≤

(
vl+1,α

)T
M

l
vl +

(
vl+1,α

)T
k
l
.
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By expanding the left- and right-hand sides of the above inequality, we obtain(
vl+1,α

)T
M

l
vl+1 = αvl+1TMvl+1 + (1 − α)vl

T
Mvl+1

− hα2vl+1T
(
k̃l1v + γhk̃l1q

)
vl+1

− hα(1 − α)vl
T
(
k̃l1v + γhk

l

1q

)
vl+1,(5.3)(

vl+1,α
)T (

M
l
vl + k

l
)

= (1 − α)vl
T
Mvl + αvl+1TMvl

− hα2vl+1T
(
k̃l1v + (γ − 1)hk̃l1q

)
vl

− hα(1 − α)vl
T
(
k̃l1v + (γ − 1)hk̃l1q

)
vl

+ h
(
vl+1,α

)T (
(1 − α)k1

(
tl+1, q

l, vl
)

+ αk1

(
tl, q

l, vl
))
.(5.4)

Using Assumption (4.15) (H5), we are led to(
vl+1,α

)T
M

l
vl+1 ≥ α(1 − C6h)‖M1/2vl+1‖2 − C7h‖M1/2vl+1‖‖M1/2vl‖

+ (1 − α)vl
T
Mvl+1,(5.5)(

vl+1,α
)T (

M
l
vl + k

l
)
≤ α

(
−1 +

1
α

+ C8h

)
‖M1/2vl‖2

+ C9h‖M1/2vl‖‖M1/2vl+1‖

+ C10h(α‖M1/2vl+1‖ + (1 − α)‖M1/2vl‖)

×(‖M1/2vl‖ + ‖ql‖ + 1) + αvl+1TMvl.(5.6)

Let us denote

ρl =
∥∥M1/2vl

∥∥, σl =
∥∥ql∥∥+ 1.

Note that α ≥ 1
2 gives

(5.7) 2α− 1 ≥ 0 ⇒ (2α− 1)
(
vl+1

)T
Mvl ≤ (2α− 1)ρl+1ρl.

Dividing by α both sides of the inequality (5.2) and using the symmetry of the matrix
M , the estimates (5.5)–(5.6), the implication (5.7), as well as the notation above,
implies that

(5.8) (1 −C11h)ρ2
l+1 ≤

(
−1 +

1
α

+ C11h

)
ρ2
l +C11hσl(ρl + ρl+1) +

(
2 − 1

α

)
ρlρl+1

for an appropriately defined constant C11.
Consider now the case for which ρl < ρl+1. Dividing by ρl+1 in (5.8) and using

that ρl/ρl+1 < 1 gives

(5.9) (1 − C12h)ρl+1 ≤ (1 + C12h)ρl + C12hσl

for some constant C12 ≥ 0 and all sufficiently small h. We can rewrite (5.9) in the
form

(5.10) ρl+1 ≤ (1 + C13h)ρl + C13hσl,



984 B. I. GAVREA, M. ANITESCU, AND F. A. POTRA

with C13 appropriately chosen. It is straigthforward to see that, for the remaining
case ρl+1 ≤ ρl, inequality (5.10) immediately follows. On the other hand, from (4.4a),
we have

(5.11)
∥∥ql+1

∥∥ ≤ ∥∥ql∥∥+
∥∥M−1/2

∥∥((1 − γ)
∥∥M1/2vl

∥∥+ γ
∥∥M1/2vl+1

∥∥) .
Substituting the overestimate for ρl+1, (5.10), into (5.11) gives

(5.12) σl+1 ≤ h
∥∥M−1/2

∥∥ (1 + γC13h) ρl +
(

1 + γC13h
2
∥∥M−1/2

∥∥) σl.
It follows that there is a constant C14 such that

ρl+1 ≤ (1 + C14h)ρl + C14hσl,

σl+1 ≤ C14hρl + (1 + C14h)σl.

By taking c = 2C14, we have that, for all sufficiently small h, the following holds:∥∥∥∥[ ρl
σl

]∥∥∥∥
∞

≤
∥∥∥∥[ 1 + C14h C14h

C14h 1 + C14h

]∥∥∥∥ l
∞

∥∥∥∥[ ρ0

σ0

]∥∥∥∥
∞

= ectl
∥∥∥∥[ ρ0

σ0

]∥∥∥∥
∞
,

which concludes the proof of our theorem.
Remark 5.2. The conclusion of Theorem 5.1 implies that both vh(·) and vh,α(·)

are uniformly bounded on [0, T ], as h→ 0.

6. MDIs. In the following we use the setup and some of the results of [47].
Formally, we are looking at complementarity systems of the following form.

dq

dt
= v,(6.1)

M
dv

dt
= k(q, v) + ρ,(6.2)

Θ(i)(q) = 0, i = 1, 2, . . . ,mJ ,(6.3)
ν(i)(q)T v = 0, i = mJ + 1,mJ + 2, . . . ,mJ ,(6.4)

Φ(j)(q) ≥ 0, j = 1, . . . , p,(6.5)

ρ(t) = ρ(t) +
p∑
j=1

ρ(j)(t) ∈ FC(q),(6.6)

ρ(t) ∈ span
{
ν(i)(q(t)) : i = 1, . . . ,m

}
,(6.7) ∥∥ρ(j)

∥∥Φ(j)(q) = 0, j = 1, 2, . . . , p.(6.8)

The differences between the above formulation and the one corresponding to the
contact-only case consists in a different friction cone being used and the additional
bilateral constraints enforced by (6.3). Here FC(q) is the total friction cone (it includes
all constraint forces, bilateral and unilateral) as defined in the previous section. In
what follows, we specify what we mean by a solution of (6.1)–(6.8). This is motivated
by the fact that a strong solution may not exist in general [46].

In contact mechanics, measures appear as a result of the presence of impulsive
forces, while inclusions appear as a result of the presence of Coulomb friction. Because
of possible impulsive forces, the velocity of the system is no longer required to be an
absolutely continuous function but rather a function of bounded variation.
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We are going to replace the forces, as they are understood in general, by vector
measures. A vector measure is defined in terms of its action on a continuous function.
Assume now that v : [0, T ] → R

s is a function of bounded variation. That is, the
total variation of v,

∨T
0 v(·), is finite. Here

∨T
0 v(·) is the supremum of the sums∑N−1

i=0 ‖v(ti+1) − v(ti)‖ over all finite partitions a = t0 < t1 < · · · < tN−1 < tN = b.
We denote this by v ∈ BV ([0, T ]). It follows that the measure induced by v can be
understood as a linear and continuous operator defined from C([0, T ]), with values in
R
s. More precisely,

(6.9) < dv, φ >=
∫ T

0

φ(t)dv(t),

where φ : [0, T ] → R is continuous. The Riemann–Stieljes integral in (6.9), which
exists because of v(·) being of bounded variation, can be approximated by finite
Riemann sums:

N−1∑
i=0

φ(τi)[v(ti+1) − v(ti)],

where a = t0 < τ1 < t1 < · · · < τN−1 < tN = b. Discontinuities in the velocity may
lead to atoms of the measure dv. Therefore dv is not, in general, absolutely continuous
with respect to the Lebesgue measure dt, and thus dv

dt (·) cannot be defined, in the
usual sense, as a Radon–Nykodim derivative. To give a meaning to inclusions of the
form

(6.10)
dv

dt
(t) ∈ K(t), for t ∈ [0, T ],

we adopt the following definition [47].
Definition 6.1 (MDI). If v ∈ BV ([0, T ]) and K(·) is a convex-set valued map-

ping, we say that (6.10) holds if, for all continuous φ : [0, T ] → R, φ ≥ 0 and φ not
identically zero, we have that∫ T

0
φ(t)dv(t)∫ T

0
φ(t)dt

∈
⋃

τ :φ(τ) �=0

K(τ).

Definition 6.2 (weak solution of (6.1)–(6.8)). We say that q(t), v(t) is a weak
solution of (6.1)–(6.8) on [0, T ] if

1. v(·) is a function of bounded variation on [0, T ];
2. q(·) is an absolutely continuous function that satisfies

(6.11) q(t) = q(0) +
∫ t

0

v(τ)dτ for t ∈ [0, T ];

3. the measure dv(t) must satisfy

(6.12) M
dv

dt
− k(q, v) ∈ FC(q);

4. Θ(i)(q) = 0, i = 1, . . . ,mJ and ν(i)(q)T v = 0 almost everywhere, i = mJ +
1,mJ + 2, . . . ,m;

5. Φ(j)(q) ≥ 0, j = 1, . . . , p.
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7. Uniform bound in variations. For the rest of the paper we consider (γ, α)
satisfying

(7.1) γ = α ∈
[

1
2
, 1
]
.

Since γ = α and the number of collisions solved is uniformly upper bounded as h→ 0,
we have, from (4.4a), that

qh,α(t) = qh,α(0) +
∫ t

0

vh,α(τ)dτ.

The uniform boundedness of the velocities implies that the sequence {qh,α(·)} is
equicontinuous and equibounded. Therefore by the Arzela–Ascoli theorem, there
exists a uniformly convergent subsequence, which we also denote by qh,α(·), that
converges qh,α(·) → q(·) uniformly in [0, T ].

Theorem 7.1.

∨T
0 v

h,α(·) is uniformly bounded as h→ 0, and there exists v∗(·)
of bounded variation such that vh,α → v∗ pointwise and dvh,α → dv∗ weakly.

We break the proof in five subsections, along the lines given in [47], with some
modifications due to the presence of joint constraints. The main difference consists in
the use of the reduced friction cone. In this context, using the regularity of the reduced
friction cone, we first obtain a uniform bound on the sums

∑
l ‖c̃l,hn ‖. This is used

to obtain a similar result for the other constraint impulses. The proof then follows
precisely the lines of [47], first by obtaining a local result for the velocity variation
and then by using a compactness argument to extend this result to the entire time
interval.

7.1. Use the regularity assumption on the reduced friction cone to
obtain a bound on the sums

∑
l ‖c̃l,h

n ‖. Let q(·) be the limit of a uniformly
convergent subsequence qh,α(·). Let t be a time instant in the interval (0, T ]. From
(3.9) it follows that there exist a unit vector u0(t) and a scalar ζ(t) > 0 such that, for
any z = ν̃(q(t))c̃ν + ñ(q(t))c̃n + D̃(q(t))β̃ ∈ FC(q(t)), we have

(7.2) u0
T (t)ν̃T⊥(q(t))z ≥ ζ(t)‖c̃n‖.

By the closed-graph property of the FC(q(t)), it follows that there is η(t) > 0 and
h0 > 0 such that, for any t′′ satisfying |t′′ − t| ≤ η(t) and any h ≤ h0, we have

(7.3) u0
T (t)ν̃T⊥

(
qh(t′′)

)
z ≥ 1

2
ζ(t)‖c̃n‖

for any z ∈ FC(qh(t′′)). Provided that both lh and (l + 1)h lie in the interval [t −
η(t), t+ η(t)], the numerical scheme gives

(7.4)
(
M − αhk̃l,hv − αγh2k̃l,hq

) (
vl+1,h − vl,h

)
= k̃l,h + zl+1,h,

with zl+1,h ∈ F̂C(q(l),h). Let us denote

ν̃l,h⊥ := ν̃⊥
(
ql,h
)

and ν̃l,h := ν̃
(
ql,h
)
.

From the joint constraint enforced at the velocity level, we have (ν̃l,h)T (αvl+1,h+(1−
α)vl,h) = 0 for all l. By using the orthogonal decomposition, we are led to

vl+1,h = ν̃l,h⊥ wl+1,h + ν̃l,hul+1,h,

vl,h = ν̃l−1,h
⊥ wl,h + ν̃l−1,hul,h.(7.5)
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Multiplying both equations in (7.5) on the left by (ν̃l,h⊥ )TM gives(
ν̃l,h⊥

)T
Mvl+1,h =

((
ν̃l,h⊥

)T
Mν̃l,h⊥

)
wl+1,h +

(
ν̃l,h⊥

)T
Mν̃l,hul+1,h,(

ν̃l,h⊥

)T
Mvl,h =

((
ν̃l−1,h
⊥

)T
Mν̃l−1,h

⊥

)
wl,h +

(
ν̃l−1,h
⊥

)T
Mν̃l−1,hul,h + O(h).(7.6)

For the last equation in (7.6) we have used that ν̃l,h⊥ = ν̃l−1,h
⊥ + O(h), which holds

because of the sufficient smoothness of the joint gradients and the uniform boundness
of the velocities. Thus, by using ωi+1,h := ((ν̃i,h⊥ )TMν̃i,h⊥ )wi+1,h and ωi+1,h,⊥ :=
(ν̃i,h⊥ )TMν̃i,hui+1,h, we have, with respect to the new notation,

(7.7)(
ν̃l,h⊥

)T
Mvl+1,h = ωl+1,h + ωl+1,h,⊥ and

(
ν̃l,h⊥

)T
Mvl,h = ωl,h + ωl,h,⊥ + O(h).

We multiply (7.4) on the left by ν̃l,h⊥ to obtain

(7.8) ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥ = ν̃l,h⊥ zl+1,h + O(h),

where we have used the fact that k̃l,hq , k̃l,hv , 1
h k̃

l,h are uniformly bounded. It follows
from (7.3) that

(7.9) u0
T (t)

(
ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥

)
+ O(h) ≥ 1

2
ζ(t)‖c̃l+1,h

n ‖.

Set lmin = �(t− η(t))/h� and lmax = �(t+ η(t))/h�. Then

lmax−1∑
lmin

u0
T (t)

(
ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥

)
+ O(h(lmax − lmin)) ≥ 1

2
ζ(t)

lmax−1∑
lmin

∥∥c̃l+1,h
n

∥∥.
The sum on the left-hand side in the above inequality telescopes to

lmax−1∑
lmin

u0
T (t)

(
ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥

)
= u0

T (t)
(
ωlmax,h − ωlmin,h + ωlmax,h,⊥ − ωlmin,h,⊥)

≤
∥∥ωlmax,h

∥∥+
∥∥ωlmin,h

∥∥+
∥∥ωlmax,h,⊥

∥∥+
∥∥ωlmin,h,⊥

∥∥.
Using that h(lmax − lmin) ≤ η(t) and that ωl,h, ωl,h,⊥ are uniformly bounded (the
uniform boundedness of the ω components results from the uniform boundedness of
the velocities and the uniform linear independence of the columns of ν̃) by a constant
Bω, we obtain

(7.10)
lmax−1∑
lmin

∥∥c̃l+1,h
n

∥∥ ≤ 2
ζ(t)

(2Bω + C1η(t)) uniformly as h→ 0,

where the constant C1 above corresponds to the term O(h(lmax − lmin)).
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7.2. Show that all of the other constraint impulses are bounded by the
normal contact impulses. A bound on the tangential impulses β̃l+1,h is immedi-
ately obtained from the conic constraint:∥∥β(j);l+1,h

∥∥
1
≤ μ(j)cn

(j);l+1,h.

Thus, for the combined frictional impulses fT l+1,h := D̃l,hβ̃l+1,h, we obtain

(7.11)
lmax−1∑
lmin

∥∥fT l+1,h
∥∥ ≤ C2

lmax−1∑
lmin

∥∥c̃l+1,h
n

∥∥ ≤ 2C2

ζ(t)
(2Bω + C1η(t)) ,

with the last estimate holding uniformly as h → 0. The constant C2 above depends
on the bounds on the frictional directions d(j)

i (q(·)), the friction coefficients, and the
number of generators used in the polyhedral approximation of the friction cone.

To obtain a bound on
∑lmax−1
lmin

‖fJl+1,h,α‖ :=
∑lmax−1
lmin

‖ν̃l,h(αc̃l+1,h+(1−α)c̃l,h)‖,
we go back to(
M − h

2
k̃l,hv − h2

4
k̃l,hq

)(
vl+1,h − vl,h

)
= k̃l,h + ν̃l,hc̃l+1,h

ν + ñl,hc̃l+1,h
n + D̃l,hβ̃l+1,h,

which, together with the uniform bounds we have so far, implies that

(7.12) vl+1,h − vl,h = M−1ν̃l,hc̃l+1,h
ν +M−1ñl,hc̃l+1,h

n +M−1D̃l,hβ̃l+1,h + O(h).

Equation (7.12), together with the uniform boundedness of the velocity sequence and
the uniformly pointed friction cone assumption, implies that the impulse multipliers
c̃l+1,h
ν , c̃l+1,h

n , and β̃l+1,h are bounded uniformly with respect to l. We define, for all
indices l for which it makes sense, the following quantities:

vl+1,h,α := αvl+1,h + (1 − α)vl,h,
c̃l+1,h,α
ν := αc̃l+1,h

ν + (1 − α)c̃l,hν ,

c̃l+1,h,α
n := αc̃l+1,h

n + (1 − α)c̃l,hn ,

β̃l+1,h,α := αβ̃l+1,h + (1 − α)β̃l,h.

We note that the definition of our time-stepping scheme (4.4c) implies that

(7.13)
(
ν̃l,h
)T
vl+1,h,α = 0,

and that the triangle inequality implies that

(7.14)
∥∥c̃l,h,αn

∥∥ ≤ α
∥∥c̃l+1,h
n

∥∥+(1−α)
∥∥c̃l,hn ∥∥, ∥∥β̃l+1,h,α

∥∥ ≤ α
∥∥β̃l+1,h

∥∥+(1−α)
∥∥β̃l,h∥∥.

We multiply (7.12) by α and the same equation (7.12), with l replaced by l − 1, by
(1 − α), and we add them. We obtain, by the uniform boundedness of the force
multipliers and the uniform Lipschitz continuity of ν̃(q), ñ(q), and D̃(q), that

(7.15)
vl+1,h,α − vl,h,α = M−1ν̃l,hc̃l+1,h,α

ν +M−1ñl,hc̃l+1,h,α
n +M−1D̃l,hβ̃l+1,h,α + O(h).

We multiply (7.15) on the left by (ν̃l,h)T and use (7.13) at steps l + 1 and l together
with the fact that ν̃l−1,h = ν̃l,h + O(h). The result is

O(h) =
(
ν̃l,h
)T
M−1ν̃l,hc̃l+1,h,α

ν +M−1ñl,hc̃l+1,h,α
n +M−1D̃l,hβ̃l+1,h,α.
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Using the fact that the matrix (ν̃l,h)TM−1ν̃l,h is uniformly positive definite in the
sense that its eigenvalues are bounded away from 0 uniformly with respect to ql,h

as well as (7.14), we obtain a bound for the joint multipliers in terms of the normal
contact impulses. More precisely, we have∥∥c̃l+1,h,α

ν

∥∥ ≤ C3

∥∥c̃l+1,h,α
n

∥∥+ O(h) ≤ C3

(
α
∥∥c̃l+1,h,α
n

∥∥+
∥∥c̃l,h,αn

∥∥)+ O(h),

where the constant C3 can be chosen independent of l and h. Adding the above
inequalities, we obtain

(7.16)
lmax−1∑
lmin

∥∥fJ l+1,h,α
∥∥ :=

lmax−1∑
lmin

∥∥ν̃l,hc̃l+1,h,α
ν

∥∥
≤ C4

lmax−1∑
lmin

∥∥c̃l+1,h,α
n

∥∥ ≤ 2C4

ζ(t)
(2Bω + C1η(t)) + C5η(t).

7.3. Obtain the bound for the variation of velocities on [t−η(t), t+η(t)].
As we have done in (7.4), denote by zl+1,h,α the total constraint weighted impulse
(combine total joint, normal, and tangential impulses) corresponding to step l + 1,
that is, zl+1,h,α = ν̃l,hc̃l+1,h,α

ν +ñl,hc̃l+1,h,α
n +D̃l,hβ̃l+1,h,α. From the derivations above

we have that

(7.17)
lmax−1∑
lmin

∥∥zl+1,h,α
∥∥ ≤ 2C6

ζ(t)
(2Bω + C1η(t)) + C7η(t),

where the constants above can be chosen independent of h. Now from (7.12) we have∥∥vl+1,h,α − vl,h,α
∥∥ ≤ ∥∥M−1zl+1,h,α

∥∥+ O(h),

and by adding, we obtain
lmax−1∑
lmin

∥∥vl+1,h,α − vl,h,α
∥∥ ≤ 2C6

ζ(t)
(2Bω + C1η(t)) + C8η(t),

which shows that
t+η(t)/2∨
t−η(t)/2

vh,α(·) is uniformly bounded as h→ 0.

7.4. Obtain the bound for the variation velocities on the entire time
interval. Since (t− η(t)/2, t+ η(t)/2) is a covering of [0, T ], there is a finite subcov-
ering

{(ti − η(ti)/2, ti + η(ti)/2 | i = 1, . . . ,mT } .

Therefore, by summing the contributions corresponding to this finite set of subinter-
vals, we obtain a uniform bound on

∨T
0 v

h,α(·) as h→ 0. If we use the fact that vh,α(·)
has bounded variation, then, by Helly’s selection theorem, there exists a subsequence
of vhk,α(·) of vh,α(·) that converges pointwise to v(·) and has bounded variation. Since
the limiting velocity v(t) may not be well defined for every t ∈ [0, T ], we assume with-
out loss of generality, [47], that v(·) is right–continuous, i.e., v(t) = v+(t) for all
t ∈ [0, T ]. The corresponding functions qhk,α(·) converge to the indefinite integral of
v(·) by the pointwise convergence theorem for Lebesgue integrals. We assume for sim-
plicity that this is the entire sequence, and therefore qh,α(·) → q(·) and vh,α(·) → v(·).
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7.5. Weak ∗ convergence. Since
∨T

0 v
h,α(·) is uniformly bounded as h → 0

and vh,α(0) = v(0) and since vh,α(·) → v(·) pointwise, it follows that dvh,α → dv
weakly *, that is, ∫ T

0

φ(t)T dvh,α(t) →
∫ T

0

φ(t)T dv(t)

for all continuous functions φ(t). Therefore, dvh,α(·) → dv(·) weak ∗ as Borel mea-
sures. The proof of Theorem 7.1 is complete.

8. Limits are solutions to the MDI. In this section we will use Assumptions
(H1)–(H8) to prove that the limits are solutions to the rigid body MDI. We note that
we cannot expect that the rigid body MDI will have unique solutions even in relatively
simple cases [28, 48], a fact which can partly be justified by experimentally observed
macroscopic behavior [28]. We therefore study the convergence of the subsequences
of the time-stepping scheme to possibly multiple solutions of the rigid body MDI.

Assume (q, v) is a solution of the MDI of Definition (6.2). We write

(8.1) v = ν̃(q)u+ ν̃⊥(q)w.

Since from the joint constraints the velocity v satisfies (ν̃(q))T v = 0, we must have
u = 0, which implies that the Borel measure dv (which is well defined since v is a
function of bounded variation on [0, T ]) satisfies dv = d(ν̃⊥(q)w). We can expand
further to obtain, as detailed in Appendix A, that

(8.2)
dv = d (ν̃⊥(q)w) = ν̃⊥(q)dw +

∂

∂q
(ν̃⊥(q)w) dq

= ν̃⊥(q)dw +
∂

∂q
(ν̃⊥(q)w) vdt = ν̃⊥(q)dw +

(
∂

∂q
(ν̃⊥(q)w)

)
ν̃⊥(q)wdt,

where for the second last equality we have used (6.11) and for the last one we have
used the fact that u from (8.1) is zero. Note that the second term in the last equality
of (8.2) is a measure which is absolutely continuous with respect to the Lebesque
measure dt. Motivated by the analysis above, we introduce the following definition
which gives the MDI on the reduced cone.

Definition 8.1 (reduced weak solution of (6.1)–(6.8)). We say that q(t), w(t)
is a reduced weak solution of (6.1)–(6.8) on [0, T ] if

1. w(·) is a function of bounded variation on [0, T ];
2. q(·) is an absolutely continuous function that satisfies

(8.3) q(t) = q(0) +
∫ t

0

ν̃⊥(q(τ))w(τ)dτ for t ∈ [0, T ];

3. the measure dw(t) must satisfy

(8.4)
(

(ν̃⊥(q))T Mν̃⊥(q)
) dw
dt

− kw,⊥(t, q, w) ∈ FCr(q),

where

(8.5) kw,⊥(t, q, w) = (ν̃⊥(q))T kw(t, q, w)

and

(8.6) kw(t, q, w) = k(t, q, ν̃⊥(q)w) −M

((
∂

∂q
(ν̃⊥(q)w)

)
ν̃⊥(q)w

)
;

4. Φ(j)(q) ≥ 0, j = 1, . . . , p.
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Lemma 8.2. If (q, w) is a reduced weak solution of (6.1)–(6.8) on [0, T ] in the
sense of Definition 8.1 and Θ(i)(q(0)) = 0, i = 1, 2, . . . ,mJ , then (q, v) = (q, ν̃⊥(q)w)
is a weak solution of (6.1)–(6.8) on [0, T ] in the sense of Definition 6.2.

Proof. By construction (q, v) = (q, ν̃⊥(q)w) and from conditions 1, 2, and 4 of
Definition 8.1, it immediately follows that conditions 1, 2, and 5 of Definition 6.2
are satisfied. To prove that condition 4 of Definition 6.2 is satisfied, we use (8.3) to
obtain, for i = 1, 2, . . . ,mJ ,

Θ(i)(q(t)) = Θ(i)(q(0)) +
∫ t
0

(
ν(i)(q)

)T
v(τ)dτ

= Θ(i)(q(0)) +
∫ t
0

((
ν(i)(q)

)T
ν̃⊥(q(τ))

)
w(τ)dτ

= Θ(i)(q(0)),

where we have used the fact that (ν(i))(q)T ν̃⊥(q) = 0, for i = 1, 2, . . . ,mJ .
Since Θ(i)(q(0)) = 0, we have Θ(i)(q(t)) = 0 for all t ∈ [0, T ] and i = 1, 2, . . . ,mJ .

By a similar rationale we obtain that

ν(i)(q)T v = ν(i)(q)T ν̃⊥(q)w

is zero almost everywhere for i = mJ + 1,mJ + 2, . . . ,m, and therefore condition 4 of
Definition 6.2 is satisfied.

To prove that (6.12) holds we mainly reverse the derivations in (8.2). That is, if
(q, w) satisfies (8.4), then there exist z ∈ FC(q) and a vector measure d̃ν ∈ R

m such
that

Mν̃⊥(q)
dw

dt
− kw(t, q, w) = z + ν̃d̃ν .

Since z ∈ FC(q) implies that z + ν̃d̃ν ∈ FC(q) for any d̃ν ∈ R
m, we can write

Mν̃⊥(q)
dw

dt
− kw(t, q, w) ∈ FC(q).

Using (8.2) together with (8.6) in the above inclusion gives

M
dv

dt
− k(t, q, w) ∈ FC(q),

and therefore also condition 4 of Definition 6.2 is satisfied. This completes the proof
of Lemma 8.2.

8.1. The MDI for the limit. We start by writing (4.18) at step (l + 1) and
step (l) as follows:

M
l (
vl+1 − vl

)
−
(
k
l
+ hF

(
vl
)
vl+1,α

)
= zl+1,(8.7)

M
l−1 (

vl − vl−1
)
−
(
k
l−1

+ hF
(
vl−1

)
vl,α
)

= zl,(8.8)

where zk+1 ∈ F̂C(qk) and M
l
, k

l
are given by (4.17).

Since the approximation k̃1q is uniformly bounded, we have that

M
k

= M − αhk̃1v + O(h2).
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We now multiply (8.7) by α and (8.8) by (1 − α) and add them up. We obtain

M
(
vl+1,α − vl,α

)
−
(
αk

l
+ (1 − α)k

l−1
)

(8.9)

−hαk̃1v

(
vl+1,α − vl,α

)
− h
(
αF
(
vl
)
vl+1,α + (1 − α)F

(
vl−1

)
vl,α
)

+ O(h2) = zl+1,α,

where we have used the fact that by Assumption (H8) k̃l1v is constant, i.e., k̃l1v = k̃1v

for all l.
Using the fact that F (·) is a linear map, we have that

(1 − α)F
(
vl−1

)
vl,α = F

(
(1 − α)vl−1

)
vl,α

= F
(
vl,α
)
vl,α − αF

(
vl
)
vl,α.

Then the Coriolis terms in (8.9) become

(8.10) αF
(
vl
)
vl+1,α + (1−α)F

(
vl−1

)
vl,α = F

(
vl,α
)
vl,α +αF

(
vl
) (
vl+1,α − vl,α

)
.

Since the sequence vh(·) is uniformly bounded, vh,α(t + h) → v+(t) and vh,α(t) →
v(t) = v+(t) a.e. on [0, T ], it follows that

F
(
vh(t)

) (
vh,α(t+ h) − vh,α(t)

)
→ 0 as h→ 0,

for t ∈ [0, T ] − N , where N is a set of Lebesque measure zero. The same reasoning
applies for the term k̃1v(vl+1,α − vl,α), giving

(8.11) k̃1v

(
vh,α(t+ h) − vh,α(t)

)
→ 0 pointwise a.e. in [0, T ].

Now by using the fact that k1(t, q, v) is linear in v as well as the fact that k̃1q is
bounded and ql = ql−1 + O(h), we get that

(8.12) k
h
(t) := k

h (
t, qh,α(t), vh,α(t)

)
→ k1(t, q(t), v(t)) pointwise a.e. in [0, T ].

Here

k
h
(t) := k

h (
t, qh,α(t), vh,α(t)

)
= (1 − α)k1

(
t, qh,α(t), vh,α(t)

)
+ αk1

(
t+ h, qh,α(t), vh,α(t)

)
+ αk̃1q

(
t, qh,α(t), vh,α

)
is the function equivalent to the quantity 1

hk
l

from (4.17). Equation (8.12) implies
that

(8.13) αk
h
(t) + (1 − α)k

h
(t− h) → k1

(
t, qh,α(t), vh,α(t)

)
pointwise a.e. in [0, T ].

Using Assumptions (H2) and (H6), we can write zl+1,α in (8.9) as

zl+1,α = zl+1 + O
(
h
∥∥vl+1,α − vl,α

∥∥) ,
with zl+1 ∈ F̂C(ql). This implies that, for all h sufficiently small,

(8.14) M
dv

dt

h,α

− k̂h(t) ∈ F̂C
(
qh,α(t)

)
⊂ FC

(
qh,α(t)

)
,
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where

k̂h(t) = αk
h
(t) + (1 − α)k

h
(t− h) +

(
k̃1v + F

(
vh(t)

)) (
vh,α(t+ h) − vh,α(t)

)
+F

(
vh,α(t)

)
vh,α(t) + O(h) + O

(
h
∥∥vl+1,α − vl,α

∥∥) .
From (8.11)–(8.13) we can easily see that

k̂h(t) → k(t, q(t), v(t) = F (v(t))v(t) + k1(t, q(t), v(t)) pointwise a.e. in [0, T ].

We now write

vh,α(t) = ν̃⊥
(
qh,α(t)

)
wh,α(t) + ν̃

(
qh,α(t)

)
uh,α(t),

which gives

(8.15) uh,α(t) =
((
ν̃
(
qh,α(t)

))T
ν̃
(
qh,α(t)

))−1 (
ν̃(qh,α(t)

)T
vh,α(t).

Using a Taylor expansion together with Assumption (H2), we obtain

(8.16)(
ν̃(qh,α(t)

)T
vh,α(t) =

(
ν̃(qh,α(tl)

)T
vh,α(t)

+
(

∂
∂q

(
ν̃T (q)vh,α(t)

)∣∣∣
q=qh,α(tl)

)(
qh,α(t) − qh,α(tl)

)
+O

(∥∥qh,α(t) − qh,α(tl)
∥∥2) .

Since the definition of the time-stepping scheme enforces (ν̃(qh,α(tl))T vh,α(t) = 0 for
all t ∈ (tl, tl+1] and since qh,α(t) − qh,α(tl) = (t − tl)vh,α(t) for all t ∈ [tl, tl+1], we
have

(8.17)
(
ν̃(qh,α(t)

)T
vh,α(t) = (t−tl)

(
∂

∂q

(
ν̃T (q)vh,α(t)

)∣∣∣∣
q=qh,α(tl)

)
vh,α(t)+O

(
h2
)
.

Combining (8.15) and (8.17) gives

(8.18)

(
ν̃⊥(qh,α(t)

)T
M
(
ν̃(qh,α(t))uh,α(t) − ν̃(qh,α(t− h))uh,α(t− h)

)
= O

(
h
∥∥vh,α(t) − vh,α(t− h)

∥∥)+ O(h2).

Using a similar methodology one also gets

(8.19)

ν̃⊥
(
qh,α(t)

)
wh,α(t) − ν̃⊥

(
qh,α(t− h)

)
wh,α(t− h)

= ν̃⊥
(
qh,α(t)

) (
wh,α(t) − wh,α(t− h)

)
−
(
∂

∂q

(
ν̃T (q)wh,α(t− h)

)∣∣∣∣
q=qh,α(t)

)(
qh,α(t) − qh,α(t− h)

)
+ O(h2)

= ν̃⊥
(
qh,α(t)

) (
wh,α(t) − wh,α(t− h)

)
+ h

(
∂

∂q

(
ν̃T (q)wh,α(t− h)

)∣∣∣∣
q=qh,α(t)

)
vh,α(t) + O(h2)

= ν̃⊥
(
qh,α(t)

) (
wh,α(t) − wh,α(t− h)

)
+ h

(
∂

∂q

(
ν̃T⊥(q)wh,α(t− h)

)∣∣∣∣
q=qh,α(t)

)
ν̃⊥(qh,α(t))wh,α(t) + O(h2),
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where for the last equality, we have used (8.17), which give hν̃(qh,α(t))uh,α(t) = O(h2).
We use (8.19) to write

(8.20)(
ν̃⊥
(
qh,α(t)

))T
M

(
ν̃⊥
(
qh,α(t)

)
wh,α(t) − ν̃⊥

(
qh,α(t− h)

)
wh,α(t− h)

)
=
((
ν̃T⊥Mν̃⊥

)
(qh,α(t)

) (
wh,α(t) − wh,α(t− h)

)
+ h
(
ν̃⊥(qh,α(t))

)T
M

(
∂

∂q

(
ν̃T⊥(q)wh,α(t− h)

)∣∣∣∣
q=qh,α(t)

)
ν̃⊥(qh,α(t))wh,α(t)

+O(h2).

Multiplying (8.14) on the left by (ν̃⊥(qh,α(t))T and using (8.18) and (8.20), we obtain

(8.21)(
ν̃⊥
(
qh,α(t)

))T
Mν̃⊥

(
qh,α(t)

) dw
dt

h,α

−
(
k̂hw,⊥(t) + O

(∥∥vh,α(t) − vh,α(t− h)
∥∥)+ O(h)

)
∈ F̂Cr

(
qh,α(t)

)
⊂ FCr

(
qh,α(t)

)
,

where

(8.22) k̂hw,⊥(t) =
(
ν̃⊥
(
qh,α(t)

))T
×
(
k̂h(t) −M

(
∂

∂q

(
ν̃T⊥(q)wh,α(t− h)

)∣∣∣∣
q=qh,α(t)

)
ν̃⊥(qh,α(t))wh,α(t)

)
.

Given that qh,α(·) → q(·) uniformly on [0, T ], vh,α(·) → v(·) a.e. on [0, T ] and
uh,α(·) → 0 on [0, T ], we have(

ν̃⊥
(
qh,α(t)

))T
Mν̃⊥

(
qh,α
)
→ (ν̃⊥(q(t))T Mν̃⊥(q(t) uniformly in [0, T ],(8.23)

k̂hw,⊥(t) → kw,⊥(t, q(t), w(t)) pointwise a.e. on [0, T ].(8.24)

To obtain the MDI for the limits (q, w) we invoke [49, Theorem 4], stated in Appendix
B, taking into account that (8.21), (8.23), and (8.24) are satisfied. In our case, the
requirement of [49, Theorem 4] that min{‖z‖|z ∈ K(w)} is uniformly bounded is
immediately satisfied because K(w) are cones and always contain the zero element.
Given also (8.23)–(8.24) as well as the fact that, from Lemma 3.5, FCr(q) is uniformly
pointed, we can apply the above result directly to obtain that the limits (q, w) satisfy
the inclusion (8.4).

To complete this subsection, we note that, for any t ∈ [0, T ], we have that

qh,α(t) − qh,α(0) =
∫ t2
t1
vh,α(τ)dτ

=
∫ t2
t1
ν̃⊥
(
qh,α(τ)

)
wh,α(τ) + ν̃(qh,α(τ))uh,α(τ)dτ.

Since uh,α(·) → 0 = u(·) (this results from (8.15) and (8.16) together with
(ν̃(qh,α(tl))T vh,α(t) = 0) as h → 0 pointwise on [0, T ] and qh,α(0) = q(0), we ob-
tain that

q(t) = q(0) +
∫ t

0

ν̃⊥(q(τ))w(τ)

as required by (8.3).
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8.2. Feasibility of the limiting trajectories.
Lemma 8.3. Assume that

Θ(i)
(
q0
)

= 0, Φ(j)
(
q0
)
≥ 0, i = 1, . . . ,mJ , j = 1, . . . , p.

Then the limit q(·) is feasible in the sense that

Θ(i)(q(t)) = 0, i = 1, . . . ,mJ , Φ(j)(q(t)) ≥ 0, j = 1, . . . , p for all t ∈ [0, T ],

and

ν(i)(q(t)) = 0 a.e. t ∈ [0, T ], i = mJ + 1,mJ + 2, . . . ,m.

Proof. To prove the first part we note that by using the definition of the time-
stepping scheme, the fact that the numerical velocities vl are uniformly bounded as
well as the fact that the algorithm solves a finite number of collisions in [0, T ], we
obtain, for i = 1, 2, . . . ,m, that∥∥∥∥(ν(i)

(
qh,α(t)

))T
vh,α(t)

∥∥∥∥ ≤ C1h, a.e. in [0, T ].

Taking the limit as h→ 0 gives(
ν(i)(q(t))

)T
v(t) = 0 a.e. in [0, T ], i = 1, 2, . . . ,m.

The last statement implies that for all t ∈ [0, T ] and all i = 1, . . . ,mJ , we have that

Θ(i)(q(t)) = Θ(i)
(
q0
)

+
∫ t
0

(
ν(i)(q(τ))

)T
v(τ)dτ

= Θ(i)
(
q0
)

= 0.

To prove the second part, assume first that Φ(j)(q0) = 0 for some j ∈ {1, . . . , p}.
This implies that j ∈ A, and therefore(

n(j)
(
q0
))T (

αv1 + (1 − α)v0
)

= 0.

Using this we obtain that Φ(j)(q1) = Φ(j)(q0) + O(h2) which implies, by assumption
(H1), that

Φ(j)
(
q1
)
≥ −C2h

2,

where the constant C2 depends on the uniform bound for the velocities and the con-
stant BH in (4.14). Assuming Φ(j)(q1) ≤ 0, i.e., j ∈ A at step 2, we can bound
(in the same fashion as we did above) the negative part of Φ(j)(·) at the next step
by Φ(j)(q2) ≥ −2C2h

2. We can continue this process until the first k for which
Φ(j)(qk) ≤ 0 and Φ(j)(qk+1) > 0. We obtain the estimate:

(8.25) Φ(j)
(
ql
)
≥ −lC2h

2 ≥ −(C2 · T )h, l = 0, . . . , k,

where to obtain the last inequality we have used that k ≤ lmax =
⌊
T
h

⌋
.

If Φ(j)(q0) > 0, the only way to obtain Φ(j)(qk) < 0 for some k is to have at least
one collision occurring. Assume that this kth time step is the first collisional time
step. We can guarantee by the collision-detection algorithm that Φ(j)(qk) ≥ −C3h

2

(for a fixed constant C3), where qk is the detected position for the collision. When
computing the solution at step (k + 1), the index j is a component of the active set.
We have two possibilities for step (k + 1):
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• The nonpenetration constraint (j) leaves the active set , i.e., Φj(qk+1) > 0,
in which case we can restart recursively; or,

• The nonpenetration constraint (j) remains in the active set , i.e., Φ(j)(qk+1) ≤
0. In this case, we have Φ(j)(q(k+1)) ≥ −(C3 + C2)h2. Continuing like this
until step (k + r + 1) where either take-off occurs or (k + r + 1) ≥ T

h , we
obtain the estimate

(8.26) Φ(j)
(
qk+l

)
≥ −(C3 + lC2)h2 ≥ −C4h, l = 0, . . . , r.

Since the number of changes in the active set is uniformly upper bounded as
h → 0, we can separate the two cases above and combine (8.25)–(8.26) to
obtain

Φ(j)
(
ql
)
≥ −Ch, 0 ≤ l ≤

⌊
T

h

⌋
.

It follows that Φ(j)(qh,α(t)) ≥ −Ch for h sufficiently small and all t ∈ [0, T ].
Taking the limit as h→ 0 we obtain Φ(j)(q(t)) ≥ 0, t ∈ [0, T ].

We summarize the analysis above in the following result.
Theorem 8.4. Assume that γ = α ∈ [12 , 1], and conditions (H1)–(H8) hold.

Then there exists a subsequence hk → 0 such that
1. qhk,α(·) → q(·) uniformly;
2. vhk,α(·) → v(·) pointwise a.e;
3. dvhk,α(·) → dv(·) weak * as Borel measures in [0, T ], and every such subse-

quence converges to a solution (q(·), v(·)) of the MDI (6.11)–(6.12).
Therefore, q(t), v(t) is a weak solution of our model.

9. Examples. In this section we present two numerical examples that illustrate
some of the theoretical points made in this work. We mention that an example,
involving a double pendulum colliding with a wall, of our scheme converging in the case
that involves joints and collisions (and thus, discontinuities in the velocity solution)
was already presented in [39].

9.1. A simple joint example. As an introductory example, consider the dy-
namics of the system q̈ = 0, subject to the joint constraint q = 0, to which we apply
the scheme (4.4) with parameters α = 1

2 and γ = 1
2 . If the initial conditions are q = 0

and q̇ = 0, then the exact solution satisfies q(t) = 0.
To model the effect of errors on initial conditions, we start with q = 0, q̇ = ε.

Our scheme produces ql,α = 0 and vl = (−1)lε. The total variation of the velocity for
the time interval T is 2εT

h , where h is the time step. Therefore, no matter how small
the initial error, the total variation is unbounded, and the resulting velocity function
does not converge pointwise as h → 0. On the other hand, we can immediately see
that vl,α = 0, and that the velocity function defined in our main result has bounded
variation and is convergent pointwise. This also validates the fact that our bounded
variation for vl,α result holds irrespective of the initial error in constraint satisfaction,
and that the same result cannot be proved for vl (though for the case with exact
satisfaction of the initial constraints we could neither prove nor disprove bounded
variation of the velocity sequence).

Of course, this difficulty will disappear if we make ε = 0. But on one hand, in
practical examples exact satisfaction of the constraints is difficult to guarantee. And
on the other hand, this example is indicative of the fact that vl,α has a more stable
behavior than vl.
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Fig. 9.1. Numerical position and velocities for T = 10 (s), α = γ = 1/2, and h = 0.01. The

plot on the left shows positions qh,α
1 (tl), while the two plots on the right show the velocity sequences

vh,α
1 (tl) at the top and vh

1 (tl) at the bottom.

9.2. An example with stick-slip behavior. We want to further motivate
our choice for the velocity sequence by looking at a very simple example, [39], with
stick-slip behavior. In that example, a block of mass m = 1 is subjected to an
exterior force k(t) = 8 cos(t) and is sliding on a flat table with friction coefficient
μ = 0.8. The initial position of the block is q0 = (3, 0)T , and the initial velocity
is v0 = (0, 0)T . The gravity G = (0,−mg)T is calculated, with g = 9.81. We
compare the weighted numerical velocity sequence vh,α(t) to the sequence vh(t) for
α = γ = 1

2 . The positions qh,α(tl) and velocities vh(tl), vh,α(tl), with α = γ = 1
2 are

shown in Figure 9.1, and they indicate a typical stick-slip behavior. We note that the
numerical velocities exhibit a quite different behavior, in line with our observations
from the preceding sections. We see that, starting with the onset of sticking, the
velocity sequence vl exhibits oscillations that are not present in the sequence vl,α,
which has the value 0 during the sticking phase. As opposed to the previous example,
we do not obtain unbounded variation, though the total variation of the two velocity
solutions is different. Nonetheless, the example illustrates the difficulty in obtaining
a good behavior of the total variation of the velocity solution vl, as opposed to vl,α,
and justifies our choice of the latter for our convergence result.

10. Conclusions. In this work, we have defined a convergence framework for a
class of time-stepping schemes for multirigid-body dynamics with joints, contact, and
friction. In our framework the numerical solution is shown to converge to the solution
of an MDI. The novelty of our approach resides in the fact that convergence in an
MDI sense of an LCP time-stepping scheme is proved, for the first time, for the case
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that involves joint constraints as well. We note that such a proof does not directly
follow from representing a joint constraint (an equality constraint) as two opposite
inequality constraints (contact constraints) and applying previous convergence results
[46, 47], because the resulting system cannot possibly have a pointed friction cone,
since any action can be realized with infinite multipliers by cancellation. The situation
is analogous to the loss of the Mangasarian–Fromovitz constraint qualification in
nonlinear programming when one equality constraint is represented as two inequality
constraints [33]. In this work, results for cases involving joints are proved by defining
the MDI with respect to an appropriately defined reduced friction cone.

The convergence framework presented here accommodates time-stepping meth-
ods based on semiexplicit Euler methods [4, 46] as well as various instances of the
trapezoidal method that have been shown to have second-order convergence under
certain assumptions [39]. An important step in the convergence proof, following the
technique developed in [47], is the proof of the bounded variation of the discrete ve-
locity sequence. We show that, although this may not hold for most trapezoidal-like
methods for the natural discrete velocity sequence (v(t) = v(l+1), for t ∈ (tl, tl+1],
which is the one used in the seminal work [47]), it does hold for the modified velocity
sequence v(t) = αv(l+1) +(1−α)v(l) for t ∈ (tl, tl+1], where α is the parameter used in
the enforcement of the linearization of the geometrical constraints (contact and joint
constraints). This point is reinforced by numerical examples.

Appendix A. The details in the derivation of (8.2). In this section we
present the details of obtaining (8.2). The main result that we use can be found in
[29, p. 9], and it is listed below.

Lemma A.1 (see [29, p. 9]). If u1, u2 ∈ BV([0, T ],Rk), then d(uT1 u2) is a real
Borel measure on [0, T ], which we write d(uT1 u2) ∈ B([0, T ],R) and

(A.1)
d
(
uT1 u2

)
=
(
u−2
)T
du1 +

(
u+

1

)T
du2

=
(
u+

2

)T
du1 +

(
u−1
)T
du2,

where for a function f ∈ BV([0, T ],Rk), f+ (f−) denotes the right-limit (left-limit)
of f . More precisely f+(t) = lims→t, s>t f(s) (f−(t) = lims→t, s<t f(s)), with the
convention that if t is the right (left) endpoint of [0, T ], we take f+(t) = f(t) (f−(t) =
f(t)). Note that since f is of bounded variation, these limits exist for all t in [0, T ].

Proving (8.2). We recall that q : [0, T ] → R
s is a Lipschitz continuous function,

v = ν̃⊥(q)w ∈ BV([0, T ],Rs), and ν̃⊥ : R
s → R

s×(s−m) is sufficiently smooth. We
further assume that v(·) = v+(·) (Note that since q(·) is continuous and ν̃⊥(·) is
uniformly full column rank, this also implies that w(·) is equal to its right limit). To
prove (8.2) the steps itemized below are followed.

• Chain rule: d(ν̃⊥(q)w) = ν̃⊥(q)dw + ∂
∂q (ν̃⊥(q)w) dq.

For every i ∈ {1, . . . , s} we apply (A.1), with

u1 = (ν̃⊥(q))i and u2 = w.

Here if A is a given matrix, Ai denotes its ith row written in column format.
Since q(·) is Lipschitz continuous and ν̃⊥(·) is sufficiently smooth, it follows
that u1 ∈ BV([0, T ],Rs−m) and u+

1 (t) = u−1 (t) = u1(t) for all t ∈ [0, T ]. We
also have u2 = w ∈ BV([0, T ],Rs−m). Using (A.1) we obtain

(A.2) (dv)i = (d (ν̃⊥(q))i)
T
w + ((ν̃⊥(q))i)

T
dw,
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where we have used the continuity of u1 and right continuity of u2. Since
ν̃⊥(·) is sufficiently smooth, we can write

(A.3) d (ν̃⊥(q))i =
(
∂

∂q
((ν̃⊥)i) (q)

)
dq,

where the (s−m)×s matrix in the right-hand side is the Jacobian of (ν̃⊥(q))i.
Using (A.3) in (A.2) for all i gives the desired result, i.e.,

(A.4) d (ν̃⊥(q)w) = ν̃⊥(q)dw +
∂

∂q
(ν̃⊥(q)w) dq.

• The differential vector measure induced by q: dq = vdt.
Since

q(t) = q(0) +
∫ t

0

v(τ)dτ,

for all t ∈ [0, T ] and v is bounded on [0, T ], it follows that dq is absolutely con-
tinuous w.r.t. the Lebesque measure dt, and the Radon–Nicodym derivative
is

v =
dq

dt
.

Therefore we may write dq = vdt. Note that the Radon–Nicodym derivative
(w.r.t. the Lebesque measure) is uniquely determined up to a set of (Lebesque)
measure 0.

Appendix B. Theorem 4, [49]. Suppose that qn̂(·) are continuous, vn̂(·)
have uniformly bounded variation, and kn̂(·) are uniformly bounded, all on [0, T ],
and qn̂(·) → q(·) uniformly, vn̂(·) → v(·) pointwise a.e., and kn̂(·) → k(·) pointwise
a.e. Suppose also that K : R

n ⇒ C(Rn) has closed graph, min{‖z‖|z ∈ K(w)} is
uniformly bounded, and K(w) is pointed for all w ∈ R

n. Then if

dvn̂
dt

(t) ∈ K(qn̂(t)) − kn̂(t)

for all n̂, the limit satisfies

dv

dt
(t) ∈ K(q(t)) − k(t).

Here C(Rn) denotes all of the closed and convex subsets of R
n.
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latter, it has an appropriate second-order necessary condition as its counterpart. In particular,
our assumptions for local quadratic convergence are weaker than those required by standard SQP
when applied to MPCC and are equivalent to assumptions required by piecewise SQP for MPCC.
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1. Introduction. We consider a mathematical program with complementarity
constraints (MPCC)

min f(x) s.t. G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 ≤ 0,(1.1)

where f : Rn → R is a smooth function and G, H : Rn → Rm are smooth mappings
(twice differentiable and possessing Lipschitzian second derivatives in a neighborhood
of the solution of interest). We note that “usual” equality and inequality constraints
can be added to our problem setting without any substantial difficulties. We shall
consider the case when the problem has only complementarity constraints for the
sake of simplicity. Note also that the last constraint in (1.1) could be written as
an equality, which is more standard in the complementarity literature. However, it
is known that in the context of MPCC, there are good numerical reasons to use
the inequality formulation for this constraint. Also, this makes the associated set of
Lagrange multipliers smaller, which has both numerical and theoretical advantages.
MPCC is perhaps one of the most important instances of a mathematical program
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with equilibrium constraints, which has recently attracted considerable attention in
the optimization literature; see [15, 16].

In order to explain the contribution of this work, some preliminaries from MPCC
theory will be needed. To this end, let

L(x, λ) = f(x) − 〈λG, G(x)〉 − 〈λH , H(x)〉 + λ0〈G(x), H(x)〉

be the standard Lagrangian of problem (1.1), where x ∈ Rn and λ = (λG, λH , λ0) ∈
Rm × Rm × R. As for any other mathematical program (MP), stationary points of
(1.1) and the associated Lagrange multipliers are characterized by the Karush–Kuhn–
Tucker (KKT) optimality system:

∂L

∂x
(x, λ) = 0, λ0 ≥ 0, 〈G(x), H(x)〉 ≤ 0,

λG ≥ 0, G(x) ≥ 0, 〈λG, G(x)〉 = 0, λH ≥ 0, H(x) ≥ 0, 〈λH , H(x)〉 = 0.

(1.2)

In the above, we omit the condition λ0〈G(x), H(x)〉 = 0, because it is redundant
(it follows from 〈G(x), H(x)〉 = 0, which is implied by feasibility of x in (1.1)). For
x̄ ∈ Rn, let Λ(x̄) stand for the set of Lagrange multipliers associated with x̄, that is,
the set of λ = λ̄ = (λ̄G, λ̄H , λ̄0) ∈ Rm × Rm × R satisfying (1.2) for x = x̄. As is
well known and can be easily checked, MPCC constraints violate the Mangasarian–
Fromovitz constraint qualification and, even more so, the linear independence con-
straint qualification (LICQ), at every feasible point. Therefore, in general, x̄ being a
local solution of (1.1) does not guarantee that the set of Lagrange multipliers Λ(x̄)
is nonempty. Nevertheless, Λ(x̄) happens to be nonempty in many cases of interest,
and this became one of the common settings in MPCC literature.

Define further the so-called MPCC-Lagrangian of problem (1.1):

L(x, μ) = f(x) − 〈μG, G(x)〉 − 〈μH , H(x)〉,

where x ∈ Rn and μ = (μG, μH) ∈ Rm ×Rm. To a feasible point x̄ we associate the
index sets

IG = IG(x̄) = {i = 1, . . . ,m | Gi(x̄) = 0}, IH = IH(x̄) = {i = 1, . . . ,m | Hi(x̄) = 0},
I0 = IG ∩ IH .

(1.3)
A feasible point x̄ of (1.1) is said to be a strongly stationary point of this problem if
there exists an MPCC-multiplier μ̄ = (μ̄G, μ̄H) ∈ Rm × Rm satisfying

∂L
∂x

(x̄, μ̄) = 0, (μ̄G)IH\IG = 0, (μ̄H)IG\IH = 0, (μ̄G)I0 ≥ 0, (μ̄H)I0 ≥ 0,(1.4)

where yI stands for the subvector of the vector y, with components yi, i ∈ I. Without
nonnegativity conditions in (1.4), x̄ is called a weakly stationary point of (1.1).

We say that MPCC linear independence constraint qualification (MPCC-LICQ)
holds at x̄ if the gradients

G′
i(x̄), i ∈ IG, H ′

i(x̄), i ∈ IH are linearly independent.(1.5)

It was shown in [18, Theorem 2] that if MPCC-LICQ holds at a local solution x̄ of
(1.1), then this point is strongly stationary, and the associated MPCC-multiplier μ̄ is
unique.
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The following proposition summarizes some results obtained in [7, Proposition 4.1]
and [9, Proposition 1], which will be used in what follows. Its proof can be obtained
by a direct computation. Let

ν̄ = max

{
0, max

i∈IG\IH

(
− (μ̄G)i
Hi(x̄)

)
, max
i∈IH\IG

(
− (μ̄H)i
Gi(x̄)

)}
.(1.6)

Proposition 1.1. A feasible point x̄ of problem (1.1) is a stationary point of
this problem if and only if it is a strongly stationary point of this problem. Moreover,
if λ̄ = (λ̄G, λ̄H , λ̄0) is a Lagrange multiplier associated with x̄, then μ̄ = (μ̄G, μ̄H)
defined by

(μ̄G)i =
(
λ̄G

)
i
− λ̄0Hi(x̄), i ∈ IG \ IH , (μ̄G)i =

(
λ̄G

)
i
, i ∈ IH ,(1.7)

(μ̄H)i =
(
λ̄H

)
i
− λ̄0Gi(x̄), i ∈ IH \ IG, (μ̄H)i =

(
λ̄H

)
i
, i ∈ IG,(1.8)

is an MPCC-multiplier associated with x̄. Conversely, if μ̄ = (μ̄G, μ̄H) is an MPCC-
multiplier associated with x̄, then any λ̄ = (λ̄G, λ̄H , λ̄0) satisfying (1.7)–(1.8) and

λ̄0 ≥ ν̄,(1.9)

with ν̄ defined in (1.6), is a Lagrange multiplier associated with x̄.
Furthermore, for any ξ ∈ Rn and any λ̄ = (λ̄G, λ̄H , λ̄0) ∈ Rm × Rm × R and

μ̄ = (μ̄G, μ̄H) ∈ Rm × Rm satisfying (1.7)–(1.8), it holds that

∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] =

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] + 2λ̄0

m∑
i=1

〈G′
i(x̄), ξ〉〈H ′

i(x̄), ξ〉.(1.10)

In particular, if μ̄ is the unique MPCC-multiplier associated with x̄ (e.g., un-
der MPCC-LICQ (1.5)), then Λ(x̄) is the ray defined by (1.7)–(1.9), with its origin
corresponding to λ̄0 = ν̄.

It can be easily checked that the standard critical cone of problem (1.1) at x̄ is
given by

C(x̄) =

{
ξ ∈ Rn

∣∣∣∣∣
G′

IG\IH (x̄)ξ = 0, H ′
IH\IG(x̄)ξ = 0, G′

I0
(x̄)ξ ≥ 0, H ′

I0
(x̄)ξ ≥ 0,

〈f ′(x̄), ξ〉 ≤ 0

}
.

(1.11)
We say that MPCC–second-order sufficient condition (MPCC-SOSC) holds at a
strongly stationary point x̄ of problem (1.1), with the associated MPCC-multiplier μ̄,
if

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] > 0 ∀ ξ ∈ C(x̄) \ {0}.(1.12)

Note that, for every ξ ∈ C(x̄), we obtain from (1.11) that (1.10) takes the form

∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] =

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] + 2λ̄0

∑
i∈I0

〈G′
i(x̄), ξ〉〈H ′

i(x̄), ξ〉,(1.13)

where the last term in the right-hand side is nonnegative. Thus, according to Propo-
sition 1.1, MPCC-SOSC implies the usual SOSC

∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] > 0 ∀ ξ ∈ C(x̄) \ {0}(1.14)
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for any λ̄ satisfying (1.7)–(1.9). In particular, under MPCC-LICQ (1.5), MPCC-
SOSC (1.12) (with the unique MPCC-multiplier μ̄) implies SOSC (1.14), with any λ̄
in the ray Λ(x̄), including the origin of this ray.

It is important to point out that MPCC-SOSC is a rather strong condition. In
particular, it cannot be linked to any second-order necessary condition for (1.1). By
this we mean that a solution of (1.1) that satisfies MPCC-LICQ (1.5) (and thus is
strongly stationary) does not have to satisfy the condition obtained from (1.12) by
replacing the strict inequality by nonstrict. In our developments, we shall be making
use of a SOSC weaker than (1.12), which also happens to be much more natural,
because it is related to an appropriate second-order necessary condition for (1.1), as
explained below.

For each partition (I1, I2) of I0 (i.e., a pair of index sets such that I1 ∪ I2 = I0,
I1 ∩ I2 = ∅), define the branch (or piece) MP at x̄ by

min f(x)
s.t. G(IG\IH)∪I1(x) = 0, H(IH\IG)∪I2(x) = 0, GI2(x) ≥ 0, HI1(x) ≥ 0.

(1.15)

There is a finite number of such branch MPs, x̄ is feasible for each of them, and in
a neighborhood of x̄ the feasible set of (1.1) is a union of feasible sets of all branch
MPs. It is not difficult to see that the union of the critical cones of all branch MPs
at x̄ is given by

C2(x̄) =

{
ξ ∈ Rn

∣∣∣∣ 〈f ′(x̄), ξ〉 ≤ 0, G′
IG\IH (x̄)ξ = 0, H ′

IH\IG(x̄)ξ = 0,

G′
I0

(x̄)ξ ≥ 0, H ′
I0

(x̄)ξ ≥ 0, 〈G′
i(x̄), ξ〉〈H ′

i(x̄), ξ〉 = 0, i ∈ I0

}
,

(1.16)
where the subscript “2” indicates that, unlike C(x̄), this set takes into account the
second-order information about the last constraint in (1.1). By direct comparison of
(1.11) and (1.16), we have that

C2(x̄) ⊂ C(x̄).(1.17)

We say that piecewise SOSC holds at a strongly stationary point x̄ of problem
(1.1), with an associated MPCC-multiplier μ̄, if

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] > 0 ∀ ξ ∈ C2(x̄) \ {0}.(1.18)

From (1.4), it evidently follows that if μ̄ = (μ̄G, μ̄H) is an MPCC-multiplier
associated with x̄, then the pair ((μ̄G)IG , (μ̄H)IH ) is a Lagrange multiplier associated
with x̄ for the branch MP (1.15). It follows that piecewise SOSC (1.18) implies SOSC
for each branch at x̄. This, in turn, guarantees that x̄ is a strict local solution of (1.1).
Thus, piecewise SOSC is indeed sufficient for optimality, even though it is evidently
weaker than MPCC-SOSC (see (1.17)).

It is important to emphasize that under MPCC-LICQ (1.5), the condition ob-
tained from (1.18) by replacing the strict inequality by nonstrict is necessary for
optimality [18, Theorem 7]. In this sense, piecewise SOSC (1.18) is a more natural as-
sumption than MPCC-SOSC (1.12), as the latter has no relation to any second-order
necessary optimality condition.

Suppose that MPCC-LICQ (1.5) and piecewise SOSC (1.18) (with the unique
MPCC-multiplier μ̄) hold at a strongly stationary point x̄ of problem (1.1). From
(1.13) and [9, Proposition 2], it follows that in this case either SOSC (1.14) holds
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with all λ̄ in the ray Λ(x̄), or possibly there exists ν̂ ≥ ν̄ such that SOSC (1.14) does
not hold for all λ̄ corresponding to λ̄0 ∈ [ν̄, ν̂], and holds for all λ̄ corresponding to
λ̄0 > ν̂. Conversely, if SOSC (1.14) holds for some λ̄ ∈ Λ(x̄), from (1.13) and (1.16),
taking also into account (1.17), it is easy to see that piecewise SOSC (1.18) holds
as well. Thus, under MPCC-LICQ, SOSC (with some multiplier) is equivalent to
piecewise SOSC.

Despite the inevitable violation of standard constraint qualifications, there exists
some numerical evidence of good performance of sequential quadratic programming
(SQP) algorithms for MPCCs (see [6]). Moreover, [7] gives some theoretical justifi-
cation for local superlinear convergence of the SQP algorithm for MPCC under a set
of assumptions that includes MPCC-LICQ and MPCC-SOSC, among other things.
However, it is very easy to provide examples satisfying all natural in MPCC context
requirements (say, MPCC-LICQ and piecewise SOSC), and such that SQP does not
possess superlinear convergence; see, e.g., the example in [7, section 7.3], discussed
also in detail in [11, section 6]. This means that the existing evidence supporting the
use of standard optimization algorithms (say, SQP) for MPCC cannot be regarded as
completely satisfactory, and it still makes sense to develop special algorithms which
take into account special structure of MPCC, and which are guaranteed to achieve
quadratic convergence under more natural assumptions.

Let us recall now the main idea of the piecewise SQP algorithm, suggested orig-
inally in [17] for MPs with linear complementarity constraints and then extended in
[15] to the nonlinear case. An iteration of piecewise SQP is organized as follows:
identify any branch MP valid at the solution x̄ that is being approximated, and per-
form a step of standard SQP for this branch. In order to identify a valid branch
MP, it suffices to (over)estimate the sets IG \ IH and IH \ IG (see (1.15)). Locally,
this comes for free, with no significant computational cost and with no assumptions
needed. However, in order to justify the overall superlinear convergence of piecewise
SQP, one needs to guarantee superlinear convergence of SQP for each branch, and
dual convergence to the same multiplier for all branches. This results in the following
set of assumptions: MPCC-LICQ (1.5) and piecewise SOSC (1.18) at the solution x̄.

In this paper, we suggest a local algorithm based on the following idea (to some
extent motivated by the development in [13]). Instead of an arbitrary valid branch,
we identify the index sets IG and IH and perform the Newton–Lagrange steps for the
following purely equality-constrained tightened MP:

min f(x) s.t. GIG(x) = 0, HIH (x) = 0.(1.19)

Note that this problem is not a branch MP, in general, but its feasible set is contained
in the feasible sets of all branch MPs.

For quadratic convergence of the Newton–Lagrange method for (1.19), we need
to assume MPCC-LICQ (1.5) and SOSC for this problem, the latter being evidently
guaranteed by piecewise SOSC (1.18). Local identification of IG and IH uses the
procedure suggested in [4] and the error bound following from [8, Lemma 2] and [5,
Theorem 2] (see (2.6)). The identification technique based on this combination of tools
(first used for problems without any regularity assumptions on constraints in [10]) still
costs nothing computationally. The error bound requires some λ̄ ∈ Λ(x̄) satisfying
SOSC (1.14). According to our discussion above, the existence of such λ̄ can again be
guaranteed under MPCC-LICQ (1.5) and piecewise SOSC (1.18). Hence, we obtain
local quadratic convergence of our algorithm under the same set of assumptions as
for piecewise SQP: MPCC-LICQ (1.5) and piecewise SOSC (1.18) at x̄. At the same
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time, our local algorithm enjoys the advantage of being quadratic program (QP)-free:
it requires solving only one linear system per iteration. Of course, within a local
framework, this may not always be a big advantage. Note, however, that globalized
Algorithm 3.2 in section 3.1 is QP-free globally.

2. Local algorithms. As is well known, the KKT system (1.2) can be written
in the form

Φ(x, λ) = 0,

where Φ : Rn × (Rm × Rm × R) → Rn × Rm × Rm × R,

Φ(x, λ) =

(
∂L

∂x
(x, λ), ρ(λG, G(x)), ρ(λH , H(x)), ρ(λ0, −〈G(x), H(x)〉)

)
,

and ρ : R × R → R is a complementarity function (that is, a function such that
ρ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0) applied componentwise. In what follows,
we shall make use of two complementarity functions, namely, the natural residual
ρ(a, b) = min{a, b} and the Fischer–Burmeister function ρ(a, b) =

√
a2 + b2 − a −

b. The corresponding version of Φ will be denoted by ΦNR and ΦFB , respectively.
As is well known, both these mappings are semismooth (and in particular, locally
Lipschitz). Moreover, according to [19], these two complementarity functions are
equivalent in terms of their growth rates. This means that, throughout the paper,
ΦNR can actually be replaced by ΦFB without any changes in the analysis or results.

Algorithm 2.1. Preliminary step. Fix θ ∈ (0, 1). Choose x0 ∈ Rn, λ0 =
(λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Compute the index sets

IG = IG
(
x0, λ0

)
=

{
i = 1, . . . ,m | Gi

(
x0

)
≤ ‖ΦNR

(
x0, λ0

)
‖θ
}
,(2.1)

IH = IH
(
x0, λ0

)
=

{
i = 1, . . . ,m | Hi

(
x0

)
≤ ‖ΦNR

(
x0, λ0

)
‖θ
}
.(2.2)

Main step. Generate the sequence {(xk, μk)}, with μk = (μk
G, μ

k
H) ∈ Rm×Rm,

as follows.
• Generate the sequence {(xk, (μk

G)IG , (μk
H)IH )} by the Newton–Lagrange method for

tightened MP (1.19) (that is, the Newton method applied to the Lagrange optimality
system of this problem) starting from (x0, (μ0

G)IG , (μ0
H)IH ), with (μ0

G)IG and (μ0
H)IH

defined by(
μ0
G

)
i
=

(
λ0
G

)
i
− λ0

0Hi

(
x0

)
, i ∈ IG \ IH ,

(
μ0
G

)
i
=

(
λ0
G

)
i
, i ∈ IG ∩ IH ,(2.3) (

μ0
H

)
i
=

(
λ0
H

)
i
− λ0

0Gi

(
x0

)
, i ∈ IH \ IG,

(
μ0
H

)
i
=

(
λ0
H

)
i
, i ∈ IG ∩ IH .(2.4)

• Set (
μk
G

)
IH\IG = 0,

(
μk
H

)
IG\IH = 0 ∀ k = 0, 1, . . . .(2.5)

Theorem 2.1. Let x̄ be a local solution of MPCC (1.1), and assume that MPCC-
LICQ (1.5) holds at x̄. Furthermore, let μ̄ be the (unique) MPCC-multiplier associated
with x̄, and suppose that (x0, λ0) is close enough to (x̄, λ̄), with some λ̄ ∈ Λ(x̄)
satisfying SOSC (1.14).

Then Algorithm 2.1 correctly generates the sequence {(xk, μk)}, which converges
quadratically to (x̄, μ̄).
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Proof. According to [8, Lemma 2] and [5, Theorem 2], SOSC (1.14) implies the
existence of c > 0 such that the error bound

dist((x, λ), {x̄} × Λ(x̄)) ≤ c‖ΦNR(x, λ)‖(2.6)

holds for all (x, λ) ∈ Rn×(Rm×Rm×R) close enough to (x̄, λ̄). Since (x0, λ0) is close
enough to (x̄, λ̄), from [4, Theorem 2.2] it follows that the index sets IG = IG(x0, λ0)
and IH = IH(x0, λ0), computed according to (2.1) and (2.2), coincide with IG = IG(x̄)
and IH = IH(x̄), respectively, defined in (1.3).

Furthermore, the point x̄ is a local solution of tightened MP (1.19), and MPCC-
LICQ (1.5) means that LICQ holds at x̄ for the constraints of (1.19). In particular, x̄ is
a stationary point of (1.19), and from (1.4) it evidently follows that ((μ̄G)IG , (μ̄H)IH )
is the unique Lagrange multiplier associated with this stationary point.

Stationarity of x̄ in (1.19) evidently implies that

〈f ′(x̄), ξ〉 = 0 ∀ ξ ∈ kerG′
IG(x̄) ∩ kerH ′

IH (x̄),

where kerA stands for the kernel (null space) of a linear operator A. Hence, by (1.11),

kerG′
IG(x̄) ∩ kerH ′

IH (x̄) ⊂ C(x̄).

From Proposition 1.1 (see (1.10)) and SOSC (1.14), it now follows that

∂2L
∂x2

(x̄, μ̄)[ξ, ξ] =
∂2L

∂x2

(
x̄, λ̄

)
[ξ, ξ] > 0 ∀ ξ ∈

(
kerG′

IG(x̄) ∩ kerH ′
IH (x̄)

)
\ {0},

and according to the equalities (μ̄G)IH\IG = 0 and (μ̄H)IG\IH = 0 in (1.4), the latter
means that SOSC holds at x̄ for tightened MP (1.19) (with the unique associated
multiplier ((μ̄G)IG , (μ̄H)IH ).

Finally, since (x0, λ0) is close enough to (x̄, λ̄), the pair ((μ0
G)IG , (μ0

H)IH ) de-
fined by (2.3)–(2.4) will be close enough to ((μ̄G)IG , (μ̄H)IH ) (recall that, accord-
ing to Proposition 1.1, the latter satisfies (1.7)–(1.8)). From the standard conver-
gence result for the Newton–Lagrange method, it now follows that the sequence
{(xk, (μk

G)IG , (μk
H)IH )} is correctly defined and converges quadratically to the point

(x̄, (μ̄G)IG , (μ̄H)IH ). At the same time, according to (1.4) and (2.5), it holds that(
μk
G

)
IH\IG = (μ̄G)IH\IG = 0,

(
μk
H

)
IG\IH = (μ̄H)IG\IH = 0 ∀ k = 0, 1, . . . .

This completes the proof.
Let us discuss briefly the assumptions of Theorem 2.1. These assumptions are, in

a sense, “minimal.” In particular, none of them can be removed, as illustrated next.
MPCC-LICQ (1.5) is needed for nondegeneracy of constraints of tightened MP

(1.19), which is clearly necessary for the approach to be valid; otherwise, the linearized
constraints of tightened MP can be inconsistent arbitrarily close to a solution. To this
end, consider, e.g., n = 2, m = 1, f(x) = x2

2/2, G(x) = x1+x2
1/2, and H(x) = x1+x2

1.
Then x̄ = 0 is a strongly stationary point of (1.1) satisfying SOSC (1.14) but violating
MPCC-LICQ (1.5). It is easily seen that linearization of tightened MP (1.19) at any
x ∈ R2 with x1 �= 0 is inconsistent.

The role of SOSC (1.14) is twofold. First, it is used for identification of the
index sets IG and IH . To see that without SOSC identification can be incorrect,
consider n = 2, m = 1, f(x) = x1, G(x) = x1, and H(x) = x2. Then x̄ = 0 is
a solution of (1.1) satisfying MPCC-LICQ (1.5) but violating SOSC (1.14) (one can
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even add, e.g., |x2|3 to the objective function in order to make this solution strict).
Take λ0 = (1, 0, 0) ∈ Λ(x̄), and let x0

1 ≥ 0, x0
2 ≥ 0. Then ‖ΦNR(x0, λ0)‖ = x0

1, and
for any fixed θ ∈ (0, 1), by taking x0

2 = (x0
1)

θ/2, we obtain a point x0 = (x0
1, x

0
2) which

can be arbitrarily close to x̄, while (2.2) will always (incorrectly) identify IH as empty
at such point.

Finally, even if the identification is correct, SOSC (1.14) is still needed as it
guarantees SOSC for tightened MP (1.19). Let, e.g., n = 2, m = 1, f(x) = x1 + |x2|3,
G(x) = x1, and H(x) ≡ 1. Then x̄ = 0 is a solution satisfying MPCC-LICQ (1.5)
but violating SOSC (1.14). Moreover, tightened MP is also violating SOSC. It can
be checked directly that the convergence rate of the Newton–Lagrange method for
tightened MP (1.19) is only linear.

Note that the presented algorithm appears more suitable for globalization than,
say, piecewise SQP. This is because Algorithm 2.1 uses as a dual starting point
an approximation of Lagrange multiplier rather than an approximation of MPCC-
multiplier. The proximity to points satisfying KKT system (1.2) (and hence, to La-
grange multipliers) can be controlled via some globally defined merit functions (like
the norm of ΦNR or ΦFB). By contrast, the definition (1.4) of MPCC-multipliers
involves the index sets IG and IH depending on a specific x̄, and it seems difficult to
suggest a reasonable globally defined merit function characterizing MPCC-multipliers.

Furthermore, having in mind globalization of convergence, it can be useful to
consider a modified algorithm, with Identification step being performed not only
once (at the beginning of the process) but before each iteration of Main step. Iden-
tification is a very cheap procedure and, therefore, this modification will not increase
computational costs significantly. However, in this case we will need to generate not
only the sequence {(xk, μk)} but also an appropriate sequence {λk} ⊂ Rm×Rm×R,
and redefine IG and IH accordingly:

IG = IG
(
xk, λk

)
=

{
i = 1, . . . ,m | Gi

(
xk

)
≤ ‖ΦNR

(
xk, λk

)
‖θ
}
,(2.7)

IH = IH
(
xk, λk

)
=

{
i = 1, . . . ,m | Hi

(
xk

)
≤ ‖ΦNR

(
xk, λk

)
‖θ
}

(2.8)

for each k = 0, 1, . . . . Clearly, for all the conclusions of Theorem 2.1 to remain valid
for this modified algorithm, it suffices to show that {λk} stays close to λ̄, which
can be achieved by keeping it close to λ0. In particular, one can just take λk = λ0

∀ k = 1, 2, . . . . Another option, which seems more suitable for globalization purposes
(and which is more in the spirit of SQP methods), is realized in the following method.

Algorithm 2.2. Preliminary step. Fix θ ∈ (0, 1). Set k = 0 and choose
x0 ∈ Rn and λ0 = (λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Define the index sets IG and IH according to (2.7) and

(2.8). If k = 0, define (μ0
G)IG and (μ0

H)IH according to (2.3)–(2.4).
Main step. Compute (xk+1, μk+1) as follows.

• The triple (xk+1, (μk+1
G )IG , (μk+1

H )IH ) is generated by the step of Newton–Lagrange
method for tightened MP (1.19) from the point (xk, (μk

G)IG , (μk
H)IH ).

• Set (μk+1
G )IH\IG = 0, (μk+1

H )IG\IH = 0.
Set

νk+1 = max

{
0, max

i∈IG\IH

(
−

(
μk+1
G

)
i

Hi(xk+1)

)
, max
i∈IH\IG

(
−

(
μk+1
H

)
i

Gi(xk+1)

)}
,(2.9)

and define λk+1 = (λk+1
G , λk+1

H , λk+1
0 ) as follows:

λk+1
0 = max

{
νk+1, λ

k
0

}
,(2.10)
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(
λk+1
G

)
i
=

(
μk+1
G

)
i
+ λk+1

0 Hi

(
xk+1

)
, i ∈ IG \ IH ,

(
λk+1
G

)
i
=

(
μk+1
G

)
i
, i ∈ IH ,(2.11) (

λk+1
H

)
i
=

(
μk+1
H

)
i
+ λk+1

0 Gi

(
xk+1

)
, i ∈ IH \ IG,

(
λk+1
H

)
i
=

(
μk+1
H

)
i
, i ∈ IG.(2.12)

Adjust k by 1 and go to Identification step.
For purposes of convergence analysis, we need to introduce some auxiliary dual

estimates. Suppose that, for some k = 0, 1, . . . , Algorithm 2.2 correctly defined xk,
λk, and μk. Define λ̂k = (λ̂k

G, λ̂
k
H , λ̂k

0) ∈ Rm × Rm × R as follows:

λ̂k
0 = λk

0 ,(2.13) (
λ̂k
G

)
i
= (μ̄G)i + λk

0Hi(x̄), i ∈ IG \ IH ,
(
λ̂k
G

)
i
= (μ̄G)i, i ∈ IH ,(2.14) (

λ̂k
H

)
i
= (μ̄H)i + λk

0Gi(x̄), i ∈ IH \ IG,
(
λ̂k
H

)
i
= (μ̄H)i, i ∈ IG.(2.15)

According to (1.7)–(1.8) and (2.13)–(2.15), it holds that

‖λ̂k − λ̄‖ ≤
(

1 + max

{
max

i∈IG\IH
Hi(x̄), max

i∈IH\IG
Gi(x̄)

})
|λk

0 − λ̄0|,(2.16)

and hence, λ̂k is close to λ̄ provided (xk, λk) is close enough to (x̄, λ̄).
From Theorem 2.1, we obtain that if (xk, λk) is close enough to (x̄, λ̄), then the

points xk+1 and μk+1 will be correctly defined by Algorithm 2.2, and

∥∥xk+1 − x̄
∥∥ = O

(∥∥(xk − x̄, μk − μ̄
)∥∥2

)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,(2.17)

∥∥μk+1 − μ̄
∥∥ = O

(∥∥(xk − x̄, μk − μ̄
)∥∥2

)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(2.18)

Furthermore, according to (1.6)–(1.8), (2.9), (2.11)–(2.15), (2.17), and (2.18), we
obtain the estimates

|νk+1−ν̄| = O
(∥∥xk+1 − x̄

∥∥)+O
(∥∥μk+1 − μ̄

∥∥) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,(2.19) ∥∥∥λk+1 − λ̂k

∥∥∥ = O
(∥∥xk+1 − x̄

∥∥) + O
(∥∥μk+1 − μ̄

∥∥) + O
(∣∣λk+1

0 − λk
0

∣∣)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O

(∣∣λk+1
0 − λk

0

∣∣) ,(2.20) ∥∥λk+1 − λ̄
∥∥ = O

(∥∥xk+1 − x̄
∥∥) + O

(∥∥μk+1 − μ̄
∥∥) + O

(∣∣λk+1
0 − λ̄0

∣∣)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O

(∣∣λk+1
0 − λ̄0

∣∣) .(2.21)

Let us consider separately the two cases

λ̄0 > ν̄ or λ̄0 = ν̄(2.22)

(see (1.9)).
Lemma 2.2. Let x̄ be a local solution of MPCC (1.1), and assume that MPCC-

LICQ (1.5) holds at x̄. Furthermore, suppose that, for some k = 0, 1, . . . , Algo-
rithm 2.2 generated points xk, λk, and μk such that (xk, λk) is close enough to (x̄, λ̄),
with some λ̄ ∈ Λ(x̄) satisfying SOSC (1.14).
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Then the points xk+1, λk+1, and μk+1 will be correctly generated by Algorithm 2.2,
and if the first relation in (2.22) holds, with ν̄ defined according to (1.6), then

λk+1
0 = λk

0 ,(2.23) ∥∥∥λk+1 − λ̂k
∥∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(2.24)

Proof. By the first relation in (2.22), we obtain that if (xk, λk) is close enough to
(x̄, λ̄), then

λk
0 > λ̄0 −

(
λ̄0 − ν̄

)
/2 =

(
ν̄ + λ̄0

)
/2, νk+1 < ν̄ +

(
λ̄0 − ν̄

)
/2 =

(
ν̄ + λ̄0

)
/2,

with inequality in the last relation being implied by (2.16) and (2.19). Thus λk
0 > νk+1,

and by (2.10), we obtain (2.23). Estimate (2.24) follows from (2.20) and (2.23).
Lemma 2.3. Under the assumptions of Lemma 2.2, if the second relation in (2.22)

holds, with ν̄ defined according to (1.6), then the following estimates are valid.
If λk+1

0 = νk+1, then

∥∥λk+1 − λ̄
∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,(2.25) ∥∥∥λ̂k+1 − λ̄

∥∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(2.26)

If λk+1
0 = λk

0 , then (2.24) holds.
Proof. If λk+1

0 = νk+1, then by (2.16), (2.19), (2.21), and the second relation in
(2.22), we obtain the estimates

∥∥λk+1 − λ̄
∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O

(∣∣λk+1
0 − λ̄0

∣∣)
= O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
+ O (|νk+1 − ν̄|) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
,∥∥∥λ̂k+1 − λ̄

∥∥∥ = O
(∣∣λk+1

0 − λ̄0

∣∣) = O (|νk+1 − ν̄|) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.

This proves (2.25) and (2.26).
If λk+1

0 = λk
0 , then estimate (2.24) follows immediately from (2.20).

We are now in position to prove convergence of Algorithm 2.2.
Theorem 2.4. Under the assumptions of Theorem 2.1, Algorithm 2.2 correctly

generates the sequence {(xk, λk, μk)} such that {(xk, μk)} converges quadratically to
(x̄, μ̄). Moreover, if the first relation in (2.22) holds, then the sequence {(xk, λk)}
converges quadratically to (x̄, λ̂0), with λ̂0 defined according to (2.13)–(2.15), and

λ̂0 ∈ Λ(x̄).
Proof. If the first relation in (2.22) holds, then employing (2.13)–(2.15), (2.16),

(2.17), and Lemma 2.2 (see (2.23) and (2.24)), it can be shown (by standard argument)
that if (x0, λ0) is close enough to (x̄, λ̄), then each further step of Algorithm 2.2
will produce a pair (xk+1, λk+1), with λk+1

0 = λk
0 = λ0

0, and this new pair will

be close to (x̄, λ̂k) = (x̄, λ̂0), which in turn is close to (x̄, λ̄). Then by the same
argument as in the proof of Theorem 2.1, for any k, the index sets IG(xk, λk) and
IH(xk, λk) computed according to (2.7) and (2.8) will coincide with IG = IG(x̄) and
IH = IH(x̄) defined in (1.3), respectively. This means that Algorithm 2.2 generates
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exactly the same trajectory {(xk, μk)} as Algorithm 2.1, and quadratic convergence
follows now from Theorem 2.1. Furthermore, quadratic convergence of {(xk, λk)}
to (x̄, λ̂0) follows from (2.17), (2.24), and the above-established equality λ̂k = λ̂0

∀ k. Finally, λ̂0 ∈ Λ(x̄) according to (2.13)–(2.15), the first relation in (2.22), and
Proposition 1.1.

We proceed with the case when the second relation in (2.22) holds. Again we
need to show that if (x0, λ0) is close enough to (x̄, λ̄), then {(xk, λk)} stays close to
(x̄, λ̄). Then the needed assertion will follow the same way as for the previous case.

From (2.16)–(2.17) and (2.24)–(2.26), it follows that, for any q ∈ (0, 1/2], there
exists ε > 0 such that for all (xk, λk) satisfying ‖xk − x̄‖ < ε and ‖λk − λ̄‖ < ε the
following estimates are valid.

If λk+1
0 = νk+1, then

∥∥(xk+1 − x̄, λk+1 − λ̄
)∥∥ ≤ q

∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥ ,(2.27) ∥∥∥(xk+1 − x̄, λ̂k+1 − λ̄

)∥∥∥ ≤ q
∥∥∥(xk − x̄, λk − λ̂k

)∥∥∥ .(2.28)

If λk+1
0 = λk

0 , then∥∥∥(xk+1 − x̄, λk+1 − λ̂k
)∥∥∥ ≤ q

∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥ .(2.29)

Let (x0, λ0) be close enough to (x̄, λ̄), so that∥∥∥(x0 − x̄, λ0 − λ̂0
)∥∥∥ < δ,

∥∥∥(x0 − x̄, λ̂0 − λ̄
)∥∥∥ < δ,(2.30)

where δ > 0 satisfies the inequality

(q + 1)δ ≤ ε(2.31)

(see (2.16)). We now prove by induction that ∀ k = 1, 2, . . . , it holds that∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥ < δ,(2.32) ∥∥∥(xk − x̄, λ̂k − λ̄
)∥∥∥ < δ,(2.33) ∥∥(xk − x̄, λk − λ̄
)∥∥ < ε.(2.34)

Let k = 1. If λ1
0 = ν1, then by (2.27), (2.30), and (2.31), we obtain

∥∥(x1 − x̄, λ1 − λ̄
)∥∥ ≤ q

∥∥∥(x0 − x̄, λ0 − λ̂0
)∥∥∥ < qδ < ε,(2.35)

i.e., (2.34) holds for k = 1. Furthermore, by (2.28), (2.30), and by the inequality
q < 1, ∥∥∥(x1 − x̄, λ̂1 − λ̄

)∥∥∥ ≤ q
∥∥∥(x0 − x̄, λ0 − λ̂0

)∥∥∥ < qδ < δ,(2.36)

i.e., (2.33) holds for k = 1. Finally, by (2.35), (2.36), and by the inequality q ≤ 1/2,∥∥∥(x1 − x̄, λ1 − λ̂1
)∥∥∥ ≤

∥∥(x1 − x̄, λ1 − λ̄
)∥∥ +

∥∥∥λ̂1 − λ̄
∥∥∥ < 2qδ ≤ δ,

i.e., (2.32) holds for k = 1.
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On the other hand, if λ1
0 = λ0

0, then by (2.13)–(2.15) λ̂1 = λ̂0, and by (2.29),
(2.30), ∥∥∥(x1 − x̄, λ1 − λ̂0

)∥∥∥ ≤ q
∥∥∥(x0 − x̄, λ0 − λ̂0

)∥∥∥ < qδ,

and hence, by the inequality q < 1, we have that∥∥∥(x1 − x̄, λ1 − λ̂1
)∥∥∥ =

∥∥∥(x1 − x̄, λ1 − λ̂0
)∥∥∥ < qδ < δ,(2.37)

i.e., (2.32) holds for k = 1. Furthermore, by (2.30), we have that∥∥∥(x1 − x̄, λ̂1 − λ̄
)∥∥∥ =

∥∥∥(x1 − x̄, λ̂0 − λ̄
)∥∥∥ < δ,

i.e., (2.33) holds for k = 1. Finally, by (2.31), (2.33) for k = 1, and (2.37), we obtain∥∥(x1 − x̄, λ1 − λ̄
)∥∥ ≤

∥∥∥(x1 − x̄, λ1 − λ̂1
)∥∥∥ +

∥∥∥λ̂1 − λ̄
∥∥∥ < qδ + δ ≤ ε,

i.e., (2.34) holds for k = 1.
Now suppose that the hypothesis is valid for k = s. If λs+1

0 = νs+1, then by
(2.27), (2.30), and (2.31), we obtain that∥∥(xs+1 − x̄, λs+1 − λ̄

)∥∥ ≤ q
∥∥∥(xs − x̄, λs − λ̂s

)∥∥∥ < qδ < ε,(2.38)

i.e., (2.34) holds for k = s + 1. Furthermore, by (2.28), (2.30), and by the inequality
q < 1, ∥∥∥(xs+1 − x̄, λ̂s+1 − λ̄

)∥∥∥ ≤ q
∥∥∥(xs − x̄, λs − λ̂s

)∥∥∥ < qδ < δ,(2.39)

i.e., (2.33) holds for k = s+1. Finally, by (2.38), (2.39), and by the inequality q ≤ 1/2,∥∥∥(xs+1 − x̄, λs+1 − λ̂s+1
)∥∥∥ ≤

∥∥(xs+1 − x̄, λs+1 − λ̄
)∥∥ +

∥∥∥λ̂s+1 − λ̄
∥∥∥ < 2qδ ≤ δ,

i.e., (2.32) holds for k = s + 1.

On the other hand, if λs+1
0 = λs

0, then by (2.13)–(2.15) λ̂s+1 = λ̂s, and by (2.29),
(2.30), we have that∥∥∥(xs+1 − x̄, λs+1 − λ̂s

)∥∥∥ ≤ q
∥∥∥(xs − x̄, λs − λ̂s

)∥∥∥ < qδ,

and hence, by the inequality q < 1,∥∥∥(xs+1 − x̄, λs+1 − λ̂s+1
)∥∥∥ =

∥∥∥(xs+1 − x̄, λs+1 − λ̂s
)∥∥∥ < qδ < δ,(2.40)

i.e., (2.32) holds for k = s + 1. Furthermore, by (2.30), we obtain∥∥∥(xs+1 − x̄, λ̂s+1 − λ̄
)∥∥∥ =

∥∥∥(xs+1 − x̄, λ̂s − λ̄
)∥∥∥ < δ,

i.e., (2.33) holds for k = s+ 1. Finally, by (2.31), (2.33) for k = s+ 1, and (2.40), we
derive that∥∥(xs+1 − x̄, λs+1 − λ̄

)∥∥ ≤
∥∥∥(xs+1 − x̄, λs+1 − λ̂s+1

)∥∥∥ +
∥∥∥λ̂s+1 − λ̄

∥∥∥ < qδ + δ ≤ ε,

i.e., (2.34) holds for k = s + 1. This completes the proof by induction.
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3. Globalization issues. In this section, we discuss some possible ways of glob-
alizing the local scheme presented above. The first approach is based on a generic
outer phase steering the iterates toward stationary points. This globalization uses
a test of linear decrease for the KKT residual to decide when active-set steps are
successful. We also give a specific implementation of this approach along the lines of
hybrid semismooth Newton methods for mixed complementarity problems, for which
both global convergence and superlinear rate of convergence can be formally proved
under reasonable assumptions. The second approach below is based on SQP. It is
therefore quite close in spirit to existing algorithms, and can be easily incorporated
into them. However, this method may converge to weakly (i.e., not only strongly) sta-
tionary points. We do not provide a formal convergence analysis for this method. The
reason is that such analysis would primarily concern the study of global convergence
properties of standard linesearch SQP algorithms for MPCCs, which is a general issue
not related specifically to local algorithms suggested above.

3.1. Hybrid globalization. We next show how our local algorithm can be em-
bedded into any globally convergent scheme. By this we mean that having chosen and
fixed some outer-phase global strategy which is guaranteed to produce primal-dual
iterates converging to stationary (in some sense) points of MPCC (1.1), the role of
our local method is to force quadratic convergence rate under natural assumptions
stated above. The key to this construction is the proof that close to a solution with
stated properties, the Newton–Lagrange step for (1.19) provides quadratic (hence,
also arbitrarily fast linear) decrease for the Fischer–Burmeister residual ΦFB of the
KKT system (1.2) for MPCC (1.1).

Algorithm 3.1. Preliminary step. Fix θ, q ∈ (0, 1). Set k = 0, and choose
x0 ∈ Rn and λ0 = (λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Define the index sets IG and IH according to (2.7) and

(2.8). If k = 0, or if IG or IH does not coincide with its counterpart computed at the
previous iteration, or if IG ∪ IH �= {1, . . . ,m}, go to Outer-phase step.

Active-set step. If the current point (xk, λk) was generated by Outer-phase

step, set k̃ = k, store (xk̃, λk̃), and define (μk
G)IG and (μk

H)IH by(
μk
G

)
i
=

(
λk
G

)
i
− λk

0Hi

(
xk

)
, i ∈ IG \ IH ,(3.1)

(
μk
H

)
i
=

(
λk
H

)
i
− λk

0Gi

(
xk

)
, i ∈ IH \ IG,(3.2)

(
μk
G

)
i
=

(
λk
G

)
i
,
(
μk
H

)
i
=

(
λk
H

)
i
, i ∈ IG ∩ IH .(3.3)

Compute (xk+1, μk+1) as follows.
• The triple (xk+1, (μk+1

G )IG , (μk+1
H )IH ) is generated by the step of Newton–Lagrange

method for tightened MP (1.19) from the point (xk, (μk
G)IG , (μk

H)IH ).
• (μk+1

G )IH\IG = 0, (μk+1
H )IG\IH = 0.

If there exists i ∈ IG \ IH such that Hi(x
k+1) = 0, or there exists i ∈ IH \

IG such that Gi(x
k+1) = 0, go to Outer-phase step. Otherwise, define λk+1 =

(λk+1
G , λk+1

H , λk+1
0 ) according to (2.9)–(2.12). If the point (xk+1, λk+1) is well defined

and satisfies the condition∥∥ΦFB

(
xk+1, λk+1

)∥∥ ≤ q
∥∥ΦFB

(
xk, λk

)∥∥ ,(3.4)

adjust k by 1, and go to Identification step.
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Outer-phase step. If the current point (xk, λk) was generated by Active-set

step, set k = k̃ and (xk, λk) = (xk̃, λk̃).
Compute (xk+1, λk+1) according to the outer-phase strategy. Adjust k by 1, and

go to Identification step.
Global convergence properties of Algorithm 3.1 are quite transparent. By (3.4),

we immediately obtain the following result.
Theorem 3.1. Let {(xk, λk)} be a trajectory generated by Algorithm 3.1, and

suppose that all the iterates in this trajectory with k large enough are generated by
Active-set step of the algorithm. Then

ΦFB

(
xk, λk

)
→ 0 as k → ∞.(3.5)

In particular, the primal part of any accumulation point of {(xk, λk)} is strongly
stationary for (1.1), while the dual part is an associated Lagrange multiplier.

Except for the case considered in Theorem 3.1, the only other possibility is that all
the iterates are generated by the outer-phase strategy (because unsuccessful active-set
iterates are eventually discarded). In this case, the method inherits global convergence
of the outer strategy. Possible choices of outer strategies will be discussed below.

To prove quadratic convergence of Algorithm 3.1, some work is required. We start
with the following dual estimate.

Lemma 3.2. Let x̄ be a strongly stationary point of MPCC (1.1), and assume
that MPCC-LICQ (1.5) holds at x̄. Let λ̄ ∈ Λ(x̄).

Then there exists c > 0 such that, for each (xk, λk) close enough to (x̄, λ̄), it
holds that ∥∥λk − λ̂k

∥∥ ≤ cdist
(
λk, Λ(x̄)

)
,(3.6)

where λ̂k is defined according to (2.13)–(2.15).
Proof. We argue by contradiction. If λk ∈ Λ(x̄), then by Proposition 1.1 and by

(2.13)–(2.15), we have that λk = λ̂k, and (3.6) holds with any c ≥ 0. Suppose that
there exists a sequence {(xk, λk)} convergent to (x̄, λ̄) such that λk �∈ Λ(x̄) ∀ k, and∥∥λk − λ̂k

∥∥/dist
(
λk, Λ(x̄)

)
→ ∞ as k → ∞.(3.7)

Let λ̄k be the orthogonal projection of λk onto Λ(x̄). Then (3.7) is equivalent to∥∥λk − λ̄k
∥∥ /∥∥λk − λ̂k

∥∥ → 0 as k → ∞.(3.8)

For each k, we have that(
λk − λ̂k

)
/
∥∥λk − λ̂k

∥∥ =
(
λk − λ̄k

)
/
∥∥λk − λ̂k

∥∥ +
(
λ̄k − λ̂k

)
/
∥∥λk − λ̂k

∥∥.
Observe that in this equality the left-hand side has unit norm and belongs to the
“vertical” hyperplane λ0 = 0; the first term in the right-hand side tends to 0 as
k → ∞, by (3.8); while the second term in the right-hand side belongs to the straight
line containing the ray Λ(x̄) (see Proposition 1.1 and (2.13)–(2.15)), which does not
belong to the “vertical” hyperplane. The contradiction is now evident.

Theorem 3.3. Let {(xk, λk)} be a trajectory generated by Algorithm 3.1, and
suppose that this trajectory has an accumulation point (x̄, λ̄), with x̄ being a strongly
stationary point of problem (1.1) and λ̄ being an associated Lagrange multiplier, sat-
isfying MPCC-LICQ (1.5) and SOSC (1.14).
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Then the entire trajectory {(xk, λk)} converges to (x̄, λ̄), and the rate of conver-
gence is quadratic.

Proof. Let (xk, λk) be close to (x̄, λ̄). Furthermore, let (xk+1, λk+1) be computed
by the Active-set step of Algorithm 3.1 (this point is correctly defined, according
to Theorem 2.4).

We next construct λ̄k+1 ∈ Λ(x̄) satisfying the estimate

∥∥λk+1 − λ̄k+1
∥∥ = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(3.9)

This is done separately for the two possible cases in (2.22).

If the first relation in (2.22) holds, we define λ̄k+1 = λ̂k. In this case, by Proposi-

tion 1.1, by (2.13)–(2.15), and by the proximity of λk
0 to λ̄0, we have that λ̂k ∈ Λ(x̄).

The estimate (3.9) now follows from (2.24). Let the second relation in (2.22) hold. If
λk+1

0 = νk+1, then set λ̄k+1 = λ̄. In this case, estimate (3.9) follows from (2.25). If
λk+1

0 = λk
0 , then λk

0 > νk+1, and we define λ̄k+1 as follows.

If λk
0 ≥ ν̄, then set λ̄k+1 = λ̂k. In this case, λ̂k ∈ Λ(x̄) according to Proposition 1.1

and (2.13)–(2.15), and estimate (3.9) follows from (2.24).
If λk

0 < ν̄, then νk+1 < λk
0 < ν̄, and by (2.16), (2.19), and the second relation in

(2.22), we have that

∥∥λ̂k − λ̄
∥∥ = O

(∣∣λk
0 − λ̄0

∣∣) = O(|νk+1 − ν̄|) = O

(∥∥∥(xk − x̄, λk − λ̂k
)∥∥∥2

)
.(3.10)

Set λ̄k+1 = λ̄. Then estimate (3.9) follows from (2.24), (3.10), and from the inequality∥∥λk+1 − λ̄k+1
∥∥ ≤

∥∥λk+1 − λ̂k
∥∥ +

∥∥λ̂k − λ̄
∥∥.

Set ϕFB(x, λ) = ‖ΦFB(x, λ)‖2, x ∈ Rn, λ ∈ R × Rm × Rm. As is well known,
the function ϕFB is smooth, and since (x̄, λ̄k+1) is a global unconstrained minimizer
of this function, we obtain the equalities

ϕFB

(
x̄, λ̄k+1

)
= 0, ϕ′

FB

(
x̄, λ̄k+1

)
= 0.(3.11)

Recall that, under our assumptions, the error bound (2.6) holds for all (x, λ) close
enough to (x̄, λ̄). Then, by (2.17), (3.9), (3.11), and by Lemma 3.2, we obtain that∥∥ΦFB

(
xk+1, λk+1

)
‖2 = ϕFB

(
xk+1, λk+1

)
= ϕFB

(
xk+1, λk+1

)
− ϕFB

(
x̄, λ̄k+1

)
=

〈
ϕ′
FB

(
x̄, λ̄k+1

)
,
(
xk+1 − x̄, λk+1 − λ̄k+1

)〉
+ O

(∥∥ (xk+1 − x̄, λk+1 − λ̄k+1
) ∥∥2

)
= O

(∥∥ (xk+1 − x̄, λk+1 − λ̄k+1
) ∥∥2

)
= O

(∥∥(xk − x̄, λk − λ̂k
)∥∥4

)
= O

((
‖xk − x̄‖ + dist

(
λk, Λ (x̄)

))4)
= O

(∥∥ΦNR(xk, λk)
∥∥4

)
= O

(∥∥ΦFB(xk, λk)
∥∥4

)
,

where the last relation follows from the equivalence of ‖ΦNR(·)‖ and ‖ΦFB(·)‖ in
terms of their growth rates [19].

Evidently, the above relation implies (3.4) for any fixed q ∈ (0, 1), if (xk, λk) is
close enough to (x̄, λ̄). This implies that the Active-set step will be accepted, and
Algorithm 3.1 will be further working identically to the (local) Algorithm 2.2. The
result now follows from Theorem 2.4.
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One possible choice of the outer-phase algorithm is the elastic mode SQP method
discussed in section 3.2 below. Another possibility is to use the merit function ϕFB

in order to organize the outer phase as well, by means of globalizing the semismooth
Newton method applied to the equation ΦFB(x, λ) = 0. The resulting algorithm is
in the spirit of the method for complementarity problems in [14], and its extension
to globalization of an active-set method for mixed complementarity problems in [3,
section 3]. One advantage of such a scheme is that one can guarantee the overall
monotonicity of the sequence {‖ΦFB(xk, λk)‖}, and thus no backup safeguards are
needed when entering the active-set phase (i.e., global convergence can be proved
without such safeguards). That is why we present this scheme as a separate algorithm.

Algorithm 3.2. Preliminary step. Fix θ, q, ε, τ ∈ (0, 1), δ, γ > 0. Set
k = 0, and choose x0 ∈ Rn and λ0 = (λ0

G, λ
0
H , λ0

0) ∈ Rm × Rm × R.
Identification step. Define the index sets IG and IH according to (2.7) and

(2.8). If k = 0 or if IG or IH does not coincide with its counterpart computed at the
previous iteration or if IG ∪ IH �= {1, . . . ,m}, go to SNM−FB step.

Active-set step. If the current point (xk, λk) was generated by SNM−FB step,
define (μk

G)IG and (μk
H)IH by (3.1)–(3.3). Compute (xk+1, μk+1) as follows.

• The triple (xk+1, (μk+1
G )IG , (μk+1

H )IH ) is generated by the step of Newton–Lagrange
method for tightened MP (1.19) from the point (xk, (μk

G)IG , (μk
H)IH ).

• (μk+1
G )IH\IG = 0, (μk+1

H )IG\IH = 0.

If there exists i ∈ IG \ IH such that Hi(x
k+1) = 0 or there exists i ∈ IH \ IG such

that Gi(x
k+1) = 0, go to SNM−FB step. Otherwise, define λk+1 = (λk+1

G , λk+1
H , λk+1

0 )
according to (2.9)–(2.12). If the point (xk+1, λk+1) is well-defined and satisfies the
condition (3.4), adjust k by 1, and go to Identification step.

SNM−FB step. Compute Λk ∈ ∂BΦFB(xk, λk) and(
xk+1, λk+1

)
=

(
xk, λk

)
− Λ−1

k ΦFB

(
xk, λk

)
.

If this point is well-defined and (3.4) holds, and satisfies the condition, adjust k by 1,
and go to Identification step.

If xk+1 is well-defined but (3.4) does not hold, set dk = xk+1 − xk. If〈
ϕ′
FB

(
xk, λk

)
, dk

〉
≤ −γ‖dk‖δ,

go to Linesearch step.
Gradient step. Set dk = −ϕ′

FB(xk, λk).
Linesearch step. Compute the stepsize parameter αk according to the Armijo

rule: αk = τ s, where s is the smallest nonnegative integer satisfying

ϕFB

((
xk, λk

)
+ τ sdk

)
≤ ϕFB

(
xk, λk

)
+ ετ s

〈
ϕ′
FB

(
xk, λk

)
, dk

〉
.

Set (xk+1, λk+1) = (xk, λk)+αkd
k, adjust k by 1, and go to Identification step.

Theorem 3.4. Let {(xk, λk)} be a trajectory generated by Algorithm 3.2.
Then any accumulation point (x̄, λ̄) of {(xk, λk)} satisfies ϕ′

FB(x̄, λ̄) = 0.
Furthermore, if there exists an infinite subsequence of {(xk, λk)} such that all the

iterates in this subsequence are generated by Active-set step, then (3.5) holds. In
that case, the primal part of any accumulation point of {(xk, λk)} is strongly station-
ary in (1.1), while the dual part is an associated Lagrange multiplier.

Proof. If there exists an infinite subsequence of {(xk, λk)} such that all the iterates
in this subsequence are generated by Active-set step of the algorithm, then (3.5)
follows immediately from (3.4) and the fact that the values of ϕFB are nonincreasing
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along the trajectories of the algorithm. The only other possibility is that the “tail”
of the trajectory is generated by the outer-phase algorithm, in which case the result
can be obtained extending [14, Theorem 3.1] to the setting of mixed complementarity
problems.

Finally, to obtain the rate of convergence result, one should just repeat the proof
of Theorem 3.3, with Algorithm 3.1 replaced by Algorithm 3.2.

Theorem 3.5. Let {(xk, λk)} be a trajectory generated by Algorithm 3.2, and
suppose that this trajectory has an accumulation point (x̄, λ̄), with x̄ being a strongly
stationary point of problem (1.1) and λ̄ being an associated Lagrange multiplier, sat-
isfying MPCC-LICQ (1.5) and SOSC (1.14).

Then the entire trajectory {(xk, λk)} converges to (x̄, λ̄), and the rate of conver-
gence is quadratic.

We have thus developed a QP-free algorithm for MPCC, with justified global
convergence and quadratic rate of convergence under MPCC-LICQ and the usual
SOSC (1.14).

3.2. Globalization based on SQP with linesearch. Introducing slack vari-
ables, MPCC (1.1) can be equivalently written in the form

min
(x, y, z)

f(x) s.t. G(x) = y, H(x) = z, y ≥ 0, z ≥ 0, 〈y, z〉 ≤ 0.(3.12)

As is well known, this reformulated MPCC has the same properties (MPCC constraint
qualifications and SOSC) as (1.1), while being preferable for numerical solution by
SQP [6, 7].

We first discuss the outer (elastic mode SQP) phase of the algorithm stated below.
When SQP is applied to MPCC, under natural assumptions SQP subproblems can be
infeasible, even arbitrarily close to a solution. Thus some kind of constraints relaxation
(known as elastic mode; see, e.g., [1]) has to be used. Let uk = (xk, yk, zk) ∈
Rn ×Rm ×Rm be the current primal iterate, and let λk

0 ≥ 0 be the current estimate
of the Lagrange multiplier corresponding to the last constraint in (3.12). We suggest
partial relaxation of SQP constraints, which gives the following subproblems:

min (d, t)

〈
f ′ (xk

)
, ξ

〉
+ 1

2 〈Hkξ, ξ〉 + λk
0〈η, ζ〉 + ct

s.t. −te ≤ yk −G
(
xk

)
+ η −G′ (xk

)
ξ ≤ te,

−te ≤ zk −H
(
xk

)
+ ζ −H ′ (xk

)
ξ ≤ te,

yk + η ≥ 0, zk + ζ ≥ 0,
〈
yk, zk

〉
+
〈
zk, η

〉
+
〈
yk, ζ

〉
≤ 0,

(3.13)

where d = (ξ, η, ζ) ∈ Rn×Rm×Rm, t ∈ R, Hk is an n×n positive definite symmetric
matrix, c > 0 is the (penalty) parameter, and e ∈ Rm is the vector of ones.

If (dk, tk) is a solution of (3.13), then the next iterate is defined by uk+1 = uk +
αkd

k, where αk ∈ (0, 1] is the stepsize parameter. Choosing y0 ≥ 0 and z0 ≥ 0, by the
first two constraints in the last line of (3.13), it evidently holds that yk ≥ 0 and zk ≥ 0
for all k. The last three constraints in (3.13) are then always consistent (for example,
η = −yk and ζ = 0 satisfies this part of constraints), while the other constraints in
(3.13) are consistent due to the elastic mode. It follows that subproblems (3.13) are
always feasible. Furthermore, the objective function in (3.13) is bounded below on
the nonempty feasible set. Hence, by the Frank–Wolfe theorem [2, Theorem 2.8.1],
the subproblem (3.13) has a solution.

Taking into account that yk ≥ 0 and zk ≥ 0 for all k, the following penalty
function can be used in the linesearch procedure for choosing the stepsize parameter:
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for u = (x, y, z) ∈ Rn × Rm × Rm,

ϕc(u) = f(x) + cψ(u) + c〈y, z〉, ψ(u) = ‖(y, z) − (G(x), H(x))‖∞ .(3.14)

If (dk, tk) is a solution of SQP subproblem (3.13), then, by direct computation of
directional derivative and by standard argument, it can be seen that dk is a direction
of descent for ϕc, provided c is large enough. This justifies the linesearch procedure
along the direction obtained from (3.13).

Now let λk = (λk
G, λ

k
H , λk

0) be the current estimate of the Lagrange multipliers
corresponding to inequality constraints in (3.12). It can be easily seen that such λk is
a natural approximation of Lagrange multipliers of the original MPCC (1.1). Define
the index sets IG and IH according to (2.7) and (2.8), respectively. Once we have
reasons to believe that the index sets IG and IH give a correct identification, we shall
set the corresponding slacks to zero (ykIG = 0, zkIH = 0) and switch to the inner (active-
set) phase. We note that identification cannot be correct if IG ∪ IH �= {1, . . . ,m}.
Another sign of incorrect identification is when the sets IG and IH are not yet stable
(i.e., change from one iteration to the next). The inner phase consists in applying
SQP to the tightened MP

min
(x, y, z)

f(x) s.t. G(x) = y, H(x) = z, yIG = 0, zIH = 0,(3.15)

i.e., we find a solution dk of

min d

〈
f ′ (xk

)
, ξ

〉
+ 1

2 〈Hkξ, ξ〉
s.t. yk −G

(
xk

)
+ η −G′ (xk

)
ξ = 0, ykIG + ηIG = 0,

zk −H
(
xk

)
+ ζ −H ′ (xk

)
ξ = 0, zkIH + ζIH = 0,

(3.16)

and set uk+1 = uk + αkd
k, with some αk ∈ (0, 1]. Infeasibility of the active-set

subproblem (3.16) is again one of the signs of incorrect identification, in which case
we go back to the outer phase. We shall show below that if the subproblem (3.16)
is feasible, its solution provides a direction of descent for the same penalty function
(3.14) that is used in the outer phase. This justifies incorporating the active-set phase
into the global SQP framework.

Having in mind fast local convergence, the matrices Hk in (3.13) and (3.16) should
in some specific sense (i.e., not necessarily on the whole space) “approximate” the
Hessians with respect to x of the Lagrangians of (3.12) and (3.15), respectively, at
the limiting primal-dual solution. It can be easily checked that both these Hessians

coincide with ∂2L
∂x2 (x̄, μ̄), where x̄ is the primal limiting solution, while μ̄ = (μ̄G, μ̄H) is

the part of dual limiting solution, corresponding to the first two constraints in (3.12)
and (3.15). (For problem (3.12), μ̄ is an MPCC-multiplier associated with x̄, by
necessity. For problem (3.15), this is the case as well, if the index sets IG and IH are
correctly identified and provided x̄ is a strongly stationary point of MPCC (1.1) with

unique associated MPCC-multiplier.) In order to approximate ∂2L
∂x2 (x̄, μ̄), one might

need to compute an approximation μk = (μk
G, μ

k
H) of μ̄. Within the inner phase,

these estimates can be computed directly as Lagrange multipliers corresponding to
the first two constraints in (3.16). Within the outer phase, they can be derived from
λk by the equalities

μk
G = λk

G − λk
0H

(
xk

)
, μk

H = λk
H − λk

0G
(
xk

)
(3.17)

(note that these formulas do not use identification of active indices).
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We proceed to formally state the proposed algorithm.
Algorithm 3.3. Preliminary step. Fix θ, ε, τ ∈ (0, 1), and c > 0. Set

k = 0, and choose u0 = (x0, y0, z0) ∈ Rn × Rm
+ × Rm

+ and λ0 = (λ0
G, λ

0
H , λ0

0) ∈
R+ × Rm

+ × Rm
+ .

Identification step. Define the index sets IG and IH according to (2.7) and
(2.8). If k = 0 or if IG or IH does not coincide with its counterpart computed at the
previous iteration or if IG ∪ IH �= {1, . . . ,m}, go to Elastic mode SQP step.

Active-set step. If dk−1 was generated by Elastic mode SQP step, set k̃ = k,

store uk̃ and λk̃, redefine uk = (xk, yk, zk) by setting ykIG = 0, zkIH = 0, and define

μk = (μk
G, μ

k
H) by (3.1)–(3.3). and(

μk
G

)
i
= 0, i ∈ IH \ IG,

(
μk
H

)
i
= 0, i ∈ IG \ IH .(3.18)

Using μk, choose an n × n positive definite symmetric matrix Hk. If (3.16) is
infeasible, go to Elastic mode SQP step.

Compute dk = (ξk, ηk, ζk) as a solution of (3.16) and μk+1 = (μk+1
G , μk+1

H ) as
an associated Lagrange multiplier corresponding to the first two constraints in (3.16).
Set x̃k+1 = xk + ξk. If there exists i ∈ IG \ IH such that Hi(x̃

k+1) = 0 or there exists
i ∈ IH \ IG such that Gi(x̃

k+1) = 0, go to Elastic mode SQP step. Otherwise,
define λk+1 = (λk+1

G , λk+1
H , λk+1

0 ) according to (2.9)–(2.12), with xk+1 replaced by
x̃k+1, and go to Linesearch step.

Elastic mode SQP step. If dk−1 was generated by Active-set step, redefine
uk = (xk, yk, zk) by setting

yki = 0 ∀ i = 1, . . . ,m such that yki < 0,(3.19)

zki = 0 ∀ i = 1, . . . ,m such that zki < 0(3.20)

and if

ϕc

(
uk

)
> ϕc

(
uk̃

)
,(3.21)

then set k = k̃, uk = uk̃, and λk = λk̃.
Using μk = (μk

G, μ
k
H) computed according to (3.17), choose an n × n positive

definite symmetric matrix Hk.
Compute (dk, tk) as a solution of (3.13) and λk+1 = (λk+1

G , λk+1
H , λk+1

0 ) as an
associated Lagrange multiplier corresponding to inequality constraints in (3.13).

Linesearch step. Compute the stepsize parameter αk according to the Armijo
rule: αk = τ s, where s is the smallest nonnegative integer satisfying

ϕc

(
uk + τ sdk

)
≤ ϕc

(
uk

)
+ ετ sϕ′

c

(
uk; dk

)
.(3.22)

Set uk+1 = uk + αkd
k, adjust k by 1, and go to Identification step.

Observe that the active-set iterations always start with uk = (xk, yk, zk) sat-
isfying complementarity. Indeed, the SQP iterations in the elastic mode start with
yk ≥ 0, zk ≥ 0 and maintain nonnegativity. Furthermore, active-set iterations start
with (yk)IG = 0, (zk)IH = 0, where IG ∪ IH = {1, . . . ,m}. The only way complemen-
tarity can be violated during a sequence of active-set steps is when some component
of y or z becomes negative. Obviously, this can happen only for indices which are not
in IG in the case of y and not in IH in the case of z. Once a component becomes
negative, this index is immediately added to the corresponding set (see (2.7), (2.8)),
which makes the sets change. In such a case, we get out of the active-set phase,
restore nonnegativity (see (3.19), (3.20)), and if such a point breaks monotonicity
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of the sequence of the penalty function values (that is, if (3.21) happens), we go
back to the last iterate preceding the active-set phase (which was determined to be
premature).

We next show that when within Active-set step of Algorithm 3.3 the subprob-
lem (3.16) is feasible, the generated direction dk is of descent for the penalty function
(3.14) at uk, and hence the linesearch procedure along this direction is well-defined.

Lemma 3.6. Let dk = (ξk, ηk, ζk) and μk+1 = (μk+1
G , μk+1

H ) be computed within
Active-set step of Algorithm 3.3 from the primal-dual solution of (3.16).

Then

ϕ′
c

(
uk; dk

)
≤ −

〈
Hkξ

k, ξk
〉
−
(
c−

∥∥μk+1
∥∥

1

)
ψ
(
uk

)
.(3.23)

In particular, dk is a direction of descent for ϕc, provided either ξk �= 0 or c > ‖μk+1‖1

and ψ(uk) > 0.
Proof. First note that, as observed above, yk ≥ 0, zk ≥ 0, because otherwise the

index sets would have changed, and we would not be solving (3.16). Furthermore,
recall that we set

ykIG = 0, zkIH = 0(3.24)

when the algorithm enters the active-set phase. Moreover, these equalities are pre-
served within this phase, because the last line in (3.16) implies

ηkIG = 0, ζkIH = 0.(3.25)

We thus have that whenever zki > 0, it holds that i �∈ IH . Since the algorithm can
enter the active-set phase only with IG ∪ IH = {1, . . . ,m}, we have that i ∈ IG.
Therefore, yki = 0 by the first equality in (3.24), and hence ηki = 0 by the first
equality in (3.25). This shows that 〈zk, ηk〉 = 0. Analogously, 〈yk, ζk〉 = 0. It follows
that the directional derivative of the term in the definition (3.14) of ϕc that penalizes
complementarity violation is equal to zero.

By direct computation of the directional derivative and by standard argument,

ψ′ (uk; dk
)

= −ψ
(
uk

)
.(3.26)

Furthermore, by the Lagrange optimality conditions for (3.16), it holds that

f ′ (xk
)

+ Hkξ
k −

(
G′ (xk

))T
μk+1
G −

(
H ′ (xk

))T
μk+1
H = 0,(3.27)

(
μk+1
G

)
IH\IG = 0,

(
μk+1
H

)
IG\IH = 0.(3.28)

Taking again into account the structure of constraints in (3.16), from (3.24)–(3.28)
we obtain〈

f ′ (xk
)
, ξk

〉
= −

〈
Hkξ

k, ξk
〉

+
〈
μk+1
G , G′ (xk

)
ξk
〉

+
〈
μk+1
H , H ′ (xk

)
ξk
〉

= −
〈
Hkξ

k, ξk
〉

+
∑
i∈IG

(
μk+1
G

)
i

(
yki −Gi

(
xk

)
+ ηki

)
+

∑
i∈IH

(
μk+1
H

)
i

(
zki −Hi

(
xk

)
+ ζki

)
= −

〈
Hkξ

k, ξk
〉

+
∑
i∈IG

(
μk+1
G

)
i

(
yki −Gi

(
xk

))
+

∑
i∈IH

(
μk+1
H

)
i

(
zki −Hi

(
xk

))
≤ −

〈
Hkξ

k, ξk
〉

+
∥∥μk+1

∥∥
1
ψ
(
uk

)
,

where μk+1 = (μk+1
G , μk+1

H ). Combining the latter with (3.26), we obtain (3.23).
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If ξk = 0 and ψ(uk) = 0, we obtain from (3.14) and from the constraints of (3.16)
that dk = 0 and the point uk is feasible in (3.12). Furthermore, (3.27) and (3.28) show
that xk is a weakly stationary point of (1.1). Otherwise, the linesearch procedure is
well-defined and results in the decrease of the penalty function value with respect to
ϕc(u

k). Overall, the method generates iterates such that the sequence {ϕc(u
k)} is

nonincreasing, as in standard SQP framework.

4. Numerical examples. In this section, we illustrate behavior of the algo-
rithms discussed above by some numerical examples. In what follows, Linearization
is the linesearch SQP method with Hk being the identity matrix, applied to the orig-
inal problem formulation (without slacks), while SQP−slacks is the linesearch SQP

method with Hk = ∂2L
∂x2 (xk, μk) applied to the problem formulation with slacks. The

first simple choice of Hk is motivated by robustness (if Hk is not positive definite,
then the subproblems sometimes do not have a solution, while more sophisticated
choices of positive definite matrices require complex quasi-Newton implementations).
The second choice of Hk is motivated by its efficiency (when subproblems are solv-
able). SQP-type methods were all implemented in their basic form, without elastic
mode (which corresponds to setting t = 0), without any attempts to modify Hk with
respect to the two alternative choices above, and without any tools for avoiding the
Maratos effect. While without a doubt important for any professional implementa-
tion, all those details have no real bearing for illustrating our proposal for forcing fast
local convergence by the active-set phase. Linesearch parameters were chosen as fol-
lows: ε = 0.1 and τ = 0.5. We used the simplest update rule for penalty parameters:
c0 = ‖λ1‖∞ + 1, and then for each k = 1, 2, . . . , we set ck = ck−1 if ck−1 ≥ ‖λk+1‖∞,
and ck = ‖λk+1‖∞ + 1 otherwise. The other implemented methods are the following.
SNM−FB is Algorithm 3.2 without Active-set step and with parameters δ = 2.1,
γ = 10−9, ε = 10−4, and τ = 0.5. Linearization+AS and SQP−slacks+AS are the
modifications of algorithms Linearization and SQP−slacks, respectively, supplied
with the option of switching to Active-set step, implemented as specified in Al-
gorithm 3.1. Finally, SNM−FB+AS is precisely Algorithm 3.2. The identification test
parameter and the linear decrease parameter were chosen as follows: θ = 0.5, q = 0.9.
All computations were performed in Matlab environment, with the QP-subproblems
solved by the built-in Matlab QP-solver. We used the stopping criterion of the form∥∥ΦFB

(
xk, λk

) ∥∥ < 10−7.(4.1)

We start with reporting some local runs of the algorithms discussed above for
the following example, which is a modified version of ralph2 in MacMPEC [12]. A
separate consideration of this example is due to the fact that it is known to violate
MPCC-SOSC, and so we expect that our method may behave better than SQP. The
problem ralph2 is modified by introducing higher-order nonlinear terms, in order to
prevent the tendency for finite termination, which is quite common for SQP in the
cases of “simple” (affine) constraints.

Example 4.1. The problem

min x2
1 + x2

2 − 4x1x2 + x3
2 s.t. x1 + x2

2/2 ≥ 0, x2 − x2
1 ≥ 0,

(
x1 + x2

2/2
) (

x2 − x2
1

)
≤ 0,

has two local solutions x̄1 = (0, 0) and x̄2 = (1, 1), the latter being global, both
satisfying MPCC-LICQ (1.5). The first solution satisfies piecewise SOSC (1.18) but
violates MPCC-SOSC (1.12), while the second satisfies MPCC-SOSC (1.12).

We use the primal starting points close to x̄1 to facilitate convergence to this
solution. Selected results for λ0

G = 0.01, λ0
H = 0.02, λ0

0 = 5 are presented in Table 4.1.
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Table 4.1

Example 4.1, local runs.

Algorithm x0 = 10−3×
(10, 1) (7, 3) (5, 5) (3, 7) (1, 10)

SQP−slacks 11 10 10 10 4
SNM−FB 9 9 10 10 5

SQP−slacks+AS 3 3 3 3 3
SNM−FB+AS 4 3 3 3 3

For each run, we report the number of iterations before convergence was declared.
Bold-faced numbers mean that convergence was achieved by active-set steps.

These results evidently demonstrate that, in this case, the active-set phase is
useful. And this is precisely our message—we do not claim that it should always
result in faster convergence than that for some nonmodified method, but it is easy to
incorporate, is useful at least sometimes, and works as it is supposed to. To give some
more validation of our claim, in the rest of this section we present numerical results
for global convergence of our algorithms on some small test problems derived from
MacMPEC [12]. The set of test problems was obtained as follows. We select all the
problems in MacMPEC satisfying the following criteria: they have no more than 10
variables, and they do not have any inequality constraints apart from complementarity
constraints (to be consistent with the problem setting of the paper). This makes 37
problems. Furthermore, we ignore the simple bounds (again in order to be consistent
with the problem setting of the paper), which of course may sometimes affect the
solutions/stationary points of these problems. Finally, ralph1 suggests two different
objective functions, and we use both, labeling the corresponding problems ralph11

and ralph12. Thus, we end up with 38 problems.
We performed the runs of each algorithm from the same randomly generated start-

ing points. Primal starting points were generated in a cubic neighborhood around the
solution (a feasible point with the objective function value equal to the optimal value
reported in MacMPEC; these points were found in the course of our experiments), with
the edge of the cube equal to 20. Dual starting points for equality constraints were
generated the same way, but around 0, while for dual starting points corresponding
to the complementarity constraints multipliers there was the additional nonnegativity
restriction. In the process of collecting information, we disregard the runs when at
least one of the QP-employing algorithms fails because of a failure of the QP solver
(such failures must be avoided in professional implementations by using elastic mode
and modifications of the Hessian, or quasi-Newton updates with appropriate line-
search, etc.; in any case these failures are concerned with the outer phase, rather than
the use of the active-set step). Thus, we keep generating random starting points until
we have 100 that do not cause QP solver failures.

When reporting the results, we count the cases of failure (when convergence was
not achieved after 50 steps), the cases of convergence (to KKT points), and provide
some details about convergence. We are not concerned whether the obtained KKT
point is a local/global solution or not (this, once again, has to do mostly with behavior
of the outer phase).

Columns of Tables 4.2 and 4.3 contain average/summarized information on the
performance of each algorithm for 100 runs from random starting points. First row
of each cell contains average characteristics over successful runs: iteration count, last
active-set steps, overall count of active-set steps. Thus the average number of useless
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Table 4.2

Results on MacMPEC problems.

Problem Algorithm
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S
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s
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P
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S
N
M
−
F
B

S
N
M
−
F
B
+
A
S

bard1 15.2 6.4/0.9/0.9 3.4 3.0/0.3/0.3 14.0 7.5/1.0/1.0
1 0/87 0 0/27 24 19/79

bard1m 14.2 11.8/0.2/0.3 1.3 1.6/0.03/0.2 15.4 8.9/0.8/1.2
17 5/18 1 0/3 49 43/45

dempe 5.5 22/5.7/6.6 8.1 8.4/0.6/3.2 22.9 21.9/6.5/7.2
41 1/72 0 0/36 66 56/44

desilva 13.2 10.6/3.0/6.0 7.0 7.8/3.4/5.0 16.2 11.4/5.0/6.6
0 0/99 0 5/67 41 24/77

ex9.2.1 2.0 2.0/0/0 2.5 2.5/0/0 9.6 8.4/0.9/1.0
4 4/0 8 8/0 26 26/72

ex9.1.4 5.9 5.8/0.02/0.02 2.0 2.0/0/0 30.5 30.2/0.4/0.4
0 0/2 0 0/0 58 59/18

ex9.2.1 4.4 4.4/0.07/0.07 1.7 1.7/0.01/0.06 13.3 10.6/0.5/0.9
20 19/6 4 4/1 36 34/35

ex9.2.4 20.3 10.8/0.4/0.4 2.6 2.6/0.02/0.02 13.1 10.7/0.3/0.3
0 0/43 0 0/2 17 17/22

ex9.2.5 13.9 5.8/0.3/0.6 3.1 3.1/0.1/0.3 19.4 16.6/1.0/1.0
0 0/32 0 0/12 26 17/79

ex9.2.7 4.2 4.3/0.06/0.06 1.8 1.7/0.06/0.07 13.2 10.7/0.6/0.9
14 13/5 3 3/6 36 36/38

ex9.2.8 14.4 14.4/0.4/0.4 2.5 2.5/0/0 10.8 7.3/1.0/1.0
0 0/37 0 0/0 66 55/45

ex9.2.9 8.9 8.7/0.6/0.6 2.5 2.5/0.03/0.03 11.9 7.5/1.0/1.0
4 4/59 0 0/3 28 23/77

flp2 17.6 10.2/0.7/1.8 2.3 2.4/0.01/0.5 11.3 12.1/1.0/1.6
11 0/69 0 0/1 26 20/78

gauvin 4.3 3.6/0.3/0.3 3.2 3.0/0.1/0.2 12.0 8.6/1.0/1.1
0 0/30 0 0/13 18 22/75

jr1 2.9 2.9/0.01/0.5 2.5 3.0/0.01/0.7 8.7 7.9/1.0/1.7
0 0/1 0 0/1 14 5/93

jr2 4.1 4.1/0.03/0.2 4.3 4.2/0.1/0.8 9.1 6.2/0.9/1.5
0 0/3 3 8/11 14 15/79

kth1 5.7 5.6/0.09/0.09 1.8 1.8/0.03/0.03 11.4 3.4/1.0/1.0
0 0/9 0 0/3 48 20/80

kth2 5.8 5.7/0.09/0.2 2.5 2.5/0.1/0.3 9.8 8.1/1.0/1.6
0 0/9 0 0/10 39 25/73

kth3 4.0 3.0/0.4/0.4 3.0 2.8/0.4/0.6 9 6.8/1.0/1.4
0 0/38 0 0/44 12 11/85

active-set steps (eventually disregarded by backup safeguards) for Linearization+AS

and SQP−slack+AS equals the difference between the third and the second number.
Second row of each cell contains the overall number of failures and those cases when
convergence was achieved by active-set steps. Note that what should be compared is
the behavior of a given outer-phase algorithm with and without using the AS step.
For Linearization and SNM−FB, in many cases using active-set step helps in terms
of either robustness, efficiency, or both. SQP−slacks is very efficient by itself, and
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Table 4.3

Results on MacMPEC problems.

Problem Algorithm
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nash1 7.1 8.6/0.3/0.7 2.4 2.3/0.06/0.4 9.8 11.3/1.0/1.7
27 12/29 0 1/5 32 32/67

outrata31 20.8 20.7/0.3/0.3 11.7 13.7/0.2/1.1 16.5 15.6/0.6/1.8
3 3/63 19 23/13 44 44/28

outrata32 35.3 30.3/0.9/1.8 10.7 14.0/0.3/0.9 17.3 16.7/0.4/1.9
26 14/43 30 34/18 37 33/29

outrata33 25 22.4/0.7/6.6 11.3 15.7/0.4/0.7 17.0 17.3/0.1/1.1
8 4/48 10 16/31 36 32/5

outrata34 39.7 23.1/1.6/1.6 11.0 18.2/0.6/0.7 14.2 14.2/0.6/0.6
12 9/91 38 42/35 29 29/42

ralph11 3.5 3.4/0.3/0.3 1 1/0/0 10 2.7/0.9/0.9
26 15/26 0 0/0 57 7/83

ralph12 6.6 6.3/0.5/0.5 1.4 14/0/0 2.1/1.0/1.0
39 21/37 0 0/0 100 17/83

ralph2 2.0 1.9/0.1/0.1 3.8 2.0/0.3/0.3 9.2 2.7/1.0/1.0
0 0/10 0 0/25 35 1/99

scholtes1 3.7 2.8/0.9/1.0 7.1 7.7/0.1/4.6 11.9 10.7/0.9/3.1
57 57/37 0 1/1 27 8/87

scholtes2 9.1/7.1/7.4 11.2 10.1/7.1/7.2 12.9 10.1/7.5/7.5
100 33/67 2 0/100 19 2/98

scholtes3 14.9 14.7/0.3/0.9 3.2 3.1/0.3/0.7 10.5 4.3/1.0/1.0
0 0/34 0 0/34 29 66/33

scholtes5 2.6 2.6/0/0.01 2.3 2.6/0/0 10.0 9.8/0/0.08
0 0/0 6 6/0 14 13/0

scale1 4 3.9/0.2/1.7 3.7 3.5/0.1/0.9 7.9 5.1/0.9/1.4
88 87/2 27 21/10 11 52/44

scale2 35.8 11.2/1.0/2.5 3.6 3.6/0.04/0.2 6.6 5.2/1.0/1.0
0 0/95 0 0/4 1 0/96

scale3 28.5 11.6/1.0/2.6 3.0 2.5/0.09/0.5 7.1 4.9/1.0/1.1
9 9/91 13 13/8 1 0/99

scale4 22.2 20.2/0.2/3.2 2.4 2.4/0/1.0 9.1 26.6/0.02/0.9
95 95/1 46 46/0 69 57/1

scale5 26.4 11.1/1.0/2.8 4.1 4.1/0/0.4 16.7 16.0/0.8/0.8
95 91/9 0 0/0 82 80/16

sl1 13.1 13.1/0/0.08 1.2 1.2/0/0 16.8 14.0/0.4/0.4
49 49/0 0 0/0 66 60/17

stackelberg1 17.2 2/1/1 2.2 2/1/1 6.0 2/1/1
4 0/100 0 0/100 0 0/100

in our implementation, active-set steps sometimes improve or harm it just slightly,
being overall comparable. Recall, however, Example 4.1, which puts in evidence that
active-set steps do outperform SQP in the case where MPCC-SOSC does not hold.
Also, it should be kept in mind that SQP−slacks (just as standard SQP) does not
possess fully justified superlinear convergence, unlike active-set steps. One can see
from Tables 4.2 and 4.3 that, apart from being intended for the cases of weaker SOSC,
active-set step usually does not harm at all, neither robustness nor efficiency. The



NEWTON METHOD FOR MPCC 1027

number of disregarded active-set steps remains very low. In many cases, active-set
step is used just once, on the last iteration, which means that the corresponding outer-
phase algorithm without active-set step could not possibly converge faster (usually it
converges slower, at least in the cases of Linearization and SNM−FB). In some cases,
the active-set strategy helps seriously.
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Abstract. This paper extends the regularized smoothing Newton method in vector complemen-
tarity problems to symmetric cone complementarity problems (SCCP), which includes the nonlinear
complementarity problem, the second-order cone complementarity problem, and the semidefinite
complementarity problem as special cases. In particular, we study strong semismoothness and Ja-
cobian nonsingularity of the total natural residual function for SCCP. We also derive the uniform
approximation property and the Jacobian consistency of the Chen–Mangasarian smoothing func-
tion of the natural residual. Based on these properties, global and quadratical convergence of the
proposed algorithm is established.
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1. Introduction. We are interested in the following symmetric cone comple-
mentarity problem (SCCP): Find vectors x, y ∈ J such that

(1.1) x ∈ K, y = F (x) ∈ K, 〈x, y〉 = 0,

where J is an n-dimensional real Euclidean space, A := (J , 〈·, ·〉, ◦) is a Euclidean
Jordan algebra, K is a symmetric cone in A (see section 2), and F : J → J is a con-
tinuously differentiable mapping. Problem (1.1) includes the semidefinite complemen-
tarity problem (SDCP), the second-order cone complementarity problem (SOCCP),
and the nonlinear complementarity problem (NCP) as special cases. The SCCP has
wide applications; in particular, it may arise from the KKT system of a nonlinear
optimization problem. The SCCP has been the focal point of some recent research;
see, e.g., [12, 13, 14, 22, 23, 29, 33, 37].

We intend to design an algorithm for SCCPs, which is called the regularized
smoothing Newton method. In the setting of NCP, various regularized smoothing
methods have been tested, which, in addition to their simplicity of implementation,
have the advantage of being able to solve some ill-posed problems. Recently, there are
some papers studying the smoothing Newton methods with or without regularization
for SOCCP and SDCP; see, e.g., [3, 4, 5, 6, 7, 11, 15, 16, 32, 35]. These papers either
address the case of SOCCP or that of SDCP, but to our knowledge, there are no
discussions on this type of algorithms under the general framework of SCCP.

In this paper, with the help of the Euclidean Jordan algebra, we analyze the
strong semismoothness and Jacobian nonsingularity of a natural residual function
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(the so-called total NR-function). We also show the level-boundedness of the natural
merit function of the total NR-function for SCCP under monotonicity and strict fea-
sibility assumptions. We then construct the Chen–Mangasarian smoothing function
of the natural residual for SCCP. Our work provides a theoretical and computational
framework for solving general nonlinear SCCP. In particular, we derive the uniform
approximation property and the Jacobian consistency of this smoothing function.
These properties form a basis for establishing quadratic convergence of Newton-type
algorithms. Finally, we state a globally and quadratically convergent algorithm for
solving monotone SCCP that was originated from a similar algorithm of Hayashi,
Yamashita, and Fukushima [15] for SOCCP. Many analytic tools we used are taken
from the recent work by Sun and Sun [30], in which the differential properties of the
Löwner’s operator and spectral functions are studied in the space of Euclidean Jordan
algebras.

This paper is organized as follows. In section 2, we briefly describe Euclidean
Jordan algebra and some of its properties used in our analysis. We also derive new
results on the Jacobian and the Clarke generalized Jacobian of Löwner operators. In
section 3, we introduce and characterize the total NR-function for SCCP. In section 4,
we present the Chen–Mangasarian smoothing function in the context of SCCPs and
discuss its properties. In section 5, we introduce the regularized smoothing Newton
method for SCCP and discuss its convergence.

The following notations will be used throughout this paper. Let X and Y be two
finite dimensional real Euclidean spaces. For a given set S ⊆ X , intS and convS
denote the interior and convex hull of S, respectively. Let dist(a, S) be min{‖a− b‖ :
b ∈ S} for a ∈ X , where ‖ · ‖ is the norm on X induced by the inner product 〈·, ·〉. We
write x 	K y (respectively, x 
K y) to mean x − y ∈ K (respectively, x− y ∈ intK)
for vectors x, y ∈ J . Also, we write A 	 B (A 
 B) to mean A − B being positive
semidefinite (positive definite) for operators A and B from J into itself. Let I be the
identity operator, i.e., Ix = x for all x ∈ J . We say that the operator A is invertible
(or nonsingular) if the equation Ax = 0 has a unique solution x = 0. For an operator
A, AT denotes the adjoint operator of A.

2. Preliminaries.

2.1. Euclidean Jordan algebras. We give a brief introduction to Euclidean
Jordan algebras. Details on Euclidean Jordan algebras can be found in Koecher’s
lecture notes [19] and the monograph by Faraut and Korányi [10].

A Euclidean Jordan algebra (EJA) is a triple (J , 〈·, ·〉, ◦) Δ= A, where (J , 〈·, ·〉) is
a real n-dimensional inner product space and (x, y) �→ x◦ y : J ×J → J is a bilinear
mapping which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ J ,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J where x2 := x ◦ x,

(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ J .
We call x ◦ y the Jordan product of x and y. In general, the Jordan product is not
associative; i.e., (x ◦ y) ◦ z �= x ◦ (y ◦ z) for all x, y, z ∈ J . In addition, we assume that
there exists an element e (called the identity element) such that x ◦ e = e ◦ x = x for
all x ∈ J . The following are some basic facts about Euclidean Jordan algebras.

• Given a Euclidean Jordan algebra A, define the set of squares as K := {x2 :
x ∈ J }. From Theorem III 2.1 in [10], K is a symmetric cone in A. In
other words, K is a self-dual closed convex cone, and for any two elements
x, y ∈ intK, there exists an invertible linear transformation Γ : J → J such
that Γ(K) = K and Γ(x) = y.
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• For x ∈ J , let m := m(x) be the smallest positive integer such that the set
{e, x, x2, . . . , xm} is linearly dependent. Then m is said to be the degree of x,
which is denoted by deg(x).

• The rank of A denoted by rk(A) is defined as rk(A) Δ= max{deg(x) : x ∈ J }.
Let dim(J ) denote the dimension of J . Obviously, rk(A) ≤ dim(J ).

• An element c ∈ J is an idempotent if c2 = c �= 0. An idempotent element is
primitive if it cannot be written as a sum of two idempotents.

• A complete system of orthogonal idempotents in A is a finite set {c1, c2, . . . , ck}
of idempotents where ci ◦ cj = 0 for all i �= j, and c1 + c2 + · · · + ck = e.

• A Jordan frame in A is a complete system of orthogonal primitive idempo-
tents. The number of elements of any Jordan frame equals the positive integer
rk(A).

Example 2.1. Let R
n denote the space of n-dimensional real column vectors,

and R
n
+ be the nonnegative orthant. Consider R

n with the (usual) inner product
and Jordan product defined, respectively, by 〈x, y〉 :=

∑n
i=1 xiyi and x ◦ y := x ∗ y,

where xi denotes the ith component of x, etc., and x ∗ y denotes the componentwise
product of vectors x and y. Then (Rn, 〈·, ·〉, ∗) forms a Euclidean Jordan algebra with
rk((Rn, 〈·, ·〉, ∗)) = dim(Rn) = n and R

n
+ as its cone of squares. The identity element

is the n-vector of ones, and the set {e1, e2, . . . , en} is the unique Jordan frame where
ei is the ith coordinate vector for i ∈ {1, 2, . . . , n}.

Example 2.2. Consider R
n(n ≥ 2) where any x is written as x = (x1, x

T
2 )T with

x1 ∈ R and x2 ∈ R
n−1. The inner product is the same as usual, and the Jordan

product is defined by

x ◦ y =
(

x1

x2

)

◦
(

y1
y2

)

:=
(

〈x, y〉
x1y2 + y1x2

)

.

Then Λn := (Rn, 〈·, ·〉, ◦) forms a Euclidean Jordan algebra, and its cone of squares
(Lorentz cone or second-order cone) is specified by Λn+ := {(x1, x

T
2 )T : x1 ≥ ‖x2‖},

where ‖·‖ denotes the 2-norm. The identity element in Λn is e =
(

1
0

)

. The set {c1, c2}
is a Jordan frame given by ci = 1

2

(

1
(−1)i ω

)

for i = 1, 2 with any ω ∈ R
n−1 satisfying

‖ω‖ = 1.
Example 2.3. Let S

n denote the set of all n×n real symmetric matrices with the
inner product and Jordan product defined, respectively, by 〈X,Y 〉 := Trace(XY ) and
X ◦ Y := (XY + Y X)/2. Thus (Sn, 〈·, ·〉, ◦) forms a Euclidean Jordan algebra, and
its cone of squares S

n
+ is the set of all positive semidefinite symmetric matrices. The

identity element in this setting is the identity matrix E. The set {E1, E2, . . . , En} is
a Jordan frame where Ei is the diagonal matrix with one in the ii-entry and zeros
elsewhere for i ∈ {1, 2, . . . , n}.

We now review the following spectral decomposition theorem of an element in a
Euclidean Jordan algebra.

Theorem 2.4. (Spectral Decomposition Type II (Theorem III.1.2, [10])) Let A be
a Euclidean Jordan algebra with rank r. Then for x ∈ J there exist a Jordan frame
{c1, c2, . . . , cr} and real numbers λ1(x), λ2(x), . . . , λr(x) such that

x = λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr .(2.1)

The numbers λi(x) (i = 1, 2, . . . , r) are the eigenvalues of x. We call (2.1) the spectral
decomposition (or the spectral expansion) of x.

Note that the Jordan frame {c1, c2, . . . , cr} in (2.1) depends on x. We do not write
this dependence explicitly for simplicity of notation. (The same for {b1, b2, . . . , br̄}
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below.) Let σ(x) be the set of all distinct eigenvalues of x. Then σ(x) contains at
least one element and at most r. For each μi(x) ∈ σ(x), denote Ni(x) := {j : λj(x) =
μi(x)} and bi

Δ=
∑

j∈Ni(x)
cj . Then the set {bi : μi(x) ∈ σ(x)} is a complete system of

orthogonal idempotents, and its uniqueness is guaranteed by Theorem III.1.1 in [10].
Let r̄ be the number of elements in this set. We then have the spectral decomposition
of type I stated in [10]; i.e.,

x = μ1(x)b1 + μ2(x)b2 + · · · + μr̄(x)br̄.

Next, we recall the Peirce decomposition theorem on the space J , where a Jordan
frame {c1, c2, . . . , cr} is fixed beforehand. In this case, define the following subspaces

Jii
Δ= {x ∈ J : x ◦ ci = x} and Jij

Δ=
{

x ∈ J : x ◦ ci =
1
2
x = x ◦ cj

}

, i �= j,(2.2)

for i, j ∈ {1, 2, . . . , r}. In the second-order cone (SOC) case, we have J12
Δ= {x ∈ R

n :
x1 = 0, 〈x2, w〉 = 0}, where w is characterized by the Jordan frame as in Example 2.2.

Theorem 2.5 (Theorem IV.2.1, [10]). Let {c1, c2, . . . , cr} be a given Jordan
frame in a Euclidean Jordan algebra A of rank r. Then J is the orthogonal direct
sum of spaces Jij (i ≤ j). Furthermore,

(i) Jij ◦ Jij ⊆ Jii + Jjj ;
(ii) Jij ◦ Jjk ⊆ Jik, if i �= k;

(iii) Jij ◦ Jkl = {0}, if {i, j} ∩ {k, l} = Ø.
For each x ∈ J , we define the Lyapunov transformation L(x) : J → J by L(x)y =

x ◦ y for all y ∈ J , which is a symmetric operator in the sense that 〈L(x)y, z〉 =
〈y, L(x)z〉 for all y, z ∈ J . Meanwhile, the operator Q(x) Δ= 2L2(x) − L(x2) is called
the quadratic representation of x. We say two elements x, y ∈ J operator commute
if L(x)L(y) = L(y)L(x). Lemma X.2.2 in [10] gives the following characterization of
operator commutativity.

Theorem 2.6. Two elements x and y of a Euclidean Jordan algebra of rank r
are operator commute if and only if they share a common Jordan frame.

Thus, for a given Jordan frame {c1, c2, . . . , cr}, it is easy to see that ci, cj operator
commute and L(ci)L(cj) = L(cj)L(ci) for any i, j ∈ {1, 2, . . . , r}. So do bi and bj for
any i, j ∈ {1, 2, . . . , r̄}.

2.2. The Jacobian of Löwner operators. We review differentiability and
semismoothness of a vector-valued function, which was called the Löwner operator
by Sun and Sun [30] in recognition of Löwner’s contribution [21]. We also present
some new results on the Jacobian and the Clarke generalized Jacobian of the Löwner
operator, which are basic and useful in the subsequent analysis.

Definition 2.7. Let x =
∑r

j=1 λj(x)cj and g : R → R be a real-valued function.
We define the Löwner operator (function) G : J → J as

G(x) Δ=
r
∑

j=1

g(λj(x))cj = g(λ1(x))c1 + g(λ2(x))c2 + · · · + g(λr(x))cr .(2.3)

When g(t) = t+ = max{0, t}(t ∈ R), this becomes the metric projection operator

PK(x) Δ= (λ1(x))+c1 + (λ2(x))+c2 + · · · + (λr(x))+cr(2.4)

onto the symmetric cone K. Note that x ∈ K (respectively, x ∈ intK) if and only
if λi(x) ≥ 0 (respectively, λi(x) > 0) (i = 1, 2, . . . , r). For any x ∈ K, we define
√
x

Δ=
∑r

j=1

√

λj(x)cj for x ∈ K.
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We consider the differentiability of the Löwner operator G(·). Suppose that g is
differentiable at τi, i = 1, 2, . . . , r. Define the first divided difference g[1](τ) of g at
τ

Δ= (τ1, τ2, . . . , τr)T ∈ R
r as the r× r symmetric matrix with the ijth entry given by

[g[1](τ)]ij = [τi, τj ]g
Δ=

⎧

⎨

⎩

g(τi) − g(τj)
τi − τj

if τi �= τj ,

g′(τi) if τi = τj ,

i, j = 1, 2, . . . , r.(2.5)

A direct implication of Theorem 3.2 in [30] is the following property of the Jacobian
of the Löwner operator G(·).

Theorem 2.8. Let x =
∑r
j=1 λj(x)cj =

∑r̄
i=1 μi(x)bi. Then, G(·) is (continu-

ously) differentiable at x if and only if for each j ∈ {1, 2, . . . , r}, g is (continuously)
differentiable at λj(x). In this case, the Jacobian ∇G(x) is given by

∇G(x) = 2
r
∑

i�=j,i,j=1

[λi(x), λj(x)]gL(ci)L(cj) +
r
∑

i=1

g′(λi(x))Q(ci)(2.6)

or equivalently

∇G(x) = 2
r̄
∑

i�=j, i,j=1

[μi(x), μj(x)]gL(bi)L(bj) +
r̄
∑

i=1

g′(μi(x))Q(bi).(2.7)

Furthermore, ∇G(x) is a linear and symmetric operator from J into itself.
As a consequence of Theorem 2.8, we obtain the following result in the case of

rk(A)=dim(J ).
Corollary 2.9. Suppose that rk(A) = dim(J ) = n and x =

∑n
j=1 λj(x)cj =

∑n̄
i=1 μi(x)bi. If G(·) is (continuously) differentiable at x, then it holds that

∇G(x) =
n
∑

i=1

g′(λi(x))L(ci) =
n̄
∑

i=1

g′(μi(x))L(bi).(2.8)

Proof. Since rk(A)=dim(J ) = n, it follows from Theorem 3.5 in [20] that there is
a unique Jordan frame {c1, c2, . . . , cn} in A. Thus, through Theorem 2.5, any element
h ∈ J can be expressed by h =

∑n
i=1 hici with hi ∈ R (i = 1, 2, . . . , n). Therefore,

L(ci)L(cj)h = L(cj)L(ci)h = ci ◦ (cj ◦ h) =

{

ci ◦ (hjcj) = 0 if i �= j,

ci ◦ (hici) = ci ◦ h if i = j.

This implies that L(ci)L(cj) = 0 (i �= j) and L(ci)L(ci) = L(ci) for any i, j ∈
{1, 2, . . . , n}. Hence Q(ci) = L(ci). Formula (2.8) is then an implication of Theo-
rem 2.8.

As an application of Corollary 2.9, we consider the Jacobian of the Löwner oper-
ator on R

n.
Example 2.10. Suppose that A = (Rn, 〈·, ·〉, ∗) as in Example 2.1. Let x =

∑n
i=1 xiei. One can easily verify that L(ei) = eie

T
i = Ei (i = 1, 2, . . . , n). Note that

rk((Rn, 〈·, ·〉, ∗)) = dim(Rn) = n. It is obvious via Corollary 2.9 that

∇G(x) =
n
∑

i=1

g′(xi)L(ei) = Diag{g′(x1), g′(x2), . . . , g′(xn)}.
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The next theorem presents a sufficient condition which guarantees that the Ja-
cobian ∇G(x) is positive semidefinite (respectively, positive definite). Here ∇G(x) is
called positive semidefinite (respectively, positive definite) if 〈h,∇G(x)h〉 ≥ 0 for all
h ∈ J (respectively, 〈h,∇G(x)h〉 > 0 for all 0 �= h ∈ J ).

Theorem 2.11. Let x =
∑r

j=1 λj(x)cj . If g is (continuously) differentiable at
λj(x) for each j ∈ {1, 2, . . . , r} and g′(t) ≥ 0 for all t ∈ R, then G(·) is (continuously)
differentiable at x and the Jacobian ∇G(x) is positive semidefinite. Moreover, the
Jacobian is positive definite if the condition g′(t) ≥ 0 is replaced by g′(t) > 0.

Proof. Let x =
∑r

j=1 λj(x)cj . By Theorem 2.5, any element h ∈ J can be
expressed by h =

∑r
i=1 hici +

∑

1≤k<l≤r hkl where hi ∈ R (i = 1, 2, . . . , r) and hkl ∈
Jkl (1 ≤ k < l ≤ r). Theorem 2.5 also implies that cj ◦

∑r
i=1 hici = hjcj and

cj ◦
∑

1≤k<l≤r hkl = 1
2

(

∑

k<j hkj +
∑

l>j hjl

)

. It therefore holds that

cj ◦ h = hjcj +
1
2

⎛

⎝

j−1
∑

k=1

hkj +
r
∑

l=j+1

hjl

⎞

⎠ ,(2.9)

where
∑j−1

k=1 hkj
Δ= 0 if j = 1 and

∑r
l=j+1 hjl

Δ= 0 if j = r. Furthermore, Theorem 2.5
implies that

〈h, cj ◦ (ci ◦ h)〉 = 〈cj ◦ h, ci ◦ h〉 =
1
4
〈hji, hji〉 =

1
4
‖hji‖2, ∀j �= i,(2.10)

and

Q(cj)h = 2cj ◦ (cj ◦ h) − cj ◦ h = hjcj, j = 1, 2, . . . , r.(2.11)

Meanwhile, noting that c2j = cj , one has 〈h, cj〉 = 〈cj ◦ h, cj〉 = hj〈cj , cj〉 = hj‖cj‖2.
Combining this with (2.6), (2.10), and (2.11) and noting that L(cj)L(ci)h = cj◦(ci◦h),
one has

〈h,∇G(x)h〉 =

〈

h,

r
∑

j �=i,j,i=1

2(g[1](λ(x)))jicj ◦ (ci ◦ h) +
r
∑

j=1

(g[1](λ(x)))jjhjcj

〉

=
r
∑

j �=i,j,i=1

2(g[1](λ(x)))ji〈h, cj ◦ (ci ◦ h)〉 +
r
∑

j=1

(g[1](λ(x)))jjhj〈h, cj〉

=
1
2

r
∑

j �=i,j,i=1

(g[1](λ(x)))ji‖hji‖2 +
r
∑

j=1

(g[1](λ(x)))jjh2
j‖cj‖2.

If g′(t) ≥ 0 (g′(t) > 0) for all t ∈ R, then by (2.5) we can easily get (g[1](λ(x)))ji ≥ 0
((g[1](λ(x)))ji > 0) for all j �= i, j, i = 1, 2, . . . , r. Hence, 〈h,∇G(x)h〉 ≥ 0 for all
h ∈ J (〈h,∇G(x)h〉 > 0 for all 0 �= h ∈ J ) through the above equation.

We proceed to study the semismoothness of the Löwner operator G(·). Semi-
smoothness was originally introduced by Mifflin [24] for functionals. Qi and Sun [26]
extended the concept of semismoothness to vector-valued functions and developed
a systematic theory that employs semismoothness in the analysis of the superlinear
convergence of Newton methods for solving systems of nondifferentiable equations.

We briefly review some concepts and results of the semismoothness from [26]. Let
� : C ⊆ X → Y be a locally Lipschitz function on an open set C. By Rademacher’s
theorem, � is almost everywhere differentiable (in the sense of Fréchet) in C. Let D�
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be the set of points where � is differentiable. Let �
′(x) denote the derivative of � at

x ∈ D� and let ∇�(x) denote the Jacobian of � at x, which is the adjoint operator
of �

′(x), in the sense of 〈y,∇�(x)z〉 = 〈�′(x)y, z〉 for all y ∈ X and z ∈ Y. Then, the
Clarke generalized Jacobian of � at x is defined by ∂�(x) Δ= conv{∂B�(x)}, where
∂B�(x) Δ= {limx̄→x,x̄∈D�

∇�(x̄)}. Observe that ∂�(x) = {∇�(x)} if � is smooth
(continuously differentiable) at x. We say � is directionally differentiable at x along
the direction d if

�
′(x, d) Δ= lim

t↓0

�(x+ td) − �(x)
t

exists,

where �
′(x, d) is called the directional derivative of � at x along the direction d; and

� is directionally differentiable at x if � is directionally differentiable at x along any
direction d �= 0.

Employing the above concepts, we can define (strong) semismoothness of a func-
tion �.

Definition 2.12. A directionally differentiable and locally Lipschitz function
� : C ⊆ X → Y is semismooth at x ∈ C if V Td − �

′(x; d) = o(‖d‖) for any
d �= 0, d ∈ X sufficiently small and V ∈ ∂�(x + d). In particular, if o(‖d‖) can be
replaced by O(‖d‖2), � is called strongly semismooth.

By combining Theorem 3.3 with Proposition 3.3 in [30], we have the following
result on (strong) semismoothness of the Löwner operator G(·).

Lemma 2.13. Let x =
∑r

j=1 λj(x)cj . Then G(·) is (strongly) semismooth at
x if and only if for each j ∈ {1, 2, . . . , r}, g is (strongly) semismooth at λj(x). In
particular, the metric projection operator PK is strongly semismooth on J .

We are ready to extend Theorems 2.8 and 2.11 to the case of a semismooth
Löwner operator G(·). Let g be semismooth at τi (i = 1, 2, . . . , r) and ∂g denote
the generalized Jacobian of g in the sense of Clarke. Define the first generalized
divided difference g[1,∂] of g at τ as the set of all r× r symmetric matrices, where the
ijth entry (g[1,∂](τ))ij of the element g[1,∂](τ) ∈ g[1,∂] is given by a set {[τi, τj ]g} for
i, j = 1, 2, . . . , r, where

{[τi, τj ]g} =

⎧

⎨

⎩

{

g(τi) − g(τj)
τi − τj

}

if τi �= τj ,

∂g(τi) if τi = τj .

Theorem 2.14. Let x ∈ J . Then G(·) is (strongly) semismooth at x if and
only if g is (strongly) semismooth at every eigenvalue of x. In this case, the Clarke
generalized Jacobian ∂G(x) satisfies

∂G(x) ⊇ ∂G(x) ⊇ ∂G(x)

with the sets ∂G(x) and ∂G(x) being given, respectively, by

∂G(x) Δ= conv

⎡

⎣

⋃

{c1,...,cr}∈C(x)

∂c1,...,crG(x)

⎤

⎦ ,

∂G(x) Δ=

⎧

⎨

⎩

2
r̄
∑

i�=j, i,j=1

[μi(x), μj(x)]gL(bi(x))L(bj) +
r̄
∑

i=1

∂g(μi(x))Q(bi)

⎫

⎬

⎭

,

where C(x) is the set consisting of all Jordan frames in the spectral decomposition type
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II of x, and ∂c1,...,crG(x) Δ= {2
∑r
i�=j, i,j=1{[λi(x), λj(x)]g}L(ci)L(cj)+

∑r
i=1 ∂g(λi(x))

Q(ci)}.
Proof. The first part of the theorem follows from Lemma 2.13. For the second

part, we first show ∂G(x) ⊇ ∂G(x). By the definitions of ∂G and ∂G we need to
prove only that

⋃

{c1,...,cr}∈C(x) ∂c1,...,crG(x) ⊇ ∂BG(x). Taking any V ∈ ∂BG(x),
by the definition of ∂BG(x) there exists a vector h Δ= h(V ) ∈ J such that V =
limh→0,x+h∈DG ∇G(x + h). In order to show V ∈

⋃

{c1,...,cr}∈C(x) ∂c1,...,crG(x), we
proceed as follows.

Take any {c1, . . . , cr} ∈ C(x) and let x =
∑r

j=1 λj(x)cj =
∑r̄

i=1 μi(x)bi(x) with
λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) and μ1(x) > μ2(x) > · · · > μr̄(x). For the above h ∈ J ,
let x + h

Δ=
∑r

j=1 λj(x + h)cj(x + h) with λ1(x + h) ≥ λ2(x + h) ≥ · · · ≥ λr(x + h).
By Theorem 2.4 and the argument after it, in the sense of set convergence (see, e.g.,
[27]), one has

lim
h→0,x+h∈DG

{λ(x+ h)} = {λ(x)},

where λ(x+h) Δ= (λ1(x+h), λ2(x+h), . . . , λr(x+h))T and λ(x) Δ= (λ1(x), λ2(x), . . . ,
λr(x))T . Similarly, using “lim sup” in the sense of set convergence, we have

lim sup
h→0,x+h∈DG

{(c1(x+ h), c2(x+ h), . . . , cr(x+ h))} ⊆ C(x).(2.12)

Notice that for any i, j = 1, 2, . . . , r,

lim sup
h→0,x+h∈DG

{[λi(x + h), λj(x+ h)]g}

⎧

⎨

⎩

=
{

g(λi(x)) − g(λj(x))
λi(x) − λj(x)

}

if λi(x) �= λj(x),

⊆ ∂g(λi(x)) if λi(x) = λj(x).

Thus,

lim sup
h→0,x+h∈DG

{[λi(x+ h), λj(x+ h)]g} ⊆ {[λi(x), λj(x)]g}.(2.13)

Also, it holds by (2.6) that for x+ h ∈ DG,

∇G(x + h) = 2
r
∑

i�=j, i,j=1

[λi(x+ h), λj(x+ h)]gL(ci(x+ h))L(cj(x+ h))

+
r
∑

i=1

g′(λi(x + h))Q(ci(x + h)).

This, together with (2.12), (2.13), and the continuity property of L(x) and Q(x), leads
to

lim sup
h→0,x+h∈DG

{∇G(x+ h)}

⊆
⋃

{c1,...,cr}∈C(x)

⎧

⎨

⎩

2
r
∑

i�=j, i,j=1

{[λi(x), λj(x)]g}L(ci)L(cj) +
r
∑

i=1

∂g(λi(x))Q(ci)

⎫

⎬

⎭

.

Clearly, V = limh→0,x+h∈DG ∇G(x + h) ∈ lim suph→0,x+h∈DG
{∇G(x + h)}. This

implies that V ∈
⋃

{c1,...,cr}∈C(x) ∂c1,...,crG(x) by the definition of ∂c1,...,crG(x).
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We next prove ∂G(x) ⊇ ∂G(x). For any W (x) ∈ ∂G(x) with x =
∑r̄
i=1 μi(x)bi(x)

and μ1(x) > μ2(x) > · · · > μr̄(x), by the definition of ∂G(x) we have

W (x) = 2
r̄
∑

i�=j, i,j=1

[μi(x), μj(x)]gL(bi(x))L(bj(x)) +
r̄
∑

i=1

wiQ(bi(x))

with wi ∈ ∂g(μi(x)) (i = 1, 2, . . . , r̄). Since g is semismooth at μi(x), ∂g(μi(x)) and
∂Bg(μi(x)) are well-defined and dim(∂g(μi(x))) = 1. Let Dg be the set consisting
of all the differentiable points of g. By Carathéodory theorem (see [27]), for any
given wi ∈ ∂g(μi(x)) there exist ti ∈ [0, 1] and two subsequences {hi,0} and {hi,1}
converging to 0 with μi(x) + hi,0, μi(x) + hi,1 ∈ Dg such that

wi,li
Δ= lim
hi,li

→0,μi(x)+hi,li
∈Dg

g′(μi(x) + hi,li) ∈ ∂Bg(μi(x)), li ∈ {0, 1}(2.14)

and

wi = tiwi,0 + (1 − ti)wi,1.(2.15)

Based on the set {hi,li : li ∈ {0, 1}, i = 1, 2, . . . , r̄}, we construct a set H by

H Δ=

{

r̄
∑

i=1

hi,libi(x) : li ∈ {0, 1}
}

.

Let l Δ= (l1, l2, . . . , lr̄) and hl
Δ=
∑r̄

i=1 hi,libi(x) with li ∈ {0, 1}. Then the set H can
be rewritten as H Δ= {hl : l ∈ {0, 1}r̄}, which includes 2r̄ elements. Meanwhile, for
each element hl, we have

x+ hl =
r̄
∑

i=1

(μi(x) + hi,li)bi(x).

Moreover, taking sufficiently small ‖hl‖, we have μ1(x) +h1,l1 > μ2(x) +h2,l2 > · · · >
μr̄(x)+hr̄,lr̄ , and hence μi(x+hl) = μi(x)+hi,li , bi(x+hl) = bi(x) by the uniqueness
of spectral decomposition type I. Thus, x+ hl ∈ DG by μi(x) + hi,li ∈ Dg, and from
(2.7) and (2.14) we obtain

Wl(x) Δ= lim
hl→0,x+hl∈DG

∇G(x + hl)

= 2 lim
hl→0,x+hl∈DG

[

r̄
∑

i�=j, i,j=1

[μi(x) + hi,li , μj(x) + hj,lj ]gL(bi(x))L(bj(x))

+
r̄
∑

i=1

g′(μi(x) + hi,li)Q(bi(x))

]

= 2
r̄
∑

i�=j, i,j=1

[μi(x), μj(x)]gL(bi(x))L(bj(x)) +
r̄
∑

i=1

wi,liQ(bi(x)).

Therefore, Wl(x) ∈ ∂BG(x) for every l ∈ {0, 1}r̄. This implies that

W(x) Δ= conv{Wl(x) : l ∈ {0, 1}r̄} ⊆ ∂G(x).(2.16)
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To prove W (x) ∈ ∂G(x), it suffices to claim that W (x) ∈ W(x). In fact, from
expressions of W (x) and Wl(x), it is easy to see that w Δ= (w1, w2, . . . , wr̄) given above
lies in the hypercube whose extreme points are defined by wi,li with li ∈ {0, 1}, i =
1, 2, . . . , r̄. Hence, W (x) must be a convex combination of points {Wl(x) : l ∈
{0, 1}r̄}. The proof is completed.

Remark 2.15. From Theorem 2.14, we easily observe that if x ∈ J has distinct
eigenvalues λ1(x), . . . , λr(x) and C(x) has an element, then ∂G(x) = ∂G(x) = ∂G(x).
However, if x has the multiple eigenvalues or C(x) contains many elements, the sets
∂G(x), ∂G(x), and ∂G(x) may be different as the following example shows.

Let A = Λn (n ≥ 3) and x =
∑2

i=1 λici as in Example 2.2. Take G(x) =
PK(x) where g(t) = t+, and let x = 0. Then λ1 = λ2 = 0, and there are in-
finitely many Jordan frames at x = 0. The direct calculation yields ∂PΛn

+
(0) =

conv{4[0, 1]L(c1)L(c2) + [0, 1]Q(c1) + [0, 1]Q(c2)} and ∂PΛn
+

(0) = conv{0, E} where
conv{0, E} = {αE : 0 ≤ α ≤ 1}. Note that ∂PΛn

+
(0) = conv{0, E, S} by Proposi-

tion 4.8 in [15] where S satisfies

S = 4 × 1 + β

2
L(c1)L(c2) + 0 ×Q(c1) +Q(c2),

where 1+β
2 ∈ [0, 1]. A simple calculation checks that ∂PΛn

+
(0) ⊂ ∂PΛn

+
(0) ⊂

∂PΛn
+

(0).
Remark 2.16. Suppose that rk(A) = dim(J ) = n and x =

∑n
j=1 λj(x)cj =

∑n̄
i=1 μi(x)bi as in the case of Corollary 2.9. If G(·) is (strongly) semismooth at x, we

derive by Theorem 2.14 that ∂G(x) ⊆ ∂G(x) ⊆ ∂G(x), where

∂G(x) =
n
∑

i=1

∂g(λi(x))L(ci), ∂G(x) =
n̄
∑

i=1

∂g(μi(x))L(bi).

Especially, when A = (Rn, 〈·, ·〉, ∗) as in Example 2.10 and x =
∑n

i=1 xiei =
∑n̄

i=1 yi
(
∑

j∈N(i) ej), in the similar way to the second part in the proceeding proof, one has
∂G(x) ⊆ ∂G(x). Hence,

∂G(x) = ∂G(x) =
n
∑

i=1

∂g(xi)Ei = Diag{∂g(x1), . . . , ∂g(xn)},

∂G(x) =
n̄
∑

i=1

∂g(yi)

⎛

⎝

∑

j∈N(i)

Ej

⎞

⎠ = Diag{∂g(y1)I1, . . . , ∂g(yn̄)In̄},

where Ii is the |N(i)| × |N(i)| identity matrix for i = 1, 2, . . . , n̄. Moreover, letting
G(x) = PK(x) and x = 0, we derive

∂PRn
+

(0) = ∂PRn
+

(0) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

[0, 1] 0 · · · 0
0 [0, 1] · · · 0
...

...
. . .

...
0 0 · · · [0, 1]

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⊃ {αE, 0 ≤ α ≤ 1} = ∂PRn
+

(0).

Theorem 2.14 provides an approximation to the Clarke generalized Jacobian,
which can be successfully employed to prove the positive semidefiniteness of ∂G(·).
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Theorem 2.17. If g is (strongly) semismooth at every eigenvalue of x and
∂g(t) ⊆ R+ (∂g(t) ⊆ R++) for all t ∈ R, then the function G(·) is (strongly)
semismooth at x, and all the element V ∈ ∂G(x) are positive semidefinite (posi-
tive definite). Moreover, when ∂g(t) ⊆ R++, there exists a scalar α(x) > 0 such that
V 	 α(x)I 
 0.

Proof. By Theorem 2.14 and the definition of ∂G, it suffices to demonstrate that
if ∂g(t) ⊆ R++ for all t ∈ R, then for any {c1, . . . , cr} ∈ C(x) and V ∈ ∂c1,...,crG(x)
there is a scalar α(x) such that V 	 α(x)I 
 0. In this case, one has x =

∑r
i=1 λi(x)ci

and

V = 2
r
∑

i�=j, i,j=1

νij(x)L(ci)L(cj) +
r
∑

i=1

νii(x)Q(ci)

with νij(x) ∈ {[λi(x), λj(x)]g}. Note that ∂g(λj(x)) ⊆ R++ is a closed convex set for
every j = 1, . . . , r. Taking

α(x) Δ= min
i,j

{[λi(x), λj(x)]g},

by (2.5) and the given assumptions we have α(x) > 0 and hence α(x)I 
 0.
We now prove V̄ Δ= V − α(x)I 	 0, that is, 〈h, V̄ h〉 ≥ 0 for any h ∈ J . In fact,

from (2.6) with g(λ) = λ, we have

I = 2
r
∑

i�=j, i,j=1

L(ci)L(cj) +
r
∑

i=1

Q(ci).

Thus,

V̄ = 2
r
∑

i�=j, i,j=1

[νij(x) − α(x)]L(ci)L(cj) +
r
∑

i=1

[νii(x) − α(x)]Q(ci)

with [νij(x) − α(x)] ≥ 0 for any i, j = 1, . . . , r. Modeling the proof of Theorem 2.11,
we immediately derive the desired result.

Furthermore, we can obtain the bounded property of ∂G if ∂g is a bounded set.
Corollary 2.18. Under the assumptions of Theorem 2.17, for any V ∈ ∂G(x)

and scalars a, b ∈ R with a ≤ b, there hold
(i) If ∂g(t) ⊆ [a, b], then aI � V � bI.
(ii) If ∂g(t) ⊆ (a, b) with a < b, then aI ≺ V ≺ bI.
Proof. Let f(t) = g(t) − at. Note that ∂g(t) ⊆ [a, b], then ∂f(t) ⊆ R+. By

Theorem 2.17, one has V − aI 	 0 for any V ∈ ∂G(x). On the other hand, letting
f̄(t) = bt− g(t), one has ∂f̄(t) ⊆ R+ and hence bI−V 	 0 for any V ∈ ∂G(x). These
two arguments show part (i). Similarly, we can verify Part (ii).

3. The total NR-function. For problem (1.1), we define the natural residual
function (NR-function) ΦNR : J × J → J by

(3.1) ΦNR(x, y) Δ= x− PK(x− y),

and the total NR-function HNR : J × J → J × J by

(3.2) HNR(x, y) Δ=
(

ΦNR(x, y)
F (x) − y

)

.
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Moreover, we specify function ΨNR : J × J → R by

(3.3) ΨNR(x, y) Δ=
1
2
‖HNR(x, y)‖2 =

1
2
‖ΦNR(x, y)‖2 +

1
2
‖F (x) − y‖2.

From Proposition 6 in [12], we know that

ΦNR(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0.

Therefore, problem (1.1) can be reformulated as a nonsmooth system of nonlinear
equations: HNR(x, y) = 0. Based on this system, we may establish various solution
methods, such as nonsmooth and smoothing Newton methods, see, e.g., [9, 17] for
the case of NCP. In this paper, our aim is to present a globally and quadratically
convergent regularized smoothing Newton method for SCCP. For this purpose, we
need to investigate strong semismoothness of HNR, nonsingularity of ∂HNR, and
level-boundedness of ΨNR.

First, we present a result concerning the strong semismoothness of HNR. Since
the proof is similar to that of Theorem 4.6 in [15], it is omitted.

Theorem 3.1. Let F : J → J be continuously differentiable. Then the function
HNR defined by (3.2) is semismooth at any (x, y) ∈ J ×J . Moreover, if ∇F is locally
Lipschitzian, then HNR is strongly semismooth at any (x, y) ∈ J × J .

Next, we address Clarke generalized Jacobian ∂HNR. Let T ∈ ∂HNR(x, y) for
any (x, y) ∈ J × J . Then T has the following form:

(3.4) T =
(

I − V ∇F (x)
V −I

)

,

where V ∈ ∂PK(x − y). Since ∂t+ equals {1} for t > 0, [0, 1] for t = 0, and {0} for
t < 0, by Corollary 2.18 (i) we have 0 � V � I.

The nonsingularity result on T is well-known for NCP (see, e.g., [9]) or SOCCP
(see, e.g., [11]). In a similar manner, we can easily show that it is still true for SCCP,
which does not need a further proof. We say that F : J → J is monotone (strongly
monotone) if for all (x, y) ∈ J ×J , 〈x− y, F (x)−F (y)〉 ≥ 0 (〈x− y, F (x)−F (y)〉 ≥
ε‖x− y‖2 with some ε > 0).

Theorem 3.2. Let F : J → J be continuously differentiable, and T be given by
(3.4).

(a) If F is monotone and 0 ≺ V ≺ I, then T is invertible for any (x, y) ∈ J ×J .
(b) If F is strongly monotone and 0 � V � I, then T is invertible for any

(x, y) ∈ J × J .
It should be noted that if V is a linear and symmetric operator from J into itself,

then the results in this theorem are still true.
We end this section by stating a well-known result on the boundedness of the level

sets Levα(ΨNR) Δ= {(x, y) ∈ J × J : ΨNR(x, y) ≤ α} for α ∈ R, which can ensure
that the sequence generated by a descent method for solving min ΨNR(x, y) has at
least one accumulation point. For more details, see, e.g., [25, 36].

Theorem 3.3. Let ΨNR be defined by (3.3). If F (x) is strongly monotone and
locally Lipschitzian, then the level sets Levα(ΨNR) are bounded for all α ∈ R.

4. The Chen–Mangasarian smoothing function. In the previous section,
we know that the total NR-function shares the strong semismoothness property be-
cause of that of the NR-function. In order to establish the desired smoothing Newton
methods, we need to smoothen the NR-function and the total NR-function. This
section deals with this issue.
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In the literature on NCP, there are two well-known classes of the smoothing
functions, i.e., the Chen–Mangasarian smoothing function and the smoothed Fischer–
Burmeister function. Recently, they were successfully extended to SDCP [6, 31] and
SOCCP [11]. In what follows, we first study an extension of the Chen–Mangasarian
smoothing function.

Definition 4.1. Let � : X → Y be a nondifferentiable function. A function
�u : X → Y with a parameter vector u ∈ R

q
+ is called a smoothing function of � if it

has the following properties:
(a) �u is continuously differentiable for any u ∈ R

q
++;

(b) limu↓0 �u(x) = �(x) for any x ∈ X , where u ↓ 0 means u ∈ R
q
++, u→ 0.

We say �u is a uniformly smooth approach function of � if there is a scalar κ > 0
such that

‖�u(x) − �(x)‖ ≤ κ‖u‖, ∀u ∈ R
q
++, ∀x ∈ X .

Let � ∈ R++. For NR-function ΦNR as in (3.1), we define the Chen–Mangasarian
smoothing function Φ� : J × J → J as

(4.1) Φ�(x, y) = x− Π�(x− y),

where Π� : J → J is specified by Π�(z) Δ= �G(z/�) and G ∈ CM. Here, CM
denotes the set of Löwner operators defined by (2.3) with g : R → R+, a continuously
differentiable convex function satisfying

(4.2) lim
t→−∞

g(t) = 0, lim
t→∞

(g(t) − t) = 0 and 0 < g′(t) < 1 for all t ∈ R.

Two known cases of function g are as follows: One is the CHKS function g(t) =
(
√
t2 + 4+ t)/2, which was proposed by Chen and Harker [1], Kanzow [18], and Smale

[28], and the other is the neural network function g(t) = ln(et + 1), which was used
in neural networks [2]. Based on the above definitions and Theorem 2.4, we below
derive formulae for Φ�.

Proposition 4.2. Let Φ� be given by (4.1). Then it holds that Φ�(x, y) =
x − �

∑r
i=1 g(λi/�)ci where λi, ci (i = 1, 2, . . . , r) are given by x − y =

∑r
i=1 λici.

Moveover, one has

Φ0(x, y) Δ= lim
�↓0

Φ�(x, y) = x− PK(x− y).

Proof. The first part is trivial. Note that lim�↓0 �g(λi/�) = (λi)+ by (4.2). This
derives that lim�↓0 Φ�(x, y) = x−

∑r
i=1(λi)+ci. The second part holds by (2.4).

4.1. Uniformly smooth approximation. The following proposition claims
that Φ� is a uniformly smooth approximation of ΦNR.

Proposition 4.3. Let Φ� be given by (4.1). Then, for any scalars � > ν ≥ 0,
we have

(4.3) g(0)(�− ν)e 	K Φν(x, y) − Φ�(x, y) 
K 0, ∀x, y ∈ J .

Proof. In order to prove the proposition, we first consider the case where � >
ν > 0. By Proposition 4.2, it is easy to verify Φν(x, y)−Φ�(x, y) =

∑r
i=1(�g(λi/�)−

νg(λi/ν))ci where λi and ci are given by x − y =
∑r

i=1 λici. Noting that for every
i = 1, 2, . . . , r, 0 < �g(λi/�) − νg(λi/ν) ≤ g(0)(�− ν) by Lemma 3.1 in [34], we have

(4.4) g(0)(�− ν)e =
r
∑

i=1

g(0)(�− ν)ci 	K Φν(x, y) − Φ�(x, y) 
K 0.
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This shows that (4.3) holds in the case of � > ν > 0, and that −Φν is monotone
in ν > 0 with respect to the partial ordering 
K . Taking ν → 0+ in (4.4), one has
g(0)�e 	K Φ0(x, y) − Φ�(x, y) 
K 0. That is, (4.4) also holds for � > ν = 0. The
proof is completed.

4.2. Differentiability. Let g : R → R+ be a continuously differentiable convex
function satisfying (4.2). As in [34] for the setting of NCP and in [15] for the context
of SOCCP, we define for any � > 0,

γ�(t)
Δ= �g(t/�),(4.5)

γ0(t) Δ= lim
�↓0

γ�(t) = max{0, t},(4.6)

γ+
0 (t) Δ= lim

�↓0
γ′�(t) =

⎧

⎨

⎩

0 for t < 0,
g′(0) for t = 0,
1 for t > 0.

(4.7)

Let z =
∑r
j=1 λj(z)cj(z). By Π�(z) = �G(z/�) with G ∈ CM, Theorem 2.8 leads to

(4.8) ∇Π�(z) = ∇G(z/�) = 2
r
∑

i�=j,i,j=1

aijL(ci(z))L(cj(z)) +
r
∑

i=1

aiiQ(ci(z)),

where for all i, j = 1, 2, . . . , r,

aij = [λi(z)/�, λj(z)/�]g =

⎧

⎪

⎨

⎪

⎩

g(λi(z)/�) − g(λj(z)/�)
λi(z)/�− λj(z)/�

if λi(z) �= λj(z),

g′(λi(z)/�) if λi(z) = λj(z).

By (4.5), we have γ′�(t) = g′(t/�). Therefore

(4.9) aij = [λi(z), λj(z)]γ� =

⎧

⎪

⎨

⎪

⎩

γ�(λi(z)) − γ�(λj(z))
λi(z) − λj(z)

if λi(z) �= λj(z),

γ′�(λi(z)) if λi(z) = λj(z).

By (4.2) and (4.9), one has 0 < aij < 1. Thus, by Corollary 2.18 (ii), it holds
I 
 ∇Π�(z) 
 0. In summary, we have the following conclusion.

Proposition 4.4. The function Π� is continuously differentiable, and I 

∇Π�(z) 
 0.

Furthermore, by applying Theorem 2.8 and the chain rule, we immediately obtain
the differential property of the Chen–Mangasarian smoothing function Φ�, which does
not need a proof.

Proposition 4.5. For any � > 0, the Chen–Mangasarian smoothing function
Φ�, defined by (4.1), is continuously differentiable and its Jacobian is given by

∇Φ�(x, y) =
(

I −∇Π�(x− y)
∇Π�(x − y)

)

=
(

I −∇G((x − y)/�)
∇G((x − y)/�)

)

.

4.3. Jacobian consistency. Like strong semismoothness, Jacobian consistency
plays an important role in establishing rapid convergence of smoothing Newton meth-
ods. This concept was originally introduced by Chen, Qi, and Sun [8] for variational
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inequalities, and was recently used by Hayashi, Yamashita, and Fukushima [15] an-
alyzing the regularized smoothing method for SOCCP, where their Jacobian consis-
tency contains two parameters. We state a more general definition as follows.

Definition 4.6. Suppose that � : X → Y is a continuous function and ∂�

exists. Let �u be a smoothing function of �. We say that �u satisfies the Jacobian
consistency if

(4.10) lim
u↓0

dist(∇�u(x), ∂�(x)) = 0, for any x ∈ X .

To show Jacobian consistency of the Chen–Mangasarian smoothing function Φ�,
we first look at the function Π�(z). Define bij

Δ= lim�↓0 aij for all i, j = 1, 2, . . . , r.
From (4.5)–(4.7) and (4.9), we derive that

(4.11) bij =

⎧

⎨

⎩

γ0(λi(z))−γ0(λj(z))
λi(z)−λj(z)

if λi(z) �= λj(z),

γ+
0 (λi(z)) if λi(z) = λj(z).

Obviously, by (4.2), 0 ≤ bij ≤ 1. By the direct calculation, one has

(4.12) lim
�↓0

∇Π�(z) = 2
r
∑

i�=j,i,j=1

bijL(ci(z))L(cj(z)) +
r
∑

i=1

biiQ(ci(z)).

Rewriting z as z =
∑r̄

i=1 μi(z)bi(z), from Theorem 2.8 we deduce

∇Π�(z) = 2
r̄
∑

i�=j, i,j=1

[μi(z), μj(z)]γ�L(bi(z))L(bj(z)) +
r̄
∑

i=1

γ′�(μi(z))Q(bi(z)).

In a similar manner as in (4.12), we derive that

lim
�↓0

∇Πμ(z) = 2
r̄
∑

i�=j, i,j=1

[μi(z), μj(z)]γ0L(bi(z))L(bj(z)) +
r̄
∑

i=1

γ+
0 (μi(z))Q(bi(z)).

Take ∂0
Π(z) Δ= lim�↓0 ∇Πμ(z). It follows from Theorem 2.14 that ∂0

Π(z) ∈ ∂PK(z) ⊆
∂PK(z). Summarizing the preceding argument, we have the following.

Lemma 4.7. Let ∂0
Π(z) = lim�↓0 ∇Π�(z). Then ∂0

Π(z) ∈ ∂PK(z) for any z ∈ J .
Thus Π� satisfies the Jacobian consistency.

Combining Lemma 4.7 with Proposition 4.5, the Jacobian consistency of Φ� is
immediate.

Proposition 4.8. Φ� satisfies the Jacobian consistency.
In the end of this section, we further consider the function g satisfying both (4.2)

and the following

(4.13) g(t) − t = g(−t), ∀t ∈ R.

For instance, (
√
t2 + 4+ t)/2 and ln(et+1) are such two functions. Can we get a more

specific result than Proposition 4.8 in this case? To settle this question, we need the
following lemma from [15].

Lemma 4.9 (Lemma 4.10, [15]). Let g be a continuously differentiable convex
function satisfying (4.2) and (4.13). Let γ�, γ0, and γ+

0 be given by (4.5)–(4.7). Then
it holds that
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(a) γ�(t) − γ0(t) = γ�(−t) − γ0(−t) for any t ∈ R;
(b)

∣

∣γ′�(t) − γ+
0 (t)

∣

∣ =
∣

∣γ′�(|t|) − γ+
0 (|t|)

∣

∣ for any t ∈ R;
(c)

∣

∣γ′�(0) − γ+
0 (0)

∣

∣ = 0 <
∣

∣γ′�(t2) − γ+
0 (t2)

∣

∣ ≤
∣

∣γ′�(t1) − γ+
0 (t1)

∣

∣ for any ti ∈
R(i = 1, 2) such that 0 < |t1| ≤ |t2|.

For z =
∑r

j=1 λj(z)cj(z), let N(z) be the index set specified by N(z) Δ= {i :
λi(z) �= 0}. Define the function λ̃ : J → R+ by

(4.14) λ̃(z) Δ=

{

mini∈N(z) |λi(z)| for N(z) �= Ø,

0 for N(z) = Ø.

Obviously, λ̃(z) = 0 if and only if z = 0. When z �= 0, by (4.5) and the continuous
differentiability of g, there is a scalar ς ∈ (0, λ̃(z)) such that γ′�(ς) =

γ�(λ̃(z))−γ�(0)

λ̃(z)
;

meanwhile, noting that g is convex, one has γ′�(t) ≤ γ�(λ̃(z))−γ�(0)

λ̃(z)
for any t ∈ (0, ς).

So, in the case of z �= 0, there exists a positive integer l such that 1
2l λ̃(z) ∈ (0, ς).

Based on the preceding argument, we define the function λ
 : J → R+ by

(4.15) λ
(z) Δ=

{

1
2l λ̃(z) for N(z) �= Ø,

0 for N(z) = Ø,

where l is the smallest positive integer such that

(4.16) γ′�

(

1
2l
λ̃(z)

)

≤
γ�

(

λ̃(z)
)

− γ�(0)

λ̃(z)
.

Then λ
(z) is well-defined and 0 < λ
(z) < λ̃(z). Thus, it holds by Lemma 4.9 (c)
that

∣

∣γ′�(λi(z)) − γ+
0 (λi(z))

∣

∣ ≤
∣

∣

∣γ′�

(

λ̃(z)
)

− γ+
0

(

λ̃(z)
)∣

∣

∣(4.17)

≤
∣

∣γ′� (λ
(z)) − γ+
0 (λ
(z))

∣

∣ , i = 1, 2, . . . , r.

Now we are ready to claim that Π�(z) not only satisfies the Jacobian consistency
but also has the stronger Jacobian property.

Theorem 4.10. Let ∂0
Π(z) = lim�↓0 ∇Π�(z). Suppose g is a continuously differ-

entiable convex function satisfying (4.2) and (4.13). Let γ�, γ0, γ
+
0 , and λ
 be given

by (4.5)–(4.7) and (4.15), respectively. Then there exists a scalar M̄ > 0 such that

∥

∥∇Π�(z) − ∂0
Π(z)

∥

∥ ≤ M̄
∣

∣γ′� (λ
(z)) − γ+
0 (λ
(z))

∣

∣ , ∀� ∈ R++, ∀ z ∈ J .

Proof. Let z =
∑r
j=1 λj(z)cj(z). Then from (4.8) and (4.12) we obtain

∇Π�(z) − ∂0
Π(z) = 2

r
∑

i�=j,i,j=1

(aij − bij)L(ci(z))L(cj(z)) +
r
∑

i=1

(aii − bii)Q(ci(z)).

To prove the theorem, it is enough to show |aij − bij | ≤ |γ′�(λ
(z)) − γ+
0 (λ
(z))| for

every i, j = 1, 2, . . . , r. We consider below two cases.
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Case (i): 0 = λi(z) < |λj(z)|. By (4.9) and (4.11), the direct calculation yields

|aij − bij | =
∣

∣

∣

∣

γ�(0) − γ�(λj(z))
0 − λj(z)

− γ0(0) − γ0(λj(z))
0 − λj(z)

∣

∣

∣

∣

=
∣

∣

∣

∣

γ�(λj(z)) − γ�(0)
λj(z)

− 1
∣

∣

∣

∣

= 1 − γ�(λj(z)) − γ�(0)
λj(z)

≤ 1 − γ′� (λ
(z))

=
∣

∣γ′� (λ
(z)) − γ+
0 (λ
(z))

∣

∣ ,

where the second equality follows from the fact γ0(0)−γ0(λj(z))
0−λj(z)

= 1 by (4.6), the third
one from 0 < γ�(λj(z))−γ�(0)

λj(z) = g(λj(z)/�)−g(0)
λj(z)/�

< 1 by (4.2), the inequality from (4.15),
and the last equality from γ+

0 (λ
(z)) = 1 by (4.15) and (4.7).
Case (ii): Otherwise, one has |aij − bij | ≤

∣

∣

∣γ′�

(

λ̃(z)
)

− γ+
0

(

λ̃(z)
)∣

∣

∣ , whose proof
is perfectly similar to that in [15] and is omitted for brevity.

5. Regularized smoothing function and algorithm. Based on the proceed-
ing results, we shall develop the Chen–Mangasarian class of regularized smoothing
functions for SCCP, and derive the regularized smoothing Newton method for solving
the monotone SCCP.

For the given F in (1.1) and a parameter ε > 0, we define a new function Fε :
J → J as

(5.1) Fε(x) Δ= F (x) + εx.

Again, define functions H�,ε : J × J → J × J and Ψ�,ε : J × J → R by

H�,ε(x, y) Δ=
(

Φ�(x, y)
Fε(x) − y

)

,(5.2)

Ψ�,ε(x, y) Δ=
1
2
‖H�,ε(x, y)‖2 =

1
2
‖Φ�(x, y)‖2 +

1
2
‖Fε(x) − y‖2.(5.3)

Then, H�,ε is a smoothing approximation of the regularized SCCP involving Fε
with ε > 0. Obviously, if F is monotone, then Fε is strongly monotone for any ε > 0.
In addition, if F is also locally Lipschitzian, then Ψ�,ε is level-bounded for any � ≥ 0
and ε > 0 via Theorem 3.3.

The proposed method applies the Newton algorithm to the system H�,ε(x, y) = 0
with � and ε properly adjusted at each iteration, so that a solution of the original
SCCP is eventually obtained by taking the limits as � ↓ 0 and ε ↓ 0.

For this purpose, we deal with H�,ε. From Proposition 4.5, we obtain

(5.4) ∇H�,ε(x, y) =
(

I −∇Π�(x− y) ∇F (x) + εI
∇Π�(x− y) −I

)

,

where ∇Π�(·) is specified by (4.8).
From (5.4) and Proposition 4.4, one can easily get the nonsingularity of ∇H�,ε.

The proof is omitted.
Theorem 5.1. Let F : J → J be continuously differentiable. For parameters

� > 0 and ε > 0, let Φ�(x, y), Fε(x), and H�,ε(x, y) be defined by (4.1), (5.1), and
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(5.2), respectively. If F is monotone, then ∇H�,ε, given by (5.4), is invertible for any
(x, y) ∈ J × J .

In view of (5.4), we also deduce the Jacobian consistency of H�,ε.
Theorem 5.2. Let F : J → J be continuously differentiable. For parameters

� > 0 and ε > 0, let Φ�(x, y), Fε(x), and H�,ε(x, y) be defined by (4.1), (5.1), and
(5.2), respectively. Then H�,ε satisfies the Jacobian consistency.

Proof. It holds by (5.4) and ∂0
Π(z) = lim�↓0 ∇Π�(z) that

(5.5) ∂0
ΠH(x, y) Δ= lim

(�,ε)↓(0,0)
∇H�,ε(x, y) =

(

I − ∂0
Π(x − y) ∇F (x)

∂0
Π(x− y) −I

)

.

This implies from (3.4) and Lemma 4.7 that ∂0
ΠH(x, y) ∈ ∂HNR(x, y) for any (x, y) ∈

J × J . The desired conclusion holds obviously.
Furthermore, applying Theorems 4.10 and 5.2, we estimate the upper bound of

the distance dist(∇H�,ε(x, y), ∂HNR(x, y)).
Theorem 5.3. Let F : J → J be continuously differentiable, and g be a con-

tinuously differentiable convex function satisfying (4.2) and (4.13). Suppose γ�, γ0,
and γ+

0 are given by (4.5)–(4.7), and let λ
 be defined by (4.15). Then, there exists a
scalar M > 0 such that

dist(∇H�,ε(x, y), ∂HNR(x, y)) ≤M(|γ′�(λ
(x− y)) − γ+
0 (λ
(x− y))| + ε),

for any � > 0, ε ≥ 0 and any (x, y) ∈ J × J .
Proof. By (5.4), (5.5), and the fact ∂0

ΠH(x, y) ∈ ∂HNR(x, y), one has for any
� > 0, ε ≥ 0, and any (x, y) ∈ J × J ,

dist(∇H�,ε(x, y), ∂HNR(x, y)) ≤ ||∇H�,ε(x, y) − ∂0
ΠH(x, y)||

≤ M̃(‖∇Π�(x − y)) − ∂0
Π(x− y))‖ + ε)

≤ M̃(M̄ |γ′�(λ
(x− y)) − γ+
0 (λ
(x − y))| + ε),

where M̃ in the second inequality is a positive scalar, the third follows from Theorem
4.10. The desired holds immediately.

In the end of this paper, we describe an algorithm which is a word-for-word
extension of the one by Hayashi, Yamashita, and Fukushima [15] for SOCCP, and
state the corresponding convergence theorem, which can be obtained by Theorems
5.1–5.3 and following the proof of Theorem 4.13 in [15].

ALGORITHM Set w Δ= (x, y) and w(k) Δ= (x(k), y(k)). Choose η, ρ ∈ (0, 1), η̄ ∈
(0, η], σ ∈ (0, 1/2), κ > 0, and κ̂ > 0.
Step 0 Choose w(0) ∈ J × J and β0 ∈ (0,∞). Let �0

Δ= ‖HNR(w(0))‖ and
ε0

Δ= ‖HNR(w(0))‖. Set k Δ= 0.
Step 1 Terminate if ‖HNR(w(k))‖ = 0.
Step 2

Step 2.0 Set v(0) Δ= w(0) and j
Δ= 0.

Step 2.1 Find a vector d̂(j) such that

H�k,εk

(

v(j)
)

+ ∇H�k,εk

(

v(j)
)T

d̂(j) = 0.

Step 2.2 If ‖H�k,εk
(v(j) + d̂(j))‖ ≤ βk, then let w(k+1) Δ= v(j) + d̂(j) and

go to Step 3. Otherwise, go to Step 2.3.
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Step 2.3 Find the smallest nonnegative integer m such that

Ψ�k,εk

(

v(j) + ρmd̂(j)
)

≤ (1 − 2σρm)Ψ�k,εk

(

v(j)
)

.

Let mj
Δ= m, τj

Δ= ρmj , and v(j+1) Δ= v(j) + τj d̂
(j).

Step 2.4 If ‖H�k,εk
(v(j+1))‖ ≤ βk, then let w(k+1) Δ= v(j+1) and go to

Step 3. Otherwise, set j Δ= j + 1 and go back to Step 2.1.
Step 3 Update the parameters as follows:

�k+1 : = min
{

κ
∥

∥

∥HNR

(

w(k+1)
)∥

∥

∥

2

, �0η̄
k+1, �̄

(

λ

(

x(k+1) − y(k+1)
)

, κ̂
∥

∥

∥HNR

(

w(k+1)
) ∥

∥

∥

)}

,

εk+1 : = min
{

κ
∥

∥

∥
HNR

(

w(k+1)
)∥

∥

∥

2

, ε0η̄
k+1

}

,

βk+1 : = β0η
k+1,

where λ
 is given by (4.15), and �̄(t, δ) is determined so that |γ′�(t) −
γ+
0 (t)| < δ for any � ∈ (0, �̄(t, δ)).

Step 4 Set k Δ= k + 1. Go back to Step 1.
Note that by (4.14)–(4.16) it is not hard to calculate λ
 for NCP, SOCCP, and

SDCP cases.
Theorem 5.4. Let F : J → J be a continuously differentiable and monotone

function, and {w(k)} be a sequence generated by the Algorithm. If the solution set of
SCCP(1.1) is nonempty and bounded, then {w(k)} is bounded, and every accumulation
point is a solution of SCCP(1.1). In addition, if ∇F is locally Lipschitzian and
every accumulation point of {∇H�k,εk

(w(k))} is nonsingular, then the sequence {w(k)}
converges to a solution w∗ of SCCP(1.1) quadratically.
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Sun and Levent Tunçel for helpful discussions.

REFERENCES

[1] B. Chen and P. T. Harker, A non-interior-point continuation method for linear complemen-
tarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 1168–1190.

[2] C. Chen and O. L. Mangasarian, Smoothing methods for convex inequalities and linear
complementarity problems, Math. Program., 71 (1995), pp. 51–69.

[3] J.-S. Chen and P. Tseng, An unconstrained smooth minimization reformulation of the second-
order cone complementarity problem, Math. Program. Ser. B, 104 (2005), pp. 293–327.

[4] X. Chen and H. D. Qi, Cartesian P-property and its applications to the semidefinite linear
complementarity problem, Math. Program., 106 (2006), pp. 177–201.

[5] X. Chen, H. D. Qi, and P. Tseng, Analysis of nonsmooth symmetric matrix functions with ap-
plications to semidefinite complementarity problems, SIAM J. Optim., 13 (2003), pp. 960–
985.

[6] X. Chen and P. Tseng, Non-interior continuation methods for solving semidefinite comple-
mentarity problems, Math. Program., 95 (2003), pp. 431–474.

[7] X. D. Chen, D. Sun, and J. Sun, Complementarity functions and numerical experiments on
some smoothing Newton methods for second-order-cone complementarity problems, Com-
put. Optim. Appl., 25 (2003), pp. 39–56.

[8] X. J. Chen, L. Qi, and D. Sun, Global and superlinear convergence of the smoothing New-
ton method and its application to general box constrained variational inequalities, Math.
Comput., 67 (1998), pp. 519–540.



REGULARIZED SMOOTHING METHOD FOR SCCP 1047

[9] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, Volume I and II, Springer-Verlag, New York, 2003.
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Abstract. The ε-pseudospectrum of a square matrix A is the set of eigenvalues attainable when
A is perturbed by matrices of spectral norm not greater than ε. The pseudospectral abscissa is the
largest real part of such an eigenvalue, and the pseudospectral radius is the largest absolute value of
such an eigenvalue. We find conditions for the pseudospectrum to be Lipschitz continuous in the set-
valued sense and hence find conditions for the pseudospectral abscissa and the pseudospectral radius
to be Lipschitz continuous in the single-valued sense. Our approach illustrates diverse techniques
of variational analysis. The points at which the pseudospectrum is not Lipschitz (or more properly,
does not have the Aubin property) are exactly the critical points of the resolvent norm, which in
turn are related to the coalescence points of pseudospectral components.
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1. Introduction. Analysis using eigenvalues is prevalent in many different areas
of applied mathematics. As we consider perturbations to an n× n complex matrix A
with spectrum Λ (A), we are led to study the ε-pseudospectrum Λε : Mn ⇒ C, which
is a set-valued map defined by

Λε (A) = {z | ∃E ∈ Mn such that ‖E‖ ≤ ε, z ∈ Λ (A + E)} ,

where Mn is the space of matrices of size n×n. A well-known equivalent formulation,
assuming ‖·‖ = ‖·‖2 as we do throughout, is

Λε (A) = {z | σ (A− zI) ≤ ε} ,

where σ (A) denotes the smallest singular value of the matrix A. As discussed exten-

sively in [22], the function z �→ (zI −A)
−1

is called the resolvent of the matrix A.
Thus the pseudospectra of A are just upper-level sets of the resolvent norm function
nA : C\Λ (A) → R+ defined by

nA (z) :=
∥∥∥(zI −A)

−1
∥∥∥ =

1

σ (A− zI)
.

Pseudospectra may be more informative than eigenvalues in applications where
matrices are nonnormal [22, 13].

The continuity of the spectrum is well known [14]. One immediate question is
whether continuity extends to Λε. Since Λε is a set-valued map, we ask whether we
have continuity in the Hausdorff metric, and it is known that the answer is yes [17,
Theorem 2.3.7].
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Name of Property Mathematical Statement

Lipschitz Continuity

Definition�
Aubin Property Λε Aubin at A for z

Mordukhovich Criterion�
Coderivatives D∗Λε (A | z) (0) = {0}

Definition of Coderivatives�
Normals of gphΛε (Mn × {0}) ∩Ngph Λε (A, z) = {0}

Level sets�
Subgradients of σe (Mn × {0}) ∩ R+∂σe (A, z) = {0}

Toeplitz–Hausdorff theorem�
Numerical Range 0 /∈ Y (A− zI)

Subdifferential Calculus�
Singular Values 0 /∈ ∂ (−σA) (z)

Fig. 1. Equivalences of properties summarized in Theorem 5.2.

Does the pseudospectrum mapping Λε have stronger continuity properties? One
of the main contributions of this paper is to find conditions under which the map
Λε is Lipschitz continuous. The ingredients of our analysis are variational-analytic
techniques from the last couple of decades, as described in Rockafellar and Wets [21],
Clarke et al. [10], and Mordukhovich [20]. In particular, we should note that there are
technical details involved in the generalization of Lipschitz continuity to set-valued
maps. Our proof (of the main results in Theorem 5.2 and Proposition 6.3) may be
described loosely by Figure 1. The reader may find the schematic outline helpful as
the argument proceeds.

For the moment, we remark on the notation

σA (z) = σe (A, z) =
1

nA (z)

and Y (A− zI), which refers to the set of the inner products of associated left and
right singular vectors (see page 1050). N refers to the normal cone, ∂ refers to the
subdifferential and D∗ refers to the coderivative. We expand more on the notation of
Figure 1 (see page 1051).

In Figure 1, the six properties on the right on A and z are equivalent. For a
given matrix A, we call points z not satisfying these equivalent properties “resolvent-
critical” because they are smooth or nonsmooth critical points of the norm of the
resolvent nA. When the multiplicity of the smallest singular value of A−zI is one, this
property is equivalent to z being a “degenerate point” (in the sense of [4, Definition
4.5, Corrigendum]) or not “regular” in the sense of [5, Definition 4.4]. Points not
resolvent-critical are exceptional for several aspects of pseudospectra, notably the
quadratic convergence of the pseudospectral abscissa algorithm in [5].
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As well as our main result equating the absence of the Aubin property with
resolvent-criticality, we derive a variety of other properties of resolvent-critical points
proving, in particular, that points where pseudospectral components coalesce as ε
grows are resolvent-critical.

As an application of the Lipschitz continuity of Λε : Mn ⇒ C, we find conditions
for the Lipschitz continuity (in the single-valued sense) and the strict differentiability
of the pseudospectral abscissa αε : Mn → R, and the pseudospectral radius ρε :
Mn → R+ defined by

αε (A) := max {Re (λ) | λ ∈ Λε (A)} ,
ρε (A) := max {|λ| | λ ∈ Λε (A)} .

We write MSV : Mn ⇒ C
n × C

n, with

MSV (A) := {(u, v) | u, v minimal left and

right singular vectors of A}.

In the above definition of MSV , u, v are minimal left and right singular vectors of A
if they are unit vectors satisfying

σ (A)u = Av

and σ (A) v = AHu,

where AH is the Hermitian transpose of A. A key tool in our analysis is the set

Y (A) :=
{
vHu | (u, v) ∈ MSV (A)

}
.

We prove that the set Y (A− zI) is the subgradient set at z of the function −σA :
C → R−, where σA (z) = σ (A− zI).

Related to Λε is the mapping Λc
ε : Mn ⇒ C defined by Λc

ε (A) = {z | σ (A− zI)
≥ ε}. This mapping turns out to be easier to analyze because −σ (·) has the property
of subdifferential regularity (as defined in [21]) except at where it is zero. We show
that the normal cone NΛc

ε(A) (z̄) is R+ (Y (A− z̄I)). This establishes a link between
the variational properties of −σA and Λc

ε, and the Aubin property.

Notation. For future reference, Tables 1 and 2 summarize the mappings that
appear throughout the paper.

Unless otherwise stated, our notation follows [21]. See also the table of notation
in [21, page 725]. The term “regular” means subdifferentially regular in the sense of
[21, Definition 7.25]. Table 2 summarizes the symbols we use.

The “H” in AH and vH represent the Hermitian transpose of a matrix or vector,
while the “ ∗” in L∗ represents the adjoint of the linear operator L. Note that D∗

stands for the coderivative instead. The real inner product on A,B ∈ Mn is defined
by Re tr

(
AHB

)
.

Outline. The paper is organized as follows. Section 2 studies the continuity
properties of the pseudospectra Λε and its “complement” Λc

ε via more general feasible-
set mappings. In sections 3, 4, and 5, we prove the main result that Λε has the
Aubin property at A for z if and only if 0 /∈ Y (A− zI), with section 3 containing
general results on variational analysis and the singular value decomposition, section
4 performing subdifferential calculus, and section 5 finishing the proof of the main
result.
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Table 1

Summary of definitions.

Name/domain/range Definition
σ̄ : Mn → R+ σ̄ (A) is maximum singular value of A
σ : Mn → R+ σ (A) is minimum singular value of A
σe : Mn × C → R+ σe (A, z) = σ (A− zI)
σA : C → R+ σA (z) = σ (A− zI)
Λε : Mn ⇒ C Λε (A) = {z | σ (A− zI) ≤ ε}
Λ : Mn ⇒ C Λ (A) = Λ0 (A) = {eigenvalues of A}
Λc
ε : Mn ⇒ C Λc

ε (A) = {z | σ (A− zI) ≥ ε}
αε : Mn → R αε (A) = maxz∈Λε(A) Re z

ρε : Mn → R+ ρε (A) = maxz∈Λε(A) |z|
W : Mn ⇒ C Numerical range/ field of values[15, Definition 1.1.1]
MSV : Mn ⇒ C

n × C
n See Definition 3.2

Y : Mn ⇒ C See Definition 3.2

Table 2

Summary of definitions.

Symbol Explanation Reference from [21]

∂̂ regular subgradient set Definition 8.3
∂ subgradient set Definition 8.3
∂∞ horizon subgradient set Definition 8.3

N̂ regular normal cone Definition 6.3
N normal cone Definition 6.4
osc outer semicontinuous Definition 5.4
isc inner semicontinuous Definition 5.4
pos positive hull section 3G

lip S (· | ·) graphical modulus Definition 9.36
lip∞S (·) Lipschitz modulus Definition 9.28
limsup (set) outer limit Formula 5(1)
liminf (set) inner limit Formula 5(1)

D∗S (· | ·) coderivative Definition 8.33

|·|+ outer norm Formula 9(4)
d (·, ·) Pompieu-Hausdorff distance Example 4.13

lev≤αf Level sets: {x | f (x) ≤ α} section 1B
conv convex hull section 1E
bdry boundary of a set

B unit ball {x | |x| ≤ 1}

In section 6, we show how the Lipschitz constant for the map Λε can be calculated.
Section 7 gives conditions for the Lipschitz continuity and strict differentiability of
the pseudospectral abscissa αε and the pseudospectral radius ρε. Finally, we present
properties of resolvent-critical points in section 8. We prove, in particular, that the
points at which the components of Λε (A) coalesce as ε grows are resolvent-critical,
and we pose some questions about resolvent-critical points.

2. Feasible-set mappings and continuity of pseudospectra. The pseudo-
spectral mapping Λε : Mn ⇒ C has two inputs: ε ∈ R+ and the matrix in the
argument of Λε (·). As R+ is one-dimensional, the variation of Λε (A) for a fixed
matrix A and variable ε is easier to visualize, as implemented in EigTool [24]. Some
attractive results in this direction have been obtained in [7, 8, 18, 1, 17] and elsewhere.
By contrast, in this work we study how Λε behaves for a fixed ε and a varying matrix
argument, primarily taking a more abstract and systematic approach than [6].
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We study pseudospectra using the language of set-valued analysis as described
in the monograph [21]. We take the definition of inner semicontinuity and outer
semicontinuity in [21, section 5B].

In the next two propositions, let f : R
n × R

d → R
m be a continuous function,

and let T : R
d ⇒ R

n be the mapping defined by

(2.1) T (w) = {x | f (x,w) ∈ D} ,

where D is a closed set.
Proposition 2.1. T is outer semicontinuous.
Proof. We just need to check that T has a closed graph (by [21, Theorem 5.7]),

which is easy.
Note that the ε-pseudospectrum can be written as

Λε (A) = {z | σe (A, z) ≤ ε}
= {z | σe (A, z) ∈ (−∞, ε]} .

If we apply Proposition 2.1, we can deduce that Λε is outer semicontinuous. In a sim-
ilar manner, Λc

ε, defined by Λc
ε (A) = {z | σe (A, z) ≥ ε}, is also outer semicontinuous.

Turning to inner semicontinuity, we begin with a technical result.
Proposition 2.2. Let

Q := cl {x | f (x, w̄) ∈ int (D)} ,

so Q ⊂ T (w̄). We have
(a) Q ⊂ lim infw→w̄ T (w) ⊂ T (w̄).
In the case where m = 1:
(b) If D = (−∞, α], then

Q = {x | f (x, w̄) = α , x is not a local minimizer of f (·, w̄)}
∪ {x | f (x, w̄) < α} .

(c) If D = [α,∞), then

Q = {x | f (x, w̄) = α , x is not a local maximizer of f (·, w̄)}
∪ {x | f (x, w̄) > α} .

(d) If α > 0, f is positively homogeneous (that is, λf (·) = f (λ·) for λ > 0) and
either D = (−∞, α] or D = [α,∞), then Q = lim infw→w̄ T (w).

Proof. Property (a) is easy and standard. See, for example, the techniques in
[2, 16].

Statements (b) and (c) are clear by the definition of Q, so we proceed to prove
statement (d) for the case D = (−∞, α]. (The case D = [α,∞) is similar and
is omitted.) From statement (a), we just need to prove that if x̄ /∈ Q, then x̄ /∈
lim infw→w̄ T (w). Suppose that x̄ /∈ Q. We need to consider only x̄ ∈ T (w̄), so
we can assume that x̄ is a minimizer of f (·, w̄) and f (x̄, w̄) = α. Then there is a
neighborhood Bδ (x̄) about x̄ such that f (x, w̄) ≥ f (x̄, w̄) = α if x ∈ Bδ (x̄). If
‖x− x̄‖ < δ/2, then ∥∥∥∥∥ 1

1 + 1
j

x− x̄

∥∥∥∥∥ < δ if j is large.
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This means that

f

(
x,

(
1 +

1

j

)
w̄

)
=

(
1 +

1

j

)
f

(
1

1 + 1
j

x, w̄

)

≥
(

1 +
1

j

)
α

(
because

∥∥∥∥∥
(

1

1 + 1
j

)
x− x̄

∥∥∥∥∥ < δ

)

> α,

which implies that Bδ/2(x̄)∩T ((1+ 1
j )w̄) = ∅ if j is large enough. So for the sequence

(1+ 1
j )w̄ → w̄ as j → ∞, we cannot find a subsequence xj such that xj ∈ T ((1+ 1

j )w̄)

and xj → x̄, and this means that x̄ /∈ lim infw→w̄ T (w).
The following corollary is immediate from the definition of inner semicontinuity.
Corollary 2.3. If T (w̄) = Q, then T is continuous at w̄. Furthermore, if f is

positively homogeneous, then the converse holds as well.
Proof. The mapping T is continuous if and only if it is both inner and outer

semicontinuous. Apply the last two propositions.
Now that we have established conditions for outer and inner semicontinuity for

feasible-set mappings, we shall study the continuity of the pseudospectrum Λε and
Λc
ε. Let us consider the case ε = 0 first. The map Λc

0 : Mn ⇒ C is not interesting
as Λc

0 (A) = C for all matrices A. We are then led to consider the spectrum Λ0 = Λ,
which is well known to be continuous [14, Appendix D].

To extend to ε > 0, we may apply Propositions 2.1 and 2.2, combined with the
fact that σA (·) has no local minimum other than at the eigenvalues [22, Theorem
2.4(i)], to prove the following result. This result is not new and can be found, for
example, in [17, Corollary 2.3.8].

Proposition 2.4. Λε : Mn ⇒ C is continuous for ε ≥ 0.
For Λc

ε : Mn ⇒ C, we obtain the following using Proposition 2.2(d).
Proposition 2.5. Λc

ε : Mn ⇒ C is outer semicontinuous, but it is inner semi-
continuous at a matrix A if and only if there is no local maximizer z̄ to σA : C → R+,
with σA (z̄) = ε.

Example 2.6. The mapping Λc
ε is not continuous at some points. For a con-

crete example of the noncontinuity of Λc
ε, consider the point 0 ∈ Λc

1

(
Ā
)
, where

Ā = diag (1,−1, i,−i) and ε = 1. Here Λ1

(
Ā
)

consists of the union of balls of radius
1 around the diagonal entries, and so we observe that 0 is a local maximum of σĀ.
This exhibits an example of the discontinuity of Λc

1 as lim infA→Ā Λc
1 (A) � Λc

1

(
Ā
)
.

Next, we consider Lipschitz continuity. First, we define the Pompieu–Hausdorff
distance.

Definition 2.7 (see [21, Example 4.13]). For C,D ⊂ R
n closed and nonempty,

the Pompieu–Hausdorff distance d (C,D) is defined as

d (C,D) := inf {η ≥ 0 | C ⊂ D + ηB, D ⊂ C + ηB} .

Lipschitz continuity is thus defined as follows.
Definition 2.8 (see [21, Definitions 9.26, 9.28]). A mapping S : R

n ⇒ R
m

is Lipschitz continuous if it is nonempty–closed-valued and there exists κ ∈ R+, a
Lipschitz constant, such that d (S (x) , S (x′)) ≤ κ |x− x′| for all x, x′ ∈ R

n, or

S (x′) ⊂ S (x) + κ |x′ − x|B for all x, x′ ∈ R
n.
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The infimum of all κ such that there exists a neighborhood V of x̄ such that

S (x′) ⊂ S (x) + κ |x′ − x|B for all x, x′ ∈ V

is the Lipschitz modulus for S at x̄ and is denoted by lip∞S (x̄).
The Aubin property, which is a localized Lipschitz property, is defined as follows.
Definition 2.9 (see [21, Definition 9.36] Aubin property and graphical modulus).

A mapping S : R
n ⇒ R

m has the Aubin property at x̄ for ū, where x̄ ∈ R
n and

ū ∈ S (x̄), if gphS is locally closed at (x̄, ū) and there are neighborhoods V of x̄ and
W of ū, and a constant κ ∈ R+ such that

S (x′) ∩W ⊂ S (x) + κ |x′ − x|B for all x, x′ ∈ V.

The graphical modulus of S at x̄ for ū, denoted by lipS (x̄ | ū), is the infimum of all
such κ that satisfy the formula above.

If the function f in the feasible-set mapping in formula (2.1) in page 1052 is
smooth, we understand the Aubin Property quite well through [21, Example 9.51].
If D = (−∞, ᾱ], we can also analyze the nonsmooth case. In what follows, ∂ and
∂∞ denote, respectively, the subgradient set and the horizon subgradient set [21,
Definition 8.3].

Assumptions (a), (b), and (c) in the result below are standard for computing
normals to level sets (see, for example, [21, Proposition 10.3].) Assumption (d) is
needed to apply a chain rule.

Theorem 2.10. Consider the set-valued map C : R
d ⇒ R

n defined via a level
set representation

C (p) = {x | F (x, p) ≤ ᾱ} ,

with F : R
n × R

d → R. Suppose that
(a) F (x̄, p̄) = ᾱ,
(b) (0, 0) /∈ ∂F (x̄, p̄),
(c) F is regular at (x̄, p̄),
(d) (0, y2) ∈ ∂∞F (x̄, p̄) =⇒ y2 = 0.
Then C has the Aubin property at p̄ for x̄ if and only if 0 /∈ ∂Fp̄ (x̄), where

Fp̄ : R
n → R is defined by Fp̄ (x) := F (x, p̄). In this case,

lip C (p̄ | x̄) = max
(a,b)∈Ngph C (p̄,x̄)

‖b‖=1

‖a‖ ,

If F (x̄, p̄) < ᾱ, then C has the Aubin property at p̄ for x̄, with lip C (p̄ | x̄) = 0.
Proof. The Mordukhovich criterion [21, Theorem 9.40] tells us that C has the

Aubin property at p̄ for x̄ if and only if D∗C (p̄ | x̄) (0) = {0}, where D∗ denotes the
coderivative [21, Definition 8.33]. This holds if and only if

(z, 0) ∈ NgphC (p̄, x̄) implies z = 0.(2.2)

This property is equivalent to

(0, z) ∈ NgphC−1 (x̄, p̄) implies z = 0.

Conditions (a), (b), and (c) allow us to conclude that

(2.3) NgphC−1 (x̄, p̄) = (pos ∂F (x̄, p̄)) ∪ ∂∞F (x̄, p̄)
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through a result on level sets [21, Proposition 10.3], or

(0, z) ∈ (pos ∂F (x̄, p̄)) ∪ ∂∞F (x̄, p̄) implies z = 0,

and by condition (d), this is in turn equivalent to

(2.4) (0, z) ∈ pos ∂F (x̄, p̄) implies z = 0.

We define Lp̄ : R
n → R

n × R
d by Lp̄ (x) = (x, p̄). The adjoint L∗

p̄ : R
n × R

d → R
n is

given by L∗
p̄ (x, p) = x. We have Fp̄ = F ◦ Lp̄, and so by a chain rule [21, Theorem

10.6] and condition (d), ∂Fp̄ (x̄) = L∗
p̄∂F (x̄, p̄). Thus

∂Fp̄ (x̄) =L∗
p̄∂F (x̄, p̄)

= {y | ∃z such that (y, z) ∈ ∂F (x̄, p̄)} .

If 0 ∈ ∂Fp̄ (x̄), then there exists z such that (0, z) ∈ ∂F (x̄, p̄), but condition (b)
implies z �= 0, which contradicts statement (2.4). If 0 /∈ ∂Fp̄ (x̄), this means that
there is no z such that (0, z) ∈ ∂F (x̄, p̄) and implies statement (2.4). So 0 /∈ ∂Fp̄ (x̄)
is equivalent to C not having the Aubin property at p̄ for x̄ as claimed.

The calculation of the value lip C (p̄ | x̄) follows from the definition of the coderiva-
tive D∗C (p̄ | x̄) and its relation to the normal cone through the Mordukhovich crite-
rion. If F (x̄, p̄) < ᾱ, then the normal cone is {(0, 0)}, giving us the required value of
lip C (p̄ | x̄).

To obtain the Lipschitz modulus from the graphical modulus, one may use [21,
Theorem 9.38], but Proposition 6.2 is sufficient for our purposes in this paper.

In sections 3 to 6, we will be using the general principle illustrated in Theorem
2.10 to study where the pseudospectrum Λε has the Aubin property and also to
illustrate how this can identify where Λε is Lipschitz continuous and give a value of
the Lipschitz constant.

One may immediately try to apply Theorem 2.10 to show that Λε has the Aubin
property for A at z. In this case, p = A, x = z, and so C (p) = Λε (A), F (x, p) =
σ (A− zI) = σe (A, z). However, σe is not a regular function, but this can be overcome
by studying −σe instead, which is regular if A − zI is nonsingular. This is what we
will do in the analysis that follows.

3. General results. First, we are interested in finding out whether the functions
−σe and 1

σe enjoy similar regularity properties so that we can deduce properties of
σe. We recall a result on the reciprocals of functions.

Proposition 3.1 (see [20, Corollary 1.111(iii)]). For any function h : R
n → R

at z where h (z) > 0, we have ∂h (z) = h (z)
2
∂
(
− 1

h

)
(z), and h is regular at z if and

only if − 1
h is regular there.

The set of minimal singular vectors of A, MSV (A), is defined below.
Definition 3.2. For a matrix A, the left and right singular vectors corresponding

to the smallest singular value of A are the pairs (u, v) ∈ C
n×C

n, ‖u‖ = ‖v‖ = 1, which
appear in the appropriate columns of U and V in some singular value decomposition
A = USV H of A. We refer to u and v as minimal singular vectors, and we denote
the set of pairs of minimal singular vectors of A as MSV (A). Furthermore, we define
Y : Mn ⇒ C by

Y (A) :=
{
vHu | (u, v) ∈ MSV (A)

}
.

An equivalent definition given in the introduction is to have pairs of unit vectors
(u, v) satisfying the equations σ (A)u = Av and σ (A) v = AHu.
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The following result summarizes a complete characterization of left and right
minimal singular vectors when we have one particular singular value decomposition,
which is helpful for the case where the smallest singular value is multiple.

Proposition 3.3. Consider a matrix A ∈ Mn with singular value decomposition
(for unit vectors uj , vj)

A =

n∑
j=1

σjujv
H
j = USV H ,

where σ1 = σ2 = · · · = σm < σj for all j > m. Define matrices Ū = (u1 u2 · · · um)
and V̄ = (v1 v2 · · · vm). Then

MSV (A) =
{(

Ūq, V̄ q
)
| q ∈ C

m, ‖q‖ = 1
}

if A is invertible (in other words, σ1 > 0) and

MSV (A) =
{(

Ūq1, V̄ q2
)
| q1, q2 ∈ C

m, ‖q1‖ = ‖q2‖ = 1
}

if A is singular.
Proof. The equations Av = σ (A)u and AHu = σ (A) v require u to be an

eigenvector for AAH and v to be an eigenvector for AHA, and so they lie in the
subspaces spanned by the columns of Ū and V̄ , respectively. We have assumed that
these columns are placed at the left of U and V . Then let v = V̄ q. As we want a v
of unit length, we must have ‖q‖ = 1. Since A is invertible, σ := σ (A) > 0, and so

u =
1

σ
Av =

1

σ
USV H V̄ q =

1

σ
US

(
I

0

)
q = U

(
I

0

)
q = U

(
q

0

)
= Ūq.

Thus MSV (A) ⊂
{(

Ūq, V̄ q
)
| q ∈ C

m, ‖q‖ = 1
}
. The reverse is straightforward.

If A is singular, then as before, u = Ūq1 and v = V̄ q2 for some unit vectors q1, q2.
It is evident that u and v satisfy the relations σ (A)u = Av and σ (A) v = AHu, so
we are done.

The significance of Y (A) will become clear later in sections 4 and 5. We first
show a result on Y (A).

Proposition 3.4. If A is invertible, then Y (A) is convex.
Proof. We make the observation that the set Y (A) can be determined as follows.

Let Ū and V̄ be as described in Proposition 3.3. The numerical range of a matrix
B ∈ Mn is the set

{
vHBv | v ∈ C

n, ‖v‖ = 1
}
, denoted by W (B), and is convex by

the Toeplitz–Hausdorff theorem [15, Property 1.2.2]. Then

Y (A) =
{
vHu | (u, v) ∈ MSV (A)

}
=

{
qH V̄ H Ūq | ‖q‖ = 1

}
(by Proposition 3.3)

= W
(
V̄ H Ū

)
, the numerical range of V̄ H Ū ,

establishing the convexity of Y (A).
For singular matrices A, Y (A) need not be convex. Take, for example, the singular

value decomposition

A =

(
1 0
0 0

)
=

(
1 0
0 1

)(
1 0
0 0

)(
1 0
0 1

)
.
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With this matrix,

Y (A) =

{
q1

(
0 1

)(0

1

)
q2 | q1, q2 ∈ C, |q1| = |q2| = 1

}
= {q ∈ C | |q| = 1} ,

which is not convex.

4. Subdifferential calculus. This section collects some results about subd-
ifferential calculus involving σe : Mn × C → R+, where σe (A, z) = σ (A− zI). As
suggested in Figure 1, there is a link between the subdifferential ∂σe (A, z) and normal
cone Ngph Λε (A, z) for σe (A, z) = ε. Before we can apply the appropriate theorems in
[21], we have to calculate ∂σe (A, z), establish regularity properties, and characterize
whether 0 ∈ ∂σe (A, z).

When the smallest singular value is simple, σ and σe are analytic, as the next
lemmas assert.

We remind the reader that the spaces Mn and Mn×C have (real) inner products
defined by

〈A,B〉 = Re tr
(
AHB

)
for A,B ∈ Mn

and

〈(X,x) , (Y, y)〉 = Re
(
tr
(
XHY

)
+ xHy

)
for X,Y ∈ Mn and x, y ∈ C.

Lemma 4.1. If the invertible matrix A has a simple smallest singular value, then
the function σ : Mn → R+ is real-analytic at A, with gradient

∇σ (A) = uvH

for any (u, v) ∈ MSV (A).
The proof for the above lemma is standard (for example, [4, Theorem 7.1]), while

the lemma below follows by noticing that σe = σ ◦ L and applying the chain rule,
where L : Mn × C → C is defined by L (A, z) = A− zI.

Lemma 4.2. If z /∈ Λ (A) and A− zI has a simple smallest singular value, then
the function σe : Mn × C → R+ is real-analytic at (A, z), with gradient

∇σe (A, z) =
(
uvH ,−vHu

)
for any (u, v) ∈ MSV (A− zI).

The next two results are generalizations of Lemmas 4.1 and 4.2 to the nonsmooth
case, and they calculate the subgradients needed in the main result in section 5.

Proposition 4.3. Suppose z /∈ Λ (A). Then

∂ (−σe) (A, z) = conv
{(

−uvH , vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

Furthermore, −σe is regular at (A, z) and globally Lipschitz.
Proof. We consider the functions

σ̄e : Mn × C → R+, ι : Mn → Mn and L : Mn × C → Mn

defined by

σ̄e (A, z) = σ̄
(
(A− zI)

−1
)
, ι (B) = B−1 and L (A, z) = A− zI.



1058 A. S. LEWIS AND C. H. J. PANG

That is, σ̄e = σ̄◦ι◦L. To evaluate the subdifferential of this function, we apply a chain
rule [21, Theorem 10.6]. Given a matrix B, we seek to evaluate ∇ (ι ◦ L) (A, z)

∗
(B),

which is, by the chain rule, ∇L(A, z)∗(∇ι(A− zI)∗(B)).
As σ̄ is everywhere Lipschitz, ∂∞σ̄ (ι ◦ L (A, z)) = {0}. Furthermore, since σ̄ is

convex, it is regular at ι ◦ L (A, z), and so the conditions for [21, Theorem 10.6] are
satisfied.

It is easy to check the identity L∗ (B) = (B,−trB). (Note that L is linear so
∇L = L and ∇L∗ = L∗.) Using the binomial expansion

(M + Δ)
−1

= M−1 −M−1ΔM−1 + o (Δ) ,

it follows that ∇ι (M) (B) = −M−1BM−1, so ∇ι (M)
∗
(B) = −M−HBM−H follows

easily.
Next, we evaluate ∂σ̄e (A, z). Let the singular value decomposition of (A− zI)

be USV H . Then the singular value decomposition of (A− zI)
−1

is V S−1UH , and

(A− zI)
−H

= US−1V H . So

∂σ̄e (A, z) = ∇L (A, z)
∗ ∇ι (A− zI)

∗
∂σ̄

(
(A− zI)

−1
)
.

We know that

∂σ̄ (B) = conv
{
uvH | ‖u‖ = ‖v‖ = 1, Bv = σ̄ (B)u,BHu = σ̄ (B) v

}
.

(See, for example, [23].) Therefore,

∂σ̄
(
(A− zI)

−1
)

= conv
{
vuH | (u, v) ∈ MSV (A− zI)

}
.

Then for any (u, v) ∈ MSV (A− zI), we have

∇L (A, z)
∗ ∇ι (A− zI)

∗ (
vuH

)
= ∇L (A, z)

∗ (−US−1V HvuHUS−1V H
)

= σ (A− zI)
−2 ∇L (A, z)

∗ (−uvH
)

= σ (A− zI)
−2 (−uvH , tr

(
uvH

))
= σ (A− zI)

−2 (−uvH , vHu
)
,

and so

∂σ̄e (A, z) = σ (A− zI)
−2

conv
{(

−uvH , vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

By Proposition 3.1, we conclude that

∂ (−σe) (A, z) = ∂

(
− 1

σ̄e

)
(A, z)

= σ̄e (A, z)
−2

∂σ̄e (A, z)

= conv
{(

−uvH , vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

The function −σe is regular at (A, z) because σ̄ is regular and both the chain
rule [21, Theorem 10.6] and Proposition 3.1 guarantee the preservation of regularity.
Also, the function −σe is globally Lipschitz because −σe = −σ ◦L is the composition
of two globally Lipschitz functions.
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From the definition of Λε (A) = {z | σA (z) ≤ ε}, where σA : C → R+ is defined
by σA (z) = σ (A− zI), it is clear that the functions σ and σA figure prominently
in the study of pseudospectra. The following two results can be seen as nonsmooth
analogues of [4, Theorem 7.1 and Corollary 7.2]. Even though σ and σA are not
necessarily smooth, we are able to prove that −σ and −σA are regular and calculate
their subgradients.

Proposition 4.4. The function −σ is regular at every nonsingular matrix A ∈
Mn, with

∂ (−σ) (A) = −conv
{
uvH | (u, v) ∈ MSV (A)

}
.

Proof. Define LMn : Mn → Mn × C by LMn (A) = (A, 0), so we have −σA =
(−σe) ◦ LMn . Clearly LMn is smooth, with ∇LMn = I × 0 at all points. (∇LMn)

∗
:

Mn × C → Mn is just the natural projection. Thus, by appealing to [21, Theorem
10.6] and Proposition 4.3, we get what we need.

Proposition 4.5. For a matrix A, consider the function σA : C → R+ defined
by σA (z) = σ (A− zI). If z /∈ Λ (A), then

∂ (−σA) (z) = Y (A− zI) ,

and −σA is regular at z and globally Lipschitz.
Proof. The proof is similar to the proof above, but we work through the details for

completeness. We note −σA = (−σe)◦LA, where LA : C → Mn×C, LA (z) = (A, z).
Clearly LA is smooth, with ∇LA = 0 × I at all points. Furthermore, (∇LA)

∗
:

Mn × C → C is just the natural projection. Thus, by appealing to a chain rule [21,
Theorem 10.6] and Proposition 4.3, we have

∂ (−σA) (z) = (∇LA)
∗
∂ (−σe) (A, z)

= Y (A− zI) .

As in Proposition 4.3, σA is globally Lipschitz because it is a composition of two
globally Lipschitz functions.

We note that the assumptions that A− zI is nonsingular in Proposition 4.3 and
A is nonsingular in Proposition 4.4 cannot be dropped in the proposition below.

Proposition 4.6. If z ∈ Λ (A), then −σe is not regular at (A, z). Similarly, −σ
is not regular at A if A is singular.

Proof. Take Ū and V̄ to the matrices corresponding to the minimal left and right
singular vectors of A − zI in the statement of Proposition 3.3. For small ε > 0, we
have

−σe
(
A + εŪ V̄ H , z

)
= −σe (A, z) − ε

and − σe
(
A− εŪ V̄ H , z

)
= −σe (A, z) − ε.

Hence if (B, x) ∈ ∂̂ (−σe) (A, z), we have

−σe
(
A± εŪ V̄ H , z

)
≥ −σe (A, z) +

〈
(B, x) ,

(
±εŪ V̄ H , 0

)〉
+ o (ε)

=⇒ −ε ≥ ε
〈
(B, x) ,

(
±Ū V̄ H , 0

)〉
+ o (ε) .

Dividing by ε throughout and taking limits as ε ↓ 0, we have

−1 ≥
〈
(B, x) ,

(
±Ū V̄ H , 0

)〉
=⇒ −2 ≥

〈
(B, x) ,

(
Ū V̄ H , 0

)〉
+
〈
(B, x) ,

(
−Ū V̄ H , 0

)〉
= 0,
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which is obviously a contradiction. This means that ∂̂ (−σe) (A, z) = ∅. To show that
∂ (−σe) (A, z) �= ∅, we note that for small ε > 0, we have(

−u1v
H
1 , vH1 u1

)
∈ ∂̂ (−σe)

(
A + εŪ V̄ H , z

)
by Proposition 4.3, where the minimal left and right singular vectors u1, v1 are defined
in the statement of Proposition 3.3. Taking ε ↓ 0, this ensures that (−u1v

H
1 , vH1 u1) ∈

∂(−σe)(A, z), and thus ∂ (−σe) (A, z) �= ∅. Since ∂ (−σe) and ∂̂ (−σe) differ and
appealing to [21, Corollary 8.11], −σe is not regular at (A, z). The proof for −σ is
similar.

Proposition 4.7. The resolvent norm nA : C → R defined by nA(z) = ‖(zI −
A)−1‖ is regular at every point where z /∈ Λ (A), with

∂nA (z) = nA (z)
2
Y (A− zI) .

Proof. From the identity nA = 1/σA and Propositions 3.1 and 4.5, we note the
following calculations:

∂nA (z) =nA (z)
2
∂

(
− 1

nA

)
(z)

=nA (z)
2
∂ (−σA) (z)

=nA (z)
2
Y (A− zI) .

This motivates the following definition.
Definition 4.8. A point z ∈ C is resolvent-critical for a square matrix A if

either z ∈ Λ (A) or 0 ∈ Y (A− zI).
Thus resolvent-critical points that are not eigenvalues are simply critical points of

the resolvent norm nA (in the nonsmooth sense). Recall that, for a locally Lipschitz
function f , ∂◦f (x), the convex hull of ∂f (x), is the Clarke subdifferential of f at
x and that x̄ is Clarke-critical if 0 ∈ ∂◦f (x̄). Since σA is globally Lipschitz, the
following holds as well.

Theorem 4.9. For a given matrix A, the following are equivalent:
(1) z is resolvent-critical.
(2) z is Clarke-critical for −σA.
(3) z is Clarke-critical for σA.
Proof. Since σA is Lipschitz, we have ∂◦ (−σA) (z) = −∂◦σA (z) by [9, Proposition

2.3.1]. This means that (2) and (3) are equivalent.
Next we prove that (1) implies (2). If z is resolvent-critical, then either z is an

eigenvalue of A or 0 ∈ ∂ (−σA) (z). In the second case, z is Clarke-critical for −σA

because ∂ (−σA) (z) ⊂ ∂◦ (−σA) (z). In the first case, z is a maximizer of −σA, and
so z is Clarke-critical.

Lastly, we prove that (2) implies (1). If z is not resolvent-critical, then z is not
an eigenvalue, and 0 /∈ ∂ (−σA) (z). But ∂ (−σA) (z) = ∂◦ (−σA) (z) by the regularity
of −σA at z, so we are done.

Example 4.10. Table 3 shows some examples where 0 is a resolvent-critical point
of A. (In the third example, the resolvent-critical point is close to 0 but not exactly at
0.) These plots were obtained with EigTool [24]. The curves represent the boundaries
of the pseudospectra Λε (A) for ε = 10α, where α is the number corresponding to the
line generated by EigTool in the legend on the right. The third example is found in
[12].
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Table 3

Examples of pseudospectra for Example 4.10.

A Diagram

(
1 1
0 −1

)

Smooth Saddle

dim = 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

−0.409

−0.3423

−0.2756

−0.209

−0.1423

−0.0757

−0.009

(
1 0
0 −1

)

Nonsmooth Saddle

dim = 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

−

⎛
⎜⎜⎜⎝

1 5 52 53 54

0 1 5 52 53

0 0 1 5 52

0 0 0 1 5
0 0 0 0 1

⎞
⎟⎟⎟⎠

Local minimum of nA

dim = 5

−8 −6 −4 −2 0 2 4

−6

−4

−2

0

2

4

6

−2.8

−2.4

−2

−1.6

−1.2

−0.8

−0.4

0

We also have an alternative proof to [4, Theorem 9.2] after the remark below.
Remark 4.11. The set

G (z) =
{
vH (A− zI) v | v ∈ V (z) , ‖v‖ = 1

}
,

where the subspace V (z) ⊂ C
n is spanned by all right singular vectors of A − zI as

defined in [4, Section 9], is equal to σ (A− zI)Y (A− zI).
Proposition 4.12. If z̄ is not resolvent-critical and σA (z̄) = ε, then the set

Λc
ε (A) is Clarke regular at z̄, with normal cone NΛc

ε(A) (z̄) = pos (Y (A− z̄I)).
Proof. This involves applying Proposition 4.5 to a result on level sets [21, Propo-

sition 10.3].
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The conditions below on ∂σe (A, z) and ∂ (−σe) (A, z) are needed in a manner
similar to condition (b) in Theorem 2.10 in the proof of our main result.

Proposition 4.13. The condition (0, 0) ∈ ∂σe (A, z) holds if and only if z ∈
Λ (A). Also, if z /∈ Λ (A), then (0, 0) /∈ ∂ (−σe) (A, z).

Proof. If σe (A, z) = 0, then (A, z) is a local minimizer, and thus (0, 0) ∈
∂σe (A, z). On the other hand, if σe (A, z) > 0, we need to prove that (0, 0) /∈
∂σe (A, z). We try to evaluate ∂̂σe (A, z). From Proposition 4.3, we know that at
points where the multiplicity of the singular value σ (A− zI) is greater than one, σe

is not differentiable. By [21, Corollary 9.21], ∂̂σe (A, z) = ∅ at these points. For points
where the multiplicity of the singular value is one, the norm calculation tells us that
the only point in ∂̂σe (A, z) has norm at least one; the only element in ∂̂σe (A, z) is
of the form

(
uvH ,−vHu

)
, and the matrix part already contributes one to the norm.

So it is impossible that (0, 0) ∈ ∂σe (A, z).
Next, we move on to ∂ (−σe) (A, z). Take Ū , V̄ to be the matrix corresponding

to the left and right singular vectors of A− zI in the sense of Proposition 3.3. Note
that

(
Ū V̄ H , 0

)
represents a direction of linear descent, as

−σe
(
A + εŪ V̄ H , z

)
= −σe (A, z) − ε

for small ε, and so we have (0, 0) /∈ ∂̂ (−σe) (A, z). Due to regularity (Proposition
4.3), we have (0, 0) /∈ ∂ (−σe) (A, z).

Despite the fact that σe is not regular, we are still able to calculate the subdif-
ferential ∂σe (A, z).

Proposition 4.14. If z /∈ Λ (A), then

∂σe (A, z) =
{(

uvH ,−vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

Proof. We observe that

∂σe (A, z) ⊂ −∂ (−σe) (A, z)

= conv
{(

uvH ,−vHu
)
| (u, v) ∈ MSV (A− zI)

}
by [21, Corollary 9.21] and Proposition 4.3. Next, note that if (B,w) ∈ ∂σe (A, z),
then

(B,w) ∈ conv
{(

uvH ,−vHu
)
| (u, v) ∈ MSV (A− zI)

}
,

and so we may write (B,w) =
∑k

i=1 λi

(
uiv

H
i ,−vHi ui

)
for a convex combination of

left and right singular vectors ui, vi corresponding to the smallest singular value. But
since the 2-norm is a strictly convex norm, ‖B‖ < 1 if k > 1 and (ui, vi)’s are not
complex multiples each other. We take a closer look: (B,w) can be written as a
limit of (Bi, wi) = ∇σe (Ai, zi), where (Ai, zi) → (A, z) by [21, Corollary 9.21]. Since
‖Bi‖ = 1, it follows that ‖B‖ = 1.

With this, we conclude that (B,w) = (uv∗,−v∗u) for some (u, v) ∈ MSV (A− zI),
and so

∂σe (A, z) ⊂
{(

uvH ,−vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

To prove the other containment, note that, for any (u, v) ∈ MSV (A− zI), we
have

∂̂σe
(
A− δuvH , z

)
=

{
∇σe

(
A− δuvH , z

)}
=

{(
uvH ,−vHu

)}
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for 0 < δ < ε by Lemma 4.2. Taking limits as δ ↓ 0, we have
(
uvH ,−vHu

)
∈

∂σe (A, z), which completes the proof.

5. Main result. Before proving our main result, we make a statement about
the normal cones Ngph Λc

ε
(A, z) and Ngph Λε (A, z). We make use of properties that

we have established in section 4 to establish the link between level sets and normal
vectors.

Proposition 5.1. If ε = σe (A, z) > 0, then

Ngph Λc
ε
(A, z) = pos conv

{(
−uvH , vHu

)
| (u, v) ∈ MSV (A− zI)

}
,

Ngph Λε
(A, z) = pos

{(
uvH ,−vHu

)
| (u, v) ∈ MSV (A− zI)

}
.

Proof. Apply a result on level sets [21, Proposition 10.3], Proposition 4.13, and
the fact that −σe is Lipschitz to get

Ngph Λc
ε
(A, z) = pos (∂ (−σe) (A, z)) .

Next, apply Proposition 4.3 to deduce the first result.
By [21, Proposition 10.3] and Proposition 4.14, we have

Ngph Λε
(A, z) ⊂ pos ∂σe (A, z)

= pos
{(

uvH ,−vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

Furthermore, if σ (A− zI) is simple, then σe is smooth and regular at (A, z) by Lemma
4.2, and so the above inclusion holds with equality.

For the opposite containment, take any (u, v) ∈ MSV (A− zI). Consider the
pair

(Aδ, zδ) :=
(
(1 + δ)A− εδuvH , (1 + δ) z

)
for small δ > 0.

At these points, σe is smooth (and thus regular) because the singular value is of
multiplicity one with corresponding singular vectors (u, v), and σe (Aδ, zδ) = ε. Thus(

uvH ,−vHu
)
∈ N̂gph Λε

(
(1 + δ)A− εδuvH , (1 + δ) z

)
.

Taking δ ↓ 0, we see that
(
uvH ,−vHu

)
∈ Ngph Λε (A, z). Since Ngph Λε (A, z) is a cone,

we have the formula for Ngph Λε (A, z) as claimed.
The following is the main result that summarizes the links between Figure 1 in

the introduction.
Theorem 5.2. Consider a point z /∈ Λ (A). Let ε = σe (A, z). Then the following

are equivalent:
(1) z is not resolvent-critical for A.
(2) Λc

ε has the Aubin property at A for z.
(3) Λε has the Aubin property at A for z.
Proof. For the purposes of the proof, we introduce several other properties:
(4) (Mn × {0}) ∩Ngph Λc

ε
(A, z) = {0}.

(5) D∗Λc
ε (A | z) (0) = {0}.

(6) (Mn × {0}) ∩Ngph Λε (A, z) = {0}.
(7) D∗Λε (A | z) (0) = {0}.
Properties (4) and (5) are equivalent because α ∈ D∗Λc

ε (A | z) (β) if and only
if (α,−β) ∈ Ngph Λc

ε
(A, z) by the definition of coderivatives [21, Definition 8.33].



1064 A. S. LEWIS AND C. H. J. PANG

Properties (5) and (2) are equivalent by the Mordukhovich Criterion [21, Theorem
9.40]. The same goes for properties (6), (7), and (3).

Next, we show the equivalence of properties (1) and (4). We apply Proposition
5.1 to reduce property (4) to

(Mn × {0}) ∩ pos conv
{(

−uvH , vHu
)
| (u, v) ∈ MSV (A− zI)

}
= {0} .

(1 ⇒ 4) Suppose that z is not resolvent-critical, that is, 0 /∈ Y (A− zI), and yet
property (4) fails. Then there is some nonzero pair with second coordinate (the one
in C) zero lying in

pos conv
{(

−uvH , vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

This means that there is a convex combination of pairs
(
−uvH , vHu

)
such that their

second coordinate is zero. Then 0 ∈ Y (A− zI) (appealing to Proposition 3.4), a
contradiction.

(1 ⇐ 4) If property (1) fails, there are minimal left and right singular vectors u, v
such that vHu = 0, and then

(
−uvH , vHu

)
is a nonzero element in

(Mn × {0}) ∩ pos conv
{(

−uvH , vHu
)
| (u, v) ∈ MSV (A− zI)

}
.

So we have proved the equivalence of properties (1) and (4). We proceed to prove
the equivalence of properties (1) and (6). We lose regularity, but nevertheless, the
proof still looks similar.

(1 ⇒ 6) We prove (4 ⇒ 6). If 0 /∈ Y (A− zI), then (Mn × {0})∩Ngph Λc
ε
(A, z) =

{0}. But Proposition 5.1 gives

{0} ⊂ (Mn × {0}) ∩Ngph Λε (A, z)

⊂ (Mn × {0}) ∩ −Ngph Λc
ε
(A, z)

= {0} .

(1 ⇐ 6) . If property (1) fails, there are minimal left and right singular vectors
u, v such that vHu = 0, and thus

(
uvH ,−vHu

)
is a nonzero element in (Mn × {0})∩

Ngph Λε
(A, z).

When we consider fixing the matrix A and increasing ε, it is natural to ask whether
the map ε �→ Λε (A) is Lipschitz.

Proposition 5.3. Given z ∈ C, the map ε �→ Λε (A) has the Aubin property at
σA (z) for z if and only if 0 /∈ ∂σA (z), whereas the map ε �→ Λc

ε (A) has the Aubin
property at σA (z) for z if and only if 0 /∈ ∂ (−σA) (z) (or equivalently, assuming
z /∈ Λ (A), z is not resolvent-critical for A).

Proof. A straightforward application of [21, Theorem 9.41(b)] on σA gives us
0 /∈ ∂σA (z) if and only if the map ε �→ lev≤εσA = Λε (A) has the Aubin property at
ε for z, which is the first part of what we seek to prove. The second part is similar,
using Proposition 4.5.

A particular example worked out in full detail exploiting this is highlighted in [6].
It is natural to ask whether there are any differences between Theorem 5.2 and

the two parts of Proposition 5.3, and it comes down to comparing ∂ (−σA) and ∂σA.
In general, if z is not an eigenvalue of A,

−∂σA (z) ⊂ ∂ (−σA) (z) = Y (A− zI)



VARIATIONAL ANALYSIS OF PSEUDOSPECTRA 1065

by Proposition 4.5 and [21, Corollary 9.21], but the inclusion can be strict. Consider
the matrix Ā = diag (1,−1, i,−i) in Example 2.6. Here,

∂ (−σA) (0) = {a + bi | |a| + |b| ≤ 1} ,

so 0 is resolvent-critical while ∂σA (0) = {1,−1, i,−i}.
6. Lipschitz continuity of pseudospectra. The results in the last section

study the Aubin property of the pseudospectra Λε. The next natural step is to
evaluate the graphical modulus and investigate the Lipschitz continuity of Λε.

If σ (A− zI) = ε > 0, then from Proposition 5.1 and the definition of the coderiva-
tive, we can deduce the formula for D∗Λc

ε (A | z) (c). To keep the expressions compact,
we understand that (ui, vi) ranges over MSV (A− zI) whenever ui, vi appear in the
formulas below. We have

D∗Λc
ε (A | z) (c)

=

{
−k

∑
i

λiuiv
H
i | c = −k

∑
i

λiv
H
i ui,

∑
i

λi = 1, λi ≥ 0, k ≥ 0

}

=

{ {
c
∑

i λiuiv
H
i∑

i λivH
i ui

|
∑

i λiv
H
i ui �= 0

}
if c �= 0,

pos
{∑

i λiuiv
H
i |

∑
i λiv

H
i ui = 0

}
if c = 0,

and

D∗Λε (A | z) (c)

=
{
kuvH | c = kvHu, k ≥ 0, (u, v) ∈ MSV (A− zI)

}
=

{ {
cuv

H

vHu
| (u, v) ∈ MSV (A− zI) , vHu �= 0

}
if c �= 0,

pos
{
uvH | (u, v) ∈ MSV (A− zI) , vHu = 0

}
if c = 0.

We can then calculate the graphical moduli for Λε and Λc
ε in the theorem below.

Theorem 6.1. We have the following graphical moduli:

lip Λε (A | z) =

{
1/d (0, Y (A− zI)) if σ (A− zI) = ε,
0 if σ (A− zI) < ε,

lip Λc
ε (A | z) =

{
1/d (0, Y (A− zI)) if σ (A− zI) = ε,
0 if σ (A− zI) > ε.

(Here, we interpret 1/0 = +∞.)
Proof. It is clear that if σ (A− zI) < ε, then (A, z) lies in the interior of gph Λε,

so Ngph Λε (A, z) = {(0, 0)}, and so

lip Λε (A | z) = |D∗Λε (A | z)|+ = 0.

Similarly, lip Λc
ε (A | z) = 0 if σ (A− zI) > ε.

If σ (A− zI) = ε and 0 ∈ Y (A− zI), then Λε and Λc
ε do not have the Aubin

property at A for z, and so

lip Λε (A | z) = lip Λc
ε (A | z) = ∞.

By the Mordukhovich criterion [21, Theorem 9.40] and the definition of outer
norms [21, Section 9D], we have lip Λc

ε (A | z) to be

sup
c	=0

sup
d∈D∗Λc

ε(A|z)(c)

‖d‖
|c| ,
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or, in other words, the infimum of all κ such that

(6.1) d ∈ D∗Λc
ε (A | z) (c) =⇒ ‖d‖ ≤ κ |c| .

In view of the formula for D∗Λc
ε (A | z), formula (6.1) is equivalent to

(6.2)
∥∥∥∑λiuiv

H
i

∥∥∥ ≤ κ
∣∣∣∑λiv

H
i ui

∣∣∣
for all (ui, vi) ∈ MSV (A− zI) , λi ≥ 0,

∑
λi = 1. To prove that lip Λc

ε (A | z) =
1/d (0, Y (A− zI)), it remains to prove that formula (6.2) is equivalent to

(6.3) κ ≥ 1/d (0, Y (A− zI)) .

Suppose that κ satisfies formula (6.2). Then for y ∈ Y (A− zI), we have some
(u, v) ∈ MSV (A− zI) such that y = vHu. Then

κ |y| =κ
∣∣vHu

∣∣
≥
∥∥uvH∥∥

=1.

Formula (6.3) follows. Next, suppose that κ satisfies formula (6.3). If (ui, vi) ∈
MSV (A− zI), λi ≥ 0 and

∑
λi = 1, we have

∑
λiv

H
i ui ∈ Y (A− zI) by the con-

vexity of Y (A− zI). Thus∥∥∥∑λiuiv
H
i

∥∥∥ ≤
∑

λi

∥∥uiv
H
i

∥∥
=1

≤κ
∣∣∣∑λiv

H
i ui

∣∣∣ .
Formula (6.2) follows, and so lip Λc

ε (A | z) = 1/d (0, Y (A− zI)). Similar and simpler
calculations give us lip Λε (A | z) = 1/d (0, Y (A− zI)).

We next turn to the Lipschitz constant for the pseudospectral mapping Λε. We
want to find lip∞Λε

(
Ā
)
, the Lipschitz modulus of the pseudospectral map at Ā. For

a set-valued map S : R
n ⇒ R

m, we are able to calculate lip∞S (x̄) from the graphical
modulus easily with the following formula.

Proposition 6.2 (see [20, Theorem 1.42]). If S : R
n ⇒ R

m is outer semicon-
tinuous and S is locally bounded at x̄, then

lip∞S (x̄) = max
y∈S(x̄)

lipS (x̄ | y) .

Thus the Lipschitz constants for Λε are easily obtained.
Proposition 6.3. The following expressions are equal:

(i) lip∞Λε (A) ,

(ii) max
z∈Λε(A)

{lip Λε (A | z)} ,

(iii) max
z:σ(A−zI)=ε

{1/d (0, Y (A− zI))} ,

(iv) max
z

{
1/

∣∣vHu
∣∣ | (u, v) ∈ MSV (A− zI) , σ (A− zI) = ε

}
.

Proof. The expressions (i) and (ii) are equal by Proposition 6.2 and the fact
that Λε is compact and locally bounded. Then expressions (ii) and (iii) are equal by
Theorem 6.1, and expression (iv) is just an expansion of the definition of Y (·) applied
to expression (iii).
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7. Pseudospectral abscissa and pseudospectral radius. In this section we
apply our results on Lipschitz continuity of pseudospectra to reexplore earlier work
on the pseudospectral abscissa and pseudospectral radius in [4, 5, 19, 22].

Definition 7.1. Define the ε-pseudospectral abscissa αε : Mn → R by

αε (A) = max
z∈Λε(A)

Re (z) ,

and the ε-pseudospectral radius ρε : Mn → R+ by

ρε (A) = max
z∈Λε(A)

|z| .

Note that if ε > 0, then ρε (A) > 0. We shall establish the continuity properties of
αε and ρε. We begin with another routine piece of theory on parametric minimization.

Corollary 7.2 (to [21, Corollary 10.14]). Suppose that F : R
m ⇒ R

n is outer
semicontinuous and maps to compact sets. Define p : R

m → R and P : R
m ⇒ R

n

below by

p (u) = min
x∈F (u)

g (x) , P (u) = arg min
x∈F (u)

g (x) ,

where the lower semicontinuous function g : R
n → R is differentiable at all points in

P (ū) for some given ū ∈ R
m. Then p is

(a) Lipschitz continuous around ū if F has the Aubin property at ū for x̄ for all
x̄ ∈ P (ū), with

lip p (ū) ≤ max {|y| : y ∈ S} < ∞,

where S = {y | x̄ ∈ P (ū) , y ∈ D∗F (ū | x̄) (∇g (x̄))};
(b) strictly differentiable at ū with ∇p (ū) = ȳ if S = {ȳ}.
Proof. Let f : R

n × R
m → R̄ be defined by

f (x, u) = δgphF (u, x) + g (x) =

{
g (x) if x ∈ F (u) ,
∞ otherwise.

Then

p (u) = inf
x

f (x, u) , P (u) = arg min
x

f (x, u) .

Since F is outer semicontinuous, gphF is closed, so f is proper and lower semicon-
tinuous.

Next, we prove f is level bounded in x locally uniformly in u. That is, for each
ū ∈ R

m and α ∈ R, there is a neighborhood V of ū along with a bounded set B ⊂ R
n

such that {x | f (x, u) ≤ α} ⊂ B for all u ∈ V . Note that f (x, u) ≤ α means that
x ∈ F (u) and g (x) ≤ α. Since F is outer semicontinuous, choose V such that
F (u) ⊂ F (ū) + B for all u ∈ V , by the characterization of outer semicontinuity in
[21, Proposition 5.12]. The set B can be chosen to be F (ū) + B, and we are done.

Following the notation in [21, Corollary 10.13], for any x̄ ∈ P (ū),

M (x̄, ū) := {y | (0, y) ∈ ∂f (x̄, ū)}
= {y | (y, 0) ∈ ∂δgphF (ū, x̄) + {(0,∇g (x̄))}}

(by [21, Exercise 8.8(c)])

= {y | (y,−∇g (x̄)) ∈ NgphF (ū, x̄)}
(by [21, Exercise 8.14])

= D∗F (ū | x̄) (∇g (x̄))

(by [21, Definition 8.33]).
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Also,

M∞ (x̄, ū) := {y | (0, y) ∈ ∂∞f (x̄, ū)}
= {y | (y, 0) ∈ ∂∞δgphF (ū, x̄)}
= {y | (y, 0) ∈ NgphF (ū, x̄)}
= D∗F (ū | x̄) (0) .

This means that Y∞ (ū) :=
⋃

x̄∈P (ū) M∞ (x̄, ū) = {0}, so part (a) of [21, Corollary

10.14] applies. Furthermore, Y (ū), where Y (·) is defined in [21, Corollary 10.13], is

Y (ū) :=
⋃

x̄∈P (ū)

M (x̄, ū)

=
⋃

x̄∈P (ū)

D∗F (ū | x̄) (∇g (x̄)) ,

and so

lip p (ū) ≤ max
y∈Y (ū)

|y|

= max {|y| : x̄ ∈ P (ū) , y ∈ D∗F (ū | x̄) (∇g (x̄))} < ∞.

The rest of the claim follows by [21, Corollary 10.14].
The continuity of αε and ρε can be proved by the following proposition when the

conditions for Lipschitz continuity are absent. The proof is routine.
Proposition 7.3. Suppose that F : R

m ⇒ R
n is continuous and maps to compact

sets. If p, P , and g are defined as in Corollary 7.2 with g continuous, then p is
continuous and P is outer semicontinuous.

As a consequence of Corollary 7.2, we obtain the following result.
Corollary 7.4. The pseudospectral abscissa αε and pseudospectral radius ρε

are Lipschitz continuous at a matrix A if lip∞Λε (A) < ∞, with Lipschitz constants
bounded above by lip∞Λε (A).

Proof. Following the notation in Corollary 7.2, take F = Λε and g (x) = 〈−1, x〉.
Then αε = −p, and we obtain

lip αε (A) ≤ max{|y| : y ∈ D∗Λε (A | z) (−1)

, z ∈ Λε (A) ,Re (z) = αε (A)}
= max{1/d (0,R− ∩ Y (A− zI)) :

z ∈ Λε (A) ,Re (z) = αε (A)}

using our derivative computation before Theorem 6.1. If we take g (x) = − |x| instead,
then ρε = −p, and

lip ρε (A) ≤ max

{
|y| : y ∈ D∗Λε (A | z)

(
− z

|z|

)
,

z ∈ Λε (A) , |z| = ρε (A)

}

= max

{
1/d

(
0,R+

(
z

|z|

)
∩ Y (A− zI)

)
:

z ∈ Λε (A) , |z| = ρε (A)

}
.
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The upper bounds for lip αε (A) and lip ρε (A) obtained above are both not greater
than lip∞Λε (A) by Proposition 6.3, and so we are done.

8. Resolvent-critical points. Resolvent-critical points are crucial throughout
our analysis. They are also, for example, explicitly excluded in the analysis of the
quadratic convergence of the algorithm for finding the pseudospectral abscissa in [5].
We investigate their properties further.

Proposition 8.1. All resolvent-critical points lie in the numerical range of A.
Proof. Suppose that z is resolvent-critical. Then there exists a right singular

vector v of (A− zI) such that vH (A− zI) v = 0, which implies that vHAv = zvHv =
z if |v| = 1. This means that z lies in the numerical range of A.

Proposition 8.2. For ε large enough such that Λε (A) contains the numerical
range of A, W (A), in its interior, the map Λε : Mn ⇒ C is strictly continuous at A
for any point in Λε(A), and thus Lipschitz continuous at a neighborhood of A. For αε

and ρε to be Lipschitz continuous, we just need the interior of conv Λε (A) to contain
W (A).

Proof. For the first part, if Λε (A) contains W (A) in its interior, then the points in
the boundary of Λε are not resolvent-critical by the previous result. Apply Proposition
6.3.

For the second part, by the proof of Corollary 7.4, it suffices to show that if z
satisfies Re z = αε (A) and σ (A− zI) = ε, then z /∈ W (A). But if z satisfies these
conditions, then z ∈ conv Λε (A). The same goes for ρε.

Remark 8.3. In Table 3 in page 1061, the third example of a 5 × 5 matrix
illustrates that a resolvent-critical can lie outside the convex hull of the spectrum of
A. There is a resolvent-critical point close to 0, but the convex hull of the eigenvalues
is just {−1}.

With all that we have done so far, the following is a natural consequence of [3,
Corollary 8].

Corollary 8.4 (to [3, Corollary 8]). Given a matrix A, the set of resolvent-
critical values {σA (z) | z resolvent critical for A} is finite.

Proof. This is just the (semialgebraic) set of Clarke-critical values of σA by
Theorem 4.9, which is finite by [3, Corollary 8].

With the above result, we arrive at the following appealing result.
Corollary 8.5. Given a matrix A, the mappings Λε, αε, and ρε are Lipschitz

around A for all but finitely many ε ≥ 0, so, in particular, for all small ε > 0.
Proof. This is a direct consequence of Theorem 5.2 and Corollaries 8.4 and

7.4.
Remark 8.6. The conditions that guarantee Lipschitz continuity of the pseu-

dospectral abscissa αε in the result above are much more general than the conditions
in [4, Corollary 8.3]. Firstly, we do not need the assumption that active eigenvalues
are nonderogatory made in [4, Corollary 8.3], and our current result holds for all but
finitely many ε.

Here is another general observation on resolvent-critical points.
Theorem 8.7. For a fixed A, the set of resolvent-critical points is compact,

semialgebraic with empty interior, and contains eigenvalues as isolated points.
Proof. Denote the set of resolvent-critical points by SA. The set SA is bounded

by Proposition 8.1. It is clear that SA is semialgebraic. As σA is Lipschitz, ∂◦ (−σA)
has closed graph by [9, Proposition 2.1.5(b)], and thus SA is closed.

Suppose that SA does not have empty interior. Note that σA has to be constant
on a component by Corollary 8.4, and this would mean that σA is constant on a set of
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nonempty interior, which contradicts the fact that σA cannot have minimizers other
than at the eigenvalues of A [4, Theorem 4.2]. Thus SA has empty interior.

Lastly, SA can be written as a union of curves and points in C. If an eigenvalue,
say z̄, is not an isolated point in SA, then it is on some curve. This would mean that
σA is zero on a curve, which contradicts the fact that σA is zero only on the set of
eigenvalues, which is a finite set. Thus all eigenvalues are isolated in SA.

We call Λ′
ε (A) = {z | σ (A− zI) < ε} the strict pseudospectrum of A. The set

Λ′
ε (A) consists of at most n components (since each component must contain an

eigenvalue [22]), and the number of components is clearly a decreasing function of
ε. There will be some points z̄ ∈ C where some components meet as ε increases. If
Λ′
ε (A) has n components and z̄ lies on the boundary of two components of Λ′

ε (A),
then the distance between A and the set of matrices with repeated eigenvalues is ε
and is attained by some matrix Ā having z̄ as a repeated eigenvalue (see [1, Theorem
5.1]): It turns out that such points are resolvent-critical as the next theorem will
show, generalizing [1, Proposition 4.10].

Theorem 8.8. If z̄ is a common boundary point of two or more distinct compo-
nents of Λ′

ε (A), then z̄ is a resolvent-critical point.
Proof. To reduce notation, let us assume that z̄ = 0. The rest of the proof will

follow by a translation. We look at the structure of Λε (A) around 0, where ε > 0.
Since Λε (A) is semialgebraic, Λε (A) is locally conic about 0 by [11, Theorem 4.10].
That is, there is an r > 0 and a semialgebraic homeomorphism

h : Λε (A) ∩ rB → [0, 1] (Λε (A) ∩ r (bdry B))

between the two spaces. Since (Λε (A) ∩ r (bdry B)) is a finite union of arcs, it follows
that the boundary of Λε (A)∩ rB would consist of curves which start from 0 and end
at somewhere on r (bdry B). The diagram below illustrates this.

Λ (A) ∩ rB

h

[0, 1](Λ (A) ∩ r(bdry B)

We use a proof by contradiction. Suppose that 0 is not resolvent-critical. Then
0 /∈ Y (A), and by Proposition 4.12, Λc

ε (A) is Clarke regular at 0, with normal cone
NΛc

ε(A) (0) = R+Y (A). Note that NΛc
ε(A) (0) is pointed, otherwise 0 ∈ Y (A), contra-

dicting the assumption that 0 is not resolvent-critical.
The set {z | σ (A− zI) = ε} is semialgebraic and has empty interior since the

only local minimizers of σA are eigenvalues of A [4, Theorem 4.2], and so it is a union
of smooth curves. We now prove that the curves are boundaries of both Λε (A) and
Λc
ε (A). By considering the sign of σA−ε on either side of such a curve, we distinguish

three cases. In the following diagram, both Case 1 and Case 2 cannot hold, because
the local maxima and local minima of σA are resolvent-critical, and this would make 0
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resolvent-critical as well, since the set of resolvent-critical points is closed by Theorem
8.7.

σ(A − zI)

σ(A − zI)

σ(A − zI) =

0 0

σ(A − zI) =

σ(A − zI)

σ(A − zI)

Case 1 Case 2

Therefore, the general diagram would be as below, with the value of σA alternating
above and below ε as we circle the origin, crossing the curves where σA = ε.

==
=

=

=

=0

Two different arcs cannot be tangent at 0 since NΛc
ε(A) (0) will otherwise not be

pointed, as the diagrams below show.

=

=

=

=

Since Λc
ε (A) is Clarke regular at 0, its tangent cone TΛc

ε(A) (0) is convex, so the
picture above can contain only one sector where σA > ε. It now follows that 0 cannot
be the boundary point of two components of Λ′

ε (A). This completes the proof.
If we can prove the following about the pseudospectral abscissa αε, then we can

conclude that the pseudospectral abscissa is Lipschitz continuous.
Conjecture 8.9. The points where the pseudospectral abscissa αε are attained

are not resolvent-critical.
A natural question to ask after Theorem 8.7 is the following.
Conjecture 8.10. The number of resolvent-critical points is finite.
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ON THE SECOND-ORDER FEASIBILITY CONE: PRIMAL-DUAL
REPRESENTATION AND EFFICIENT PROJECTION∗

ALEXANDRE BELLONI† AND ROBERT M. FREUND‡

Abstract. We study the second-order feasibility cone F = {y ∈ Rn : ‖My‖ ≤ gT y} for given
data (M, g). We construct a new representation for this cone and its dual based on the spectral de-
composition of the matrix MT M − ggT . This representation is used to efficiently solve the problem
of projecting an arbitrary point x ∈ R

n onto F : miny{‖y − x‖ : ‖My‖ ≤ gT y}, which aside from
theoretical interest also arises as a necessary subroutine in the rescaled perceptron algorithm. We
develop a method for solving the projection problem to an accuracy ε, whose computational com-
plexity is bounded by O(mn2+n ln ln(1/ε)+n ln ln(1/ min{width(F), width(F∗)})) operations. Here
width(F) and width(F∗) denote the width of F and F∗, respectively. We also perform computational
tests that indicate that the method is extremely efficient in practice.

Key words. second-order cone, convex cone, projection, computational complexity, Newton
method

AMS subject classifications. 90C60, 90C51, 90C25, 49M15, 49M29

DOI. 10.1137/06067198X

1. Introduction and main results. Our notation is as follows: let K∗ denote
the dual of a convex cone K ⊂ R

k, i.e., K∗ := {z ∈ R
k : zT y ≥ 0 for all y ∈ K}. A

convex cone K is regular if it is closed, has nonempty interior, and contains no lines,
in which case K∗ is also regular; see Rockafellar [7]. Define the standard second-order
cone in R

k to be Qk := {y ∈ R
k : ‖(y1, . . . , yk−1)‖ ≤ yk}, where ‖ · ‖ denotes the

Euclidean norm. Let B(y, r) denote the Euclidean ball of radius r centered at y.
Given data (M, g) ∈ (Rm×n,Rn), our interest lies in the second-order feasibility

cone

F :=
{

y ∈ R
n : ‖My‖ ≤ gT y

}

=
{

y ∈ R
n :

(

My, gTy
)

∈ Qm+1
}

and its dual cone F∗.
We first take care of some trivial cases. When rank(M) = 0, it follows trivially

that F = {y ∈ R
n : gT y ≥ 0}, whereby F is either a half-space or all of R

n, depending
on whether g �= 0 or g = 0, respectively. When rank(M) = 1, M = fcT for some f, c,
and ‖My‖ = ‖f‖|cTy| for any y. This implies that F = {y ∈ R

n : (g − ‖f‖c)Ty ≥
0, (g+‖f‖c)Ty ≥ 0}, and hence F is the intersection of either one or two half-spaces.
We dispose of these trivial cases by making the following assumption about the data.

Assumption 1. rank(M) ≥ 2 and g �= 0.
We now describe our main representation result for F and F∗. It is elementary to

establish that MTM − ggT has at most one negative eigenvalue, and we can write its
eigendecomposition as MTM − ggT = QDQT , where Q is orthonormal (Q−1 = QT )
and D is the diagonal matrix of eigenvalues. For notational convenience we denote Di

and Qi as the ith diagonal component of D and the ith column of Q, respectively. By
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reordering the columns ofQ, we can presume that D1 ≥ · · · ≥ Dn andD1, . . . , Dn−1 ≥
0. By choosing either Qn or −Qn, we can further presume that gTQn ≥ 0. We
implicitly assume Q and D can be computed to within machine precision (in the
relative sense) in O(mn2) operations, consistent with computational practice.

Our interest lies mainly in the case when F is a regular cone, so we will hypothesize
that F is a regular cone for the remainder of this section. This hypothesis implies that
n− 1 ≤ rank(M) ≤ min{n,m}. (We indicate how to amend our results and proofs to
relax this hypothesis at the end of sections 2 and 3.) Our main representation result
is as follows.

Theorem 1. Suppose that F is a regular cone. Then D1, . . . , Dn−1 > 0 > Dn,
and

(i) F = {y : yTQDQT y ≤ 0, yTQn ≥ 0};
(ii) F∗ = {z : zTQD−1QT z ≤ 0, zTQn ≥ 0};

(iii) if y ∈ F and α ≥ 0, then z := −αQDQT y ∈ F∗. Furthermore, if y ∈ ∂F ,
then z ∈ ∂F∗ and zT y = 0;

(iv) if z ∈ F∗ and α ≥ 0, then y := −αQD−1QT z ∈ F . Furthermore, if z ∈ ∂F∗,
then y ∈ ∂F and zT y = 0.

Note that (i) and (ii) of Theorem 1 describe easily computable representations of
F and F∗ that have the same computational structure, in that checking membership
in each cone uses similar data, operations, etc., in a manner that is symmetric between
the dual cones. Parts (iii) and (iv) indicate that the same matrices in (i) and (ii) can
be used constructively to map points on the boundary of one cone to their orthogonal
counterpart in the dual cone.

Remark 1 (geometry of F and F∗
). Examining (i) and the property that Dn < 0,

the orthonormal transformation y → s := QT y maps F onto the axes-aligned el-
lipsoidal cone S := {s ∈ R

n :
√

∑n−1
j=1 Dis2i ≤

√

|Dn|sn} so that F is the im-

age of S under Q, F = {y :
√

∑n−1
i=1 Di(QTi y)2 ≤

√

|Dn|QTny}, and F∗ = {z :
√

∑n−1
i=1 (1/Di)(QTi z)2 ≤

√

1/|Dn|QTnz}. This establishes that F is indeed simply an
ellipsoidal cone whose axes are the eigenvectors of Q with dilations corresponding to
the eigenvalues of MTM − ggT . From this perspective, the representation of F∗ via
(ii) makes natural geometric sense. Also, the central axis of both F and F∗ is the
ray {αQn : α ≥ 0}. Last of all, note that −F = {y : yTQDQT y ≤ 0, yTQn ≤ 0} and
−F∗ = {z : zTQD−1QT z ≤ 0, zTQn ≤ 0}.

It turns out that the eigendecomposition of MTM − ggT = QDQT , while useful
both conceptually and algorithmically (as we shall see), is not even necessary for the
above representation of F and F∗. Indeed, Theorem 1 can alternatively be stated
replacing QDQT and QD−1QT by MTM − ggT and (MTM − ggT )−1. Under the
further hypothesis that rank(M) = n, the theorem can be restated as follows.

Corollary 1. Suppose that F is a regular cone and rank(M) = n. Then
(i) F = {y :

√

yT (MTM)y ≤ gT y};
(ii) F∗ = {z :

√

zT (MTM)−1z ≤ gT (MTM)−1z√
gT (MTM)−1g−1

};

(iii) if y ∈ F and α ≥ 0, then z := −α(MTM − ggT )y ∈ F∗. Furthermore, if
y ∈ ∂F , then z ∈ ∂F∗ and zT y = 0;

(iv) if z ∈ F∗ and α ≥ 0, then y := −α[(MTM)−1 − (MTM)−1ggT (MTM)−1

gT (MTM)−1g−1 ]z ∈ F .
Furthermore, if z ∈ ∂F∗, then y ∈ ∂F and zTy = 0.

The proofs of Theorem 1 and Corollary 1 are presented in section 2, along with
proofs that all of the stated quantities are well defined: in particular, D−1 exists and
gT (MTM)−1g − 1 > 0 under the given hypotheses.
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These representation results are used to solve the following dual pair of optimiza-
tion problems, where x ∈ R

n is a given point:

(1)

P : t∗ := miny ‖y − x‖ D : t∗ := maxz −xT z

s.t. y ∈ F , s.t. ‖z‖ ≤ 1
z ∈ F∗.

The problem P is the classical projection problem onto the cone F , whose solution
is the point in F closest to x, and strong duality is easily established for this pair of
problems. The problem D arises as a necessary subroutine in the rescaled perceptron
algorithm in [2]: the subroutine needs to efficiently solve D using x = xk that arises
at each outer iteration k of the algorithm. It is this latter problem that motivated our
interest in efficiently representing F∗ and solving both P and D. Notice that P/D
involve intersections of a Euclidean ball and a second-order feasibility cone. This
dual pair of problems is therefore a modest generalization of the trust region problem
of optimizing a quadratic function over a Euclidean ball, for which Ye [10] showed
how to combine a binary search and Newton’s method to obtain double-logarithmic
complexity. Using the representation results above and extending ideas from [10], we
develop an algorithm for solving (1) in section 3. The complexity of the algorithm
depends on the widths of the cones F and F∗, where the width τK of a cone K is
defined to be the radius of the largest ball contained in K that is centered at unit
distance from the origin:

τK := max
y,r

{r : B(y, r) ⊂ K, ‖y‖ ≤ 1}.

It readily follows from Theorem 1 that the widths of F and F∗ are simple functions of
the largest and smallest positive eigenvalues and the negative eigenvalue of MTM −
ggT , and it is straightforward to derive the following:

τF =

√

|Dn|
|Dn| +D1

and τF∗ =

√

1/|Dn|
1/|Dn| + 1/Dn−1

.

The main complexity result, which is proved in section 3, is as follows.
Theorem 2. Suppose that F is a regular cone, and x ∈ R

n satisfying ‖x‖ = 1
is given. Then feasible solutions (y, z) of (P ,D) satisfying a duality gap of at most σ
are computable in O(mn2 + n ln ln(1/σ) + n ln ln(1/min{τF , τF∗})) operations.

In section 4, we complement this theoretical computational complexity bound
with experimental computational results that indicate that the method is also ex-
tremely efficient in practice.

Last of all, we note that the hypothesis that F is regular can be removed with no
loss of strength of the results herein but with substantial expositional overhead. The
case when F is nonregular is discussed at the end of sections 2 and 3.

2. Proofs of representation results. Recall the eigendecomposition ofMTM−
ggT = QDQT , with D1 ≥ · · · ≥ Dn. A simple dimension argument establishes that
MTM − ggT has at most one negative eigenvalue, whereby D1, . . . , Dn−1 ≥ 0. By
choosing either Qn or −Qn, we can ensure that gTQn ≥ 0. In preparation for the
proof of Theorem 1, we first prove some preliminary results.

Proposition 1. Suppose that int F �= ∅. Then Dn < 0, and there exists y
satisfying ‖My‖ < gT y.
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Proof. We first suppose that there exists ȳ that satisfies ‖Mȳ‖ < gT ȳ. In this
case it easily follows that 0 > ȳT (MTM − ggT )ȳ = ȳTQDQT ȳ, whereby Dn < 0.
Next suppose that every y ∈ F satisfies ‖My‖ = gT y, and let ȳ ∈ int F . Since
ȳ ∈ int F , we have ‖M(ȳ + βd)‖ = gT (ȳ + βd) for all d ∈ B(0, 1) and all sufficiently
small positive β. Squaring the previous equation, then rearranging and cancelling
terms yields 2(dTMTMȳ− ȳT ggTd)+β(dTMTMd−dT ggTd) = 0, which is true only
if gTd = 0 ⇒Md = 0. This in turn implies that rank(M) = 1, violating Assumption
1. Therefore there exists y satisfying ‖My‖ < gT y.

One characterization of F∗ is as follows:

(2) F∗ = cl
{

MTλ+ gα : ‖λ‖ ≤ α
}

.

This result admits an elementary proof by a separating hyperplane argument and has
been part of the folklore of convex analysis for several decades. For a standard proof,
see, for example, Theorem 3.1 of Berman [3] applied to the second-order cone. The
lack of closure of T := {MTλ+ gα : ‖λ‖ ≤ α} can arise easily. Let M =

[−1 0
0 1

]

and
g =

[

1
0

]

. In this case, T = {(−λ1 + α, λ2) | ‖(λ1, λ2)‖ ≤ α}. It is easy to verify that
(0, 1) /∈ T but (ε, 1) ∈ T for every ε > 0 (set λ1 = 1

2ε −
ε
2 , λ2 = 1, and α = 1

2ε + ε
2 ),

which shows that T is not closed. For an analysis of cases when T is guaranteed to
be closed, see Pataki [5].

Proof of Theorem 1. Since int F �= ∅, Proposition 1 implies that Dn < 0, and
so, for the sake of this proof, we rescale (M, g) by 1/

√

|Dn| in order to conveniently
satisfy Dn = −1. (i) Define H := {y : yTQDQT y ≤ 0, yTQn ≥ 0} and L :=
{y : yTQDQT y ≤ 0, yT g ≥ 0}. We need to prove that H = F . It is straightforward
to check that F = L and, indeed, int F = int L = {y : yTQDQT y < 0, yT g > 0}
from Proposition 1, and this also readily establishes that Qn ∈ int F . For any y we
can write

(3)

yTQn = yT
(

−QDQT
)

Qn = yT
(

ggT −MTM
)

Qn =
(

My, gTy
)T (−MQn, g

TQn
)

,

where the final term’s two parenthetic vectors lie in R
m+1. Notice that (−MQn, g

TQn)
∈ int Qm+1, since Qn ∈ int F . If y ∈ F , then both vectors in the last term of (3) are
in Qm+1; hence yTQn ≥ 0 follows from the self-duality of Qm+1. Therefore y ∈ H,
showing that F ⊂ H. Next suppose that y ∈ H. Then y ∈ F unless gT y < 0, in
which case −y ∈ F . Using (3) we have

0 ≤ yTQn =
(

My, gTy
)T (−MQn, g

TQn
)

= −
(

−My,−gTy
)T (−MQn, g

TQn
)

≤ 0,

again because the two vectors in the last term lie in the self-dual cone Qm+1. This im-
plies that equality holds throughout, and hence (−My,−gTy) = (0, 0) since
(−MQn, g

TQn) ∈ int Qm+1, yielding the contradiction that gT y = 0. This estab-
lishes that F ⊂ H, completing the proof of (i).

(ii) Having established (i), suppose that Di = 0 for some i ∈ {1, . . . , n−1}. Then
(θQi)TQDQT (θQi) = 0 and QTn (θQi) = 0, whereby θQi ∈ F for all θ, violating the
hypothesis that F is regular. Therefore Di > 0 for all i ∈ {1, . . . , n − 1}, and hence
D−1 exists. Define J := {z : zTQD−1QT z ≤ 0, zTQn ≥ 0}. Suppose that z ∈ J
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and y ∈ F , in which case

yT z = yTQQT z =
n−1
∑

i=1

D
1
2
i

(

QTi y
)

D
− 1

2
i

(

QTi z
)

+ yTQnz
TQn

≥ −

√

√

√

√

n−1
∑

i=1

Di

(

QTi y
)2

√

√

√

√

n−1
∑

i=1

D−1
i

(

QTi z
)2 + yTQnz

TQn ≥ 0,

where the first inequality is an application of the Cauchy–Schwarz inequality and the
second inequality follows, since z ∈ J and y ∈ F using part (i). Thus z ∈ F∗, which
shows that J ⊂ F∗. Next let Q̄ denote the matrix of the first n − 1 columns of
Q, and let D̄ denote the diagonal matrix composed of the n − 1 diagonal compo-
nents D1, . . . , Dn−1. Then from part (i) we have F = {y :

√

yT Q̄D̄Q̄T y ≤ QTny} =
{y : ‖D̄ 1

2 Q̄T y‖ ≤ QTny}, and using (2) we know that F∗ = cl T , where T =
{Q̄D̄ 1

2 λ + Qnα : ‖λ‖ ≤ α}. Let z ∈ T , where z = Q̄D̄
1
2 λ + Qnα and ‖λ‖ ≤ α.

Then

zTQD−1QT z =
(

Q̄D̄
1
2λ+Qnα

)T

QD−1QT
(

Q̄D̄
1
2λ+Qnα

)

= λTλ− α2 ≤ 0,

and furthermore QTnz = α ≥ 0, whereby z ∈ J . Thus T ⊂ J . It then follows that
F∗ = cl T ⊂ cl J = J , which completes the proof of (ii).

To prove (iii), notice that QTnz = −αDnQ
T
ny ≥ 0 and

zTQD−1QT z = α2yTQDQTQD−1QTQDQTy = α2yTQDQT y ≤ (=) 0,

since y ∈ F (y ∈ ∂F) implies that yTQDQT y ≤ (=) 0, and hence z ∈ F∗ (z ∈ ∂F∗)
from part (ii). Furthermore yT z = −αyTQDQT y = 0 when y ∈ ∂F , completing the
proof of (iii). The proof of (iv) follows similar logic.

Before proving Corollary 1 we first prove the following.
Proposition 2. Suppose that int F �= ∅ and rank(M) = n. Then gT (MTM)−1g >

1 and ȳ := (MTM)−1g ∈ int F .
Proof. Let α := gT (MTM)−1g > 0, since g �= 0 from Assumption 1. From

Proposition 1 we know there exists ŷ satisfying ‖Mŷ‖ < gT ŷ and rescale ŷ if necessary
so that gT ŷ = α. Notice that ȳ optimizes the function f(y) = yTMTMy−2gTy, whose
optimal objective function value is −α. Therefore

−α ≤ ŷTMTMŷ − 2gT ŷ < α2 − 2α,

which implies that α2 > α > 0, and hence α > 1. Next observe that ‖Mȳ‖ =
√

ȳTMTMȳ =
√
α < α = gT ȳ, whereby ȳ ∈ int F .

Proof of Corollary 1. (i) is a restatement of the definition of F , (iii) is a restate-
ment of part (iii) of Theorem 1, and (iv) is a restatement of part (iv) of Theorem 1
using the Sherman–Morrison formula

QD−1QT =
(

MTM − ggT
)−1

=
(

MTM
)−1 −

(MTM)−1ggT
(

MTM
)−1

gT (MTM)−1
g − 1

,

together with the fact from Proposition 2 that gT (MTM)−1g > 1.
It remains to prove (ii). Let K := {z ∈ R

n : zTQD−1QT z ≤ 0}. Then from
Theorem 1 we have K = F∗ ∪ −F∗. Let ȳ = (MTM)−1g, and note that ȳ ∈ int F
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from Proposition 2. Define H := {z ∈ R
n : ȳT z ≥ 0}, and note that H ∩ F∗ =

F∗ and H ∩ −F∗ = {0}. Therefore F∗ = K ∩ H = {z ∈ R
n : zTQD−1QT z ≤

0, gT (MTM)−1z ≥ 0}. Using the Sherman–Morrison formula we obtain

F∗ =

{

zT

(

(MTM)−1 −
(

MTM
)−1

ggT
(

MTM
)−1

gT (MTM)−1
g − 1

)

z ≤ 0, gT
(

MTM
)−1

z ≥ 0

}

,

which after rearranging yields the expression in (ii).
Remark 2 (the case when F is not regular). Let Z and N partition the set of

indices according to zero and nonzero values of Di. If Dn = 0, then one can show
that F is a half-subspace in the subspace spanned by the Qi for i ∈ Z. If Dn > 0,
then F = {0}. If Dn < 0, then F has an interior, and we can interpret D−1

i = ∞ for
i ∈ Z. Then Theorem 1 remains valid if we interpret “zTQD−1QT z ≤ 0” in (ii) as
“
∑

i∈N Di(QT z)2i ≤ 0, (QT z)2i = 0 for i ∈ Z,” and “y := −αQD−1QT z” in (iv) as
“QTi y := −αD−1

i QTi z for i ∈ N and QTi y is set arbitrarily for i ∈ N .”

3. An algorithm for approximately solving (1).

3.1. Basic properties of (1) and the polar problem pair. Returning to (1)
where x is the given vector, consider the following conditions in (y, z, θ):

(4)

y − θz = x,
y ∈ F ,
z ∈ F∗,
‖z‖ ≤ 1,
θ ≥ 0, θ‖z‖ = θ.

Examining (4), we see that x is decomposed into x = y − θz, where y ∈ F and
−θz ∈ −F∗ and (y, z) is feasible for the problems (1). Let G denote the duality gap
for (1), namely, G = ‖y − x‖ + xT z. We also consider the following pair of conic
problems that are “polar” to (1):

(5)

P◦ : f∗ := minv ‖v − x‖ D◦ : f∗ := maxw −xTw

s.t. v ∈ −F∗, s.t. ‖w‖ ≤ 1
w ∈ −F ,

together with the following conditions in (v, w, ρ):

(6)

v − ρw = x,
v ∈ −F∗,
w ∈ −F ,
‖w‖ ≤ 1,
ρ ≥ 0, ρ‖w‖ = ρ;

here x is decomposed into x = v − ρw, where now (v, w) is feasible for the problems
(5), −ρw ∈ F , and v ∈ −F∗. Let G◦ denote the duality gap for (5), namely, G◦ =
‖v − x‖ + xTw.

It is a straightforward exercise to show that conditions (4) together with the com-
plementarity condition yT z = 0 constitute necessary and sufficient optimality condi-
tions for (1), and similarly, (6) together with vTw = 0 are necessary and sufficient for
optimality for (5). Furthermore, the solutions of (4) and (6) transform to one another:

(y, z, θ) → (v, w, ρ) = (−θz,−y/‖y‖, ‖y‖) ,
(v, w, ρ) → (y, z, θ) = (−ρw,−v/‖v‖, ‖v‖) ,
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with necessary modifications for the cases when y = 0 (set w = 0) and/or v = 0 (set
z = 0).

Proposition 3. Suppose (y, z, θ) satisfy (4) and (v, w, ρ) satisfy (6). Then (y, z)
and (v, w) are feasible for their respective problems with respective duality gaps:

(i) G = yT z;
(ii) G◦ = vTw.

Furthermore,
(iii) if (y, z) is optimal for (1), then t∗ = θ;
(iv) if (v, w) is optimal for (5), then f∗ = ρ;
(v) (t∗)2 + (f∗)2 = ‖x‖2.
Proof. To prove (i), observe that yT z = zTx + θ‖z‖2 = zTx + θ‖z‖ = zTx +

‖y − x‖ = G, and a similar argument establishes (ii). To prove (iii), observe that
t∗ = ‖x − y‖ = ‖θz‖ = θ with similar arguments for (iv). To prove (v), notice that
(y, z, θ) satisfy (4), and yT z = 0 if and only if (y, z) is optimal for (1), in which
case it is easy to verify that (v, w, ρ) ← (−θz,−y/‖y‖, ‖y‖) satisfy (6) and (v, w) is
optimal for (5). Therefore ‖x‖2 = (y − θz)T (y − θz) = yT y + θ2 = ρ2 + θ2 = (f∗)2

+ (t∗)2.
Proposition 4. If QTnx ≤ 0, then t∗ ≥ τF∗‖x‖.
Proof. We assume for the proof that ‖x‖ = 1, since t∗, f∗ scale positively with

‖x‖. If f∗ = 0, the result follows trivially since τF∗ ≤ 1, and t∗ = 1 from Proposition
3. If f∗ > 0, define c = − t∗

f∗Qn, and note that ‖c‖ = t∗

f∗ . By definition of the

width, B(c, t
∗

f∗ τF∗) ⊂ −F∗. Note that ‖x − c‖ =
√

xTx+ 2 t∗f∗QTnx+ t∗2

f∗2QTnQn ≤
√

1 + t∗2

f∗2 = 1
f∗ . Therefore 1

f∗‖x−c‖ ≥ 1.

Next observe that c+ τF∗‖c‖(x−c)
‖x−c‖ ∈ −F∗, which is equivalent to c+ τF∗ t∗(x−c)

f∗‖x−c‖ ∈
−F∗. By the previous inequality, we have c+ τF∗t∗(x − c) ∈ −F∗. Thus we have

f∗ ≤ ‖c+ τF∗t∗(x − c) − x‖ = (1 − τF∗t∗)‖x− c‖ ≤ (1 − τF∗t∗)
1
f∗ .

Therefore, 1 − t∗2 = f∗2 ≤ 1 − τF∗t∗, which implies that τF∗ ≤ t∗.
Proposition 5. Given x satisfying ‖x‖ = 1 and QTnx ≤ 0, suppose that (v, w, ρ)

satisfies (6), with duality gap G◦ ≤ στF∗/2 for (5), where σ ≤ 1. Consider the
assignment (y, z, θ) ← (−ρw,−v/‖v‖, ‖v‖) (with the necessary modification that y = 0
if v = 0). Then (y, z, θ) satisfies (4), with duality gap G ≤ σ for (1).

Proof. Note that yT z = (wT v)ρ
‖v‖ ≤ στF∗ρ

2‖v‖ , and we have the following relations: (i)
wT v ≤ στF∗/2 ≤ 1/2, (ii) ‖v‖ = θ = ‖y − x‖ ≥ t∗ ≥ τF∗ from Proposition 4, and
(iii) ρ = ‖v − x‖ = vTw − wTx ≤ 1/2 + f∗ ≤ 3/2 from Proposition 3. Therefore
yT z ≤ τF∗σ

2
3
2

1
τF∗ ≤ σ.

3.2. The six cases. We assume here that the given x has unit norm, i.e., ‖x‖ =
1, and that we seek feasible solutions to (1) with a duality gap at most σ, where σ ≤ 1.
Armed with Propositions 3, 4, and 5, we now show how to compute a feasible solution
(y, z) of (1) with duality gap G ≤ σ. Our method is best understood with the help of
Figure 1. We know from section 3.1 and the conditions (4) and/or (6) that we need to
decompose x into the sum of a vector in F plus a vector in −F∗ and that the central
axes of F and −F are the rays corresponding to Qn and −Qn, respectively. Define
the “dividing hyperplane” LF := {y : QTny = 0} perpendicular to the central axes of
F and −F , and define L+

F := {y ∈ R
n : QTny ≥ 0} and L−

F := −L+
F . We divide L+

F
into three regions: region 1 corresponds to points in F , region 2 corresponds to points
in L+

F “near” the dividing hyperplane (where our nearness criterion will be defined
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LF

F

−F∗

x

2

4

1

ρ

θ

5

6

3

Fig. 1. The geometry of the sets F , −F∗, and LF and the six cases. The central axes of F
and −F∗ are the rays generated by ±Qn, respectively, which are orthogonal to the hyperplane LF .
The regions corresponding to the six cases are shown as well.

shortly), and region 3 corresponds to points in L+
F \ F that are “far” from LF . We

divide L−
F similarly, into regions 4, 5, and 6. For each of the three regions in L+

F ,
we will work with the problem pair (1) and show how to compute a feasible solution
(y, z) of (1) with duality gap G ≤ σ. For each of the three regions in L−

F , we will
instead work with the problem pair (5) and show how to compute a feasible solution
(w, s) of (5) with duality gap G◦ ≤ στF∗/2, whereby from Proposition 5 we obtain a
feasible solution (y, z) of (1) with duality gap G ≤ σ. We will consider six cases, one
for each of the regions described above and in Figure 1.

We first describe how we choose whether x is in region 2 or 3. For x ∈ L+
F \ F ,

define

(7) εP = εP(x) :=
QTnx

√

|Dn|
√

∑n−1
i=1 Di

(

QTi x
)2
,

and notice that x ∈ L+
F implies that εP ≥ 0, x /∈ F implies that εP < 1, and smaller

values of εP correspond to QTnx closer to zero and hence x closer to LF . We specify
a tolerance ε̄P and determine whether x is in region 2 or 3 depending on whether
εP ≤ ε̄ or εP > ε̄, respectively, where we set ε̄ = ε̄P := στF .

Case 1: QTnx ≥ 0 and xTQDQTx ≤ 0. From Theorem 1 we know that x ∈ F .
Then it is elementary to show that (y, z, θ) ← (x, 0, 0) satisfy (4), with yT z = 0,
whereby from Proposition 3 the duality gap is G = 0.

Case 2: QTnx ≥ 0 and xTQDQTx > 0, εP ≤ ε̄P := στF . Let ŷ solve the following
system of equations:

(8) [I + 1/|Dn|D]QT ŷ = QTx− enQ
T
nx,

QTn ŷ = 0,

where en = (0, . . . , 0, 1) ∈ R
n. Notice that the last row of the first equation system
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has all zero entries. Therefore this system is not overdetermined, and one can write
the closed-form solution (QT ŷ)i = (QTx)i/(1 + 1/|Dn|Di) for i = 1, . . . , n − 1 and
(QT ŷ)n = 0, in the transformed variables ŝ := QT ŷ. Having computed ŷ, next
compute α :=

√

ŷTQDQT ŷ/
√

|Dn|, and then make the following assignments to
variables:

ȳ ← ŷ + αQn,

θ ←
√

ȳTQD2QT ȳ/|Dn|,
z ← −QDQT ȳ/(|Dn|θ),
y ← ȳ +QTnxQn.

Proposition 6. Suppose that ‖x‖ = 1, σ ≤ 1, and εP ≤ ε̄ < 1 and that (y, z, θ)
are computed according to Case 2 above. Then (y, z, θ) is feasible for (4) with duality
gap G ≤ ε̄/τF for (1).

Applying Proposition 6 using ε̄ = ε̄P := στF ensures that the resulting duality
gap satisfies G ≤ ε̄/τF = σ. Note that the complexity of the computations in Case 2
is O(mn2) (assuming that square roots are sufficiently accurately computed in O(1)
operations).

Proof of Proposition 6. It is easy to establish that (QT1 x, . . . , QTn−1x) �= 0, and
hence α > 0. This in turn implies that QTn ȳ = α > 0, and hence θ > 0, so z is well
defined. It is straightforward to verify that

ȳTQDQT ȳ = (ŷ + αQn)TQDQT (ŷ + αQn) = ŷTQDQT ŷ − α2|Dn| = 0,

which shows via Theorem 1 that ȳ ∈ F , and therefore z ∈ F∗ and zT ȳ = 0. It is also
straightforward to verify that ‖z‖ = 1. Finally, we have from (8) that

[I + 1/|Dn|D]QT ȳ = [I + 1/|Dn|D]
(

QT ŷ + αen
)

= [I + 1/|Dn|D]
(

QT ŷ
)

= QT
(

x−QnQ
T
nx
)

(where the second equality above follows since the last row and column of the matrix
are zero); hence ȳ + 1/|Dn|QDQT ȳ = x −QnQ

T
nx. Substituting the values of y, z, θ

into this expression yields y − θz = x, which then shows that (y, z, θ) satisfy (4).
Therefore from Proposition 3 (y, z) is feasible for (1) with duality gap

G = zT y = zT ȳ + zTQnQ
T
nx ≤ QTnx =

εP

√

∑n−1
i=1 Di(QTi x)2
√

|Dn|

≤ ε̄
√
D1

√

|Dn|
≤ ε̄

√

D1 + |Dn|
√

|Dn|
= ε̄/τF .

Case 3: QTnx ≥ 0 and xTQDQTx > 0, εP > ε̄P := στF . Here x is on the same
side of the dividing hyperplane LF as F but is neither in F nor close enough to LF
in the nearness measure. Consider the following univariate function in γ:

(9) f(γ) := xTQ[I + γD]−1D[I + γD]−1QTx =
n
∑

i=1

Di

(

xTQi
)2

(1 +Diγ)2
,

shown canonically in Figure 2.
Notice that f(0) = xTQDQTx > 0, and since Dn < 0, we have f(γ) → −∞

as γ → 1/|Dn|. Furthermore, f ′(γ) = −2
∑n
i=1D

2
i (x

TQi)2(1 + γDi)−3 < 0 for γ ∈
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γ̄

f(0) > 0

γ = −1
D1

γ = 1
|Dn|

γ∗

Fig. 2. The function f on the interval (−1/D1, 1/|Dn|). Among many desirable properties, f
is strictly decreasing and analytic and has a unique root γ∗ ∈ (0, 1/|Dn|). Moreover, f is convex
over (−1/D1, γ̄) and concave over (γ̄, 1/|Dn|), where γ̄ is the unique point satisfying f ′′(γ̄) = 0.
Note that one can have γ∗ ≤ γ̄ or γ∗ ≥ γ̄.

[0, 1/|Dn|). Therefore f(γ) is strictly decreasing in the domain [0, 1/|Dn|), whereby
from the mean value theorem there is a unique value γ∗ ∈ (0, 1/|Dn|) for which
f(γ∗) = 0. We show in section 5 how to combine a binary search and Newton’s
method to very efficiently compute γ ∈ (0, 1/|Dn|) satisfying f(γ) ≤ 0 and f(γ) ≈ 0
(and γ ≈ γ∗). Presuming that this can be done very efficiently, consider the following
variable assignment:

(10)
y ← Q [I + γD]−1QTx,

θ ← γ
√

yTQD2QT y,
z ← −γQDQTy/θ.

We now show that (y, θ, z) satisfy (4). First note that QTny = QTnx/(1−γ|Dn|) >
0, and furthermore this shows that θ > 0, and so z is well defined. By the hypothesis
that f(γ) ≤ 0 we have

yTQDQTy = xTQ[I + γD]−1D[I + γD]−1QTx = f(γ) ≤ 0,

which implies that y ∈ F , and hence z ∈ F∗ from Theorem 1. It is also straight-
forward to verify that ‖z‖ = 1. Finally, rearranging the formula for y yields x =
y + γQDQTy = y − θz, which shows that (4) is satisfied. From Proposition 3, (y, z)
is feasible for (1), and using the above assignments the duality gap works out to be

G = yT z = −f(γ)/
√

xTQD2[I + γD]−2QTx,

whereby G will be small if f(γ) ≈ 0. To make this more precise requires a detailed
analysis of a binary search and Newton’s method, which is postponed to section 5
where we will prove the following.
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Proposition 7. Suppose that ‖x‖ = 1, 1 > εP > ε̄, and g > 0 is a given gap
tolerance. If QTnx > 0 and xTQDQTx > 0, then a solution (y, z, θ) of (4) with duality
gap G ≤ g for (1) is computable in O(n ln ln(1/τF + 1/ε̄+ 1/g)) operations.

Substituting ε̄ = ε̄P := στF and g = σ, it follows that the complexity of comput-
ing a feasible of solution of (y, z) of (1) with duality gap at most σ is O(n ln ln(1/τF +
1/σ))=O(n ln ln(1/min{τF , τF∗} + 1/σ)) operations.

Case 4: QTnx ≤ 0 and xTQD−1QTx ≤ 0. From Theorem 1 we know that x ∈
−F∗. Then it is elementary to show that (y, z, θ) ← (0,−x/‖x‖, ‖x‖) satisfy (4), with
yT z = 0, whereby from Proposition 3 the duality gap is G = 0.

Before describing how we treat Cases 5 and 6 (corresponding to regions 5 and 6),
we need to describe how we choose whether x is in region 5 or 6. We use a parallel
concept to that used to distinguish regions 2 and 3, except that F is replaced by −F∗;
see Figure 1. For x ∈ L−

F \ −F∗, define the following quantity analogous to (7):

(11) εP∗ = εP∗(x) :=
−QTnx

√

1/|Dn|
√

∑n−1
i=1 (1/Di)

(

QTi x
)2
,

and notice that x ∈ L−
F implies εP∗ ≥ 0, x /∈ −F∗ implies εP∗ < 1, and smaller

values of εP∗ correspond to QTnx closer to zero and hence x closer to LF . We specify
a tolerance ε̄P∗ and determine whether x is in region 5 or 6 depending on whether
εP∗ ≤ ε̄ or εP∗ > ε̄, respectively, where we set ε̄ = ε̄P∗ := στ2

F∗/2.
Case 5: QTnx ≤ 0 and xTQD−1QTx > 0, and εP∗ ≤ ε̄P∗ := στ2

F∗/2. This case
is an exact analogue of Case 2, with F replaced by −F∗ and the pair (1) replaced by
(5). Therefore the methodology of Case 2 can be used to compute (v, w, ρ) satisfying
(6), and hence (v, w) is feasible for (5). Applying Proposition 6 to the context of the
polar pair (5) with ε̄ = ε̄P∗ , it follows that the duality gap for (5) will be G◦ = vTw
and will satisfy G◦ ≤ ε̄/τF∗ = στ2

F∗/(2τF∗) ≤ στF∗/2. Converting (v, w, ρ) to (y, z, θ)
using Proposition 5, we obtain (y, z) feasible for (1) with duality gap G ≤ σ. Here
the complexity of the computations is of the same order as Case 2.

Case 6: QTnx ≤ 0 and xTQD−1QTx > 0, and εP∗ > ε̄P∗ := στ2
F∗/2. In concert

with the previous case, this case is an exact analogue of Case 3, with F replaced by
−F∗ and the pair (1) replaced by (5). Therefore the methodology of Case 3 can be
used to compute (v, w, ρ) satisfying (6), and hence (v, w) is feasible for (5). Applying
Proposition 7 to the context of the polar pair (5) with ε̄ = ε̄P∗ and g = στF∗/2,
it follows that a solution (v, w, ρ) of (6) with duality gap G◦ ≤ g = στF∗/2 for
(5) is computable in O(n ln ln(1/τF∗ + 1/ε̄ + 1/g)) = O(n ln ln(1/min{τF , τF∗} +
1/σ)) operations. Converting (v, w, ρ) to (y, z, θ) using Proposition 5, we obtain (y, z)
feasible for (1) with duality gap G ≤ σ.

Proof of Theorem 2. The spectral decomposition of MTM − ggT = QDQT is
assumed to take O(mn2) operations. The computations in Cases 1 and 4 are trivial
after checking the conditions of the cases, which is O(mn2) operations, and similarly
for Cases 2 and 5. Regarding Cases 3 and 6, the discussion in the description of these
cases establishes the desired operation bound.

Remark 3 (the case when F is not regular, again). As in Remark 2, let Z and
N partition the set of indices according to zero and nonzero values of Di. Consider
the case when Dn < 0 (the cases when Dn > 0 and Dn = 0 were discussed in Remark
2). We interpret D−1

i = ∞ for i ∈ Z. Consider the orthonormal transformation QTx
and QT y, QT z of the given vector x and the variables y, z. Then for i ∈ Z simply set
QTi y = QTi x and QTi z = 0 and work in the lower-dimensional problem in the subspace
spanned by Qi, i ∈ N .



1084 ALEXANDRE BELLONI AND ROBERT M. FREUND

Table 1

Average computational results from 100 randomly generated sparse problems.

Iterations Running time (seconds) Range of widths
Proposed method Proposed method

Dimension Theoretical
n bound Actual SDPT3 EIG Total SDPT3 Minimum Maximum

10 6.6 4.7 11.7 0.0005 0.0013 0.1089 1e-7 0.534015
20 7.2 4.8 13.9 0.0003 0.0011 0.1489 0.046400 0.510048
50 7.7 4.5 14.2 0.0011 0.0014 0.2828 0.087697 0.441248
100 8.0 4.3 18.8 0.0065 0.0075 1.1620 0.095081 0.414343
200 8.0 4.0 23.8 0.0556 0.0575 5.7393 0.176357 0.430163
500 8.0 3.8 18.8 1.0492 1.0571 33.9511 0.179974 0.317520

4. Comparison with interior-point methods. The primal-dual pair of prob-
lems (1) can be reformulated as second-order cone programs; one formulation of the
primal problem is maxy,t{−t : (My, gTy) ∈ Qm+1, (y − x, t) ∈ Qn+1}, for example.
It then follows from interior-point complexity theory that approximate solutions to
(1) with duality gap at most δ can be computed in O(ln(1/δ)) interior-point itera-
tions. This iteration bound follows from Theorem 2.4.1 of Renegar [6], noting that
an interior starting feasible solution with good symmetry is easy to precompute. Un-
like the complexity bound for the proposed method in Theorem 2, the interior-point
method bound has a stronger dependence on the duality gap δ (global linear con-
vergence), but, unlike the proposed method, there is no dependence on the widths
τF , τF∗ . Therefore from a complexity viewpoint one cannot assert that one algo-
rithm dominates the other. (There is a theory of local quadratic convergence for
interior-point methods (see, for example, [1]) that could possibly be used to prove a
weaker interior-point method dependence on δ for this class of problems.) In terms
of computational practice, it is relevant to compare the two methods on randomly
generated problems. We generated 100 relatively sparse random problem instances
((M, g) has density, respectively, 10% and 30% on average) for each of dimensions
(m,n) = (2n, n) for n = 10, 20, 50, 100, 200, and 500 and solved them using both
our method and the conic convex interior-point method software SDPT3s [9]. All
computation was performed in MatLab on a recent model laptop computer. We used
MatLab’s EIG command to compute the eigendecomposition for MTM − ggT for our
proposed method. Table 1 shows our computational results. Columns 2 and 3 of the
table show the average theoretical iteration bound and the average actual iterations
of our method. Columns 5, 6, and 7 report running time information. Note as ex-
pected that the eigendecomposition is the dominant computation in our method. Our
method substantially outperforms SDPT3, as one would expect, since SDPT3 is not
optimized for the problem class (1).

A fairer comparison can be done by presuming that the problem instances are pre-
processed and transformed by the eigendecomposition, replacing QT y with y, whereby
the second-order cone formulation takes the diagonal form:

max
y,t

{

−t :
(

√

D1y1, . . . ,
√

Dn−1yn−1,
√

|Dn|yn
)

∈ Qn, (y − x, t) ∈ Qn+1
}

,

and SDPT3 naturally exploits the sparse structure of this problem. We generated
100 random problem instances each, for a range of n from n = 20 to n = 5000, where
each instance was generated by randomly choosing D but ensuring that τF = τF∗ =
10−7. These instances need no eigendecomposition for our method; also SDPT3 can
take good advantage of the problem’s natural sparsity as well. Table 2 shows our
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Table 2

Average computational results from 100 randomly generated diagonal problems with τF = τF∗ =
10−7.

Iterations Running time (seconds)
Proposed method

Dimension Theoretical Proposed
n bound Actual SDPT3 method SDPT3

10 8.0 5.0 23.9 0.0004 0.2320
20 8.0 5.0 26.9 0.0005 0.2778
50 8.0 5.0 28.1 0.0005 0.4869
100 8.0 5.0 18.3 0.0018 1.1063
200 8.0 5.0 17.6 0.0033 1.5806
500 8.0 4.9 20.2 0.0154 0.5290
1000 8.0 4.9 16.9 0.0567 1.0957
2000 8.0 5.0 16.4 0.2153 1.8111
5000 8.0 5.2 19.9 1.2656 9.3998

computational results. Our method still substantially outperforms SDPT3 but not as
dramatically when n is very large. However, the running time numbers in Table 2 are
the running time until the stopping criteria are met for each method. The stopping
criteria for SDPT3 includes stopping when the duality gap is sufficiently small or
when insufficient progress is made in satisfying primal/dual feasibility/optimality.
For the diagonal problems generated, this latter stopping criteria is unfortunately
encountered quite often: the relative error of the final solution from SDPT3 was at
least 0.01 for 65% of the diagonal problem instances and was at least 0.001 for 81% of
the instances. In fact, SDPT3 stopped with a relative error of at most 10−6 in only
2% of the instances. In contrast, our proposed method terminated with a relative
error of 10−12 in all instances.

5. Proof of Proposition 7. This section is devoted to the proof of Proposition
7. Our algorithmic approach is motivated by Ye [10], and it consists of a combination
of a binary search and Newton’s method to approximately solve f(γ) = 0 for the
function f given in (9). An alternate approach would be to use interpolation methods
as presented and analyzed in Melman [4], for which global quadratic convergence is
proved but there is no complexity analysis of associated constants. While Proposition
7 indicates that a solution (y, z, θ) of (4) with duality gap G ≤ g for (1) can be
computed extremely efficiently, unfortunately our proof is not nearly as efficient as
we or the reader might wish. We assume throughout this section that the hypotheses
of Proposition 7 hold. We start with a review of Smale’s main result for Newton’s
method in [8].

5.1. Newton’s method and Smale’s results. Let g be an analytic function,
and consider the Newton iterate from a given point γ̂:

γ+ = γ̂ − g(γ̂)
g′(γ̂)

,

and let {γk}k≥0 denote the sequence of points generated starting from γ̂ = γ0.
Definition 1. A point γ0 is said to be an approximate zero of g if

|γk − γk−1| ≤ (1/2)2
k−1−1|γ1 − γ0| for k ≥ 1.

For an approximate zero γ0, let γ∗ = limk→∞ γk. Then γ∗ is a zero of g, and
Newton’s method starting from γ0 converges quadratically to γ∗ from the very first
iteration. The main result in [8] can be restated as follows.
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Theorem 3 (Smale [8]). Let g be an analytic function. If γ̂ satisfies

(12) sup
k>1

∣

∣

∣

∣

g(k)(γ̂)
k!g′(γ̂)

∣

∣

∣

∣

1/(k−1)

≤ 1
8

∣

∣

∣

∣

g′(γ̂)
g(γ̂)

∣

∣

∣

∣

,

then γ̂ is an approximate zero of g. Furthermore, if γ̂ is an approximate zero of g,
then |γk − γ∗| ≤ 2(1/2)2

k−1 |γ1 − γ0| for all k ≥ 1.

5.2. Properties of f(γ). We employ the change of variables s = QTx, whereby
from the hypotheses of Proposition 7 we have sn > 0, sTDs > 0, and εP = sn

√

|Dn|/
√

∑n−1
j=1 Dis2i > ε̄. We consider computing a zero of our function of interest:

(13) f(γ) = sT (I + γD)−2
Ds =

n
∑

i=1

Dis
2
i

(1 + γDi)2
.

Lemma 1. Under the hypotheses of Proposition 7, f has the following properties:
(i) f(0) > 0, limγ→1/|Dn| f(γ) = −∞, and f has a unique root γ∗ ∈ (0, 1/|Dn|).

(ii) f is analytic on (−1/D1, 1/|Dn|), and for k ≥ 1 the kth derivative of f is

f (k)(γ) = (−1)k(k + 1)!sT (I + γD)−(k+2)
Dk+1s

= (−1)k(k + 1)!
n
∑

i=1

Dk+1
i s2i

(1 + γDi)k+2
.

(iii) sup
k>1

∣

∣

∣

∣

f (k)(γ)
k!f ′(γ)

∣

∣

∣

∣

1/(k−1)

≤ 3
2

max
{

D1

1 + γD1
,

|Dn|
1 − γ|Dn|

}

.

(iv)
1 − εP

|Dn| + εPD1
≤ γ∗ ≤ 1 − εP

|Dn|
, where εP is given by (7).

(v) There exists a unique value γ̄ ∈ (−1/D1, 1/|Dn|) such that f is convex on
(−1/D1, γ̄] and concave on [γ̄, 1/|Dn|).

Proof. (i) follows from the mean value theorem and the observation that f is
decreasing on (0, 1/|D1|), and (ii) follows using a standard derivation. To prove (iii)
observe that

∣

∣

∣

∣

f (k)(γ)
k!f ′(γ)

∣

∣

∣

∣

1/(k−1)

=
∣

∣

∣

∣

(k + 1)!
2k!

∣

∣

∣

∣

1/(k−1)
∣

∣

∣

∣

∣

sT (I + γD)−(k+2) Dk+1s

sT (I + γD)−3
D2s

∣

∣

∣

∣

∣

1/(k−1)

≤ 3
2

∣

∣

∣

∣

∣

∣

∣

sT (I + γD)−3/2D
[

(I + γD)−1D
]k−1

D (I + γD)−3/2 s

sT (I + γD)−3/2
D2 (I + γD)−3/2

s

∣

∣

∣

∣

∣

∣

∣

1/(k−1)

≤ 3
2

max
v �=0

∣

∣

∣

∣

vTP k−1v

vT v

∣

∣

∣

∣

1/(k−1)

=
3
2

max
i=1,...,n

{

|Di|
1 + γDi

}

,

where P = (I + γD)−1
D. Therefore

∣

∣

∣

∣

f (k)(γ)
k!f ′(γ)

∣

∣

∣

∣

1/(k−1)

≤ 3
2

max
i=1,...,n

{

|Di|
1 + γDi

}

≤ 3
2

max
{

D1

1 + γD1
,

|Dn|
1 − γ|Dn|

}

,
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which proves (iii). To prove the first inequality of (iv), note that

f(γ) =
n
∑

i=1

Dis
2
i

(1 + γDi)2
≥ 1

(1 + γD1)2

n−1
∑

i=1

Dis
2
i −

|Dn|s2n
(1 + γDn)2

.

The right-hand side of the expression above equals zero only at γ̃ := 1−εP
|Dn|+εPD1

.
This implies that f(γ̃) ≥ 0, whereby γ̃ ≤ γ∗, since f is strictly decreasing. For
the second inequality note that εP ∈ (0, 1) since sn > 0 and sTDs > 0. We have
f(γ) <

∑n−1
i=1 s

2
iDi − |Dn|s2n/(1 + γDn)2, and substituting γ = 1−εP

|Dn| into this strict
inequality yields f(1−εP

|Dn| ) < 0, which then implies that γ∗ < 1−εP
|Dn| . To prove (v),

examine the derivatives of f in (ii), and notice that f (k)(γ) < 0 for any odd value of
k, whereby f ′′ is strictly decreasing. Let γ̄ be the unique point in (−1/D1, 1/|Dn|)
such that f ′′(γ̄) = 0. Since f ′′ is strictly decreasing, f is convex on (−1/D1, γ̄) and
concave on (γ̄, 1/|Dn|).

Figure 2 illustrates the geometry underlying some of the analytical properties of
f described by Lemma 1.

Remark 4. In the interval (−1
D1
, 1

2|Dn| −
1

2D1
] the maximum in (iii) of Lemma 1 is

D1
1+γD1

, and in the interval [ 1
2|Dn| −

1
2D1

, 1
|Dn| ) the maximum is |Dn|

1+γDn
.

5.3. Locating an approximate zero of f by binary search. From Lemma
1 we know that γ∗ ∈ (0, Ū ], where Ū := (1− ε̄)/|Dn|. We will cover this interval with
subintervals and use a binary search to locate an approximate zero of f , motivated
by the method of Ye [10]. Noticing from Remark 4 that the maximum in (iii) of
Lemma 1 depends on the “midpoint” M := 1

2|Dn| −
1

2D1
, we will consider two types of

subintervals: the left intervals will cover [0,max{0,M}], and the right intervals will
cover [max{0,M}, Ū ]. (Of course, in the case when M ≤ 0, there is no need to create
the left intervals.)

The left intervals will be of the form [Li−1, Li], where Li := 1
D1

((13
12 )i − 1) for

i = 0, 1, . . . . If M ≤ 0, we do not consider creating these intervals. The right intervals
will have the form [Ri, Ri−1], where Ri := 1

|Dn| − ( 1
|Dn| − Ū)(13

12 )i for i = 0, 1, . . . .
Let [a, b] denote one of these intervals (either [Li−1, Li] or [Ri, Ri−1] for some i).

Note that if f(a) ≥ 0 and f(b) ≤ 0, then γ∗ ∈ [a, b]. Supposing that this is the case,
it follows from Lemma 1 that f is either convex on [a, γ∗] or concave on [γ∗, b] (or
both), and consider starting Newton’s method from γ̂ = a in the first case or γ̂ = b
in the second case. Then the Newton step

γ+ = γ̂ − f(γ̂)
f ′(γ̂)

satisfies

(14)
∣

∣

∣

∣

f(γ̂)
f ′(γ̂)

∣

∣

∣

∣

= |γ+ − γ̂| ≤ |γ∗ − γ̂| ≤ b− a,

where the first inequality follows from either the convexity of f on [a, γ∗] or the
concavity of f on [γ∗, b]. In particular, we have

(15) |f(γ̂)| ≤ |f ′(γ̂)||γ∗ − γ̂|,

which relates the value of the function at an approximate solution and the error in
our approximation.
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Lemma 2. Under the hypotheses of Proposition 7 the intervals described herein
have the following properties:

(i) The total number of left intervals and right intervals needed to cover [0, Ū ] is

KL := � ln(1/2)+2 ln(1/τF )
ln(13/12) �

+
and KR := � ln(1/ε̄)

ln(13/12) �, respectively.
(ii) Let [a, b] denote one of these intervals, and suppose that f(a) ≥ 0 and f(b) ≤

0. Then either a or b is an approximate zero of f , and γ∗ ∈ [a, b].
(iii) Ri−1 − Ri ≤ 1

12|Dn| for i = 1, . . . ,KR and Li − Li−1 ≤ 1
12|Dn| for i =

1, . . . ,KL.
Proof. We first prove (i) for the right intervals. We have R0 = Ū and

RKR =
1

|Dn|
− ε̄

|Dn|

(

13
12

)KR

≤ 1
|Dn|

− ε̄

|Dn|
1
ε̄

min
{

1,
|Dn|
2D1

+
1
2

}

= max
{

0,
1

2|Dn|
− 1

2D1

}

= max{0,M},

and thus the right intervals cover [max{0,M}, Ū ]. Note that, using the above reason-
ing, one easily shows that, because KR ≤ 1 + ln(1/ε̄)/ ln(13/12), one also has

(16)
(

13
12

)KR

≤ 13
12ε̄

.

For the left intervals, first consider the case when M ≥ 0. Then |Dn| ≤ D1 and
τF ≤ 1√

2
, whereby there is no need to take the nonnegative part in the definition of

KL. We have L0 = 0 and

LKL =
1
D1

(

(

13
12

)KL

− 1

)

≥ 1
D1

(

1
2τ2

F
− 1

)

=
1
D1

(

D1 + |Dn|
2|Dn|

− 1
)

= M,

and thus the left intervals cover [0,M ] = [0,max{0,M}]. Note that, using the above
reasoning, one easily shows that, because KL ≤ 1 + ln(1/2)+2 ln(1/τF )

ln(13/12) , one also has

(17)
(

13
12

)KL

≤ 13
24τ2

F
.

When M ≤ 0 there is nothing to prove.
To prove (ii), we consider the two cases of [a, b] being either a left or right interval.

If [a, b] is a left interval, then M ≥ 0 and b = a(13/12) + 1
12D1

. In this case, for one
of γ̂ = a or γ̂ = b, we have for all k > 1:

1
8

∣

∣

∣

∣

f ′(γ̂)
f(γ̂)

∣

∣

∣

∣

≥ 1/8
b− a

=
1/8

(1/12)(a+ 1/D1)
≥ 3

2
D1

1 + γ̂D1
≥
∣

∣

∣

∣

f (k)(γ̂)
k!f ′(γ̂)

∣

∣

∣

∣

1/(k−1)

,

where the first inequality uses (14), the second inequality uses a ≤ γ̂, and the third
inequality uses Remark 4 and the fact that γ̂ ≤ M in conjunction with Lemma
1. Therefore γ̂ is an approximate zero of f . If [a, b] is a right interval, then a =
b(13/12)− 1

12|Dn| and M ≤ a ≤ b. In this case, for one of γ̂ = a or γ̂ = b, we have for
all k > 1:

1
8

∣

∣

∣

∣

f ′(γ̂)
f(γ̂)

∣

∣

∣

∣

≥ 1/8
b− a

=
1/8

b− b(13/12) + 1
12|Dn|

=
1/8

1
12

(

1
|Dn| − b

) =
3
2

|Dn|
1 − b|Dn|

≥ 3
2

|Dn|
1 − γ̂|Dn|

≥
∣

∣

∣

∣

f (k)(γ̂)
k!f ′(γ̂)

∣

∣

∣

∣

1/(k−1)

,
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where the first inequality uses (14), the second inequality uses M ≤ a ≤ γ̂ ≤ b, and
the third inequality uses Remark 4 and the fact that γ̂ ≥ M in conjunction with
Lemma 1. Therefore γ̂ is an approximate zero of f .

To prove (iii), for the right intervals

Ri−1 −Ri =
ε̄

13|Dn|

(

13
12

)i

≤ ε̄

13|Dn|

(

13
12

)KR

≤ 13
12

1
13|Dn|

=
1

12|Dn|
,

by the definition of KR, and the second inequality derives from (16).
For the left intervals, we can assume M ≥ 0 (otherwise they are not constructed),

in which case D1 ≥ |Dn|. In this case, we have

Li − Li−1 =
1

13D1

(

13
12

)i

≤ 1
13D1

(

13
12

)KL

≤ 1
13D1

13
24τ2

F
=

1
24

(

1
D1

+
1

|Dn|

)

≤ 1
12|Dn|

,

by the definition of KL, and the second inequality derives from (17).
Based on these properties, consider the following method for locating an approx-

imate zero of f . Perform a binary search on the end points of the intervals, testing
the end points to locate an interval [a, b] for which f(a) ≥ 0 and f(b) ≤ 0. Then
either a or b is an approximate zero of f . Then initiate Newton’s method from both
a and b either in parallel or iterate-sequentially. Notice that, in order to perform a
binary search on the left and right intervals, there is no need to compute and evaluate
f for all of the end points. In fact, the operation complexity of a binary search will be
O(n lnKL) and O(n lnKR), respectively, since each function evaluation of f requires
O(n) operations.

5.4. Computing a solution of (1) with duality gap at most σ. Under the
hypotheses of Proposition 7, suppose that [a, b] is one of the constructed intervals,
f(a) ≥ 0, and f(b) ≤ 0. Then, from Lemmas 1 and 2, γ∗ ∈ [a, b] and either f is
convex on [a, γ∗] or concave on [γ∗, b] (or both). We first analyze the latter case, i.e.,
when f is concave on [γ∗, b], whereby b is an approximate zero of f , and we analyze
the iterates of Newton’s method for k iterations starting at γ0 = b. Let γ := γk be the
final iterate. It follows from the concavity of f on [γ∗, b] that γ ≥ γ∗ and consequently
f(γ) ≤ 0. Then the analysis in Case 3 shows that the assignment (10) yields a feasible
solution of (1) with duality gap G = −f(γ)/

√

sTD2[I + γD]−2s. The following result
bounds the value of this duality gap.

Lemma 3. Let g ∈ (0, 1] be the desired duality gap for (1), and let

k = 1 +

⎡

⎢

⎢

⎢

ln ln
((

1
3g

)(

1
τ2
F

+ 1
ε̄2

))

− ln ln 2

ln 2

⎤

⎥

⎥

⎥

.

Under the hypotheses of Proposition 7 and the setup above where b is an approximate
zero of f , let γ0 := b and γ1, . . . , γk be the Newton iterates, and define γ := γk. Then
the assignment (10) will be feasible for (1) with duality gap at most g.

Proof. We have |f(γ)| ≤ |f ′(γ)| |γ∗ − γ| from the concavity of f on [γ∗, b]. Also,
we have

|f ′(γ)| = 2
n
∑

i=1

D2
i s

2
i

(1 + γDi)3
≤ 2

n−1
∑

i=1

D2
i s

2
i

(1 + γDi)2
+ 2

D2
ns

2
n

(1 + γDn)2
1

(1 + γDn)
.
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Substitute 1
1+γDn

= 1 + −γDn

1+γDn
to obtain

|f ′(γ)| ≤ 2
n
∑

i=1

D2
i s

2
i

(1 + γDi)2
− 2

γD3
ns

2
n

(1 + γDn)3
.

Let G = yT z denote the duality gap. Then

G =
−f(γ)

√

sTD2[I + γD]−2s
≤ |f ′(γ)| |γ∗ − γ|
√

sTD2[I + γD]−2s

≤
2
∑n
i=1

D2
i s

2
i

(1+γDi)2
+ 2 γ|Dn|3s2n

(1+γDn)3
√

sTD2[I + γD]−2s
|γ∗ − γ|

=

(

2
√

sTD2[I + γD]−2s+ 2
γ|Dn|3s2n

(1 + γDn)3
√

sTD2[I + γD]−2s

)

|γ∗ − γ|

≤
(

2D1 + 2
|Dn|

1 + γDn
+ 2

γD2
nsn

(1 + γDn)2

)

|γ∗ − γ|,

where we used
√

sTD2[I + γD]−2s ≥ |Dn|sn/(1 + γDn) in the last inequality. Next
note that γ ≤ Ū = 1−ε̄

|Dn| , which implies that 1
ε̄ ≥ 1

1+γDn
. Therefore, recalling that γ

is the kth iterate, we have

G ≤ 2|γ∗ − γ|
(

D1 +
|Dn|
ε̄

+
(1 − ε̄)D2

n

|Dn|ε̄2

)

≤ 2|γ∗ − γ||Dn|
(

1
τ2
F

+
1
ε̄2

)

≤ 4|γ1 − γ0||Dn|
(

1
τ2
F

+
1
ε̄2

)(

1
2

)2k−1

≤ 4
1

12|Dn|
|Dn|

(

1
τ2
F

+
1
ε̄2

)(

1
2

)2k−1

=
1
3

(

1
τ2
F

+
1
ε̄2

)(

1
2

)2k−1

,

where we used Theorem 3 for the third inequality and Lemma 2 for the fourth in-
equality. Substituting the value of k above yields G ≤ g.

Last of all, we analyze the case when f is convex on [a, γ∗], whereby a is an
approximate zero of f , and we analyze the iterates of Newton’s method for k iterations
starting at γ0 = a. Let γk be the final iterate. It follows from the convexity of f
on [a, γ∗] that γk ≤ γ∗ and consequently f(γk) ≥ 0, in which case the assignment
(10) is not necessarily feasible for (1). However, invoking Theorem 3, we know that
γk+2(1/2)2

k−1|γ1−γ0| ≥ γ∗, we also know that Ū ≥ γ∗, and we can set γ := min{γk+
2(1/2)2

k−1|γ1 − γ0|, Ū}. Then the analysis in Case 3 shows that the assignment (10)
yields a feasible solution of (1), with duality gap G = −f(γ)/

√

sTD2[I + γD]−2s.
The following result bounds the value of this duality gap.

Lemma 4. Let g ∈ (0, 1] be the desired duality gap for (1), and let

k = 1 +

⎡

⎢

⎢

⎢

ln ln
((

16
3g

)(

1
τ2
F

+ 1
ε̄2

))

− ln ln 2

ln 2

⎤

⎥

⎥

⎥

.
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Under the hypotheses of Proposition 7 and the setup above where a is an approximate
zero of f , let γ0 := a and γ1, . . . , γk be the Newton iterates, and define γ := min{γk +
2(1/2)2

k−1|γ1 − γ0|, Ū}. Then the assignment (10) will be feasible for (1) with duality
gap at most g.

Proof. Define δ := γ−γk, and it follows that δ ≥ 0 and γk + δ ≤ Ū . Furthermore,

(18)

δ ≤ 2(1/2)2
k−1|γ1 − γ0|

≤ 2
(

16
3g

)

[1/τ2
F + 1/ε̄2] 12|Dn|

≤ min{ε̄2, τ2
F}

|Dn|
≤ min{ε̄, τ2

F/(1 − τ2
F )}

|Dn|
= min{ε̄/|Dn|, 1/D1}.

Therefore δ ≤ ε̄/|Dn|, whereby 1 + γkDn + 2δDn = 1 − (γk + δ)|Dn| − δ|Dn| ≥
1 + ε̄− 1 − ε̄ = 0, where we also used γk + δ ≤ Ū = (1 − ε̄)/|Dn|. Therefore

(19) 1 + γkDn ≤ 2(1 + (γk + δ)Dn) ≤ 2(1 + tDn) for all t ∈ [γk, γk + δ].

We also have from (18) that δ ≤ 1/D1 ≤ 1/Di ≤ 1/Di+ γk for i = 1, . . . , n− 1; hence

(20) 1 + γkDi + δDi ≤ 2(1 + γkDi), i = 1, . . . , n− 1.

The duality gap of the assignment (10) is

G = yT z =
−f(γ)

√

sTD2[I + γD]−2s
=

−f(γk + δ)
√

sTD2[I + (γk + δ)D]−2s
.

We now proceed to bound the numerator and denominator of the rightmost expression.
For the numerator we have

−f(γk + δ) = |f(γk + δ)| =

∣

∣

∣

∣

∣

f(γk) +
∫ γk+δ

γk

f ′(t)dt

∣

∣

∣

∣

∣

.

However, observe that f(γk) ≥ 0, f(γk + δ) ≤ 0, and f ′(t) ≤ 0 for all t ∈ [0, 1/|Dn|),
whereby

|f(γk + δ)| ≤
∫ γk+δ

γk

|f ′(t)|dt.

Using (19) for t ∈ [γk, γk + δ], we have

|f ′(t)| = 2
n−1
∑

i=1

D2
i s

2
i

(1 + tDi)3
+ 2

D2
ns

2
n

(1 + tDn)3

≤ 2
n−1
∑

i=1

D2
i s

2
i

(1 + γkDi)3
+ 16

D2
ns

2
n

(1 + γkDn)3
≤ 8|f ′(γk)|,

and it follows that −f(γk + δ) ≤ 8δ|f ′(γk)|. To bound the denominator, simply
notice from (20) and 1 + γkDn + δDn ≤ 1 + γkDn that

√

sTD2[I + (γk + δ)D]−2s ≥
(1/2)

√

sTD2[I + γkD]−2s. Therefore

G =
−f(γk + δ)

√

sTD2[I + (γk + δ)D]−2s
≤ 16

δ|f ′(γk)|
√

sTD2[I + γkD]−2s
.
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Next notice from the logic from the proof of Lemma 3 that

|f ′(γk)|
√

sTD2[I + γkD]−2s
≤ 2|Dn|

(

1
τ2
F

+
1
ε̄2

)

;

therefore

G ≤ 32δ|Dn|
(

1
τ2
F

+
1
ε̄2

)

≤ 32|Dn|
(

1
τ2
F

+
1
ε̄2

)

2
(

16
3g

)

[1/τ2
F + 1/ε̄2] 12|Dn|

= g,

where the last inequality uses the second inequality of (18).
Proof of Proposition 7. Note from the discussion at the end of section 5.3 that the

operation complexity of the binary search is O(n lnKL+n lnKR) = O(n ln ln(1/τF +
1/ε̄)) from Lemma 2. The number of Newton steps is O(ln ln(1/τF + 1/ε̄ + 1/g))
from Lemmas 3 and 4, with each Newton step requiring O(n) operations, yielding the
desired complexity bound.

Acknowledgments. We are grateful to two anonymous referees for their sug-
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Abstract. In this paper we deal with the von Neumann alternating projection method xk+1 =
PAPBxk and with its generalization of the form xk+1 = PA(xk + λk(PAPBxk − xk)), where A, B
are closed and convex subsets of a Hilbert space H and Fix PAPB �= ∅. We do not suppose that
A∩B �= ∅. We give sufficient conditions for the weak convergence of the sequence (xk) to Fix PAPB

in the general case and in the case A is a closed affine subspace. We present also the results of
preliminary numerical experiments.
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1. Introduction. Let H be a real Hilbert space equipped with a scalar product
〈·, ·〉 and with the norm ‖ · ‖ induced by 〈·, ·〉. Further, let A,B ⊂ H be nonempty,
convex, and closed subsets. In the practical considerations one often needs to find an
element of the intersection A ∩B or, more generally, to solve the following problem:

(1) find a∗ ∈ A and b∗ ∈ B such that ‖a∗ − b∗‖ = inf
a∈A,b∈B

‖a− b‖.

We suppose that this infimum is attained. Of course, a∗ = b∗ if and only if A∩B �= ∅.
Several optimization problems, e.g., the convex feasibility problem, can be reduced to
problem (1) (see, e.g., [18, section 2.9] for details). Problems of this kind have many
practical applications, e.g., in signal reconstruction (see, e.g., [8] or [18, Chapter
6]), in image reconstruction, or in intensity modulated radiation therapy (see, e.g.,
[7, 10, 18, 9, 14]), where the convex subsets are described by a large and sparse system
of linear equalities or inequalities.

An important method generating sequences which converge weakly to a solution
of problem (1) is the von Neumann alternating projection (AP) method (see, e.g., [11,
Chapter 9] or [1, section 4]). In this method the metric projections onto A and B are
successively applied. Recall that for a closed and convex subset D ⊂ H and for any
u ∈ H there exists the uniquely determined metric projection PDu. Furthermore, a
point y ∈ D is the projection PDu if and only if

(2) 〈u− y, z − y〉 ≤ 0 for all z ∈ D;

i.e., inequality (2) characterizes the metric projection PDu (see, e.g., [12, Lemma 12.1]
or [1, section 1]). It is known that a∗ ∈ A and b∗ ∈ B realize the distance between A
and B if and only if a∗ = PAb

∗ and b∗ = PBa
∗, i.e., a∗ ∈ FixPAPB or b∗ ∈ FixPBPA

(see, e.g., [1, Lemma 2.2(i)]). Therefore, it is enough to find an element of FixPAPB
in order to find a solution of problem (1). In this paper we construct a generalization
of the von Neumann alternating projection method and prove its Fejér monotonicity
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with respect to the solution set FixPAPB, as well as prove the weak convergence of
the method to a solution. Recall that a sequence (xk) ⊂ H is called Fejér monotone
with respect to a subset D ⊂ H if for all z ∈ D there holds ‖xk+1 − z‖ ≤ ‖xk − z‖,
k = 1, 2, . . . .

Consider a sequence (xk) ⊂ H generated by the following iterative scheme:

(3)
x0 ∈ A – arbitrary,
xk+1 = PA(xk + λkσk(PAPBxk − xk)),

where the relaxation parameter λk ∈ [0, 2] and the step size σk ≥ 0. We call method
(3) the relaxed alternating projection (RAP) method. If λk = σk = 1, we obtain the
von Neumann AP method :

(4)
x0 ∈ A – arbitrary,
xk+1 = PAPBxk

(see, e.g., [1]). Some modifications of the AP method (4) for A ∩ B �= ∅ and for B
being an obtuse cone, different from (3), were proposed in [5, section 3], where the
projection PB in (4) is replaced by the reflection RB = 2PB − I.

One can show that any sequence (xk) generated by the AP method (4) converges
weakly to an element x∗ ∈ FixPAPB (see, e.g., [1, Theorem 4.8 and Lemma 2.2]).
Note that FixPAPB �= ∅ since we have supposed that the infimum in (1) is attained.
If A ∩ B �= ∅, then any sequence (xk) generated by the RAP method (3) converges
weakly to an element x∗ ∈ FixPAPB = A ∩ B if σk = 1 and λk ∈ [ε, 2 − ε], where
ε > 0 (see, e.g., [2, Corollary 3.22] for a more general result). Gurin, Polyak, and
Raik have proposed the following step size in order to accelerate the convergence of
the RAP method in the case A ∩B �= ∅:

(5) σk =
‖PBxk − xk‖2

〈PBxk − xk, PAPBxk − xk〉

(see [13, Theorem 4]). Recently, the idea of [13] was applied in the case A and B are
subspaces of H (see [4, Theorem 3.23]) and in the case A is a closed affine subspace
of H with A ∩ B �= ∅ (see [3, Corollary 4.11]). Unfortunately, the weak convergence
of the RAP method with the relaxation parameter λk ∈ [ε, 2 − ε] and the step size
σk = 1 or the step size defined by (5) is not guaranteed if A∩B = ∅. A new question
arises in this context: What should we impose on the relaxation parameters λk and
on the step sizes σk in order to obtain the weak convergence of the RAP method (3)
to an element x∗ ∈ FixPAPB , without assumption A∩B �= ∅? The answers to these
questions are contained in Theorem 15, which is the main result of the paper.

In sections 2 and 3 we give some sufficient conditions for the quasi nonexpan-
sivity of operators determining RAP methods. Recall that an operator U : C → H is
quasi-nonexpansive if for all x ∈ C and for all z ∈ FixU there holds the inequality

‖Ux− z‖ ≤ ‖x− z‖

(see, e.g., [16]). Quasi-nonexpansive operators are also known in the literature un-
der the name attracting operators (see, e.g., [2, Definition 2.1]) or Fejér monotone
operators or mappings (see, e.g., [17, Definition 2.1]. In section 4 we show the weak
convergence of RAP methods to a fixed point of the operator PAPB for special choices
of step sizes σk. In section 5 we present the results of preliminary numerical experi-
ments.
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2. Quasi nonexpansivity of relaxed alternating projections. Let A,B
be nonempty, closed, and convex subsets of H. Define the operator of alternating
projections T : A→ A by the equality

T = PAPB.

For a constant λ ∈ [0, 2] we call the operator Tλ = (1 − λ)I + λT the relaxation of T
and the operator PATλ the projected relaxation of T . Furthermore, for a relaxation
parameter λ ∈ [0, 2] we call the operator Tσ,λ : A→ A defined by

(6) Tσ,λx = PA(x+ λσ(x)(Tx− x))

the RAP operator, where the nonnegative step size function σ(x) depends on x; i.e.,
σ is a function, σ : A → R+ = [0,+∞). Of course, Tσ,λ = T if σ(x) = 1 for all
x ∈ A and λ = 1. The operator T defines the AP method since the iteration (4) can
be written in the form xk+1 = Txk. Similarly, for a function σ : A → R+ and for a
sequence of relaxation parameters (λk) the operator Tσ,λ defines the RAP method by
the equality

(7) xk+1 = Tσ,λk
xk,

which is equivalent to (3) with σk = σ(xk). First we give some properties of the
operators T and Tσ,λ, which we use later to show the quasi nonexpansivity of Tσ,λ
and the weak convergence of a sequence generated by the recurrence (7) for special
choices of the step size function σ : A→ R+.

Lemma 1. Let σ(x) > 0 for all x ∈ A, and let λ > 0. Then FixTσ,λ = FixT .
Proof. Denote by ND(y) = {u ∈ H : 〈u − y, z − y〉 ≤ 0 for all z ∈ D} the normal

cone to a closed and convex subset D ⊂ H at the point y ∈ D. By the equivalence

(8) y = PDu⇔ u− y ∈ ND(y),

where D ⊂ H is a closed and convex subset (see, e.g., [15, Chapter 1, Proposi-
tion 5.3.3]), and by the obvious fact that ND(y) is a cone, we have

x ∈ FixTσ,λ ⇔ PA(x+ λσ(x)(Tx− x)) = x

⇔ λσ(x)(Tx− x) ∈ NA(x) ⇔ Tx− x ∈ NA(x)
⇔ x = PATx = Tx⇔ x ∈ FixT ,

which completes the proof.
It is easily seen that the characterization (2) of the metric projection PDu is

equivalent to the condition

(9) 〈z − u, PDu− u〉 ≥ ‖PDu− u‖2 for any u ∈ H and z ∈ D.

Denote by δ = d(A,B) = infx∈A,y∈B ‖x− y‖ the distance between the subsets A
and B. As we have supposed in section 1, δ is attained, and, consequently, FixT �= ∅.

Lemma 2. Let z ∈ FixT . Then for any x ∈ A there holds the inequality

(10) 〈z − x, Tx− x〉 ≥ ‖Tx− PBx‖2 − δ̃‖PBx− x‖ + 〈PBx− x, Tx− x〉,

where δ̃ ∈ [δ, ‖Tx− PBx‖] is an upper bound of the distance δ.
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Proof. Let w = PBz. Observe that ‖z−w‖ = δ (see, e.g., [1, Lemma 2.2(i)]). We
have by the characterization (2) of the metric projection and by the Cauchy–Schwarz
inequality

〈z − PBx, PBx− x〉 = 〈z − w,PBx− x〉 + 〈w − PBx, PBx− x〉
≥ 〈z − w,PBx− x〉
≥ −‖z − w‖ · ‖PBx− x‖ = −δ‖PBx− x‖.

Therefore, if we apply condition (9) we obtain

〈z − x, Tx− x〉 = 〈z − PBx, Tx− x〉 + 〈PBx− x, Tx− x〉
= 〈z − PBx, Tx− PBx〉 + 〈z − PBx, PBx− x〉

+ 〈PBx− x, Tx− x〉
≥ ‖Tx− PBx‖2 − δ‖PBx− x‖ + 〈PBx− x, Tx− x〉.

Now (10) follows from the inequality δ ≤ δ̃.
Let x ∈ A. Let

(11) δ̄ = δ̄(x) = ‖Tx− PBx‖.

Let

(12) δ̃ = δ̃(x) ∈ [δ, δ̄(x)]

be an upper bound of the distance δ, and let Tσ,λ be defined by (6), where the function
σ : A→ R+ is given by

(13) σ(x) =
‖Tx− PBx‖2 − δ̃‖PBx− x‖ + 〈PBx− x, Tx− x〉

‖Tx− x‖2

for x /∈ FixT and σ(x) = 1 for x ∈ FixT . For x ∈ A define

(14) α(x) =
{

�(x− PBx, Tx− PBx) if x /∈ FixT and PBx /∈ A,
0 if x ∈ FixT or PBx ∈ A,

where the symbol �(a, b) denotes the angle between two nonzero vectors a, b ∈ H, i.e.,
�(a, b) = arccos 〈a,b〉

‖a‖·‖b‖ . Note that α(x) is well defined since x− PBx and Tx− PBx

are obviously nonzero vectors in the first case of (14). Furthermore, we have by the
characterization of the metric projection PA(PBx)

(15) 〈PBx− x, PBx− Tx〉 ≥ ‖PBx− Tx‖2 > 0

and, consequently,

(16) 0 <
‖PBx− Tx‖
‖PBx− x‖ ≤ cosα(x).

Lemma 3. Let x ∈ A, and let the step size σ(x) be defined by (13). Then

(17) σ(x) ≥ 1
1 + cosα(x)

≥ 1
2
.
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Proof. Inequality (17) is clear if x ∈ FixT or PBx ∈ A. Suppose now that
x /∈ FixT and PBx /∈ A. Let a = PBx−x, b = Tx−x, and c = PBx−Tx. Of course,
a, b, c �= 0 and α(x) = �(a, c). Observe that b = a− c, δ̃ ≤ ‖c‖, and that the function
y �−→ y+ρ

y+2ρ is increasing for y > −2ρ. Therefore, for ρ = 1 − cosα(x), we have

σ(x) =
‖c‖2 − δ̃‖a‖ + 〈a, b〉

‖b‖2

≥ ‖c‖2 − ‖a‖ · ‖c‖ + 〈a, b〉
‖b‖2

=
‖c‖2 − ‖a‖ · ‖c‖ + 〈a, a− c〉

‖a− c‖2

=
(‖a‖ − ‖c‖)2 + ‖a‖ · ‖c‖ − 〈a, c〉

(‖a‖ − ‖c‖)2 + 2(‖a‖ · ‖c‖ − 〈a, c〉)

=

(

1 − ‖c‖
‖a‖

)(

‖a‖
‖c‖ − 1

)

+ 1 − cosα(x)
(

1 − ‖c‖
‖a‖

)(

‖a‖
‖c‖ − 1

)

+ 2(1 − cosα(x))

≥
(1 − cosα(x))

(

1
cosα(x) − 1

)

+ 1 − cosα(x)

(1 − cosα(x))
(

1
cosα(x) − 1

)

+ 2(1 − cosα(x))

=
1

1 + cosα(x)
≥ 1

2
,

which completes the proof.
Lemma 4. Let x ∈ A be such that Tx /∈ FixT . Then α(x) ∈ (0, π2 ) and,

consequently, the vectors x− PBx and Tx− PBx are linearly independent.
Proof. Suppose that α(x) = 0, i.e.,

(18) Tx− PBx = γ(x − PBx)

for some γ > 0. By the equivalence (8) we have x − PBx ∈ NB(PBx) and, conse-
quently, γ(x− PBx) ∈ NB(PBx), and again by the equivalence (8),

(19) PB(PBx+ γ(x− PBx)) = PBx.

Now we obtain by (18) and (19)

TTx = T (PBx+ γ(x− PBx))
= PAPB(PBx+ γ(x − PBx))
= PAPBx = Tx,

a contradiction with the assumption Tx /∈ FixT . Therefore, α(x) > 0. Furthermore,
α(x) < π

2 by (16). Consequently, the vectors x − PBx and Tx − PBx are linearly
independent.

Remark 5. According to Lemma 4, we can stop the RAP algorithm (3) with
Txk ∈ FixT if we state that PBxk − xk and Txk − PBxk are linearly dependent.

Let x ∈ A be such that Tx /∈ FixT . Let y ∈ aff(x, PBx, Tx) be a solution of the
system

〈PBx− y, PBx− x〉 = δ̃‖PBx− x‖,(20)
〈PBx− y, Tx− PBx〉 = −‖Tx− PBx‖2,(21)

where δ̃ ∈ [δ, ‖Tx− PBx‖]. By Lemma 4 such a solution is defined uniquely.
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Lemma 6. Let x ∈ A be such that Tx /∈ FixT . The step size σ(x) given by (13)
is characterized by the equality

(22) 〈x+ σ(x)(Tx− x) − y, Tx− x〉 = 0.

Proof. For y being a solution of the system (20)–(21) and for any σ we have

〈x+ σ(Tx− x) − y, Tx− x〉
= 〈x− y, Tx− x〉 + σ‖Tx− x‖2

= 〈x− PBx, Tx− x〉 + 〈PBx− y, Tx− x〉 + σ‖Tx− x‖2

= 〈x− PBx, Tx− x〉 + 〈PBx− y, Tx− PBx〉
+ 〈PBx− y, PBx− x〉 + σ‖Tx− x‖2

= 〈x− PBx, Tx− x〉 − ‖Tx− PBx‖2 + δ̃‖PBx− x‖ + σ‖Tx− x‖2.

Therefore, equalities (22) and (13) are equivalent.
Lemma 7. Let z ∈ FixT , x ∈ A, and let σ(x) be defined by (13). There holds the

inequality

〈z − x, Tx− x〉 ≥ σ(x)‖Tx− x‖2.

Proof. The lemma follows directly from Lemma 2 and from equality (13).
Theorem 8. Let x ∈ A, and let σ(x) be given by (13). Then for any z ∈ FixT

and for any λ ≥ 0 there holds the inequality

(23) ‖Tσ,λx− z‖2 ≤ ‖x− z‖2 − λ(2 − λ)σ2(x)‖Tx− x‖2.

Consequently, the operator Tσ,λ defined by (6) is quasi-nonexpansive for λ ∈ [0, 2].
Proof. Let z ∈ FixT , x ∈ A, and λ ≥ 0. Of course, z = PAz. We have by the

nonexpansivity of the metric projection PA and by Lemma 7

‖Tσ,λx− z‖2 = ‖PA(x+ λσ(x)(Tx− x)) − z‖2

= ‖PA(x+ λσ(x)(Tx− x)) − PAz‖2

≤ ‖x+ λσ(x)(Tx− x) − z‖2

= ‖x− z‖2 + λ2σ2(x)‖Tx− x‖2 − 2λσ(x)〈z − x, Tx− x〉
≤ ‖x− z‖2 + λ2σ2(x)‖Tx− x‖2 − 2λσ2(x)‖Tx− x‖2

= ‖x− z‖2 − λ(2 − λ)σ2(x)‖Tx− x‖2,

and we see that Tσ,λ is quasi-nonexpansive if λ ∈ [0, 2].
Remark 9. Let A ∩B �= ∅, and let x ∈ A�B. We have δ = 0, and the step size

given by (13) with δ̃ = 0 has the form

(24) σ(x) =
‖Tx− PBx‖2 + 〈PBx− x, Tx− x〉

‖Tx− x‖2 .

Gurin, Polyak, and Raik have proposed the relaxation parameter λ = 1 and the
following step size σ(x) in the relaxed alternating projection method:

(25) σ(x) =
‖PBx− x‖2

〈PBx− x, Tx− x〉
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(see [13, equality (15)]). Observe that the step size σ(x) defined by (25) is the unique
solution of the equality

〈x+ σ(x)(Tx − x) − PBx, PBx− x〉 = 0.

Consider two cases of the RAP method with the step size (25):
(i) If A,B are subspaces of H , then

σ(x) =
〈x, x− Tx〉
‖Tx− x‖2 .

In this case the RAP method is equivalent to an acceleration method of
Bauschke et al. (see [4, equality (3.1.2) and Theorem 3.23]).

(ii) If A is a closed affine subspace, then 〈PBx− x, Tx− x〉 = ‖Tx− x‖2 and

σ(x) =
‖PBx− x‖2

‖Tx− x‖2 .

In this case the RAP method is equivalent to the extrapolated alternating
projection method (see [3, equality (4.35)]).

Lemma 10. Let A ∩B �= ∅, and let x ∈ A�B. Then we have

(26)
‖Tx− PBx‖2 + 〈PBx− x, Tx− x〉

‖Tx− x‖2 ≥ ‖PBx− x‖2

〈PBx− x, Tx− x〉 ;

i.e., the step size σ(x) defined by (24) is not shorter than the one proposed by Gurin,
Polyak, and Raik (equality (25)). Furthermore, both step sizes are equal if A is a
closed affine subspace.

Proof. Observe that δ = 0 since A∩B �= ∅ and that x /∈ FixT since FixT = A∩B
for A∩B �= ∅. It follows from the characterization of the metric projection PA(PBx)
that

(27) 〈x − Tx, PBx− Tx〉 ≤ 0.

If we apply inequality (27), the Cauchy–Schwarz inequality, the nonexpansivity of the
metric projection PA, and the fact x �= Tx we easily obtain

(28) 0 < ‖Tx− x‖2 ≤ 〈PBx− x, Tx− x〉 ≤ ‖PBx− x‖2.

A simple computation shows that

‖Tx− PBx‖2 + 〈PBx− x, Tx− x〉
‖Tx− x‖2

=
‖Tx− x‖2 + ‖PBx− x‖2 − 〈PBx− x, Tx− x〉

‖Tx− x‖2 .

If we apply the last equality, we easily see that (26) is equivalent to the inequality
(

‖PBx− x‖2 − 〈PBx− x, Tx− x〉
) (

〈PB − x, Tx− x〉 − ‖Tx− x‖2) ≥ 0,

which is true by (28). Suppose now that A is a closed affine subspace. The equality
in (26) follows easily from the fact that 〈Tx−PBx, Tx− x〉 = 0 for A being an affine
subspace.
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3. Quasi nonexpansivity of the RAP operator for closed and affine A.
In this section we suppose that A ⊂ H is a closed affine subspace. In this case
x + σ(Tx − x) ∈ A for any x ∈ A and σ ∈ R, where T = PAPB. Consequently, the
RAP operator Tσ,λ : A→ A defined by (6) has the form

(29) Tσ,λ(x) = x+ λσ(x)(Tx − x)

and one iteration of the RAP method has the form

(30) xk+1 = xk + λkσk(Txk − xk).

It is known that for A being an affine subspace the operator T = PAPB restricted to
A is firmly nonexpansive [6, Proposition 3(i)] and that the RAP method converges to
an element of FixT for σk = 1 and for λk ∈ [ε, 2 − ε], where ε > 0 [6, Theorem 1]
(see, e.g., [12, Chapter 12] for the definition and the properties of firmly nonexpansive
operators). We generalize these results. We start with the following lemma.

Lemma 11. Let A ⊂ H be a closed affine subspace and B ⊂ H be a closed and
convex subset. For all x, y ∈ A there holds the inequality

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 + (‖Tx− PBx‖ − ‖Ty− PBy‖)2.

Proof. Since the metric projection PA is a firmly nonexpansive operator (see, e.g.,
[2, Fact 1.5]), we have for any u, v ∈ H
(31) 〈Tu− Tv, PBu− PBv〉 ≥ ‖Tu− Tv‖2.

Further, for any u, v ∈ A we have, by the affinity of A,

(32) 〈Tu− PBu, u− PBu〉 = ‖Tu− PBu‖2

and

(33) 〈PBv − Tv, u− Tu〉 = 0.

The characterization of the metric projection PBv yields

(34) 〈PBu− PBv, v − PBv〉 ≤ 0

for any u, v ∈ H. Now let x, y ∈ A. It follows from (31)–(34) and from the Cauchy–
Schwarz inequality that

〈Tx− Ty, x− y〉
= 〈Tx− Ty, PBx− PBy〉 + 〈Tx− Ty, (x− PBx) − (y − PBy)〉
≥ ‖Tx− Ty‖2

+ 〈(Tx− PBx) + (PBx− PBy) + (PBy − Ty), (x− PBx) − (y − PBy)〉
= ‖Tx− Ty‖2 + 〈Tx− PBx, x− PBx〉 − 〈Tx− PBx, y − PBy〉

+ 〈PBx− PBy, x− PBx〉 + 〈PBy − PBx, y − PBy〉
+ 〈PBy − Ty, x− PBx〉 + 〈Ty − PBy, y − PBy〉

≥ ‖Tx− Ty‖2 + ‖Tx− PBx‖2 − (〈Tx− PBx, y − Ty〉
− 〈PBx− Tx, T y − PBy〉) + 〈PBy − Ty, x− Tx〉
+ 〈PBy − Ty, Tx− PBx〉 + ‖Ty− PBy‖2

≥ ‖Tx− Ty‖2 + ‖Tx− PBx‖2 − 2‖PBx− Tx‖ · ‖Ty − PBy‖
+ ‖Ty − PBy‖2

= ‖Tx− Ty‖2 + (‖Tx− PBx‖ − ‖Ty − PBy‖)2,

which completes the proof.
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Corollary 12 (Combettes [6]). Let A ⊂ H be a closed affine subspace and
B ⊂ H be a closed and convex subset. Then the operator T : A → A, T = PAPB, is
firmly nonexpansive.

Let the function σ : A→ R+ be defined by

(35) σ(x) = 1 +

(

‖Tx− PBx‖ − δ̃
)2

‖Tx− x‖2 ,

for x /∈ FixT and σ(x) = 1 for x ∈ FixT , where δ̃ is given by (12).
Lemma 13. Let z ∈ FixT , x ∈ A, and let σ(x) be defined by (35). There holds

the inequality

〈z − x, Tx− x〉 ≥ σ(x)‖Tx− x‖2.

Proof. The lemma is obvious for x ∈ FixT . Now let x /∈ FixT . Since δ =
‖Tz − PBz‖ we have by Lemma 11 that

〈z − x, Tx− x〉 = ‖Tx− x‖2 + 〈z − Tx, Tx− x〉
= ‖Tx− x‖2 + 〈Tz − Tx, z − x〉 − ‖Tz − Tx‖2

≥ ‖Tx− x‖2 + (‖Tx− PBx‖ − ‖Tz − PBz‖)2

=
(

1 +
(‖Tx− PBx‖ − δ)2

‖Tx− x‖2

)

‖Tx− x‖2

≥

⎛

⎜

⎝
1 +

(

‖Tx− PBx‖ − δ̃
)2

‖Tx− x‖2

⎞

⎟

⎠
‖Tx− x‖2,

and the lemma follows now from equality (35).
Corollary 14. Let A ⊂ H be a closed affine subspace and B ⊂ H be a closed

and convex subset. Further, let Tσ,λ : A → A be defined by (29), where σ is defined
by (35). Then for any x ∈ A, z ∈ FixT , and λ ≥ 0 there holds the inequality

(36) ‖Tσ,λx− z‖2 ≤ ‖x− z‖2 − λ(2 − λ)σ2(x)‖Tx− x‖2,

and, consequently, Tσ,λ is quasi-nonexpansive for λ ∈ [0, 2].
Proof. Let x ∈ A, z ∈ FixT , and λ ≥ 0. We have by Lemma 13 that

‖Tσ,λx− z‖2 = ‖x+ λσ(x)(Tx− x) − z‖2

= ‖x− z‖2 + λ2σ2(x)‖Tx− x‖2 − 2λσ(x)〈z − x, Tx− x〉
≤ ‖x− z‖2 − λ(2 − λ)σ2(x)‖Tx− x‖2.

Now we see that for λ ∈ [0, 2] the operator Tσ,λ is quasi-nonexpansive.

4. Convergence of the RAP method. We consider in this section two cases
of the RAP method (3) with λk ∈ [ε, 2 − ε] for ε > 0:

(i) A,B ⊂ H are closed convex subsets, and the step size σk is given by

(37) σk =
‖Txk − PBxk‖2 − δ̃k‖PBxk − xk‖ + 〈PBxk − xk, Txk − xk〉

‖Txk − xk‖2 .
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(ii) A ⊂ H is a closed affine subspace, B ⊂ H is a closed convex subset, and the
step size σk is given by

(38) σk = 1 +

(

‖Txk − PBxk‖ − δ̃k

)2

‖Txk − xk‖2 .

In both cases δ̃k = δ̃(xk) ∈ [δ, δ̄k], where δ̄k = δ̄(xk) = ‖Txk − PBxk‖.
Theorem 15. In both cases (i) and (ii) the sequence (xk) converges weakly to an

element x∗ ∈ FixT .
Proof. By Lemma 1 we have FixTσ,λ = FixT . If we set x = xk in inequality (23)

or in inequality (36) if A is a closed and affine subspace, we obtain in both cases for
any z ∈ FixT

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − λk(2 − λk)σ2
k‖Txk − xk‖2.

Therefore, (‖xk − z‖) converges as a nonincreasing sequence. Consequently,

(39) ‖Txk − xk‖ → 0

since for σk given by (37) we have σk ≥ 1
2 (see Lemma 3), for a closed affine subspace

A and for σk given by (38) we have σk ≥ 1, and λk(2 − λk) ≥ ε2 > 0. Let (xnk
) be

any weakly convergent subsequence of (xk), and let x ∈ A be the weak limit of xnk
.

Note that such a subsequence exists since (xk) is bounded. Since T is nonexpansive
we have by (39) that x ∈ FixT (see, e.g., [2, Fact 1.2]). We have proved that all weak
cluster points of (xk) lie in FixT . Furthermore, FixT is closed and convex (see, e.g.,
[1, Lemma 2.2(ii)]). Since the sequence (xk) is Fejér monotone with respect to FixT ,
it converges weakly to some point x∗ ∈ FixT ; see [2, Theorem 2.16(ii)].

5. The results of preliminary numerical experiments. In this section we
present the results of preliminary numerical tests for problem (1), where H = R

n.

5.1. Problems. We consider the following test problems:
P1. A = B(z1, 1) and B = B(z2, 1) are two balls in R

n with centers z1, z2 ∈ R
n

and radius one. We consider this problem for various distances d = ‖z1−z2‖.
Of course, δ = d(A,B) = max{0, d − 2}, and, consequently, A ∩ B �= ∅ if
and only if d ≤ 2. Without loss of generality we suppose that n = 2 and
z1 = (0, d) for d ∈ R+ and z2 = (0, 0). We set x0 = (1, d) ∈ R

2 as the starting
point. The exact solution of (1) can be easily evaluated analytically for the
test problem P1, x∗ = (0, d−1) for d ≥ 2 and x∗ = (

√
4 − d2/2, d/2) for d < 2.

P2. A is a hyperplane and B = B(z, 1) is a ball in R
n. We consider this prob-

lem for various distances d = infy∈A ‖z − y‖. Of course, δ = d(A,B) =
max{0, d− 1}, and, consequently, A ∩ B �= ∅ if and only if d ≤ 1. Without
loss of generality we suppose that n = 2 and A = {(ξ1, ξ2) ∈ R

2 : ξ2 = d}
for d ∈ R+ and B = B((0, 0), 1). We set x0 = (3, d) ∈ R

2 as the starting
point. The exact solution of (1) can be easily evaluated analytically for the
test problem P1, x∗ = (0, d) for d ≥ 1 and x∗ = (

√
1 − d2, d) for d < 1.

Note that in all problems the starting point x0 ∈ R
n belongs to A.

5.2. Tests. Now we present the results of numerical tests for the following meth-
ods:

• AP. The von Neumann alternating projection method (4), applied to problem
(1),
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Table 1

Comparison of the AP, GPR, and RAP1(i) methods for problem P1 in case A ∩ B �= ∅.

Method → AP GPR RAP1(i)

λ → 1 3
2

2

d ε k k k k k

10−1 2 1 1 1 1
1.9 10−2 6 2 2 1 1

10−3 11 3 3 1 1

10−1 7 2 2 1 2
1.99 10−2 43 3 3 1 2

10−3 97 4 4 1 2

10−1 25 3 3 1 2
2 10−2 2499 6 6 2 2

10−3 249999 10 9 4 3

• RAP1. The relaxed alternating projection method (3), where the step size
σk is defined by (37), applied to problem (1),

• RAP2. The relaxed alternating projection method (3), where the step size
σk is defined by (38), applied to problem (1) with affine A,

• GPR. The method proposed by Gurin, Polyak, and Raik, i.e., the relaxed
alternating projection method (3), where the step size σk is defined by (5),
applied to problem (1) with A ∩B �= ∅.

In the presented tests we employ various values of constant relaxation parameter
λk = λ ∈ (0, 2). For the RAP1 and RAP2 methods we consider two cases:

(i) The value δ is known, and we set δ̃k = δ in (37) and in (38).
(ii) We set δ̃k = δ̄k = ‖Txk − PBxk‖ in (37) and in (38).
For both test problems P1 and P2 we know the exact solution x∗ of (1) and we

apply the condition ‖xk − x∗‖ ≤ ε or xk ∈ A ∩ B as the stopping criterion. Let k
denote the number of iterations after which the corresponding algorithm terminates.
All tested methods were programmed in MATLAB 6.1.

In Table 1 we present the numerical results of the AP, GPR, and RAP1(i) methods
for problem P1 with A∩B �= ∅ for various distances d between the centers of two balls
and for various optimality tolerances ε. The results of RAP1(i) are presented for three
values of relaxation parameter λ (note that the AP and GPR methods are originally
constructed only for λ = 1). The results for λ = 1 are repeated in Figure 1. We see
that for all optimality tolerances the behavior of the RAP1(i) and GPR methods is
similar and is considerably better than for the AP method. Observe that RAP1(i)
behaves a little bit better if λ > 1.

In Table 2 we compare the AP, RAP1(i), and RAP1(ii) methods for problem P1
for various optimality tolerances ε. We consider here both cases: A ∩B �= ∅ (d ≤ 2)
as well as A ∩ B = ∅ (d > 2). The results for d > 2 are repeated in Figure 2. Note
that we cannot apply GPR if A ∩B = ∅. Observe that RAP1(i) behaves essentially
better than RAP1(ii) and the AP method. The most considerable differences are in
case d = 2. In this case RAP1(i) behaves very well, while RAP1(ii) as well as the
AP method converge very slowly because of zigzagging (the angle between the vectors
PBxk − xk and PAPBxk − PBxk is close to π for xk closed to the solution x∗).

In Table 3 we present the results of numerical tests for problem P2. We compare
RAP2(i) (δ̃k = δ) and RAP2(ii) (δ̃k = δ̄k). In the second case σk = 1 for both
methods. Furthermore, for λ = 1 RAP2(ii) reduces to the AP method. We set d = 1
(the hyperplane A is tangent to B in the solution x∗). For such d the termination
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Fig. 1. Comparison of the AP, GPR, and RAP1(i) methods for problem P1 in case A ∩ B �= ∅.

Table 2

Comparison of the AP and RAP1 methods for problem P1.

Method → AP RAP1

λ → 1 3
2

2

δ̃k → δ δ̄k δ δ̄k δ δ̄k

d ε k k k k k k k

10−1 2 1 3 1 1 1 1
1.9 10−2 6 2 12 1 1 1 1

10−3 11 3 20 1 1 1 1

10−1 7 2 13 1 1 2 1
1.99 10−2 43 3 86 1 1 2 1

10−3 97 4 194 1 1 2 1

10−1 25 3 49 1 1 2 1
2 10−2 2499 6 5000 2 3297 2 2474

10−3 249999 9 500000 4 333296 3 249972

10−1 17 3 34 1 1 2 2
2.01 10−2 116 6 232 2 130 2 100

10−3 231 9 464 4 284 3 215

10−1 6 3 12 1 1 2 3
2.1 10−2 18 6 37 3 14 3 14

10−3 30 9 62 4 30 4 26

10−1 2 2 4 2 1 2 2
3 10−2 3 5 9 2 4 4 4

10−3 5 7 14 3 6 6 5

of RAP2(ii) requires essentially more iterations than that of RAP2(i). Note that in
this case A and B are almost “parallel” near the solution and the angle between the
vectors PBxk −xk and PAPBxk −PBxk is close to π. We observe a small influence of
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Fig. 2. Comparison of the AP and RAP1 methods for problem P1 in case A ∩ B = ∅.

Table 3

Numerical results of RAP2 for problem P2.

Method → RAP2(i) RAP2(ii) RAP2(i) RAP2(ii) RAP2(i) RAP2(ii)

λ → 1 3
2

2

δ̃k → δ δ̄k δ δ̄k δ δ̄k

ε k k k k k k

10−1 5 100 3 1 4 48
10−2 8 10000 5 6555 5 4996
10−3 12 > 5 · 105 7 > 5 · 105 5 499995
10−4 15 > 5 · 105 8 > 5 · 105 5 > 5 · 105

10−5 18 > 5 · 105 10 > 5 · 105 5 > 5 · 105

10−6 22 > 5 · 105 12 > 5 · 105 5 > 5 · 105

parameter λ on the convergence. Furthermore, the behavior of RAP2(i) is essentially
better (we use here the known distance δ between A and B) than that of RAP2(ii).

Preliminary numerical experiments show that both relaxed alternating projection
methods behave essentially better than the original alternating projection method if
the distance δ = d(A,B) is known. The most significant difference in the behavior of
both methods with respect to the AP method can be observed if A∩B consists of one
point or the distance δ is close to zero and the subsets A and B are almost “parallel”
close to the solution.
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Abstract. We present a framework for solving the large-scale �1-regularized convex minimization
problem:

min ‖x‖1 + μf(x).

Our approach is based on two powerful algorithmic ideas: operator-splitting and continuation.
Operator-splitting results in a fixed-point algorithm for any given scalar μ; continuation refers to
approximately following the path traced by the optimal value of x as μ increases. In this paper, we
study the structure of optimal solution sets, prove finite convergence for important quantities, and
establish q-linear convergence rates for the fixed-point algorithm applied to problems with f(x) con-
vex, but not necessarily strictly convex. The continuation framework, motivated by our convergence
results, is demonstrated to facilitate the construction of practical algorithms.
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1. Introduction. Under suitable conditions, minimizing the �1-norm is equiv-
alent to minimizing the so-called “�0-norm,” that is, the number of nonzeros in a
vector. The former is always more computationally tractable than the latter. Thus,
minimizing or limiting the magnitude of ‖x‖1 has long been recognized as a practical
avenue for obtaining sparse solutions x. Some early work is in the area of geophysics,
where sparse spike train signals are often of interest, and data may include large
sparse errors [10, 39, 55, 57]. The signal processing and statistics communities use
the �1-norm to describe a signal with just a few waveforms or a response quantity with
just a few explanatory variables [9, 24, 44, 58]. More references on �1-regularization
for signal processing and statistics can be found in [46].

In this work, we present an algorithmic framework and related convergence anal-
ysis for solving general problems of the form

(1.1) min
x∈Rn

‖x‖1 + μf(x),

where f : R
n → R is differentiable and convex, but not necessarily strictly convex,

and μ > 0. Interesting special cases of this problem include

(1.2) min
x∈Rn

‖x‖1 +
μ

2
‖Ax− b‖2

2,
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and its generalization

(1.3) min
x∈Rn

‖x‖1 +
μ

2
‖Ax− b‖2

M ,

where M ∈ R
m×m is a positive definite matrix, ‖x‖M :=

√
x�Mx is the associated

M -norm, A ∈ R
m×n is dense, m ≤ n or even m� n, and n is large.

As a general principle, a sparse solution, x ∈ R
n, of an underdetermined linear sys-

tem of equations, Ax = b, may be obtained by minimizing the �1-norm of x. If the “ob-
servation” b is contaminated with noise, then an appropriate norm of the residualAx−
b should be minimized or constrained. Such considerations yield several related opti-
mization problems. For instance, if there is Gaussian noise distributed as N(0, σ2I) in
b, then the �1-regularized least squares problem (1.2) would be appropriate, as would
the least absolute shrinkage and selection operator (LASSO) problem (6.3) [58].

Such problems are of fundamental importance to compressed sensing. Compressed
sensing is the name assigned to the idea of encoding a large sparse signal using a
relatively small number of linear measurements, and minimizing the �1-norm (or its
variants) in order to decode the signal. Recent results reported by Candes et al. [4,
5, 6], Donoho et al. [16, 20, 61], and others ([54, 60], for example) stimulated the
current burst of research in this area. Applications of compressed sensing include
compressive imaging [56, 65, 66], medical imaging [42], multisensor and distributed
compressed sensing [1], analog-to-information conversion [36, 37, 38, 59], and missing
data recovery [67]. Compressed sensing is attractive for these and other potential
applications because it reduces the number of measurements required to obtain a
given amount of information. The tradeoff is the addition of a nontrivial decoding
process that consists of solving problems like (1.2), where the data matrix A is usually
either random or has its rows taken from an orthogonal matrix such as a discrete
cosine transform (DCT) matrix. Such data matrices are invariably dense and large in
applications of interest. Thus we are motivated to study algorithms that do not require
any linear system solves or matrix factorizations, and are able to take advantage of
available fast transforms like FFT and DCT.

1.1. Our approach and main results. The objective function in (1.1) is the
sum of two convex functions. While the �1-norm term is not smooth, it is easily
transformed into a linear function plus some linear constraints, such that standard
interior-point methods utilizing a direct linear solver can be applied to, say, problem
(1.2). However, such a standard approach is too costly for large-scale problems with
dense data.

Our approach is based on operator splitting. It is well known in convex analysis
that minimizing a convex function φ(x) is equivalent to finding a zero of the sub-
differential ∂φ(x), i.e., finding x such that 0 ∈ ∂φ(x) := T (x), where T is a maximal
monotone operator [53]. In many cases, one can split φ into the sum of two convex
functions, φ = φ1 + φ2, which implies the decomposition of T into the sum of two
maximal monotone operators T1 and T2, i.e., T = T1 + T2. For τ > 0, if T2 is
single-valued and (I + τT1) is invertible, then

0 ∈ T (x) ⇐⇒ 0 ∈ (x+ τT1(x)) − (x− τT2(x))
⇐⇒ (I − τT2)x ∈ (I + τT1)x
⇐⇒ x = (I + τT1)−1(I − τT2)x.(1.4)

Equation (1.4) leads to the forward-backward splitting algorithm for finding a zero of T :

(1.5) xk+1 := (I + τT1)−1(I − τT2)xk,
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which is a fixed-point algorithm. For the minimization problem (1.1), T2 = μ∇f and
(I + τT1)−1 is component-wise shrinkage (or soft-thresholding), which is related to
the �1-norm term in (1.1) and is described fully in sections 3 and 4 below.

The forward-backward splitting method was first proposed by Lions and Mercier
[40] and Passty [51] at about the same time in 1979. Over the years, this scheme
and its modifications have been extensively studied by various authors, including, to
name a few, Mercier [45], Gabay [30], Glowinsky and Le Tallec [31], Eckstein [22],
Chen and Rockafellar [8], Haubruge, Nguyen, and Strodiot [33], Noor [48], and Tseng
[62]. The idea of splitting operators can be traced back to the mid-1950’s in the
works of Peaceman and Rachford [52] and Douglas and Rachford [21] for solving
second-order elliptic and parabolic partial differential equations.

General convergence theory exists for forward-backward splitting methods [8, 30,
45]. Unfortunately, it requires rather strong conditions on T2, or on T as a whole. In
short, when reduced to our setting with φ1 = ‖x‖1 and φ2 = μf(x), the classical con-
vergence theory requires either f or the whole objective in (1.1) to be strictly convex
(though such strong assumptions may be weakened with modifications to the basic
algorithm [62]). An anonymous referee brought our attention to the recent paper [12]
by Combettes and Wajs, which applies forward-backward splitting methods to vari-
ous concrete forms of minimizing a sum of two convex functions, including problem
(1.1). Combettes and Wajs [12] show that the fixed-point iterations (1.5), and some
extensions of it, converge to a global minimum without a strict convexity assumption.

In the present work, we aim to address the following two questions, “Can stronger
convergence results be obtained for algorithm (1.5) applied to problem (1.1)?” and
“Can algorithm (1.5) be computationally competitive when applied to problem (1.2)
or (1.3)?” Our answers to both questions are affirmative.

On the theoretical side, we have obtained finite convergence for some interesting
quantities (cf. Theorems 4.5 and 4.7) and q-linear1 rates of convergence (cf. Proposi-
tion 4.9 and Theorems 4.10 and 4.11) without assuming strict convexity, nor unique-
ness of solution. Furthermore, we show that these q-linear rates of convergence are
not determined by the conditioning of the Hessian of f , as is normally the case for
gradient-type methods, but by that of a “reduced” Hessian whose condition number
can be much smaller than that of the full Hessian when the solution x is sparse.

On the computational side, we devised a continuation strategy that significantly
reduces the number of iterations required for a given value of μ. Our extensive numer-
ical results, which will be presented in a separate paper [32] due to space limitation,
indicate that our algorithm is especially well suited for large-scale instances of prob-
lem (1.2) when x∗ is sufficiently sparse and A is a partial transform matrix such as a
partial DCT matrix. In comparison with several recently developed algorithms, our
algorithm appears to be the most robust, and in many cases also the fastest.

1.2. Related work. Recently, solving problems (1.1) or (1.2), especially (1.2),
has been actively studied by many authors, largely because of its newly found ap-
plications in signal and image processing. These problems can be solved by the
forward-backward operator-splitting method given by (1.5) if one substitutes T1 and
T2 by the subdifferential of ‖x‖1 and the gradient of μf(x), respectively, resulting in
the formula (3.1) of section 3. Becau se the operator-splitting approach was priorly
not widely known in signal and image processing areas, in most recent works the

1{xk} converges to x∗ q-linearly, where q stands for “quotient,” if lim supk ‖xk+1 − x∗‖/‖xk −
x∗‖ < 1.
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fixed-point iteration (3.1), namely (1.5) specialized to (1.1), was derived by different
authors, often independently, based on different motivations and approaches.

Here we mention a number of recent works that proposed, derived, or analyzed
the fixed-point iteration scheme (1.5) or its variants when applied to either problem
(1.2) or (1.1). These contributions include [29] by Figueiredo and Nowak, [15] by
De Mol and Defrise, [13] by Daubechies, Defrise, and De Mol, [2] by Aubert, Bect,
Blanc-Feraud, and Chambolle, [25, 26, 27] by Elad et al., and [?] by Darbon and
Osher (though this list is unavoidably nonexhaustive). Some of these works were
done independently around the same time, such as the two earlier papers [29] and
[15]. Although the derivations and analyses in these papers were conducted through
different means other than forward-backward operator splitting, the theoretical and
numerical results in these papers contribute to a better understanding on the behavior
of the fixed-point iterations (1.5) when applied to problem (1.2) or (1.1). For example,
the authors of [2] and those of [13] analyzed the model (1.2) and independently proved
global convergence without a strict convexity assumption, while classic convergence
results for forward-backward operator splitting require stronger assumptions, and
the authors of [26] proposed extensions and enhancements to the basic fixed-point
iterations to improve its practical performance. As is already mentioned, Combettes
and Wajs [12] recently established global convergence of the fixed-point iterations
(1.5) when applied to (1.1) without a strict convexity assumption. A more recent
paper by Combettes and Pesquet [11] studies closely related proximal soft-thresholding
algorithms.

Alternative algorithms for the unconstrained �1-problem (1.3) include an iterative
linear solver in an interior-point framework [35] by Kim et al., a gradient projection
and Barzilai–Borwein method applied to an equivalent box-constrained QP [28] by
Figueiredo, Nowak, and Wright, a direct and accelerated projected gradient method
[14] by Daubechies, Fornasier, and Loris, an accelerated multistep gradient method
[47] with an error convergence rate O(1/k2) by Nesterov, and a “two-step” shrinkage-
based algorithm [3] by Bioucas–Dias and Figueiredo. In [64], Van den Berg and
Friedlander apply an iterative method for solving the LASSO problem (6.3).

1.3. Notation and organization. For simplicity, we let ‖ · ‖ := ‖ · ‖2, the
Euclidean norm, unless otherwise specified. The support of x ∈ R

n is supp(x) := {i :
xi �= 0}. Let

g(x) := ∇f(x)

be the gradient of f(x); in particular, g(x) = A�M(Ax − b) for f defined by (1.3),
that is

(1.6) f =
1
2
‖Ax− b‖2

M .

For a set E, we use |E| to denote its cardinality. For any symmetric matrix B ∈ R
n×n,

we denote its eigenvalues as λi(B), i = 1, . . . , n, and its maximum and minimum
eigenvalues as, respectively, λmax(B) and λmin(B).

The signum function of t ∈ R is

sgn(t) :=

⎧

⎪

⎨

⎪

⎩

+1 t > 0,
0 t = 0,
−1 t < 0,
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while the signum multifunction (i.e., set-valued function) of t ∈ R is

SGN(t) := ∂|t| =

⎧

⎪

⎨

⎪

⎩

{+1} t > 0,
[−1, 1] t = 0,
{−1} t < 0,

which is also the subdifferential of |t|. For x ∈ R
n, we define sgn(x) ∈ R

n and
SGN(x) ⊂ R

n component-wise as (sgn(x))i := sgn(xi) and (SGN(x))i := SGN(xi),
i = 1, 2, . . . , n, respectively. Clearly,

sgn(x) = sgn(x′) ⇐⇒ SGN(x) = SGN(x′), ∀ x, x′.

For x, y ∈ R
n, let x � y ∈ R

n denote the component-wise product of x and y, i.e.,
(x� y)i = xiyi. Furthermore, vector operators such as |x| and max{x, y} are defined
to operate component-wise as well, analogous to the definitions of sgn and SGN.

For any index set I ⊆ {1, 2, . . . , n} (later, we will use index sets E and L), xI is
defined as the subvector of x of length |I| consisting only of components xi, i ∈ I.
Similarly, if g is a vector-valued function, then gI(x) denotes the subvector of g(x)
consisting of gi(x), i ∈ I.

This paper is organized as follows. In section 2, we recall the classic optimality
(or in general, stationarity) conditions for problem (1.1), and then characterize the
optimal solution sets of problems (1.1) and (1.3). In section 3, we present a fixed-
point optimality condition for (1.1). This optimality condition motivates a fixed-point
algorithm and introduces the shrinkage operator, the properties of which conclude sec-
tion 3. In section 4, we present our results on the convergence and rates of convergence
of the fixed-point algorithm; the proofs of the main results are given in section 5. We
motivate and propose a continuation method in section 6, support this proposal with
a few numerical results, and briefly discuss some possible extensions. Finally, we
conclude the paper in section 7.

2. Optimality and optimal solution sets. Recall that f(x) in (1.1) is convex,
and let X∗ be the set of optimal solutions of (1.1). It is well known from convex
analysis (see, for example, [53]) that an optimality condition for (1.1) is

(2.1) x ∈ X∗ ⇐⇒ 0 ∈ SGN(x) + μg(x),

where 0 is the zero vector in R
n, or equivalently,

(2.2) x ∈ X∗ ⇐⇒ μgi(x)

⎧

⎪

⎨

⎪

⎩

= −1, xi > 0,
∈ [−1, 1], xi = 0,
= 1, xi < 0.

It follows readily from (2.2) that 0 is an optimal solution of (1.1) if and only if
μ‖g(0)‖∞ ≤ 1; therefore, it is easy to check whether 0 is a solution of (1.1).

We note that the solution set X∗ may have more than one element. The following
theorem establishes some properties of X∗ that are of interest in their own right, but
will also be useful in later developments.

Theorem 2.1. Let f ∈ C2 be convex and X∗ be the set of optimal solutions of
(1.1), which is nonempty.

1. If x1 ∈ X∗ and x2 ∈ X∗, then g(x1) = g(x2).
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2. x ∈ X∗ if and only if g(x) ≡ g∗, where for i = 1, 2, . . . , n,

(2.3) μg∗i

⎧

⎪

⎨

⎪

⎩

= −1, max{xi : x ∈ X∗} > 0,
= +1, min{xi : x ∈ X∗} < 0,
∈ [−1, 1], otherwise.

3. X∗ is contained in a single orthant of R
n; more precisely

(2.4) X∗ ⊂ O := {x ∈ R
n : −sgn+(g∗i )xi ≥ 0, ∀i},

where sgn+(·) is equal to sgn(·) except that sgn+(0) := 1, i.e.,

sgn+(t) :=

{

+1 t ≥ 0,
−1 t < 0.

(In addition, we let sgn+(x) be defined component-wise for any x ∈ R
n.)

Furthermore, if f(x) is the quadratic defined as in (1.6), then
4. If x1 ∈ X∗ and x2 ∈ X∗, then Ax1 = Ax2.
5. ‖x‖1 and ‖Ax− b‖M are constant for all x ∈ X∗.
6. X∗ is a bounded polyhedron, i.e., a polytope.

Proof. We prove the statements one by one.
1. This part will be proven later as Corollary 4.2 under Assumption 1, which

is slightly weaker than what is assumed for this theorem. That proof is
independent of this theorem and the results that follow from it.

2. (2.3) follows directly from part 1 and (2.2) applied to all x ∈ X∗.
3. From (2.1) and (2.3), if there exists an x ∈ X∗ with a strictly positive (neg-

ative) xi, then μg∗i = −1 (μg∗i = 1), so all other x ∈ X∗ must satisfy xi ≥ 0
(xi ≤ 0). Consequently, X∗ lies in the orthant O.

4. From part 1 and for the quadratic f(x) so specified, g(x1) − g(x2) = A�MA
(x1 − x2) = 0, which immediately implies that A(x1 − x2) = 0, given that M
is symmetric positive definite.

5. From part 4, Ax is constant over x ∈ X∗, and so is ‖Ax − b‖M . Since (1.3)
has a unique optimal objective value, ‖x‖1 must also be constant.

6. Defining p = −sgn+(g∗), from the definition of O we have

p�x = ‖x‖1, ∀x ∈ O.

Consider the linear program

(2.5) min
x

{

p�x : Ax = c, x ∈ O
}

,

where c = Ax for any x ∈ X∗. It is easy to verify that an optimal solution
x̄ of (2.5) satisfies both ‖x̄‖1 = ‖x‖1 and ‖Ax̄ − b‖M = ‖Ax − b‖M for any
x ∈ X∗ and vice versa. So (2.5) is equivalent to (1.3), as long as c and O
(or equivalently, g∗) are known. Consequently, X∗, as the solution set of the
linear program (2.5), must be a polyhedron and must be bounded since ‖x‖1

is constant for all x ∈ X∗.
This completes the proof.
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3. A fixed-point algorithm.

3.1. Optimality as a fixed-point equation. We start with another optimality
condition for problem (1.1): for any scalar τ > 0, x∗ ∈ X∗ if and only if

(3.1) x∗ = sgn(x∗ − τg(x∗)) � max
{

|x∗ − τg(x∗)| − τ

μ
,0
}

.

The derivation of (3.1) can be found, for example, in [12].
It is straightforward to verify that optimality condition (3.1) can be replaced by

(3.2) x∗ = sgn(x∗ − d(x∗) � g(x∗)) � max
{

|x∗ − d(x∗) � g(x∗)| − d(x∗)
μ

,0
}

,

where the positive scalar τ in (3.1) is replaced by any mapping d from R
n to R

n such
that (d(x))i = di(xi) > 0. The algorithm based on (3.1), and its analysis as well, can
be readily extended to those based on (3.2) (see [26] for a study of such an extension).

The right-hand side of the fixed-point equation (3.1) is a composition of two
mappings from R

n to R
n defined as

h(·) := I(·) − τg(·),(3.3)
sν(·) := sgn(·) � max{| · | − ν, 0}, where ν > 0.(3.4)

Intuitively, h(·) resembles a gradient descent step for f(x) with the stepsize τ > 0,
and sν(·) reduces the magnitude of each nonzero component of the input vector by
an amount less than or equal to ν, thus reducing the �1-norm. Later we will also use
sν as a mapping from R to R in composition with hi(·) = (h(·))i from R

n to R.
Equation (3.1) leads to the fixed-point iterations

(3.5) xk+1 = sν ◦ h
(

xk
)

with τ > 0, ν = τ/μ,

which can be derived by operator-splitting or other means as has been done by the
authors mentioned in subsection 1.2. As many others before us, we originally derived
the fixed-point scheme (3.5) from a totally different approach, and later found that it
can be interpreted as the forward-backward splitting algorithm (1.5) with

T1(x) = ∂‖x‖1/μ, and T2(x) = g(x),

since simple calculations show that

sν = (I + τT1)−1, and h = I − τT2.

However, some special properties of the operator sν , given below, will allow us to
obtain strong convergence results that do not directly follow from the existing theory
for forward-backward splitting algorithms applied to more general operators.

The main algorithm of the paper, Algorithm 1, is based on (3.5) and will be
presented in subsection 6.2 along with choices for τ and μ.

3.2. Properties of the shrinkage operator. It is easy to verify that sν(y) is
the unique solution of

min
x∈Rn

ν‖x‖1 +
1
2
‖x− y‖2
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for any y ∈ R
n. Wavelet analysts refer to sν(·) as the soft-thresholding [19] or wavelet

shrinkage [7] operator. For convenience, we will refer to sν(·) as the shrinkage operator.
The two lemmas below establish some useful properties of the shrinkage operator.

Both make immediate use of the component-wise separability of sν , that is, for all
indices i

(sν(y))i = sν(yi).

The alternative representation of sν in Lemma 3.1 will be used to prove Lemma 3.2.
Lemma 3.2 proves a number of component-wise properties of sν , including nonexpan-
siveness. These results will be used to prove convergence results for (3.5) that are not
implied by convergence results in [12].

With a slight abuse of notation, we let P(x) denote the projection of a vector
x ∈ R

k onto the k-cube [−ν, ν]k for any positive integer k, since the projection onto
any k-cube is done component-wise. Now Lemma 3.1 below can be trivially verified
by enumerating all possible cases.

Lemma 3.1. The shrinkage operator can be written as

(3.6) sν(y) = y − P(y), ∀ y ∈ R
n,

and the equation holds component-wise; i.e., (sν(y))i ≡ sν(yi) = yi−P(yi). Moreover,
both sν(y) and P(y) are component-wise monotone.

Lemma 3.2. The operator sν(·) is component-wise nonexpansive and for any
y1, y2 ∈ R

n,

(3.7)
∣

∣sν
(

y1
i

)

− sν
(

y2
i

)∣

∣ =
∣

∣y1
i − y2

i

∣

∣−
∣

∣P
(

y1
i

)

− P
(

y2
i

)∣

∣ , ∀i.

Consequently, sν is nonexpansive in any �p (quasi-)norm with p ≥ 0, and if h is
nonexpansive in a given norm, then sν ◦ h is as well. Moreover, consider the case
when

(3.8)
∣

∣sν
(

y1
i

)

− sν
(

y2
i

)∣

∣ =
∣

∣y1
i − y2

i

∣

∣ ,

which we refer to as the no-shrinkage condition. We have, for each index i:
1. (3.8) =⇒ P(y1

i ) = P(y2
i ), sgn(y1

i ) = sgn(y2
i ), sν(y1

i ) − sν(y2
i ) = y1

i − y2
i .

2. (3.8) and y1
i �= y2

i =⇒ |y1
i | ≥ ν, |y2

i | ≥ ν and |y1
i | �= |y2

i |.
3. (3.8) and |y2

i | < ν =⇒ |y1
i | < ν, y1

i = y2
i , sν(y1

i ) = sν(y2
i ) = 0.

4. (3.8) and |y2
i | ≥ ν =⇒ |y1

i | ≥ ν.
5. |y2

i | ≥ ν and sgn(y1
i ) �= sgn(y2

i ) =⇒ |sν(y1
i ) − sν(y2

i )| ≤ |y1
i − y2

i | − ν.
6. sν(y1

i ) �= 0 = sν(y2
i ) =⇒ |y1

i | > ν, |y2
i | ≤ ν, |sν(y1

i ) − sν(y2
i )| ≤ |y1

i − y2
i | −

(ν − |y2
i |).

Proof. For ease of notation, we drop the subscript i and let p1 = y1
i and p2 = y2

i .
Without loss of generality we assume that p1 ≥ p2. Hence, from the monotonicity of
sν and P we have sν(p1) ≥ sν(p2) and P(p1) ≥ P(p2). Therefore,

∣

∣sν
(

p1
)

− sν
(

p2
)∣

∣ = sν
(

p1
)

− sν
(

p2
)

= p1 − p2 −
(

P
(

p1
)

− P
(

p2
))

=
∣

∣p1 − p2
∣

∣−
∣

∣P
(

p1
)

− P
(

p2
)∣

∣ ,

which proves (3.7).
Next, we move to proving parts 5 and 6, omitting the proofs for parts 1 through

4 since, given (3.6) and (3.7), they all can be similarly and easily verified.
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For part 5, it suffices to show that |P(p1)−P(p2)| ≥ ν. Without loss of generality,
we assume that p1 > 0 and p2 < 0. Hence, P(p1) ≥ 0, P(p2) = −ν, and |P(p1) −
P(p2)| = P(p1) − P(p2) ≥ ν.

Finally, we verify part 6. First, it is easy to see that |p1| > ν and |p2| ≤ ν. Hence,
|P(p1)| = ν and P(p2) = p2, and |P(p1)−P(p2)| ≥ |P(p1)| − |P(p2)| = ν − |p2|.

4. Convergence analysis. In this section, we study the convergence of the
fixed-point iterations (3.5) applied to the general �1-regularized minimization problem
(1.1) and the quadratic case (1.3). Assumption 1 below, which states that f is a convex
function with bounded Hessian in a neighborhood of an optimal solution of (1.1), is
sufficient for our global convergence result and will be applied throughout. Further
assumptions (primarily on the rank of a particular minor of the Hessian of f) will be
made to obtain linear convergence rate results in section 4.2.

Assumption 1. Problem (1.1) has an optimal solution set X∗ �= ∅, and there
exists a bounded convex set Ω ⊃ X∗ such that f ∈ C2(Ω), H(x) := ∇2f(x) � 0 for
x ∈ Ω and

(4.1) λ̂max := max
x∈Ω

λmax(H(x)) <∞.

For simplicity, we will use a constant parameter τ in the fixed-point iterations
(3.5): xk+1 = sν(xk − τg(xk)), where

(4.2) ν = τ/μ.

In particular, we will always choose

(4.3) τ ∈
(

0, 2/λ̂max

)

,

which guarantees that h(·) = I(·)− τg(·) is nonexpansive in Ω, and contractive in the
range space of H in the quadratic case. Our analysis can be extended to the case
of variable τ , but this would require more complicated notation and a reduction of
clarity.

4.1. Global and finite convergence. From the mean-value theorem, we recall
that for any x, x′ ∈ Ω

(4.4) g(x) − g(x′) =
(∫ 1

0

H(x′ + t(x− x′)) dt
)

(x− x′) := H̄(x, x′)(x − x′).

This fact is used to verify the nonexpansiveness of h and the result that noncontraction
between any two points under h implies that the gradient of f is equal at those points.

Lemma 4.1. Under Assumption 1 and the choice of τ specified in (4.3), h(·) =
I(·) − τg(·) is nonexpansive in Ω, i.e., for any x, x′ ∈ Ω,

(4.5) ‖h(x) − h(x′)‖ ≤ ‖x− x′‖.

Moreover, g(x) = g(x′) whenever equality holds in (4.5).
Proof. Let H̄ := H̄(x, x′). We first note that

h(x) − h(x′) = x− x′ − τ(g(x) − g(x′)) =
(

I − τH̄
)

(x − x′).
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Hence, in view of (4.3),

‖h(x) − h(x′)‖ =
∥

∥

(

I − τH̄
)

(x− x′)
∥

∥

≤ max
{∣

∣1 − τλmax

(

H̄
)∣

∣ ,
∣

∣1 − τλmin

(

H̄
)∣

∣

}

‖x− x′‖
≤ max{|1 − τλ̂max|, 1}‖x− x′‖
≤ ‖x− x′‖.

To prove the second statement, let s := x− x′ and p := H̄1/2s. Then

‖h(x) − h(x′)‖ = ‖x− x′‖ ⇐⇒
∥

∥s− τH̄s
∥

∥ = ‖s‖
⇐⇒ −2τ sT H̄s+ τ2sT H̄2s = 0
⇐⇒ τpT H̄p = 2pT p

=⇒ τ
pT H̄p

pT p
= 2 if p �= 0,

which contradicts (4.3) since pT H̄p

pT p
≤ λ̂max <

2
τ . Hence, p = 0 so that

g(x) − g(x′) = H̄1/2p = 0

whenever h is noncontractive.
Since any two fixed points, say x and x′, of the nonexpansive mapping sν ◦h must

satisfy the equality

(4.6) ‖x− x′‖ = ‖sν ◦ h(x) − sν ◦ h(x′)‖ = ‖h(x) − h(x′)‖,

Lemma 4.1 shows that the gradient of f evaluated at any two fixed points must be
equal. Hence, we have the following corollary and the first statement of Theorem 2.1.

Corollary 4.2 (Constant optimal gradient). Under Assumption 1, there is a
vector g∗ ∈ R

n such that

(4.7) g(x∗) ≡ g∗, ∀x∗ ∈ X∗.

We will use the following partition of all indices {1, . . . , n} into L and E to obtain
finite convergence for components in L and linear convergence for components in E.

Definition 4.3. Let X∗ �= ∅ be the solution set of (1.1) and g∗ be the vector
specified in Corollary 4.2. Define

(4.8) L := {i : μ|g∗i | < 1} and E := {i : μ|g∗i | = 1}.

It is clear from the optimality condition (2.2) that L ∪ E = {1, 2, . . . , n},

(4.9) supp(x∗) ⊆ E, and x∗i = 0, ∀i ∈ L, ∀x∗ ∈ X∗.

There are examples in which supp(x∗) �= E, so the two vectors |x∗| and 1− μ|g∗| are
always complementary, but may not be strictly complementary.

The positive scalar ω defined below will also play a key role in the finite conver-
gence property of the fixed-point iterations:

Definition 4.4. Let g∗ be the vector specified in Corollary 4.2. Define

(4.10) ω := min{ν(1 − μ|g∗i |) : i ∈ L}.
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From the definition, clearly ω > 0. In addition, since (4.9) implies that for all
x∗ ∈ X∗ and all i ∈ L

ν(1 − μ|g∗i |) = ν − τ |g∗i | = ν − |x∗i − τgi(x∗)| = ν − |hi(x∗)|,

and consequently, for any x∗ ∈ X∗,

(4.11) min{ν − |hi(x∗)| : i ∈ L} = ω > 0.

We now claim that Assumption 1 is sufficient for obtaining convergence of the
fixed-point iterations (3.5) and finite convergence for components in L and signs in E.
We reiterate that under similar conditions, convergence has been established in [12].

Theorem 4.5 (the general case). Under Assumption 1, the sequence {xk} gen-
erated by the fixed-point iterations (3.5) applied to problem (1.1) from any starting
point x0 ∈ Ω converges to some x∗ ∈ X∗ ∩ Ω. In addition, for all but finitely many
iterations, we have

xki = x∗i = 0, ∀i ∈ L,(4.12)
sgn

(

hi
(

xk
))

= sgn (hi (x∗)) = −μg∗i , ∀i ∈ E,(4.13)

where the numbers of iterations not satisfying (4.12) and (4.13) do not exceed ‖x0 −
x∗‖2/ω2 and ‖x0 − x∗‖2/ν2, respectively, for ω defined in (4.10) and ν = τ/μ.

The proof of Theorem 4.5 is rather lengthy and is therefore relegated to the next
section. A majority of the proof concerns the finite convergence properties which are
new. For the sake of completeness, we also include a proof for global convergence
which is known.

In light of this theorem, every starting point x0 ∈ Ω determines a converging
sequence {xk} whose limit is a solution of (1.1). Generally, the solutions of (1.1) may
be nonunique, as it is not difficult to construct simple examples for which different
starting points lead to different solutions.

We recall that xE and g∗E are defined as the subvectors of x and g∗ with com-
ponents xi and g∗i , i ∈ E, respectively. Without loss of generality, we assume
E = {1, 2, . . . , |E|}, and let (xE ; 0) denote the vector in R

n obtained from x by
setting the components xi ∀i ∈ L to zero. The following corollary enables one to
apply any convergence results for the gradient projection method to the fixed-point
iterations (3.5).

Corollary 4.6. Under Assumption 1 and starting from some x0 ∈ Ω, after a
finite number of iterations the fixed-point iterations (3.5) reduce to gradient projection
iterations for minimizing φ(xE) over a constraint set OE , where

(4.14) φ(xE) := −(g∗E)�xE + f((xE ; 0)), and

(4.15) OE = {xE ∈ R
|E| : −sgn(g∗E) � xE ≥ 0}.

Specifically, we have xk+1 = (xk+1
E ; 0) in which

(4.16) xk+1
E := POE

(

xkE − τ∇φ
(

xkE
))

,

where POE is the orthogonal projection onto OE, and ∇φ(xE) = −g∗E + gE((xE ; 0)).
Proof. From Theorem 4.5, there exists K > 0 such that for k ≥ K (4.12)–(4.13)

hold. Let k > K. Since xki = 0 for i ∈ L, it suffices to consider i ∈ E. For
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i ∈ E, we have xki ≥ 0 if sgn(hi(xk−1)) = 1 (equivalently, g∗i < 0) and xki ≤ 0 if
sgn(hi(xk−1)) = −1 (g∗i > 0). Therefore, for any i, −g∗i xki ≥ 0 for all k > K. Hence,
xk ∈ O according to the definition (2.4) of O and xkE ∈ OE .

For i ∈ E, we calculate the quantity

yk+1
i := xki − τ

(

∇φ
(

xk
))

i

= xki − τ
(

−g∗i + gi
(

xk
))

= hi
(

xk
)

+ νμg∗i

= sgn
(

hi
(

xk
)) (∣

∣hi
(

xk
)∣

∣− ν
)

,

where (4.13) was used to obtain the last expression. Clearly, the fixed-point iterations
(3.5) restricted to the components i ∈ E are

(

xk+1
E

)

i
= sν ◦ hi

(

xk
)

=

{

yk+1
i , −g∗i yk+1

i ≥ 0,
0, otherwise.

Equivalently,
(

xk+1
E

)

i
=
(

POE

(

xkE − τ∇φ
(

xkE
)))

i
,

which completes the proof.
Finally, a stronger global convergence result for convex quadratic functions, namely,

f as in (1.6), follows directly from the general convergence result. We note that As-
sumption 1 is no longer necessary if the convex quadratic is bounded below. Due to
the importance of the quadratic case, we state a separate theorem.

Theorem 4.7 (the quadratic case). Let f be a convex quadratic function that is
bounded below, H be its Hessian, and τ satisfy

(4.17) 0 < τ < 2/λmax(H).

Then the sequence {xk}, generated by the fixed-point iterations (3.5) from any starting
point x0, converges to some x∗ ∈ X∗. In addition, (4.12)–(4.13) hold for all but finitely
many iterations.

4.2. Linear rate of convergence. Let {xk} be generated by the fixed-point
iterations (3.5) starting from any x0 ∈ Ω. We know that the sequence converges to
some point in X∗. Throughout this subsection, we let x0 ∈ Ω,

x∗ := lim
k→∞

xk,

and study the rate of convergence of {xk} to x∗ under different assumptions. Note
that Ω = R

n if f is convex quadratic, and recall that a sequence {‖xk−x∗‖} converges
to zero q-linearly if its q1-factor is less than one, i.e., if

q1 := lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ < 1,

while it is r-linearly convergent if it is bounded by a q-linearly convergent sequence.
As we will show, under appropriate assumptions q-linear convergence holds for

any τ ∈ (0, 2/λ̂max). However, the q1-factor may vary with different choices of τ . In
particular, we consider choices of the form

(4.18) τ(λ) :=
γ(λ)

γ(λ) + 1
2

λ̂max

, γ(λ) :=
λ̂max

λ
,
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where λ̂max is defined in (4.1) and λ > 0 will take different values under different
assumptions. It is easy to see that τ(λ) ∈ (0, 2/λ̂max) since γ(λ) > 0.

Some of our assumptions will involve the matrix HEE :
Definition 4.8. Let H(x) denote the Hessian of f evaluated at x ∈ Ω, and

HEE(x) := [Hi,j(x)]i,j∈E

denote the square submatrix of H corresponding to the index set E defined in (4.8).
Based on Corollary 4.6, we first apply existing convergence results for the gradient

projection method applied to (4.16).
Proposition 4.9. Let Assumption 1 hold. If (i) HEE(x∗) has full rank, or (ii)

f is defined as in (1.6), then {‖xk‖1 + μf(xk)} converges to ‖x∗‖+ μf(x∗) q-linearly
and {xk} converges to x∗ r-linearly.

Under the first condition, the above result follows from [50] and [41], while under
the second condition it follows from [41]. However, by directly analyzing the original
fixed-point iterations, we can strengthen the convergence rate of {xk} from r-linear
to q-linear. Theorem 4.10 does this under the assumption that HEE(x∗) is full rank;
Theorem 4.11 instead assumes that supp(x∗) = E. We first define

(4.19) H̄k ≡ H̄
(

xk, x∗
)

:=
∫ 1

0

H
(

x∗ + t
(

xk − x∗
))

dt.

Theorem 4.10. Let Assumption 1 hold, and assume that

(4.20) λEmin := λmin(HEE(x∗)) > 0.

Then for any τ ∈ (0, 2/λ̂max), {xk} converges to x∗ q-linearly. Moreover, if τ is
chosen as in (4.18) with λ = λEmin, then the q1-factor satisfies

(4.21) q1 ≤
γ
(

λEmin

)

− 1
γ
(

λEmin

)

+ 1
.

Proof. Without loss of generality, we assume that all iteration counts, k, are large
enough so that xki = x∗i = 0 for all i ∈ L, and that the spectrum of H̄k

EE falls in the
interval [λEmin − ε, λ̂max] for an arbitrary ε > 0. (The first assumption on k is valid
because of the finite convergence properties of Theorem 4.5; the second follows from
the continuity of the Hessian.) Since xki = x∗i = 0, ∀i ∈ L, the mean-value theorem
yields

hE
(

xk
)

− hE (x∗) = xkE − x∗E − τ
(

gE
(

xk
)

− gE (x∗)
)

=
(

I − τH̄k
EE

) (

xkE − x∗E
)

.

Recall that xk+1 = sν ◦ h(xk) and sν(·) is nonexpansive. Hence,
∥

∥xk+1 − x∗
∥

∥ ≡
∥

∥xk+1
E − x∗E

∥

∥

≤
∥

∥hE
(

xkE
)

− hE (x∗E)
∥

∥

≤
∥

∥I − τH̄k
EE

∥

∥

∥

∥xkE − x∗E
∥

∥

≤ max
{∣

∣

∣1 − τλ̂max

∣

∣

∣ ,
∣

∣1 − τλEmin

∣

∣+ τε
}

∥

∥xkE − x∗E
∥

∥

≡ max
{∣

∣

∣1 − τλ̂max

∣

∣

∣ ,
∣

∣1 − τλEmin

∣

∣+ τε
}

∥

∥xk − x∗
∥

∥ .
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Clearly, max{|1 − τλ̂max|, |1 − τλEmin| + τε} is less than one for any τ ∈ (0, 2/λ̂max)
and ε sufficiently small; in particular, it equals the right-hand side of (4.21) plus τε
when τ = τ(λEmin). Since ε is arbitrary, (4.21) must hold.

Theorem 4.11. Let Assumption 1 hold, and also assume that x∗ satisfies (i)
supp(x∗) = E or, equivalently, the strict complementarity condition

(4.22) |x∗| + (1 − μ|g∗|) > 0,

and (ii) the range space R(HEE(x)) of HEE(x) is invariant in a neighborhood N∗ of
x∗. Whenever HEE(x∗) �= 0, let

(4.23) λRmin := λmin

(

V �HEE(x∗)V
)

> 0,

where V is any orthonormal basis of R(HEE(x∗)).
If HEE(x∗) = 0, then xk = x∗ for all k sufficiently large; otherwise {xk} converges

to x∗ q-linearly for any τ ∈ (0, 2/λ̂max). In the latter case, if τ is chosen as in (4.18)
with λ = λRmin, then the q1-factor satisfies

(4.24) q1 ≤
γ
(

λRmin

)

− 1
γ
(

λRmin

)

+ 1
.

The proof of this theorem is given in section 5.2. We note that R(HEE(x)) is
invariant near x∗ if either f is a quadratic function or HEE(x∗) has full rank.

Since Assumption 1 is not required in the proof of global convergence for convex
quadratic f , we can directly derive the following results for this case, which is the
situation one encounters with compressed sensing. The proof, which is similar to
those of Theorems 4.10 and 4.11, is left to the reader.

Corollary 4.12. Let f be a convex quadratic function that is bounded be-
low, and {xk} be the sequence generated by the fixed-point iterations (3.5) with τ ∈
(0, 2/λmax(H)).

1. If HEE has full rank, then {xk} converges to x∗ q-linearly. Moreover, if τ is
chosen as in (4.18) with λ = λmin(HEE), then the q1-factor satisfies

q1 ≤ γ(λmin(HEE)) − 1
γ(λmin(HEE)) + 1

.

2. Let x∗ satisfy the strict complementarity condition (4.22). Then if HEE = 0,
{xk} converges to x∗ in a finite number of steps. Otherwise {xk} converges
to x∗ q-linearly, and if τ is chosen as in (4.18) with λ := λmin(V �HEEV ),
where V is an orthonormal basis for the range space of HEE, then the q1-
factor satisfies

q1 ≤
γ
(

λmin

(

V �HEEV
))

− 1
γ (λmin (V �HEEV )) + 1

.

4.3. Discussion. The assumptions of Theorems 4.10 and 4.11 usually hold for
compressed sensing reconstruction problems posed as in (1.3) or (1.2), in which case A
is often a Gaussian random matrix or has rows randomly chosen from an orthogonal
matrix such as an FFT, DCT, or wavelets transform matrix. It is well known that
a randomly generated matrix is full rank with probability one (unless elements of
the matrix are generated from a restricted space) [23]. Therefore, when A ∈ R

m×n
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is a random matrix, the reduced Hessian for problem (1.3), i.e., A�
EMAE , where

AE consists of columns of A with indices in E, will have full rank with probability
one as long as |E| ≤ m, which is generally the case. A similar argument can be
made for partial orthogonal matrices. We believe that the strict complementarity
assumption in Theorem 4.11 should also hold for random matrices with a prevailing
probability, though we do not currently have a proof for this. We have observed the
general convergence behavior predicted by our theorems empirically in computational
studies; see section 6.2.

In our convergence theorems, the choice of τ is restricted by the upper bound
2/λ̂max, where λ̂max is an upper bound for the largest eigenvalue of the Hessian.
In compressed sensing applications, the quantity λ̂max is often easily obtained when
M = I. When A is a partial orthogonal matrix, λ̂max = λmax(A�A) = 1 and τ ∈ (0, 2)
will suffice. When A is a Gaussian random matrix (with elements independently drawn
from the standard normal distribution), well-known random matrix theory (see [34]
or [23], for example) yields

n

(

1 −
√

m

n

)2

≤ λi
(

A�A
)

≤ n

(

1 +
√

m

n

)2

with prevailing probability for large n. In either case, upper bounding τ is not an
issue as long as M = I.

For simplicity, we have used a fixed τ ∈ (0, 2/λ̂max) in our analysis. However, this
requirement could be relaxed in the later stages of the iterations when the actions
of the mapping h = I − τg concentrate on a “reduced space.” In this stage, h can
remain contractive even if the maximum eigenvalue bound on the Hessian is replaced
by that on the reduced Hessian, which will generally increase the upper bound on τ .
For example, consider the quadratic problem (1.2) where A is a partial orthogonal
matrix. Then λmax(A�A) = 1, but λmax(A�

EAE) < 1, such that h remains contractive
even if τ is chosen close to 2/λmax(A�

EAE) > 2. Such a dynamic strategy, though
theoretically feasible, is not straightforward to implement. It should be an interesting
topic for further research.

5. Proofs of convergence results. In this section, Theorems 4.5 and 4.11 are
proved through several technical results that lead to the final arguments.

5.1. Proof of Theorem 4.5. The lemma below establishes a sufficient condition
for x ∈ Ω to be a fixed point of sν ◦ h(·).

Lemma 5.1. Under Assumption 1, if

(5.1) ‖sν ◦ h(x) − sν ◦ h(x∗)‖ ≡ ‖sν ◦ h(x) − x∗‖ = ‖x− x∗‖,

then x is a fixed point, and therefore a solution of (1.1); that is,

(5.2) x = sν ◦ h(x).

Proof. Recall that sν is component-wise nonexpansive and h is nonexpansive in
‖ · ‖. From (5.1),

(5.3) ‖x− x∗‖ = ‖sν ◦ h(x) − sν ◦ h(x∗)‖ ≤ ‖h(x) − h(x∗)‖ ≤ ‖x− x∗‖.

Hence, both inequalities hold as equalities. In particular, the no-shrinkage condition
(3.8) holds for y1 = h(x) and y2 = h(x∗), so Part 1 of Lemma 3.2 yields

sν ◦ h(x) − sν ◦ h(x∗) = h(x) − h(x∗).
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Rewriting this equation, we get

sν ◦ h(x) = x− τ(g(x) − g(x∗)),

and since the last inequality in (5.3) also holds as equality, we have g(x) − g(x∗) = 0
according to Lemma 4.1, and hence the conclusion.

The next lemma establishes the finite convergence properties stated in Theo-
rem 4.5.

Lemma 5.2. Let Assumption 1 hold and {xk} be generated by the fixed-point
iterations (3.5) starting from any x0 ∈ Ω. Then

1. xki = 0 ∀i ∈ L for all but at most ‖x0 − x∗‖2/ω2 iterations;
2. sgn(hi(xk)) = sgn(hi(x∗)) = −μg∗i , ∀ i ∈ E, for all but at most ‖x0−x∗‖2/ν2

iterations.
Proof. We fix any x∗ ∈ X∗ and consider xki �= 0 for some i ∈ L. In view of the

nonexpansiveness of sν(·) and the related property in Lemma 3.2 part 6, we have

∣

∣xk+1
i − x∗i

∣

∣

2
=
∣

∣sν ◦ hi
(

xk
)

− sν ◦ hi(x∗)
∣

∣

2

≤
(∣

∣hi
(

xk
)

− hi(x∗)
∣

∣− (ν − hi(x∗))
)2

≤
∣

∣hi
(

xk
)

− hi(x∗)
∣

∣

2 − ω2,

where the last inequality follows from (4.11). The component-wise nonexpansiveness
of sν(·) and the nonexpansiveness of h(·) imply that

∥

∥xk+1 − x∗
∥

∥

2 ≤
∥

∥h
(

xk
)

− h(x∗)
∥

∥

2 − ω2 ≤
∥

∥xk − x∗
∥

∥

2 − ω2.

Therefore, the number of iterations where xki �= 0 for some i ∈ L cannot be more than
‖x0 − x∗‖2/ω2. This proves the first statement.

For the second statement, we recall (3.1) and note that if i ∈ supp(x∗)

0 �= x∗i = sgn(hi(x∗)) max{|hi(x∗)| − ν, 0},

so that |hi(x∗)| > ν for i ∈ supp(x∗). On the other hand,

|hi(x∗)| = τ |g∗| = τ/μ = ν, ∀i ∈ E \ supp(x∗).

Therefore,

|hi(x∗)| ≥ ν, ∀i ∈ E.

Now if sgn(hi(xk)) �= sgn(hi(x∗)) for some i ∈ E, then Lemma 3.2, Part 5 implies

∣

∣xk+1
i − x∗i

∣

∣

2
=
∣

∣sν ◦ hi
(

xk
)

− sν ◦ hi(x∗)
∣

∣

2

≤
(∣

∣hi
(

xk
)

− hi(x∗)
∣

∣− ν
)2

≤
∣

∣hi
(

xk
)

− hi(x∗)
∣

∣

2 − ν2.

Hence, the number of iterations for which sgn(hi(xk)) �= sgn(hi(x∗)) for some i ∈ E
cannot be more than ‖x0−x∗‖2/ν2. Moreover, it follows directly from the definitions
of E in (4.8), h in (3.3), and g∗ in (2.3), and the equation τ = νμ, that sgn(hi(x∗)) =
−μg∗i for all i ∈ E.
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Based on these lemmas, we provide a short proof of Theorem 4.5 for the sake of
completeness.

Proof of Theorem 4.5. To show that {xk} converges, we (i) show that {xk} has a
limit point, (ii) argue that it must be a fixed point because it satisfies the condition
(5.1) of Lemma 5.1, and (iii) prove its uniqueness.

Since sν ◦ h(·) is nonexpansive, {xk} lies in a compact subset of Ω and must have
a limit point, say,

x̄ = lim
j→∞

xkj .

Since for any given fixed point x∗ the sequence {‖xk − x∗‖} is monotonically
nonincreasing, it has a limit which can be written as

(5.4) lim
k→∞

∥

∥xk − x∗
∥

∥ = ‖x̄− x∗‖,

where x̄ can be any limit point of {xk}. That is, all limit points, if more than one
exists, must have an equal distance to any given fixed point x∗ ∈ X∗.

By the continuity of sν ◦ h(·), the image of x̄,

sν ◦ h(x̄) = lim
j→∞

sν ◦ h
(

xkj
)

= lim
j→∞

xkj+1,

is also a limit point of {xk}. Therefore, from (5.4) we have

‖sν ◦ h(x̄) − sν ◦ h(x∗)‖ = ‖x̄− x∗‖,

which allows us to apply Lemma 5.1 to x̄ and establish the optimality of x̄.
By setting x∗ = x̄ ∈ X∗ in (5.4), we establish the convergence of {xk} to its

unique limit point x̄:

lim
k→∞

∥

∥xk − x̄
∥

∥ = 0.

Finally, the finite convergence results (4.12)–(4.13) were proved in Lemma 5.2.

5.2. Proof of Theorem 4.11. The next lemma gives a useful update formula
for k sufficiently large and i ∈ supp(x∗).

Lemma 5.3. Under Assumption 1, after a finite number of iterations

(5.5) xk+1
i = xki − τ

(

gi
(

xk
)

− g∗i
)

, ∀i ∈ supp(x∗).

Proof. Since xk → x∗ ∈ X∗ and h(·) is component-wise continuous, hi(xk) →
hi(x∗). The fact that |hi(x∗)| > ν for i ∈ supp(x∗) implies that after a finite number
of iterations we have |hi(xk)| > ν for i ∈ supp(x∗). This gives

xk+1
i = sgn

(

hi
(

xk
)) (∣

∣hi
(

xk
)∣

∣− ν
)

= hi
(

xk
)

− ν sgn
(

hi
(

xk
))

= xki − τgi
(

xk
)

− (τ/μ) (−μg∗i )

= xki − τ
(

gi
(

xk
)

− g∗i
)

,

for any i ∈ supp(x∗).
Proof of Theorem 4.11. Without loss of generality, we can assume that k is large

enough so that (5.5) holds and xk ∈ N∗, where N∗ is defined in Theorem 4.11.
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Since xki = 0 for any i ∈ L, it suffices to consider the rate of convergence of xki for
i ∈ E = supp(x∗), where equality follows from the strict complementarity assumption
on x∗.

Let H̄k be defined as in (4.19). By assumption, the range and null spaces of H̄k
EE

are now invariant for all k. Let P = V V � ∈ R
|E|×|E| be the orthogonal projection

onto the range space of HEE(x∗) such that I−P is the orthogonal projection onto the
null space of HEE(x∗). Also recall that xE denotes the subvector of x corresponding
to the index set E.

Since E = supp(x∗), Lemma 5.3 implies that

(5.6) xk+1
E = xkE − τ

(

g
(

xk
)

− g(x∗)
)

E
= xkE − τH̄k

EE

(

xkE − x∗E
)

.

At each iteration, the update, −τH̄k
EE(xkE−x∗E), stays in the range space of HEE(x∗).

This implies that the null space components of the iterates have converged to the null
space components of x∗, namely, for all k sufficiently large,

(5.7) (I − P )
(

xkE − x∗E
)

≡ 0.

If HEE(x∗) = 0, then the range space is empty and the update vanishes such that
xk = x∗ after a finite number of steps.

Now assume that HEE(x∗) �= 0 so that λRmin > 0 exists. It suffices to consider the
rate of convergence of {PxkE} to Px∗E . It follows from (5.6) and (5.7) that

(5.8) xk+1
E − x∗E = P

(

xk+1
E − x∗E

)

= P
(

I − τH̄k
EE

)

P
(

xkE − x∗E
)

.

By a routine continuity argument, we know that there exists an arbitrarily small
constant ε > 0 such that for all k sufficiently large the eigenvalues of V �Hk

EEV
satisfy

λ̂max ≥ λi
(

V �Hk
EEV

)

≥ λRmin − ε > 0, ∀i.

Consequently, given the definition of τ in (4.18) and noting that P 2 = P = V V �, we
calculate from (5.8):

∥

∥xk+1
E − x∗E

∥

∥ ≤
∥

∥P
(

I − τH̄k
EE

)

P
∥

∥

∥

∥xkE − x∗E
∥

∥

=
∥

∥I − τV �H̄k
EEV

∥

∥

∥

∥xkE − x∗E
∥

∥(5.9)

= max
{∣

∣

∣1 − τλ̂max

∣

∣

∣ ,
∣

∣1 − τλRmin

∣

∣+ τε
}

∥

∥xkE − x∗E
∥

∥

=

(

γ
(

λRmin

)

− 1
γ
(

λRmin

)

+ 1
+ τε

)

∥

∥xkE − x∗E
∥

∥ ,

which implies (4.24) since ε can be arbitrarily small.

6. A continuation method. Our algorithm for solving (1.1), that is,

(6.1) min
x∈Rn

‖x‖1 + μf(x),

consists of applying the fixed-point iterations

xk+1 = sν ◦ h
(

xk
)

:= sgn
(

xk − τg
(

xk
))

� max
{∣

∣xk − τg
(

xk
)∣

∣− ν, 0
}

, μν = τ

(see (3.5) and (4.3)) within the continuation (or path-following) framework described
below. Further extensions that may improve our algorithm are certainly possible, but
are beyond the scope of this paper.
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6.1. Homotopy algorithms in statistics. Statisticians often solve (1.2) (which
is (1.1) with f(x) = 1

2‖Ax − b‖2) in the context of regression. In Bayesian terminol-
ogy, this corresponds to maximizing the a posteriori probability for recovering the
signal x from the measurement b = Ax+ ε, where the prior on x is Laplacian and ε is
Gaussian white noise. Practically, such a procedure may be preferred over standard
least squares because a sparse solution of (1.2) explicitly identifies the most significant
regressor variables.

As intimated in the Introduction, variations on (1.2) may be used in different ap-
plications and contexts. For example, problem (1.2) is closely related to this quadrat-
ically constrained �1-minimization problem

(6.2) min
x

{

‖x‖1

∣

∣ ‖Ax− b‖2 ≤ σ2χ2
1−α,m

}

,

which is often used when an estimated noise level σ is available. Alternatively, one
can constrain the size of ‖x‖1 and minimize the sum of squares of the residual Ax− b:

(6.3) min
x

{

1
2
‖Ax− b‖2

∣

∣

∣

∣

‖x‖1 ≤ t

}

.

Statisticians often refer to the above problem as the Least Absolute Shrinkage and
Selection Operator (LASSO) [58].

Problems (1.2), (6.2), and (6.3) are equivalent in the sense that once the value of
one of μ, σ, or t is fixed, there are values for the other two quantities such that all
three problems have the same solution. For a detailed explanation, please see [53].

Least Angle Regression (LARS) (see [24], for example) is a method for solving
(6.3). LARS starts with the zero vector and gradually increases the number of nonze-
ros in the approximation x. In fact, it generates the full path of solutions that results
from setting the right-hand side of the constraint to every value in the interval [0, t].
Thus, LARS is a homotopy algorithm. The construction of the path of solutions is
facilitated by the fact that it is piecewise linear, such that any segment can be gen-
erated given the solutions at turning points, which are the points at which at least
one component changes from zero to nonzero or vice versa. Thus LARS and other
homotopy algorithms [43, 49, 63] solve (6.3) by computing the solutions at the turning
points encountered as t increases from 0 to a given value. These algorithms require the
solution of a least squares problem at every iteration, where the derivative matrix of
the residuals consists of the columns of A associated with the nonzero components of
the current iterate. For large-scale problems, solving these intermediate least squares
problems may prove costly, especially when the solution is only moderately sparse,
and/or A is a partial fast transform matrix that is not stored explicitly.

We found it helpful for our algorithm to adopt a continuation strategy similar
to homotopy in the sense that we solve (1.1) for an increasing sequence of μ values.
However, our algorithm does not track turning points or solve any least squares sub-
problems, and so only approximately follows the solution path.

6.2. A continuation strategy. The convergence analysis indicates that the
speed of the fixed-point algorithm is determined by the values of ν = τ/μ and ω (see
Theorem 4.5), and the spectral properties of the Hessian of f(x) (see Theorems 4.10
and 4.11). The signs of hi(xk) evolve to agree with those of hi(x∗) for i ∈ E faster for
larger ν (equivalently, for smaller μ). Similarly, large ω implies fast convergence of the
|xki |, i ∈ L, to zero. Once the finite convergence properties of Theorem 4.5 are satisfied,
all action is directed towards reducing the errors in the E components, and the (worst-
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case) convergence rate is dictated by ‖I − τH̄EE‖, which can be considerably smaller
than ‖I − τH̄‖, especially when |E| � n.

In general, we have little or no control over the value of ω, nor the spectral
properties of the Hessian. On the other hand, we do have the freedom to choose τ and
ν = τ/μ. For fixed τ we found τ ∈ [1/λ̂max, 2/λ̂max) to be superior to τ ∈ (0, 1/λ̂max).
Beyond this, τ does not have much effect on ν and can be chosen empirically or
based on considerations concerning ||I − τH̄EE ||. The value of μ, on the other hand,
while it must eventually be equal to some specified value μ̄, can in the meantime be
chosen freely to produce a wide range of ν values. Thus, since larger ν means faster
convergence, we propose a continuation strategy for μ. In particular, if problem (6.1)
is to be solved with μ̄, we propose solving a sequence of problems (6.1) defined by
an increasing sequence {μj}, as opposed to fixing ν = τ/μ̄. When a new problem,
associated with μj+1, is to be solved, the approximate solution for the current (μj)
problem is used as the starting point. In essence, this framework approximately
follows the path x∗(μ) in the interval [μ1, μ̄], where for any given μ value x∗(μ) is an
optimal solution for (6.1). This path is well defined if the solution to (6.1) is unique for
μ ∈ [μ1, μ̄]. Even if this is not the case, it is reassuring to observe that the algorithm
itself is well-defined. A formal statement of our fixed-point continuation method is
given in Algorithm 1.

Algorithm 1 Fixed-point Continuation (FPC) Algorithm
Require: A, b, x0, and μ̄
1: Select 0 < μ1 < μ2 < · · · < μL = μ̄. Set x = x0.
2: for μ = μ1, μ2, . . . , μL do
3: while “not converged” do
4: Select τ and set ν = τ/μ
5: x← sν ◦ h(x)
6: end while
7: end for

Our computational experience indicates that the performance of this continuation
strategy can be far superior to that of directly applying the fixed-point iterations (3.5)
with a specified value μ̄. This is evident in Figure 6.1, where the convergence behavior

Fig. 6.1. Convergence acceleration via continuation. The relative error, ‖xk − x∗‖/‖x∗‖, and
iteration data were obtained by applying the FPC algorithm with or without continuation to two
instances of problem (1.2), where in each instance A is a 512 × 1024 partial DCT matrix, b = Ax∗

plus noise for a given sparse x∗, and μ = 200 in the first case and 1200 in the second. The plots
show that as μ increases, the advantages of continuation become more pronounced.
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of the two approaches (with and without continuation) is plotted for two values of
μ̄, and is in line with the observations of [18, 43, 49, 58]. Moreover, since x∗(μ)
tends to be sparser for smaller μ, the reduced Hessian H̄EE tends to be smaller and
better conditioned in this case, such that the continuation strategy should improve the
convergence rate for the components with indices in E in addition to the rate of finite
convergence of sgn(hi(xk)), i ∈ E. Overall, this fixed-point continuation algorithm
produces competitive solution times (as compared to other state-of-the-art algorithms)
for compressed sensing problems. For instance, we were able to reconstruct signals of
length 2,097,152 in 2.5 to 7.5 minutes, depending on the level of sparsity and noise,
when A was a 1,048,576 × 2,097,152 partial DCT matrix (using Matlab 7.3 on a Dell
Optiplex GX620 with a 3.2 GHz processor and 4 GB RAM).

In principle, our fixed-point continuation algorithm can be used to solve prob-
lems (6.2) and (6.3) in addition to (6.1). Take the LASSO problem (6.3) as an exam-
ple. When we start our algorithm with a small μ value, the corresponding optimal
‖x‖1 is also small; subsequent increases in μ correspond to increases in the optimal
‖x‖1. We can stop the process once ‖x‖1 approximately equals t, backtracking if
necessary. As interesting as such extensions may be, they are not in the scope of the
current paper. Indeed, as we observed in our computational study [32], a strength
of this algorithmic framework is that a simple implementation is sufficient to obtain
good results.

7. Conclusions. We investigated the use of the forward-backward operator
splitting technique, combined with a continuation (path-following) strategy, for solv-
ing �1-norm regularized convex optimization problems. Our theoretical analysis yields
convergence results stronger than what could be obtained from applying existing gen-
eral theory to our setting. In particular, we established finite convergence for some
quantities and q-linear convergence rates without assuming strict convexity. Interest-
ingly, our rate of convergence results imply, in a general sense, that sparser solutions
correspond to faster rates of convergence, which agrees with what has been observed
in practice. Our convergence analysis, however, is only for the fixed-point algorithm
(3.5) with a fixed μ value. It remains an important, yet more difficult, research issue
to study convergence behavior associated with specific continuation strategies.

We have conducted a comprehensive computational study to compare our fixed-
point continuation (FPC) algorithm with three recent state-of-the-art compressed
sensing recovery algorithms [17, 28, 35]. The numerical results, too lengthy to be
included in the present paper, will be reported in a subsequent paper [32]. In brief,
these numerical results indicate that FPC’s overall performance is competitive with,
and is often superior to, these state-of-the-art algorithms. The strong performance
of FPC in computing sparse solutions to compressed sensing problems is certainly
encouraging. However, it remains a research issue to carefully evaluate and possibly
enhance the performance of FPC on other �1-regularized optimization problems where
solutions are not necessarily very sparse.
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Abstract. A simple 2-matching in a graph is a subgraph whose connected components are
nontrivial paths and cycles. A simple 2-matching is called 1-restricted if each connected component
has two or more edges. In this paper we consider the problem of finding maximum weight 1-restricted
simple 2-matchings (which is a relaxation of the traveling salesman problem). We present an integer
programming formulation for this problem, characterize the extreme points of the linear programming
relaxation, and characterize the graphs for which the linear programming relaxation has all integral
extreme points. We show how to recognize these graphs in polynomial time. We also introduce a
new class of blossom-type inequalities that tighten the general linear programming relaxation. A
complete description of the convex hull of 1-restricted simple 2-matchings is unknown.

Key words. matchings, combinatorial optimization, polyhedral combinatorics, traveling sales-
man problem

AMS subject classifications. 05C70, 90C27, 90C57

DOI. 10.1137/070697409

1. Introduction. All graphs G = (V,E) considered in this paper are undirected
and (except where noted) have no parallel edges or loops. We associate a real weight
with every e ∈ E. A simple 2-matching in a graph is a subgraph all of whose nodes
have degree 1 or 2. (Sometimes in the literature a simple 2-matching is defined as
a subset of edges. For convenience in this paper, we use the subgraph definition.)
Hence the connected components of a simple 2-matching are nontrivial paths and
cycles. The weight of a simple 2-matching is the sum of the weights of the edges in
the matching. A well-studied problem in the literature is to find a maximum weight
simple 2-matching in a graph. A polyhedral characterization and polynomial-time
algorithm (due to Edmonds [5] and Johnson [16], respectively; see also [8]), as well
as a number of structural theorems (e.g., see Belck [1] and Gallai [9]) are known for
this problem, among other things (see [21] for an excellent survey). In this paper
we present some analogous results for a restricted version of this problem, which we
describe next.

A k-restricted simple 2-matching is a simple 2-matching such that each connected
component has more than k edges. Hence 0-restricted simple 2-matchings are equiv-
alent to simple 2-matchings, and 1-restricted simple 2-matchings are equivalent to
simple 2-matchings that contain no “isolated edges.” We are interested in the prob-
lem of finding maximum weight k-restricted simple 2-matchings. Solutions to this
problem on complete graphs, with nonnegative weights, can be shown to provide in-
creasingly accurate approximate solutions for the traveling salesman problem as k
increases (see [6]; although k-restricted simple 2-matchings are not discussed in [6],
their approach can easily be seen to apply to our problem).
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In this paper we begin by introducing an integer programming formulation, call
it IP, for the problem of finding a maximum weight 1-restricted simple 2-matching
in a graph G. This formulation includes a new class of constraints, which we call
edge-adjacency constraints. We let A(G) denote the feasible points in the linear pro-
gramming relaxation of IP, and we let R(G) denote the convex hull of integral points
in A(G). (Hence the extreme points of R(G) are precisely the 0,1 incidence vectors
of 1-restricted simple 2-matchings of G.)

The paper then contains four main results. The first result characterizes the
extreme points of A(G). We find that they have a simple structure with components in
{0, 1

2 , 1}. This result then yields our second result in which we characterize the graphs
G for which A(G) has all integral extreme points. (That is, we characterize when
A(G) = R(G).) This characterization has the following form: A(G) = R(G) if and
only if G contains no subgraph which is a 1-restricted odd cycle (to be defined later).
Although 1-restricted odd cycles are fairly simple to describe, they can be arbitrarily
large; hence it is not immediately obvious how to polynomially determine if a graph
contains one. Our third result addresses this issue. In it we present a second (more
technical) characterization of the graphs with no 1-restricted odd cycle that yields a
polynomial time test for this property. Our final result is a new class of inequalities
(based on a new structure called a 1-restricted blossom) that are valid for R(G) and
cut off all the fractional extreme points in A(G). These inequalities generalize the
edge-adjacency inequalities as well as the well-known blossom inequalities for the
simple 2-matching polyhedron (see [5]). We also show that the 1-restricted blossom
inequalities, together with the description of A(G), do not yield a complete description
of R(G). Finding such a description is an open problem.

Thus we characterize an apparently new class of polyhedra with integral extreme
points. (The class has variable coefficients in {0,±1} and is easily seen to not be totally
unimodular.) Furthermore, the linear system for this polyhedron has a size that is
polynomial in the size of the associated graph. It immediately follows that, for graphs
containing no 1-restricted odd cycle, we can find a maximum weight 1-restricted simple
2-matching in strongly polynomial time (using the algorithm of Tardos [22]).

Before outlining the paper, let us consider some related work in the literature.
The problem of finding maximum weight 1-restricted simple 2-matchings in general
graphs, for the special case that all weights equal 1 (i.e., w ≡ 1), was considered in [10],
where a polynomial-time algorithm and several structural theorems were presented.
A related problem involves Ck-free 2-matchings, which are simple 2-matchings that
contain no cycles of length ≤ k. An algorithm to find a maximum, with w ≡ 1,
C3-free 2-matching appears in [11] and an algorithm to find a maximum, with w ≡ 1,
C4-free 2-matching in bipartite graphs appears in [12] (see also [19]). The problem of
finding a maximum weight C4-free 2-matching in bipartite graphs has been observed
to be NP-hard (see [23], [3], and [20]). The problem of finding a maximum, with
w ≡ 1, C5-free 2-matching (in general graphs) is also known to be NP-hard (see [2]
for a proof due to Papadimitiou). Related work can be found in [2], [4], and [7].

Let us discuss one other related area of research. A k-piece is a connected graph
with maximum degree equal to k. A k-piece packing in a graph is a subgraph whose
connected components are k-pieces. The node-max k-piece packing problem is to find
a k-piece packing in a graph that contains a maximum number of nodes; the edge-
max k-piece packing problem is to find a k-piece packing in a graph that contains a
maximum number of edges. Observe that the node-max and edge-max 1-piece packing
problems are equivalent to the classical matching problem. However, for higher values
of k, the node-max and edge-max problems are different from one another. Finally,
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note that the edge-max 2-piece packing problem is identical to the maximum, with
w ≡ 1, 1-restricted simple 2-matching problem.

The node-max 2-piece packing problem was recently studied by Kaneko in [17],
where he presented a Tutte-type theorem. This result was extended in [18] by Kano,
Katona, and Király, where the authors presented a Tutte–Berge-type theorem. These
results were further extended by Hartvigsen, Hell, and Szabó in [13], where the au-
thors presented a polynomial time algorithm and Tutte-type and Tutte–Berge-type
theorems for the node-max k-piece packing problem. Finally, a Gallai–Edmonds de-
composition theorem for the general problem is presented in [15] by Janata, Loebl,
and Szabó. Other research of this type has been recently surveyed in [14] by Hell (see
also [21]).

Let us finish this section by outlining the paper. Section 2 contains some basic
notation and definitions and section 3 contains our characterization of the extreme
points of A(G). Section 4 contains our characterization of the graphs G for which
A(G) has all integral extreme points plus several related results. In section 5 we
introduce a new class of blossom-like inequalities that are valid for all integral points
of A(G). We show that these inequalities cut off all fractional extreme points of A(G),
but they do not yield a complete description of R(G).

2. Notation and an IP formulation. In this section we introduce some no-
tation and terminology, and we present an integer programming formulation of the
problem of finding a maximum weight 1-restricted simple 2-matching. We begin with
a few definitions.

Let G = (V,E) be a graph. For v ∈ V , let δ(v) denote the subset of edges incident
with v. For uv ∈ E, let adj(uv) denote the set of edges incident with exactly one
node in {u, v}; that is, adj(uv) = δ(u) + δ(v) − uv. For S ⊆ E, let x(S) =

∑
e∈S xe.

Given a subgraph G′ = (V ′, E′) of G, a vector x ∈ {0, 1}E is called the 0-1 incidence
vector for G′ if xe = 1 for every e ∈ E′, and xe = 0 otherwise. We denote this vector
χE′

. We use the term cycle to refer to a connected subgraph all of whose nodes have
degree 2; and we use the term path to refer to a connected subgraph such that exactly
two nodes have degree 1 and the remaining nodes have degree 2.

Let A(G) denote the set of points x ∈ R
E that satisfy the following system:

x(δ(v)) ≤ 2 ∀ v ∈ V,(1)
xe ≤ 1 ∀ e ∈ E,(2)
xe − x(adj(e)) ≤ 0 ∀ e ∈ E,(3)
xe ≥ 0 ∀ e ∈ E.(4)

Observe that the integral points in A(G) are precisely the 0-1 incidence vectors
of 1-restricted simple 2-matchings in G. The key to this working is the new type of
constraints (3), which we call edge-adjacency constraints. These constraints say that
if an edge e is in the matching (i.e., xe = 1), then at least one edge adjacent to e must
also be in the matching.

Hence, for a weight vector w ∈ R
E ,

max wx s.t. x ∈ A(G), x integral

is an integer programming formulation for the problem of finding a maximum weight
1-restricted simple 2-matching.

Let R(G) denote the convex hull of the 0-1 incidence vectors of 1-restricted simple
2-matchings of G. Thus, R(G) ⊆ A(G). In the next section we characterize the
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extreme points of A(G) and in the section following that we characterize the graphs
G for which A(G) = R(G).

3. Characterization of the extreme points of A(G). Our main result in
this section is a characterization of the extreme points of A(G) on a general graph
G = (V,E). We then present a characterization of the extreme points of (1–2) and
(4), whose integer solutions are the incidence vectors of classic simple 2-matchings.
An interesting resemblance between these two characterizations is exhibited.

Let x be a feasible solution to A(G) for a graph G. We say xe and e are fractional
if 0 < xe < 1, and we call xe the value of e. An edge e = uv of G is called 1-tight if
e has value 1, one edge incident to u has value 1

2 , one edge incident to v has value
1
2 , and the remaining edges adjacent to e have value 0. Observe that 1-tight edges
satisfy (3) at equality. Let G′ denote a graph obtained from G by contracting a set of
edges. (Contracting an edge is the operation of deleting the edge and identifying its
endnodes. Observe that a graph resulting from a contraction can have parallel edges.)
The nodes of G′ resulting from contractions are called shrunk; the remaining nodes
of G′ are called real. The edges of G′ inherit values from x in the obvious manner.
Next we give our characterization of the extreme points of A(G).

Theorem 1. A point x ∈ A(G) is extreme if and only if it satisfies both of the
following conditions:

(i) The point x has only values 0, 1
2 , and 1.

(ii) Let Gc be the graph obtained from G by contracting all the 1-tight edges. Then
the edges of Gc with value 1

2 form node-disjoint odd cycles, and every real node in such
an odd cycle is incident with an edge with value 1.

Before we give a proof of Theorem 1, we show in Figure 1 an example of an
extreme point of A(G). A subgraph of G is shown in Figure 1(a) with the x values
given next to the edges, and the corresponding subgraph of Gc after contraction of
the 1-tight edges is shown in Figure 1(b). Observe that edge uv of G is a 1-tight
edge. Edge uv is contracted and becomes the shrunk node s in Gc. All the edges of
the illustrated subgraph of Gc with value 1

2 form node-disjoint odd cycles, and every
node of such an odd cycle, except the shrunk node, is incident with an edge with
value 1.

We use the following definition and lemmas in our proof of Theorem 1. Let
x ∈ A(G) for a graph G = (V,E). We say an edge e ∈ E is adjacency tight (with
respect to x) if e satisfies inequality (3) at equality and is adjacent to at least one
fractional edge.

Lemma 2. Let x be an extreme feasible solution to A(G) for a graph G. If e1
and e2 are adjacency-tight edges of G, then e1 is not adjacent to e2.

Proof. Let x be an extreme feasible solution to A(G) for a graph G and let e1 and
e2 be adjacency-tight edges that are adjacent to each other. We derive a contradiction.

First, observe that xe1 > 0, since e1 is adjacency tight. Similarly, xe2 > 0.
Furthermore, xe1 ≥ xe2 because e1 is adjacency tight. Similarly, xe2 ≥ xe1 . So
xe1 = xe2 . Suppose there is an edge e′ �= e2 that is adjacent to e1 and satisfies
xe′ > 0. Then e1 being adjacency tight and xe2 > 0 imply xe1 > xe2 , which is a
contradiction. It follows that xe1and xe2 are fractional, since if they were both equal
to 1, then they would not be adjacent to at least one fractional edge. Finally, set
x1 = x + εχ{e1,e2} and x2 = x − εχ{e1,e2} for some small ε > 0. It is easy to see that
x = 1

2x
1 + 1

2x
2 and that both x1 and x2 are feasible solutions to A(G). Therefore, x

is not extreme, which is a contradiction.
Lemma 3. Let x ∈ A(G) for a graph G and let edge e = uv be adjacency-tight.
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Fig. 1. An example of an extreme point of A(G).

(i) If u and v are each incident with a fractional edge different from e, then
0 < x(δ(u)) < 2 and 0 < x(δ(v)) < 2.

(ii) If e is adjacent to exactly one fractional edge, then e is fractional in G and
0 < x(δ(u)) < 2 and 0 < x(δ(v)) < 2.

Proof. First we prove (i). Clearly, since u and v are incident with fractional edges,
x(δ(u)) > 0 and x(δ(v)) > 0. Suppose x(δ(u)) = 2. Then

xe + x(δ(u) − e) = 2.

Because e is adjacency tight, we have that

xe = x(δ(u) − e) + x(δ(v) − e).

If we solve the first equation for x(δ(u) − e) and substitute this into the second
equation, we get

2 − 2xe = −x(δ(v) − e).

Since the maximum value that xe can take is 1, x(δ(v) − e) ≤ 0, so we have a
contradiction and the result follows.

To prove (ii), let e′ be the single fractional edge adjacent to e. If e is also adjacent
to an edge with value 1, then x(adj(e)) > 1 and e cannot be adjacency tight. Hence
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e′ is the only edge adjacent to e with nonzero value. So e has the same value as e′

and the conclusion follows. This completes the proof.
Proof. (Theorem 1) We first prove that if x ∈ A(G) is extreme, then it satisfies

(i) and (ii) in the statement of the Theorem.
Given an extreme point x ∈ A(G), let G′ be the graph resulting from contracting

each adjacency-tight edge of G. Observe that by Lemma 2, each shrunk node of G′

corresponds to a unique edge of G. Let F be the subgraph of G′ that is induced
by the fractional edges of G′. Observe that if F is empty, then there cannot be any
adjacency-tight edges; hence the result follows immediately (since all the values of x
are 0, 1), so let us assume F is nonempty.

Claim 1. Every connected component of F contains a cycle.
Proof of Claim 1: Suppose not. Then F must contain a connected component

that is a tree. Let P be a path in F whose endnodes have degree 1 in F . Observe
that if an endnode, say v, of P was obtained by shrinking an edge, say e, then e is
fractional: If xe = 1, then v cannot have degree 1 in F , since e is adjacency-tight;
if xe = 0, then e was not adjacency-tight. Partition the edges of P into two sets,
say B (blue) and R (red), so that no two adjacent edges have the same color. If an
endnode v of P is shrunk, then add the corresponding edge of G to the same set,
B or R, that contains the edge of P incident with v. Define x1 and x2 on E as
follows: x1 = x + ε(χB − χR) and x2 = x + ε(χR − χB), where ε > 0. Observe that
x = 1

2x
1 + 1

2x
2. It remains to show that, for sufficiently small ε, x1 and x2 are feasible

solutions to A(G), which contradicts x being extreme.
Clearly this is true for inequalities (2) and (4), for sufficiently small ε > 0, since

all the edges whose values are changed are fractional. It is also easy to see that this
property holds for inequalities (3) for all edges of P (since (3) is not tight for them),
for all edges inside shrunk nodes of P , and for all edges not in P , but adjacent to
edges in P (which cannot be adjacency tight). So let us consider inequalities (1).
Again, the property clearly holds for all real nodes of P . So consider a shrunk node
v of P that was obtained by shrinking the edge v1v2 of G. Suppose v is an interior
node of P . If v1 is adjacent in G to the two edges of P that are adjacent to v, then
x(δ(v1)) and x(δ(v2)) have the same values in x1 and x2. Otherwise, using Lemma
3(i), we have that 0 < x(δ(v1)) < 2 and 0 < x(δ(v2)) < 2. Suppose v is an endnode
of P . Lemma 3(ii) implies that 0 < x(δ(v1)) < 2 and 0 < x(δ(v2)) < 2. Claim 1 now
follows.

Claim 2. F does not contain an even cycle.
Proof of Claim 2: Again, suppose this is not the case. Let C be an even cycle of

F . Partition the edges of C into two sets, say B (blue) and R (red), and define x1

and x2 on E, as in the proof of Claim 1. Using the same logic as in the proof of Claim
1, one can show that x is not an extreme feasible solution, which is a contradiction.

Claim 3. None of the nodes on an odd cycle in F is incident with a fractional
edge other than the two edges incident to it in the cycle.

Proof of Claim 3: By contradiction. Let C be an odd cycle in F , let v be a node
on F , and let vv′ be an edge of F not in C. Let us assume v′ is not on C. (If v′

were on C, then vv′ would form an even cycle with a portion of F , which has been
ruled out in Claim 2.) To begin, let P be the path vv′. Let us extend the graph P
by repeatedly adding an edge of F to the endnode of P that is different from v, until
one of the following happens:

Case 1: The new edge of P has an endnode with degree 1 in F .
Case 2: The new edge of P contains a node in C, which is different from v.
Case 3: The new edge of P contains a node of P (possibly v).
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Case 1: Let w denote the endnode of P not on C. Partition the edges of C ∪ P
into two sets, say B (blue) and R (red), so the two edges of C incident with v have
the same color and no other two adjacent edges of C ∪ P have the same color. If
w is shrunk, then add the corresponding edge of G to the same set, B or R, that
contains the edge of P incident with w. Let BC , BP , RC , RP denote the edges
of B in C, the edges of B in P , and so on. Define x1 and x2 on E as follows:
x1 = x+ ε(χBC

+ 2χBP − χRC − 2χRP

) and x2 = x+ ε(χRC

+ 2χRP − χBC − 2χBP

),
where ε > 0. Observe that x = 1

2x
1 + 1

2x
2. It remains to show that, for sufficiently

small ε, x1 and x2 are feasible solutions to A(G), which contradicts x being extreme.
(The following logic is quite close to that used in Claim 1.)

Clearly this is true for inequalities (2) and (4), for sufficiently small ε > 0, since
all the edges whose values are changed are fractional. It is also easy to see that this
property holds for inequalities (3) for all edges of C ∪ P (since (3) is not tight for
them), for all edges inside shrunk nodes of C ∪ P , and for all edges not in C ∪ P ,
but adjacent to edges in C ∪ P (which cannot be adjacency tight). So let us consider
inequalities (1). Again, the property clearly holds for all real nodes of C ∪ P . So
consider a shrunk node u of C ∪ P that was obtained by shrinking the edge u1u2 of
G. Suppose u �= w. If u1 is adjacent in G to all the edges of C ∪ P that are adjacent
to u, then x(δ(u1)) and x(δ(u2)) have the same values in x1 and x2. Otherwise,
using Lemma 3(i), we have that 0 < x(δ(u1)) < 2 and 0 < x(δ(u2)) < 2. Suppose
u = w. Lemma 3(ii) implies that 0 < x(δ(u1)) < 2 and 0 < x(δ(u2)) < 2. Case 1 now
follows.

Case 2: It is evident that C ∪ P contains an even cycle, and hence we can apply
Claim 2.

Case 3: C ∪P must consist of two odd cycles, say C and C′, connected by a path,
say Q (possibly of length 0), that shares only its endnodes, say v and v′, with C and
C′, respectively.

Partition the edges of C∪Q∪C′ into two sets, say B (blue) and R (red), so the two
edges of C incident with v have the same color, the two edges of C′ incident with v′

have the same color, and no other two adjacent edges of C∪Q∪C′ have the same color.
Let D = C∪C′ and let BD, BQ, RD, RQ denote the edges of B in D, the edges of B in
Q, and so on. Define x1 and x2 on E as follows: x1 = x+ε(χBD

+2χBQ−χRD −2χRQ

)
and x2 = x+ε(χRD

+2χRQ −χBD −2χBQ

), where ε > 0. The argument then proceeds
as above, which finishes the proof of the claim.

Claim 4. For any odd cycle C in F , x has value 1 on every contracted edge that
corresponds to a shrunk node of C, and x(δ(v)) = 2 on every real node v of C.

Proof of Claim 4: Let C be an odd cycle in F and let v be a shrunk node on C
obtained from contracting edge e = v1v2 in G. Let e1 and e2 be the two edges of C
incident with v. Since e1 and e2 are fractional and e is adjacency tight, xe > 0. Let
us assume that e is fractional in G and then derive a contradiction.

Partition the edges of C into two sets, say B (blue) and R (red), so the two edges
of C incident with v have the same color, say B, and no other two adjacent edges of
C have the same color. Define x1 and x2 on E as follows: x1 = x+ ε(χR −χB + 2χe)
and x2 = x+ ε(χB −χR−2χe), where ε > 0. Observe that x = 1

2x
1 + 1

2x
2. It remains

to show that, for sufficiently small ε, x1 and x2 are feasible solutions to A(G), which
contradicts x being extreme.

Arguing as in the proof of Claim 1, it is not difficult to show that this is true for
inequalities (2), (3), and (4). So let us consider inequality (1).

Case 1: e1 and e2 are adjacent to v1 in G. Observe that v2 cannot be adjacent to
a fractional edge in G by Claim 3. Furthermore, v2 cannot be adjacent to an edge at
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value 1, since e is fractional and adjacency tight. Hence x(δ(v2)) < 1. Since x(δ(v1))
remains unchanged in x1 and x2, the result follows.

Case 2: e1 and e2 are adjacent to v1 and v2, respectively, in G. Then by
Lemma 3(i), 0 < x(δ(v1)) < 2 and 0 < x(δ(v2)) < 2; so, again, the result follows.

Now we prove that x(δ(v)) = 2 on every real node v of C. Let us assume that v
is a real node on C satisfying x(δ(v)) < 2. Proceed just as we did for the previous
case that v is shrunk (except we don’t have the edge e). The result follows as before,
except showing that x1 and x2 satisfy (1) for sufficiently small ε is immediate because
x(δ(v)) < 2.

Claim 5. Every odd cycle in F consists of edges with value 1
2 .

Proof of Claim 5: Consider an odd cycle C in F . Let u1, u2, . . . , u2m+1 be the cycle
nodes and let u1u2, u2u3, . . . , u2mu2m+1, u2m+1u1 be the cycle edges. Let xu1u2 = α,
where 0 < α < 1. By Claim 3 and Claim 4, every real node on C is incident with an
edge of G with value 1, and every shrunk node on C is incident with no other nonzero-
value edge ofG′ except the two adjacent cycle edges. Therefore, we have xu2u3 = 1−α,
xu3u4 = α, . . . , xu2mu2m+1 = 1 − α, and xu2m+1u1 = α. Since xu1u2 + xu2m+1u1 = 1,
α = 1

2 . Claim 5 is proved.
It follows from the above five claims that if a feasible solution x is extreme, then

it satisfies (i) and (ii).
Now we prove that if a feasible solution x satisfies (i) and (ii), then it is extreme.

Assume, by contradiction, that there are two different feasible solutions x1 and x2

such that their convex combination is x. We will derive a contradiction by showing
x = x1 = x2.

First, we clearly see that x = x1 = x2 on the edges of G that have value 0 or 1.
Now consider an odd cycle C in F whose edges have value 1

2 . For every node v of C,
(ii) implies that xC(δ(v)) = 1. This follows from the fact that the inequality (1) is
tight at v if v is a real node, and the inequality (3) is tight on edge e if v was obtained
by shrinking e. Hence, the inequality (1) or (3) is also tight for x1 and x2 at v, which
means that x1

C(δ(v)) = x2
C(δ(v)) = 1 at every node v of C. Let u1, u2, . . . , u2m+1 be

the nodes of C and let u1u2, u2u3, . . . , u2mu2m+1, u2m+1u1 be the cycle edges. Let
x1

u1u2
= α, where 0 < α < 1. By a similar argument as in Claim 5, we see that x1

has value 1
2 on all the cycle edges of C, and so does x2. Therefore, x = x1 = x2 on

all the odd cycles in F , which yields a contradiction.
As an interesting analog to the result of Theorem 1, the extreme points of (1–2)

and (4) are characterized by the following theorem.
Theorem 4. A feasible solution x to (1–2) and (4) is extreme if and only if it

satisfies both of the following conditions:
(i) The solution x has only values 0, 1

2 , and 1;
(ii) The edges with value 1

2 form node-disjoint odd cycles, and every node of such
an odd cycle is incident with an edge with value 1.

The proof of Theorem 4 is similar to but simpler than that of Theorem 1, so
it is not given in this paper. For comparison purposes, we provide in Figure 2 an
example of an extreme point of (1–2) and (4). Some similarities between this figure
and Figure 1 can be observed.

4. Characterization and recognition of the graphs for which A(G) =
R(G). The main purpose of this section is to characterize, in two ways, the graphs
G for which the extreme points of A(G) are incidence vectors of 1-restricted simple
2-matchings. That is, we characterize the graphs G for which A(G) = R(G). The first
characterization is conceptually simple and is in terms of an excluded subgraph. Its
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Fig. 2. An example of an extreme point of (1–2) and (4).

proof follows easily from the extreme point result in the previous section. The second
characterization is a bit more technical, but it immediately leads to a polynomial
time recognition algorithm for the graphs G such that A(G) = R(G). These two
characterizations are stated in the first subsection. The algorithm and some related
results and observations appear in the second subsection. A proof of the second
characterization appears in the third subsection.

4.1. Characterization theorems. We begin this section by defining a class of
graphs that yields our first characterization of the graphs G such that A(G) = R(G).
After a few more definitions, we next state our second characterization result.

Definition 5. A graph G = (V,E) is a 1-restricted odd cycle if it contains a
cycle C and a set of edges M such that

(i) Every node of C is incident with exactly one edge of M ;
(ii) Every edge of M is incident with one or two nodes of C;
(iii) Every node not in C is incident with one or two edges of M ;
(iv) E = E(C) ∪M ;
(v) |E(C)\M | is odd.

An edge of M with exactly one node in C is called a petal of C. An edge of M that
has two nodes in C but is not an edge of C is called a chord of C. A node not in C
is called a tip. A node of C that occurs in a petal or chord is called an attachment
node. Two attachment nodes of C, say u and v, are called adjacent if there exists a
path from u to v on C that contains no other attachment nodes. Such a path is called
an attachment node path.

In Figure 3, an example of 1-restricted odd cycle with 15 nodes is shown. There
are 13 nodes in cycle C : a, b, . . . ,m. The set M has eight edges (shown as bold), while
E(C)\M has nine edges (shown as non-bold). There are three petals an, bn and co,
one chord hk, two tips n and o, and five attachment nodes a, b, c, h and k. If this
1-restricted odd cycle is a subgraph of a graph G, by Theorem 1, a fractional extreme
point of A(G) can be constructed by setting each bold edge to 1, each non-bold edge
to 1

2 , and any remaining edges in G to 0.
As a consequence of Theorem 1, the following necessary and sufficient conditions

hold for A(G) = R(G).
Theorem 6. For a graph G, A(G) = R(G) if and only if G does not contain a

1-restricted odd cycle.
Proof. If G contains a 1-restricted odd cycle consisting of a cycle C and a set

of edges M , by Theorem 1, we can construct a fractional extreme point of A(G) by
assigning value 1 to each edge in M , assigning value 1

2 to each edge in E(C)\M , and
assigning value 0 to the remaining edges of G. Hence, A(G) �= R(G).
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Fig. 3. An example of a 1-restricted odd cycle.

If A(G) �= R(G), A(G) must contain a fractional extreme point that is charac-
terized by Theorem 1. Choose an arbitrary odd cycle of Gc, say C0, whose edges
all have value 1

2 . Let S1 be the set of 1-tight edges of G with exactly one endnode
incident with an edge of C0. Let S2 be the set of 1-tight edges of G with each endnode
incident with an edge of C0. Let R be the set of edges of G that have value 1 and
are incident with the real nodes of C0. By Definition 5, we find a 1-restricted odd
cycle of G defined as follows: Let C be the cycle that consists of the edges of C0 and
S2, and let M be the edge set that is the union of S1, S2, and R.

Next we define a special class of 1-restricted odd cycles that plays an impor-
tant role in our second characterization theorem and the corresponding recognition
algorithm for the class of graphs that have no 1-restricted odd cycles.

Definition 7. Let G be a 1-restricted odd cycle with a cycle C and a set of edges
M . G is called a fundamental 1-restricted odd cycle if C does not have a chord in M
and it is one of the following types:

(i) C contains 0 mod 4 edges and exactly two petals.
(ii) C contains 1 mod 4 edges and exactly one petal.
(iii) C contains 2 mod 4 edges and no petals.
(iv) C contains 3 mod 4 edges and exactly three petals.
Note that, for the fundamental 1-restricted odd cycles of types (i) and (iv), the

attachment node paths are odd; for the fundamental 1-restricted odd cycles of types
(ii), C has odd length. The following proposition describes a relationship between the
1-restricted odd cycles and the fundamental 1-restricted odd cycles in a graph.

Proposition 8. A graph contains a 1-restricted odd cycle if and only if it con-
tains a fundamental 1-restricted odd cycle.

Proof. Since every fundamental 1-restricted odd cycle is a 1-restricted odd cycle,
it is sufficient to show that if a graph G contains a 1-restricted odd cycle, then it
contains a fundamental 1-restricted odd cycle. Let C be the cycle and M be the set
of edges for the 1-restricted odd cycle.

Case 1: The 1-restricted odd cycle in G has no chord in M .
If |E(C)| is 0 mod 4, then, since |E(C)\M | is odd, C must have at least two petals

in M . Let e1 and e2 be any two petals whose respective attachment nodes, v1 and v2,
are adjacent. Then we know that the two paths P1 and P2 in C between v1 and v2 are
odd. We define a subgraph with a cycle C′ and a set of edges M ′ as follows: C′ = C,
M ′ consists of e1 and e2 and some edges in P1 and P2 such that every node of C is
incident with exactly one edge of M ′. Since |E(C)| is 0 mod 4, |E(C′)\M ′| is odd.
Hence, the constructed subgraph is a fundamental 1-restricted odd cycle of type (i).
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If |E(C)| is 1 mod 4, C must have at least one petal in M . Let e be any such
petal. Now we define a subgraph with a cycle C′ and a set of edges M ′: C′ = C; M ′

consists of e and some edges in C such that every node of C is incident with exactly
one edge of M ′. Since |E(C)| is 1 mod 4, |E(C′)\M ′| is odd. So the constructed
subgraph is a fundamental 1-restricted odd cycle of type (ii).

If |E(C)| is 2 mod 4, we define a subgraph with a cycle C′ and a set of edges
M ′ as follows: C′ = C; M ′ consists of some edges in C such that every node of C is
incident with exactly one edge of M ′. Since |E(C)| is 2 mod 4, |E(C′)\M ′| is odd.
The constructed subgraph is a fundamental 1-restricted odd cycle of type (iii).

If |E(C)| is 3 mod 4, since |E(C)\M | is odd, C must have at least three petals
in M . Let e1, e2 and e3 be any three petals with respective attachment nodes v1, v2,
and v3. Suppose v1 and v2 are adjacent and that v2 and v3 are adjacent. Let P1 be
the attachment node path for v1 and v2 and let P2 be the attachment node path for v2
and v3. Let P3 be the path from v1 to v3 in C that does not contain v2. Observe that
P1, P2, and P3 are each odd. We define a subgraph with a cycle C′ and a set of edges
M ′ as follows: C′ = C, M ′ consists of e1, e2, and e3 and some edges in P1, P2, and
P3 such that every node of C is incident with exactly one edge of M ′. Since |E(C)| is
3 mod 4, |E(C′)\M ′| is odd. Therefore, the constructed subgraph is a fundamental
1-restricted odd cycle of type (iv).

Case 2: The 1-restricted odd cycle in G has at least one chord in M .
It suffices to show that we can construct another 1-restricted odd cycle with a

cycle C′ satisfying V (C′) ⊂ V (C). Let e be a chord of C in M , let v1 and v2 be
the attachment nodes of e, and let P1 and P2 be the two paths in C between v1 and
v2. Since |E(C)\M | is odd, one of |E(P1)\M | and |E(P2)\M | is even. Assume that
|E(P1)\M | is even. We define a subgraph with a cycle C′ and a set of edges M ′ as
follows: C′ contains P1 and e, M ′ consists of the two edges on P2 incident with v1
or v2 and the edges in M incident with the nodes in P1. Apparently, |E(C′)\M ′| is
odd and V (C′) ⊂ V (C). Also, one can easily verify that the constructed subgraph is
a 1-restricted odd cycle.

We next consider how to determine if a graph has a fundamental 1-restricted odd
cycle. We would like to find a nice characterization of the graphs without fundamental
1-restricted odd cycles that leads to a polynomial-time recognition algorithm of such
graphs. In order to do so, we need to define the following special graphs.

Definition 9. A k mod 4 ear, for k = 0, 1, 2 or 3, in a graph G is either
(i) a nontrivial path P with k mod 4 edges whose two endnodes have degree more

than 2 in G and whose interior nodes, if any, have degree 2 in G; or
(ii) a nontrivial cycle with k mod 4 edges that contains at most one node of degree

more than 2 in G.
Definition 10. The reduced graph GR of a given graph G is defined as follows:
(i) For every 2 mod 4 ear in G, replace it with a single edge (which is a loop if

the ear is a cycle) so that all nodes in G of degree more than 2 maintain their degrees
in GR;

(ii) For every 3 mod 4 ear in G, replace it with a path of length 2 or two parallel
edges (if the ear is a cycle) so that all the nodes in G of degree more than 2 maintain
their degrees in GR.

In Figure 4, a graphG and its reduced graph GR are given to illustrate Definitions
9 and 10. G has three maximal 2-connected subgraphs: the subgraph induced by
b, c, and d; the subgraph induced by a, b, s, and t; and the subgraph induced by
g, h, i, j, k, l,m, n, o, p, q, and r. G has a 0 mod 4 ear with edges ab, bs, st, and ta; a
1 mod 4 ear with gh, hi, ij, jk, and kl; two 2 mod 4 ears: one with gm and ml, the
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Fig. 4. An example of G and GR.

other with ln, no, op, pq, qr, and rg; a 3 mod 4 ear with bc, cd, and db. The 3 mod 4
ear in G is shrunk to two parallel (bold) edges bc in GR, and two 2 mod 4 ears are
shrunk to two parallel (bold) edges gl.

One can easily verify that the graph G in Figure 4 has no subgraph that is a
fundamental 1-restricted odd cycle. We also observe that G contains at most one
odd-length ear in each maximal 2-connected subgraph and GR is bipartite. The fol-
lowing theorem characterizes the graphs without fundamental 1-restricted odd cycles,
which results in a polynomial time algorithm for recognizing the graphs that contain
no 1-restricted odd cycles. The algorithm is given in section 4.2 and the proof of
Theorem 11 is given in section 4.3.

Theorem 11. A connected graph G contains no fundamental 1-restricted odd
cycle as a subgraph if and only if either G is K4 (a complete graph with four nodes),
or G is a cycle of length 1 mod 4, or G contains at most one odd-length ear in each
maximal 2-connected subgraph and GR is bipartite.

4.2. Some related results and observations. In this subsection we gather
some consequences of the characterization theorems stated in the previous subsection.
Chief among them are polynomial time algorithms for recognizing graphs without 1-
restricted odd cycles and for finding maximum weight 1-restricted simple 2-matchings
in such graphs. We also state some related results for the problem of finding maximum
weight (0-restricted) simple 2-matchings.

We begin by observing that the characterization theorems in the previous section
yield two simple-to-describe classes of graphs that contain no 1-restricted odd cycles.
The first class is trees. The second class contains any graph constructed as follows:
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Take an arbitrary graph and replace every edge with a nontrivial path of length
0 mod 4. It is easy to see that any such graph does not contain odd-length ears and
its reduced graph is bipartite.

We have characterized the graphs for which the system (1–4) has all integral
extreme points. Since all entries in the constraint matrix are in {0,±1}, it is natural
to ask if, in this case, this matrix is totally unimodular. Consider a graph G with
two adjacent edges: ab and bc. The two rows formed by the constraints 1 for node b
and the constraints 3 for edge ab contain the submatrix

(1 1
1 −1

)
, whose determinant

is −2. Hence the constraint matrix is not totally unimodular.
We next observe that Theorem 11 immediately yields a polynomial-time algorithm

to determine if a connected graph G contains a 1-restricted odd cycle, that is, to
determine if A(G) = R(G). Here is an outline of the algorithm: If G is K4 or
a cycle of length 1 mod 4, then A(G) = R(G). Otherwise, identify the maximal
2-connected subgraphs of G and the odd-length ears in each maximal 2-connected
subgraph. If a maximal 2-connected subgraph has more than one odd-length ear,
then A(G) �= R(G). Otherwise, construct GR. If GR is bipartite, then A(G) = R(G).
Otherwise, A(G) �= R(G).

Another observation is that for graphs that contain no 1-restricted odd cycles,
we can find a maximum weight 1-restricted simple 2-matching in strongly polynomial
time. Here is how: For any such graph G = (V,E), construct the system (1–4). Now
apply the algorithm of Tardos [22] to this system. Tardos’s algorithm finds an optimal
solution to a linear program in a number of steps which is polynomially bounded in
the size of the variable coefficient matrix; and, for our problem, the size of this matrix
is polynomial since the system (1–4) has a number of entries which is polynomial in
|V | and |E| and those entries are all in {0,±1}.

Let us end this section by stating some analogous results to those in the previous
section for the case of simple 2-matchings (i.e., 0-restricted simple 2-matchings). First,
a graph G is called a 0-restricted odd cycle if it satisfies conditions (i)–(v) for a 1-
restricted odd cycle (see Definition 5) plus the following condition: (vi) E(C)∩M = ∅.
Figure 2 contains two 0-restricted odd cycles: The first has an odd cycle C1 (with
nodes b, c, w, s, and t) and M = {at, ab, cd, ew, sz}; the second has an odd cycle
C2 (with nodes g, q, j, p, and h) and M = {fg, pq, jk, hi}. The following result is
analogous to Theorem 6, and can be proved in a similar manner.

Theorem 12. For a graph G, the inequalities (1–2) and (4) define the convex
hull of incidence vectors of simple 2-matchings of G if and only if G does not contain
a 0-restricted odd cycle.

Theorem 13. A connected graph G contains no 0-restricted odd cycle as a
subgraph if and only if either G is K4 or every odd cycle in G contains at least one
node of degree 2.

Proof. The sufficiency follows immediately, so let us prove the necessity. We
assume G contains no 0-restricted odd cycle as a subgraph. An odd cycle in G is
called full if every node of the cycle has a degree greater than 2 in G. If G contains
no odd cycles or if all the odd cycles of G are not full, then the result follows. So
let us assume G contains a full odd cycle. We show that G is K4 or we derive a
contradiction. Let C be the shortest full odd cycle in G. Clearly C can have no
chord, since a chord implies that G has a shorter full odd cycle than C; contradiction.
Since C does not induce a 0-restricted odd cycle, there must exist three edges of
G, say v1w, v2w, and v3w, where v1, v2, v3 ∈ V (C), and w �∈ V (C). If the edges
v1v2, v2v3, v1v3 are not edges of C, then it is easy to see that there exists a shorter full
cycle than C; contradiction. Hence C is a triangle and C together with w induces a
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K4. So, either G is K4, or, since G is connected, there is an edge of G, not in the K4,
incident with an edge of the K4, implying the existence of a 0-restricted odd cycle;
again, a contradiction.

Theorem 13 suggests the following polynomial-time algorithm for recognizing the
graphs that contain no 0-restricted odd cycle: Given a graph G that is not K4,
remove all the ears of G that have length more than 1 and check if the resulting graph
is bipartite. If yes, then G contains no 0-restricted odd cycle; otherwise, any odd
cycle in the resulting graph yields a 0-restricted odd cycle.

4.3. Proof of Theorem 11. In this section we prove Theorem 11. To do this
we present three lemmas from which the theorem immediately follows.

Lemma 14. If a connected graph G contains no fundamental 1-restricted odd cy-
cle, then G contains at most one odd-length ear in each maximal 2-connected subgraph,
or G = K4.

Proof. Assume that G contains no fundamental 1-restricted odd cycle, but G
contains a maximal 2-connected subgraph B that contains two or more odd-length
ears. We show that this leads to either a contradiction or that G = K4.

Let us choose two odd-length ears in B, one with distinct endnodes u and v
and the other with distinct endnodes w and z. Since B is a maximal 2-connected
subgraph, there exist two node-disjoint paths in B, say from u to w and from v to z,
that form a cycle C with two odd-length ears. Let us assume that we have found such
a cycle C that has a minimum number of edges. It follows that C cannot contain any
chord, otherwise we would have a shorter such cycle. Hence every node of u, v, w,
and z is incident with an edge, the other endnode of which is not in C. We call such
an edge a petal-edge.

If C has length 0 mod 4, then we obtain a fundamental 1-restricted odd cycle by
adding to C the petal-edges at u and v, a contradiction. If C has length 1 mod 4,
then we obtain a fundamental 1-restricted odd cycle by adding to C the petal-edge
at u, a contradiction. If C has length 2 mod 4, then C is a fundamental 1-restricted
odd cycle, a contradiction.

Finally, suppose that C has length 3 mod 4. Because the paths from u to v and
from w to z in C have odd length and because C has odd length, the path from u
to w in C is odd and the path from v to z is even, or vice versa. Without loss of
generality, assume that the path from u to w is odd. Add to C three petal-edges from
u, v, and w. Let this subgraph be G′. If G′ has two or three nodes not in C, then it
is a fundamental 1-restricted odd cycle. So let us assume that G′ has only one node
a that is not in C. Thus the degrees of u, v and w in G′ are 3.

Observe that C has three odd paths: from u to v; from u to w; and from v to z
to w. If one of these paths has length more than one, then we have a fundamental
1-restricted odd cycle. To see this, suppose without loss of generality that the path
from v to z to w has length more than 1. Arbitrarily choose one of the other paths,
say the one from u to v, and consider the cycle C′ that consists of au, av, and the
path from u to v. The length of C′ is either 1 mod 4 or 3 mod 4, and in either case
we can construct a fundamental 1-restricted odd cycle based on it, a contradiction.
Thus all three of our paths in C have length 1. It follows that the graph induced by
C and the node a is K4. It is now easy to see that either G = K4 or we can construct
a fundamental 1-restricted odd cycle based on it (since G is connected).

Lemma 15. If a graph G contains no fundamental 1-restricted odd cycle, if G
contains at most one odd-length ear in each maximal 2-connected subgraph, and if G
is not a cycle of length 1 mod 4, then GR is bipartite.
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Proof. By contradiction, suppose that the conclusion does not hold for some
graph G; i.e., GR contains an odd cycle C.

If C is a loop in GR or the maximal 2-connected subgraph containing C has
no odd-length ear in G or the maximal 2-connected subgraph has an odd-length ear
but C does not contain the corresponding ear in GR, then it is not hard to see that
the cycle in G corresponding to C has length 2 mod 4, which implies that G has a
fundamental 1-restricted odd cycle, a contradiction.

Now we assume that C contains an ear that corresponds to an odd-length ear in
G. So this odd-length ear in G is an odd-length path in G.

Case 1: The odd-length path in G has length 1 mod 4.
So the remaining path in C has even length. We see that the path in G that cor-

responds to the remaining path in C has an even number of ears with length 2 mod 4.
Therefore, the corresponding path in G has length 0 mod 4, and C corresponds to
cycle of length 1 mod 4 in G. By assumption, this cycle cannot be the entire graph G;
hence G contains a fundamental 1-restricted odd cycle with cycle C, a contradiction.

Case 2: The odd-length path in G has length 3 mod 4.
So the corresponding path in GR has length 2, and hence the remaining path in C

has odd length. It follows that the path in G that corresponds to the remaining path in
C has an odd number of ears with length 2 mod 4. This implies that the corresponding
path in G has length 2 mod 4, and C corresponds to a cycle of length 1 mod 4 in G,
which again yields a fundamental 1-restricted odd cycle, a contradiction.

Lemma 16. If G = K4 or G contains at most one odd-length ear in each maximal
2-connected subgraph and GR is bipartite, then G contains no fundamental 1-restricted
odd cycle.

Proof. If G = K4, then we see by inspection that G contains no fundamental
1-restricted odd cycle. By contradiction, now suppose that G �= K4 and G contains a
fundamental 1-restricted odd cycle G′ with cycle C and GR is bipartite.

Case 1: C has 0 mod 4 edges.
By definition, C has two petal edges whose attachment nodes in C are separated

by two odd-length paths. Observe that each such odd-length path must contain an
odd-length ear. Hence, G has at least two odd-length ears, a contradiction.

Case 2: C has 2 mod 4 edges.
Then C contains an even number of odd-length ears. If this number is greater

than or equal to 2, then we get the contradiction. So let us assume that the number
of odd-length ears in C is 0. Then C must contain an odd number of ears of length
2 mod 4; hence the cycle in GR that corresponds to C is odd, a contradiction.

Case 3: C has 3 mod 4 edges.
Then C is the union of three odd-length paths between the attachment nodes.

Therefore, C must contain at least three odd-length ears, a contradiction.
Case 4: C has 1 mod 4 edges.
Then C contains an odd number of odd-length ears. If the number of odd-length

ears is greater than or equal to 3, then we get a contradiction. So we assume that
C contains exactly one odd-length ear. If this odd-length ear is a cycle, then C
corresponds to an odd cycle in GR, a contradiction.

Suppose the odd-length ear is a path P . If P has length 1 mod 4, then C\P
has length 0 mod 4 and hence contains an even number of ears of length 2 mod 4.
Therefore, C corresponds to an odd cycle in GR, a contradiction. If P has length
3 mod 4, then C\P has length 2 mod 4 and hence contains an odd number of ears of
length 2 mod 4. Again, C corresponds to an odd cycle in GR, a contradiction.
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Fig. 5. An example of a 1-restricted blossom.

5. A class of blossom-type valid inequalities. In this section, we introduce
a new class of inequalities, called the 1-restricted blossom inequalities, and we show
they are valid for R(G). These inequalities are similar to the classical blossoms both
in structure and in that they have Chvátal rank of 1. We show that no fractional
extreme solution to A(G) satisfies all the 1-restricted blossom inequalities. However,
we also show, with a small example, that the 1-restricted blossom inequalities together
with inequalities (1–4) do not yield a complete description of R(G). We begin with a
few definitions.

A pair (B, T ) is called a 1-restricted blossom of a graph G if the following two
conditions are satisfied:

1. B is a set of nodes of G (called the center of the blossom).
2. T is an odd cardinality set of edges of G such that

• Each edge in T is incident with one or two nodes of B; and
• Each node of B is incident with exactly one edge in T .

As a matter of notation:
• Let Ti, for i = 1, 2, be the edges in T incident with exactly i nodes of B;
• Let Bi, for i = 1, 2, be the nodes in B incident with an edge in Ti;
• Let E+ be the edges of T plus the edges with both ends in B1; and
• Let E− be the edges with both ends in B2, but not in T2; plus the edges

with one end in B2 and one end not in B.
See Figure 5 for an example of a 1-restricted blossom. The pair (B, T ) of the

blossom given in Figure 5 is defined as follows:

T ≡ T1 ∪ T2, B ≡ B1 ∪B2,

T1 ≡ {af, bg, ch, dh, ei}, T2 ≡ {uv, wz},
B1 ≡ {a, b, c, d, e}, B2 ≡ {u, v, w, z},
E+ ≡ {all the edges of the right component plus uv and wz},
E− ≡ {all the edges of the left component except uv and wz}.

We associate the following inequality, called a 1-restricted blossom inequality, with
each 1-restricted blossom (B, T ):

(5)
∑

e∈E+

xe −
∑

e∈E−

xe ≤ |B1| +
|T | − 1

2
.

Observe that when T contains a single edge, say uv, and B = {u, v}, then inequality
(5) is the edge-adjacency constraint for uv. Furthermore, it is not hard to see that
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Fig. 6. An example that has a facet-defining inequality with variable coefficient 2.

(B, T ) and the inequality (5) define a standard 2-matching blossom and inequality
(see [5]) when B2, T2 = ∅ (which implies E− = ∅). Hence the 1-restricted blossom
inequalities are a common generalization of the edge-adjacency constraints and the
standard 2-matching blossom inequalities.

Proposition 17. Any inequality (5) is valid for R(G).
Proof. Every 1-restricted simple 2-matching satisfies the following inequalities:

x(δ(v)) ≤ 2 ∀ v ∈ B1,(6)
xe − x(adj(e)) ≤ 0 ∀ e ∈ T2,(7)
xe ≤ 1 ∀ e ∈ T.(8)

Adding up all the inequalities (6–8), dividing both sides by 2, and rounding down the
variable coefficients and the right-hand side, we obtain inequality (5) that is valid for
all the 1-restricted simple 2-matchings.

Proposition 18. There is no fractional extreme point of A(G) that satisfies all
the inequalities (5).

Proof. Consider an arbitrary fractional extreme point x for A(G), as described in
Theorem 1. Let C′ be an odd cycle of Gc whose edges have value 1

2 in x. Let C be
the cycle in G that corresponds to C′, and let M be the edges in G that have value 1
in x and are adjacent to one or two nodes of C. It is easy to see that C and M define
a 1-restricted odd cycle in G as in Definition 5. If we let B denote the nodes of C and
let T = M , then (B, T ) is a 1-restricted blossom. It is easy to check that x satisfies
all the inequalities (6–8) for (B, T ) at equality. Since (5) is obtained by adding the
inequalities (6–8) and rounding down, it follows that x violates (5) for (B, T ).

We next claim that the system (1–4, 5) is not sufficient to characterize R(G) for
all graphs G. To see this, first notice that the variable coefficients of every inequality
in (1–4, 5) are 0, 1, or −1. To prove the claim we now present, for a specific graph
G, a complete description of the facet-defining inequalities of R(G), where one of the
inequalities has a variable coefficient 2.

Consider the graph G consisting of a cycle of length 4 with two petals as shown
in Figure 6. By Theorem 1, A(G) has a unique fractional extreme point f =
(xv1v2 , xv2v3 , xv3v4 , xv3v5 , xv5v1 , xv5v6) = (1, 1

2 , 1,
1
2 ,

1
2 , 1). Now we show that we only

need (1–4) and inequality

(9) 2xv1v2 − xv2v3 + xv3v4 − xv5v1 + xv5v6 ≤ 2

to give a complete description of R(G).
First, we prove the validity of (9). Observe that G is a 1-restricted blossom (B, T ),

where B = {v1, v2, v3, v5} and T = {v1v2, v3v4, v5v6}. The 1-restricted blossom in-
equality for (B, T ) is

(10) xv1v2 + xv3v4 + xv3v5 + xv5v6 ≤ 3.
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The inequalities (3) on edges v1v2, v3v4, and v5v6 are

xv1v2 − xv2v3 − xv5v1 ≤ 0,(11)
xv3v4 − xv2v3 − xv3v5 ≤ 0,(12)
xv5v6 − xv3v5 − xv5v1 ≤ 0.(13)

The inequality (2) on edge v1v2 is

(14) xv1v2 ≤ 1.

By doing 2× (10) + 2× (11) + (12) + (13) + 2× (14), we get a valid equality 6xv1v2 −
3xv2v3 + 3xv3v4 − 3xv5v1 + 3xv5v6 ≤ 8. Dividing both sides of this inequality by 3 and
then rounding down the variable coefficients and right-hand side, we obtain the valid
inequality (9) for R(G). By a simple combinatorial argument, one can also show that
all the 1-restricted simple 2-matchings of G satisfy this inequality.

Next, we prove that inequality (9) induces a facet that, together with (1–4),
are enough to describe R(G). Inequality (9) is facet-defining for R(G), because
it is satisfied as equality by the following linearly independent incidence vectors
(xv1v2 , xv2v3 , xv3v4 , xv3v5 , xv5v1 , xv5v6) of six 1-restricted simple 2-matchings of G:

x1 = (1, 0, 0, 0, 1, 1), x2 = (1, 1, 1, 0, 0, 0), x3 = (1, 0, 1, 1, 1, 0),
x4 = (1, 1, 0, 1, 0, 1), x5 = (1, 1, 1, 0, 1, 1), x6 = (0, 0, 1, 1, 0, 1).

Consider the following six inequalities from (1–4):

xv1v2 ≤ 1,(15)
xv2v3 + xv3v4 + xv3v5 ≤ 2,(16)
xv3v5 + xv5v1 + xv5v6 ≤ 2,(17)
xv1v2 − xv2v3 − xv5v1 ≤ 0,(18)

−xv2v3 + xv3v4 − xv3v5 ≤ 0,(19)
−xv3v5 − xv5v1 + xv5v6 ≤ 0.(20)

The equations from (15–20) are independent and give a unique solution f =
(1, 1

2 , 1,
1
2 ,

1
2 , 1), which is the only fractional extreme point of A(G). Observe that

x1, x2, x3, x4, and x5 satisfy (15) at equality, but x6 does not; x2, x3, x4, x5, and x6

satisfy (16) at equality, but x1 does not; x1, x3, x4, x5, and x6 satisfy (17) at equal-
ity, but x2 does not; x1, x2, x3, x4, and x6 satisfy (18) at equality, but x5 does not;
x1, x2, x3, x5, and x6 satisfy (19) at equality, but x4 does not; x1, x2, x4, x5 and x5

satisfy (20) at equality, but x3 does not. Hence, (15–20) are facet-defining inequalities
of A(G). Also observe that x6 satisfies (16–20) at equality, but not (15); x1 satisfies
(15, 17–20) at equality, but not (16); x2 satisfies (15–16, 18–20) at equality, but not
(17); x5 satisfies (15–17, 19–20) at equality, but not (18); x4 satisfies (15–18, 20) at
equality, but not (19); x3 satisfies (15–19) at equality, but not (20). Geometrically,
we see that the simplex defined by the convex hull of f , x1, x2, x3, x4, x5, and x6

is contained in A(G), and the facets of the simplex are induced by inequalities (9,
15–20). Therefore, we conclude that inequalities (1–4, 9) give a complete description
of R(G).

6. Conclusion and future research. In this paper, we have presented a nat-
ural integer programming formulation for the problem of finding maximum weight
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1-restricted simple 2-matchings, we have characterized the extreme points of the lin-
ear programming relaxation, and we have characterized when the relaxation has all
integral extreme points. We have introduced a new class of inequalities that tightens
this linear programming relaxation, but we know that this system is not sufficient to
completely characterize the integral hull. So an obvious direction for future research is
to look for a complete polyhedral description and a polynomial-time algorithm for the
problem of finding maximum weight 1-restricted simple 2-matchings (or to show the
problem is NP-hard). Another research direction would be to consider similar ques-
tions for the problem of finding maximum weight k-restricted simple 2-matchings,
when k > 1.
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Abstract. This paper describes a parallel space decomposition (Psd) technique for the mesh
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1. Introduction. This paper considers optimization problems of the form

min
x∈Ω

f(x),(P)

with the objective function f : Ω ⊂ R
n → R∪{∞}. Our motivation is to treat P when

n grows large. The feasible region Ω is assumed to satisfy a nonsmooth constraint
qualification, which we will discuss later, and we assume only the presence of an oracle
to tell whether or not a given x ∈ R

n is feasible. We are concerned primarily with
cases where f(x) or the oracle are given by black-box computer simulations, which
are assumed to evaluate in finite time. This is common in engineering design. Indeed,
the reason we allow f(x) to take on the value ∞ is that, for many such problems, no
value of f(x) is returned, even for some x ∈ Ω, because of the internal workings of
the simulation used to drive the design. See [2, 3, 10, 13, 21, 27, 32, 42].

There are other useful derivative-free direct search methods designed for problems
similar to P . These include the Nelder–Mead simplex [43], the Direct algorithm [20,
24, 30], frame-based methods [16, 44], the generalized pattern search (Gps) [7, 14,
49], the asynchronous parallel pattern search (Apps) approach [25, 29, 36, 34, 35],
and the mesh adaptive direct search (Mads) [1, 8]. Related is the implicit filter
method [31], though it does use a coarse difference gradient approximation. The
reader may consult [31, 33, 37] for a survey of some of these direct search methods.
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Using these methods to solve expensive problems with more than a few dozen
variables may be impractical, since they may need a large number of costly black-box
evaluations. Dennis and Wu [18] reviewed different parallel methods for continuous
optimization and concluded that a combination of Gps and the parallel variable dis-
tribution (Pvd) of Ferris and Mangasarian [19] should be considered:

“. . . parallel variable distribution and parallel direct searches seem
an interesting pairing. . . .”

The present paper is based on this remark.
Pvd is an evolution of the block-Jacobi technique of [11], which optimizes in

parallel a series of reduced subproblems on the subspaces of the original variables of P .
Dennis and Torczon [17] described a first parallel version of Gps, which evaluates
the black-box in parallel and synchronizes at each iteration to compare solutions
and update the current iterates. The Apps [25, 36], removes this synchronization
barrier. In Apps, each process explores the space of variables using its own set of
directions and does not wait for the other processes to terminate. Apps is expected
to be more efficient than the synchronous version of [17], especially if the black-
box has heterogeneous behavior that depends on the point where it is evaluated. A
convergence analysis is presented in [35] for the smooth case.

Our work applies a decomposition of the variables of P based on the block-Jacobi
technique of [11] that inspired the Pvd method of [19]. This allows a natural parallel
application of Mads to smaller subproblems, in an asynchronous way. The new al-
gorithm, called Psd-Mads (parallel space decomposition-Mads, can be interpreted
as a particular instance of Mads, thus inheriting the main results of the Mads con-
vergence analysis. The paper focuses on the definition of the Psd-Mads frameworks
and on its convergence analysis, and not on the choice of the subproblem variables.
In our practical implementation of the algorithm, a simple random strategy is used,
and it performs well.

The paper is divided as follows: section 2 gives an overview of the Psd and Mads

methods. Section 3 presents the new asynchronous parallel algorithm Psd-Mads,
and section 4 ensures that the main convergence results of Mads are maintained
by showing that the entire Psd-Mads algorithm may be interpreted as a specific
Mads instance. An implementation of Psd-Mads is described in section 5, with
some numerical results on problems with a number of variables ranging from 20 to
500. Finally, section 6 gives some conclusions and proposes possible extensions of
Psd-Mads.

2. Relevant literature. This section presents an overview of Psd methods.
The Mads, its convergence analysis, and a practical implementation are also described
in detail.

2.1. PSD methods. Psd methods decompose P into a finite number of smaller
dimension subproblems, which can be solved in parallel with one process assigned to
each subproblem.

Define N = {1, 2, . . . , n}, where n is the number of variables of the optimization
problem P , and Q = {1, 2, . . . , q}, where q is the number of available processes. Each
process p ∈ Q works on a nonempty subset Np ⊆ N of the variables. The other
variables are fixed, based on the incumbent solution x∗ ∈ Ω, the current best known
solution. More precisely, process p ∈ Q works on the optimization subproblem

min
x∈Ωp(x∗)

f(x),(Pp(x∗))
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with Ωp(x∗) =
{

x ∈ Ω : xi = x∗i ∀i ∈ Np

}

and Np = N \Np. The subproblem Pp(x∗)
contains np = |Np| free variables, indexed by Np. In section 5, we propose a simple
and random strategy to build the subsets Np.

The block-Jacobi method in [11] is an iterative two-step algorithm and may be
described in a very general way as follows. At each iteration, the first step, the
parallelization, consists of solving the subproblems in parallel, and the second step,
the synchronization, gathers the subproblem solutions and constructs the next iterate.
Similar methods are described in [26, 41, 50].

A variant of the method was introduced by Ferris and Mangasarian [19], as the
Pvd for a differentiable objective function f with continuous partial derivatives. In
order to solve the subproblems more efficiently, the Pvd method allows a priori fixed
variables to change in a limited fashion, along directions typically based on ∇f . These
variables are denoted as “forget-me-not” terms.

The convergence analysis in [19] requires that subproblems be solved to optimality.
In the unconstrained case, if ∇f exists and is Lipschitz, then the accumulation points
of the generated sequences are stationary points. In addition, if f is assumed to be
convex, the convergence rate is shown to be linear. When Ω is nonempty, closed, con-
vex, block-separable, and the functions defining it are also continuously differentiable,
convergence results are still available. When there are general constraints, Ferris and
Mangasarian recommend transforming the problem into unconstrained problems via
penalty functions. This strategy is untested as far as we know, and we prefer to avoid
estimating penalty constants.

These are parallel synchronous algorithms because the synchronization step waits
for all of the processes to end. The conclusion of [19] states that an asynchronous
version of the algorithm would increase efficiency. This is done in [40] for uncon-
strained problems, where the synchronization step is dropped at the expense of the
convergence analysis.

The extensions of the Pvd method are given in [45, 46, 47] with similar con-
vergence results to those in [19] under less restrictive conditions. For example, sub-
problems do not need to be solved to complete optimality, as, for example, when one
Newton-like iteration is used. A convergence analysis for the constrained case is given
with either block-separability or convexity assumptions on the structure of Ω.

In the above references, no practical and generic strategy is given concerning the
choice of the subproblem variables (sets Np). However, the sets do need to form a
partition of N , and they are fixed throughout the entire process. In the Psd [22] the
subspaces can be chosen differently at each iteration.

Fukushima [23] extends the Pvd method to a more general framework for un-
constrained problems. The sets of subproblem variables are not fixed through the
iterations and are not required to form a partition of N , but they must span N . In
particular, an overlapping of the subproblem variables is allowed. Some experiments
with such methods are given in [51].

More recently, the multidisciplinary optimization via adaptive response surfaces
(MoVars) algorithm [12] combines the Gps method with the synchronous Pvd frame-
work (including the “forget-me-not” terms from [19]) on fixed subsets Np, but there
is no convergence analysis.

In most of the references of this section, f is assumed to be at least differentiable,
and constraints, if they are considered, are block-separable or convex. These are not
reasonable assumptions for our target class of engineering design problems, and thus
our convergence analysis does not rely on the analysis of [19] or its extensions. Rather,
by incorporating Mads with its weaker hypotheses, we will inherit the Mads con-
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vergence analysis. It will also give us greater flexibility concerning the way to handle
constraints, the amount of work devoted to the subproblems, the lack of necessity for
a synchronization step, and for the choice of the subsets Np. Concerning this last
issue, we remind the reader that we will not propose an elaborated strategy for this,
as the focus of the paper is first to define the new method.

2.2. MADS. We now summarize the Mads algorithm [8] for problem P , which
extends the Gps algorithm for linearly constrained optimization [14, 49].

The constraints defining Ω are handled by the extreme barrier approach, as in [8,
38, 39]. This means that trial points outside Ω are simply rejected by setting their
objective function value to ∞. Of course, this requires that the user provides a feasible
initial point x0 ∈ Ω. We make the standard assumption that all of the trial points
generated by the algorithm lie in a compact set.

Mads is an iterative algorithm where the black-box functions are evaluated at
some trial points that are either accepted as new iterates because they are feasible
and decrease the objective or are rejected.

All trial points generated by these algorithms are constructed to lie on a mesh

(1) M(Δ) =
{

x+ ΔDz : x ∈ V, z ∈ N
nD
}

⊂ R
n,

where the set V , called the cache, is a data structure memorizing all previously eval-
uated points so that no double evaluations occur, Δ ∈ R

+ represents a mesh size
parameter, and D is an n× nD matrix representing a fixed finite set of nD directions
in R

n. More precisely, D is called the set of mesh directions and is chosen so that
D = GZ, where G is a nonsingular n× n matrix and Z is an n× nD integer matrix.
The definition given by (1) differs slightly from the one in [8]. There the mesh was
indexed by the iteration number instead of being parameterized by Δ. The reason
for this difference is that our parallel algorithm will be working simultaneously on
different size meshes originally generated at different iterations. Note also that in
order to simplify the notation, the mesh size parameter Δ used here is the equivalent
of Δm in [8].

Each iteration is divided into three steps: the search, the poll, and an update step
determining the success of the iteration and producing the next iterate. The search
and poll are treated specially in that the poll need not be carried out at an iteration if
the search finds a better point. At each iteration, the algorithm attempts to generate
an improved incumbent solution on the current mesh M(Δk), where Δk is the mesh
size parameter at iteration k. The search step is very flexible and allows for trial
points anywhere on the mesh. The way of generating these points is free of any rules,
as long as they remain on the current mesh M(Δk) and that the search terminates
in finite time. Some search strategies can be tailored for a specific application, while
others are generic, such as the use of Latin hypercube sampling [48], or variable
neighborhood search [4]. In summary, if one wants to define a Mads algorithm with
a specific search, all that needs to be done to ensure convergence is to show that the
search requires finite time and generates a finite number of trial points lying on the
mesh.

The poll step explores the mesh M(Δk) near the current iterate xk, and its rules
ensure theoretical convergence of the algorithm. The way of choosing the directions
used to generate the poll points is the difference between Gps and Mads. In Gps,
the set of normalized potential poll directions must be chosen from a finite set that
is fixed across all iterations. In Mads, the normalized directions may be chosen to
be asymptotically dense in the unit sphere, which allows better coverage. We use the
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Mads

[0] Initialization

x0 ∈ Ω, Δ0 > 0, k ← 0

[1] Poll and search steps

objective: find a y ∈ M(Δk) ∩ Ω such that f(y) < f(xk)
Search step (optional)

evaluate the functions on a finite number of M(Δk) points
Poll step (optional if the search step succeeded)

generate ndir Mads directions di ∈ R
n

evaluate the functions on the Mads frame
Pk = {xk + Δkdi : i = 1, 2, . . . , ndir} ⊆ M(Δk)

[2] Updates

xk+1 ← y (iteration success) or xk (iteration failure)
Δk+1 ← τωkΔk (reduced if iteration fails)
k ← k + 1
goto [1] if no stopping condition is verified

Fig. 1. High-level description of the Mads algorithm. The directions di are positive integer
combinations of the columns of D. The search or poll steps can be stopped before all evaluations are
terminated (opportunistic strategy).

terminology of [16, 44] and say that at iteration k, the set of trial poll points is called
the frame Pk. The set of directions used to construct Pk is denoted Dk, and it is not
a subset of D.

In the last step of the kth iteration, the mesh size parameter is updated according
to Δk+1 ← τωk Δk, where τ > 1 is a fixed rational number and ωk is an integer that
depends on the success of the iteration. When no improvement is made, the iteration
is said to fail, and ωk is taken to be an integer in the interval [ω−;−1] with ω− ≤ −1,
forcing the next trial poll points to be closer to the current iterate. When a new best
iterate is found, the iteration is said to succeed, and Δk is possibly increased with ωk
in [0;ω+], with the integer ω+ ≥ 0. Specific values for τ , ω−, and ω+ are suggested
in section 2.4.

A high-level description of the algorithm is summarized in Figure 1. We encourage
the reader to consult [8] for a complete description.

2.3. MADS convergence analysis. We will summarize the main convergence
results for Mads given in [8]. These results assume that constraints are treated by the
extreme barrier approach, and they constitute a hierarchical series of results relying
on the Clarke calculus [15] for nonsmooth functions.

The main theorem is that, under a local Lipschitz assumption on f and under
the assumption that the set of all normalized poll directions is dense in the unit
sphere, the algorithm produces a Clarke stationary point. More precisely, Mads

generates a point x̂ ∈ Ω at which the Clarke generalized directional derivatives of f
in all of the directions in the Clarke tangent cone at x̂ are nonnegative. The only
assumptions needed are that f is Lipschitz near x̂ and the constraint qualification
that the hypertangent cone of Ω at x̂ is nonempty. A corollary to this result in the
unconstrained case is that if f is strictly differentiable near x̂, then ∇f(x̂) = 0.

The convergence result that requires the least assumptions on f and Ω, the zeroth
order result, is that Mads generates a limit point x̂, which is the limit of mesh local
minimizers on meshes that get infinitely fine. The notion of local optimality is, with
respect to the current poll set, defined using a positive spanning set of directions.
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More formally, Mads generates a convergent subsequence of iterates {xk}k∈K ⊂ Ω
such that xk → x̂, and f(xk) ≤ f(xk + Δkdk) for all directions dk in a positive
spanning set DK , and ‖Δkdk‖ → 0.

The price to pay for our new capability to handle a large number of variables
is that this last convergence result will be lost. We will consider a Mads algorithm
whose poll set contains a single element instead of being built using a positive spanning
set of directions. We will refer to this as a single-poll Mads algorithm, and it still
retains the property of generating asymptotically dense polling directions.

The next section discusses the LtMads (lower-triangular Mads) implementation
of the Mads algorithm. LtMads uses positive bases to construct the poll sets. It
is stated that the union of these normalized directions forms a dense set because
if one looks closely at the proof in [8], one sees that it is the subset of single-poll
normalized Mads directions that grows dense in the unit sphere. Thus, with the
assumption of local Lipschitz continuity, the main convergence result guaranteeing a
Clarke stationary point holds.

2.4. The LTMADS implementation of MADS. Mads is a general class of
algorithms, where the search and poll steps need to satisfy certain conditions for the
convergence results to hold. In particular, one of these conditions is that the total
set of normalized poll directions used by the algorithm be dense in the unit sphere.
In [8], after the definition of the Mads framework, a practical implementation is given.
This implementation is named LtMads, since it implies the random construction of
a lower-triangular matrix. At this moment, LtMads is the only published Mads

implementation, and all Mads codes in section 5.2 correspond to LtMads.
LtMads fixes τ to 4, ω− = −1, ω+ = 1, and the set of mesh directions D =

[−In In], where In represents the n × n identity matrix. The mesh is based on the
nonnegative integer value � = − log4(Δk), Δk = 4−�, and directions are constructed
randomly using a lower-triangular matrix. One of these directions is a special case
and is fixed for each value of �. This direction, called b(�), has one coordinate (the
largest in absolute value) set to ±2� so that poll points are within

√
Δk of the poll

center xk in the �∞ norm.
The result stated in [6, 8] is that with probability one, the series of normalized

directions b(�) grows dense in the unit sphere. In LtMads, the direction b(�) is
augmented at each iteration with other directions to form a positive spanning set of
polling directions. We can, as explained in the preceding section, construct a single-
poll Mads algorithm with dense polling directions using only the b(�) directions,
but the zeroth order convergence result of Mads is lost. Also, because we are not
polling at each iteration in a positive spanning set of directions, the mesh size might
drop too quickly with this single-poll version of Mads, and so the search step is of
extra importance. This is the key to the Psd-Mads algorithm described in the next
section: one process executes a single-poll Mads algorithm, while the work of the
other processes may be interpreted as a search step.

3. PSD of MADS (PSD-MADS). This section describes the combination of
Mads with a Psd method. The resulting algorithm is called Psd-Mads. It is an
asynchronous parallel algorithm where a master process decides on the subsets Np ⊆
N and assigns the resulting optimization subproblems Pp(x∗) to slaves. The slaves
apply Mads to attempt to improve the incumbent solution x∗. No synchronization
step is performed. When a slave completes its assigned task, the master assigns a new
subproblem with a possibly new Np and x∗.
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3.1. General description of PSD-MADS. Although Psd-Mads is an asyn-
chronous parallel algorithm, the notion of iteration is kept, and it corresponds to two
successive calls by the master to one special slave, called the pollster slave, described
more precisely in section 3.2. The pollster slave executes a single-poll Mads algo-
rithm on the entire problem P , while the other slaves, called the regular slaves, work
on the subproblems Pp(x∗). This task partition between the pollster and the regular
slaves allows the convergence analysis of section 4, where it is shown that the pollster
slave executes a valid Mads algorithm, thus inheriting the convergence results of [8].
Note that the pollster slave’s task requires the fewest function values of any of the
poll steps.

Each subproblem Pp(x∗) is a subproblem of P with a reduced number of variables
indexed by the set Np. When an optimization process terminates, the slave commu-
nicates its progress to the master. If it has found an improved solution, then that
becomes the new incumbent solution. The slave immediately starts work on a new
subproblem assigned by the master. There is no need to synchronize all of the slaves.

With several Mads instances executing in parallel, it is necessary to define differ-
ent mesh size parameters. First, Δp

j corresponds to the mesh M(Δp
j ) used at iteration

j of the Mads algorithm performed by a regular slave sp. The mesh size parame-
ter is denoted differently for the pollster slave, with Δ1

k (notice the same iteration
counter k used both for the pollster slave and Psd-Mads). The number Δ1

k is called
the pollster mesh size parameter at iteration k of Psd-Mads. Finally, an additional
mesh size parameter ΔM

k is called the master mesh size parameter. The mesh M(ΔM
k )

is never used explicitly, but it is useful for comparing the two other meshes M(Δ1
k)

and M(Δp
j ). At iteration k of Psd-Mads and at iteration j of the Mads algorithm

performed on a subproblem Pp(x∗) by a regular slave sp for p ∈ {2, 3, . . . , q − 2}, the
Psd-Mads construction ensures that

(2) Δ1
k ≤ ΔM

k ≤ Δp
j .

Inequalities (2) are formally proved in the convergence analysis of section 4, where
Psd-Mads is interpreted as a valid single-poll Mads instance performed by the poll-
ster slave. An additional hypothesis on the different meshes M(ΔM

k ), M(Δ1
k), and

M(Δp
j ) is necessary.

Hypothesis 3.1. If two mesh size parameters Δ and Δ′ satisfy Δ = τωΔ′, where
ω ∈ N, then M(Δ) ⊆M(Δ′).

This assumption holds for the Psd-Mads implementation given in section 5.
The q processes are partitioned into a master, q − 2 slaves, and a cache server

(process number q − 1), which memorizes all points that have been evaluated. The
q−2 slaves include the pollster slave (process number 1) and q−3 regular slaves. The
notation sp, with p ∈ Q \ {q − 1, q}, is used to identify the q − 2 processes assigned
as slaves, and Qreg = {2, 3, . . . , q − 2} is the set of the indices of the q − 3 regular
slaves. The qth process is used as the master, which defines the lower-dimensional
subproblems Pp(x∗) and communicates them to the slaves.

An advantage of applying the Psd method to Mads instead of another optimiza-
tion method is that most of the conditions necessary for convergence in the other Psd

methods mentioned in section 2.1 can be relaxed (the smoothness of the functions,
the conditions on the constraints, no synchronization step, and no restrictions on the
choice of the sets Np).

This new algorithm is not a particular case of the method in [23], which generalizes
many parallel variable decomposition methods, since general constraints are allowed,
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Pollster (p = 1)
Inputs : pollster mesh size Δ1

k

starting point x0

Output : pollster solution xp
solve problem P : Mads(pollster)
terminate after a single evaluation
send xp to master

Fig. 2. Pseudocode for pollster slave. Mads(pollster) considers all n variables with a single-poll
direction and terminates after one iteration.

and f is not assumed to be smooth. Psd-Mads also differs from the recent MoVars

algorithm [12], which does require Np to partition the variables, because it provides a
convergence analysis, it dynamically changes the sets Np, and it is an asynchronous
parallel method. The next sections describe precisely the role of each process.

3.2. The pollster slave s1, on M(Δ1
k). The pollster slave s1 has a special

role; its set of variables is always fixed to N1 = N , so that it works on the original
problem P . Due to its greater impact on the algorithm and to distinguish s1 from
the other slaves, we call it the pollster slave, or, simply, the pollster.

To reduce the expected high number of evaluations done by the successive pollster
instances, a single-poll Mads algorithm is used (the poll directions are reduced to a
single element), with the conditions that the union of all of the normalized directions
used throughout the algorithm are dense in the unit sphere and that the norms of
those directions are in proper relation with the mesh size parameter.

Moreover, the pollster is limited to only one Mads iteration, with no search step
and one poll step. It follows that, at most, one function evaluation will be performed
(zero function evaluation if the unique poll trial point is found in the cache), and the
pollster mesh size parameter Δ1

k will not be updated (this is done by the master).
The notation Mads(pollster) or Mads(s1) refers to the single-poll Mads algo-

rithm performed by the pollster. Mads(pollster) is defined so that its mesh size
parameter Δ1

k cannot be larger than the master mesh size ΔM
k at iteration k of Psd-

Mads (see (2)).
The pollster pseudocode is shown in Figure 2. The pollster mesh size is updated

by the master. The best obtained solution corresponds to xp, which is sent to the
master. The convergence analysis in section 4 is based on the pollster and on the fact
that consecutive runs of Mads(s1) form a valid single-poll Mads instance on P .

3.3. The regular slaves s2 to sq−2, on M(Δp
j ). The regular slaves sp, p ∈

Qreg work on subsets Np of N and use the positive spanning sets of directions. The
Mads algorithm working on problem Pp(x∗) and performed by slave sp is designated
by Mads(sp).

Subproblem Pp(x∗) is defined as an |Np|-variable problem, since all of the variables
in N \Np are fixed. Trial points generated by Mads(sp) are then in R

n, with some
coordinates fixed. The values of these fixed coordinates are directly taken from the
starting point for Mads(sp), i.e., x∗, the incumbent solution. The user supplies a
parameter bbemax > 0 that indicates the maximum allowed number of black-box calls
for the application of Mads to the optimization of a subproblem.

The pseudocode for the regular slaves is shown in Figure 3. Mads(sp) generates
the trial points on meshes of sizes Δp

j , where j is the iteration counter of the subprob-
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Slave sp (p ∈ Qreg)
Inputs : initial mesh size Δp

0

minimum mesh size Δp
min

starting point x0

set of variables Np
Outputs : slave solution xp

final mesh size Δp
stop

solve subproblem Pp(x∗): Mads(sp)
terminate when Δp

j < Δp
min or after bbemax evaluations

send xp and Δp
stop to master

Fig. 3. Pseudocode for slaves processes. Does not include pollster slave, which is specifically
described in Figure 2.

lem algorithm. The initial mesh size Δp
0 for Mads(sp) is set by the master. The value

of the parameter Δp
min also is supplied by the master and equals ΔM

k , where k is the
Psd-Mads iteration at which Mads(sp) started. Finally, we impose that no mesh
size for Mads(sp), p ∈ Qreg exceeds the Psd-Mads initial mesh size Δuser

0 provided
by the user. Mads(sp) terminates if bbemax evaluations are made, or if a minimal
mesh size Δp

min is reached. The final mesh size (Δp
stop) and the best solution found

(xp) are sent to the master.
The union of all regular slaves Mads(sp) instances is interpreted as a search

step for the total problem single-poll Mads algorithm. This is important to the
convergence analysis in section 4.

3.4. The cache server—(q − 1)th process. The cache server is a specialized
process that simply memorizes all evaluated points. Each time a process generates
a trial point, the cache server is interrogated. This is done to avoid unnecessary
expensive function evaluations in case this point has already been evaluated. The
cache server provides the global availability of any improvement made by any slave.
This is interpreted in section 5 as a search step (the cache search) by the regular
slaves on their subproblems.

3.5. The master—qth process. The master process coordinates the work of
the q − 2 slaves. It waits for slave results, updates data, and assigns work to slaves.
It evaluates only the black-box functions at the starting point x0.

The master process provides the master mesh size ΔM
k at iteration k of Psd-

Mads, which is the link between the mesh sizes Δ1
k and Δp

j on which the different
Mads(sp), p ∈ Qreg work. The initial master mesh size ΔM

0 = Δuser
0 is set by the

user.
The master process updates the pollster mesh size Δ1

k, after a pollster instance
terminates. If no improvement is made by any slave s1 to sq−1 during iteration k, the
iteration is a failure, and the pollster mesh size is reduced. If the iteration succeeds,
then the pollster mesh size is increased. In all cases, the pollster mesh size is smaller
than the master mesh size (2). The value of the pollster mesh size is also kept less
than or equal to Δuser

0 .
For all regular slaves s2 to sq−2, the minimal mesh size Δp

min is set to the current
value of ΔM

k . This, as is explained in more detail in the convergence analysis, leads to
the fact that, at iteration k of Psd-Mads, no regular slave can generate trial points
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Master

[0] initialization

x∗ ← x0 ∈ Ω, Δ1
0 ← ΔM

0 ← Δuser
0 > 0, k ← 0, ω− ≤ −1 , ω+ ≥ 0

start Mads(pollster) with (Δuser
0 , x0) (Figure 2)

for all (p ∈ Qreg)
construct Np and set Δp

min ← ΔM
0

start Mads(sp) with (Δuser
0 , Δp

min, x0, Np) (Figure 3)
[1] iterations

given values from a slave sp (xp, Δp
stop)

if

(

f(xp) < f(x∗)
)

(success)
x∗ ← xp

if (p = 1)
(

pollster, Δp
stop corresponds to Δ1

k

)

ΔM
k+1 ← ταk Δ1

k ≤ min
p∈Qreg

Δp
min, with αk ∈ [0;ω+]

Δ1
k+1 ← τωk Δ1

k (Figure 5)
k ← k + 1
start Mads(pollster) with (Δ1

k, x∗) (Figure 2)
else (regular slave)

construct Np
Δp

min ← ΔM
k

Δp
0 ← τγΔp

stop, with γ ∈ Z and so that ΔM
k ≤ Δp

0 ≤ Δuser
0

start Mads(sp) with (Δp
0, Δp

min, x∗, Np) (Figure 3)
goto [1] if no stopping condition is verified

Fig. 4. Pseudocode for master process. ΔM
k and Δ1

k are the master and pollster mesh sizes

at iteration k, and Δp
stop is the last mesh size of a slave sp. If p = 1, Δp

stop = Δ1
k ≤ ΔM

k , else

Δp
stop ≥ ΔM

k . The master evaluates the black-box just once for x0.

pollster mesh size update Δ1
k+1 ← τωk Δ1

k

if (iteration success)
ωk = αk ∈ [0;ω+]

(

Δ1
k+1 ← ΔM

k+1

)

(

pollster mesh size increase, Δ1
k+1 ≥ Δ1

k

)

else

ωk ∈ [ω−;−1]
(

pollster mesh size decrease, Δ1
k+1 < Δ1

k

)

Fig. 5. An update of the next pollster mesh size Δ1
k+1. In any case, the pollster mesh size

verifies Δ1
k ≤ ΔM

k .

on meshes finer than M(ΔM
k ) and that all of the slaves work, in fact, on the pollster

mesh of size Δ1
k.

The master process pseudocode is described in Figure 4, and the pollster mesh
size update is detailed in Figure 5. The pseudocode for the master process implies
that, when the master mesh size is updated, it is always possible to find an integer
αk ∈ [0;w+] such that ταk Δ1

k ≤ minp∈Qreg Δp
min. The next proposition shows that

αk = 0 is always a candidate.
Proposition 3.2. At iteration k of the Psd-Mads algorithm, there exists a

nonnegative integer αk such that ταk Δ1
k ≤ minp∈Qreg Δp

min.
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Apparent pollster

[0] Initialization

x0 ∈ Ω, ΔM
0 ← Δ1

0 ← Δuser
0 > 0, k ← 0

[1] Poll and search steps

Search step (by other slaves, opportunistic)
ask cache server for xs ∈ M(ΔM

k ) ⊆ M(Δ1
k)

Single-poll step

construct and evaluate Pk = {xpoll} ⊆ M(Δ1
k)

[2] Updates

determine type of success of iteration k

Δ1
k+1 ← τωkΔ1

k

(

cannot be larger than ΔM
k+1

)

xk+1 ← (xs or xpoll or xk)
k ← k + 1
goto [1] if no stopping condition is verified

Fig. 6. A detailed pseudocode of the apparent pollster algorithm, the algorithm from the point
of view of the pollster slave. At every moment, a finite number of M(Δ1

k) points are evaluated in
parallel by other slaves. These evaluations are considered within the opportunistic search step. ΔM

k
is updated by the master after the poll step.

Proof. At iteration 0, Δ1
0 = ΔM

0 = Δuser
0 = minp∈Qreg Δp

min so α0 = 0, and
therefore it exists. Then ΔM

1 = Δuser
0 and minp∈Qreg Δp

min at iteration 1 is equal to
Δuser

0 . Figure 5 ensures that Δ1
1 is bounded above by Δuser

0 , and therefore α1 = 0 is
a possible value.

Suppose, by way of induction, that, for some k ≥ 2, the proposition is true
at iteration k − 1. It follows that ΔM

k = ταk−1Δ1
k−1 ≤ minp∈Qreg Δp

min, and as it
corresponds to new values for Δp

min, p ∈ Qreg, and the new smaller possible value of
minp∈Qreg Δp

min at iteration k remains ΔM
k . The largest value that Δ1

k may take is
also ΔM

k , which shows αk = 0 validates the result.
This proof allows all values of αk to be zero, but, in practice, nonzero values are

likely. For example, if iteration 1 failed and Δ1
1 = Δuser

0 , then the following mesh
updates are possible: ΔM

2 ← Δuser
0 (α1 = 0) and Δ1

2 ← Δuser
0 /4. minp∈Qreg Δp

min is
still equal to Δuser

0 at iteration 2, and so α2 can be either 0 or 1.

4. Convergence analysis of PSD-MADS. It is shown here that the entire
algorithm may be interpreted as a single-poll Mads algorithm applied to the original
problem P and that conditions are met so that the main convergence results from [8]
hold. These conditions are that the regular slaves generate a finite number of trial
points lying on the pollster mesh and that all of these trial points can be interpreted
as a search step with the pollster slave providing the poll step. This is detailed in
Figure 6, and we refer to it as the apparent pollster algorithm. This algorithm is
another way of interpreting the Psd-Mads algorithm described by the pseudocodes
in Figures 2, 3, 4, and 5. Iteration k of the apparent pollster algorithm corresponds
to the iteration k of Psd-Mads (used by the master process), and the notions of
iteration success and failure remain the same.

The convergence analysis in this section proves that the apparent pollster algo-
rithm is a single-poll Mads algorithm with the following components:

• A search step performed by regular slaves s2, s3, . . . , sq−2 on meshes of coarse-
ness larger than or equal to ΔM

k ;
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• A poll step at iteration k (the same k used by the master process in Figure 4)
performed by one call to the pollster slave s1 on a mesh of size Δ1

k ≤ ΔM
k ;

• A mesh update performed by the master process with Δ1
k+1 ← τωk Δ1

k and

the integer ωk ∈
{

[0;ω+] iteration success,
[ω−;−1] iteration failure.

The master mesh size parameter ΔM
k at iteration k is the link described by

inequalities (2) between the mesh size of Mads(pollster) and the different mesh
sizes of Mads(sp). It is updated by the master with the Mads(pollster) mesh (via
Δp
stop = Δ1

k), in such a way that, at every iteration k of the apparent pollster al-
gorithm, Δ1

k satisfies Δ1
k ≤ ΔM

k . This ΔM
k update by the master in the apparent

pollster algorithm occurs when the mesh size Δ1
k is updated, and while its value does

not change during the poll step, it can possibly be updated during the search step,
since that is performed in parallel. This possible change of the ΔM

k value within the
search step of the apparent pollster algorithm is governed by the fact that ΔM

k cannot
be exceeded by any regular slave mesh size (ΔM

k ≤ minp∈Qreg Δp
min).

To show that the apparent pollster algorithm is a valid single-poll Mads algorithm
applied to the original problem P and that the convergence conditions of [8] hold, the
search trial points, whose evaluations are performed at any time in parallel by the
other slaves, must remain finite in number and on the current pollster mesh at iteration
k, Δ1

k. This will be shown via the following propositions.
Proposition 4.1. The mesh size parameter at iteration j of the Mads algorithm

performed by a slave sp, p ∈ Qreg on a subproblem Pp(x∗) satisfies Δp
j = τ−ηj Δuser

0

for some integer ηj ≥ 0. This can be extended to the pollster slave at iteration k, with
Δ1
k = τ−ηk Δuser

0 .
Proof. We first show that the proposition is true for the first optimization sub-

problem solved by a regular slave sp, p ∈ Qreg. The initial mesh size parameter used
for this Mads instance is Δuser

0 , and with the standard Mads mesh update rules,
at iteration j, Δp

j = τωj−1Δp
j−1 = · · · = τ

∑ j−1
i=0 ωiΔuser

0 . Then ηj = −
∑j−1
i=0 ωi ≥ 0,

because no mesh size can be larger than Δuser
0 .

Suppose now that the proposition is true for the rth Mads instance performed
by sp. In particular, the last mesh size parameter of this instance can be written
Δp
stop = τ−ηstop Δuser

0 , where ηstop is a nonnegative integer. From the algorithm
described in Figure 4, the first mesh size parameter of the (r + 1)th Mads instance
performed by sp is Δp

0 = τγΔp
stop, with γ ∈ Z. Then, at iteration j of the (r + 1)th

instance, Δp
j = τ

∑ j−1
i=0 ωiΔp

0 and ηj = −
∑j−1
i=0 ωi − γ + ηstop ≥ 0 because Δp

j ≤ Δuser
0 .

The proposition can be extended to the pollster slave with the same induction proof
on k.

Proposition 4.2. At iteration k of Psd-Mads, and at iteration j of the Mads

algorithm performed by sp (p ∈ Qreg) on a subproblem Pp(x∗), there exists a nonneg-
ative integer βj such that Δp

j = τβj ΔM
k .

Proof. From the algorithm in Figure 4, the master mesh size parameter, at it-
eration k of Psd-Mads, can be written ΔM

k = ταk−1Δ1
k−1, with αk−1 ∈ N, and

Δ1
k−1 = τ−ηk−1Δuser

0 , with ηk−1 ∈ N, from Proposition 4.1. From the same propo-
sition, the mesh size parameter at iteration j of Mads(sp), p ∈ Qreg can be written
Δp
j = τ−ηj Δuser

0 , ηj ∈ N. Then, Δp
j = τβj ΔM

k , with βj = ηk−1 − ηj −αk−1. The min-
imal mesh size parameter Δp

min considered by Mads(sp) corresponds to ΔM
i , where

i ≤ k is an anterior iteration of Psd-Mads. The current value of ΔM
k was chosen

to be smaller than minp∈Qreg Δp
min ≤ ΔM

i . Then, ΔM
k ≤ ΔM

i ≤ Δp
j , and βj is a

nonnegative integer.
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An immediate corollary, with Hypothesis 3.1, is that at iterations k of Psd-Mads

and j of Mads(sp), p ∈ Qreg, M(Δp
j ) ⊆M(ΔM

k ).
Proposition 4.3. At iteration k of Psd-Mads, every trial point generated by

the Mads algorithm performed by sp, p ∈ Qreg on any subproblem Pp(x∗), lies on the
pollster mesh M(Δ1

k).
Proof. From the algorithm in Figure 4, the pollster and master mesh size pa-

rameters at iteration k of Psd-Mads are linked with ΔM
k = ταk Δ1

k, αk ∈ N. With
Hypothesis 3.1 and Proposition 4.2, at iteration j of Mads(sp), M(Δp

j ) ⊆M(ΔM
k ) ⊆

M(Δ1
k). Since all Mads(sp) trial points are constructed on M(Δp

j ), they also lie on
M(Δ1

k).
This series of propositions ensures that all of the trial points of the search step of

the apparent pollster at iteration k, performed in parallel by regular slaves, lie on the
current pollster mesh Δ1

k. In addition, their number remains finite as the time between
two iterations, corresponding to a single-point poll, is finite (with the hypothesis that
the black-box evaluates or is terminated to return ∞, in finite time). The Psd-Mads

algorithm, viewed from the perspective of the pollster slave, thus executes a valid
single-poll Mads search, and the main convergence results of [8] remain valid. Let
x̂ be the limit of a subsequence of Psd-Mads incumbents at unsuccessful iterations.
Then

• If f is Lipschitz near x̂ ∈ Ω, then the Clarke derivative satisfies f◦(x̂; v) ≥ 0
for all v ∈ THΩ (x̂), the hypertangent cone to Ω at x̂;

• In the unconstrained case and if f is strictly differentiable at x̂, ∇f(x̂) = 0.
As mentioned in section 2.3, the fact that the single-poll version of Mads is used
sacrifices the zeroth order result of [8], i.e., x̂ cannot be said to be the limit of local
optima on meshes that get infinitely fine.

5. A practical implementation of PSD-MADS. This section proposes a
practical implementation of the Psd-Mads algorithm described in section 3 based on
the LtMads implementation proposed in [8] and summarized in section 2.4. Numer-
ical tests complete the implementation description.

5.1. PSD-MADS implementation.

Verification of Hypothesis 3.1. The above convergence analysis relies on Hy-
pothesis 3.1. An easy way to satisfy this hypothesis is to simply choose τ to be an
integer. Indeed, consider the mesh point x ∈ M(Δ) and mesh size Δ ∈ R. From the
mesh definition (1), x can be written as y + Δ

∑nD

i=1 zidi, where y belongs to V , the
set of currently evaluated points, and zi are nonnegative integers. Now, if Δ′ = τωΔ,
where ω ∈ N and 1 ≤ τ ∈ N, then x can be rewritten as x = y + Δ′∑nD

i=1 τ
ωzidi. It

follows that τωzi ∈ N, i = 1, 2, . . . , nD, and therefore x ∈M(Δ′). We have shown that
M(Δ) ⊆ M(Δ′), and thus Hypothesis 3.1 is satisfied. In the proposed Psd-Mads

implementation, the LtMads fixed value of τ = 4 is used.

Directions used by the pollster. The LtMads direction b(�) is used in the
single-poll Mads algorithm executed by the pollster slave. The union of normalized
directions b(�), � = 1, 2, . . . , is dense in the unit sphere with probability one, and
Mads(pollster) with the b(�) direction respects the conditions for a valid single-poll
Mads algorithm.

Sets Np of subproblem variables. This paper does not focus on the choice
of the subproblem variables. Rather, we use this very simple strategy: let the sets
Np, p ∈ Qreg = {2, 3, . . . , q − 2}, be randomly generated by the master using a
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uniform distribution before each subproblem parameter set is sent to a regular slave
process. In order to keep an easy parametrization of this Psd-Mads implementation,
the number of variables for each subproblem is fixed throughout the entire algorithm
|N2| = |N3| = · · · = |Nq−2| = ns, where ns is a parameter chosen by the user
(recall that, for the pollster, N1 = N). Notice also that ns is not required to satisfy
(q − 3)ns ≥ N . Furthermore, when Mads(sp), p ∈ Qreg succeeds in improving the
incumbent, the same set Np is kept for the next run performed by the slave sp.

Mesh update rules. The mesh directions of definition (1) are the standard
LtMads 2n directions D = [−In In]. The following mesh size parameter updates are
in accordance with the LtMads mesh update rules:

• Regular slaves mesh size Δp
j (at iteration j of MADS(sp), p ∈ Qreg):

After an iteration fails, the mesh size is updated with Δp
j+1 ← Δp

j/4 (ωj =
−1 in Figure 1). If a poll step is successful, Δp

j+1 ← 4Δp
j (ωj = 1). In

the next search step, if a successful point is found in the cache server, set
Δp
j+1 ← 4Δcache, where Δcache is the mesh size used to generate this point.

Equation (3) summarizes these updates as follows:

(3) Δp
j+1 ←

⎧

⎨

⎩

min
{

Δuser
0 , 4Δp

j

}

poll success,
min {Δuser

0 , 4Δcache} cache search success,
Δp
j/4 iteration failure.

If Δp
j+1 < Δp

min or if the number of new function evaluations exceeds bbemax,
Mads(sp) terminates and communicates Δp

stop = Δp
j to the master. The

next optimization performed by this slave will start with an initial mesh size
parameter Δp

0 equal to 4γΔp
stop, with γ = 1 if at least one success was achieved

since the beginning of the current optimization (even by another slave), or
else γ = −1. However, this may lead to a value smaller than Δp

min = ΔM
k ,

and, in this case, set Δp
0 ← ΔM

k .
The Δp

0 choice for the next Mads(sp) is summarized by

(4) Δp
0 (next Mads(sp)) ←

{

min
{

Δuser
0 , 4Δp

stop

}

success,
max

{

ΔM
k ,Δ

p
stop/4

}

else.

• Master mesh size ΔM
k at iteration k of PSD-MADS: The update of the

master mesh size is performed by the master after a pollster instance termi-
nates. ΔM

k+1 is bounded below by the mesh size parameter of the terminated
pollster Δ1

k and above by the minimum of all Δp
min values currently used by

regular slaves. These Δp
min values correspond to previous master mesh sizes.

It would be possible to choose the parameter αk in Figure 4 at each update
so that ΔM

k+1 is fixed to Δuser
0 , with αk equal to the ηk from Proposition 4.1.

However, such a strategy would not be efficient, as regular slaves would always
generate trial points on the same mesh M(Δuser

0 ). The master mesh size has
then to be reduced somehow through the Psd-Mads evolution. However, it
should not be reduced too rapidly, or the algorithm would progress slowly or
even terminate prematurely in practice.
We propose the following strategy: From Figure 4, ΔM

k is updated by ΔM
k+1 ←

4αkΔ1
k, with αk ∈ N, and from Proposition 4.1, Δ1

k = 4−ηkΔuser
0 , with some

ηk ∈ N. If iteration k succeeded, set αk = ηk = log4

(

Δuser
0 /Δ1

k

)

(maximal
ΔM
k increase), and else αk = ηk − �(ηk + 1)/3� (attenuated ΔM

k increase). In
both cases, if ΔM

k+1 is greater than at least one of the regular slave’s mesh



1164 C. AUDET, J. E. DENNIS, JR., AND S. LE DIGABEL

size Δp
min, then ΔM

k+1 is set to the least Δp
min values. This can be summarized

by the following:

(5) ΔM
k+1 ←

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
{

Δuser
0 , min

p∈Qreg

Δp
min

}

iteration success,

min
{

4−�(ηk+1)/3	Δuser
0 , min

p∈Qreg

Δp
min

}

iteration failure.

For example, if Δuser
0 = Δp

min = 1 for each p ∈ Qreg and if the pollster
instance fails with a pollster mesh size of Δ1

k = 1/16, then the master mesh
size ΔM

k+1 is set to 1/4 (ηk = 2, αk = 1).
• Pollster mesh size Δ1

k at iteration k of PSD-MADS: In the case of an
iteration success, Δ1

k+1 is set to ΔM
k+1 (ωk = αk ∈ N), or else Δ1

k+1 = Δ1
k/4

(ωk = −1):

(6) Δ1
k+1 ←

⎧

⎨

⎩

ΔM
k+1 = min

{

Δuser
0 , min

p∈Qreg

Δp
min

}

iteration success,

Δ1
k/4 iteration failure.

MADS parameters for MADS(sp), p ∈ Qreg. The regular slaves p ∈ Qreg
solve Mads(sp) using the standard Mads 2|Np| directions. All polls are opportunistic,
meaning that a subproblem optimization terminates as soon as a better point is found.
The one-point dynamic search strategy of [8] is also performed: it consists, after a
successful poll step, in evaluating, within a single-point search, the black-box functions
at a mesh point located further along the same successful direction.

In addition to the poll and the one-point dynamic search, Mads(sp) performs
a specialized search step, which simply consists in querying the cache server for the
best available feasible point. This special search step generates no additional function
evaluation and allows every regular slave to know the best points eventually obtained
by other slaves. Note that this search step has no obligation to give a point lying on
the current mesh of Mads(sp), but this does not influence the convergence analysis
as it is based on the pollster s1, and as the point given by this search must come from
another slave, thus lying on M(ΔM

k ).

Practical termination criteria. The regular slaves p ∈ Qreg terminate
Mads(sp) as soon as the mesh size parameter Δp

j drops below Δp
min = ΔM

k (where
k is the Psd-Mads iteration at which Mads(sp) was started) or after a finite num-
ber of bbemax black-box function evaluations are made. The Psd-Mads algorithm is
stopped after an overall limit of bbeglobalmax black-box evaluations is reached.

5.2. Numerical experiments. The Psd-Mads implementation described in
section 5.1 is tested here, on two different problems. The implementation of Mads

used to optimize subproblems corresponds to LtMads and is the research version of
the Nomad C++ code [5]. The parallel master/slaves paradigm is achieved with Mpi

with q = 6 or 14 processes.
Psd-Mads is compared to three other parallel algorithms, on the same number

q of processes: First, the pGps method described in [17], which corresponds to the
unmodified Gps method where evaluations are made in parallel. Second, pMads,
which is the trivial adaptation of pGps that uses LtMads instead of Gps. pGps

and pMads are both synchronous parallel algorithms. The third method is Apps

version 5.0.1 [25, 36], the only available Gps asynchronous parallel algorithm.
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The first problem (referred as Problem A) considered for the tests is the G2
example from [28]. It has been chosen for its difficulty and for its variable size: our
tests involve n = 20, 50, 250, and 500 variables. Problem A is written as follows:

min
x∈R

n
f(x) = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

cos4 xi − 2
n
∏

i=1

cos2 xi
√

n
∑

i=1

ix2
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

subject to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
n
∏

i=1

xi + 0.75 ≤ 0,
n
∑

i=1

xi − 7.5n ≤ 0,

0 ≤ xi ≤ 10, i = 1, 2, . . . , n.

The problem is treated as a black-box, and an upper limit of 100n function evaluations
is imposed. The feasible starting point for all methods is the center of the bound
constrained domain x0 = [5 5 . . . 5]T ∈ Ω. The best known value from [28], for n = 20,
is f(x) = −0.803619. In [28], various genetic algorithms gave good solutions, after
several hundred thousand evaluations. Here, after a maximum of 2000 evaluations,
Psd-Mads achieved f(x) � −0.76.

The second test problem (Problem B) was designed for the MoVars algorithm [12].
It has n = 60 variables and one constraint with two different versions: G ≥ 250, or
G ≥ 500 (see [12] for a more complete description). An infeasible starting point is
provided in [12], but cannot be used in the present work, since constraints are treated
with the extreme barrier approach. The feasible starting points considered here for the
two versions of Problem B have been obtained by minimizing the constraint violation
(max{0, 250 −G})2 or (max{0, 500 −G})2, from the starting point of [12], with the
pMads algorithm. These optimizations required three evaluations for G ≥ 250, with
the resulting feasible point x0 giving f(x0) = 3678.35 and 74 evaluations for G ≥ 500,
and f(x0) = 3014. These evaluations costs are considered in Figure 8. The feasible
starting points, our source code for Problem B, and our best points are available on
the website www.gerad.ca/Charles.Audet (see [5]). Our results for Problem B are not
compared with the MoVars algorithm results because numerical values are not given
in [12]. The best solutions found gave f(x) = 13.565 for G ≥ 250, and f(x) = 245.866
for G ≥ 500.

The various results of this section are measured considering two quantities: z
represents the best value of the objective function of problem P , and bbe represents
the total number of black-box evaluations. One evaluation is counted for the calls to
both the objective f and the constraints of Ω.

The most representative cost of a black-box optimization algorithm is the number
of black-box evaluations. For this reason, no speedup curves are given, and q is kept
constant for each problem (q = 14 for Problem A and q = 6 for Problem B). Still,
the durations of executions are given. The Psd-Mads method was not conceived
in order to reduce the time to obtain a solution. Instead, we seek to obtain better
solutions than a nondecomposing algorithm for problems with a large number of
variables (20 ≤ n ≤ 500).

For all of our tests, the termination criteria is the maximum total number of
black-box evaluations, which is bbeglobalmax = 100n for Problem A and bbeglobalmax = 3000
for Problem B (as in [12]).
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Table 1

Numerical results for problems A and B: zbest, zworst, and zavg give information on the 30 runs
performed for each pMads and Psd-Mads test series, Savg gives a measure of the area below the
curves in Figures 7 and 8, and tavg represents the average wall clock time, in seconds. Best values
appear in bold.

Algo.

pGps

Apps

pMads

Psd-Mads

pGps

Apps

pMads

Psd-Mads

pGps

Apps

pMads

Psd-Mads

Prob. zbest zworst zavg Savg tavg

-0.450 -0.450 -0.450 1,002 7
A -0.519 -0.519 -0.519 782 3

n=20 -0.775 -0.434 -0.592 670 19
-0.761 -0.430 -0.666 595 8
-0.089 -0.089 -0.089 18,336 77

A -0.196 -0.196 -0.196 16,934 137
n=250 -0.449 -0.438 -0.444 9,703 95

-0.698 -0.464 -0.603 8,568 83

764.741 764.741 764.741 2,731,920 11
B 813.216 813.216 813.216 3,868,460 6

G ≥ 32.700 317.167 112.522 1,071,870 14
250 13.565 307.305 70.121 965,553 14

Prob. zbest zworst zavg Savg tavg

-0.277 -0.277 -0.277 3,400 14
A -0.461 -0.461 -0.461 2,355 6

n=50 -0.498 -0.430 -0.457 1,939 33
-0.727 -0.528 -0.663 1,553 29
-0.073 -0.073 -0.073 37,392 179

A -0.129 -0.129 -0.129 35,797 1,300
n=500 -0.447 -0.439 -0.443 19,380 275

-0.688 -0.461 -0.576 17,660 277

869.559 869.559 869.559 3,552,910 11
B 1,097.560 1,097.560 1,097.560 4,519,510 6

G ≥ 417.049 948.768 662.841 2,892,140 14
500 245.866 731.023 463.969 2,603,480 19

The initial (and maximal) mesh size parameter is Δuser
0 = 2 for Problem A. For

Problem B, due to scaling reasons, the value of Δuser
0 differs for each variable and is

set to be 0.2 times the range of the variables (i.e., Δuser
0 = 0.3 for the 15 first variables,

0.35 for the next 30 variables, and 0.44 for the last 15 variables). These values have
been decided empirically to give good results with standard Mads and Apps runs.
The linear nature of the second constraint of Problem A is exploited by Apps. Since
Psd-Mads and pMads involve randomness in the polling directions, 30 runs are made
for each test. The parallel execution of pGps and Apps can affect their determinism;
however, this effect was ignored, and one run was performed for each test.

To measure the quality of the solutions found, the best (zbest), worst (zworst), and
average (zavg) values of the objective function value z at the 100nth evaluation are
reported. Another measure is Savg, representing the area between a curve z versus
bbe and the line z = −0.8 for Problem A (no run gave z < −0.8), and z = 0 for
Problem B. Wall clock time expressed in seconds are reported in the column tavg.
Best runs are obtained with small values for all of these quantities.

Psd-Mads was tested on Problem A with n = 20 and 50 by varying bbemax, the
maximum number of black-box evaluations for each regular subproblem, and ns, the
number of variables in each subproblem. The number of processes has been set to
q = 14 in order to fully exploit 12 processors. Good results were obtained by setting
bbemax = 10 and having the regular slaves working on small dimensional subspaces
ns = 2. These values are kept for n > 50. For Problem B, bbemax is kept to 10. The
best results have been obtained by distributing the 60 variables amongst 3 regular
slaves with q = 6 and ns = 20.

Table 1 and Figures 7 and 8 summarize the numerical results. For all instances
of Problem A, Apps outperforms pGps, but neither does as well as Psd-Mads.
In the three larger instances of Problem A, the worst f value produced by Psd-

Mads is always better than all of the other methods’f values. For Problem B, pGps

outperforms Apps, and better results are obtained with pMads and Psd-Mads,
with a small advantage to Psd-Mads. In all of the curves in Figures 7 and 8, one can
notice that pMads is always the fastest to descend, but Psd-Mads overtakes it and
produces better solutions. Finally, we remark that Apps terminates in the least wall
clock time on smaller problems, albeit with a less optimal function value. However,
for problems with 250 and 500 variables, the wall clock time grows significantly worse.
This is in accordance with the remark in [25] stating that Apps targets problems with
less than 100 variables.
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Fig. 7. Problem A: graphs of the objective function value versus the number of evaluations for
all test results. Psd-Mads and pMads plots correspond to average values of the 30 runs performed
for each test.
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We conclude this section with some advice for readers interested in testing Psd-

Mads. First, we think that the Psd-Mads decomposition is beneficial for problems
with more than 20 variables. For these problems, at least 3 processors are necessary.
Furthermore, since the master and cache server processes are not demanding in terms
of Cpu, 5 processes can be executed on the 3 processors, whose work will be mainly
devoted to two regular slaves and the pollster. Two regular slaves is the minimum
number to benefit from the decomposition. So, even if only a few processors are
available, it is still worthwhile to try this method. Finally, if the user has no particular
strategy to choose the subsets of variables in each subproblem, we recommend to
equally distribute the variables to the regular slaves. If the user knows that some of the
variables are more likely to produce descent than others, then some subproblems can
be devoted to these variables, while single-poll Mads can be used on the subproblems
of less important variables.

6. Discussion and possible extensions. This paper introduced Psd-Mads,
a new Psd technique with less restrictive conditions than usual Psd methods on
the functions to be optimized and on the sets of variables in the subproblems. It is
shown that the algorithm, from any starting point, produces a subsequence of iterates
converging to a solution satisfying local optimality conditions (global convergence to
local solutions), based on Clarke calculus and on the Mads convergence analysis. A
practical implementation is described, with a small number of parameters (bbemax and
ns), and very encouraging results have been obtained on a difficult problem from the
literature, with up to 500 variables.

We presented a first basic implementation of Psd-Mads with a very simple and
generic strategy to choose the sets of variables. An obvious extension is a better
strategy to decide on the sets of variables in the subproblems. Of course, it is not
clear how to do this, in general, or we would have done it here. However, for some
applications, the user may have special knowledge that would help in this task. For
example, the user might put similarly scaled variables in the same subproblem.

It would also be interesting to incorporate the Pvd idea of the “forget-me-not”
terms and allow some basic changes in the subproblems for fixed variables. A third
possibility would be to perform some additional search steps in the slave subspaces.
Another possible extension would be to reintroduce the synchronization step of the
original block-Jacobi method but without the parallel barrier. This “recomposition”
step could be performed in parallel by one of the regular slaves, from a pool of suc-
cessful points, in order to create a problem similar to the one in [19]. Finally, the
constraints of Ω could be treated with the progressive barrier [9], instead of the ex-
treme barrier approach. This would allow for infeasible iterates, including the starting
point.

Acknowledgments. We would like to thank anonymous referees for their con-
structive remarks and comments.
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Abstract. We show that the optimal complexity of Nesterov’s smooth first-order optimization
algorithm is preserved when the gradient is computed only up to a small, uniformly bounded error. In
applications of this method to semidefinite programs, this means in some instances computing only a
few leading eigenvalues of the current iterate instead of a full matrix exponential, which significantly
reduces the method’s computational cost. This also allows sparse problems to be solved efficiently
using sparse maximum eigenvalue packages.
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1. Introduction. In [13] it was shown that smooth convex minimization prob-
lems of the form:

minimize f(x)
subject to x ∈ Q,

where f is a convex function with Lipschitz continuous gradient and Q is a suffi-
ciently simple compact convex set, could be solved with a complexity of O(1/

√
ε),

where ε is the precision target. Furthermore, it can be shown that this complexity
bound is optimal for that class of problems (see [14] for a discussion). More recently,
[15] showed that this method could be combined with a smoothing argument to pro-
duce an O(1/ε) complexity bound for nonsmooth problems where the objective has
a saddle-function format. In particular, this meant that a broad class of semidefinite
optimization problems could be solved with significantly lower memory requirements
than interior point methods and a better complexity bound than classic first-order
methods (bundle, subgradient, etc.).

Here, we show that substituting an approximate gradient, which may allow sig-
nificant computation and storage savings, does not affect the optimal complexity of
the algorithm in [13]. It is somewhat intuitive that an algorithm which exhibits good
numerical performance in practice should be robust to at least some numerical error
in the objective function and gradient computations since all implementations are
necessarily computing these quantities up to some multiple of machine precision. Our
objective here is to make that robustness explicit in order to design optimal schemes
using only approximate gradient information.

For nonsmooth problems, when the objective function f(x) can be expressed
as a saddle function on a compact set, the method in [15] starts by computing a
smooth (i.e., with Lipschitz continuous gradient), uniform ε-approximation of the
objective function f(x); it then uses the smooth minimization algorithm in [13] to solve
the approximate problem. When this smoothing technique is applied to semidefinite
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optimization, computing exact gradients requires forming a matrix exponential, which
is often the dominant numerical step in the algorithm.

Although there are many different methods for computing this matrix exponential
(see [11] for a survey), their complexity is comparable to that of a full eigenvalue de-
composition of the matrix. In problem instances where only a few leading eigenvalues
suffice to approximate this exponential, the per iteration complexity of the algorithm
described here becomes comparable to that of classical first-order methods such as the
bundle method (see [6]) or subgradient methods (see [19], for example), which have a
global complexity bound of O(1/ε2) (see [14]), while keeping the optimal complexity
of O(1/ε) of the algorithm in [15].

We apply this result to a maximum eigenvalue minimization problem (or semidef-
inite program with constant trace). We first recall the complexity bound derived in
[16] based on a smoothing argument, using exact gradients. We produce a rough
theoretical estimate of the number of eigenvalues required for convergence when ap-
proximate gradients are used. We then derive an explicit condition on the quality of
the gradient approximation to guarantee convergence and compute a bound on the
number of iterations. We show both on randomly generated problem instances and
on problems generated from biological data sets that actual computational savings
vary significantly with problem structure but can be substantial in some cases.

The paper is organized as follows. In the next section, we prove convergence of
the algorithm in [13] when only an approximate gradient is used. In section 3 we
describe how these results can be applied to semidefinite optimization. Finally, in
the last section we test their performance on semidefinite relaxation and maximum
eigenvalue minimization problems.

2. Smooth optimization with approximate gradient. Following the results
and notations in [15, section 3], we study the problem:

minimize f(x)
subject to x ∈ Q,

(2.1)

where Q ⊂ Rn is a compact convex set and f is a convex function with Lipschitz
continuous gradient, such that

‖∇f(x) −∇f(y)‖∗ ≤ L‖x− y‖, x, y ∈ Q,

for some L > 0, which also means

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
1
2
L‖y − x‖2, x, y ∈ Q.(2.2)

The key difference here is that the oracle information we obtain for ∇f is noisy.
Note that the function values are not required to compute iterates in the algorithm
described here, so even if our knowledge of function values f(x) is noisy, we will
always use exact values in the proofs that follow. At each iteration, we obtain ∇̃f(x)
satisfying

∣

∣

〈

∇̃f(x) −∇f(x), y − z
〉∣

∣ ≤ δ x, y, z ∈ Q,(2.3)

for some precision level δ > 0. Throughout the paper, we assume that Q is simple
enough so that this condition can be checked efficiently. As in [13], we also assume
that certain projection operators on Q can be computed efficiently, and we refer the
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reader to the end of this section for more details. Here, d(x) is a prox-function for
the set Q, i.e., continuous and strongly convex on Q with parameter σ (see [14] or [7]
for a discussion of regularization techniques using strongly convex functions). We let
x0 be the center of Q for the prox-function d(x) so that

x0 � argminx∈Q d(x),

assuming without loss of generality that d(x0) = 0, we then have

d(x) ≥ 1
2
σ‖x− x0‖2.(2.4)

We denote by T̃Q(x) a solution to the following subproblem:

T̃Q(x) � argminy∈Q

{

〈

∇̃f(x), y − x
〉

+
1
2
L‖y − x‖2

}

.(2.5)

We let y0 = T̃Q(x0), where x0 is defined above. We recursively define three sequences
of points: the current iterate {xk}, the corresponding yk = T̃Q(xk), together with

zk � argminx∈Q

{

L

σ
d(x) +

k
∑

i=0

αi
[

f(xi) +
〈

∇̃f(xi), x− xi
〉]

}

,(2.6)

and a step size sequence {αk} ≥ 0 with α0 ∈ (0, 1] so that

xk+1 = τkzk + (1 − τk)yk,
yk+1 = T̃Q(xk+1),

(2.7)

where τk = αk+1/Ak+1 with Ak =
∑k

i=0 αi. We implicitly assume here that the
two subproblems defining yk and zk can be solved very efficiently (in the examples
that follow, they amount to Euclidean projections). We will show recursively that
for a good choice of step sequence αk, the iterates xk and yk satisfy the following
relationship (denoted by Rk):

Akf(yk) ≤ ψk +Akg(k, δ) (Rk),

where g(k, δ) measures the accumulated gradient approximation error and will be
bounded in Lemma 2.1, and

ψk � min
x∈Q

{

L

σ
d(x) +

k
∑

i=0

αi
[

f(xi) +
〈

∇̃f(xi), x− xi
〉]

}

.

First, using d(x) ≥ 1
2σ‖x− x0‖2, then inequality (2.2) and condition (2.3), we have

ψ0 = min
x∈Q

{

L

σ
d(x) + α0

[

f(x0) +
〈

∇̃f(x0), x− x0
〉]

}

≥ α0f(y0) − α0δ,

which is R0. We can then bound the approximation error in the following result.
Lemma 2.1. Let αk be a step sequence satisfying:

0 < α0 ≤ 1 and α2
k ≤ Ak, k ≥ 0;(2.8)
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suppose that (Rk) holds with xk+1 and yk+1 are defined as in (2.7), and then (Rk+1)
holds with

g(k + 1, δ) = (1 − τk)g(k, δ) + τk3δ,

where τk ∈ [0, 1] and g(0, δ) = α0δ.
Proof. Let us assume that (Rk) holds. Because d(x) is strongly convex with

parameter σ, the function

L

σ
d(x) +

k
∑

i=0

αi
[

f(xi) +
〈

∇̃f(xi), x− xi
〉]

is strongly convex with parameter L. Using this property and the definition of zk, we
obtain

ψk+1 = min
x∈Q

{

L

σ
d(x) +

k+1
∑

i=0

αi
[

f(xi) +
〈

∇̃f(xi), x− xi
〉]

}

≥ min
x∈Q

{

ψk +
1
2
L‖x− zk‖2 + αk+1

[

f(xk+1) +
〈

∇̃f(xk+1), x− xk+1
〉]

}

.

Now, using (Rk) and then the convexity of f(x), we get

ψk +Akg(k, δ) + αk+1
[

f(xk+1) +
〈

∇̃f(xk+1), x− xk+1
〉]

≥ Akf(yk) + αk+1
[

f(xk+1) +
〈

∇̃f(xk+1), x− xk+1
〉]

≥ Ak[f(xk) + 〈∇f(xk+1), yk − xk+1〉] + αk+1
[

f(xk+1) +
〈

∇̃f(xk+1), x− xk+1
〉]

,

and condition (2.3), together with (2.7), implies that:

Ak[f(xk) + 〈∇f(xk+1), yk − xk+1〉] + αk+1
[

f(xk+1) +
〈

∇̃f(xk+1), x− xk+1
〉]

≥ Ak+1f(xk+1) + 〈∇f(xk+1), Akyk −Akxk+1 + αk+1(x− xk+1)〉 − αk+1δ

= Ak+1f(xk+1) + αk+1〈∇f(xk+1), x− zk〉 − αk+1δ.

Because αk satisfies (2.8), we have τ2
k ≤ A−1

k+1 and can combine the last three inequal-
ities to get

ψk+1 ≥ Ak+1f(xk+1) −Akg(k, δ) − αk+1δ

+ min
x∈Q

{

1
2
L‖x− zk‖2 + αk+1〈∇f(xk+1), x− zk〉

}

≥ Ak+1

[

f(xk+1) − (1 − τk)g(k, δ) − τkδ

+ min
x∈Q

{

1
2
Lτ2

k‖x− zk‖2 + τk〈∇f(xk+1), x− zk〉
}]

.

(2.9)

Let us define y � τkx+ (1 − τk)yk so that y − xk+1 = τk(x− zk), with

min
x∈Q

{

1
2
Lτ2

k‖x− zk‖2 + τk〈∇f(xk+1), x− zk〉
}

= min
{y∈τkQ+(1−τk)yk}

{

1
2
L‖y − xk+1‖2 + 〈∇f(xk+1), y − xk+1〉

}

.
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Combining condition (2.3) with the fact that y−xk+1 = τk(x−zk) for some x, zk ∈ Q,
we get

min
{y∈τkQ+(1−τk)yk}

{

1
2
L‖y − xk+1‖2 + 〈∇f(xk+1), y − xk+1〉

}

≥ min
{y∈τkQ+(1−τk)yk}

{

1
2
L‖y − xk+1‖2 +

〈

∇̃f(xk+1), y − xk+1
〉

}

− τkδ.

Now, because Q is convex, we must have τkQ+ (1 − τk)yk ⊂ Q and

min
{y∈τkQ+(1−τk)yk}

{

1
2
L‖y − xk+1‖2 +

〈

∇̃f(xk+1), y − xk+1
〉

}

− τkδ

≥ min
y∈Q

{

1
2
L‖y − xk+1‖2 +

〈

∇̃f(xk+1), y − xk+1
〉

}

− τkδ.

By the definition of yk+1 = T̃Q(xk+1) and using condition (2.3), we get

min
y∈Q

{

1
2
L‖y − xk+1‖2 +

〈

∇̃f(xk+1), y − xk+1
〉

}

− τkδ

=
1
2
L‖T̃Q(xk+1) − xk+1‖2 +

〈

∇̃f(xk+1), T̃Q(xk+1) − xk+1
〉

− τkδ

≥ 1
2
L‖yk+1 − xk+1‖2 +

〈

∇f(xk+1), yk+1 − xk+1
〉

− 2τkδ,

and inequality (2.2) gives

1
2
L‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉 − 2τkδ

≥ f(yk+1) − f(xk+1) − 2τkδ.

Combining these inequalities with the inequality on ψk+1 in (2.9), we finally get

ψk+1 ≥ Ak+1 [f(yk+1) − (1 − τk)g(k, δ) − 3τkδ] ,

which is the desired result.
We can use this result to study the convergence of the following algorithm given

only approximate gradient information.

Smooth minimization with approximate gradient.

Starting from x0, the prox center of the set Q, we iterate:
1. compute ∇̃f(xk),
2. compute yk = T̃Q(xk),
3. compute zk = argminx∈Q{Lσ d(x) +

∑k
i=0 αi[f(xi) + 〈∇̃f(xi), x− xi〉]},

4. update x using xk+1 = τkzk + (1 − τk)yk.

Again, because solving for yk and zk can often be done very efficiently, the dom-
inant numerical step in this algorithm is the evaluation of ∇̃f(xk). If the step size
sequence αk satisfies the conditions of Lemma 2.1, we can show the following conver-
gence result.
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Theorem 2.2. Suppose αk satisfies (2.8), with the iterates xk and yk defined in
(2.6) and (2.7), and then for any k ≥ 0 we have:

f(yk) − f(x�) ≤ Ld(x�)
Akσ

+ 3δ,

where x� is an optimal solution to problem (2.1).
Proof. If αk satisfies the hypotheses of Lemma 2.1, we have

Akf(yk) ≤ ψk +Akg(k, δ),

where Ak =
∑k

i=0 αi and g(k, δ) ≤ 3δ. Now, because f(x) is convex, we also have

ψk ≤ L

σ
d(x�) +Akf(x�) +Ak3δ,

which yields the desired result.
When d(x�) < +∞ (e.g., if Q is bounded), if we set the step sequence as αk =

(k + 1)/2 and δ to some fraction of the target precision ε (here ε/6), Ak grows as
O(k2), and Theorem 2.2 ensures that the algorithm will converge to an ε solution in
less than

√

8Ld(x�)
σε

(2.10)

iterations. In practice, of course, d(x�) needs to be bounded a priori, and L is often
hard to evaluate. A notable exception is when f(x) is a smooth approximation (as
in [15, 16], for example), in which case L is known explicitly as a function of the
precision. We have implicitly assumed, as in [13], that the set Q is simple enough
so that the complexity of solving the two minimization subproblems in steps 2 and
3 of the algorithm is low relative to that of approximating the gradient. We also
implicitly assumed that the set Q is simple enough so that condition (2.3) can be
checked efficiently. In the numerical experiments of section 4, for example, steps
2 and 3 are Euclidean projections on the unit box, and condition (2.3) is a simple
inequality on the leading eigenvalues of the current iterate.

3. Semidefinite optimization. Here, we describe in detail how the results of
the previous section can be applied to semidefinite optimization. We consider the
following maximum eigenvalue problem:

minimize λmax
(

AT y + c
)

− bTy
subject to y ∈ Q,

(3.1)

in the variable y ∈ Rm, with parameters A ∈ Rm×n2
, b ∈ Rm, and c ∈ Rn2

. Let
us remark that when Q is equal to Rm, the dual of this program is a semidefinite
program with constant trace written:

maximize cTx
subject to Ax = b,

Tr(x) = 1,
x � 0,

(3.2)

in the variable x ∈ Rn2
, where Tr(x) = 1 means that the matrix obtained by reshap-

ing the vector x has trace equal to one and x � 0 means that this same matrix is
symmetric, positive semidefinite.
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3.1. Smoothing technique. As in [12], [16], [3], or [2], we can find a uniform
ε-approximation to λmax(X) with Lipschitz continuous gradient. Let μ > 0 and
X ∈ Sn, and we define

fμ(X) = μ log

(

n
∑

i=1

eλi(X)/μ

)

= μ log

(

e
λmax(X)

μ

(

1 +
n
∑

i=2

e
λi(X)−λmax(X)

μ

))

,

where λi(X) is the ith eigenvalue of X . This is also:

fμ(X) = λmax(X) + μ log Tr
(

exp
(

X − λmax(X)I
μ

))

,(3.3)

which requires computing a matrix exponential at a numerical cost of O(n3). We then
have

λmax(X) ≤ fμ(X) ≤ λmax(X) + μ logn,

so if we set μ = ε/ logn, fμ(X) becomes a uniform ε-approximation of λmax(X). In
[16] it was shown that fμ(X) has a Lipschitz continuous gradient with constant

L =
1
μ

=
log n
ε

.

The gradient ∇fμ(X) can also be computed explicitly as

exp
(

X−λmax(X)I
μ

)

Tr
(

exp
(

X−λmax(X)I
μ

)) ,(3.4)

using the same matrix exponential as in (3.3). Let ‖y‖ be some norm on Rm and
d(x) a strongly convex prox-function with parameter σ > 0. As in [16], we define

‖A‖ = max
‖h‖=1

‖ATh‖2,

where ‖ATh‖2 = maxi |λi(ATh)|. The algorithm detailed in [15], where exact function
values and gradients are computed, will find an ε solution to (3.1) after at most

2‖A‖
ε

√

logn
σ

d(y�)(3.5)

iterations, each iteration requiring a matrix exponential computation.

3.2. Spectrum and expected performance gains. The complexity estimate
above is valid when the matrix exponential in (3.3) is computed exactly, at a cost of
O(n3). As we will see below, only a few leading eigenvalues are sometimes required
to satisfy conditions (2.3) and obtain a comparable complexity estimate at a much
lower numerical cost. To illustrate the potential complexity gains, let us pick a matrix
X ∈ Sn whose coefficients are centered independent normal variables with the second
moment given by σ2/n. From Wigner’s semicircle law, λmax(X) ∼ 2σ as n goes
to infinity, and the eigenvalues of X are asymptotically distributed according to the
density

p(x) =
1

2πσ2

√

4σ2 − x2,
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which means that, in the limit, the proportion of eigenvalues required to reach a
precision of γ in the exponential is given by

Pλ � P

(

e
λi(X)−λmax(X)

μ ≤ γ

)

=
∫ 2σ+ε log γ

log n

−2σ

1
2πσ2

√

4σ2 − x2dx.

Since the problems under consideration are relaxations of sparse principal component
analysis (PCA), we can also consider the case where X ∈ Sn is sampled from the
Wishart distribution. In that case, the eigenvalues are distributed according to the
Marc̆enko–Pastur distribution (see [10]), and the above proportion becomes

Pλ = P

(

e
λi(X)−λmax(X)

μ ≤ γ

)

=
∫ 2σ+ε log γ

log n

−2σ

√

x(4σ − x)
2πx

dx.

With n = 5000, γ = 10−6, and ε = 10−2, we get nPλ = 2.3, so the approxima-
tions above would suggest that, in theory, it is only necessary to compute about
three eigenvalues per iteration to get an approximation with precision γ = 10−6. In
practice, however, the results of section 4 show that these rough estimates should be
significantly tempered.

3.3. Global complexity bound. Let us now focus on the following program:

minimize λmax
(

AT y + c
)

subject to ‖y‖ ≤ β,
(3.6)

where the set Q is here explicitly given by

Q = {y ∈ Rp : ‖y‖ ≤ β}

for some β > 0 with ‖.‖ the Euclidean norm here. We can pick ‖x‖2/2 as a prox-
function for Q, which is strongly convex with convexity parameter 1. Let λ(X) ∈ Rn

be the eigenvalues of the matrix X = AT y + c, in decreasing order, with ui(X) ∈ Rn

an orthonormal set of eigenvectors. The gradient matrix of exp(X/μ) is written:

∇fμ(X) =

(

n
∑

i=1

e
λi(X)

μ

)−1 n
∑

i=1

e
λi(X)

μ ui(X)ui(X)T .

Suppose we compute only the first m eigenvalues and use them to approximate this
gradient by

∇̃fμ(X) =

(

m
∑

i=1

e
λi(X)

μ

)−1 m
∑

i=1

e
λi(X)

μ ui(X)ui(X)T ,

and we get the following bound on the error:

‖∇fμ(X) − ∇̃fμ(X)‖ ≤
√

2(n−m)e
λm(X)−λ1(X)

μ

(

∑m
i=1 e

λi(X)−λ1(X)
μ

) .

In this case, with X = AT y − c here, condition (2.3) means that we only need to
compute m eigenvalues with m such that

√
2(n−m)e

λm(X)−λ1(X)
μ

(

∑m
i=1 e

λi(X)−λ1(X)
μ

) ≤ δ

σmax(A)
,(3.7)
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where σmax(A) is the largest singular value of the matrix A. Using the result in [16],
if we define ‖A‖ = max‖h‖=1 ‖Ah‖2 and set δ = ε/6, the algorithm in section 2 will
then converge to an ε solution of problem (3.6) in at most

4‖A‖β
ε

√

logn(3.8)

iterations. This bound on the number of iterations is independent of m in condition
(3.7), i.e., the number of eigenvalues required at each iteration. The cost per itera-
tion, however, varies with problem structure as each iteration requires computing m
leading eigenvalues, which can be performed in O(mn2) operations. Note that partial
eigenvalue decompositions only access the matrix through matrix-vector products (see
[8]); hence, they can handle sparse problems very efficiently. The threshold δ can be
adjusted empirically to trade off between the number of iterations and the numerical
cost of each iteration. Unfortunately, we can’t directly infer a bound on m from the
structure of A, so in the next section we study the link between m and the matrix
spectrum in numerical examples.

4. Examples and numerical performance. In this section, we illustrate the
behavior of the approximate gradient algorithm on various semidefinite optimiza-
tion problems. Overall, while there appears to be a direct link between problem
structure and complexity (i.e., the number of eigenvalues required in the gradient
approximation) in the first sparse PCA example discussed below, we will observe
on random maximum eigenvalue minimization problems that predicting complexity
based on overall problem structure remains an open numerical question in general.

4.1. Sparse principal component analysis. Based on the results in [3], the
problem of finding a sparse leading eigenvector of a matrix C ∈ Sn can be written

maximize xTCx
subject to ‖x‖2 = 1,

Card(x) ≤ k,
(4.1)

where Card(x) is the number of nonzero coefficients in x, and admits the following
semidefinite relaxation:

maximize Tr(CX) − ρ1T |X |1
subject to Tr(X) = 1,

X � 0,
(4.2)

which is a semidefinite program in the variable X ∈ Sn, where ρ > 0 is the penalty
controlling the sparsity of the solution. Its dual is given by

minimize λmax(C + U)
subject to |Uij | ≤ ρ, i, j = 1, . . . , n,(4.3)

which is of the form (3.1) with

Q = {U ∈ Sn : |Uij | ≤ ρ, i, j = 1, . . . , n} .
The smooth algorithm detailed in section 2 is explicitly described for this problem
in [3] and implemented in a numerical package called DSPCA which we have used in
the examples here. To test its performance, we generate a matrix M with uniformly
distributed coefficients in [0, 1]. We let e ∈ R250 be a sparse vector with

e = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, . . .).

We then form a test matrix C = MTM + veeT , where v is a signal-to-noise ratio.
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Fig. 4.1. Left: Duality gap versus CPU time for various values of the signal-to-noise ratio v.
Right: Percentage of eigenvalues required versus CPU time, for various values of the penalty pa-
rameter ρ controlling sparsity.
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Fig. 4.2. Left: CPU time (in seconds) versus target precision in loglog scale. Right: Average
percentage of eigenvalues required at each iteration versus target precision, in semilog scale.

In Figure 4.1 on the left, we plot duality gap versus CPU time used for values of
the signal-to-noise ratio v ranging from 10 to 100. In Figure 4.1 on the right, we plot
the number of eigenvalues required against computing time using a covariance matrix
of dimension n = 500 sampled from the colon cancer data set in [1] and a noisy rank
one matrix. Finally, we measure total computing time versus problem dimension n on
this same data set, by solving problem (4.2) for increasingly large submatrices of the
original covariance matrix. In each of these examples, we stop after the duality gap has
been reduced by 10−2, which is enough here to identify sparse principal components.
In Figure 4.2 on the left, we plot computing time versus target precision in loglog
scale, on a sparse PCA problem of size 200 extracted from the colon cancer data set.
In the previous section, we have seen that precision impacts computing time both
through the total number of iterations in (3.5) and through condition (3.7) on the
number of eigenvalues required in the gradient approximation. In this example, we
observe that CPU time increases a little bit slower than the upper bound of O(1/ε)
given in (4.2). In Figure 4.2 on the right, we plot the average percentage of eigenvalues
required at each iteration versus target precision, in semilog scale. We observe, on
this example of dimension 200, that for low target precisions one eigenvalue is often
enough to approximate the gradient but that this number quickly increases for higher
precision targets. Note that in all cases, the precision targets are significantly lower
than those achieved by interior point methods (usually at least 10−8), but the cost
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Table 4.1

CPU time (in seconds) versus problem dimension n for full and partial eigenvalue matrix
exponential computations.

n = 100 n = 200 n = 500
Rank one, full 3.2 8.0 14.7

Rank one, partial 0.4 0.75 1.6
Colon, full 2.6 18.1 274.3

Colon, partial 0.3 1.3 17.7

per iteration and storage requirements of the first-order algorithms detailed here are
also significantly lower.

In Table 4.1, we then compare total CPU time using a full precision matrix
exponential against CPU time using only a partial eigenvalue decomposition to ap-
proximate this exponential. Note that other classic methods for computing the matrix
exponential, such as Padé approximations (see [11]), did not provide a significant per-
formance benefit and are not included here. Both exact and approximate gradient
codes are fully written in C, with partial eigenvalue decompositions computed using
the FORTRAN package ARPACK (see [8]) with calls to vendor-optimized BLAS and
LAPACK for matrix operations. To improve stability, the size of the Lanczos basis
in ARPACK was set at four times the number of eigenvectors required. We observe
that, on these problems, the partial eigenvalue decomposition method is about ten
times faster.

4.2. Matrix structure and complexity: Open numerical issues. The pre-
vious section showed how the spectrum of the current iterate impacts the complexity
of the algorithm detailed in this paper: a steeply decreasing spectrum allows fewer
eigenvalues to be computed in the matrix exponential approximation, and a wider
gap between eigenvalues improves the convergence rate of these eigenvalue compu-
tations. In this section, we study the number of eigenvalues required in randomly
generated maximum eigenvalue minimization problems. Because of the measure con-
centration phenomenon, there is nothing really random about the spectrum of large-
scale, naively generated semidefinite optimization problems, so we begin by detailing
a simple method for generating random matrices with a given spectrum.

Generating random matrices with a given spectrum. Suppose X ∈ Sn is a matrix
with normally distributed coefficients, Xij ∼ N (0, 1), i, j = 1, . . . , n. If we write its
QR decomposition, X = QR with Q, R ∈ Rn×n, then the orthogonal matrix Q is
Haar distributed on the orthogonal group On (see [4], for example). This means that
to generate a random matrix with given spectrum λ ∈ Rn, we generate a normally
distributed matrix X , compute its QR decomposition, and the matrix Q diag(λ)QT

will be uniformly distributed on the set of symmetric matrices with spectrum λ.
Maximum eigenvalue minimization. We now form random maximum eigenvalue

minimization problems and then study how the number of required eigenvalues in
the gradient computation evolves as the solution approaches optimality. We solve the
following problem:

minimize λmax
(

AT y + c
)

subject to ‖y‖ ≤ β,

in the variable y ∈ Rm, where c ∈ Rn2
, A ∈ Rm×n2

, and β > 0 is an upper
bound on the norm of the solution. In Figure 4.3 we plot percentage of eigenval-
ues required in the gradient computation versus duality gap for randomly generated
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Fig. 4.3. Average percentage of eigenvalues required (solid line) versus duality gap on randomly
generated maximum eigenvalue minimization problems, for various problem matrix distributions.
Dashed lines are at plus and minus one standard deviation.

problem instances where n = 50 and m = 25. The first two plots use data matrices
with Gaussian and Wishart distributions, whose spectrum are distributed according
to Wigner’s semicircle law and the Marc̆enko–Pastur distribution, respectively. The
last two plots use the procedure described above to generate matrices with uniform
spectrum on [0, 1] and uniform spectrum on [0, 1] with one eigenvalue set to 5. We
observe that the number of eigenvalues required in the algorithm varies significantly
with matrix spectrum.

Problem structure and effective complexity. The results on sparse PCA in sec-
tion 4.1 and on the random problems of this section show that problem structure has
a significant impact on performance. Predicting how many eigenvalues will be re-
quired at each iteration based on structural properties of the problem is an important
but difficult question. In particular, the number of eigenvalues required in the Gaus-
sian case is much higher than what the asymptotic analysis in section 3.2 predicted.
Furthermore, in the sparse PCA example, complexity seems to vary with problem
structure somewhat intuitively: a higher signal-to-noise ratio means lower complex-
ity, and a higher sparsity target means higher complexity. However, this is not the
case in the random problems studied here; two unstructured problems (uniform and
Wishart) have low complexity, while one requires computing many more eigenvalues
per iteration (Gaussian), and a more structured example (uniform plus rank one)
also requires many eigenvalues. Overall then, predicting effective complexity (i.e., the
number of eigenvalues required at each iteration) based on problem structure remains
a difficult open question at this point.

Also, it is well known empirically (see [17], [9], and [18], among others) that
the largest eigenvalues of AT y − c in (3.1) tend to coalesce near the optimum, thus
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potentially increasing the number of eigenvalues required when computing ∇̃f(x)
and the number of iterations required for computing leading eigenvalues (see [5],
for example), but in these references, too, no a priori link between coalescence and
problem structure is established. This coalescence phenomenon is never apparent in
the numerical examples studied here, perhaps because it appears only at the much
higher precision targets reached by interior point methods.
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A NEW UNBLOCKING TECHNIQUE TO WARMSTART INTERIOR
POINT METHODS BASED ON SENSITIVITY ANALYSIS∗
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Abstract. One of the main drawbacks associated with Interior Point Methods (IPMs) is the
perceived lack of an efficient warmstarting scheme which would enable the use of information from
a previous solution of a similar problem. Recently there has been renewed interest in the subject.
A common problem with warmstarting for IPM is that an advanced starting point which is close
to the boundary of the feasible region, as is typical, might lead to blocking of the search direction.
Several techniques have been proposed to address this issue. Most of these aim to lead the iterate
back into the interior of the feasible region—we classify them as either “modification steps” or “un-
blocking steps” depending on whether the modification is taking place before solving the modified
problem to prevent future problems, or during the solution if and when problems become apparent.
A new “unblocking” strategy is suggested which attempts to directly address the issue of blocking
by performing sensitivity analysis on the Newton step with the aim of increasing the size of the step
that can be taken. This analysis is used in a new technique to warmstart interior point methods:
we identify components of the starting point that are responsible for blocking and aim to improve
these by using our sensitivity analysis. The relative performance of a selection of different warmstart-
ing techniques suggested in the literature and the new proposed unblocking by sensitivity analysis
is evaluated on the warmstarting test set based on a selection of NETLIB problems proposed by
[Benson and Shanno, Comput. Optim. Appl., 38 (2007), pp. 371–399]. Warmstarting techniques are
also applied in the context of solving nonlinear programming problems as a sequence of quadra-
tic programs solved by interior point methods. We also apply the warmstarting technique to the
problem of finding the complete efficient frontier in portfolio management problems (a problem with
192 million variables—to our knowledge the largest problem to date solved by a warmstarted IPM).
We find that the resulting best combined warmstarting strategy manages to save between 50 and
60% of interior point iterations, consistently outperforming similar approaches reported in current
optimization literature.
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1. Introduction. Since their introduction, Interior Point Methods (IPMs) have
been recognized as an invaluable tool to solve linear, quadratic, and nonlinear pro-
gramming problems, in many cases outperforming traditional simplex and active set-
based approaches. This is especially the case for large scale problems. One of the
weaknesses of IPMs is, however, that unlike their active set-based competitors, they
cannot easily exploit an advanced starting point obtained from the preceding solution
process of a similar problem. Many optimization problems require the solution of a
sequence of closely related problems, either as part of an algorithm (e.g., SQP, Branch
& Bound) or as a direct application to a problem (e.g., finding the efficient frontier in
portfolio optimization). Because of their weakness in warmstarting, IPMs have not
made as big an impact in these areas.

Over the years there have been several attempts to improve the warmstarting
capabilities of IPMs [5, 8, 15, 6, 1, 2, 10]. All of these, apart from [1, 2], involve
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remembering a primal/dual iterate encountered during the solution of the original
problem and using this (or some modification of it) as a starting point for the modified
problem. All of these papers (apart from [2]) deal with the linear programming (LP)
case, whereas we are equally interested in the quadratic programming (QP) case.

A typical way in which a ‘bad’ starting point manifests itself is blocking: The
Newton direction from this point leads far outside the positive orthant, resulting in
only a very small fraction of it to be taken. Consequently, the next iterate will be
close to the previous one, and the search direction will likely block again. In our
observation this blocking is usually due only to a small number of components of
the Newton direction. We therefore suggest an unblocking strategy which attempts
to modify these blocking components without disturbing the primal-dual direction
too much. The unblocking strategy is based on performing sensitivity analysis of
the primal-dual direction with respect to the components of the current primal/dual
iterate.

As a separate thread to the paper, it is our feeling that a wealth of warmstarting
heuristics have been proposed by various authors, each demonstrating improvements
over a coldstarted IPM. However, there has been no attempt at comparing these in
a unified environment, or indeed investigating how these might be combined. This
paper will give an overview of some of the warmstarting techniques that have been
suggested and explore what benefit can be obtained from combining them.

This will also set the scene for evaluating the new unblocking strategy derived in
this paper, within a variety of different warmstarting settings.

We continue by stating the notation used in this paper. In section 3, we review
traditionally used warmstart strategies. In section 4 we present the new unblocking
techniques based on sensitivity analysis. Numerical comparisons as to the efficiency
of the suggested techniques are reported in section 5. In section 6, we draw our
conclusions.

2. Notation and background. The infeasible primal dual interior point meth-
ods applied to solve the quadratic programming problem

(1)
min cTx+

1
2
xTQx

s.t. Ax = b
x ≥ 0

can be motivated from the KKT conditions for (1)

c+Qx−AT y − z = 0(2a)
Ax = b(2b)

XZe = μe(2c)
x, z ≥ 0,(2d)

where the zero right-hand side of the complementary products has been replaced
by the centrality parameter μ > 0. The set of solutions to (2) for different values
of μ is known as the central path. It is beneficial in this context to consider two
neighborhoods of the central path, the N2 neighborhood

N2(θ) :=
{

(x, y, z) : Ax = b, AT y −Qx+ z = c, ‖XZe− μe‖2 ≤ θ
}

and the wider N−∞ neighborhood

N−∞(γ) :=
{

(x, y, z) : Ax = b, AT y −Qx+ z = c, xizi ≥ γμ
}

.
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Assume that at some stage during the algorithm the current iterate is (x, y, z).
Our variant of the predictor-corrector algorithm [4, 7] will calculate a predictor di-
rection (Δxp,Δyp,Δzp) as the Newton direction for system (2) and a small μ-target
(μ0 ≈ 0.001x

Tz
n ):

(3)
−QΔxp +ATΔyp + Δzp = c+Qx−AT y − z = ξc
AΔxp = b−Ax = ξb
XΔzp + ZΔxp = μ0e−XZe = rxz,

which can be further condensed by using the third equation to eliminate Δzp

[

−Q−X−1Z AT

A 0

] [

Δxp
Δyp

]

=
[

rx
ry

]

:=
[

ξc −X−1rxz
ξb

]

(4a)

Δzp = X−1rxz −X−1ZΔxp.(4b)

As in Mehrotra’s predictor-corrector algorithm [13], we calculate maximal primal and
dual stepsizes for the predictor direction

ᾱp = max{α > 0 : x+ αΔxp ≥ 0}, ᾱd = max{α > 0 : z + αΔzp ≥ 0}

and determine a target μ-value by

μ =
[(x+ ᾱpΔxp)T (z + ᾱdΔzp)]3

n(xT z)2
.

With these we compute the corrector direction (Δxc,Δyc,Δzc) by

(5)
ATΔyc + Δzc = 0
AΔxc = 0
XΔzc + ZΔxc = (μ− μ0)e− ΔXpΔZpe,

and finally the new primal and dual stepsizes and the new iterate (x+, z+) as

αp = 0.995 max{α > 0 : x+ α(Δxp + Δxc) ≥ 0}
αd = 0.995 max{α > 0 : z + α(Δzp + Δzc) ≥ 0}
x+ = x+ αp(Δxp + Δxc), z+ = z + αd(Δzp + Δzc).

Our main interest is generating a good starting point for the QP problem (1) —
the modified problem — from the solution of a previously solved similar QP problem

(6)
min c̃Tx+

1
2
xT Q̃x

s.t. Ãx = b̃
x ≥ 0,

the original problem. The difference between the two problems, i.e., the change from
the original problem to the second problem, is denoted by

(ΔA,ΔQ,Δc,Δb) =
(

A− Ã, Q− Q̃, c− c̃, b− b̃
)

.
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3. Warmstart heuristics. Unlike the situation in the Simplex Method, for
IPMs it is not a good strategy to use the optimal solution of a previously solved
problem as the new starting point for a similar problem. This is because problems
are often ill-conditioned; hence the final solution of the original problem might be far
away from the central path of the modified problem. Furthermore, [9] demonstrates
that the predictor direction tends to be parallel to nearby constraints, resulting in
difficulties to drop misidentified nonbasic variables.

Over the years numerous contributions [11, 5, 8, 15, 6] have addressed this prob-
lem, with renewed interest in the subject from [1, 2, 10] over the last year. With the
exception of [1, 2] which use an L1-penalty reformulation of the problem that has bet-
ter warmstarting capabilities, all remedies follow a common theme: They identify an
advanced center [5], a point close to the central path of the original problem (usually
a nonconverged iterate), and modify it in such a manner that the modified point is
close to the central path of the new problem. Further, in the first few iterations of
the reoptimization, additional techniques which address the issue of getting stuck at
nearby constraints may be employed. In this paper these will be called unblocking
heuristics. The generic IPM warmstarting algorithm is as follows:

Algorithm: Generic Interior Point Warmstart

1. Solve the original problem (6) by an Interior Point Algorithm. From
it choose one of (or a selection of) the iterates (x̃, ỹ, z̃, μ̃) encountered during
the solution process. We will assume that this iterate (or any one of these
iterates) satisfies

c̃+ Q̃x̃− ÃT ỹ − z̃ = 0
b̃− Ãx̃ = 0
x̃iz̃i ≈ μ̃ ∀i = 1, . . . , n.

2. Modify the chosen iterate to obtain a starting point (x, y, z, μ) for
the modified problem.

3. Solve the modified problem by an Interior Point Algorithm using
(x, y, z, μ) as the starting point. During the first few iterations of the IPM a
special unblocking step might be taken.

The question arises as to what should guide the construction of modification and
unblocking steps. It is well known that for a feasible method (i.e., ξb = ξc = 0), a
well-centered point (i.e., in N2(θ) or N−∞(γ)) and a small target decrease (μ � μ0),
and the Newton step is feasible. Analysis by [15] and [6] identifies two factors that
lead to the ability of IPMs to absorb infeasibilities ξb, ξc present at the starting point.
Firstly, the larger the value of μ the more infeasibility can be absorbed in one step.
Secondly, the centrality of the iterate: from a well-centered point the IPM can again
absorb more infeasibilities. Using these general guidelines, a number of different
warmstarting techniques have been suggested. We review some of them here:

Modification Steps:
(i) Shift small components: [11] shift x̃, z̃ by hx = εD−1e, hz = εDe, where

D = diag{‖aj‖1} and aj is the jth column of A to ensure xizi ≥ γμ for some small
γ > 0, i.e., improve centrality by aiming for a point in N−∞(γ).

(ii) References [15, 10] suggest a Weighted Least Squares Step (WLS) that finds
the minimum step (with respect to a weighted 2-norm) from the starting point, to
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a point that is both primal and dual feasible. The WLS step does not necessarily
preserve positiveness of the iterate. To overcome this, [15] suggests keeping a selection
of potential warmstart iterates and retracing to one corresponding to a large μ, which
will guarantee that the WLS step is feasible. Since we do not want to remember several
different points from the solution of the original problem, we will take a fraction of
the WLS step should the full step be infeasible. Mehrotra’s starting point [13] can be
seen as a (damped) WLS step from the origin.

(iii) References [15, 10] further suggest a Newton Modification Step, i.e., an in-
terior point step (3) correcting only for the primal and dual infeasibilities introduced
by the change of problem, with no attempt to improve centrality: (3) is solved with
rxz = 0. Again only a fraction of this step might be taken.

Unblocking Heuristics
(i) Splitting Directions: Reference [6] advocates computing separate search di-

rections aimed at achieving primal feasibility, dual feasibility, and centrality sepa-
rately. These are combined into the complete step by taking the maximum of each
step that can be taken without violating the positivity of the iterates. A possible in-
terpretation of this strategy is to emulate a gradual change from the original problem
to the modified problem where for each change the modification step is feasible.

(ii) Higher Order Correctors: The ΔXpΔZp component in (5) is a correction
for the linearization error in XZe− μe = 0. A corrector of this type can be repeated
several times. Reference [5] employs this idea by additionally correcting only for small
complementary products to avoid introducing additional blocking. This is used in [6]
as an unblocking technique with the interpretation of choosing a target complementary
vector t̄ ≈ μe in such a way that a large step in the resulting Newton direction is
feasible, aiming to absorb as much of the primal/dual infeasibility as possible in the
first step.

(iii) Change Diagonal Scaling: Reference [9] investigates changing elements in
the scaling matrix Θ = XZ−1 to make nearby constraints repelling rather than at-
tracting to the Newton step. However, we are not aware of any implementation of
this technique in a warmstarting context.

A number of additional interesting techniques are listed here and described below:
(i) Dual adjustment: Adjust advanced starting point z̃ to compensate for

changes to c, A, and Q in the dual feasibility constraint (2a).
(ii) Additional centering iterations before the advanced starting point is used.
(iii) Unblocking of the step direction by sensitivity analysis.

We will give a brief description of the first two of these strategies. The third
(unblocking by sensitivity analysis) is the subject of section 4.

Dual adjustment
Using (x̃, ỹ, z̃) as a starting point in problem (1) will result in the initial dual

infeasibility

ξc = c+Qx̃−AT ỹ − z̃ = Δc+ ΔQx̃− ΔAT ỹ.

Setting z = z̃ + Δz, where Δz = Δc+ ΔQx̃−ΔAT ỹ, would result in a point satisfying
the dual feasibility constraint (2a). However, the conditions z ≥ 0 and xizi ≈ μ are
likely violated by this, so instead we set

zi = max{z̃i + Δzi,min{√μ, z̃i/2}};

i.e., we try to absorb as much of the dual infeasibility into z as possible without
decreasing z either below

√
μ or half its value.
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Adjusting the saved iterate (x̃, ỹ, z̃) in a minimal way to absorb primal/dual
infeasibilities is similar in spirit to the WLS modification step. Unlike this, however,
direct adjustment of z is much cheaper to compute.

Additional centering iterations
The aim of improving the centrality of the saved iterate can also be achieved by

performing an additional pure centering iteration, i.e., choose ξc = ξb = 0, μ0 = xT z/n
in (3), in the original problem before saving the iterate as a starting point for the new
problem. This pure centering iteration could be performed with respect to the original
or the modified problem. In the latter case, this is similar in spirit to the Newton
Modification Step of [15, 10] (whereas [15, 10] use rxz = 0, we use rxz = μ0e − X̃Z̃
with μ0 = x̃T z̃/n. In the case of a perfectly centered saved iterate—as we hope to
achieve at least approximately by the previous centering in the original problem—
these two are identical). We refer to these as centering iteration at the beginning of
solving the modified problem or at the end of solving the original problem.

In the next section we will derive the unblocking strategy based on sensitivity
analysis.

4. Unblocking by sensitivity analysis.

4.1. Sensitivity analysis. In this section we will lay the theoretical foundations
for our proposed unblocking strategy. Much of it is based on the observation that
the advanced starting information (x, y, z, μ) with which to start the solution of the
modified problem is to some degree arbitrary. It is therefore possible to treat it as
parameters to the solution process and to explore how certain properties of the solution
process change as the starting point is changed. In particular we are interested in the
primal and dual stepsizes that can be taken for the Newton direction computed from
this point.

At some iterate (x, y, z) of the IPM, the primal-dual direction (Δx,Δy,Δz) is
obtained as the solution to the system (3) or (4) for some target value μ0. If we
think of (x, y, z) as the advanced starting point, the step (Δx,Δy,Δz) can be obtained
as a function of the current point (x, y, z). The aim of this section is to derive a
procedure by which the sensitivity of Δx(x, y, z), Δy(x, y, z), Δz(x, y, z), that is the
first derivatives of these functions can be computed.

First note that the value of y has no influence on the new step Δx,Δz. This is
because after substituting for ξb, ξc, rxz in (4a)

[

−Q−X−1Z AT

A 0

] [

Δx
Δy

]

=
[

c+Qx−AT y − μX−1e
b−Ax

]

we can rewrite this as

(7)
[

−Q−X−1Z AT

A 0

] [

Δx
y(k+1)

]

=
[

c+Qx− μX−1e
b− Ax

]

with Δy = y(k+1) − y. In effect (7) solves for the new value of y(k+1) = y(k) + Δy
directly, whereas all influence of y onto Δx,Δz has been removed. Notice also that
only the step components in x, z variables can lead to a blocking of the step; therefore
we are interested only in the functional relationship and sensitivity for the functions
Δx = Δx(x, z),Δz = Δz(x, z). To this end we start by differentiating with respect to
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xi in (3):

−QdΔx

dxi
+AT

dΔy

dxi
+

dΔz

dxi
= Qei,(8a)

A
dΔx

dxi
= −Aei,(8b)

X
dΔz

dxi
+ Z

dΔx

dxi
+ ΔZei = −Zei.(8c)

Note that this result is independent of the value of μ0 that is used as a target.
Similarly, differentiating with respect to yi yields

−QdΔx

dyi
+AT

dΔy

dyi
+

dΔz

dyi
= −AT ei(9a)

A
dΔx

dyi
= 0(9b)

X
dΔz

dyi
+ Z

dΔx

dyi
= 0,(9c)

and finally differentiating with respect to zi yields

−QdΔx

dzi
+AT

dΔy

dzi
+

dΔz

dzi
= −ei(10a)

A
dΔx

dzi
= 0(10b)

X
dΔz

dzi
+ Z

dΔx

dzi
+ ΔXei = −Xei.(10c)

Taking all three systems together we have
(11)
⎡

⎣

−Q AT I
A 0 0
Z 0 X

⎤

⎦

⎡

⎢

⎢

⎣

dΔx
dx

dΔx
dy

dΔx
dz

dΔy
dx

dΔy
dy

dΔy
dz

dΔz
dx

dΔz
dy

dΔz
dz

⎤

⎥

⎥

⎦

=

⎡

⎣

Q −AT −I
−A 0 0

−Z − ΔZ 0 −X − ΔX

⎤

⎦ .

Under the assumption that A has full row rank, the system matrix is nonsingular,
therefore

⎡

⎢

⎣

dΔx
dxi

dΔy
dxi

dΔz
dxi

⎤

⎥

⎦
=

⎡

⎣

−ei
0
0

⎤

⎦+ Δzi

⎡

⎣

−Q AT I
A 0 0
Z 0 X

⎤

⎦

−1 ⎡

⎣

0
0

−ei

⎤

⎦(12a)

⎡

⎢

⎢

⎣

dΔx
dyi

dΔy
dyi

dΔz
dyi

⎤

⎥

⎥

⎦

=

⎡

⎣

0
−ei
0

⎤

⎦(12b)

⎡

⎢

⎣

dΔx
dzi

dΔy
dzi

dΔz
dzi

⎤

⎥

⎦
=

⎡

⎣

0
0

−ei

⎤

⎦+ Δxi

⎡

⎣

−Q AT I
A 0 0
Z 0 X

⎤

⎦

−1 ⎡

⎣

0
0

−ei

⎤

⎦ ,(12c)
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where the system common to (12a/12c)

(13)

⎡

⎣

−Q AT I
A 0 0
Z 0 X

⎤

⎦

⎡

⎢

⎣

˜dΔx
˜dΔy
˜dΔz

⎤

⎥

⎦
=

⎡

⎣

0
0

−ei

⎤

⎦

can be solved by using the third line to substitute for ˜dΔz as

[

−Q−X−1Z AT

A 0

]

[

˜dΔx
˜dΔy

]

=
[

X−1ei
0

]

(14a)

˜dΔz = −X−1Z˜dΔx−X−1ei.(14b)

There are a few insights to be gained from these formulas. First, they confirm
that the step (Δx,Δz) does not depend on y.

Second, the sensitivity of the primal-dual step with respect to the current iterate
(x, y, z)—unlike the step (Δx,Δy,Δz) itself—does not depend on the target value μ0

either. We will exploit this property when constructing a warmstart heuristic that
uses the sensitivity information.

Finally we can get the complete sensitivity information with respect to (xi, zi)
for a given component i by solving a single system of linear equations with the same
augmented system matrix that has been used to obtain the step (Δx,Δy,Δz) (and for
which a factorization is available); the solution of n such systems will likewise retrieve
the complete sensitivity information.

Although this system matrix is already factorized as part of the normal interior
point algorithm, and backsolves are an order of magnitude cheaper than the factoriza-
tion, obtaining the complete sensitivity information is prohibitively expensive. The
aim of the following section is therefore to propose a warmstarting heuristic that uses
the sensitivity information derived above, but requires only a few, rather than all n
backsolves.

4.2. Unblocking the primal-dual direction using sensitivity informa-
tion. Occasionally, despite all our attempts, a starting point might result in a New-
ton direction that leads to blocking: i.e., only a very small step can be taken along
it. We do not want to abandon the advanced starting information at this point, but
rather try to unblock the search direction. To this end we will make use of the sensi-
tivity analysis presented in section 4.1. The following Lemma 1 gives conditions under
which a step (dx, dz) can be expected to unblock based on the sensitivity analysis.

Lemma 1. A necessary and sufficient condition for a step (dx, dz) to unblock to
first order to a given level ρl, i.e.,

x+ dx + Δx+
dΔx

dx
dx +

dΔx

dz
dz ≥ ρl,(15a)

z + dz + Δz +
dΔz

dx
dx +

dΔz

dz
dz ≥ ρl,(15b)
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is that there exists vectors dx, dz, tx, ty, tz of appropriate dimensions that satisfy the
system of equations

Atx = 0(16a)
−Qtx +AT ty + tz = 0(16b)

Ztx +Xtz = −ΔZdx − ΔXdz(16c)
tx ≥ −x− Δx+ ρl(16d)
tz ≥ −z − Δz + ρl(16e)

Proof. Note that the relations of (11),(12) can be more concisely written as

(17)
⎡

⎢

⎢

⎣

dΔx
dx + I dΔx

dy
dΔz
dz

dΔy
dx

dΔy
dy + I dΔy

dz

dΔz
dx

dΔz
dy

dΔz
dz + I

⎤

⎥

⎥

⎦

= −

⎡

⎣

−Q AT I
A 0 0
Z 0 X

⎤

⎦

−1 ⎡

⎣

0 0 0
0 0 0

ΔZ 0 ΔX

⎤

⎦ .

Conditions (15) are equivalent to the existence of (dx, dy, dz) such that

(18)

⎡

⎢

⎢

⎣

dΔx
dx + I dΔx

dy
dΔz
dz

dΔy
dx

dΔy
dy + I dΔy

dz

dΔz
dx

dΔz
dy

dΔz
dz + I

⎤

⎥

⎥

⎦

⎡

⎣

dx
dy
dz

⎤

⎦ ≥

⎡

⎣

−x− Δx+ ρl
−∞

−z − Δz + ρl

⎤

⎦ ,

where dy is an arbitrary vector (note that dΔx
dy = dΔz

dy = 0). This, on the other hand,
is satisfied, if and only if there exists (tx, ty, tz) such that

(19)

⎡

⎢

⎢

⎣

dΔx
dx + I dΔx

dy
dΔz
dz

dΔy
dx

dΔy
dy + I dΔy

dz

dΔz
dx

dΔz
dy

dΔz
dz + I

⎤

⎥

⎥

⎦

⎡

⎣

dx
dy
dz

⎤

⎦ =

⎡

⎣

tx
ty
tz

⎤

⎦ ≥

⎡

⎣

−x− Δx+ ρl
−∞

−z − Δz + ρl

⎤

⎦ .

Now using (17) to substitute for the matrix of derivatives, multiplying both sides of
the equality with the augmented system matrix and multiplying out we see that (19)
is equivalent to
⎡

⎣

0
0

−ΔXdz − ΔZdx

⎤

⎦ =

⎡

⎣

−Q AT I
A 0 0
Z 0 X

⎤

⎦

⎡

⎣

tx
ty
tz

⎤

⎦ ,

⎡

⎣

tx
ty
tz

⎤

⎦ ≥

⎡

⎣

−x− Δx+ ρl
−∞

−z − Δz + ρl

⎤

⎦

that is to (16).
The sensitivity analysis thus gives us conditions that an unblocking direction

needs to satisfy. However it is unclear if a direction (dx, dz) and the corresponding
(tx, ty, tz) to satisfy the conditions of Lemma 1 exist. We can however prove existence
of such a direction by assuming that we know the analytic center p̂ = (x̂, ŷ, ẑ) of
the problem (or indeed any strictly primal-dual feasible point) and denote by p̂, ˆ̄p its
largest and smallest component:

0 < p̂ ≤ x̂i, ẑi ≤ ˆ̄p

Lemma 2. For all l : 0 < l < min{p̂/4, 1}, ρ < 1 and fixed μ and γ there exists
a c = c(γ, μ) such that for all starting points (x, y, z) and corresponding blocking step
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(Δx,Δy,Δz) obtained from (3) with μ0 = μ+ satisfying

xT z/n = μ, xizi ≥ γμ, xi ≤ bu, zi ≤ bu, μ+ ≤ 1
2
γμ,

z + Δz ≥ −le, x+ Δx ≥ −le,

there exists a step (dx, dz) : ‖dx, dz‖∞ ≤ c(1 + ρ)l that unblocks to first order to level
ρL, i.e., that satisfies conditions (15).

Proof. With α = 2(1 + ρ)l/p̂ set

tx = α(x̂ − (x+ Δx)),
ty = α(ŷ − (y + Δy)),
tz = α(ẑ − (z + Δz)).

We will show that (tx, ty, tz) satisfies (16a/b/d/e), that we can construct a corre-
sponding (dx, dz) satisfying (16c), and finally that (tx, ty, tz), (dx, dz) = O((1 + ρ)l).

First we notice that both p̂ = (x̂, ŷ, ẑ) and (x + Δx, y + Δy, z + Δz) are primal
and dual feasible (although in the latter case, of course, not positive). Hence, their
difference (and therefore (tx, ty, tz)) satisfies (16a/b).

To proof (16d) we need to distinguish the two cases: xi+Δxi < ρl and xi+Δxi ≥
ρl. In the first case xi + Δxi < ρl we have

x̂i − (xi + Δxi) ≥ p̂− ρl ≥ 1
2
p̂,

where the last inequality is due to ρ ≤ 1 and l ≤ p̂/4. Then

tx,i =
2(1 + ρ)l

p̂
(x̂i − (xi + Δxi)) ≥

2(1 + ρ)l
p̂

1
2
p̂ = (1 + ρ)l ≥ −xi − Δxi + ρl.

In the second case xi + Δxi ≥ ρl, we note that x̂i ≥ p̂ ≥ 4l ≥ ρl. Since 2(1 + ρ) ≤ 4
we have 0 < α ≤ 1, and hence

xi + Δxi + α(x̂i − (xi + Δxi)) = (1 − α)(xi + Δxi) + αx̂i ≥ ρl,

which proves (16d). (16e) is proven in the same manner.
Next we establish a bound for ‖tx‖, ‖tz‖. Since μ+ < γμ/2 we have from the last

equation of (3):

(20) xiΔzi + ziΔxi = μ+ − xizi ≤
1
2
γμ− γμ = −1

2
γμ < 0,

and hence at least one of Δxi,Δzi must be negative. Assume w.l.o.g. that Δxi < 0.
Then xi + Δxi ≥ −l implies

|Δxi| = −Δxi ≤ l + x ≤ l + bu.

We can make no further assumptions on the sign of Δzi. If Δzi < 0, then |Δzi| is
bounded in the same way as Δxi. If, on the other hand, Δzi ≥ 0, then (20) together
with xi ≥ γ/zi > γ/bu implies

Δzi < −ziΔxi/xi < bu(l + bu)bu/γ = b2u(l + bu)/γ.
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Since we can reasonably assume that b2u/γ > 1, we have

‖Δx‖, ‖Δz‖ ≤ b2u(1 + bu)/γ.

From this we get

‖tx‖ = α‖x̂− (x+ Δx)‖ ≤ 2(1 + ρ)l
p̂

(ˆ̄p+ bu + b2u(1 + bu)/γ) = c1(1 + ρ)l,

where c1 = c1(γ) = 2(ˆ̄p+ bu + b2u(1 + bu)/γ)/p̂. ‖tz‖ ≤ c1(1 + ρ)l follows in the same
manner.

Finally we know from (20) that for all i at least one of xiΔzi, ziΔxi must be less
than −γμ/4. Assume w.l.o.g. ziΔxi < −γμ/4, and then we get

(21) Δxi < − γμ

4zi
< 0.

Therefore we can set

(22) dz,i = −zitx,i + xitz,i
Δxi

, dx,i = 0

(and vice versa if xiΔzi < −γμ/4) to construct a direction (dx, dz) that satisfies (16c).
It remains to be shown that (dx, dz) = O((1 + ρ)l):

From (21) we know

|Δxi| = −Δxi >
γμ

4zi
>

γμ

4bu
;

hence (22) gives

|dz,i| ≤ (buc1(1 + ρ)l + buc1(1 + ρ)l)/
γμ

4bu
=

8b2uc1
γμ

(1 + ρ)l := c(1 + ρ)l

with c = c(γ, μ) = (8b2uc1)/(γμ).
We can now proof the main result of this section.
Theorem 1. There exists L > 0 such that for all l : 0 < l < L and all starting

points (x, y, z) and their corresponding blocking step (Δx,Δy,Δz) obtained from (3)
with μ0 = μ+ that satisfy

xT z/n = μ, xizi ≥ γμ, xi, zi ≤ bu, μ+ <
1
2
γμ, x+ Δx ≥ −le, z+ Δz ≥ −le,

there is a step (dx, dz) that unblocks, i.e.,

x+ dx + Δx(x + dx, z + dz) ≥ 0,
z + dz + Δz(x+ dx, z + dz) ≥ 0.

Proof. Set ε = 1
10c . From the differentiability of Δx(x, z),Δz(x, z) there exists a

δ such that for all (dx, dz) : ‖(dx, dz)‖∞ ≤ δ:

(23)

∥

∥

∥

∥

Δx(x + dx, z + dz) − Δx− dΔx

dx
dx −

dΔx

dz
dz

∥

∥

∥

∥

≤ ε‖(dx, dz)‖,
∥

∥

∥

∥

Δz(x+ dx, z + dz) − Δz − dΔz

dx
dx −

dΔz

dz
dz

∥

∥

∥

∥

≤ ε‖(dx, dz)‖.
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Now set ρ = 1
4 and L = min{ p̂4 ,

4
5
δ
c}. Then from Lemma 2 there exists (dx, dz) :

‖(dx, dz)‖∞ ≤ c 5
4 l ≤ δ such that

x+ dx + Δx+
dΔx

dx
dx +

dΔx

dz
dz ≥ ρle =

1
4
le,

z + dz + Δz +
dΔz

dx
dx +

dΔz

dz
dz ≥ ρle =

1
4
le,

and therefore

xi + dx,i + Δxi(x+ dx, z + dz)

= xi + dx,i + Δxi +
dΔxi
dx

dx +
dΔxi
dz

dz

−
(

Δxi +
dΔxi
dx

dx +
dΔxi
dz

dz − Δxi(x+ dx, z + dz)
)

≥ 1
4
l − ε‖(dx, dz)‖ =

1
4
l − 1

10c
‖(dx, dz)‖

≥ 1
4
l − 1

10c
c

5
4
l ≥ 1

8
l > 0,

and the same for the z components.
The insight gained from this theorem is that our proposed unblocking strategy

is sound in principle: If the negative components of the prospective next iterate
(x+Δx, z+Δz) are bounded in size by L, then there exists an unblocking perturbation
(dx, dz) of the current iterate. The size of this perturbation is O(L). Unfortunately
the construction of (dx, dz) relies on the knowledge of the analytic center p̂ of the
problem (or at least any other strictly primal/dual feasible point). Therefore the
construction used in the proof cannot be implemented in practice. In the following
section we will derive an implementable heuristic.

4.3. Implementation. There is a principle difficulty with finding a solution to
the unblocking equations (16). Theorem 1 guarantees that a solution (of bounded size)
exists. The system (15):

x+ dx + Δx+
dΔx

dx
dx +

dΔx

dz
dz ≥ ρL,

z + dz + Δz +
dΔz

dx
dx +

dΔz

dz
dz ≥ ρL

seems to imply that we could gather the complete sensitivity information (dΔx
dx ,

dΔx
dz ,

dΔz
dx ,

dΔz
dz ), requiring n backsolves to do so, and find dx, dz to satisfy

(24)

⎡

⎢

⎣

dΔx
dx + I

dΔx

dz
dΔz
dx

dΔz

dz
+ I

⎤

⎥

⎦

[

dx
dz

]

≥
[

−x− Δx+ ρL
−z − Δz + ρL

]

.

However, the system matrix in (24) is singular (actually of rank n) as can be seen
from (17); hence it is unclear if a solution (dx, dz) exists at all.

In the results of Theorem 1 we get around this difficulty by assuming the knowl-
edge of the analytic center, something that does not hold in practice. The only
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solution we can suggest is to use the sensitivity information in a heuristic targeted at
unblocking the search direction.

The idea is based on the observation that typically only a few components of
the Newton step (Δx,Δz) are blocking seriously and that these can be effectively
influenced by changing the corresponding components of (x, z) only. One potential
danger of aiming solely at unblocking the step direction is that we might have to
accept a significant worsening of centrality or feasibility of the new iterate, which is
clearly not in our interest. The proposed strategy attempts to avoid this as well by
minimizing the perturbation (dx, dz) to the current point.

The heuristic that we are proposing is based on the assumption that a change in
the ith component xi, zi will have a strong influence on the ith component of the step
Δxi,Δzi, so changing only xi, zi components corresponding to blocking components
of the step might be sufficient. Indeed our strategy will identify a (small) index set
I of most blocking components, obtain the sensitivity information with respect to
these components, and attempt to unblock each (Δxi,Δzi) by changes to component
i of (x, z) only. Since usually only Δxi or Δzi but not both are blocking, allowing
perturbations in both xi or zi leaves one degree of freedom, which will be used to
minimize the size of the required unblocking step.

The assumption made above can be justified as follows: according to (12), the
sensitivity d(Δx,Δz)/dxi (and similarly d/dzi) is made up of two components: the
ith unit vector ei and the solution to (13), which according to (14) is the weighted
projection of the ith unit vector onto the null space of A.

Our implemented unblocking strategy is thus as follows:

Algorithm: Unblocking Strategy

1) Choose the size of the unblocking set |I|, a target unblocking level t > 1,
and bounds 0 < γ < 1 < γ̄ on the acceptable change to a component.

2) find the set I of most blocking components (in x or z)

for all i in 10% most blocking components do

3) find sensitivity of (Δx,Δz) with respect to (xi, zi)

4) find the change (dx,i, dz,i) needed in xi or zi to unblock component i

5) change either xi or zi depending on where the change would be more effective.

next i

6) update x = x+ dx and z = z + dz and recompute the affine scaling direction

Steps 4) and 5) of the above algorithm need further clarification: For each blocking
component xi (or zi) we have xi + αxΔxi < 0 for small positive values of αx, or
Δxi/xi 	 −1. From the sensitivity analysis we know dΔxi

dxi
, the rate of change of Δxi

when xi changes. We are interested in the necessary change dx,i to xi such that the
search direction is unblocked, that is to say

Δxi + dΔxi

dxi
dx,i

xi + dx,i
≥ −t, (t ≈ 5);

in other words a step of αp ≥ 1/t (1/t ≈ 0.2) will be possible. From this requirement
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we get the provisional change

˜dx,i = − txi + Δxi

t+ dΔxi

dxi

.

We need to distinguish several cases:

(i)
dΔxi
dxi

≤ Δxi
xi

:

A step in positive direction would lead to even more blocking. A negative step will
unblock. However, we are not prepared to let xi+dx,i approach zero; hence we choose

dx,i = max{˜dx,i, (γ − 1)xi}.

(ii)
dΔxi
dxi

>
Δxi
xi

:

A positive step would weaken the blocking. However, if dΔxi

dxi
< −t, the target un-

blocking level −t can never be reached (and the provisional ˜dx,i is negative). In this
case (and also if the provisional ˜dx,i is very large) we choose the maximal step that
we are prepared to take:

dx,i =

{

dmax if ˜dx,i < 0,
min{˜dx,i, dmax} otherwise

with dmax = (γ̄ − 1)xi.
Alternatively we can unblock a blocking Δxi by changing zi. The required provi-

sional change ˜dz,i can be obtained from

Δxi + dΔxi

dzi
dz,i

xi
≥ −t

as

˜dz,i = − txi + Δxi
dΔxi

dzi

.

In this case ˜dz,i indicates the correct sign of the change, but for dΔxi

dzi
close to zero the

provisional step might be very large. We apply the same safeguards as for the step in
x to obtain

dz,i =

{

max{˜dz,i, (γ − 1)zi} ˜dz,i < 0,
min{˜dz,i, dmax} ˜dz,i ≥ 0,

where dmax = (γ̄−1)zi. Since our aim was to reduce the blocking level from −Δxi/xi
to t, we can evaluate the effectiveness of the suggested changes dx,i, dz,i by

px =
(old blocking level) − (new blocking level)

(old blocking level) − (target blocking level)
=

−Δxi

xi
+

Δxi+
dΔxi
dxi

dx,i

xi+dx,i

−Δxi

xi
+ t

and

pz =
−Δxi

xi
+

Δxi+
dΔxi
dzi

dz,i

xi

−Δxi

xi
+ t

.
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Given these quantities we use px/|dx,i|, pz/|dz,i| as measures of the relative effective-
ness of changing the xi, zi component. Our strategy is to first change the component
for which this ratio is larger, and, should the corresponding px, pz be less than 1, add
a proportional change in the other component, i.e., if px/|dx,i| > pz/|dz,i|:

dx,i = dx,i,

dz,i = min{(1 − px)/pz, 1}dz,i.

An analogous derivation can be performed to unblock the z-component Δzi of the
search direction.

The analysis in the previous section was aimed at unblocking the primal-dual
direction corresponding to a fixed target value μ0. We are, however, interested in
using this analysis in the context of a predictor-corrector method. This seems to
complicate the situation, since the predictor-corrector direction is now the result of a
two-step procedure. As pointed out earlier, however, while the primal-dual direction
and subsequently the length of the step that can be taken along it does depend on
the target μ0 value, the sensitivity of this step does not depend on μ0. This leads us
to the following strategy: We obtain the sensitivity with respect to the most blocking
components after the predictor step and use these to unblock the combined predictor-
corrector (and higher order corrector steps) separately following the above heuristic.

5. Numerical results. In order to evaluate the relative merit of the suggested
warmstarting schemes, we have run a selection of numerical tests. In the first instance
we have used a warmstarting setup based on the NETLIB LP test set as described in
[1, 10] to evaluate a selection of the described heuristics.

In a second set of tests we have used the best warmstart settings from the first
set and used these to warmstart the NETLIB LP test set, a selection of QP problems
from [12] as well as some large scale QP problems arising from the problem of finding
the efficient frontier in portfolio optimization and solving a nonlinear capacitated
Multi-Commodity Network Flow problem (MCNF).

All warmstarting strategies have been implemented in our interior point solver
OOPS [7]. For all tests we save the first iterate in the original problem solution process
for which the relative duality gap satisfies

(cTx+ 0.5xTQx) − (bT y − 0.5xTQx)
(cTx+ 0.5xTQx) + 1

=
xT z

(cTx+ 0.5xTQx) + 1
≤ 0.01

for use as a warmstarting point. We do not attempt to find an “optimal” value for μ̄:
our motivation is primarily to evaluate unblocking techniques in order to recover from
“bad” warmstarting situations; furthermore it is likely that the optimal μ̄ is highly
problem (and perturbation) dependent. On the contrary, we assume that a 2-digit
approximate optimal solution of the original problem should be a good starting point
for the perturbed problem.

5.1. The NETLIB warmstarting test set. In order to compare our results
more easily to other contributions, we use the NETLIB warmstarting testbed sug-
gested by [1]. This uses the smaller problems from the NETLIB LP test set as the
original problems and considers changes to the right-hand side b, the objective vector
c, the system matrix A, and different perturbation sizes δ. The perturbed problem
instances are randomly generated as follows:

For perturbations to b and c we first generate a uniform-[0,1] distributed random
number for every vector component. Should this number be less than min{0.1, 20/n}
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Table 1

Higher order correctors as unblocking device.

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
hoc 6.0 5.4 5.6 11.3 7.6 6.3 8.6 6.5 6.8 7.2

(n being the dimension of the vector), this component is marked for modification.
That is, we modify on average 10% (but at most 20) of the components. For all
marked components we will generate a second uniform-[−1, 1] distributed random
number r. The new component b̃i is generated from the old one bi as

b̃i =
{

δr |bi| ≤ 10−6,
(1 + δr)bi otherwise.

For perturbations to A we proceed in the same manner, perturbing the vector of
nonzero elements in A as before. For the results presented in this paper we have
solved each problem for each warmstart strategy for 10 random perturbations of each
type (b, c, and A). We will use these to evaluate the merit of each of the considered
modifications and unblocking heuristics. A list of the considered NETLIB problems
can be obtained from Tables 6–9.

In the numerical test performed we were guided by two objectives: first to evaluate
if and how the various warmstarting strategies presented in section 3 can be combined,
and second to evaluate the merit of the proposed unblocking strategy. In order to
save on the total amount of computation, we will use the following strategy: Every
warmstarting heuristic is tested against a base warmstarting code and against the
best combination found so far. If a heuristic is found to be advantageous, it will be
added to the best benchmark strategy for the future tests.

5.1.1. Higher order correctors. We investigate the use of higher-order cor-
rectors as an unblocking device. The interior point code OOPS applied for these
calculations uses higher-order correctors by default if the Mehrotra corrector step (5)
has been successful (i.e., it leads to larger stepsizes αP , αD than the predictor step).
When using higher order correctors as an unblocking device, we will attempt them
even if the Mehrotra corrector has been rejected. Table 1 gives results with and
without forcing higher order correctors (hoc and base, respectively). The numbers
reported are the average number of iterations of the warmstarted problem over all
problems in the test set and all 10 random perturbations. Problem instances which
are infeasible or unbounded after the perturbation have been discarded. Clearly the
use of higher order correctors is advantageous. We therefore recommend the use
of higher order correctors in all circumstances in the context of warmstarting. All
following tests are performed with the use of higher order correctors.

5.1.2. Centering steps. We explore the benefit of using centering steps as a
technique to facilitate warmstarting. These are performed either at the end of the
solution process for the original problem before the advanced center is returned (end)
or at the beginning of the modified problem solution, before any reduction of the
barrier μ is applied (beg). As pointed out earlier the latter corresponds to the Newton
corrector step of [15]. We have tested several settings of end and beg corresponding
to the number of steps of this type being taken. The additional centering iterations
are included in the numbers reported. Results are summarized in Table 2.
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Table 2

Additional centering iterations.

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base
beg=0, end=0 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
beg=0, end=1 6.3 5.3 5.2 15.4 8.5 6.3 11.6 6.9 6.9 8.2
beg=1, end=0 6.1 5.4 5.9 13.9 7.9 6.3 9.7 6.7 7.1 7.8
beg=1, end=1 6.1 5.0 5.2 14.7 8.4 6.2 10.8 7.0 6.9 8.0
beg=1, end=2 6.1 5.0 5.0 14.9 8.7 6.2 11.5 7.0 6.6 8.0

best
beg=0, end=0 6.0 5.4 5.6 11.3 7.6 6.3 8.6 6.5 6.8 7.2
beg=1, end=0 6.0 5.3 5.5 10.9 7.4 6.1 8.4 6.6 7.0 7.1
beg=0, end=1 6.0 4.9 5.1 11.9 7.6 5.9 9.2 6.4 6.5 7.2
beg=1, end=1 5.7 5.0 5.1 11.8 7.4 5.9 9.2 6.6 6.5 7.2
beg=1, end=2 5.7 4.7 5.2 11.6 7.1 5.8 9.4 6.4 6.5 7.0

Table 3

z-adjustment as modification step.

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base no-adj 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
z-adj 6.3 5.5 5.8 12.5 7.7 6.3 9.2 7.1 7.1 7.6
WLS-0.01 6.3 5.5 6.1 14.0 8.3 6.4 9.9 7.0 7.1 8.0
WLS-0.1 7.0 6.6 6.9 12.7 9.1 7.4 8.1 7.1 8.5 8.1

best no-adj 5.7 4.7 5.2 11.6 7.1 5.8 9.4 6.4 6.5 7.0
z-adj 5.7 4.8 5.1 10.5 6.8 5.7 8.8 6.3 6.4 6.8
WLS-0.01 5.7 4.8 5.2 11.6 7.0 5.9 9.3 6.4 6.5 7.0
WLS-0.1 6.3 5.9 5.9 10.0 7.9 6.8 7.4 6.7 7.7 7.2

Compared with the base, strategy (1, 0) is the best, whereas compared to the best
(which just includes higher-order correctors at this point), strategy (1, 2) is preferable.
Due to the theoretical benefits of working with a well-centered point, we will use
centering strategy (1, 2) in the best benchmark strategy for the following tests.

5.1.3. z -adjustment/WLS-step. We have evaluated the benefit of attempt-
ing to absorb dual infeasibilities into the z value of the warmstart vector, together
with the related WLS heuristic (which attempts to find a least squares correction to
the saved iterate such that the resulting point is primal/dual feasible). The results
are summarized in Table 3. Surprisingly there is a clear advantage of the simple
z-adjustment heuristic, whereas the (computationally more expensive and more so-
phisticated) WLS step (WLS-0.01) hardly improves on the base strategy. Our only
explanation for this behavior is that for our fairly low saved μ-value (2-digit approx-
imate optimal solution to the original problem) the full WLS direction is usually
infeasible, so only a fractional step in it can be taken. The z-adjustment, on the other
hand, has a more sophisticated fallback strategy which considers adjustment for each
component separately, so it is not quite as easily affected by blocking in the modi-
fication direction. Reference [15] suggests employing the WLS step together with a
backtracking strategy, which saves several iterates from the original problem for dif-
ferent μ and chooses one for which the WLS step does not block. We have emulated
this by trying the WLS step for a larger μ (WLS-0.1). Any gain of a larger portion of
the WLS step being taken, however, is offset by the starting point now being further
away from optimality, resulting in an increase of the number of iterations. We have
added the z-adjustment heuristic to our best benchmark strategy.
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Table 4

Splitting directions.

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base it=0 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
it=1 6.3 5.5 6.1 14.4 8.6 6.5 10.1 6.9 7.2 8.1
it=2 6.3 5.5 6.1 14.3 8.6 6.5 10.1 6.9 7.2 8.1

best it=0 5.7 4.8 5.1 10.5 6.8 5.7 8.8 6.3 6.4 6.8
it=1 5.7 4.8 5.1 10.5 6.8 5.8 8.7 6.3 6.4 6.8
it=2 5.8 4.8 5.1 10.4 6.7 5.7 8.7 6.4 6.4 6.8

Table 5

Sensitivity based unblocking heuristic.

b c A
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 total

base
unblk=0 6.4 5.6 6.1 14.5 8.5 6.4 10.2 7.0 7.2 8.1
unblk=1 6.1 5.5 6.0 13.2 8.2 6.4 9.7 7.0 7.1 7.8
unblk=2 6.1 5.3 5.9 12.1 8.1 6.1 9.2 6.8 6.9 7.5
unblk=3 6.0 5.6 6.1 11.4 8.0 6.2 9.0 7.4 7.1 7.5

best: hoc, beg=1, end=2, z-adj
unblk=0 5.7 4.8 5.1 10.5 6.8 5.7 8.8 6.3 6.4 6.8
unblk=1 5.6 4.8 5.1 9.8 6.5 5.7 8.3 6.4 6.4 6.6
unblk=2 5.7 5.1 5.5 9.4 6.8 5.9 8.2 6.4 6.1 6.7
unblk=3 5.6 5.1 5.7 9.5 6.8 5.8 8.2 6.2 6.5 6.7

beg=0, end=0, z-adj
unblk=0 6.1 5.0 5.0 14.9 8.7 6.2 11.5 7.0 6.6 8.0
unblk=1 5.9 4.9 5.0 13.2 7.9 6.0 10.4 6.8 6.7 7.6
unblk=2 5.8 5.0 5.0 11.9 8.0 6.1 9.7 6.7 6.9 7.4
unblk=3 5.8 5.2 5.1 11.5 7.7 5.8 9.7 6.8 6.8 7.3

hoc, beg=0, end=0, z-adj
unblk=0 5.7 4.7 5.2 11.6 7.1 5.8 9.4 6.4 6.5 7.0
unblk=1 5.5 4.8 5.3 10.7 6.9 5.6 9.1 6.5 6.4 6.8
unblk=2 5.8 4.9 5.1 9.8 7.4 5.7 8.7 6.7 5.4 6.7
unblk=3 5.6 5.0 5.5 9.4 6.7 5.7 9.0 6.3 5.5 6.6

5.1.4. Splitting directions. This analyzes the effectiveness of using the com-
putations of separate primal, dual, and centrality correcting directions as in [6] as an
unblocking strategy. The results given in Table 4 correspond to different numbers of
initial iterations in the solution process of the modified problem using this technique.

As can be seen there is no demonstrable benefit from using this unblocking tech-
nique, we have therefore left it out of all subsequent tests.

5.1.5. Unblocking by sensitivity. Finally we have tested the effectiveness of
our unblocking scheme based on using sensitivity information. We are considering
employing this heuristic for up to the first three iterations. The parameters we have
used are |I| ≤ 0.1n (i.e., the worst 10% of components are unblocked), t = 5, γ̄ = 10,
and γ = 0.1. Results are summarized in Table 5. Unlike the other tests, we have not
only tested the unblocking strategy against the base and the best but also against two
further setups to evaluate the effectiveness of the strategy to recover from blocking in
different environments.

As can be seen there is a clear benefit in employing this heuristic in all tests. The
results are less pronounced when comparing against the best strategy, but even here
there is a clear advantage of performing one iteration of the unblocking strategy.
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Table 6

Results (best warmstart)—perturbations in b.

Problem 0.1 0.01 0.001
cold warm red cold warm red cold warm red

ADLITTLE 10.0 6.0 40.0 10.0 5.0 50.0 11.4 6.0 47.3
AFIRO 10.1 4.2 58.4 10.1 4.3 57.4 10.1 4.3 57.4
AGG2 16.1 4.6 71.4 16.2 4.0 75.3 16.1 4.0 75.1
AGG3 15.7 5.6 64.3 15.5 5.0 67.7 16.0 5.0 68.7
BANDM 13.8 8.2 40.5 14.0 4.1 70.7 13.5 4.0 70.3
BEACONFD - - - - - - - - -
BLEND 9.0 4.0 55.5 9.0 4.3 52.2 9.0 4.2 53.3
BOEING1 19.3 7.2 62.6 21.5 8.3 61.3 19.1 5.1 73.2
BORE3D - - - - - - - - -
BRANDY - - - - - - - - -
DEGEN2 - - - - - - - - -
E226 16.0 12.8 20.0 15.8 5.0 68.3 15.0 4.8 68.0
GROW15 13.0 4.0 69.2 13.0 4.0 69.2 13.0 4.0 69.2
GROW7 12.0 4.0 66.6 12.0 4.0 66.6 12.0 4.0 66.6
ISRAEL 21.0 6.9 67.1 20.5 4.0 80.4 19.9 4.0 79.8
KB2 17.7 5.0 71.7 17.4 5.0 71.2 17.2 5.0 70.9
LOTFI 19.3 6.8 64.7 20.0 5.7 71.5 20.0 5.8 71.0
RECIPELP 14.0 7.0 50.0 14.0 7.0 50.0 14.5 10.8 25.5
SC105 12.0 5.0 58.3 12.0 5.1 57.5 12.0 5.0 58.3
SC205 12.0 5.2 56.6 12.0 5.0 58.3 12.0 5.0 58.3
SC50A 11.0 4.0 63.6 11.0 4.0 63.6 11.0 4.0 63.6
SC50B 10.0 4.2 58.0 10.0 4.0 60.0 12.1 14.2 −17.3
SCAGR25 12.0 4.8 60.0 11.9 4.1 65.5 12.7 4.0 68.5
SCAGR7 10.1 4.1 59.4 9.9 4.0 59.5 9.8 4.0 59.1
SCFXM1 14.6 5.0 65.7 15.2 5.8 61.8 14.1 4.1 70.9
SCSD1 9.9 9.5 4.0 10.3 5.9 42.7 10.2 5.1 50.0
SCTAP1 14.7 6.0 59.1 14.9 5.0 66.4 15.6 5.3 66.0
SHARE1B 21.5 5.8 73.0 20.8 5.4 74.0 21.3 5.0 76.5
SHARE2B 9.3 5.2 44.0 9.2 5.1 44.5 9.1 5.1 43.9
STOCFOR1 13.5 5.4 60.0 13.0 5.1 60.7 15.4 5.3 65.5
Average 13.8 5.8 56.3 13.8 4.9 62.6 13.9 5.3 60.0

5.2. Results for best warmstart strategy. After these tests we have com-
bined the best setting for all of the considered warmstart heuristics and give more
detailed results on the NETLIB test set as well as for a selection of large scale quad-
ratic programming problems.

Tables 6–9 compare the best combined warmstarting strategy for all test problems
with a cold start. We give in each case the average number of iterations over 10
random perturbations. Column red gives the average percentage iteration reduction
achieved by employing the warmstart. An entry “-” denotes that all corresponding
perturbations of the problem were either infeasible or unbounded. As can be seen we
are able to save between 50% and 60% of iterations on all considered problems.

5.3. Comparison with LOQO results. To judge the competitiveness of our
best combined warmstarting strategy, we have compared the results on the NETLIB
test set with those reported by [1] which use a different warmstarting methodology.
Figure 1 gives a summary of this comparison. The four lines on the left graph give
the number of iterations needed for each of the 30 NETLIB problems reported in
Tables 6–9 averaged over all perturbations for OOPS and LOQO [1], using a warm-
start and a coldstart. As can be seen the default version of OOPS (solid line) needs
fewer iterations than LOQO (dotted line). The warmstarted versions of each code
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Table 7

Results (best warmstart)—perturbations in c.

Problem 0.1 0.01 0.001
cold warm red cold warm red cold warm red

ADLITTLE 10.3 7.3 29.1 10.1 5.2 48.5 10.4 5.0 51.9
AFIRO 10.3 5.3 48.5 10.3 4.8 53.3 10.7 4.8 55.1
AGG2 16.7 6.6 60.4 16.4 4.8 70.7 16.0 4.1 74.3
AGG3 16.0 6.9 56.8 16.0 5.3 66.8 15.9 4.9 69.1
BANDM 13.7 14.2 −3.6 13.9 5.2 62.5 13.6 4.0 70.5
BEACONFD 10.1 4.7 53.4 10.0 4.0 60.0 11.0 4.8 56.3
BLEND 9.4 7.3 22.3 9.0 4.6 48.8 9.0 4.3 52.2
BOEING1 19.6 24.2 −23.4 19.6 8.6 56.1 19.1 5.8 69.6
BORE3D 12.9 6.1 52.7 13.2 4.4 66.6 13.2 4.2 68.1
BRANDY 15.2 8.7 42.7 15.5 4.3 72.2 15.3 4.0 73.8
DEGEN2 9.8 4.5 54.0 10.0 4.8 52.0 10.0 5.0 50.0
E226 15.6 15.0 3.8 15.2 9.0 40.7 15.1 4.5 70.1
GROW15 22.9 13.7 40.1 22.9 9.2 59.8 17.7 11.0 37.8
GROW7 18.9 14.3 24.3 19.9 12.4 37.6 23.6 17.5 25.8
ISRAEL 20.4 7.7 62.2 21.0 4.2 80.0 21.1 4.3 79.6
KB2 17.8 6.8 61.7 17.9 5.0 72.0 18.0 5.0 72.2
LOTFI 19.0 30.7 −61.5 23.0 20.9 9.1 22.4 12.7 43.3
RECIPELP - - - - - - - - -
SC105 11.4 15.4 −35.0 11.8 5.9 50.0 11.5 5.0 56.5
SC205 12.7 20.9 −64.5 13.1 18.2 −38.9 12.1 6.7 44.6
SC50A 11.2 6.8 39.2 11.0 4.1 62.7 11.0 4.0 63.6
SC50B 10.3 7.2 30.0 10.0 4.4 56.0 10.0 4.0 60.0
SCAGR25 12.0 4.7 60.8 12.4 4.4 64.5 13.0 4.0 69.2
SCAGR7 10.1 4.8 52.4 9.9 4.1 58.5 10.0 4.0 60.0
SCFXM1 14.4 7.4 48.6 14.0 4.0 71.4 14.0 4.0 71.4
SCSD1 9.5 5.2 45.2 9.2 5.0 45.6 9.0 5.0 44.4
SCTAP1 16.2 6.6 59.2 16.1 5.8 63.9 15.8 6.0 62.0
SHARE1B 22.6 8.9 60.6 21.9 6.0 72.6 20.9 5.5 73.6
SHARE2B 9.2 7.2 21.7 9.0 5.0 44.4 9.1 5.0 45.0
STOCFOR1 12.8 5.0 60.9 13.0 5.0 61.5 14.4 5.0 65.2
Average 14.2 9.8 31.1 14.3 6.5 54.1 14.2 5.7 59.8

(solid and dotted lines with markers, respectively) need significantly fewer iterations
on average than their coldstarted siblings, with warmstarted OOPS being the most
effective strategy over all. This plot indicates only the best combination of interior
point code and warmstarting strategy without giving any insight into the relative
effectiveness of the warmstarting approaches themselves. In order to measure the effi-
ciency of the warmstart approaches, the second plot in Figure 1 compares the number
of iterations saved by each warmstarting strategy as compared with its respective cold-
started variant. As can be seen our suggested warmstart implemented in OOPS is
able to save around 50-60% of iterations, outperforming the LOQO warmstart which
averages around 30% saved iterations.

5.4. Medium scale QP problems. We realize that the NETLIB testbed pro-
posed in [1] includes only small LP problems. While this makes it ideal for the
extensive testing that we have reported in the previous section, there is some doubt
over whether the achieved warmstarting performance can be maintained for quadra-
tic and (more realistic) large scale problems. In order to counter such criticism we
have conducted warmstarting tests on two selections of small to medium scale QP
problems as well as two sources of large scale quadratic programming. For the small
and medium scale tests we have used the quadratic programming collection of Maros
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Table 8

Results (best warmstart)—perturbations in A.

Problem 0.1 0.01 0.001
cold warm red cold warm red cold warm red

ADLITTLE 10.8 9.4 12.9 10.5 5.0 52.3 10.4 5.0 51.9
AFIRO 10.1 5.0 50.4 10.0 4.1 59.0 10.0 4.0 60.0
AGG2 15.9 5.3 66.6 16.0 4.2 73.7 16.2 4.0 75.3
AGG3 15.2 6.3 58.5 15.7 5.2 66.8 16.1 5.0 68.9
BANDM 13.8 7.9 42.7 13.8 4.4 68.1 13.4 4.1 69.4
BEACONFD 10.1 4.8 52.4 10.0 4.0 60.0 10.0 4.0 60.0
BLEND 9.0 9.5 −5.5 9.2 5.3 42.3 9.0 4.4 51.1
BOEING1 19.3 5.2 73.0 19.6 5.0 74.4 19.8 5.0 74.7
BORE3D 15.0 4.0 73.3 13.9 4.0 71.2 13.6 4.0 70.5
BRANDY 14.2 14.1 0.7 17.8 15.4 13.4 28.1 18.8 33.0
DEGEN2 11.1 13.4 −20.7 29.2 30.5 −4.4 93.0 86.0 7.5
E226 15.5 10.2 34.1 15.1 4.9 67.5 15.0 4.1 72.6
GROW15 20.2 12.9 36.1 15.3 11.3 26.1 13.4 5.0 62.6
GROW7 24.0 16.1 32.9 17.1 8.8 48.5 13.5 6.4 52.5
ISRAEL 19.8 5.4 72.7 20.0 4.0 80.0 19.9 4.0 79.8
KB2 18.2 15.3 15.9 18.2 5.1 71.9 17.8 5.0 71.9
LOTFI 20.0 7.1 64.5 25.8 12.3 52.3 50.1 36.2 27.7
RECIPELP 13.9 7.1 48.9 13.9 6.6 52.5 14.0 6.0 57.1
SC105 11.8 7.1 39.8 11.5 5.0 56.5 12.0 5.0 58.3
SC205 12.6 7.7 38.8 12.0 5.0 58.3 12.0 5.0 58.3
SC50A 11.1 7.1 36.0 11.0 4.0 63.6 11.0 4.0 63.6
SC50B 10.0 5.1 49.0 10.0 4.0 60.0 10.0 4.0 60.0
SCAGR25 11.7 9.4 19.6 11.8 4.3 63.5 12.5 4.3 65.6
SCAGR7 10.1 6.5 35.6 10.0 4.0 60.0 9.7 4.0 58.7
SCFXM1 15.2 8.0 47.3 14.9 4.6 69.1 14.4 5.0 65.2
SCSD1 9.1 6.3 30.7 9.3 5.2 44.0 9.2 4.8 47.8
SCTAP1 14.2 9.5 33.0 15.6 6.2 60.2 15.1 5.2 65.5
SHARE1B 21.0 9.4 55.2 21.2 7.0 66.9 22.1 5.6 74.6
SHARE2B 9.6 9.9 −3.1 9.2 5.7 38.0 9.0 5.0 44.4
STOCFOR1 11.5 5.8 49.5 12.3 5.2 57.7 12.1 5.1 57.8
Average 14.1 8.4 38.0 14.7 6.7 55.8 17.7 8.9 58.9

and Meszaros [12]. This includes QP problems from the CUTE test set as well as
quadratic modifications of the NETLIB LP test set used in the previous comparisons.
We have excluded problems that either have free variables (since OOPS currently has
no facility to deal with free variables effectively), or where random perturbations of
the problem data yield the problem primal or dual infeasible. The same methodol-
ogy in perturbing the problems as for the NETLIB LP test set has been used, apart
that perturbations in the objective function will now perturb random elements of c
and Q. The results are displayed in Table 10. As for the LP case we list for each
problem and perturbation the average number of iterations needed by OOPS when
coldstarted and when warmstarted with the best strategy found in section 5.1 over the
10 random runs and 3 perturbation sizes. We also state the percentage of iterations
saved by the warmstart. A blank entry indicates that all 30 random perturbations
lead to primal or dual infeasible problems. The results demonstrate a similar per-
formance of our best combined warmstarting strategy as obtained earlier for the LP
problems.

5.5. Large scale QP problems. Finally we have evaluated our warmstart
strategy in the context of two sources of large scale quadratic problems. In the first
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Table 9

Results (best warmstart)—all perturbations.

Problem b c A
cold warm red cold warm red cold warm red

ADLITTLE 10.4 5.6 46.1 10.2 5.8 43.1 10.5 6.4 39.0
AFIRO 10.1 4.2 58.4 10.4 4.9 52.8 10.0 4.3 57.0
AGG2 16.1 4.2 73.9 16.3 5.1 68.7 16.0 4.5 71.8
AGG3 15.7 5.2 66.8 15.9 5.7 64.1 15.6 5.5 64.7
BANDM 13.7 5.4 60.5 13.7 7.8 43.0 13.6 5.4 60.2
BEACONFD - - - 10.3 4.5 56.3 10.0 4.2 58.0
BLEND 9.0 4.1 54.4 9.1 5.4 40.6 9.0 6.4 28.8
BOEING1 19.9 6.8 65.8 19.4 12.8 34.0 19.5 5.0 74.3
BORE3D - - - 13.1 4.9 62.5 14.1 4.0 71.6
BRANDY - - - 15.3 5.6 63.3 20.0 16.1 19.5
DEGEN2 - - - 9.9 4.7 52.5 44.4 43.3 2.4
E226 15.6 7.5 51.9 15.3 9.5 37.9 15.2 6.4 57.8
GROW15 13.0 4.0 69.2 21.1 11.3 46.4 16.3 9.7 40.4
GROW7 12.0 4.0 66.6 20.8 14.7 29.3 18.2 10.4 42.8
ISRAEL 20.4 4.9 75.9 20.8 5.4 74.0 19.9 4.4 77.8
KB2 17.4 5.0 71.2 17.9 5.6 68.7 18.0 8.4 53.3
LOTFI 19.7 6.1 69.0 21.4 21.4 0.0 31.9 18.5 42.0
RECIPELP 14.1 8.2 41.8 - - - 13.9 6.5 53.2
SC105 12.0 5.0 58.3 11.5 8.7 24.3 11.7 5.7 51.2
SC205 12.0 5.0 58.3 12.6 15.2 -20.6 12.2 5.9 51.6
SC50A 11.0 4.0 63.6 11.0 4.9 55.4 11.0 5.0 54.5
SC50B 10.7 7.4 30.8 10.1 5.2 48.5 10.0 4.3 57.0
SCAGR25 12.2 4.3 64.7 12.4 4.3 65.3 12.0 6.0 50.0
SCAGR7 9.9 4.0 59.5 10.0 4.3 57.0 9.9 4.8 51.5
SCFXM1 14.6 4.9 66.4 14.1 5.1 63.8 14.8 5.8 60.8
SCSD1 10.1 6.8 32.6 9.2 5.0 45.6 9.2 5.4 41.3
SCTAP1 15.0 5.4 64.0 16.0 6.1 61.8 14.9 6.9 53.6
SHARE1B 21.2 5.4 74.5 21.8 6.8 68.8 21.4 7.3 65.8
SHARE2B 9.2 5.1 44.5 9.1 5.7 37.3 9.2 6.8 26.0
STOCFOR1 13.9 5.2 62.5 13.4 5.0 62.6 11.9 5.3 55.4
Average 13.8 5.3 59.6 14.2 7.3 48.4 15.5 8.0 50.9

instance we have solved the capacitated MCNF problem

(25)

min
∑

(i,j)∈E

xij
Kij − xij

,

s.t.
∑

k∈D
x

(k)
ij ≤ Kij , ∀(i, j) ∈ E ,

Nx(k) = d(k), ∀k ∈ D,

x(k) ≥ 0, ∀k ∈ D,

where N is the node-arc incidence matrix of the network, d(k), k ∈ D are the demand
points, Kij is the capacity of each arc (i, j), and xij is the flow along the arc. This is
a nonlinear problem formulation. We have solved it by SQP using the interior point
code OOPS as the QP solver and employing our best combined warmstart strategy
between QP solutions. We have tested this on nine different MCNF models using
from 4–300 nodes, up to 600 arcs, and up to 7021 commodities. The largest problem
in the selection has 353, 400 variables. All solutions have required more than 10 SQP
iterations. Table 11 gives the average number of IPM iterations for each SQP iteration
both for cold- and warmstarting the IPM.
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Fig. 1. Results of LOQO and OOPS on warmstarting NETLIB problems.

As before we achieve between 50 and 60% reduction in the number of interior
point iterations.

Our last test example consists of calculating the complete efficient frontier in a
Markowitz Portfolio Selection problem (see [14]). A Portfolio Selection problem aims
to find the optimal investment strategy in a selection of assets over time. If the value of
the portfolio at the end of the time horizon is denoted by the random variable X , the
Markowitz formulation of the portfolio selection problem requires one to maximize
the final expected wealth E(X) and minimize the associated risk, measured as the
variance Var(X) which are combined into a single objective:

(26) min−E(X) + ρVar(X)
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Table 10

Results QP (best warmstart)—all perturbations.

Problem b c and Q A
cold warm red cold warm red cold warm red

AUG2DCQP 10.0 5.2 48.1 10.0 5.1 49.1 10.9 6.8 37.7
AUG2DQP 10.0 4.1 59.0 10.0 4.1 59.1 10.7 7.0 34.6
AUG3DCQP 8.0 4.0 50.0 8.0 3.8 53.0 8.0 3.7 53.9
AUG3DQP 11.0 5.1 53.4 10.2 5.2 48.9 10.9 4.8 56.3
CVXQP1 S 11.2 5.3 52.9 11.0 5.1 53.8 11.2 5.4 51.7
CVXQP2 M 15.1 4.8 68.1 15.0 5.3 64.5 15.1 5.0 67.1
CVXQP2 S 11.9 6.1 49.2 12.0 6.1 49.0 12.0 6.1 49.4
CVXQP3 M - - - - - - - - -
CVXQP3 S 10.5 6.6 37.1 10.0 5.0 49.9 10.2 6.4 37.2
DUAL1 10.0 4.9 51.2 10.0 5.1 48.6 9.9 5.2 47.6
DUAL2 10.0 5.3 47.1 10.0 4.9 51.1 9.7 4.8 50.7
DUAL3 11.0 6.1 44.1 10.8 5.6 48.0 10.7 5.7 46.5
DUAL4 9.0 4.8 46.9 9.0 5.1 43.1 9.0 5.2 42.2
DUALC1 21.9 3.8 82.6 22.0 4.2 81.1 22.6 4.0 82.4
DUALC2 22.0 3.8 82.6 21.9 3.9 82.0 21.5 3.9 82.0
DUALC5 12.0 3.9 67.9 12.0 4.1 65.4 12.2 3.8 68.4
DUALC8 14.6 3.9 73.2 15.0 4.2 72.3 15.2 3.9 74.5
GOULDQP2 6.0 4.9 18.3 8.0 7.8 2.5 6.0 5.1 14.3
GOULDQP3 9.0 5.0 44.4 9.0 5.1 43.3 9.0 4.9 45.3
HS118 9.0 3.7 59.1 9.0 3.6 59.8 9.0 4.2 53.1
HS21 17.0 6.9 59.5 16.8 6.7 60.3 17.0 7.0 58.7
HS35MOD 9.9 5.8 41.2 9.8 6.0 39.0 9.8 5.9 40.3
HS35 7.0 4.4 37.8 7.1 4.1 42.3 7.0 3.9 44.5
HS53 6.0 5.3 11.9 6.0 5.2 13.7 6.1 4.9 18.6
HS76 7.0 4.1 40.8 7.0 4.1 41.2 7.0 4.0 43.6
HUES-MOD 14.8 5.2 64.6 15.0 4.9 67.5 17.4 12.1 30.4
LOTSCHD 7.9 5.6 29.4 8.0 5.6 29.9 7.6 5.5 28.0
MOSARQP1 7.0 3.9 44.5 7.0 4.1 41.2 7.0 4.4 37.8
MOSARQP2 8.0 4.1 49.2 8.1 4.5 44.2 8.0 3.8 52.0
QPCBOEI1 35.3 23.0 34.8 34.0 22.9 32.4 35.2 23.1 34.3
QPCBOEI2 - - - 20.8 7.2 65.4 28.1 12.3 56.0
STCQP1 - - - 15.0 5.7 61.9 - - -
STCQP2 - - - 15.0 7.1 52.7 15.0 6.9 54.1
TAME 6.0 2.2 63.9 6.0 1.9 67.6 6.0 1.9 68.7
ZECEVIC2 7.0 4.8 32.3 7.1 5.2 26.8 7.0 5.3 24.9
25FV47 38.0 7.5 80.3 38.3 7.3 80.8 38.0 8.2 78.4
ADLITTLE 10.6 5.6 47.4 10.2 5.9 42.6 10.2 5.8 43.4
AFIRO 15.1 4.7 69.2 15.0 6.9 54.0 15.0 4.2 72.0
BEACONFD - - - 10.0 4.2 58.2 10.0 4.2 57.9
BORE3D - - - 15.3 4.7 69.0 15.5 4.1 73.5
BRANDY - - - 12.8 5.5 57.3 14.3 14.3 0.1
E226 14.6 7.3 50.11 14.0 7.9 43.7 13.8 5.0 63.5
ETAMACRO - - - 31.9 10.8 66.0 39.5 18.9 52.2
FFFFF800 63.1 8.6 86.4 61.3 7.0 88.7 56.9 6.6 88.3
GROW15 14.0 5.4 61.6 18.4 13.6 26.1 19.6 10.9 44.5
GROW22 15.9 4.8 69.7 15.6 6.3 59.5 17.0 7.4 56.6
GROW7 15.0 4.9 67.3 21.7 11.5 47.1 17.5 6.5 62.6
ISRAEL 18.9 5.1 73.2 20.1 5.5 72.4 18.4 5.2 71.6
SC205 16.8 7.1 57.6 18.9 19.3 -2.5 17.2 6.9 59.6
SCAGR25J 11.0 4.0 64.1 11.0 3.8 65.3 11.3 4.8 57.2
SCAGR25 11.1 5.0 55.3 11.2 5.2 53.8 11.6 5.3 54.5
SCAGR7 12.4 5.1 59.3 11.8 5.1 56.7 12.0 5.0 58.3
SCFXM1 21.0 7.4 64.6 20.8 7.1 66.0 21.5 7.3 66.1
SCFXM2 23.9 10.7 55.1 23.6 10.5 55.4 24.1 10.8 55.2
SCFXM3 26.6 13.5 49.2 24.5 13.2 46.2 27.8 13.6 51.1
SCORPION - - - 12.1 3.1 74.3 - - -
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Table 10

Continued.

Problem b c and Q A
cold warm red cold warm red cold warm red

SCRS8 19.6 8.6 56.1 19.6 5.4 72.5 20.0 8.1 59.4
SCSD1 10.8 6.8 36.4 10.2 5.3 48.2 10.2 5.3 47.6
SCSD6 10.9 7.1 34.6 11.4 4.8 58.3 11.1 7.0 37.3
SCSD8 9.0 4.0 55.2 11.3 6.0 46.7 11.4 11.5 -0.2
SCTAP1 13.9 5.5 60.3 15.7 6.5 58.7 15.0 7.5 49.6
SCTAP2 16.0 4.4 72.2 17.9 6.0 66.1 15.1 4.7 68.9
SCTAP3 16.9 5.2 69.5 17.9 6.6 63.1 16.5 5.6 66.2
SEBA 53.3 24.3 54.3 53.7 22.8 57.6 53.5 23.7 55.6
SHARE1B 20.1 6.2 69.2 20.6 6.5 68.6 19.2 6.6 65.8
SHARE2B 24.9 15.1 39.2 24.3 14.9 39.0 25.9 16.8 35.2
SHELL 20.0 7.5 62.3 20.1 6.9 65.8 20.5 9.6 53.4
SHIP04L - - - 11.9 3.7 68.7 11.6 12.0 -3.7
SHIP04S - - - 12.0 4.0 66.8 11.6 11.1 4.3
SHIP08L - - - 11.0 5.0 54.1 11.1 13.3 -19.7
SHIP08S - - - 11.0 4.1 62.4 11.1 9.3 16.4
SHIP12L - - - 16.0 5.1 67.8 14.7 11.4 22.3
SHIP12S - - - 14.4 6.1 57.7 14.2 15.0 -5.1
SIERRAJG - - - 37.4 5.5 85.3 - - -
SIERRA - - - 38.3 5.1 86.7 - - -
STANDATA 23.0 17.8 22.7 17.4 5.2 70.0 17.9 4.9 72.8
Average 11.5 5.3 53.9 11.8 5.6 52.5 11.9 5.9 50.4

Table 11

Capacitated MCNF solved by warmstarted IPM-SQP.

iter 1 2 3 4 5 6 7 8 9 10
cold 12.7 11.9 13.7 15.8 16.2 15.6 14.9 14.6 14.5 15.0
warm 12.7 7.0 6.0 5.8 6.4 7.0 7.0 6.7 6.2 6.0
red 0.0 41.2 56.2 63.3 60.5 55.1 53.0 54.1 57.2 60.0

which leads to a QP problem. We use the multistage stochastic programming version
of this model (described in [7]). This formulation leads to very large problem sizes.

The parameter ρ in (26) is known as the Risk Aversion Parameter and captures
the investor’s attitude to risk. A low value of ρ will lead to a riskier strategy with a
higher value for the final expected wealth, but a higher risk associated with it.

Often the investor’s attitude to risk is difficult to capture a priori in a single
parameter. A better decision tool is the efficient frontier, a plot of E(X) against
the corresponding Var(X) values for different settings of ρ. Computing the efficient
frontier requires the solution of a series of problems for different values of ρ. Apart
from this all the problems in the sequence are identical, which makes them prime
candidates for a warmstarting strategy (although see [3] for a different approach).
Table 12 gives results for four different problem sizes with up to 192 million variables
and 70 million constraints. For each problem the top line gives the number of iterations
a coldstarted IPM needs to solve the problem for a given value of ρ, whereas the
middle line gives the number of iterations when warmstarting each problem from the
one with the next lowest setting of ρ. The last line gives the percentage saving in IPM
iterations. Again we are able to save in the range of 50 and 60% of IPM iterations.
As far as we are aware these are the largest problems to date for which an interior
point warmstart has been employed.
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Table 12

Computation of efficient frontier with IPM warmstarts.

variables (n) ρ =
constraints (m) 1e-3 5e-3 0.01 0.05 0.1 0.5 1 5 10

n = 223.321
cold 14 14 14 14 14 13 17 16 17

m = 76.881
warm 14 5 5 5 4 5 5 8 8
red 0.0 64.2 64.2 64.2 71.4 61.5 70.5 50.0 52.9

n = 533.725
cold 14 14 14 14 14 15 18 18 17

m = 198.525
warm 14 5 5 5 6 5 5 9 10
red 0.0 64.3 64.3 64.3 57.1 66.7 72.2 50.0 41.2

n = 16.316.191
cold 24 23 24 23 25 22 24 23 24

m = 5.982.604
warm 24 8 11 13 11 13 12 12 14
red 0.0 65.2 54.2 43.5 56.0 40.9 50.0 47.8 41.7

n = 192.478.111
cold 52 53 45 43 44 42 44 46 46

m = 70.575.308
warm 52 13 13 15 15 16 16 23 25
red 0.0 75.5 71.1 65.1 65.9 61.9 63.6 50.0 45.6

6. Conclusions. In this paper we have compared the effectiveness of various in-
terior point warmstarting schemes on the NETLIB base test set suggested by [1]. We
have categorized warmstarting strategies into modification strategies and unblocking
strategies. Modification strategies are aimed at modifying an advanced iterate from a
previous solution of a nearby problem before it is used to warmstart an IPM, whereas
unblocking strategies aim to directly address the negative effect known as blocking
which typically affects a “bad” warmstart in the first few iterations. We suggest a new
unblocking strategy based on sensitivity analysis of the step direction with respect to
the current point. In our numerical tests we obtain an optimal combination of mod-
ification and unblocking strategies (including the new strategy based on sensitivity
analysis) and are subsequently able to save an average of 50 and 60% of interior point
iterations on a range of LP and QP problems varying from the small scale NETLIB
test set to problems with over 192 million variables.

Acknowledgment. We would like to thank the anonymous referees for their
constructive comments that helped to improve this paper.
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UNCERTAIN CONVEX PROGRAMS∗
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Abstract. Many optimization problems are naturally delivered in an uncertain framework, and
one would like to exercise prudence against the uncertainty elements present in the problem. In pre-
vious contributions, it has been shown that solutions to uncertain convex programs that bear a high
probability to satisfy uncertain constraints can be obtained at low computational cost through con-
straint randomization. In this paper, we establish new feasibility results for randomized algorithms.
Specifically, the exact feasibility for the class of the so-called fully-supported problems is obtained.
It turns out that all fully-supported problems share the same feasibility properties, revealing a deep
kinship among problems of this class. It is further proven that the feasibility of the randomized
solutions for all other convex programs can be bounded based on the feasibility for the prototype
class of fully-supported problems. The feasibility result of this paper outperforms previous bounds
and is not improvable because it is exact for fully-supported problems.

Key words. uncertain optimization, randomized methods, convex optimization, semi-infinite
programming, robust optimization, chance-constrained
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1. Introduction. Uncertain convex optimization [21, 24, 25] deals with convex
optimization in which the constraints are imprecisely known:

UP : min
x∈X⊆Rd

cTx

subject to: x ∈ Xδ, δ ∈ Δ,(1)

where UP stands for uncertain program, δ ∈ Δ is an uncertain parameter, and X
and Xδ are convex and closed sets. Oftentimes, Δ is a set of infinite cardinality. The
fact that the optimization objective is linear and does not carry any dependence on
δ, that is, it is certain, is without loss of generality.

UP encompasses as special cases uncertain linear programs (LP), uncertain quad-
ratic programs (QP), uncertain second-order cone programs (SOCP), and uncertain
semi-definite programs (SDP) and plays a central role in many design endeavors such
as [1, 15, 17, 14, 9, 24, 11, 6].

Dealing with uncertainty can be done along two distinct approaches. The first
one consists in enforcing satisfaction of all constraints; that is, one optimizes the
cost cTx over the set

⋂
δ∈Δ Xδ (see [2, 16, 3, 4]). Alternatively, one may want to

satisfy the constraints with “high probability.” Along this second approach one sees
the uncertainty parameter δ as a random element with a probability P and seeks
a solution that violates at most a fraction of constraints having small P-probability
(chance-constrained solution). Depending on the optimization problem at hand, P
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can have different interpretations. Sometimes, it is the actual probability with which
the uncertainty parameter δ takes on value in Δ. Other times, it simply describes the
relative importance attributed to different instances of δ. The use of a probabilistic
description of uncertainty has a long history in optimization theory and dates back
to the work [10] of Charnes and Cooper in the 1950s that in effect gave birth to
the chance-constrained approach. See also [21, 22, 12, 25] for more information and
[5] for a more in-depth comparison between deterministic and probabilistic uncertain
optimization.

It is a fact that finding a solution carrying a high probability of constraint satisfac-
tion is in general a very difficult task to achieve [21]. To circumvent this computational
issue, recently, methodologies relying on the randomization over the set of constraints
have been introduced [11, 5, 20, 6, 13]. Specifically, in [5, 6], the following randomized
program RPN is introduced, where N constraints δ(1), . . . , δ(N) randomly extracted
according to P in an independent fashion are simultaneously enforced:

RPN : min
x∈X⊆Rd

cTx

subject to: x ∈
⋂

i∈{1,...,N}
Xδ(i) .

RPN is also known as “scenario program.”
The distinctive feature of RPN is that it is a program with a finite number of

constraints, and, as such, it can be solved at low computational cost provided that N
is not too large;1 it is indeed a fact that RPN has opened up new resolution avenues
in uncertain optimization. On the other hand, the obvious question to ask is how
feasible the solution of RPN is; that is, how large the fraction of original constraints
in Δ that are possibly violated by the solution x∗N of RPN is. Papers [5, 6] have
pioneered a feasibility theory showing that x∗N is feasible for the vast majority of the
other unseen constraints—those that have not been used when optimizing according
to RPN—and this result holds in full generality, independently of the structure of the
set of constraints Δ and the probability P. So the vast majority of constraints take
care of themselves, without explicitly accounting for them.

To allow for a sharper comparison with the results presented in this paper, we
feel advisable to first recall in some detail the results in [5, 6]. The following notion
of violation probability from [5] is central.

Definition 1 (violation probability). The violation probability of a given x ∈ X
is defined as V (x) = P{δ ∈ Δ : x /∈ Xδ}.

The problem addressed in [5, 6] is to evaluate if and when the violation probability
of x∗N , namely, V (x∗N ), is below a satisfying level ε. To state the result precisely, note
that V (x∗N ) is a random variable since the solution x∗N of RPN is, due to the fact
that it depends on the random extractions δ(1), . . . , δ(N). Thus, V (x∗N ) ≤ ε may hold
for certain extractions δ(1), . . . , δ(N), while V (x∗N ) > ε may be true for others. The
following quantification of the “bad” extractions where V (x∗N ) > ε is the key result
of [6]:

(2) P
N{V (x∗N ) > ε} ≤

(
N

d

)
(1 − ε)N−d.

1Depending on Δ and P, the generation of N randomly extracted scenarios δ(1) , . . . , δ(N) from
Δ can in itself be a nontrivial problem, and the reader is referred to [27, 8, 7] for further discussion
on this issue.
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Moving a fundamental step forward with respect to [6], in this paper we establish the
validity of relation

(3) P
N{V (x∗N ) > ε} =

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

(note that (3) holds with “=”; that is, it is not a bound) for the prototype class
of fully-supported problems according to Definition 3 in section 2. This result sheds
new light on a deep kinship among all fully-supported problems, proving that their
randomized solutions share the same violation properties, and writes a final word on
the violation assessment for this type of problems.

It is further proven in this paper that the right-hand side of (3) is an upper bound
for all convex problems; that is,

(4) P
N{V (x∗N ) > ε} ≤

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

holds for all convex problems. Thus, in a real optimization problem one does not need
to verify whether the problem is fully-supported or not, and

∑d−1
i=0

(
N
i

)
εi(1 − ε)N−i

can always be used as an upper bound for P
N{V (x∗N ) > ε}. This result (4) (i) cannot

be improved (being tight for the prototype class of fully-supported problems) and (ii)
outperforms the previous bound from [6] at times by a huge extent (note that when
ε → 0, the previous bound (2) tends to

(
N
d

)
, while the new bound (4) goes naturally

to 1!).

2. Main result. The technical result of this paper is precisely stated in this
section, followed by a discussion on the significance of the result.

For a fixed integer m and fixed given constraints δ(1), . . . , δ(m), program

Pm : min
x∈X⊆Rd

cTx

subject to: x ∈
⋂

i∈{1,...,m}
Xδ(i)(5)

is called a finite instance with m constraints of the uncertain optimization program
UP in (1). For the time being, we make the following assumption.

Assumption 1. Every Pm is feasible, and its feasibility domain has a nonempty
interior. Moreover, the solution x∗m of Pm exists and is unique.

The existence and uniqueness of x∗m are here assumed to streamline the presen-
tation. The reader is referred to point 5 in the discussion in section 2.1 to see how
these assumptions can be removed.

We recall the following fundamental definition and proposition. Definition 2 was
introduced in [5], while Proposition 1 was originally stated in a slightly different but
equivalent way in [18].

Definition 2 (support constraint). Constraint δ(r), r ∈ {1, . . . ,m}, is a support
constraint for Pm if its removal changes the solution of Pm.

Proposition 1. The number of support constraints for Pm is at most d, the size
of x.

Suppose now that Δ is endowed with a σ-algebra D and that a probability P

over D is assigned. Further assume that m constraints δ(1), . . . , δ(m) are randomly
extracted from Δ according to P in an independent fashion. Differently stated, the
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optimization
direction

Δm

(δ(1), . . . , δ(m))

X

x∗
m

RPm

Pm

Fig. 1. RPm, a map from constraint multiextractions to finite instances Pm of the optimization
problem.

multiextraction (δ(1), . . . , δ(m)) is a random element from the probability space Δm

equipped with the product probability P
m. Each multiextraction (δ(1), . . . , δ(m)) gen-

erates a program Pm, and the map from Δm to Pm programs is a randomized program
RPm; see Figure 1. Note that this is the same as RPN in section 1 with the only
difference being that we have used here m to indicate the number of constraints, a
choice justified by the fact that in this section m plays the role of a generic running ar-
gument taking on any integer value, while N represents in section 1 the fixed number
of constraints picked by the user for the implementation of the randomized scheme.

We are now ready to introduce the notion of a fully-supported problem.
Definition 3 (fully-supported problem). A finite instance Pm, with m ≥ d, is

fully-supported if the number of support constraints of Pm is exactly d. Problem UP
is fully-supported if, for any m ≥ d, RPm is fully-supported with probability 1.

The main result of this paper is now stated in the following theorem.
Theorem 1. Under Assumption 1,2 it holds that

(6) P
N{V (x∗N ) > ε} ≤

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i;

moreover, the bound is tight for all fully-supported uncertain optimization problems;
that is,

(7) P
N{V (x∗N ) > ε} =

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i.

The proof is given in section 3. The measurability of {V (x∗N ) > ε}, as well as the
measurability of other sets, is assumed in this paper.

One interpretation of Theorem 1 is that the randomized solution is, with high
probability, a feasible solution for a chance-constrained problem; see [21].

2.1. Discussion. The following comments are in order.
1. Equation (7) delivers the exact probability distribution of the violation V (x∗N )

for all fully-supported problems. Since (7) holds independently of the nature and
characteristics of the fully-supported problem, it establishes a fundamental kinship
among problems of this prototype class.

2See point 5 in section 2.1 for relaxations of this assumption.
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Table 1

β vs. βold for different values of N (ε = 0.05, d = 10).

N 150 300 450 600 750

β 0.78 0.06 8.8 10−4 4.8 10−6 1.5 10−8

βold 8.8 1011 4.8 1011 1.3 1010 1.1 108 4.8 105

N 900 1050 1200 1350 1500

β 3.5 10−11 6.2 10−14 9.2 10−17 1.2 10−19 1.4 10−22

βold 1.3 103 2.9 5.1 10−3 7.5 10−6 9.9 10−9

Table 2

N vs. Nold for different values of ε (β = 10−5, d = 10).

ε 0.1 0.05 0.025 0.01 0.005 0.0025 0.001

N 285 581 1171 2942 5895 11749 29513
Nold 579 1344 3035 8675 18943 41008 112686

Bound (6) further asserts that all possible sources of non-fully-supportedness can
only improve the feasibility properties of the problem.

2. The quantity β :=
∑d−1
i=0

(
N
i

)
εi(1 − ε)N−i in the right-hand side of (6) and (7)

is the tail of a binomial distribution and goes rapidly (exponentially) to zero as N
increases. Letting βold :=

(
N
d

)
(1 − ε)N−d (bound in (2) from [6]), Table 1 provides a

comparison between β and βold.
3. A typical use of Theorem 1 consists in selecting ε (violation parameter) and

β (confidence parameter) in (0, 1) and then computing the smallest number N of
constraints to be extracted in order to guarantee that P

N{V (x∗N ) > ε} ≤ β by solving
equation β =

∑d−1
i=0

(
N
i

)
εi(1 − ε)N−i for N . In Table 2, the values of N and of Nold

obtained by using the bound in (2) are displayed for different values of ε, β = 10−5

and d = 10.
4. A simple example illustrates Theorem 1.
N = 1650 points are independently extracted in R

2 according to an unknown
probability density P, and the strip of smaller vertical width that contains all of the
points is constructed; see Figure 2.

In mathematical terms—letting the points be (u(i), y(i)), i = 1, . . . , N , where u
is the horizontal coordinate and y is the vertical coordinate—this amounts to solving
the following program:

PN : min
x1,x2,x3∈R3

x1

subject to:
∣∣y(i) − [x2u

(i) + x3]
∣∣ ≤ x1, i = 1, . . . , N,

where [x2u
(i) +x3] is the median line of the strip and x1 is the semiwidth of the strip.

What guarantee do we have that the strip contains at least 99% of the probability
mass of P?

One can easily recognize that this question is the same as asking for a guarantee,
or a probability, that the violation is less than ε = 0.01, and the answer can be found
in Theorem 1: this probability is no less than 1 −

∑2
i=0

(
1650
i

)
0.01i(1 − 0.01)1650−i ≈

1−10−5. As a matter of fact, this probability is exact since, as it can be verified, this
problem is fully-supported.

We can further ask for a different geometrical construction and look for the disk
of smaller radius that contains all points; see Figure 3. Again, we are facing a finite
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y = x∗
2u+ x∗

3

x∗
1

Fig. 2. Strip of smaller vertical width.

x∗
2, x

∗
3

x∗
1

Fig. 3. Disk of smaller radius.

convex program

PN : min
x1,x2,x3∈R3

x1

subject to:
√

(u(i) − x2)2 + (y(i) − x3)2 ≤ x1, i = 1, . . . , N,

where (x2, x3) is the center of the disk and x1 is its radius, and again we can claim
with confidence 1 − 10−5 that the constructed disk will contain at least 99% of the
probability mass. In this disk case, the figure 1 − 10−5 is a lower bound since the
problem is not fully-supported, as it can be easily recognized by noting that a config-
uration with two points away from each other and all of the other points concentrated
near the midposition of the first two points generates a disk where the segment joining
the first two points is a diameter and only these two points are of support.

Finally, let us compare the probability 1 − 10−5 with the probability that would
have been obtained by applying the previous bound (2) from [6]. Applying the latter,
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we would find that this probability is no smaller than 1 − 48.4 = −47.4, a nega-
tive number clearly devoid of any meaning and that does not allow us to draw any
conclusion as far as the confidence is concerned.

5. Here we discuss the assumption of the existence and uniqueness of the solution
of Pm. Suppose first that the solution exists but it may be nonunique. Then, the tie
can be broken by selecting among the optimal solutions the one with the minimum
Euclidian norm, and one can prove that Theorem 1 holds unchanged.

If we further relax the assumption that the solution exists (note that the solution
may not exist even if Pm is feasible since the solution can drift away to infinity),
extending Theorem 1 we can show that

P
N{x∗N exists, and V (x∗N ) > ε} ≤

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i,

where x∗N is unique after applying the tie-break rule as above. In words, this result
says that, when a solution is found, its violation exceeds ε with small probability only.
In normal problems the nonexistence of the solution is a rare event whose probability
exponentially vanishes with N .

3. Proof of Theorem 1. We first prove that P
N{V (x∗N ) > ε} =

∑d−1
i=0

(
N
i

)
εi(1−

ε)N−i for fully-supported problems and then that P
N{V (x∗N ) > ε} ≤

∑d−1
i=0

(
N
i

)
εi(1 −

ε)N−i for every problem.

PART 1: P
N{V (x∗

N) > ε} =
∑∑∑d−1

i=0

(N
i

)
εi(1 − ε)N−i FOR FULLY-

SUPPORTED PROBLEMS. Consider the solution x∗d of RPd (recall that d is
the size of x), and let

(8) F (α) := P
d{V (x∗d) ≤ α}

be the probability distribution of the violation of x∗d. It is a remarkable fact that this
distribution is

(9) F (α) = αd,

independent of the problem type.
To prove (9), we have to consider multiextractions of m elements, where m is a

generic integer greater than or equal to d. To each multiextraction (δ(1), . . . , δ(m)) ∈
Δm, associate the indexes of the corresponding d support constraints (this is al-
ways possible except for a probability 0 set because the problem is fully-supported).3

Further, group all multiextractions having the same indexes. In this way,
(
m
d

)
sets

SI are constructed forming a partition (up to a probability 0 set) of Δm, where
I ⊂ {1, . . . ,m} is a set of cardinality d containing the indexes of the support con-
straints. We claim that the probability of each of these sets is

(10) P
m{SI} =

∫ 1

0

(1 − α)m−dF (dα),

where F (α) is defined in (8); using (10), later on in the proof, we shall show that
F (α) must have the expression in (9).

3The fact that a fully-supported problem is one where the RPm are fully-supported with proba-
bility 1, as opposed to always fully-supported, is a source of a bit of complication in the proof. On
the other hand, requiring always fully-supportedness is too limitative since, e.g., extracting the same
constraint m times results in a non-fully-supported Pm.
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To establish (10) in a more concrete way, consider one of the sets SI , e.g., the set
SĪ where the support constraints indexes are 1, . . . , d. Also let S̃Ī be the set where
δ(d+1), . . . , δ(m) are not violated by the solution generated by δ(1), . . . , δ(d). It is an
intuitive fact that SĪ and S̃Ī are the same up to a probability 0 set. To streamline the
presentation, we accept in the following this fact for granted; however, the interested
reader can find full details at the end of this Part 1 of the proof.

We next compute P
m{S̃Ī}, which is the same as P

m{SĪ}.
Select fixed values for δ̄(1), . . . , δ̄(d), and let α be the violation of the solution

with these d constraints only. Then, the probability that δ(d+1), . . . , δ(m) fall in the
nonviolated set, that is, (δ̄(1), . . . , δ̄(d), δ(d+1), . . . , δ(m)) ∈ S̃Ī , is (1 − α)m−d.

Integrating over the domain Δd for (δ̄(1), . . . , δ̄(d)), we then have

P
m
{
S̃Ī

}
= [letting x∗Ī be the solution with constraints δ̄(1), . . . , δ̄(d) only]

=
∫

Δd

(1 − α(x∗Ī))m−d
P
d(dδ̄(1), . . . ,dδ̄(d))

=
∫ 1

0

(1 − α)m−dF (dα),

where the third equality is a change of variables from the domain (δ̄(1), . . . , δ̄(d)) to
that of the violation of the corresponding solution.

Since P
m{SĪ} = P

m{S̃Ī} and this probability is the same for any other set SI ,
(10) remains proven.

Now turn back to (9). Recalling that the sets SI form a partition of Δm up to a
probability 0 set and that P

m{Δm} = 1, (10) yields

(11)
(
m

d

)∫ 1

0

(1 − α)m−dF (dα) = 1 ∀m ≥ d.

Expression F (α) = αd in (9) is indeed a solution of (11) (integration by parts); on
the other hand, no other solutions exist since determining an F satisfying (11) is a
moment problem for a distribution with finite support, and its solution is unique; see,
e.g., Chapter II, section 12.9, Corollary 1 of [26]. Thus, it remains proven that F (α)
must have the expression (9).

To conclude the proof of Part 1, consider now the problem with N constraints and
partition set {(δ(1), . . . , δ(N)) : V (x∗N ) > ε} by intersecting it with the

(
N
d

)
sets SI

grouping multiextractions such that the d support constraints have the same indexes.
We then have

P
N{V (x∗N ) > ε}

= P
N
{
∪I {V (x∗N ) > ε and x∗N is supported by the constraints

with indexes in I}
}

= [IA is the indicator function of set A; i.e., IA = 1 over A, and IA = 0 otherwise]

=
(
N

d

)∫
Δd

(1 − α(x∗Ī))N−d
I{α(x∗

Ī)>ε}P
d(dδ̄(1), . . . ,dδ̄(d))

=
(
N

d

)∫ 1

ε

(1 − α)N−d F (dα)
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= [since F (dα) = dαd−1 dα]

=
(
N

d

)∫ 1

ε

[
(1 − α)N−ddαd−1

]
dα

= [integrating by parts]

=
(
N

d

)[
− (1 − α)N−d+1

N − d+ 1
dαd−1

∣∣∣∣1
ε

+
∫ 1

ε

(1 − α)N−d+1

N − d+ 1
d(d− 1)αd−2 dα

]

=
(

N

d− 1

)
εd−1(1 − ε)N−d+1 +

(
N

d− 1

)∫ 1

ε

(1 − α)N−d+1(d− 1)αd−2 dα

= · · ·

=
(

N

d− 1

)
εd−1(1 − ε)N−d+1 + . . .+

(
N

1

)
ε(1 − ε)N−1 +

(
N

1

)∫ 1

ε

(1 − α)N−1 dα

=
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i.

Proof of the fact that SĪ = S̃Ī up to a probability zero set.
SĪ ⊆ S̃Ī : Take a (δ(1), . . . , δ(m)) ∈ SĪ and eliminate a constraint among δ(d+1),

. . . , δ(m). Since this constraint is not of support, the solution remains unchanged;
moreover, it is easy to see that the first d constraints are still the support constraints
for the problem with m− 1 constraints. If we now remove another constraint among
those which are not of support, the conclusion is similarly drawn that the solution
remains unchanged and that the first d constraints are still the support constraints
for the problem with m − 2 constraints. Proceeding this way until all constraints
but the first d are removed, we obtain that the solution with the sole d support
constraints δ(1), . . . , δ(d) in place is the same as the solution with all m constraints.
Since no constraint among δ(d+1), . . . , δ(m) can be violated by the solution with all m
constraints and such a solution is the same as the one with only the first d constraints,
it follows that (δ(1), . . . , δ(m)) ∈ S̃Ī .

S̃Ī ⊆ SĪ up to a probability 0 set: Suppose now that δ(d+1), . . . , δ(m) are
not violated by the solution generated by δ(1), . . . , δ(d), i.e., (δ(1), . . . , δ(m)) ∈ S̃Ī . A
simple reasoning reveals that (δ(1), . . . , δ(m)) does not belong to any one of sets SI ,
I 
= Ī. In fact, adding nonviolated constraints to δ(1), . . . , δ(d) does not change the
solution, and each of the added constraints can be removed back without altering the
solution. Therefore, none of the constraints δ(d+1), . . . , δ(m) can be of support, and
hence the multiextraction is not in SI , I 
= Ī. It follows that S̃Ī is a subset of the
complement of ∪I,I�=ĪSI , which is SĪ up to a probability 0 set.

PART 2: P
N{V (x∗

N) > ε} ≤ ∑∑∑d−1
i=0

(N
i

)
εi(1 − ε)N−i FOR EVERY

PROBLEM. A non-fully-supported problem admits with nonzero probability ran-
domized instances where the number of support constraints is less than d. A support
constraint has to be an active constraint, and the typical reason for a lack of support
constraints is that at the optimum the active constraints are less than d; see Figure
4. To carry on a proof along lines akin to those for the fully-supported case, we are
well-advised to generalize the notion of solution to that of ball-solution; a ball-solution
has always at least d active constraints. For simplicity, we henceforth assume that
constraints are not trivial, i.e., Xδ 
= R

d ∀δ ∈ Δ.
Roughly speaking, given an optimization problem whose solution is x∗m, its ball-

solution is a ball centered in x∗m and whose radius has been enlarged until the ball
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Fig. 4. A two-dimensional problem with only one active constraint which is of support.

Fig. 5. Ball-solution.

touches the frontier of d constraints. See Figure 5 for an example of a ball-solution.
The mathematical definition of a ball-solution is as follows.

Definition 4 (ball-solution). Consider a finite instance Pm of UP with m ≥ d,
and let x∗m be its solution. The ball-solution B(x∗m, r

∗
m) of Pm is the largest closed

ball centered in x∗m fully contained in the feasibility domain of all constraints, with
the exception of at most d− 1 of them; i.e., Xδ(i) ∩B(x∗m, r

∗
m) = B(x∗m, r

∗
m) for all i’s,

except at most d− 1 of them.
Note also that, when active constraints are d or more, r∗m = 0 and B(x∗m, r∗m)

reduces to the standard solution x∗m. Moreover, a ball-solution B(x∗m, r
∗
m) need not

be contained in X , although its center x∗m does.
The notion of active constraint can be generalized to balls by saying that a con-

straint is active for a ball if the ball touches the frontier of the constraint. If in
addition the ball is fully contained in the constraint, then the constraint is said to be
strictly active. See Figure 6 for a graphical illustration of active and strictly active
constraints for a ball, while the precise definition is as follows.
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δδ

B(x, r)
B(x, r)

Fig. 6. Active and strictly active constraints for a ball.

δ(1)

δ(2)

δ(3)

Fig. 7. Only δ(1) is a ball-support constraint.

Definition 5 (active constraint for a ball). A constraint δ is active for a ball
B(x, r) if Xδ ∩ B(x, r) 
= ∅ and Xδ ∩ B(x, r + h) 
= B(x, r + h) ∀h > 0. If in addition
Xδ ∩ B(x, r) = B(x, r), Xδ is said to be strictly active.

If the ball is a single point, active and strictly active are the same and reduce to
the standard notion of active.

By construction, a ball-solution has at least d active constraints. To go back to
the track of the proof in Part 1, however, we need d support constraints, not just
active constraints. The following definition naturally extends the notion of support
constraint to the case of ball-solutions.

Definition 6 (ball-support constraint). Constraint δ(r), r ∈ {1, . . . ,m}, is a
ball-support constraint for Pm if its removal changes the ball-solution of Pm.

An active constraint is not necessarily a ball-support constraint, nor does a Pm
necessarily have to have d ball-support constraints (see Figure 7, where δ(2) and δ(3)

are not of support). It is clear that the number of ball-support constraints is less
than or equal to d. The case with less than d ball-support constraints is regarded as
degenerate and needs to be treated separately. We thus split the remaining part of
the proof in two sections: Part 2a (fully-ball-supported problems) and Part 2b (de-
generate problems). Before proceeding, we are well-advised to give a formal definition
of fully-ball-supported problems.
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Definition 7 (fully-ball-supported problem). A finite instance Pm, with m ≥ d,
is fully-ball-supported if the number of ball-support constraints of Pm is d. Problem
UP is fully-ball-supported if, for any m ≥ d, RPm is fully-ball-supported with proba-
bility 1.

PART 2a: FULLY-BALL-SUPPORTED PROBLEMS. We start by in-
troducing the notion of a constraint violated by a ball: a constraint δ is violated
by B(x, r) if Xδ ∩ B(x, r) 
= B(x, r). The definition of probability of violation then
generalizes naturally to the ball case.

Definition 8 (violation probability of a ball). The violation probability of a
ball B(x, r), x ∈ X , is defined as VB(x, r) = P{δ ∈ Δ : Xδ ∩ B(x, r) 
= B(x, r)}.

Clearly, for any x, VB(x, r) ≥ V (x). Hence, if B(x∗N , r
∗
N ) is the ball-solution of

RPN , we have

(12) P
N{V (x∗N ) > ε} ≤ P

N{VB(x∗N , r
∗
N ) > ε}.

Below, we show that a result similar to (7) holds for fully-ball-supported problems,
namely,

(13) P
N{VB(x∗N , r

∗
N ) > ε} =

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i,

and this result together with (12) leads to the thesis

P
N{V (x∗N ) > ε} ≤

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i.

The proof of (13) is verbatim the same as the proof of Part 1 provided that one
substitutes

- solution with ball-solution,
- support constraint with ball-support constraint,
- violation probability V with violation probability of a ball VB,

with only one exception: the part where we proved that SĪ ⊆ S̃Ī has to be modified
in a way that we spell out in the following.

The first rationale to conclude that “the solution with only the d support con-
straints δ(1), . . . , δ(d) in place is the same as the solution with all m constraints” is still
valid and leads in our present context to the fact that the ball-solution with only the
d ball-support constraints δ(1), . . . , δ(d) in place is the same as the ball-solution with
all m constraints. Instead, the last argument with which we concluded that SĪ ⊆ S̃Ī
is no longer valid since ball-solutions can violate constraints.

To amend it, suppose for the purpose of contradiction that a constraint among
δ(d+1), . . . , δ(m), say, δ(d+1), is violated by the ball-solution with d constraints. Two
cases can occur: (i) the ball-solution has only one strictly active constraint among
δ(1), . . . , δ(d); or (ii) it has more than one. In case (i), d − 1 constraints among
δ(1), . . . , δ(d) are violated by the ball-solution so that, with the extra δ(d+1) violated
constraint, the number of violated constraints of the ball-solution with m constraints
would add up to at least d, and this contradicts the definition of ball-solution. If
instead (ii) is true, a simple thought reveals that, with one more constraint δ(d+1)

violated by the ball-solution, the strictly active constraints (which, in this case, are
more than one) cannot be of ball-support for the problem with m constraints, and
this contradicts the fact that (δ(1), . . . , δ(m)) ∈ SĪ .
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PART 2b: DEGENERATE PROBLEMS. For not being fully-ball-supported,
a finite problem Pm needs to have more than one strictly active constraint, a circum-
stance which requires that constraints are not “generically” distributed. This obser-
vation is at the basis of the rather technical proof of Part 2b, which proceeds along
the following steps:

Step 1. A constraint “heating” is introduced; heating scatters constraints around,
and the resulting heated problem is shown to be fully-ball-supported;
by resorting to the result in Part 2a, conclusions are derived about the
violation properties of the heated problem.

Step 2. It is shown that the solution of the original problem is recovered by
cooling the heated problem down.

Step 3. The violation properties of the original (nonheated) problem are deter-
mined from the violation properties of the heated problem by a limiting
process.

Step 1 (heating). Let Δ′ := Δ × Bρ, where ρ > 0 is the heating parameter and
Bρ ⊂ R

d is the closed ball centered in the origin with radius ρ, and let P
′ := P×U be

the probability in Δ′ obtained as the product probability between P and the uniform
probability U in Bρ. Each z ∈ Bρ represents a constraint translation, and the heated
uncertain program (HUP) is defined as

HUP : min
x∈X⊆Rd

cTx

subject to: x ∈ [Xδ + z], (δ, z) ∈ Δ′,

where [Xδ+z] is set Xδ translated by z, and the new uncertain parameter (δ, z) allows
for different selections of Xδ constraints as well as for any translation z in Bρ. We
show that HUP is fully-ball-supported.

To start with, consider a given deterministic ball B(x, r). We first prove that the
strictly active constraints δ′ ∈ Δ′ for B(x, r) form a set of zero-probability P

′, and
later on from this we shall conclude that HUP is fully-ball-supported.

Let δ′ = (δ, z), and IA indicate the indicator function of set A, and write

P
′{δ′ is strictly active for B(x, r)}

=
∫

Δ′
I{δ′ is strictly active for B(x,r)}P

′(dδ′)

= [by Fubini’s theorem [23]]

=
∫

Δ

[∫
Bρ

I{(δ,z) is strictly active for B(x,r)}
dz

Vol(Bρ)

]
P(dδ).(14)

The result that

(15) P
′{δ′ is strictly active for B(x, r)} = 0

is established by showing that the term within square brackets in (14) is null for all
δ’s.

Fix a δ, and let C = {z ∈ Bρ : B(x, r) ⊆ [Xδ + z]} be the set of transla-
tions not violating B(x, r). We show that C is convex and that the set {z ∈ Bρ :
(δ, z) is strictly active for B(x, r)} belongs to ∂C, the boundary of C. Since the



1224 M. C. CAMPI AND S. GARATTI

boundary of a convex set has zero Lebesgue measure,4 the desired result that the term
within square brackets in (14) is null follows, viz.

(16)
∫
Bρ

I{(δ,z) is strictly active for B(x,r)}
dz

Vol(Bρ)
= 0.

The convexity of C is immediate: let z1, z2 ∈ C, that is, B(x, r) ⊆ [Xδ + z1] and
B(x, r) ⊆ [Xδ + z2], or, equivalently, B(x, r) − z1 ⊆ Xδ and B(x, r) − z2 ⊆ Xδ. From
the convexity of Xδ, it follows that B(x, r)−αz1 − (1−α)z2 ⊆ Xδ ∀α ∈ [0, 1]; that is,
αz1 + (1 − α)z2 ∈ C and C is convex.

Consider now an interior point z of C (if any); i.e., there exists a ball centered in
z all contained in C. This means that [Xδ + z] can be moved around in all directions
by a small quantity, and B(x, r) remains contained in it. It easily follows that (δ, z)
cannot be strictly active, and, thus, {z ∈ Bρ : (δ, z) is strictly active for B(x, r)} has
to belong to ∂C.

Wrapping up, (16) is established and, substituting in (14), (15) is obtained.
We next prove that (15) entails the fact that HUP is fully-ball-supported.
Consider a finite instance HPm of HUP with m ≥ d. One by one, eliminate

m− d constraints choosing at any time a constraint among those nonviolated by the
ball-solution in such a way that the ball-solution does not change. This is certainly
possible because the ball-support constraints are at most d. In the end, we are left
with d constraints, say, the first d δ′(1), . . . , δ′(d). A simple thought reveals that these
d constraints are actually of ball-support for HPm, provided that none of the other
m− d constraints that have been removed were strictly active.

Repeat the same above procedure for every m-ple of constraints (that is, for every
HPm generated by HUP), and group together all of the m-ples for which the procedure
returns in the end the first d constraints δ′(1), . . . , δ′(d). Call this group of m-ples G.
We shall show that the probability of the m-ples in G such that HPm is not fully-
ball-supported is zero, and from this—by the observation that only a finite number(
m
d

)
of groups of m-ples can be similarly constructed—the final conclusion that HUP

is fully-ball-supported will be secured.
Select fixed values δ̄′(1), . . . , δ̄′(d) for the first d constraints, and consider the ball-

solution B that these constraints generate. Let the other m − d constraints vary
in such a way that the m-ple δ̄′(1), . . . , δ̄′(d), δ′(d+1), . . . , δ′(m) belongs to G. For one
such m-ple to correspond to a non-fully-ball-supported HPm, at least one among the
m− d constraints δ′(d+1), . . . , δ′(m) must be strictly active for B, but we have proven
in (15) that this happens with probability zero. Integrating over all possible values
δ̄′(1), . . . , δ̄′(d) for the first d constraints, the conclusion is drawn that the non-fully-
ball-supported HPm in G have zero probability.

Hence, by the above observation that there are only a finite number
(
m
d

)
of groups

and by the fact that
(
m
d

)
times zero is zero, we obtain that HUP is fully-ball-supported.

To conclude Step 1, note that if we suppose to extractN constraints δ′(1), . . . , δ′(N)

from Δ′, according to probability P
′ and in an independent fashion, and we denote

by x′∗N the corresponding solution, the result of Part 2a can be invoked to establish

4This simple fact follows from the observation that a convex set C in Rd either belongs to a flat
of dimension d−1—and therefore C has zero Rd Lebesgue measure—or admits an interior point z̄,
and every half-line from z̄ crosses the boundary of C in only one point (see, e.g., Propositions 1.1.13
and 1.1.14 in [19]).
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that

(17) (P′)N{V ′(x′∗N ) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i,

where V ′(x) is the probability of violation for the heated problem (i.e., V ′(x) =
P
′{(δ, z) ∈ Δ′ : x /∈ [Xδ + z]}). Equation (17) is the final result to which we wanted

to arrive in this heating Step 1.
Step 2 (cooling). Fix a multiextraction (δ̄(1), . . . , δ̄(N)) ∈ ΔN , and consider x∗N ,

the solution of the original optimization problem PN with such constraints. We
remark that in all of Step 2 the multiextraction (δ̄(1), . . . , δ̄(N)) is kept fixed and
never changed throughout. Consider a closed ball B(xf , rf ), rf > 0, in the feasibility
domain of PN , which exists because the feasibility domain of PN has a nonempty
interior. Further, let ρk ↓ 0 be a sequence of heating parameters monotonically
decreasing to zero (cooling of the heating parameter) and such that ρ1 <

rf

2 . For all ρk,
consider the heated versions of (δ̄(1), . . . , δ̄(N)), namely, ((δ̄(1), z(1)

k ), . . . , (δ̄(N), z
(N)
k ))

where z(1)
k , . . . , z

(N)
k ∈ Bρk

, and let x′∗N (z(1)
k , . . . , z

(N)
k ) be the solution of the heated

optimization problem HPN with heated constraints (δ̄(1), z(1)
k ), . . . , (δ̄(N), z

(N)
k ). The

goal of Step 2 is to prove that

(18) sup
z
(1)
k ,...,z

(N)
k ∈Bρk

∥∥∥x′∗N (z(1)
k , . . . , z

(N)
k

)
− x∗N

∥∥∥ −→ 0 as k → ∞;

that is, the solution of the original problem is recovered by cooling the heated problem
down.5

For brevity, from now on we omit the arguments z(1)
k , . . . , z

(N)
k and write x′∗N for

x′∗N (z(1)
k , . . . , z

(N)
k ).

We first show that

(19) lim sup
k→∞

sup
z
(1)
k ,...,z

(N)
k ∈Bρk

cTx′∗N ≤ cTx∗N .

Following Figure 8, consider the convex hull co[B(xf , rf ) ∪ x∗N ] generated by the
feasibility ball B(xf , rf ) and the solution x∗N of the original problem with constraints
δ̄(1), . . . , δ̄(N). By convexity, co[B(xf , rf )∪x∗N ] is feasible for the original problem PN .
Construct the closed ball B(xk, ρk) ⊂ co[B(xf , rf )∪ x∗N ] with radius ρk, whose center
xk is as close as possible to x∗N and lies on the line segment connecting xf with x∗N
(this ball exists since ρ1 < rf ; the assumed stricter condition that ρ1 <

rf

2 is required
in the next construction). Clearly, xk → x∗N as k → ∞. Since xk is in the feasibility
domain of PN at a distance at least ρk from where δ̄(1), . . . , δ̄(N) are violated, xk is
also in the feasibility domain of every heated problem HPN with heating parameter
ρk. Thus,

lim sup
k→∞

sup
z
(1)
k ,...,z

(N)
k ∈Bρk

cTx′∗N ≤ lim sup
k→∞

cTxk = cTx∗N ;

that is, (19) holds.

5Although result (18) has an intuitive appeal, its proof is rather technical. The reader not
interested in these technical details can jump to Step 3 from here without loss of continuity.
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rf

ρk

xf

xk

x∗
N

Fig. 8. Convex hull of B(xf , rf ) and x∗
N , and construction of B(xk, ρk).

rf

rf −ρk

ρk

xf

xk

xN

Fig. 9. Convex hull of B(xf , rf −ρk) and x′∗
N , and construction of B(x′

k , ρk).

Next, we construct a new convex hull which will allow us to reformulate goal (18)
in a different, handier, way. Based on this reformulation, (18) will then be established
in light of (19).

The new convex hull is co[B(xf , rf −ρk) ∪ x′∗N ]; see Figure 9. Note that, for a
given k, B(xf , rf−ρk) is a fixed ball, while instead x′∗N depends on the specific choice
of z(1)

k , . . . , z
(N)
k ∈ Bρk

; this means that there are actually as many convex hulls as
choices of z(1)

k , . . . , z
(N)
k . Moreover, co[B(xf , rf−ρk)∪x′∗N ] is feasible for problem HPN

with constraints translated by z(1)
k , . . . , z

(N)
k since B(xf , rf−ρk) and x′∗N are. Construct

then the closed ball B(x′k, ρk) ⊆ co[B(xf , rf−ρk) ∪ x′∗N ] with radius ρk, whose center
x′k is as close as possible to x′∗N and lies on the line segment connecting xf with x′∗N
(this ball exists since ρ1 <

rf

2 ). Note that x′k depends on z(1)
k , . . . , z

(N)
k , too.
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Since x′k is in the feasibility domain of HPN with constraints translated by
z
(1)
k , . . . , z

(N)
k at a distance at least ρk from where these translated constraints are

violated, x′k is also in the feasibility domain of PN .
What is different from the previous convex hull construction is that we cannot

here easily conclude that x′k → x′∗N as k → ∞ since x′∗N is not a fixed point (it depends
on z

(1)
k , . . . , z

(N)
k ∈ Bρk

, a ball that changes with k). We can still, however, secure a
result that goes along a similar line, namely, that

(20) x′k = αkxf + (1 − αk)x′∗N , where αk =
ρk

rf − ρk
−→ 0 as k → ∞,

as it results from Figure 9 by a simple proportion argument.6 Reorganizing terms in
this equation, we obtain x′∗N − x∗N = − αk

1−αk
(xf − x∗N ) + 1

1−αk
(x′k − x∗N ), from which

‖x′∗N − x∗N‖ ≤ αk
1 − αk

‖xf − x∗N‖ +
1

1 − αk
‖x′k − x∗N‖ .

We are now ready to reformulate goal (18) in a different way.
Note that the norm in (18) is the same as the left-hand side of the latter equation.

On the right-hand side, ‖xf − x∗N‖ is a fixed quantity multiplied by scalar αk

1−αk
which

goes to zero. So, this first term vanishes. In the second term, scalar 1
1−αk

→ 1, and
hence (18) is equivalent to

(21) sup
z
(1)
k
,...,z

(N)
k

∈Bρk

‖x′k − x∗N‖ −→ 0 as k → ∞.

The goal of establishing (18) is finally achieved by proving (21) by contradiction.
Suppose that (21) is false; then, for a given μ > 0, we can choose translations

z̄
(1)
k , . . . , z̄

(N)
k ∈ Bρk

, k = 1, 2, . . . , such that∥∥∥x′k (z̄(1)
k , . . . , z̄

(N)
k

)
− x∗N

∥∥∥ > μ ∀k,

where we have here preferred to explicitly indicate dependence of x′k on z̄(1)
k , . . . , z̄

(N)
k .

Note that x′k(z̄(1)
k , . . . , z̄

(N)
k ) is asymptotically superoptimal for problem PN :

lim sup
k→∞

cTx′k

(
z̄
(1)
k , . . . , z̄

(N)
k

)
≤ [using (20) and since αk → 0]
≤ lim sup

k→∞
sup

z
(1)
k ,...,z

(N)
k

cTx′∗N

≤ [using (19)]
≤ cTx∗N .(22)

The line segment connecting x′k(z̄(1)
k , . . . , z̄

(N)
k ) with x∗N intersects the surface of the

ball with center x∗N and radius μ in a point that we name x′Sk . x′Sk is still feasible for
PN being a convex combination of x∗N and x′k(z̄(1)

k , . . . , z̄
(N)
k ), both feasible points for

PN . In addition, since x′k(z̄(1)
k , . . . , z̄

(N)
k ) is asymptotically superoptimal for PN (see

(22)) and x∗N is the solution of PN , x′Sk is asymptotically superoptimal for PN , too,
i.e., lim supk→∞ cTx′Sk ≤ cTx∗N . Finally, since x′Sk belongs to a compact, it admits
a convergent subsequence to, say, x′S∞, a point which is still feasible for PN due to

6Note that (20) does not imply that x′
k → x′∗

N since x′∗
N could in principle escape to infinity.
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the fact that the feasibility domain of PN is closed. x′S∞ would thus be feasible and
superoptimal for PN , so contradicting the uniqueness of the solution of PN .

This concludes Step 2.
Step 3 (drawing the conclusions). The theorem statement that P

N{V (x∗N ) > ε} ≤∑d−1
i=0

(
N
i

)
εi(1 − ε)N−i is established in this Step 3 along the following lines: by the

convergence result (18) in Step 2, a bad multiextraction (δ̄(1), . . . , δ̄(N)) (i.e., one such
that V (x∗N ) > ε) is shown to generate bad heated multiextractions ((δ̄(1), z(1)

k ), . . . ,
(δ̄(N), z

(N)
k )) for k large enough; we thus have that the probability of bad multiex-

tractions can be bounded by the probability of bad heated multiextractions; by then
using the bound for the probability of bad heated multiextractions derived in Step 1,
the thesis follows.

Fix a bad multiextraction (δ̄(1), . . . , δ̄(N)) ∈ ΔN , and consider x∗N , the solution
of the optimization problem PN with constraints δ̄(1), . . . , δ̄(N). For an additional
constraint δ ∈ Δ to be violated by x∗N , x∗N must belong to the complement of Xδ,
i.e., X c

δ . Since X c
δ is open, we then have the fact that there exists a small enough ball

centered in x∗N fully contained in X c
δ . Thus,

(23) {δ ∈ Δ : x∗N /∈ Xδ} =
⋃

n=1,2,...

{δ ∈ Δ : B(x∗N , 1/n) ⊆ X c
δ },

and

ε < [since
(
δ̄(1), . . . , δ̄(N)

)
is bad]

< V (x∗N )
= P{δ ∈ Δ : x∗N /∈ Xδ}
= [using (23)]

= P

{ ⋃
n=1,2,...

{δ ∈ Δ : B(x∗N , 1/n) ⊆ X c
δ }
}

= lim
n→∞

P{δ ∈ Δ : B(x∗N , 1/n) ⊆ X c
δ },

from which there exists a n̄ such that

(24) P{δ ∈ Δ : B(x∗N , 1/n̄) ⊆ X c
δ } > ε.

Let us now heat the constraints δ̄(1), . . . , δ̄(N) up by translation parameters z(1)
k , . . . ,

z
(N)
k ∈ Bρk

and ask the following question: is it true that the heated multiextraction
((δ̄(1), z(1)

k ), . . . , (δ̄(N), z
(N)
k )) is bad for HUP with heating parameter ρk? It turns out

that the answer is positive for k large enough, a fact that is proven next.
Recall that x′∗N is the solution with constraints (δ̄(1), z(1)

k ), . . . , (δ̄(N), z
(N)
k ), and

define dk := sup
z
(1)
k ,...,z

(N)
k ∈Bρk

‖x′∗N − x∗N‖ which, by (18), goes to 0 as k → ∞. Pick
a k̄ such that

dk + ρk < 1/n̄ ∀k ≥ k̄.

All heated solutions x′∗N are apart from x∗N by at most dk, and all heated constraints
(δ, z) ∈ Δ×Bρk

are apart from the corresponding unheated constraint δ by at most ρk.
Thus, if k ≥ k̄, all heated versions of a constraint δ in the set {δ ∈ Δ : B(x∗N , 1/n̄) ⊆
X c
δ } on the left-hand side of (24) are violated by x′∗N . That is,

(25) {δ ∈ Δ : B(x∗N , 1/n̄) ⊆ X c
δ }×Bρk

⊆ {(δ, z) ∈ Δ×Bρk
: x′∗N /∈ [Xδ+z]} ∀k ≥ k̄.
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Then, for any z(1)
k , . . . , z

(N)
k ∈ Bρk

and for any k ≥ k̄, we have

V ′(x′∗N ) = P
′{(δ, z) ∈ Δ × Bρk

: x′∗N /∈ [Xδ + z]}
≥ [using (25)]

≥ P
′
{
{δ ∈ Δ : B(x∗N , 1/n̄) ⊆ X c

δ } × Bρk

}
= [recalling that P

′ = P × U]
= P{δ ∈ Δ : B(x∗N , 1/n̄) ⊆ X c

δ } · U{Bρk
}

> [since U{Bρk
} = 1 and using (24)]

> ε,

i.e., ((δ̄(1), z(1)
k ), . . . , (δ̄(N), z

(N)
k )) is bad for HUP with heating parameter ρk for any

z
(1)
k , . . . , z

(N)
k ∈ Bρk

when k ≥ k̄. In turn, this entails that

(26)
∫
BN

ρk

I{V ′(x′∗
N )>ε}

dzN

Vol(BNρk
)

= 1 ∀k ≥ k̄.

Finally,

d−1∑
i=0

(
N

i

)
εi(1 − ε)N−i

≥ [using (17)]
≥ (P′)N{V ′(x′∗N ) > ε}

=
∫

ΔN

[∫
BN

ρk

I{V ′(x′∗
N )>ε}

dzN

Vol(BNρk
)

]
P
N (dδN )

≥
∫
{V (x∗

N )>ε}

[∫
BN

ρk

I{V ′(x′∗
N)>ε}

dzN

Vol(BNρk
)

]
P
N (dδN )

−−−−→
k → ∞[recalling (26) and by the dominated convergence theorem [26]]
−−−−→
k → ∞

∫
{V (x∗

N )>ε}
P
N (dδN )

= P
N{V (x∗N ) > ε}.

This concludes the proof.

Acknowledgments. The authors would like to thank Marco Dalai for a care-
ful reading of an earlier version of this paper and an anonymous referee for many
suggestions that helped improve the paper.

REFERENCES

[1] A. Ben-Tal and A. Nemirovski, Robust truss topology design via semidefinite programming,
SIAM J. Optim., 7 (1997), pp. 991–1016.

[2] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res., 23 (1998),
pp. 769–805.

[3] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Oper. Res.
Lett., 25 (1999), pp. 1–13.

[4] A. Ben-Tal, A. Nemirovski, and C. Roos, Robust solutions of uncertain quadratic and conic-
quadratic problems, SIAM J. Optim., 13 (2002), pp. 535–560.



1230 M. C. CAMPI AND S. GARATTI

[5] G. Calafiore and M. C. Campi, Uncertain convex programs: Randomized solutions and
confidence levels, Math. Program., 102 (2005), pp. 25–46.

[6] G. Calafiore and M. C. Campi, The scenario approach to robust control design, IEEE Trans.
Automat. Control, 51 (2006), pp. 742–753.

[7] G. Calafiore and F. Dabbene, A probabilistic framework for problems with real structured
uncertainty in systems and control, Automatica, 38 (2002), pp. 1265–1276.

[8] G. Calafiore, F. Dabbene, and R. Tempo, Randomized algorithms for probabilistic robust-
ness with real and complex structured uncertainty, IEEE Trans. Automat. Control, 45
(2000), pp. 2218–2235.

[9] G. Calafiore and B. Polyak, Stochastic algorithms for exact and approximate feasibility of
robust LMIs, IEEE Trans. Automat. Control, 46 (2001), pp. 1755–1759.

[10] A. Charnes and W. W. Cooper, Chance constrained programming, Management Sci., 6
(1959), pp. 73–79.

[11] D. P. de Farias and B. Van Roy, On constraint sampling in the linear programming approach
to approximate dynamic programming, Math. Oper. Res., 29 (2004), pp. 462–478.

[12] D. Dentcheva, Optimization models with probabilistic constraints, in Probabilistic and Ran-
domized Methods for Design under Uncertainty, G. Calafiore and F. Dabbene, eds.,
Springer, London, 2005, pp. 47–96.

[13] E. Erdogan and G. Iyengar, Ambiguous chance constrained problems and robust optimiza-
tion, Math. Program. Ser. B, 107 (2006), pp. 37–61.

[14] L. El Ghaoui and G. Calafiore, Robust filtering for discrete-time systems with bounded noise
and parametric uncertainty, IEEE Trans. Automat. Control, 46 (2001), pp. 1084–1089.

[15] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1035–1064.

[16] L. El Ghaoui, F. Oustry, and H. Lebret, Robust solutions to uncertain semidefinite pro-
grams, SIAM J. Optim., 9 (1998), pp. 33–52.

[17] L. El Ghaoui and S. I. Niculescu, Robust decision problems in engineering: A linear ma-
trix inequality approach, in Advances in Linear Matrix Inequality Methods in Control,
L. El Ghaoui and S. I. Niculescu, eds., SIAM, Philadelphia, 1999.

[18] V. L. Levin, Application of E. Helly’s theorem to convex programming, problems of best ap-
proximation and related questions, Sb. Math., 8 (1969), pp. 235–247.

[19] R. Lucchetti, Convexity and Well-posed Problems, CMS Books Math., Springer, New York,
2006.

[20] A. Nemirovski and A. Shapiro, Scenario approximations of chance constraints, in Probabilis-
tic and Randomized Methods for Design under Uncertainty, G. Calafiore and F. Dabbene,
eds., Springer, London, 2005, pp. 3–48.
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GLOBAL CONVERGENCE OF FILTER METHODS FOR
NONLINEAR PROGRAMMING∗

ADEMIR A. RIBEIRO† , ELIZABETH W. KARAS† , AND CLÓVIS C. GONZAGA‡

Abstract. We present a general filter algorithm that allows a great deal of freedom in the step
computation. Each iteration of the algorithm consists basically in computing a point which is not
forbidden by the filter, from the current point. We prove its global convergence, assuming that the
step must be efficient, in the sense that, near a feasible nonstationary point, the reduction of the
objective function is “large.” We show that this condition is reasonable, by presenting two classical
ways of performing the step which satisfy it. In the first one, the step is obtained by the inexact
restoration method of Mart́ınez and Pilotta. In the second, the step is computed by sequential
quadratic programming.

Key words. filter methods, nonlinear programming, global convergence

AMS subject classifications. 49M37, 65K05, 90C30
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1. Introduction. We shall study the nonlinear programming problem

(P )
minimize f0(x)
subject to fE(x) = 0

fI(x) ≤ 0,

where the index sets E and I refer to the equality and inequality constraints, respec-
tively. Let the cardinality of E ∪ I be m, and assume that the functions fi : R

n → R,
i = 0, 1, . . . ,m, are continuously differentiable.

A nonlinear programming algorithm must deal with two different (and possibly
conflicting) criteria, related respectively to optimality and to feasibility. Optimality is
measured by the objective function f0; feasibility is typically measured by penalization
of constraint violation, for instance, by the function h : R

n → R+, given by

h(x) =
∥

∥f+(x)
∥

∥ ,(1.1)

where ‖ · ‖ is an arbitrary norm and f+ : R
n → R

m is defined by

f+
i (x) =

{

fi(x) if i ∈ E ,
max{0, fi(x)} if i ∈ I.

Both criteria must be optimized and the algorithm should follow a certain balance
between them at every step of the iterative process. Several algorithms for nonlinear
programming have been designed in which a merit function is a tool to guarantee
global convergence [3, 11, 12, 20, 26].

As an alternative to merit function, Fletcher and Leyffer [7] introduced the so-
called filter to globalize sequential quadratic programming type methods. Filter meth-
ods are based on the concept of dominance, borrowed from multicriteria optimization.
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Fig. 1.1. A filter with four pairs.

A filter algorithm defines a forbidden region, by memorizing pairs (f0(xj), h(xj)),
chosen conveniently from former iterations and then avoids points dominated by these
by the modified Pareto domination rule:

y is dominated by x if, and only if, f0(y) ≥ f0(x) and h(y) ≥ h(x).

Figure 1.1 shows a filter with four pairs, where we have simplified the notation by
using x to represent the pair (f0(x), h(x)). The point y is in the forbidden region and
z is not.

The filter methods were also applied to sequential linear programming (SLP).
The works of Chin and Fletcher [5] and Fletcher, Leyffer, and Toint [8] present global
convergence proofs of the method.

For SQP-filter methods, global convergence has been proved by Fletcher, Leyffer,
and Toint [9], assuming that the quadratic subproblems are solved globally. Without
this requirement, that is, allowing approximate solutions of the subproblems, Fletcher
et al. [6] have also proved convergence to first-order critical points. Their approach
uses a composite-step SQP method similar in spirit to the ones pioneered by Byrd [2]
and Omojokun [22]. Another SQP-filter algorithm, using line search, was proposed
by Wächter and Biegler [28], where global convergence was obtained.

In the context of interior points, Ulbrich, Ulbrich, and Vicente [24] have proposed
a globally convergent primal-dual interior-point filter method. However, the filter
entries have components that take into account the centrality and complementarity
measures arising from interior-point techniques.

The filter was also studied by Gonzaga, Karas, and Vanti [13], in an algorithm that
resembles the inexact restoration method of Mart́ınez and Pilotta [19, 20]. By suitable
rules for building the filter they prove stationarity of all qualified accumulation points.

The good performance of these methods [7, 29] has motivated their use in other
problems, like nonlinear systems of equations [14, 16, 17], unconstrained optimization
[15], and nonsmooth convex constrained optimization [18]. This last work, by Karas
et al., combines the ideas of the proximal bundle methods [23] with the filter strategy.
We can find a survey of filter methods in [10].

Although we know that filter methods may suffer from the Maratos effect, we
shall not discuss local convergence issues in this work. Some strategies can be found
in [4, 25, 27] to ensure a fast rate of convergence.
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In this paper, we propose a general filter algorithm that does not depend on
the particular method used for the step computation. The only requirement is that
the points generated must be acceptable for the filter and that near a feasible non-
stationary point, the reduction of the objective function be large. This efficiency
condition, stated below as Hypothesis H3, is the main tool of the global convergence
analysis. It is a weaker version of the one introduced by Gonzaga, Karas, and Vanti
[13] in their inexact restoration filter method. Under this hypothesis, we prove that
every sequence generated by the algorithm has at least one stationary accumulation
point. Furthermore, we show how to compute the step in order to fulfill this hypoth-
esis. One way to do this is by inexact restoration, for which H3 was proven in [13].
Another way for computing the step is by a sequential quadratic programming algo-
rithm. We prove in this work that this approach also satisfies the efficiency condition
H3.

The paper is organized as follows. Our general filter algorithm and its convergence
analysis are described in section 2. In section 3 we present the SQP method for
computing the step and prove that Hypothesis H3 is satisfied.

2. The algorithm. In this section we present a general filter algorithm that
allows a great deal of freedom in the step computation. Afterwards we state an
assumption on the performance of the step, and prove that any sequence generated
by the algorithm has a stationary accumulation point. In the next section we show
that this condition is reasonable, by presenting a classical way of performing the step,
satisfying this condition.

The algorithm constructs a sequence of filter sets F0 ⊂ F1 ⊂ · · · ⊂ Fk, composed
of pairs (f̃ j0 , h̃

j) ∈ R
2. We also mention in the algorithm the sets Fk ⊂ R

n, which are
formally defined in each step for clarity, but are never actually constructed.

Algorithm 2.1. General filter algorithm model
Given: x0 ∈ R

n, F0 = ∅, F0 = ∅, α ∈ (0, 1).
k = 0
repeat

(f̃0, h̃) = (f0(xk) − αh(xk), (1 − α)h(xk)).
Set F̄k = Fk

⋃

{(f̃0, h̃)} and define
F̄k = Fk

⋃

{x ∈ R
n | f0(x) ≥ f̃0, h(x) ≥ h̃}.

Step:
if xk is stationary, stop with success
else, compute xk+1 /∈ F̄k.

Filter update:
if f0(xk+1) < f0(xk),

Fk+1 = Fk, Fk+1 = Fk (f0-iteration: the new entry is discarded)
else,

Fk+1 = F̄k, Fk+1 = F̄k (h-iteration: the new entry becomes
permanent)

k = k + 1.
At the beginning of each iteration, the pair (f̃0, h̃) is temporarily introduced in

the filter. After the complete iteration, this entry will become permanent in the filter
only if the iteration does not produce a decrease in f0.

Note that the forbidden region was slightly modified by subtracting the expression
αh(xk) from both filter pair components. This prevents the acceptance of trial pairs
(f0, h) arbitrarily close to old iterates (f0(xj), h(xj)). Figure 2.1 illustrates the effect
of this modification which adds a small margin around the border of region already
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Fig. 2.1. The filter margin.

defined by the Pareto domination rule. Now, all points above the dashed line are
forbidden.

In order to obtain our global convergence result, we shall assume that the algo-
rithm generates an infinite sequence (xk)k∈N in R

n and the following hypotheses are
satisfied.

H1. All the functions fi(·), i = 0, 1, . . . ,m, are twice continuously differentiable.
H2. The sequence (xk)k∈N remains in a convex compact domain X ⊂ R

n.
H 3. Given a feasible nonstationary point x̄ ∈ X, there exist M > 0 and a

neighborhood V of x̄ such that for any iterate xk ∈ V ,

f0
(

xk
)

− f0
(

xk+1
)

≥Mvk,

where vk = min{1,min{h̃j | (f̃ j0 , h̃
j) ∈ Fk}}.

The first ones are standard hypotheses, while Hypothesis H3 requires some dis-
cussion. With this hypothesis we are assuming that the step must be efficient, in the
sense that, near a feasible nonstationary point, the reduction of the objective function
is “large.” This assumption is a weaker version of the decrease condition introduced
by Gonzaga, Karas, and Vanti [13] who used

Hk = min
{

1,min
{

h̃j |
(

f̃ j0 , h̃
j
)

∈ Fk, f̃
j
0 ≤ f0

(

xk
)

}}

(2.1)

instead of vk. Figure 2.2 shows the variables vk and Hk.
We start our analysis with some relations which follow directly from the hypothe-

ses and the construction of the algorithm. In the next section we shall state methods
which satisfy Hypothesis H3.

Lemma 2.2. Given k ∈ N, the following statements hold:
(i) Fk ⊂ Fk+1 (Inclusion property).

(ii) xk+p /∈ Fk+1 for all p ≥ 1.
(iii) At least one of the two conditions below occurs:

1. f0(xk+1) < f0(xk) − αh(xk),
2. h(xk+1) < (1 − α)h(xk).

(iv) h̃ > 0 for all
(

f̃0, h̃
)

∈ Fk.
Proof. The first statement follows directly from the filter update criterion. By (i)

and the definition of F̄ , we have Fk+1 ⊂ Fk+p ⊂ F̄k+p−1. Then the second statement
follows from xk+p /∈ F̄k+p−1. The third one is clear, since xk+1 /∈ F̄k. Finally, note
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Fig. 2.2. The filter height vk and the filter slack Hk.

that if h(xk) = 0, using (iii), we obtain

f0
(

xk+1
)

< f0
(

xk
)

− αh
(

xk
)

= f0
(

xk
)

,

that is, the iteration k is an f0-iteration. Thus the pair (f̃0, h̃) can be added to the
filter only if h(xk) > 0, or equivalently if h̃ > 0. This completes the proof.

For the purpose of our analysis, we shall consider

Ka =
{

k ∈ N |
(

f0
(

xk
)

− αh
(

xk
)

, (1 − α)h
(

xk
))

is added to the filter
}

,(2.2)

the set of indices of h-iterations. First, we analyze what happens when this set is
infinite.

Lemma 2.3. If the set Ka is infinite, then

h
(

xk
) Ka→ 0.

Proof. Given k, we denote
(

f0(xk), h(xk)
)

by
(

fk0 , h
k
)

. Assume by contradiction
that, for some δ > 0, the set

K =
{

k ∈ Ka | h
(

xk
)

≥ δ
}

is infinite. The continuity of (f0, h), implied by H1, and the compactness assump-
tion H2 ensure that there exists a convergent subsequence (fk0 , h

k)k∈K1 , K1 ⊂ K.
Therefore, since α ∈ (0, 1), we can take indices j, k ∈ K1, j < k such that

∥

∥

∥

(

fk0 , h
k
)

−
(

f j0 , h
j
)

∥

∥

∥ < αδ ≤ αh(xj).

This means that xk ∈ F̄j = Fj+1, contradicting Lemma 2.2(ii) and completing the
proof.

We now prove that the objective function decreases along the iterations, whenever
the iterates stay near a nonstationary point.

Lemma 2.4. Let x̄ ∈ X be a nonstationary point. Then there exist k̄ ∈ N and
a neighborhood V of x̄ such that whenever k > k̄ and xk ∈ V , the iteration k is an
f0-iteration, that is, k /∈ Ka.

Proof. If x̄ is a feasible point, then by Hypothesis H3 there exist M > 0 and a
neighborhood V of x̄ such that for all xk ∈ V ,

f0
(

xk
)

− f0
(

xk+1
)

≥Mvk.
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Using Lemma 2.2(iv), we conclude that vk > 0, consequently f0(xk+1) < f0(xk) and
k is an f0-iteration.

Now, assume that x̄ is infeasible and suppose by contradiction that there exists an
infinite set K ⊂ Ka such that xk K→ x̄. Since h is continuous, we have h(xk) K→ h(x̄).
On the other hand, Lemma 2.3 ensures that h(xk) K→ 0. Thus h(x̄) = 0, contradicting
that x̄ is infeasible and completing the proof.

Our global convergence result is presented in the next theorem.
Theorem 2.5. The sequence (xk)k∈N has a stationary accumulation point.
Proof. Let Ka be the set defined in (2.2). If Ka is infinite, then by H2 there exist

K1 ⊂ Ka and x̄ ∈ X such that xk K1→ x̄. From Lemma 2.4, x̄ must be stationary.
On the other hand, if Ka is finite, there exists k0 ∈ N such that every iteration

k ≥ k0 is an f0-iteration. Thus (f0(xk))k≥k0 is decreasing and by H1 and H2,

f0
(

xk
)

− f0
(

xk+1
)

→ 0.(2.3)

Moreover, by construction, Fk = Fk0 for all k ≥ k0. Therefore, the sequence (vk)k∈N,
defined in Hypothesis H3, satisfies

vk = vk0 > 0(2.4)

for all k ≥ k0. If the set

K2 =
{

k ∈ N | αh
(

xk
)

< f0
(

xk
)

− f0
(

xk+1
)}

is infinite, using (2.3), we conclude that h(xk)
K2→ 0. Otherwise, Lemma 2.2(iii)

ensures that there exists k1 ∈ N such that h(xk+1) < (1 − α)h(xk) for all k ≥ k1,
which in turn implies that h(xk) → 0. Anyway, (xk)k∈N has a feasible accumulation
point x̄. Now we prove that this point is stationary. Let K be a set of indices such
that xk K→ x̄ and assume by contradiction that x̄ is nonstationary. By Hypothesis H3,
there exist k2 ∈ N and M > 0 such that

f0
(

xk
)

− f0
(

xk+1
)

≥Mvk

for all k ∈ K, k ≥ k2. This together with (2.4) contradicts (2.3), completing the
proof.

As we have seen above, the hypothesis H3 is crucial for the convergence analysis.
It is a very strong assumption and we must show that there exist methods satisfying
this condition. One of them is the inexact restoration method of Mart́ınez and Pilotta
[20]. Gonzaga, Karas, and Vanti [13] have proved in their inexact restoration filter
method a condition that implies our hypothesis.

We now discuss another way of performing the step, satisfying H3. It uses sequen-
tial quadratic programming and decomposes the step into its normal and tangential
components.

3. Sequential quadratic programming. In this section we present an SQP
method based on that proposed by Fletcher et al. [6], which computes the overall step
in two phases. First, a feasibility phase aims at reducing the infeasibility measure
h, satisfying a linear approximation of the constraints. Then an optimality phase
computes a trial point reducing a quadratic model of the objective function in the
linearization of the feasible set. We prove that this approach satisfies Hypothesis H3.
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The step computation. Given the current iterate xk and a trust-region radius
Δ > 0, we compute the step by solving the quadratic subproblem

(QPk)
minimize mk

(

xk + d
)

subject to xk + d ∈ L
(

xk
)

‖d‖ ≤ Δ,

where

mk

(

xk + d
)

= f0
(

xk
)

+ ∇f0
(

xk
)T
d+

1
2
dTBkd,(3.1)

with Bk symmetric, and

L
(

xk
)

=
{

xk + d ∈ R
n | fE

(

xk
)

+AE
(

xk
)

d = 0, fI
(

xk
)

+AI
(

xk
)

d ≤ 0
}

.(3.2)

The matrix Bk may be chosen as an approximation of the Hessian of some La-
grangian function or any other symmetric matrix, provided that the sequence (Bk)
remains uniformly bounded. See the hypothesis H6 below.

The solution of (QPk) yields a trial point xk + dΔ that will be evaluated by the
filter. To be accepted as the new iterate, this point must not be forbidden.

In fact, we will see the step dΔ as the sum of two components, a feasibility step
nk and a tangential (optimality) step tΔ. We now discuss each one of these steps.

Feasibility step and compatibility of (QPk). The feasibility step nk must
satisfy the constraints of (QPk) and has the purpose of reducing the infeasibility
measure h. This can be done, for example, by

nk = PL(xk)

(

xk
)

− xk,

where PL(x)(·) is the projection onto the set L(x). However, we do not use this
particular choice, but we shall assume a certain efficiency in this phase, given by the
following hypothesis.

H4. There exist constants δh > 0 and cn > 0 such that for all k ≥ 0 with
h(xk) ≤ δh, a step nk can be computed, satisfying

∥

∥nk
∥

∥ ≤ cnh
(

xk
)

.

This assumption means that the feasibility step must be reasonably scaled with
respect to the constraints. In particular, nk = 0 whenever xk is feasible. This hypoth-
esis is discussed by Mart́ınez [19], who presents a feasibility algorithm which satisfies
it under reasonable conditions, like some regularity of the constraints and the absence
of a stationary point x̄ for h, with h(x̄) �= 0.

The step nk is only useful if it is not too close to the trust-region boundary
because, otherwise, the tangential step is unlikely to produce a sufficient decrease in
the model mk. We say that the subproblem (QPk) is compatible when L(xk) �= ∅ and

∥

∥nk
∥

∥ ≤ ξΔ,(3.3)

where ξ ∈ (0, 1) is a constant.
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In our analysis, we shall consider

zk = xk + nk,(3.4)

the point obtained in the feasibility phase. Note that, from (3.1) and (3.4), we have

mk

(

zk
)

= mk

(

xk + nk
)

= f0
(

xk
)

+ ∇f0
(

xk
)T
nk +

1
2
nk

T
Bkn

k.(3.5)

Tangential step. If the subproblem (QPk) is compatible, we anticipate a sat-
isfactory decrease in the model when performing a tangential step tΔ, approximate
solution of the quadratic problem

(TPk)

minimize
(

∇f0
(

xk
)

+Bkn
k
)T
t+ 1

2 t
TBkt

subject to AE
(

xk
)

t = 0
fI
(

xk
)

+AI
(

xk
) (

nk + t
)

≤ 0
∥

∥nk + t
∥

∥ ≤ Δ.

This problem is equivalent to (QPk) with d = nk + t.
Given the current iterate xk and a trust-region radius Δ > 0, if (QPk) is compat-

ible, the trial point is

xk + dΔ = zk + tΔ,

where zk = xk + nk is the point which comes from the feasibility phase and tΔ is the
tangential step.

Restoration procedure. If the subproblem (QPk) is not compatible, the algo-
rithm calls a restoration procedure, whose aim is to obtain a point xk+1 /∈ F̄k with
h(xk+1) < h(xk), where the function h is the infeasibility measure defined by (1.1).
This can be done by taking steps of some algorithm for solving the nonsmooth problem

minimize h(x)
x ∈ R

n .

We can now summarize the above discussion in the following algorithm for the
step computation. After stating the algorithm we shall make some comments about
its features.

Algorithm 3.1. Computation of xk+1 /∈ F̄k
Data: xk ∈ R

n, the current filter F̄k, 0 < Δmin < Δmax, Δ ∈ [Δmin,Δmax] and
cp, ξ, η, γ ∈ (0, 1).

if L(xk) = ∅,
use the restoration procedure to obtain xk+1 /∈ F̄k.

else

compute a feasibility step nk such that xk + nk ∈ L(xk)
repeat (while the point xk+1 is not obtained)

if

∥

∥nk
∥

∥ > ξΔ,
use the restoration procedure to obtain xk+1 /∈ F̄k.
determine Bk+1 symmetric

else

compute the tangential step tΔ as above and define dΔ = nk + tΔ
set ared = f0(xk) − f0(xk + dΔ) and pred = mk(xk) −mk(xk + dΔ)
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if {xk + dΔ ∈ F̄k} or {pred ≥ cp(h(xk))2 and ared < η pred}
Δ = γΔ

else

xk+1 = xk + dΔ

determine Bk+1 symmetric
Δk = Δ

Algorithm 3.1 was inspired in the SQP-filter algorithm proposed by Fletcher et al.
[6]. However, there exist some differences between them, which we now point out. The
first one is that here the step computation is made separately from the main filter
algorithm, presented in section 2. This simplifies the study of the step properties
and leaves the convergence analysis of the main algorithm in a clean framework.
Another difference is in the trust-region radius. Algorithm 3.1 starts with a radius
Δ ∈ [Δmin,Δmax], where Δmin,Δmax > 0 are constants. This procedure is not used
in [6], making the convergence proofs involved. To overcome some difficulties they
impose a condition like

∥

∥nk
∥

∥ ≤ cΔ1+μ,

where c > 0 and μ ∈ (0, 1), to accept the normal step and to proceed with the
tangential step. In our algorithm, this condition is replaced by (3.3); that is,

∥

∥nk
∥

∥ ≤ ξΔ,

where ξ ∈ (0, 1) is a constant. This requirement is usual in the composite-step ap-
proaches that we are considering.

We mention that the choice of a minimum radius Δmin may cause practical disad-
vantages, like the rejection of many trial points before the progress of the algorithm.
On the other hand, it simplifies the analysis and enhances the chance of taking a pure
Newton step.

Remarks. At iteration k, we denote by dΔ the trial step obtained with the trust-
region radius Δ ≥ Δk. The point xk+1 can be computed in two different ways: by
means of a restoration procedure or by xk+1 = xk+dΔk

. We also have two possibilities
for rejecting the trial step dΔ:

xk + dΔ ∈ F̄k(3.6)

or

pred ≥ cp
(

h
(

xk
))2

and ared < η pred.(3.7)

In both cases the trust-region radius is reduced and a new step is computed. Thus,
in order to accept the step dΔ, it is not enough to pass the filter criterion. It also
must ensure a sufficient decrease in the objective function whenever the predicted
reduction is more significant than the constraint violation. In particular, if all iterates
are feasible, the first inequality in (3.7) will be always true, because nk = 0 in this
case. Furthermore, if ared ≥ η pred, then xk + dΔ /∈ F̄k. So, the step acceptance
criterion reduces to ared ≥ η pred, and the algorithm may be viewed as a classical
unconstrained trust-region method.

We now prove that Hypothesis H3 is satisfied if Algorithm 2.1 is applied to prob-
lem (P ) and the step is obtained by Algorithm 3.1. For that, we shall introduce a
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function used as a stationarity measure. Given x, z ∈ X and the set L(x) defined in
(3.2), we denote

dc(x, z) = PL(x) (z −∇f0(x)) − z(3.8)

the projected gradient direction and the function ϕ : R
n × R

n → R, given by

ϕ(x, z) =

⎧

⎨

⎩

−∇f0(x)T
dc(x, z)

‖dc(x, z)‖ if dc(x, z) �= 0,

0 otherwise,
(3.9)

the stationarity measure. According to [13] we have, at a feasible point x̄, that the
KKT conditions are equivalent to dc(x̄, x̄) = 0. Furthermore, if x̄ is nonstationary,
then ϕ(x̄, x̄) > 0.

The projected gradient direction given above is based on a direction introduced by
Mart́ınez and Svaiter [21] to define a new optimality condition, called AGP property
(Approximate Gradient Projection), which implies, and is strictly stronger than, the
Fritz–John optimality conditions. Unlike the KKT conditions, it is satisfied by local
minimizers of nonlinear programming problems, independently of constraint qualifi-
cations.

Note. Let us give an interpretation for the direction dc(x, z) when z ∈ L(x)
(which is the case in the algorithm). It is an approximation to

dB(z) = PL(x) (z −∇f0(z)) − z.

This is the projected Cauchy direction defined by Bertsekas [1] for the minimization of
f0(·) in L(x), and dB(z) = 0 implies that z is stationary for this problem if z ∈ L(x).
If, in addition, z is feasible for (P ) it is also stationary for (P ). The direction dc(x, z)
may be a good descent direction for (P ) if

∇f0(x)
‖∇f0(x)‖ ≈ ∇f0(z)

‖∇f0(z)‖ ,

but otherwise it may be meaningless (possibly null). If dc(xk, zk) �= 0, we consider
dc1 = dc(xk,zk)

‖dc(xk,zk)‖ . To continue our analysis we define the generalized Cauchy step given
by

tc =

{

argmin
λ≥0

{

mk

(

zk + λdc1
)

|
∥

∥zk + λdc1 − xk
∥

∥ ≤ Δ
}

if dc
(

xk, zk
)

�= 0,

0 otherwise,

and we assume the following hypotheses related to Algorithm 3.1.
H5. If the subproblem (QPk) is compatible, then the model decrease at the tan-

gential step tΔ satisfies

mk

(

zk
)

−mk

(

zk + tΔ
)

≥ mk

(

zk
)

−mk

(

zk + tc
)

.

H6. The matrices Bk are uniformly bounded, that is, there exists a constant
β > 0 such that ‖Bk‖ ≤ β for all k ≥ 0.

The assumption H5 says that the tangential step must be at least as good as
the generalized Cauchy step tc. We also consider a very standard condition on the
Hessians Bk, stated in Hypothesis H6.

We start our task by evaluating the infeasibility measure before and after the trial
step.
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Lemma 3.2. Suppose that Hypotheses H1 and H2 hold. There exists a constant
ch > 0 such that for any xk ∈ X and Δ > 0 so that a trial step dΔ is obtained by
Algorithm 3.1,

h
(

xk
)

≤ chΔ and h
(

xk + dΔ

)

≤ chΔ2.

Proof. It follows from Hypotheses H1 and H2 that there exists a constant ch > 0
such that

‖∇fi(x)‖ ≤ ch and
∥

∥∇2fi(x)
∥

∥ ≤ ch(3.10)

for all x ∈ X and i = 1, . . . ,m. Consider xk ∈ X and Δ > 0 so that a trial step dΔ

is obtained by Algorithm 3.1. Thus the feasibility step nk also was computed by the
algorithm. Taking, without loss of generality, the norm ‖·‖∞ in (1.1) and using the
fact that xk + nk ∈ L(xk), we conclude that

h
(

xk
)

=
∣

∣fi
(

xk
)∣

∣ =
∣

∣

∣
−∇fi

(

xk
)T
nk
∣

∣

∣

for some i ∈ E , or

h
(

xk
)

= fi
(

xk
)

≤ −∇fi
(

xk
)T
nk

for some i ∈ I. Hence, from the Cauchy–Schwarz inequality, (3.10), and the trust-
region boundedness of nk, we obtain

h
(

xk
)

≤
∥

∥∇fi
(

xk
)∥

∥

∥

∥nk
∥

∥ ≤ chΔ,

proving the first claim in the lemma.
To prove the other inequality, note that by Taylor’s theorem and the fact that

xk + dΔ ∈ L(xk),

fi
(

xk + dΔ

)

=
1
2
dTΔ∇2fi

(

xk + θidΔ

)

dΔ,

for i ∈ E , and

fi
(

xk + dΔ

)

≤ 1
2
dTΔ∇2fi

(

xk + θidΔ

)

dΔ,

for i ∈ I, where θi ∈ (0, 1). Because the trust-region radius is bounded, we may
assume without loss of generality that the trial points also remain in the compact set
X . Thus, from (3.10), the Cauchy–Schwarz inequality and since ‖dΔ‖ ≤ Δ,

h
(

xk + dΔ

)

≤ chΔ2,

completing the proof.
We next assess the model and the objective function growth in the feasibility step

computed by Algorithm 3.1.
Lemma 3.3. Suppose that Hypotheses H1, H2, H4, and H6 hold. Let δh be

the constant given by H4. Given a feasible point x̄ ∈ X, there exist N > 0 and a
neighborhood V1 of x̄ such that if xk ∈ V1 and zk = xk + nk, then

(i) h(xk) ≤ δh.
(ii)

∣

∣mk(xk) −mk(zk)
∣

∣ ≤ Nh(xk).
(iii)

∣

∣f0(xk) − f0(zk)
∣

∣ ≤ Nh(xk).
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In particular, by (i), the hypothesis H4 is applicable; that is, the step nk can be com-
puted and satisfies

∥

∥nk
∥

∥ ≤ cnh(xk).
Proof. Let cn and β be the constants given by H4 and H6, respectively. Consider

the constant cg = max{‖∇f0(x)‖ | x ∈ X}, whose existence is ensured by H1 and H2.
Since h(x̄) = 0 and h is continuous, there exists a neighborhood V1 of x̄ such that if
xk ∈ V1, then

h
(

xk
)

≤ δh and
1
2
βc2n

(

h
(

xk
))2 ≤ cgcnh

(

xk
)

.(3.11)

The first inequality in (3.11) proves (i). By (3.5), we have

mk

(

zk
)

= mk

(

xk
)

+ ∇f0
(

xk
)T
nk +

1
2
nk

T
Bkn

k.

Using the Cauchy–Schwarz inequality, H4 and H6, we obtain

|mk

(

xk
)

−mk

(

zk
)

| ≤ cg
∥

∥nk
∥

∥+ 1
2β
∥

∥nk
∥

∥

2

≤ cgcnh
(

xk
)

+ 1
2βc

2
n

(

h
(

xk
))2

.

From the second inequality in (3.11), it follows that

|mk

(

xk
)

−mk

(

zk
)

| ≤ 2cgcnh
(

xk
)

.

On the other hand, by Hypotheses H1 and H2, there exists a constant L > 0 such
that

∣

∣f0
(

xk
)

− f0
(

zk
)∣

∣ ≤ L
∥

∥xk − zk
∥

∥ .

This together with H4 yields
∣

∣f0
(

xk
)

− f0
(

zk
)∣

∣ ≤ Lcnh
(

xk
)

.

Taking N = max {2cgcn, Lcn}, we complete the proof.
Now we prove that the model and the objective function reductions are large near

a feasible nonstationary point, if we ignore the filter. The first lemma looks only at
the tangential step, while the second lemma considers the whole step (feasibility and
tangential).

Lemma 3.4. Suppose that Hypotheses H1, H2, and H4–H6 hold. Let x̄ ∈ X be
a feasible nonstationary point and η̄ ∈ (0, 1). Consider the neighborhood V1 and the
constant Δmin given by Lemma 3.3 and Algorithm 3.1, respectively. Then there exist
constants Δρ ∈ (0,Δmin], c̃ > 0, and a neighborhood V2 ⊂ V1 of x̄ such that whenever
xk ∈ V2, zk = xk +nk, and a tangential trial step tΔ is obtained by the algorithm, we
have

(i) mk(zk) −mk(zk + tΔ) ≥ c̃Δ′ for all Δ,Δ′ such that Δ′ ≤ min {Δ,Δρ}.
(ii) f0(zk) − f0(zk + tΔ) ≥ η̄

(

mk(zk) −mk(zk + tΔ)
)

for all Δ ∈ (0,Δρ].
Proof. Let Δ > 0 and λΔ′ = (1 − ξ)Δ′, where ξ is given by (3.3) and Δ′ ≤ Δ.

First, note that the vector dc1, defined before H5, satisfies ‖dc1‖ = 1. Consequently,
∥

∥zk + λΔ′dc1 − xk
∥

∥ =
∥

∥nk + λΔ′dc1
∥

∥ ≤
∥

∥nk
∥

∥+ λΔ′ ≤ ξΔ + (1 − ξ)Δ′ ≤ Δ.

Using the assumption on the Cauchy point H5, we obtain

mk

(

zk
)

−mk

(

zk + tΔ
)

≥ mk

(

zk
)

−mk

(

zk + tc
)

≥ mk

(

zk
)

−mk

(

zk + λΔ′dc1
)

.



GLOBAL CONVERGENCE OF FILTER METHODS 1243

Developing the quadratic model (3.1) in the right-hand side, we conclude that

mk

(

zk
)

−mk

(

zk + tΔ
)

≥ λΔ′

(

−∇f0
(

xk
)T
dc1 − nk

T
Bkd

c
1 −

1
2
λΔ′dc1

TBkd
c
1

)

.

By (3.9), ϕ(xk, zk) = −∇f0(xk)Tdc1 and by H6, ‖Bk‖ ≤ β. Hence

mk

(

zk
)

−mk

(

zk + tΔ
)

≥ λΔ′

(

ϕ
(

xk, zk
)

−
∥

∥nk
∥

∥β − 1
2
λΔ′β

)

.(3.12)

Since x̄ is feasible nonstationary, the continuous function ϕ satisfies ϕ(x̄, x̄) > 0. Using
the fact that ‖nk‖ ≤ cnh(xk) by H4, we conclude that there exist a neighborhood V2

of x̄ and Δ0 ∈ (0,Δmin] such that for any xk ∈ V2 and Δ′ ∈ (0,Δ0],

ϕ
(

xk, zk
)

≥ 1
2
ϕ (x̄, x̄) and

∥

∥nk
∥

∥β +
1
2
λΔ′β ≤ 1

4
ϕ (x̄, x̄) .

Thus, by (3.12), we obtain for Δ′ ≤ min {Δ,Δ0},

mk

(

zk
)

−mk

(

zk + tΔ
)

≥ 1
4
λΔ′ϕ(x̄, x̄) =

1
4

(1 − ξ)ϕ (x̄, x̄) Δ′.

This proves (i) for any Δρ ≤ Δ0 and c̃ = 1
4 (1 − ξ)ϕ(x̄, x̄).

To prove (ii), note that by the mean value theorem,

aredzk
def= f0

(

zk
)

− f0
(

zk + tΔ
)

= −∇f0
(

zk + θtΔ
)T
tΔ

for some θ ∈ (0, 1). On the other hand,

predzk
def= mk

(

zk
)

−mk

(

zk + tΔ
)

= −∇f0
(

xk
)T
tΔ − tTΔBkn

k − 1
2
tTΔBktΔ.

By H1 and H2, we can apply the mean value inequality to ∇f0 to conclude that there
exists a constant L > 0 such that

∥

∥∇f0
(

xk
)

−∇f0
(

zk + θtΔ
)∥

∥ ≤ L
∥

∥zk − xk + θtΔ
∥

∥ ,

so, using the facts that ‖Bk‖ ≤ β and ‖tΔ‖ ≤ Δ, we obtain

|aredzk − predzk | ≤ L
∥

∥zk − xk + θtΔ
∥

∥ ‖tΔ‖ + β
∥

∥nk
∥

∥ ‖tΔ‖ + 1
2β ‖tΔ‖2

≤ L
∥

∥nk
∥

∥Δ + LΔ2 + β
∥

∥nk
∥

∥Δ + 1
2βΔ2

= (L+ β)
∥

∥nk
∥

∥Δ +
(

L+ 1
2β
)

Δ2.

We can restrict the neighborhood V2, if necessary, and take Δρ ≤ Δ0 such that for
any xk ∈ V2 and Δ ∈ (0,Δρ],

(L+ β)
∥

∥nk
∥

∥

c̃
≤ 1 − η̄

2
and

(

L+ 1
2β
)

Δ
c̃

≤ 1 − η̄

2
.

Consequently, using (i) with Δ′ = Δ,
∣

∣

∣

∣

aredzk

predzk

− 1
∣

∣

∣

∣

=
∣

∣

∣

∣

aredzk − predzk

predzk

∣

∣

∣

∣

≤
(L+ β)

∥

∥nk
∥

∥Δ +
(

L+ 1
2β
)

Δ2

c̃Δ
≤ 1 − η̄,

completing the proof.
In the next lemma we extend for the whole step the properties of the tangential

step near a feasible nonstationary point.
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Lemma 3.5. Suppose that Hypotheses H1, H2, and H4–H6 hold. Let x̄ ∈ X
be a feasible nonstationary point and 0 < η < 1. Consider the constant γ given in
Algorithm 3.1, the neighborhood V2 and the constant Δρ given in Lemma 3.4. Then
there exists a neighborhood V3 ⊂ V2 of x̄ such that whenever xk ∈ V3, zk = xk+nk, and
a tangential trial step tΔ is obtained by the algorithm, we have for all Δ ∈ [γ2Δρ,Δρ],

(i) mk(xk) −mk(zk + tΔ) ≥ 1
2 c̃Δ,

(ii) f0(xk) − f0(zk + tΔ) ≥ η(mk(xk) −mk(zk + tΔ)).
Proof. Let η̄ ∈ (η, 1) and τ = η̄−η

η̄+η . Consider the constants N and c̃ given by
Lemmas 3.3 and 3.4, respectively, and V3 ⊂ V2 a neighborhood of x̄ such that for all
x ∈ V3,

Nh(x) ≤ min
{

1
2
c̃γ2Δρ, τ η̄c̃γ

2Δρ

}

.(3.13)

Hence, if xk ∈ V3 and Δ ∈ [γ2Δρ,Δρ], we can apply Lemma 3.3 to conclude that

∣

∣mk

(

xk
)

−mk

(

zk
)∣

∣ ≤ Nh
(

xk
)

≤ 1
2
c̃γ2Δρ ≤

1
2
c̃Δ.

It follows from this and Lemma 3.4(i) with Δ′ = Δ that

mk

(

xk
)

−mk

(

zk + tΔ
)

= mk

(

xk
)

−mk

(

zk
)

+mk

(

zk
)

−mk

(

zk + tΔ
)

≥ 1
2
c̃Δ,

proving (i).
(ii) Applying again Lemmas 3.3 and 3.4 together with (3.13), we obtain
∣

∣f0
(

xk
)

− f0
(

zk
)∣

∣ ≤ Nh
(

xk
)

≤ τ η̄c̃γ2Δρ ≤ τ η̄c̃Δ ≤ τ
(

f0
(

zk
)

− f0
(

zk + tΔ
))

and

mk

(

xk
)

−mk

(

zk
)

≤ Nh
(

xk
)

≤ τ c̃γ2Δρ ≤ τ c̃Δ ≤ τ
(

mk

(

zk
)

−mk

(

zk + tΔ
))

.

Consequently,

f0
(

xk
)

− f0
(

zk + tΔ
)

= f0
(

xk
)

− f0
(

zk
)

+ f0
(

zk
)

− f0
(

zk + tΔ
)

≥ (1 − τ)
(

f0
(

zk
)

− f0
(

zk + tΔ
))(3.14)

and

mk

(

xk
)

−mk

(

zk + tΔ
)

= mk

(

xk
)

−mk

(

zk
)

+mk

(

zk
)

−mk

(

zk + tΔ
)

≤ (1 + τ)
(

mk

(

zk
)

−mk

(

zk + tΔ
))

.
(3.15)

Therefore, if xk ∈ V3 and Δ ∈ [γ2Δρ,Δρ], using (3.14), (3.15), and Lemma 3.4(ii), we
obtain

f0
(

xk
)

− f0
(

zk + tΔ
)

≥ (1 − τ)η̄
(

mk

(

zk
)

−mk

(

zk + tΔ
))

≥ (1 − τ)η̄
(1 + τ)

(

mk

(

xk
)

−mk

(

zk + tΔ
))

= η
(

mk

(

xk
)

−mk

(

zk + tΔ
))

,

completing the proof.
In the next two results we shall use the filter slack Hk, defined in (2.1). First we

show that, near a feasible nonstationary point, the rejection of a step is due to a large
increase of the infeasibility.



GLOBAL CONVERGENCE OF FILTER METHODS 1245

Lemma 3.6. Suppose that Hypotheses H1, H2, and H4–H6 hold. Let x̄ ∈ X be a
feasible nonstationary point and consider the constants γ and Δρ given by Algorithm
3.1 and Lemma 3.4, respectively, and the neighborhood V3 given by Lemma 3.5. Then
there exists a neighborhood V ⊂ V3 of x̄ such that whenever xk ∈ V , zk = xk + nk,
and a tangential trial step tΔ is obtained by the algorithm, we have

h
(

zk + tΔ
)

≥ Hk

for any Δ ∈ [γ2Δρ,Δρ] that was rejected by Algorithm 3.1.
Proof. Let α, η, N , and c̃ be the constants given by Algorithms 2.1, 3.1 and

Lemmas 3.3, 3.4, respectively. Consider V ⊂ V3 a neighborhood of x̄ such that for all
x ∈ V ,

Nh(x) ≤ 1
2
c̃γ2Δρ and αh(x) ≤ 1

2
ηc̃γ2Δρ.(3.16)

Hence, if xk ∈ V and Δ ∈ [γ2Δρ,Δρ], we can apply Lemma 3.3 to obtain
∣

∣mk

(

xk
)

−mk

(

zk
)∣

∣ ≤ Nh
(

xk
)

≤ 1
2
c̃γ2Δρ ≤

1
2
c̃Δ,

which together with Lemma 3.4 yields

mk

(

xk
)

−mk

(

zk + tΔ
)

≥ 1
2
c̃Δ ≥ 1

2
c̃γ2Δρ.(3.17)

Using Lemma 3.5, (3.16), and (3.17), we obtain

f0
(

xk
)

− f0
(

zk + tΔ
)

≥ η
(

mk

(

xk
)

−mk

(

zk + tΔ
))

≥ 1
2
ηc̃γ2Δρ

≥ αh
(

xk
)

.

Since zk + tΔ = xk + dΔ, it follows that

f0
(

xk
)

− f0
(

xk + dΔ

)

≥ η
(

mk

(

xk
)

−mk

(

xk + dΔ

))

(3.18)

and

f0
(

xk + dΔ

)

≤ f0
(

xk
)

− αh
(

xk
)

.(3.19)

Therefore, if the trial step dΔ was rejected by Algorithm 3.1, then xk + dΔ ∈ F̄k
because of (3.18). We thus conclude from (3.19) that

h
(

zk + tΔ
)

≥ Hk,

completing the proof.
We now prove the main result of this section: Hypothesis H3 is satisfied. Indeed,

we give a sufficient condition to ensure H3. As we saw in Theorem 2.5, this hypothesis
was crucial in the convergence analysis of section 2.

For the purpose of our analysis, we shall consider the set of restoration iterations

Kr =
{

k ∈ N | L
(

xk
)

= ∅ or
∥

∥nk
∥

∥ > ξΔk

}

,(3.20)

where L(xk) is defined by (3.2). We also assume the following hypothesis.
H7. Every feasible accumulation point x̄ ∈ X of (xk)k∈N satisfies the Mangasarian–

Fromovitz constraint qualification; namely, the gradients ∇fi(x̄) for i ∈ E are lin-
early independent, and there exists a direction d ∈ R

n such that AE(x̄)d = 0 and
AĪ(x̄)d < 0, where Ī = {i ∈ I | fi(x̄) = 0}.
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Theorem 3.7. Suppose that Algorithm 2.1 is applied to problem (P ), with the
step computed by Algorithm 3.1, and that Hypotheses H1, H2, and H4–H7 hold. Given
a feasible nonstationary point x̄ ∈ X, there exist M > 0 and a neighborhood V of x̄
such that if xk ∈ V , then

f0
(

xk
)

− f0
(

xk+1
)

≥M
√

Hk.

In particular, since
√
Hk ≥ vk, the hypothesis H3 is satisfied.

Proof. Let x̄ be a feasible nonstationary point. Consider the neighborhood V
given by Lemma 3.6 and the constant Δρ given by Lemma 3.4. Without loss of
generality, we can assume that

Δρ ≤
γ2

ch
min

{

ξ

cn
,
c̃

2N
,
c̃

2cp
,
ηc̃

2α

}

,(3.21)

where α is the constant given in Algorithm 2.1, ξ, γ, cp, and η are given in Algo-
rithm 3.1, cn is given in Hypothesis H4, and ch, N , and c̃ are given by Lemmas 3.2,
3.3, and 3.4, respectively. By the constraint qualification hypothesis H7, we can as-
sume that if xk ∈ V , then L(xk) �= ∅. Thus, Algorithm 3.1 starts with the radius
Δ ≥ Δmin and ends with Δk = γrΔ, where r is the number of times that the ra-
dius was reduced in the algorithm. We shall consider two cases, respectively, with
Δk ≥ γ2Δρ and Δk < γ2Δρ.

First case: Δk ≥ γ2Δρ. In this case, using the hypothesis H4 and restricting the
neighborhood V , if necessary, we have

∥

∥nk
∥

∥ ≤ cnh
(

xk
)

≤ ξγ2Δρ ≤ ξΔk.

So, Algorithm 3.1 does not enter the restoration phase during the iteration k, that is,
k /∈ Kr. Therefore, applying Lemma 3.4(i) with Δ′ = γ2Δρ, we obtain

mk

(

zk
)

−mk

(

xk+1
)

= mk

(

zk
)

−mk

(

zk + tΔk

)

≥ c̃γ2Δρ.(3.22)

On the other hand, by Lemma 3.3,
∣

∣mk

(

xk
)

−mk

(

zk
)∣

∣ ≤ Nh
(

xk
)

.(3.23)

We can restrict again the neighborhood V , if necessary, so that

Nh
(

xk
)

≤ 1
2
c̃γ2Δρ, cp

(

h
(

xk
))2 ≤ 1

2
c̃γ2Δρ and h

(

xk
)

≤ 1.(3.24)

By (3.22)–(3.24), we have

predk
def= mk

(

xk
)

−mk

(

xk+1
)

≥ 1
2
c̃γ2Δρ ≥ cp

(

h
(

xk
))2

.

Then the mechanism of Algorithm 3.1 and the fact that Hk ≤ 1 imply that

f0
(

xk
)

− f0
(

xk+1
) def= aredk ≥ η predk ≥ 1

2
ηc̃γ2Δρ ≥

1
2
ηc̃γ2Δρ

√

Hk.(3.25)

Second case: now, assume that Δk < γ2Δρ. In this case we shall analyze two
possibilities. In the first one, we suppose that h(xk + dΔ) ≥ Hk for all Δ ≤ γΔρ such
that the trial step dΔ has been computed. Let Δ̃ = Δk

γ . Since Δk < Δmin, the trial
step d̃ = dΔ̃ was computed. Furthermore, h(xk + d̃) ≥ Hk because Δ̃ < γΔρ. So,
using Lemma 3.2 and the definition of Hk, it follows that

chΔ2
k = chγ

2Δ̃2 ≥ γ2h
(

xk + d̃
)

≥ γ2Hk ≥ γ2h
(

xk
)

.(3.26)
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From Hypothesis H4, (3.21), and (3.26), we obtain

∥

∥nk
∥

∥ ≤ cnh
(

xk
)

≤ cnch
γ2

Δ2
k ≤ ξΔk,

meaning that Algorithm 3.1 does not enter the restoration phase during the iteration
k, that is, k /∈ Kr. Therefore, by Lemma 3.4(i) with Δ′ = Δk, we have

mk

(

zk
)

−mk

(

xk+1
)

= mk

(

zk
)

−mk

(

zk + tΔk

)

≥ c̃Δk.(3.27)

Moreover, (3.23) remains true in this case and together with (3.21) and (3.26) yields

∣

∣mk

(

xk
)

−mk

(

zk
)∣

∣ ≤ Nh
(

xk
)

≤ Nch
γ2

Δ2
k ≤ 1

2
c̃Δk.(3.28)

Combining (3.27) and (3.28), we obtain

predk = mk

(

xk
)

−mk

(

xk+1
)

≥ 1
2
c̃Δk.(3.29)

By (3.21), (3.24), and (3.26),

predk ≥ cpch
γ2

Δ2
k ≥ cph

(

xk
)

≥ cp
(

h
(

xk
))2

.

Thus, the mechanism of Algorithm 3.1, (3.26), and (3.29) imply that

f0
(

xk
)

− f0
(

xk+1
)

= aredk ≥ η predk ≥ 1
2
ηc̃Δk ≥ ηc̃γ

2
√
ch

√

Hk.(3.30)

Let us see now the second possibility; that is, there exists Δ ≤ γΔρ such that
h(xk + dΔ) < Hk. Let Δ̂ be the first Δ satisfying such a condition. We shall show
that Δ̂ = Δk. Let d̄ = dΔ̄ be the trial step obtained with Δ̄ = Δ̂

γ . We claim that

h
(

xk + d̄
)

≥ Hk.(3.31)

Indeed, if Δ̄ ≤ γΔρ, the definition of Δ̂ ensures the claim. On the other hand, if
Δ̄ > γΔρ, then Δ̄ ∈ [γ2Δρ,Δρ] and, applying Lemma 3.6, we have

h
(

xk + d̄
)

= h
(

zk + tΔ̄
)

≥ Hk.

So, the inequality (3.31) holds. As above, we can therefore prove that

chΔ̂2 ≥ γ2Hk ≥ γ2h
(

xk
)

(3.32)

and

predΔ̂

def= mk

(

xk
)

−mk

(

zk + tΔ̂
)

≥ 1
2
c̃Δ̂.(3.33)

Now, by the same reasoning as in the proof of Lemma 3.5(ii), using (3.32) and (3.33),
we obtain

aredΔ̂

def= f0
(

xk
)

− f0
(

zk + tΔ̂
)

≥ η predΔ̂ ≥ 1
2
ηc̃Δ̂,(3.34)
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which together with (3.21) and (3.32) yields

aredΔ̂ >
αch
γ2

Δ̂2 ≥ αh
(

xk
)

.(3.35)

The definition of Δ̂ and (3.35) ensure that zk+ tΔ̂ is accepted by the filter. Therefore,
using (3.34), we conclude that zk + tΔ̂ = xk+1. Moreover, (3.32) and (3.34) imply
that

f0
(

xk
)

− f0
(

zk + tΔ̂
)

≥ 1
2
ηc̃Δ̂ ≥ ηc̃γ

2
√
ch

√

Hk,

that is,

f0
(

xk
)

− f0
(

xk+1
)

≥ ηc̃γ

2
√
ch

√

Hk.(3.36)

Since (3.25), (3.30), and (3.36) run out all possibilities, by defining

M = min
{

1
2
ηc̃γ2Δρ,

ηc̃γ

2
√
ch

}

,

we complete the proof.

4. Conclusions. In this work we have studied filter methods for nonlinear pro-
gramming. These methods seem to be a successful strategy for globalizing algorithms
without the use of merit functions. Since its appearance in 1997, the filter technique
has been applied to many problems, including sequential linear programming (SLP),
sequential quadratic programming (SQP), inexact restoration, interior-point methods,
nonlinear systems of equations, unconstrained optimization, and nonsmooth convex
constrained optimization.

Our purpose here was to present a general globally convergent filter algorithm that
leaves the step computation separate from the main algorithm. This technique cleans
the convergence analysis and accepts any method for computing the step, as long
as this internal algorithm is efficient in the sense that the hypothesis H3 is satisfied.
For completeness, we have shown that there are methods which satisfy the referred
hypothesis.
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Abstract. We study Lipschitz continuity with respect to the parameter of the set of solutions
of a parameterized minimax problem on a product Banach space. We present a sufficient condition,
ensuring that the map which to any value of the parameter assigns the set of solutions of the problem
(possibly multi-valued, and unbounded) possesses Aubin property.
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1. Introduction. Consider the parameterized minimax problem

M(λ) inf
x∈K

sup
y∈L

f(x, y, λ),

where λ ∈ Λ is a parameter.
Here K and L are nonempty closed subsets of the Banach spaces X and Y ,

respectively; {f(·, ·, λ) : X × Y → R, λ ∈ Λ} is a family of real-valued functions
parameterized by λ ∈ Λ, where Λ is a subset of the Banach space Z.

Saddle point of f(·, ·, λ) on K × L is any point (x, y) ∈ K × L that satisfies

f(x, y, λ) ≤ f(x, y, λ) ≤ f(x, y, λ) ∀x ∈ K, ∀y ∈ L.

A saddle point (x, y) of f(·, ·, λ) on K×L can be considered as a solution of the mini-
max problem M(λ) by reason of (x, y) ∈ K×L and f(x, y) = infx∈K supy∈L f(x, y, λ).
Let us denote the (possibly empty) set of all saddle points of the function f(·, ·, λ) on
K × L by

S(λ) := {(x, y)∈K×L : f(x, y, λ) ≤ f(x, y, λ) ≤ f(x, y, λ), ∀x ∈ K, ∀y ∈ L}.(1.1)

That S(λ) is nonempty can be ensured in several cases. For example, if K and
L are convex sets, f(x, y, λ) is convex and lower semicontinuous in x, concave and
upper semicontinuous in y, and there are x0 ∈ K and y0 ∈ L such that f(·, y0, λ) is
inf-compact and f(x0, ·, λ) is sup-compact, then S(λ) �= ∅ by a minimax result due to
Hartung [17], Theorem 1 (see also [3], Theorem 6.2.8). When, moreover, f(x, y, λ) is
strictly convex in x and strictly concave in y, then S(λ) is a singleton.

In the present work we presume the existence of saddle points for M(λ) and focus
our attention on studying Lipschitz-like dependence of the solution set S(λ) on the
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parameter λ. That is, we find sufficient conditions for Lipschitz-like continuity of the
set-valued map

S : λ ⇒ S(λ)

from Λ to nonempty subsets of K × L.
Of course, when the map S is single-valued, the Lipschitz continuity is understood

in the classical sense. However, the map S could be multivalued. Moreover, its values
S(λ) could be unbounded sets. A notion of Lipschitz-like continuity very appropriate
for such a case is due to Aubin [1, 2]:

The multivalued map S : Λ ⇒ X has Aubin property, or it is Aubin continuous,
near (λ, x) ∈ gphS, if there are positive constant κ and neighborhoods U of x, and
V of λ, such that

e(S(λ) ∩ U, S(μ)) ≤ κ‖λ− μ‖, ∀λ, μ ∈ Λ ∩ V,(1.2)

where e(A,B) := supx∈A d(x,B) is the excess from set A to set B with e(∅, B) = +∞.
S is said to be Aubin continuous if S is Aubin continuous near any point (λ, x) ∈
gphS.

For various applications of Aubin continuity in the field of nonlinear analysis and
optimization the reader is referred, e.g., to [1, 2, 4, 23]. The Aubin property of a map
S near (λ, x) is known to be equivalent to the metric regularity of S−1 near (x, λ) and
was originally introduced in [2] under the name of pseudo-Lipschitz continuity. For
bibliographical details see [23].

Whenever S is locally bounded, Aubin continuity coincides with the classical
notion for Lipschitz continuity of set-valued maps [4, 23]

e(S(λ), S(μ)) ≤ κ‖λ− μ‖, ∀λ, μ,

but Aubin property works without any boundedness imposed on the values of S.
Aubin property is in fact Lipschitzean property localized in the range space, as well
as in the domain space.

In the present paper we establish quite general sufficient conditions for Aubin
continuity of the saddle point map S : λ ⇒ S(λ) arising from the parameterized
minimax problem M(λ). Examples illustrating this condition are presented. Several
corollaries related to the case of convex-concave smooth data are also sketched.

The paper is organized as follows. In section 2, after a short subsection devoted
to preliminaries, we formulate and prove a sufficient condition for Aubin continuity
of the solution map S : Λ ⇒ X of a parameterized minimization problem

P (λ) inf
x∈K

f(x, λ).

Many authors study Lipschitz-like dependence on λ of the solutions of the associated
generalized Euler equation

0 ∈ ∇xf(x, λ) +NK(x);

see [7, 15, 25] and the references therein for recent developments. Here we do not
follow that approach, because the map St : λ ⇒ St(λ), which to any λ assigns
the set St(λ) of solutions of the generalized Euler equation, does not inherit Aubin
continuity property from S (see Example 2.6 for a parameterized problem such that
the corresponding S is Aubin continuous while St is not).
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In section 3 we present our main result (Theorem 3.2), which is a sufficient condi-
tion for Aubin continuity of the saddle point map S : Λ ⇒ X × Y of a parameterized
minimax problem M(λ).

It is clear that the results of section 2 are contained in the more general framework
of section 3. Nevertheless, we think that presenting the proof of the former simple
case will help the understanding of the more technical proof of the latter general case.

Section 4 relates the obtained results to some questions in the field of two-player
zero sum differential games.

2. Parameterized minimization problem.

2.1. Preliminaries. As already said, X stands for a Banach space. We denote
its norm by ‖ · ‖, and its open unit ball by B◦. The dual space is denoted by X∗,
while for the duality brackets notation 〈·, ·〉 is used.

For C ⊂ X the distance function to C is d(x,C) := infc∈C ‖x− c‖ if C �= ∅, and
d(x,C) := +∞ if C = ∅.

Function f : X → R is Gâteaux differentiable at x ∈ X if there exists ∇f(x) ∈ X∗,
called the Gâteaux derivative of f at x, such that for any h ∈ X ,

lim
t→0

f(x+ th) − f(x)
t

= 〈∇f(x), h〉.

Also, f is said to be strictly differentiable at x whenever

lim
x→x
t→0

f(x+ th) − f(x)
t

= 〈∇f(x), h〉.

Given an open set U ⊂ X we denote by C1,α(U) the class of all Gâteaux differ-
entiable functions f : U → R such that ∇f : U → X∗ is α-Hölder on U , that is, for
some constant L > 0,

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖α, ∀x, y ∈ U.

Let Z be a Banach space, whose norm is also denoted by ‖ · ‖. Let S be a map
from Λ ⊂ Z to X . If not stated otherwise, map means set-valued map. In order to
outline the multivaluedness we write S : Z ⇒ X . The inverse S−1 : X ⇒ Z of S is
defined by λ ∈ S−1(x) ⇐⇒ x ∈ S(λ). The graph, domain, and range sets of S are
given by

gphS := {(λ, x) | x ∈ S(λ)}, domS := {λ | S(λ) �= ∅}, rgeS := domS−1,

respectively.
Any product space X × Z of Banach spaces X and Z is considered with the

supremum norm ‖(x, z)‖ := max{‖x‖, ‖z‖}.

2.2. Assumptions. Let {f(·, λ) : X → R, λ ∈ Λ} be a family of functions
parameterized by λ ∈ Λ ⊂ Z. We look for sufficient conditions to ensure Aubin
continuity of the solutions of the parameterized family of constrained minimization
problems:

P (λ) inf
x∈K

f(x, λ),

where K is a given nonempty closed set in X .
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For λ ∈ Λ, the (possibly empty) set of solutions of the minimization problem
P (λ) is denoted by

S(λ) :=
{

x ∈ K : f(x, λ) = inf
x∈K

f(x, λ)
}

,

and its optimal value by

m(λ) := inf
x∈K

f(x, λ).

It is well known that even for smooth parameterized problem P (λ) the solution
S : Λ ⇒ X may fail Lipschitz continuity. For example, for f(x, λ) = 1

4x
4 − λx, where

x, λ ∈ R, and K = [−1, 1], we see that for λ ∈ (−1, 1) the solution is S(λ) = { 3
√
λ},

and it is not Lipschitz continuous at λ = 0 ([7], Example 4.31).
Hence, to establish Lipschitz behavior of S one needs something more than the

standard requirements. We now turn to relevant analysis of P (λ).
Definition 2.1. Let X and Z be Banach spaces. Let U ⊂ X, V ⊂ Z be non-

empty. We denote by Lα,β(U ;V ), α, β ∈ [0, 1], the class of all functions
g : U × U × V → R such that there exists a constant kg > 0 such that for all
x, x′ ∈ U and all λ, λ′ ∈ V ,

|g(x, x′, λ) − g(x, x′, λ′)| ≤ kg‖x− x′‖α‖λ− λ′‖β.
For example, g ∈ L1,1(U ;V ) means that g(x, x′, ·) is Lipschitz on V and its best

Lipschitz constant L(x, x′) satisfies L(x, x′) ≤ k‖x− x′‖ for some positive constant k
and all x, x′ ∈ U .

With the parameterized family of functions {f(·, λ), λ ∈ Λ} one may associate
two difference functions: the function f1 : X ×X × Λ → R defined by

f1(x, x′, λ) := f(x, λ) − f(x′, λ),

and the function f2 : Λ × Λ ×X → R defined by

f2(λ, λ′, x) := f(x, λ) − f(x, λ′).

The above notions are linked through the following:
Proposition 2.2. For any U ⊂ X, V ⊂ Z the function f1 ∈ Lα,β(U ;V ) if and

only if f2 ∈ Lβ,α(V ;U).
Proof. Let f1 ∈ Lα,β(U ;V ). Take any x, x′ ∈ U , and any λ, λ′ ∈ V . Since

f2(λ, λ′, x) − f2(λ, λ′, x′) = [f(x, λ) − f(x, λ′)] − [f(x′, λ) − f(x′, λ′)]
= [f(x, λ) − f(x′, λ)] − [f(x, λ′) − f(x′, λ′)]
= f1(x, x′, λ) − f1(x, x′, λ′) ≤ kf1‖x− x′‖α‖λ− λ′‖β,

one can take kf2 := kf1 to conclude that f2 ∈ Lβ,α(V ;U). The proof of the other
direction is similar.

We are ready to present the sufficient condition for Aubin continuity of the solu-
tion map.

Given a (λ, x) ∈ gphS, consider the following local assumption A at (λ, x):

(A)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

there exist neighborhoods U of x and V of λ, such that

1. S(λ) ∩ U �= ∅ for all λ ∈ Λ ∩ V ;

and there exist constants c > 0 and α ∈ [0, 1] such that

2. f(x, λ′) ≥ m(λ′) + cd1+α(x, S(λ′)), ∀λ, λ′ ∈ Λ ∩ V, ∀x ∈ S(λ) ∩ U ;

3. f1 ∈ Lα,1(K; Λ ∩ V ).



1254 MARC QUINCAMPOIX AND NADIA ZLATEVA

By Proposition 2.2 it is clear that assumption A3 could be replaced with
f2 ∈ L1,α(Λ ∩ V ;K).

It is clear that A1 implies that m(λ) is finite for all λ ∈ Λ ∩ V .
In the case α = 1, assumption A2 can be considered as a relaxed (in x) uniform

(in λ′) version of the so-called second-order growth condition. One says that the
second-order growth condition holds for the problem

inf
x∈K

f(x)

in a neighborhood N of the solution set S0, if there exists a constant c > 0 such that

f(x) ≥ inf
K
f + cd2(x, S0), ∀x ∈ K ∩N.(2.1)

This condition is involved in a number of works (see [5, 6, 7, 19, 24]) in order
to ensure Lipschitz stability of the solution map S of the constrained minimization
problem. Let us recall that S is said to be Lipschitz stable or, equivalently, upper
Lipschitz at a point λ ∈ Λ, if there exist a constant κ > 0 and a neighborhood V of
λ such that it holds that

e(S(λ), S(λ)) ≤ κ
∥

∥λ− λ
∥

∥ , ∀λ ∈ Λ ∩ V.

Let us note that Lipschitz stability is a point property: it holds for S at a fixed point
λ, while Aubin continuity we wish to obtain, is a local property, and it holds uniformly
at all points μ in some neighborhood V of the referenced point λ. Obviously, Aubin
continuity of S near (λ, x) implies Lipschitz stability of S ∩U at λ while the opposite
implication is not always true.

A stronger version of uniform second-order growth condition thanA2 with α = 1 is
given in [7], Definition 5.16. It implies single-valuedness and local Lipschitz continuity
of S (cf. [7], Theorem 5.17 and Remark 5.19). In contrast, assumption A2 does not
imply neither single-valuedness nor local boundedness of the solution map S (see
Example 2.6).

We would now give a few examples of parameterized families of functions {f(·, λ),
λ ∈ Λ} for which A holds, in this way showing the consistency of our main assumption.

Obviously, the compactness of K and lower semicontinuity of f(·, λ) on K are
sufficient to ensure A1 (note that weak compactness and weak lower semicontinuity
would do just as well).

A2 with α = 1 is satisfied at any (λ, x) ∈ gphS provided that, for example,
U = X , V = Z, and K ⊂ X is a nonempty closed convex set, the functions f(·, λ)
are lower semicontinuous, and uniformly on λ ∈ Λ strongly convex on K, that is, for
some constant c > 0 the inequality

f(tx′ + (1 − t)x′′, λ) ≤ tf(x′, λ) + (1 − t)f(x′′, λ) − ct(1 − t)‖x′ − x′′‖2

holds for every t ∈ [0, 1], every x′, x′′ ∈ K and every λ ∈ Λ.
Lemma 2.3 below provides examples of parameterized families of functions satis-

fying A3. However, we need a few more definitions before stating this lemma.
Recall that the Clarke generalized derivative of Lipschitz function f : X → R at

x ∈ X in direction h ∈ X is

f◦(x;h) := lim sup
x→x
t↓0

f(x+ th) − f(x)
t

,
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and the Clarke subdifferential at x is the nonempty w∗ compact set

∂f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f◦(x;h), ∀h ∈ X};

see [12]. It is well known that for any h ∈ X there exists some x∗ ∈ ∂f(x) such that

〈x∗, h〉 = f◦(x;h).

Lipschitz function f : U → R is said to be regular on an open set U ⊂ X if for
any h ∈ X and any x ∈ U its directional derivative

f ′(x;h) := lim
t↓0

f(x+ th) − f(x)
t

exists and is equal to f◦(x;h). Convex continuous functions and strictly differentiable
functions are examples of regular functions.

Let f(x, λ) be Lipschitz on each variable bivariate function. Denote by f◦
x(x, λ;h)

and by f ′
x(x, λ;h) the generalized derivative and the directional derivative of f(·, λ)

at x in direction h, respectively. Also, denote by ∂xf(x, λ) the partial Clarke subdif-
ferential of f(·, λ) at x, and by ∂λf(x, λ) the partial Clarke subdifferential of f(x, ·)
at λ.

Lemma 2.3. Let (λ, x) ∈ gphS and let U ⊂ X and V ⊂ Z be convex neighbor-
hoods of K and λ, respectively. Consider the conditions:

(F1)

⎧

⎪

⎨

⎪

⎩

for λ ∈ Λ ∩ V, f(·, λ) is Lipschitz and regular on U and

∂xf(x, ·) : Λ ∩ V→X∗ is a k-Lipschitz map on Λ ∩ V
with k that does not depend on x ∈ U,

(F2)

⎧

⎪

⎨

⎪

⎩

for x ∈ K, f(x, ·) is Lipschitz and regular on V and

∂λf(·, λ) : K→Z∗ is a k-Lipschitz map on K

with k that does not depend on λ ∈ V.

If f satisfies F1 or F2, then A3 holds with α = 1.
Proof. Let f satisfy F1. Fix x, y ∈ K and λ, μ ∈ Λ ∩ V . Consider the function

r(t) := f(y + t(x− y), λ) which is well-defined on an open interval I containing [0, 1].
Since the function f(·, λ) is assumed to be Lipschitz on U , we have that r is Lipschitz
on I. By Rademacher’s theorem, for almost all t ∈ [0, 1] there exists

r′(t) = lim
s→0

r(t + s) − r(t)
s

= lim
s↓0

f(y + t(x− y) + s(x− y), λ) − f(y + t(x− y), λ)
s

= f ′
x(y + t(x− y), λ;x− y) = f◦

x(y + t(x− y), λ;x− y).

The last equality holds because f(·, λ) is regular on U .
Hence,

f(x, λ)−f(y, λ) = r(1)−r(0)=
∫ 1

0
r′(t) dt=

∫ 1

0
f◦
x(y+t(x−y), λ;x−y) dt.(2.2)

Similarly,

f(x, μ) − f(y, μ) =
∫ 1

0
f◦
x(y + t(x− y), μ;x− y) dt.(2.3)
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There exists x∗λ(t) ∈ ∂xf(y + t(x − y), λ) such that f◦
x(y + t(x − y), λ;x − y) =

〈x∗λ(t), x−y〉, so (2.2) becomes

f(x, λ) − f(y, λ) =
∫ 1

0
〈x∗λ(t), x − y〉 dt.(2.4)

Since xλ(t) ∈ ∂xf(y + t(x − y), λ) and the multivalued map ∂xf(x, ·) : Λ ∩ V→X∗ is
k–Lipschitz continuous with w∗ compact images, there is x∗μ(t) ∈ ∂xf(y+ t(x− y), μ)
such that ‖x∗λ(t)−x∗μ(t)‖ ≤ k‖λ−μ‖. Note that k does not depend on either t ∈ [0, 1]
or x, y ∈ U .

Let us use these for estimating f1(x, y, λ) − f1(x, y, μ).
From (2.4) we get

f(x, λ) − f(y, λ) =
∫ 1

0
〈x∗λ(t) − x∗μ(t), x− y〉 dt+

∫ 1

0
〈x∗μ(t), x − y〉 dt

≤
∫ 1

0
‖x∗λ(t) − x∗μ(t)‖ ‖x− y‖ dt+

∫ 1

0
〈x∗μ(t), x− y〉 dt

≤ k‖λ− μ‖ ‖x− y‖ +
∫ 1

0
〈x∗μ(t), x− y〉 dt.

Since x∗μ(t) ∈ ∂xf(y+t(x−y), μ), it holds that 〈x∗μ(t), x−y〉 ≤ f◦
x(y+t(x−y), μ;x−y),

and by (2.3) we have
∫ 1

0
〈x∗μ(t), x − y〉 dt ≤

∫ 1

0
f◦
x(y + t(x− y), μ;x− y) dt = f(x, μ) − f(y, μ).

Hence,

f(x, λ) − f(y, λ) ≤ f(x, μ) − f(y, μ) + k‖λ− μ‖‖x− y‖;

that is, f1(x, y, λ) ≤ f1(x, y, μ) + k‖λ− μ‖‖x− y‖, or

f1(x, y, λ) − f1(x, y, μ) ≤ k‖λ− μ‖‖x− y‖,

which means that f1 ∈ L1,1(K; Λ∩V ).
If f satisfies F2, then by the same reasoning one obtains that f2 ∈ L1,1(Λ∩V ;K)

and by Proposition 2.2, A3 holds.
It is interesting to note here that the regularity (in particular, the differentiability)

can be asked for the argument x as in F1, or for the parameter λ as in F2.
It is clear that both F1 and F2 hold whenever f ∈ C1,1(U × V ).

2.3. Lipschitz-like continuity of the solution map. Here we prove that
given (λ, x) ∈ gphS, assumption A is sufficient to ensure Aubin continuity of the
solution map S near (λ, x).

Proposition 2.4. Assume that X and Z are Banach spaces and consider a
family of constraint minimization problems P (λ) parameterized by λ ∈ Λ, a nonempty
subset of Z.

If for some (λ, x) ∈ gphS assumption A holds, then

e(S(λ) ∩ U, S(μ)) ≤ kf1
c

‖λ− μ‖, ∀λ, μ ∈ Λ ∩ V,(2.5)

and the solution map S is Aubin continuous near (λ, x) ∈ gphS.
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Proof. Take any λ ∈ Λ ∩ V and any xλ ∈ S(λ) ∩ U (which is a nonempty set
thanks to A1). By A2, for arbitrary μ ∈ Λ ∩ V

f(xλ, μ) ≥ m(μ) + cd1+α(xλ, S(μ)).(2.6)

Since by A1 the set S(μ)∩U is nonempty, for any ε > 0 there exists some xεμ ∈ S(μ)
such that

‖xλ − xεμ‖ ≤ d(xλ, S(μ)) + ε.(2.7)

As xεμ ∈ S(μ) we have m(μ) = f(xεμ, μ) and inequality (2.6) reads

f(xλ, μ) ≥ f(xεμ, μ) + cd1+α(xλ, S(μ)).(2.8)

Since xλ ∈ S(λ), we have that

f(xεμ, λ) ≥ f(xλ, λ).(2.9)

By adding (2.8) and (2.9) and rearranging, we obtain

[f(xλ, μ) − f(xεμ, μ)] − [f(xλ, λ) − f(xεμ, λ)] ≥ cd1+α(xλ, S(μ)).

That is,

f1
(

xλ, x
ε
μ, μ

)

− f1
(

xλ, x
ε
μ, λ
)

≥ cd1+α(xλ, S(μ)).(2.10)

Using A3, that is, f1 ∈ Lα,1(K; Λ ∩ V ), we estimate the left-hand side of (2.10):

f1
(

xλ, x
ε
μ, μ

)

− f1
(

xλ, x
ε
μ, λ
)

≤ kf1‖xλ − xεμ‖α‖λ− μ‖.

Hence, we have that kf1‖λ − μ‖ ‖xλ − xεμ‖α ≥ cd1+α(xλ, S(μ)). From this and (2.7)
it follows that

kf1‖λ− μ‖[d(xλ, S(μ)) + ε]α ≥ cd1+α(xλ, S(μ)).

Letting ε ↓ 0 and then dividing by dα(xλ, S(μ)) > 0 (if = 0 the inequality below is
trivial), we obtain kf1‖λ− μ‖ ≥ cd(xλ, S(μ)), or

d(xλ, S(μ)) ≤ kf1
c

‖λ− μ‖.

As xλ was an arbitrary point in S(λ) ∩ U , the latter yields

e(S(λ) ∩ U, S(μ)) ≤ kf1
c

‖λ− μ‖,

completing the proof.

2.4. Examples and corollaries. The following is a basic example of non-
smooth parameterized minimization problem with Lipschitz continuous solution map
with unbounded values. We show that it is within the scope of Proposition 2.4.

Example 2.5. Let K = R
2 and

f(x1, x2, λ) := |x1 − x2 − λ|,
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x1, x2, λ ∈ R. Consider the parameterized family of unconstrained minimization prob-
lems over the plane

P (λ) inf
x1,x2

f(x1, x2, λ).

Then the solution map S : λ ⇒ S(λ) is Lipschitz continuous.
Proof. Obviously, for any λ ∈ R the solution set consists of a single line, i.e.,

S(λ) = {(x1, x2) : x1 − x2 = λ}. Moreover, for λ and μ the solution sets S(λ) and
S(μ) are parallel lines. The distance between S(λ) and S(μ) is the distance from any
point (x1, x2) ∈ S(λ) to the line x1 − x2 = μ which is equal to |x1−x2−μ|√

2
= |λ−μ|√

2
, so

the map S is Lipschitz continuous with Lipschitz constant 1√
2
.

Note that the sufficient condition A holds. Indeed
A1 holds with U ≡ R

2;
A2 holds with α = 0, c =

√
2, and U = R

2, V = R;
A3 holds because f1 ∈ L0,1(R2,R) with kf1 = 2.
The Lipschitz constant provided by Proposition 2.4 is kf1

c =
√

2.
The next example shows that studying the generalized Euler equation may some-

times be inadequate for obtaining Aubin continuity of the solution map. This is
because the set of the stationary points may be larger than the set of minima.

Example 2.6. Let K = R
2 and

f(x1, x2, λ) := (x1 + λx2 − 1)2(x2 + λx1 + 1)2,

x1, x2, λ ∈ R. Consider the parameterized family of unconstrained minimization prob-
lems over the plane

P (λ) inf
x1,x2

f(x1, x2, λ).

Then at the point λ = 1 the set of solutions S(λ) is smaller than the set of
stationary points St(λ) := {x ∈ R

2 : 0 ∈ ∇xf(x, λ)}. Moreover, the map S is Aubin
continuous near any point in his graph while St is not Aubin continuous near the
point (λ, x) ∈ gphSt where λ = 1 and x = (0, 0).

Proof. Straightforward computations show that for any λ ∈ R the solution set

S(λ) = {(x1, x2) : x2 + λx1 = −1, or x1 + λx2 = 1}

is the union of two lines—the line p1(λ) with equation x2 + λx1 = −1 and the line
p2(λ) with equation x1 + λx2 = 1. Because of

∇xf(x, λ) = [2(x1 + λx2 − 1)(x2 + λx1 + 1)(2λx1 + (1 + λ2)x2 + 1 − λ),
2(x1 + λx2 − 1)(x2 + λx1 + 1)((1 + λ)2x1 + 2λx2 + λ− 1)],

the set of the stationary points at λ = 1 consists of three parallel lines

St(1) = {(x1, x2) : x1 + x2 = 1, or x1 + x2 = −1, or x1 + x2 = 0},

while for λ �= 1, St(λ) ≡ S(λ).
It is not difficult to see that S is Aubin continuous near an arbitrary point (λ, x) ∈

gphS (we note, by the way, that S is not Lipschitz continuous). Indeed, fix λ̃ ∈ R

and take x̃ = (x̃1, x̃2) ∈ S(λ̃) = p1(λ̃) ∪ p2(λ̃). Obviously, x̃ �= 0.
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Take λ such that |λ− λ̃| < 1/2. If x̃ ∈ p1(λ̃), then

d(x̃, S(λ)) ≤ d(x̃, p1(λ)) =

∣

∣

∣

(

λ− λ̃
)

x̃1

∣

∣

∣

√
1 + λ2

≤
∣

∣λ− λ̃
∣

∣ |x̃1| ,

and if x̃ ∈ p2(λ̃), then

d(x̃, S(λ)) ≤ d(x̃, p2(λ)) =

∣

∣

(

λ− λ
)

x̃2
∣

∣

√
1 + λ2

≤
∣

∣λ− λ̃
∣

∣ |x̃2| ,

which yields

d(x̃, S(λ)) ≤
∣

∣λ− λ̃
∣

∣max{|x̃1|, |x̃2|} ≤
∣

∣λ− λ̃
∣

∣ ‖x̃‖ < ‖x̃‖/2.

This implies that for all λ such that |λ − λ̃| < 1/2 the intersection of S(λ) with
the neighborhood U := x̃+ ‖x̃‖B◦ is nonempty.

Take x = (x1, x2) ∈ S(λ) ∩ U and μ such that |μ− λ̃| < 1/2. Similarly we get

d(x, S(μ)) ≤ |λ− μ| ‖x‖ ≤ |λ− μ| [‖x− x̃‖ + ‖x̃‖] ≤ 2‖x̃‖ |λ− μ|.

Hence,

e(S(λ) ∩ U, S(μ)) ≤ 2‖x̃‖ |λ− μ|, ∀λ, μ ∈ λ̃+
1
2
B◦,

which means that S is Aubin continuous near (λ̃, x̃) ∈ gphS.
In contrast, St is not Aubin continuous near the point, (λ, x) ∈ gphSt where λ = 1

and x = (0, 0). Indeed, if St is Aubin continuous near that point, then d(x, St(λ))
tends to zero as λ tends to 1. But the distance

d(x, St(λ)) = min{d(x, p1(λ)), d(x, p2(λ))} =
1√

1 + λ2

tends to 1√
2

as λ tends to 1, which means that St is not Aubin continuous near
(λ, x) ∈ gphSt.

As an immediate consequence of Proposition 2.4 we get the following.
Corollary 2.7. Let for the parameterized family of minimization problems P (λ)

the following assumption hold

(A′)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

for all λ ∈ Λ, all x ∈ K, and some c > 0

1. S(λ) �= ∅;

2. f(x, λ) ≥ m(λ) + cd2(x, S(λ));

3. f ∈ C1,1(X × Z).

Then the solution map S : Λ ⇒ X is Lipschitz continuous on Λ.
In a Banach spaceX with separable dual X∗ the notion of a second-order subdiffe-

rential for a function f ∈ C1,1(X) is introduced in [16] (see also the previous work [18]
for the finite dimensional case). For any x ∈ X the second-order subdifferential
∂2f(x) of f at x is a nonempty, convex, and w∗ compact set in L(X × X) (the
Banach space of all bilinear continuous functionals M : X ×X → R with the norm
‖M‖ := sup‖h1‖=‖h2‖=1 |M [h1, h2]|), which is singleton exactly when f is twice strictly
Gâteaux differentiable at x.
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Setting a simple condition on the second subdifferential is sufficient to get a family
of functions satisfying assumption A′ in the above corollary.

Indeed, let X be a Banach space with separable dual. Let in the parameterized
family of minimization problems P (λ), f ∈ C1,1(X×Z), and let the constraint set K
be closed and convex. If there exist c > 0 with

〈M(y−x), y−x〉 ≥ c‖y − x‖2 for all λ ∈ Λ, x, y ∈ K, M ∈ ∂2f(·, λ)(x),(2.11)

then the solution map S : Λ → X will be single-valued and Lipschitz continuous on Λ.
It is easily seen that (2.11) implies uniform on λ ∈ Λ strong convexity of f(·, λ)

on K. By this and continuity of f(·, λ), for every λ the infimum of f(·, λ) is attained
at unique xλ ∈ K and A′1 holds.

For any x ∈ K and λ ∈ Λ there exists some zλ ∈ K and Mzλ
∈ ∂2f(·, λ)(zλ) with

f(x, λ) = f(xλ, λ) + 〈∇xf(xλ, λ), x− xλ〉 +
1
2
〈Mzλ

(x− xλ), x− xλ〉

(see [16]). Since xλ is a minimum point for f(·, λ) on K and K is convex, then for all
x ∈ K, 〈∇xf(xλ, λ), x − xλ〉 ≥ 0 and from above equality and (2.11)

f(x, λ) ≥ m(λ) +
1
2
c‖x− xλ‖2,

so A′2 holds with α = 1.
We will use Corollary 2.7 to obtain existence and Lipschitz continuity of the

optimal solution for a linearly perturbed optimization problem, assuming a slightly
weaker version (see (2.12) below) of the uniform second-order growth condition (Def-
inition 5.19 in [7]), and C1,1 data. In this way we extend [7], Theorem 5.17 (see also
[7], Remark 5.19), where C2 data are assumed.

Recall that the Banach space X has Radon–Nikodym property (RNP) if for every
bounded set C and every ε > 0, there exists an x ∈ C that does not belong to the
closed convex hull of C \{x+εB◦}. All Banach spaces which have separable dual and
all reflexive Banach spaces have RNP. In [13], p. 157 there is a long list of equivalent
definitions of RNP. A good introductory survey on RNP is [14].

An efficient tool in dealing with minimization problems on Banach space X with
RNP is Stegall’s variational principle [26] (see also [21], Theorem 5.15): Let C ⊂ X
be a non-empty closed and bounded convex set and let f : C → R∪{+∞} be a lower
semicontinuous function, bounded below on C, then for every ε > 0, there exists
x∗ ∈ X∗ with ‖x∗‖ ≤ ε such that f + x∗ attains its strong minimum on C. Let us
remind that x0 ∈ C is said to be a strong minimum for function g : C → R ∪ {+∞}
on the set C if g(x0) = infC g and ‖xn − x0‖ → 0 whenever g(xn) → g(x0).

Corollary 2.8. Let the Banach space X have Radon–Nikodym property. Consi-
der a parameterized family of minimization problems P (λ), where the parameter space
is X∗ and f : X ×X∗ → R is defined by f(x, λ) := f(x) + 〈λ, x〉.

Assume that the constraint set K is closed and convex, f ∈ C1,1(X), and S(0) is
nonempty.

Suppose that there exist neighborhood V of the origin 0 of X∗ and a constant
c > 0 such that for all λ ∈ V and all xλ ∈ S(λ) it holds that

f(x, λ) ≥ f(xλ, λ) + c‖x− xλ‖2, ∀x ∈ K.(2.12)

Then there exists a neighborhood W of the origin 0 of X∗ such that S(λ) is single-
valued and Lipschitz continuous on W .
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Proof. From (2.12) it is clear that S(λ) contains at most one point for λ ∈ V .
We will show that S(λ) is nonempty for λ belonging to some neighborhood of 0.

Fix γ > 0 such that W := 2γB◦ ⊂ V .
Given λ ∈ γB◦, let εk be a sequence of positive numbers less than γ, tending to

zero.
Thanks to (2.12) with λ = 0, f(·, λ) is bounded below on K.
If K is bounded we could apply directly Stegall’s variational principle for the

function f(·, λ) : K → R and εk to find x∗k ∈ X∗ with ‖x∗k‖ ≤ εk and a strong
minimum xk of f(·, λ) + x∗k on K.

If K is not bounded, a variant of Stegall’s variational principle still holds thanks
to (2.12). Indeed, (2.12) for λ = 0 reads

f(x) ≥ f(x0) + c‖x− x0‖2, ∀x ∈ K,

which yields that for all x ∈ K,

f(x, λ) ≥ f(x0) + 〈λ, x〉 + c‖x− x0‖2 = f(x0, λ) + 〈λ, x− x0〉 + c‖x− x0‖2

≥ f(x0, λ) + ‖x− x0‖[c‖x− x0‖ − ‖λ‖](2.13)
≥ f(x0, λ) + ‖x− x0‖[c‖x− x0‖ − γ].

Set r := 3γ
c . Now, we apply Stegall’s variational principle for the function f(·, λ) on

the closed bounded set K∩{x0 + rB} and εk. Thus, there exists x∗k ∈ X∗, ‖x∗k‖ < εk,
and a point xk ∈ K ∩ {x0 + rB} such that f(·, λ) + x∗k attains a strong minimum on
K ∩{x0 + rB} at xk. Moreover, xk is a strong minimum of f(·, λ) +x∗k on K. Indeed,
if we assume that x ∈ K is such that

f(x, λ) + 〈x∗k, x〉 ≤ f(xk, λ) + 〈x∗k, xk〉 = inf
K∩{x0+rB}

f(·, λ) + x∗k ≤ f(x0, λ) + 〈x∗k, x0〉,

then by (2.13) we will have

‖x− x0‖[c‖x− x0‖ − γ] ≤ ‖x∗k‖‖x− x0‖ ≤ εk‖x− x0‖ < γ‖x− x0‖,
or

‖x− x0‖ ≤ 2γ
c
< r,

which means that x ∈ x0 + rB and clearly entails x = xk.
However, in both cases for any k we found x∗k ∈ X∗ with ‖x∗k‖ ≤ εk and unique

xk ∈ K satisfying

f(x) + 〈λ+ x∗k, x〉 ≥ f(xk) + 〈λ+ x∗k, xk〉, ∀x ∈ K.

This means that S(λ+ x∗k) = {xk} and since λ+ x∗k ∈ V , (2.12) reads

f(x) + 〈λ+ x∗k, x〉 ≥ f(xk) + 〈λ+ x∗k, xk〉 + c‖x− xk‖2, ∀x ∈ K.(2.14)

Substitute x = xn and rearrange to obtain

f(xn) − f(xk) ≥ 〈λ+ x∗k, xk − xn〉 + c‖xn − xk‖2.

Also, swapping k and n we get

f(xk) − f(xn) ≥ 〈λ + x∗n, xn − xk〉 + c‖xn − xk‖2.

Adding the above two, we obtain 2c‖xn − xk‖2 ≤ 〈x∗k − x∗n, xn − xk〉 ≤ (‖x∗k‖ +
‖x∗n‖)‖xn − xk‖. That is, 2c‖xn − xk‖ ≤ εk + εn, which means that xk is a Cauchy
sequence. Let xλ ∈ K be its limit. Passing to limit in (2.14) we see that xλ ∈ S(λ).

A straightforward application of Corollary 2.7 completes the proof.
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3. Parameterized minimax problem. In this section we study the behavior
of the saddle points set of a parameterized family of minimax problems.

3.1. Preliminaries and statement of the problem. Let X and Y be Banach
spaces, and let {f(·, ·, λ) : X ×Y → R, λ ∈ Λ} be a family of functions defined on the
product space X × Y , parameterized by λ ∈ Λ ⊂ Z.

Let us consider the parameterized family of minimax problems

M(λ) inf
x∈K

sup
y∈L

f(x, y, λ),

where the constraints are nonempty closed sets K ⊂ X and L ⊂ Y . Denote the
optimal value of M(λ) by m(λ) and recall that the (possibly empty) set of saddle
points of f(·, ·, λ) on K × L is given by (1.1).

For a set C ⊂ X × Y we denote by πXC and πY C the projections of C on the
spaces X and Y , respectively. More precisely, x ∈ πXC whenever there exists some
y ∈ Y with (x, y) ∈ C and y ∈ πY C whenever there exists some x ∈ X with (x, y) ∈ C.

It is well known that the saddle point set is a product set; that is,

S(λ) = πXS(λ) × πY S(λ).(3.1)

To the parameterized family of functions {f(·, ·, λ), λ ∈ Λ} one naturally asso-
ciates three difference functions:

f1(x, x′, λ, y) := f(x, y, λ) − f(x′, y, λ),
f2(y, y′, λ, x) := f(x, y, λ) − f(x, y′, λ),
f3(λ, λ′, x, y) := f(x, y, λ) − f(x, y, λ′).

By analogy with Definition 2.1 we write f1 ∈ Lα,βW (U ;V ) whenever the func-
tions fy1 (x, x′, λ) := f1(x, x′, λ, y) are such that for all y ∈ W , fy1 ∈ Lα,β(U ;V ), and
supy∈W kfy

1
is finite. We set kf1 := supy∈W kfy

1
.

Easy computations as those done in Proposition 2.2 show that f1 ∈ Lα,βW (U ;V ) ex-
actly when f3 ∈ Lβ,αW (V ;U) and that f2 ∈ Lα,βU (W ;V ) exactly when f3 ∈ Lβ,αU (V ;W ).

Now we are ready to state the sufficient condition for Aubin continuity of the
saddle points map S : Λ ⇒ X × Y .

Let (λ, x, y) ∈ gphS. We set the following local assumption A at (λ, x, y):

(A)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

there exist neighborhoods U of x, W of y, and V of λ, such that
1. S(λ) ∩ [U ×W ] �= ∅ for all λ ∈ Λ ∩ V ;
and there exist constants c > 0 and α ∈ [0, 1] such that
2. f(x, y′, λ′)≥m(λ′)+cd1+α(x, πXS(λ′)),

f(x′, y, λ′)≤m(λ′)−cd1+α(y, πY S(λ′)),
∀λ, λ′ ∈ Λ ∩ V, ∀(x, y) ∈ S(λ) ∩ [U ×W ], ∀(x′, y′) ∈ S(λ′);

3. f1 ∈ Lα,1L∩W (K; Λ ∩ V ) and f2 ∈ Lα,1K∩U (L; Λ ∩ V ).

Clearly, condition A3 could be replaced by

f3 ∈ L1,α
L∩W (Λ ∩ V ;K) ∩ L1,α

K∩U (Λ ∩ V ;L).

A1 implies that m(λ) is finite for λ ∈ Λ ∩ V .
We would show the consistency of our main hypothesis by giving some examples

of parameterized families of functions {f(·, ·, λ), λ ∈ Λ} for which A is satisfied.
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One gets a parameterized family of functions {f(·, ·, λ), λ∈Λ} satisfying A2, for
example, by assuming that K ⊂ X and L ⊂ Y are nonempty closed convex sets; the
function f(·, y, λ) is lower semicontinuous and uniformly on (y, λ) ∈ L × Λ strongly
convex on K, i.e., such that for some constant c > 0 the inequality

f(tx+ (1 − t)x′, y, λ) ≤ tf(x, y, λ) + (1 − t)f(x′, y, λ) − ct(1 − t)‖x− x′‖2

holds for every t ∈ [0, 1], every x, x′ ∈ K, and every (y, λ) ∈ L × Λ; the function
f(x, ·, λ) is upper semicontinuous and uniformly on (x, λ) ∈ K × Λ strongly concave
on L, i.e., such that the inequality

f(x, ty + (1 − t)y′, λ) ≥ tf(x, y, λ) + (1 − t)f(x, y′, λ) + ct(1 − t)‖y − y′‖2

holds for every t ∈ [0, 1], every y, y′ ∈ L, and every (x, λ) ∈ K × Λ.
Then it is routine to see that A2 holds at any (λ, x, y) ∈ gphS with α = 1, V = Z,

U = X , and W = Y .
Examples of parameterized families of functions satisfying A3 are given by the

following.
Lemma 3.1. Let (λ, x, y) ∈ gphS and let U ⊂ X, W ⊂ Y and V ⊂ Z be convex

neighborhoods of K, L, and λ, respectively. Consider the conditions:

(F1)

⎧

⎪

⎨

⎪

⎩

for any (y, λ) ∈ L× [Λ ∩ V ], f(·, y, λ) is Lipschitz and regular
function on U and ∂xf(x, y, ·) : Λ ∩ V → X∗ is a k–Lipschitz map on
Λ ∩ V with k that does not depend on (x, y) ∈ K × L,

(F2)

⎧

⎪

⎨

⎪

⎩

for any (x, λ) ∈ K × [Λ ∩ V ], f(x, ·, λ) is Lipschitz and regular
function on W and ∂yf(x, y, ·) : Λ ∩ V → Y ∗ is a k–Lipschitz map on
Λ ∩ V with k that does not depend on (x, y) ∈ K × L,

(F3)

⎧

⎪

⎨

⎪

⎩

for any (x, y) ∈ K × L, f(x, y, ·) is Lipschitz and regular
function on V and ∂λf(·, y, λ) : K → Λ∗ is a k–Lipschitz map on
K with k that does not depend on (y, λ) ∈ L× [Λ ∩ V ],

(F4)

⎧

⎪

⎨

⎪

⎩

for any (x, y) ∈ K × L, f(x, y, ·) is Lipschitz and regular
function on V and ∂λf(x, ·, λ) : L→ Λ∗ is a k–Lipschitz map on
L with k that does not depend on (x, λ) ∈ K × [Λ ∩ V ].

If f satisfies F1 −F2 or F3 −F4, then A3 holds with α = 1.
Proof. We follow the same steps as in the proof of Lemma 2.3.
If f satisfies F1, then f1 ∈ L1,1

L (K; Λ ∩ V ).
If f satisfies F2, then f2 ∈ L1,1

K (L; Λ ∩ V ).
If f satisfies F3, then f3 ∈ L1,1

L (Λ ∩ V ;K).
If f satisfies F4, then f3 ∈ L1,1

K (Λ ∩ V ;L).
Obviously, if f ∈ C1,1(U ×W × V ), then F1 to F4 hold.

3.2. Lipschitz-like continuity of the saddle point map. Here we will prove
that assumption A is sufficient for Aubin continuity of the saddle point map S. Let
us note that the result cannot be derived (or at least not in an obvious manner) from
the case of minimization only. Indeed, if f(x, y, λ) satisfies assumption A, then the
function f(x, λ) := supy∈L f(x, y, λ) satisfies assumption A2 but A3 for this f(x, λ)
cannot be derived from A3 since the differences of suprema involved do not yield
themselves to rearrangement.
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Theorem 3.2. Assume that for the parameterized family of minimax problems
M(λ) the assumption A holds at some (λ, x, y) ∈ gphS. Then for all λ, μ ∈ Λ ∩ V

e(S(λ) ∩ [U ×W ],S(μ)) ≤ 2k
c
‖λ− μ‖,(3.2)

where k := max{kf1 , kf2}, hence the saddle point map S : Λ ⇒ X × Y is Aubin
continuous near (λ, x, y) ∈ gphS.

Proof. By A1 for all λ ∈ Λ ∩ V the set S(λ) ∩ [U ×W ] is nonempty.
Fix λ ∈ Λ ∩ V and take some (xλ, yλ) ∈ S(λ) ∩ [U ×W ].
Pick any other μ ∈ Λ ∩ V .
Since S(μ) is a nonempty set we find some xεμ ∈ πXS(μ) such that

‖xλ − xεμ‖ ≤ d(xλ, πXS(μ)) + ε.

Similarly, there is yεμ ∈ πY S(μ) such that

‖yλ − yεμ‖ ≤ d(yλ, πY S(μ)) + ε.

By the product form of the saddle point set, (xεμ, yεμ) ∈ S(μ). The first inequality
of A2 for (xλ, yλ) ∈ S(λ) ∩ [U ×W ] and (xεμ, y

ε
μ) ∈ S(μ) reads

f
(

xλ, y
ε
μ, μ
)

≥ m(μ) + cd1+α(xλ, πXS(μ)),(3.3)

in particular,

f
(

xλ, y
ε
μ, μ
)

≥ m(μ),(3.4)

while the second inequality of A2 states

m(μ) ≥ f
(

xεμ, yλ, μ
)

+ cd1+α(yλ, πY S(μ)),(3.5)

in particular,

m(μ) ≥ f
(

xεμ, yλ, μ
)

.(3.6)

Combining (3.3) with (3.6) and (3.4) with (3.5), we get

f
(

xλ, y
ε
μ, μ
)

≥ f
(

xεμ, yλ, μ
)

+ cd1+α(xλ, πXS(μ)),

f
(

xλ, y
ε
μ, μ
)

≥ f
(

xεμ, yλ, μ
)

+ cd1+α(yλ, πY S(μ)),

which yields

f
(

xλ, y
ε
μ, μ
)

− f
(

xεμ, yλ, μ
)

≥ c[max{d(xλ, πXS(μ)), d(yλ, πY S(μ))}]1+α.

By the definition of the supremum norm and since S(μ) is a product set, it is
obvious that

d((xλ, yλ),S(μ)) = d((xλ, yλ), πXS(μ) × πY S(μ))

= max{d(xλ, πXS(μ)), d(yλ, πY S(μ))},
(3.7)

and the above inequality can be rewritten as

f
(

xλ, y
ε
μ, μ
)

− f
(

xεμ, yλ, μ
)

≥ cd1+α((xλ, yλ),S(μ)).
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We transform the left-hand side to get

f
(

xλ, y
ε
μ, μ
)

− f(xλ, yλ, μ) + f(xλ, yλ, μ) − f
(

xεμ, yλ, μ
)

≥ cd1+α((xλ, yλ),S(μ)),

which is

−f2
(

xλ, yλ, y
ε
μ, μ
)

− f1
(

xεμ, xλ, yλ, μ
)

≥ cd1+α((xλ, yλ),S(μ)).(3.8)

On the other hand, since (xλ, yλ) ∈ S(λ), the saddle point inequalities give

f(x, yλ, λ) ≥ f(xλ, yλ, λ) ≥ f(xλ, y, λ), ∀x ∈ K, ∀y ∈ L.

In particular, for x = xεμ ∈ K we have

f(xεμ, yλ, λ) ≥ f(xλ, yλ, λ),

which is

f1(xεμ, xλ, yλ, λ) ≥ 0,(3.9)

and for y = yεμ ∈ L we get

f(xλ, yλ, λ) ≥ f(xλ, yεμ, λ),

which is

f2(xλ, yλ, yεμ, λ) ≥ 0.(3.10)

Adding the inequalities (3.8), (3.9), and (3.10) and rearranging we obtain
[

f1
(

xεμ, xλ, yλ, λ
)

−f1
(

xεμ, xλ, yλ, μ
)]

+
[

f2
(

xλ, yλ, y
ε
μ, λ
)

−f2
(

xλ, yλ, y
ε
μ, μ
)]

≥ cd1+α((xλ, yλ),S(μ)).

(3.11)

Since by A3, f1 ∈ Lα,1L∩W (K; Λ∩V ), the term in first brackets in (3.11) is estimated
by

f1
(

xεμ, xλ, yλ, μ
)

− f1
(

xεμ, xλ, yλ, λ
)

≤ kf1‖xεμ − xλ‖α‖λ− μ‖,(3.12)

and since f2 ∈ Lα,1K∩U (L; Λ ∩ V ) the term in second brackets in (3.11) is estimated by

f2
(

xλ, yλ, y
ε
μ, λ
)

− f2
(

xλ, yλ, y
ε
μ, μ
)

≤ kf2‖yλ − yεμ‖α‖λ− μ‖.(3.13)

Using (3.13) and (3.12) in (3.11) and setting k := max{kf1 , kf2}, we get

k‖λ− μ‖[‖xλ − xεμ‖α + ‖yλ − yεμ‖α] ≥ cd1+α((xλ, yλ),S(μ)).

By the choice of xεμ and yεμ, we have that

k‖λ− μ‖[(d(xλ, πXS(μ)) + ε)α + (d(yλ, πY S(μ)) + ε)α]

≥ cd1+α((xλ, yλ),S(μ)).

Passing to limit ε ↓ 0 we obtain

k‖λ− μ‖[dα(xλ, πXS(μ)) + dα(yλ, πY S(μ))] ≥ cd1+α((xλ, yλ),S(μ)).(3.14)
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By (3.7) we get

dα(yλ, πY S(μ)) + dα(xλ, πXS(μ)) ≤ 2 [max{d(yλ, πY S(μ)), d(xλ, πXS(μ))}]α

= 2dα((xλ, yλ),S(μ)),

and from (3.14) we obtain

2k‖λ− μ‖dα((xλ, yλ),S(μ)) ≥ cd1+α((xλ, yλ),S(μ)).

This yields

2k
c
‖λ− μ‖ ≥ d((xλ, yλ),S(μ)),

and since (xλ, yλ) was an arbitrary element of S(λ) ∩ [U ×W ] the latter implies

e(S(λ) ∩ [U ×W ],S(μ)) ≤ 2k
c
‖λ− μ‖.

The proof is completed.
As an immediate consequence of Theorem 3.2 and Lemma 3.1 one deduces the

following.
Corollary 3.3. Let for the parameterized family of minimax problems M(λ)

the following assumption hold:

(A′)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1. S(λ) �= ∅ for any λ ∈ Λ;

2. for some constant c > 0 and all λ∈Λ, (x, y)∈S(λ), (x′, y′)∈K×L :

f(x′, y, λ) ≥ m(λ) + cd2(x′, πXS(λ)),

f(x, y′, λ) ≤ m(λ) − cd2(y′, πY S(λ));

3. f ∈ C1,1(X × Y × Z).

Then the saddle point map S : Λ → X×Y is single-valued and Lipschitz continuous.
As we pointed out after Corollary 2.7 we could deduce the single-valuedness and

Lipschitz continuity of the saddle point map S when X and Y has separable duals,
the sets K and L are convex, f ∈ C1,1(X ×Y ×Z), and there exists a constant c > 0
such that for all λ ∈ Λ, x, z ∈ K, y, w ∈ L,

〈M(z − x), z − x〉 ≥ c‖z − x‖2, 〈N(w − y), w − y〉 ≤ −c‖w − y‖2

for all M ∈ ∂2f(·, y, λ)(x) and all N ∈ ∂2f(x, ·, λ)(y).

4. Lipschitz continuity of the saddle points map in context of two-
player zero sum differential games. In this section we briefly consider a differ-
ential game for which our result might be of relevance.

In differential games, open-loop strategies are of low interest in many examples.
One major reason is that differential games with open-loop strategies do not satisfy,
in general, the dynamic programming principle [9, 11, 22]. It is well known now that
to solve many problems in differential games (existence of a value, characterization
of the game through Hamilton–Jacobi equations), one needs a more general class
of strategies which contains the feedback strategies.1 Such class of strategies is the

1It has been shown in [8] that the class of regular feedback is not rich enough to solve differential
games at a satisfactory level of generality.
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class of nonanticipative strategies introduced by Elliot–Roxin–Varaiya–Kalton (cf.
for instance [10]); another possible class of strategies are the positional strategies
discussed in [20]. The class of nonanticipative strategies is nice enough to prove the
existence of the value, but it is hard to implement for the players. So it is important to
know when the nonanticipative strategies giving the value of the game can be reduced
to feedback strategies. We will explain in this part how the main result of the paper
can lead to a partial answer to this question.

We consider the following differential game with dynamic described by the diffe-
rential equation:

{

x′(t) = f(x(t), u(t)), y′(t) ∈ g(y(t), v(t)),

u(t) ∈ U, v(t) ∈ V,
(4.1)

where f : R
n × U → R

n and g : R
n × V → R

n are (globally) Lipschitz, U ⊂ R
m,

V ⊂ R
p being the control sets of the players. The first player—Ursula, playing with

u—wants to minimize a given cost. The goal of the second player—Victor, playing
with v—is to maximize the cost

J(x0, y0, u(·), v(·)) :=
∫ ∞

0
e−rtl(x(t), y(t)) dt,

where (x(·), y(·)) is the unique solution starting at t = 0 from (x0, y0) and r > 0 is
fixed. Observe that the game is in a separable form, i.e., each player acts in his own
dynamics. This is the case, for instance, for pursuit games. Moreover, the integral
cost does not depend directly on the control but only on the trajectories.

We work here in the framework of the nonanticipative strategies (also called
Varaiya–Roxin–Elliot–Kalton strategies). Let

U = L1([0,+∞[, U), V = L1([0,+∞[, V )(4.2)

be the sets of time-measurable controls of the first (Ursula) and the second (Victor)
player, respectively. We denote t �→ (x(t, x0, u(t)), y(t, y0, v(t))) the solution of (4.1)
starting at t = 0 from (x0, y0).

Definition 4.1 (nonanticipative strategies). A map α : V → U is a nonantici-
pative strategy (for Ursula) if it satisfies the following condition: For any s ≥ 0, for
any v1(·) and v2(·) belonging to V such that v1(·) and v2(·) coincide almost everywhere
on [0, s], the images α(v1(·)) and α(v2(·)) coincide almost everywhere on [0, s].

Nonanticipative strategies β : U → V (for Victor) are defined in the symmetric
way.

Assume now that f and g are continuous and Lipschitz with respect to x and y.
Then, we know that the game has a value (cf. [11]), namely,

V (x0, y0) = inf
α

sup
v∈V

J(x0, y0, α(v(·)), v(·)) = sup
β

inf
u∈U

J(x0, y0, u(·), β(u(·))).

Let us denote by R(t) the attainable set of the dynamics (4.1) at moment t; i.e.,

R(t) = {(x(t), y(t)) ∈ R
n × R

n : ∃ u ∈ U , v ∈ V such that

(x(·), y(·)) is the solution of (4.1) starting at t = 0 from (x0, y0)}.

Now, suppose that U and V are convex and compact. Saddle point of the function
l(·, ·) on R(t) will be any point (x, y) ∈ R(t) that satisfies

l(x, y) ≤ l(x, y) ≤ l(x, y), ∀(x, y) ∈ R(t),
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and, because of e−rt > 0, the saddle points of l(·, ·) on R(t) will be the same as the
saddle points of e−rtl(·, ·) on R(t).

Let us denote the (possibly empty) set of all saddle points of the function l(·, ·)
on R(t) by S(t) := {(x, y) ∈ R(t) : l(x, y) ≤ l(x, y) ≤ l(x, y), ∀(x, y) ∈ R(t)}.

Let us suppose that the parameterized by t family of functions {e−rtl(·, ·), t ∈
[0,∞)} satisfies an assumption slightly stronger than assumption A, namely:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1. S(t) �= ∅, ∀t ≥ 0;
and there exist constants k, c > 0 and α ∈ [0, 1] such that
∀t, t′ ≥ 0, ∀(x, y)∈S(t), ∀(x′, y′)∈S(t′) it holds :

2. l(x′, y) ≥ l(x, y) + cert‖x′ − x‖1+α,

l(x, y′) ≤ l(x, y) − cert‖y′ − y‖1+α;

3. |l(x, y) − l(x′, y)| ≤ k‖x− x′‖α,
|l(x, y) − l(x, y′)| ≤ k‖y − y′‖α.

This assumption guarantees that for any t ∈ [0,∞) the saddle point mapping S(t) is
single-valued and Lipschitz continuous; i.e., for all positive t, the function e−rtl(·, ·)
has a saddle point (x(t), y(t)) on the attainable set R(t) of the dynamics (4.1), which
depends in a Lipschitz way on t.

Therefore, if it turns out that so-obtained single valued saddle point mapping is
a trajectory (x(·), y(·)) of (4.1), then it is an optimal feedback strategy of the game.

For example, under the above assumptions in the case when m = p = n and
f(x, u) = u, g(y, v) = v, the Lipschitz continuity on t of the saddle point map implies
that the corresponding controls u and v belong to U and V , respectively, and, hence,
they generate a trajectory of the differential game.
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[5] J. Bonnans and A. Ioffe, Quadratic growth and stability in convex programming problems

with multiple solutions, J. Convex Anal., 2 (1995), pp. 41–57.
[6] J. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour, SIAM

Rev., 40 (1998), pp. 228–264.
[7] J. Bonnans and A. Shapiro, Perturbation analysis of optimization problems, Springer Series

in Operations Research, Springer, New York, 2000.
[8] P. Cardaliaguet, A differential game with two players and one target, SIAM J. Control

Optim., 34 (1996), pp. 1441–1460.
[9] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, Numerical methods for differen-

tial games, in Stochastic and Differential Games: Theory and Numerical Methods, An-
nals of the International Society of Dynamic Games, M. Bardi, T. E. S. Raghavan, and
T. Parthasarathy, eds., Birkhäuser, 1999, pp. 177–247.
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ON BIN PACKING WITH CONFLICTS∗

LEAH EPSTEIN† AND ASAF LEVIN‡

Abstract. We consider the offline and online versions of a bin packing problem called bin

packing with conflicts. Given a set of items V = {1, 2, . . . , n} with sizes s1, s2, . . . , sn ∈ [0, 1] and
a conflict graph G = (V, E), the goal is to find a partition of the items into independent sets of G,
where the total size of items in each independent set is at most 1 so that the number of independent
sets in the partition is minimized. This problem is clearly a generalization of both the classical (one-
dimensional) bin packing problem where E = ∅ and of the graph coloring problem where si = 0 for all
i = 1, 2, . . . , n. Since coloring problems on general graphs are hard to approximate, following previous
work, we study the problem on specific graph classes. For the offline version, we design improved
approximation algorithms for perfect graphs and other special classes of graphs: These are a 5

2
= 2.5-

approximation algorithm for perfect graphs; a 7
3
≈ 2.33333-approximation algorithm for a subclass of

perfect graphs, which contains interval graphs and chordal graphs; and a 7
4

= 1.75-approximation for
algorithm bipartite graphs. For the online problem on interval graphs, we design a 4.7-competitive
algorithm and show a lower bound of 155

36
≈ 4.30556 on the competitive ratio of any algorithm. To

derive the last lower bound, we introduce the first lower bound on the asymptotic competitive ratio
of any online bin packing algorithm with known optimal value, which is 47

36
≈ 1.30556.

Key words. bin packing, approximation algorithms, online algorithms
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1. Introduction. We consider the following bin packing with conflicts

problem (BPC) (see [5, 17] and also the information on the bin packing problem
given in [4]). Given a set of items V = {1, 2, . . . , n} with sizes s1, s2, . . . , sn ∈ [0, 1]
and a conflict graph G = (V,E), the goal is to find a partition of the items into
independent sets of G where the total size of each independent set is at most 1 so
that the number of independent sets in the partition is minimized. This problem is
clearly a generalization of both the classical (one-dimensional) bin packing problem
where E = ∅ and of the graph coloring problem where si = 0 for all i = 1, 2, . . . , n. In
an online environment, items arrive one by one to be packed immediately and irrevo-
cably. A new item is introduced by its size, together with all its incident edges in the
current conflict graph (i.e., edges which connect it to previously introduced items).

This problem arises in assigning processes or tasks to processors. In this case
we are given a set of tasks, where some pairs of tasks are not allowed to execute on
the same processor due to efficiency or fault tolerance reasons. The goal is to assign
a minimum number of processors to this set of processes given that the makespan
is bounded by some constant (see Jansen [16]). Other applications of this problem
arise in the area of database replicas storage, school course time tables construction,
scheduling communication systems (see de Werra [6]), and, finally, in load balanc-
ing the parallel solution of partial differential equations by two-dimensional domain
decomposition (see Irani and Leung [15]). We follow earlier work and consider the
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BPC on subclasses of perfect graphs. This restriction is motivated by the theoretical
hardness of approximating graph coloring on general graphs.

In order to analyze our approximation and online algorithms, we use common
criteria, which are the approximation ratio (also called performance guarantee) for
offline algorithms, and competitive analysis for online algorithms. For an algorithm
A, we denote its cost by A as well. An optimal offline algorithm that knows the com-
plete sequence of items is denoted by OPT. We consider the absolute approximation
(respectively, competitive) ratio that is defined as follows. The absolute approxima-
tion (respectively, competitive) ratio of A is the infimum R such that, for any input,
A ≤ R · OPT. If the absolute approximation (respectively, competitive) ratio of an
offline (respectively, online) algorithm is at most ρ, we say that it is a ρ-approximation
(respectively, ρ-competitive). The asymptotic approximation (respectively, compet-
itive) ratio of A is the infimum R such that, for any input, A ≤ R · OPT + c for
some c that is independent of the input. For the offline problem, we restrict our-
selves to algorithms that run in polynomial time. Our online algorithm is also a
polynomial time algorithm (though this property is not always required in the com-
petitive analysis literature). We focus on the absolute criteria and not on the criteria
of asymptotic approximation ratio and asymptotic competitive ratio, since coloring
problems are typically studied using these absolute criteria. Note that asymptotic
criteria are commonly used for bin packing problems. However, the problem studied
here is more similar in nature to coloring problems, even though it is an extension of
bin packing. Throughout the paper we omit the adjective “absolute,” since this is the
only criterion studied here. We let s(X) denote the sum of item sizes in a set X , i.e.,
s(X) =

∑

x∈X sx.
Since the BPC problem generalizes the classical coloring problem that is known

to be extremely hard to approximate, we follow earlier studies and consider the BPC

problem on the class of perfect graphs for which the coloring problem is polynomially
solvable (see [27]). The best previously known approximation algorithm for BPC

on perfect graphs is the algorithm of Jansen and Öhring [17] with an approximation
ratio of 2.7. In section 3.1, we improve this result and present our 2.5-approximation
algorithm for BPC on perfect graphs.

Following Jansen and Öhring [17], we consider the class of graphs for which one
can solve in polynomial time the precoloring extension problem defined as fol-
lows. Given an undirected graph G = (V,E) and k distinct vertices v1, v2, . . . , vk, the
problem is to find a minimum coloring f of G such that f(vi) = i for i = 1, 2, . . . , k.
This problem is reviewed in [14, 23], and it is known to be polynomially solvable
for the following graph classes: interval graphs, forests, split graphs, complements
of bipartite graphs, cographs, partial K-trees and complements of Meyniel graphs1

(see [14] for a review of these results), and it is also polynomially solvable for chordal
graphs as shown by Marx [24]. However, it is known to be NP-complete for bipar-
tite graphs [14]. We denote by C the class of graphs G for which one can solve in
polynomial time the precoloring extension problem for any induced subgraph of G
(including G itself). That is, C is closed under the operation of induced subgraph
extraction. Jansen and Öhring [17] analyzed the following algorithm with precoloring
for the case where G belongs to C. Denote the set of large items by L = {j : sj > 1

2},
and denote by χI(G) the minimum number of colors used by an optimal solution for
the precoloring extension problem defined by G. Finally, we define the set of precol-
ored vertices to be L. Compute a feasible coloring of G using χI(G) colors, where,

1A graph is Meyniel if every cycle of odd length which is at least five, has at least two chords.
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for each pair of items in L, they are assigned different colors. For each color class,
apply a bin-packing heuristic such as the first-fit-decreasing (FFD) algorithm. They
proved that the resulting algorithm is a 5

2 -approximation algorithm. In section 3.2,
we improve this result by presenting a 7

3 -approximation algorithm.
For all ε > 0, Jansen and Öhring [17] also presented a (2 + ε)-approximation

algorithm for BPC on cographs and partial K-trees. Furthermore, they presented a
2-approximation algorithm for bipartite graphs. A d-inductive graph has the property
that the vertices can be assigned distinct numbers 1, . . . , n such that each vertex is
adjacent to at most d lower-numbered vertices. Jansen [16] showed an asymptotic
fully polynomial time approximation scheme for BPC on d-inductive graphs where d
is a constant. This result includes the cases of trees, grid graphs, planar graphs, and
graphs with constant treewidth. Oh and Son [26] and McCloskey and Shankar [25]
considered BPC on graphs that are a union of cliques, but their results are inferior to
the 2.7-approximation algorithm of Jansen and Öhring [17]. Even and Shahar [7] con-
sidered BPC on unit circular-arc graphs and presented a 3-approximation algorithm
for this case. Since our 2.5-approximation algorithm for perfect graphs can be applied
also for unit circular-arc graphs (since it only uses a coloring of an induced subgraph
using a minimum number of colors, and the coloring problem is solvable in polyno-
mial time on unit circular-arc graphs), we get an improvement of the 3-approximation
algorithm of [7].

The hardness of the approximation of BPC follows from the hardness of standard
offline bin packing (with respect to the absolute approximation ratio). It is not hard
to see that unless P = NP, no algorithm can have an absolute approximation ratio
of less than 3

2 (due to a simple reduction from the partition problem, see problem
SP12 in [10]). Since standard bin packing is a special case of BPC, where the conflict
graph is an independent set, we get that, for all graph classes studied in this paper,
BPC is APX-hard, and unless P = NP, cannot be approximated within a factor
smaller than 3

2 . Note that for bin packing, already the simple FFD algorithm is a
3
2 -approximation [29]. These hardness results hold for the graph classes we consider,
since an empty graph is bipartite and perfect.

Our results. In section 2, we describe the methods applied in this paper. We
use weights for our analysis. The weights used throughout the paper have the unique
and novel property that weights are assigned not only as a function of the size of
items, but also as a function of the location of items in an optimal solution or in an
approximate solution. We think that this new technical approach can contribute to
the analysis of algorithms for other problems as well.

We use these methods in section 2 to give improved and tight bounds on two
algorithms designed in [17]. We show that their algorithm for perfect graphs has
performance guarantee of approximately 2.691, and their algorithm with precoloring
has performance guarantee of approximately 2.423. These tight results follow from our
analysis together with lower bounds on the performance guarantee of these algorithms,
given in [17]. Note that these bounds and their proofs resemble the analysis of the
Harmonic algorithm [21] (the bounds are one unit higher than the upper bounds for
Harmonic). However, neither the algorithms of [17] nor our algorithms use a partition
into classes as is done in the Harmonic algorithm. Moreover, such a partition in our
case would result in an arbitrarily high approximation ratios.

In section 3, we present our improved new algorithms for the offline case of BPC.
In section 3.1, we design an improved algorithm for perfect graphs with performance
guarantee of 2.5. Our algorithm is also a 2.5-approximation algorithm for BPC on all
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graph classes where one can solve the regular coloring problem (i.e., coloring the vertex
set of a graph using a minimum number of colors) in polynomial time. In section 3.2,
we design an improved algorithm with precoloring with performance guarantee of 7

3 .
In section 3.3, we design a 7

4 -approximation algorithm for bipartite graphs.
In section 4 we discuss online algorithms for BPC on interval graphs. We design

a simple 4.7-competitive algorithm and show a lower bound of 155
36 ≈ 4.30556 on

the competitive ratio of any online algorithm. We derive the last lower bound by
introducing the first nontrivial lower bound for online bin packing with known optimal
value, which is 47

36 ≈ 1.30556. We also show an O(log n) competitive algorithm for
bipartite graphs, which is best possible. Both algorithms are adaptations of online
algorithms for the standard coloring problem; see [20, 22].

2. Weighting functions and the performance of FFD-based algorithms.
In this section, we define weighting functions which are a major tool in the analysis
of algorithms for bin packing. The weights defined in this section are later adapted
and used for the analysis of our improved algorithms.

The idea of such weights is simple. An item receives a weight according to its size
and its packing in some fixed solution. The weights of items are typically not equal
to their sizes, but are related to them. The weights are assigned in a way that the
cost of an algorithm is close to the total sum of weights. In order to complete the
analysis, it is usually necessary to consider the total weight that can be packed into
a single bin of an optimal solution.

In this paper, we exploit this method in order to achieve improved algorithms for
BPC. Though this method was not applied to BPC before, it was widely used for
standard bin packing and many variants of bin packing. This technique was used as
early as 1971 by Ullman [31] (see also [19, 21, 28]).

Specifically, we use the following theorem.
Theorem 1. Consider an algorithm A for BPC. Let w,w′ be two weight mea-

sures defined on the input items, w,w′ : I → R. Let W (I) and W ′(I) denote the sum
of the weights of all input items of I, according to w and w′, respectively, and assume
that, for every input I, W ′(I) ≤W (I). Assume that, for every output of the algorithm,
the number of bins used by the algorithm A is upper bounded by W ′(I) + τ ·OPT(I),
where OPT(I) is the cost of an optimal algorithm on the input I. Denote by WI

the supremum amount of weight that can be packed into a bin of the optimal solu-
tion, according to measure w. Then the approximation ratio of A is upper bounded by
WI + τ .

Note that w,w′ are real functions and are not necessarily nonnegative.
Proof. Given an input I, we have A ≤ W ′(I) + τOPT(I). Since an optimal

algorithm has OPT(I) bins, with a weight of at most WI in each one of them, we
get the upper bound W (I) ≤ WI · OPT(I). Using W ′(I) ≤ W (I), we get A ≤
(WI + τ)OPT(I), and the theorem follows.

Typically, this theorem is used with w = w′, which satisfies all conditions of the
theorem. We will also use it in this paper with w �= w′.

In this section, we define a set of weights which depends solely on the size of
items. For an item x such that sx > 1

2 , we define weight(x) = 1. We define the
interval I1 by I1 = (1

2 , 1]. For an item x such that sx ≤ 1
2 , let j be an integer such

that sx ∈ Ij = ( 1
j+1 ,

1
j ]. We define weight(x) = sx + 1

j(j+1) . Note that even though
this classification to intervals was used before, the weight function is nonstandard.
Typically either all items in an interval receive the same weight or are scaled by a
common multiplicative factor (see, e.g., [21, 2]). We note that the weight function
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does not round up the size of an item to the next unit fraction, but the weight of an
item in an interval ( 1

j+1 ,
1
j ] is never lower than the next unit fraction (i.e., it is larger

than 1
j ).

We need to use this special weight function in order to make sure that the amount
of weight is large enough, even if the input is partitioned into several classes, each of
which is packed separately. On the other hand, we must make sure that the weights
are not too large so that the bound on the performance guarantee is not increased
artificially. A similar (though different) weight function was used before by Galambos
and Woeginger [8]. Their weight function can be used to prove Corollary 6 and
Theorem 8 but not the other results of this paper. Therefore, we need to modify the
weight function of [8] for our needs.

Given this set of weights, we note that, for an item x of size sx ∈ Ij (j ≥ 2), the
ratio between its weight and its size is bounded as follows:

j + 2
j + 1

≤ weight(x)
sx

<
j + 1
j

.

For a set of items X , we denote the sum of the weights of all items in X by
W (X). That is, W (X) =

∑

x∈X weight(x). We next show that any algorithm which
first partitions the input into μ color classes and then applies the FFD algorithm on
each color class separately, satisfies the following condition on its cost as a function
of the total weight and μ.

Lemma 2. Consider a subset of items J which forms an independent set and is
packed using FFD. Let Y be the number of bins used for this packing. Then we have
Y ≤W (J) + 1.

Proof. Note that, for the above weight function, any bin which contains an item
of size in (1

2 , 1] has a total weight of the items of at least 1. As stated above, the
weight of an item in Ij = ( 1

j+1 ,
1
j ] is at least 1

j+1 + 1
j(j+1) = 1

j . Therefore, any bin
which contains j items of size in the interval ( 1

j+1 ,
1
j ] has a total weight of at least

1. We can remove such bins from the packing and focus on all other bins, which are
called transition bins. If no bins are left after the removal, we are done.

A transition bin contains only items whose sizes are at most 1
2 . Note that the

last bin ever opened may result in a transition bin, and it contains at least one item.
Moreover, let a transition bin be of type j (for some j ≥ 2), if the first item ever
packed into it has size in Ij . Next, we argue that there can be at most one transition
bin of each possible type. Since the items are packed using FFD, transition bins are
created in a sorted order, starting with the smallest type (or largest size). If there are
two bins of the same type j, this means that during the time between the packing of
the first items in these two bins, all packed items were also of size in the interval Ij .
Therefore, the first bin must be assigned j such items before the second transition
bin of this type is opened, and thus the first bin is not a transition bin. Let k be
the largest type of any transition bin ever opened (i.e., the transition bin with the
smallest item). Remove from the packing all items of size at most 1

k+1 . This removal
may only decrease the total weight. As stated above, the weight of each remaining
item in the transition bins is at least a multiplicative factor of k+2

k+1 its size.
Let α be the size of the first item in the last transition bin. As the last transition

bin is opened, all other bins have a total size of items which is more than 1 − α. Let
i1 < · · · < it < it+1 = k be the sorted list of the types of transition bins.

It suffices to show that the total weight of all items in the transition bins is at
least t (since there are t+ 1 transition bins). Let t′ = min{	k+2

2 
, t}.
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Claim 3. The total weight in the last t′ + 1 transition bins is at least t′, and each
other bin carries a weight of at least 1.

Proof. If t = t′ = 0, we are done. Assume therefore that t′ ≥ 1. In the last t′ + 1
transition bins, we get a total weight of at least

t′(1 − α)
k + 2
k + 1

+ α+
1

k(k + 1)
= t′

k + 2
k + 1

+
1

k(k + 1)
− α

(

t′
k + 2
k + 1

− 1
)

≥ t′
k + 2
k + 1

+
1

k(k + 1)
−
t′ k+2
k+1 − 1
k

= t′
k + 2
k + 1

k − 1
k

+
k + 2

k(k + 1)
.

The inequality holds, since the coefficient multiplied by α is negative and α ≤ 1
k .

We need to show that the weight is at least t′, i.e., that

t′
(

k2 + k − 2
k2 + k

− 1
)

+
k + 2

k(k + 1)
=

−2t′

k2 + k
+

k + 2
k2 + k

≥ 0.

We get that this holds for t′ ≤ k+2
2 , which holds due to the definition of t′.

Consider the second part of the claim. It is enough to consider the first f =
t − 	k+2

2 
 transition bins, in the case where f is positive. These bins are transition
bins of types i1, . . . , if . Consider the bin of type if+1. Note that if+1 ≤ k − 	k+2

2 

since no two transition bins are of the same type, and if+1 ≥ 3 since if ≥ 2. Let β
be the size of the first item in the bin of type if+1. Let m = if+1. Considering only
the items of sizes in ( 1

m ,
1
2 ], we have that each bin out of the first f transition bins

has a total size of such items of at least 1− β. However, they also have a total size of
items in ( 1

k+1 ,
1
2 ] of at least 1 − α. Therefore, the weight of items in each such bin is

at least

(1 − β)
m+ 2
m+ 1

+ (β − α)
k + 2
k + 1

=
m+ 2
m+ 1

+ β

(

1
k + 1

− 1
m+ 1

)

− α
k + 2
k + 1

.

We will show that this amount is never smaller than 1. This expression is minimized
for maximum values of α, β, and thus we need to show that

(

1 − 1
m

)

· m+ 2
m+ 1

+
(

1
m

− 1
k

)

· k + 2
k + 1

− 1 ≥ 0,

which is equivalent to k−m
km · k+2

k+1 ≥ 2
m(m+1) . Note that k −m ≥ k+1

2 , m+ 1 ≥ 4, and
thus k−m

km
k+2
k+1 · m(m+1)

2 ≥ k+2
k > 1.

This completes the proof of Lemma 2.
In what follows, we consider algorithms for an input I of the following structure,

called colorFFD. The set I is partitioned into ν independent sets. Out of these
sets, μ sets (where μ ≤ ν) are packed using FFD. Each other independent set J is
packed into a single bin and is assigned a total weight of at least 1.

Corollary 4. Let B be a colorFFD algorithm. Then B satisfies B ≤W (I) +
μ.

We now give a tight analysis of the FFD-based algorithm given in [17] for perfect
graphs.

The FFD-based algorithm of [17].
Find a coloring of all items with a minimum number of colors. Use FFD to pack
each color class.
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It was shown in [17] that the performance guarantee of this algorithm is at most
2.7 and at least 1 + Π∞ ≈ 2.69103. The value Π∞ = Π∞(1) is computed using the
well-known sequence πi = πi(1), i ≥ 1, which often occurs in bin packing. Given a
positive integer z, let π0(z) = z, π1(z) = z+1, and, for i ≥ 1, πi+1(z) = πi(z)(πi(z)−
1)+1. Then Π∞(z) =

∑∞
i=1

1
πi(z)−1 . An alternative definition is π0(z) = z, πi+1(z) =

(
∏i
j=0 πj(z)) + 1 for i ≥ 1. The equivalence can be shown by induction. For i = 1, by

this definition, π1(z) = z + 1 as required. Assume this is true for a given i ≥ 1. For
i+1, we have πi+1(z) = πi(z)(πi(z)−1)+1 = (πi(z))2−πi(z)+1 = πi(z)(

∏i−1
j=0 πj(z)+

1) − πi(z) + 1 = (
∏i
j=0 πj(z)) + 1.

This sequence with z = 1 is known as “Sylvester’s sequence” and as “Euclid
numbers” (see sequence A000058 in [30]). The sequence is often used for the analysis
of bin packing algorithms and the design of lower bound for online variants of the
problem; see [2, 21, 32].

The relation of this sequence to bin packing is as follows. Each number πi(z) is the
smallest integer such that a bin of size 1

z that already contains the items of sizes slightly
larger than 1

πj(z)
, for j = 1, . . . , i−1, can accommodate an item that is slightly larger

than 1
πi(z)

. Indeed, we can show by induction that
∑k

i=1
1

πi(z)
= 1

z −
1

πk+1(z)−1 for all
k ≥ 0. This clearly holds for k = 0. Assume that this holds for some value of k ≥ 0,
then

∑k+1
i=1

1
πi(z)

= 1
z −

1
πk+1(z)−1 + 1

πk+1(z)
= 1

z −
1

(πk+1(z)−1)(πk+1(z))
= 1

z −
1

πk+2(z)−1 .
We are now ready to prove a matching upper bound of 1 + Π∞ = 2.691 for this

algorithm. In order to do so, we need to find an upper bound on the total weight
which can reside in one bin. The proof is similar to those of [2, 21], however, our
weights are defined differently, since these proofs do not hold in our case. We assume
that the weight of an item x of size in I1 is sx + 1

2 , which may only increase the total
weight, since we previously assigned weight 1 to these items.

Lemma 5. Consider a set of items J , whose total size is s(J) ≤ 1
z . Then

W (J) − s(J) ≤ Π∞(z) − 1
z , and thus W (J) ≤ Π∞(z).

Proof. We define the “increase,” or modified weight, of an item by its weight
minus its size, i.e., weight′(x) = weight(x)− sx. Let W ′(X), for a set X , be the sum
of the increases of items in X . We need to show that W ′(J) ≤ Π∞(z)− 1

z . Specifically,
we show that Π∞(z) − 1

z is the supremum total increase of the items of J .
First, consider the sequence πi(z), using its definition, we get that, for any value

of k and small enough δ > 0, the following holds:
∑k
i=1( 1

πi(z)
+ δ) < 1

z . This means
that a set of items of sizes 1

πi(z)
+ δ for 1 ≤ i ≤ k has a total size of at most 1

z . Taking
k → ∞, we get that the total increase in a bin which contains such items tends to
∑∞

i=1
1

πi(z)(πi(z)−1) =
∑∞

i=1
1

πi+1(z)−1 = Π∞(z)− 1
z . We call a part of a bin of size 1

z a
partial bin. We will next show that a set of the items of these sizes is the worst case
contents of a partial bin, which would prove the claim.

Assume by contradiction that there exists a value ε > 0 and a set of items for
which the sum of increases is at least Π∞(z) − 1

z + ε. We prove that if the partial
bin contains exactly one item of each interval in the set of intervals {Iπ1(z)−1, . . . ,
Iπi−1(z)−1}, then it also contains exactly one item of the interval Iπi(z)−1.

We have 1
z −

∑i−1
j=1

1
πj(z)

= 1
πi(z)−1 for i ≥ 1. Therefore, the largest interval from

which the next item can come from is Iπi(z)−1. Assume that there is no such item.
Thus, all other item sizes are from the interval (0, 1

πi(z)
], and therefore the increase of

an item is smaller than a multiplicative factor of 1
πi(z)

of its size. The total increase
is therefore smaller than

∑i−1
j=1

1
πj(z)(πj(z)−1) + 1

πi(z)−1 · 1
πi(z)

=
∑i

j=1
1

πi+1(z)−1 <

Π∞(z)− 1
z . This leads to a contradiction, and therefore, in order to get above Π∞(z)−

1
z , there must be an item of size in ( 1

πi(z)
, 1
πi(z)−1 ]. We have proved that the partial
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bin must contain at least one item of Iπi(z). Note that, by the above argument, the
largest item, excluding one item of each interval in {Iπ1(z)−1, . . . , Iπi(z)−1}, is of size
at most 1

πi+1(z)−1 , and therefore the partial bin must contain exactly one item from
Iπi(z)−1. By this claim (applied to i = 1), there is exactly one item from Iπ1(z)−1, and,
by induction on i, there is exactly one item from each interval Iπi(z)−1 for all i ≥ 1.

Consider the smallest value of i such that 1
πi+1(z)−1 < ε. The total size of all the

items excluding the largest i items, is at most 1
πi+1(z)−1 . No matter what these items

are, they have an increase of at most their size, that is, of at most 1
πi+1(z)−1 . This

means that the total increase is at most Π∞(z) − 1
z + 1

πi+1(z)−1 < Π∞(z) − 1
z + ε,

which leads to a contradiction.
Corollary 6. The performance guarantee of the FFD-based algorithm A of [17]

for perfect graphs is Π∞ + 1 ≈ 2.69103.
Proof. As [17] supplies an example which achieves this bound (asymptotically),

we should prove the upper bound. Since the input is colored optimally, the number of
independent sets is exactly μ = χ(G) ≤ OPT. We have A ≤W (I) +OPT. However,
W (I) ≤ Π∞ ·OPT, since by Lemma 5, any bin (of size 1) may contain a total weight
of at most Π∞ ≈ 1.69103, and thus A ≤ (Π∞ + 1) · OPT.

We give a formal definition of the algorithm with precoloring of [17], which is used
for graphs in class C.

The algorithm with precoloring of [17].
Let L = {j : sj > 1

2}.
Compute a feasible coloring of the conflict graph using the minimum number of
colors needed to color it, such that each pair of items in L is assigned two distinct
colors.
Use FFD to pack each color class.

In order to analyze the algorithm with precoloring, we need to define a set of
weights which does not give very high weights to items in I1 = (1

2 , 1]. We define the
weight for sx ∈ I1 to be weight(x) = sx + 1

6 . This unique definition is possible due
to the special treatment of items in I1.

In order to establish a lemma regarding the sum of weights in an independent set,
we modify the type of algorithms we allow to use. Once again, the set I is partitioned
into ν independent sets. Each independent set has at most one item of size in I1.
Out of these sets μ ≤ ν are packed using FFD. Assume that each other independent
set J is packed into a single bin and is assigned a total weight of at least 1.

Lemma 7. An algorithm B as above satisfies B ≤W (I) + μ.
Proof. We consider two types of independent sets. The first type of independent

sets are sets which are packed into a single bin. For each such set, we note that the
total weight of items in it is at least 1, by definition.

The second type of independent sets are all other such sets, i.e., independent sets
which require at least two bins. We need to show that the sum of the weights of items
in each such independent set J is at least the number of bins in this set, minus 1. That
is, if J is packed into λ bins, then the total weight of the items of J is at least λ− 1.

Therefore, in order to complete the proof, we note that independent sets where
no item of size in I1 exists do not have a change in weights (compared to Lemma 2),
and thus the previous proof holds.

Consider therefore an independent set packed using FFD, which has a single item
in I1. We may assume that this set consists of at least two bins, otherwise the total
weight clearly satisfies the property. The item of size in I1 is the first one to be packed
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by FFD. In this proof we consider this single bin to be a transition bin as well. Let k
be the type of the last transition bin as in the proof of Lemma 2. We again calculate
only the weight of these bins and show that their number exceeds their total weight
by at most 1. Note that if we show that the number of transition bins is � and the
total weight in these bins is at least � − 1, then we are done. We denote the size of
the first item in the last transition bin by α.

We have six cases, which are k ≥ 6 and k = 1, 2, 3, 4, or 5.
• If k ≥ 6, we have that the total size y of items in the first transition bin is

at least 5
6 , and thus the weight is at least y + 1

6 ≥ 1 (since the weight of the
large item is its size plus 1

6 , and no weight of an item is smaller than its size).
The rest of the transition bins can be considered as in the proof of Lemma 2.

• Otherwise, if there is a single transition bin, we are done.
• Otherwise, if k = 2 (and thus there are exactly two transition bins), or if

3 ≤ k ≤ 5, and there are two transition bins. This means that the first item
assigned to the second transition bin could not be assigned to the first one.
Thus, the total sum of item sizes in the two bins is strictly larger than 1.
The weight of an item is no smaller than its size, so the total weight in the
transition bins is at least 1, which is what needs to be proved for two such
bins.

• Otherwise, if k = 3, there are at most three transition bins. The case of
two transition bins was considered, so we may assume that three transition
bins exist. As in the proof of Lemma 2, we lower bound the sum of weights
in bins that are not the first or last transition bin using k+2

k+1 (1 − α). Since
1

k+1 ≤ α ≤ 1
k , this value is strictly smaller than 1. The weight of items in

the first transition bin is at least 1 − α+ 1
6 , and in the last one it is at least

α+ 1
k(k+1) . For k = 3, this gives a total weight of at least 1 − α+ 1

6 + 5
4 (1 −

α) + α+ 1
12 = 5

2 − 5α
4 ≥ 25

12 > 2.
• Otherwise, if k = 4, then there are three or four transition bins. Let t denote

the number of transition bins. We get a total weight of at least

1 − α+
1
6

+ (t− 2)
6
5

(1 − α) + α+
1
20

≥ 6
5

(t− 2)
(

1 − 1
4

)

+
73
60

=
9
10

(t− 2) +
73
60

> t− 1,

which holds for t = 3, 4.
• Finally, we are left with the case k = 5. We denote again by t the number

of transition bins (which is at least three and at most five) and get a total
weight of at least

1−α+
1
6

+(t−2)
7
6

(1−α)+α+
1
30

=
7
6

(t−2)
(

1 − 1
5

)

+
6
5

=
14
15

(t−2)+
6
5
≥ t−1,

which holds for t = 3, 4, 5.
We can now show a tight analysis of the FFD-based algorithm with precoloring

given in [17]. It was shown in [17] that the performance guarantee of this algorithm
is at most 2.5 and at least Π∞(3) + 2 ≈ 2.4231.

Theorem 8. The performance guarantee of the FFD-based algorithm with pre-
coloring B of [17] is Π∞(3) + 2 ≈ 2.4231.

Proof. Since in this case μ = χI(G) ≤ OPT, it is left to upper bound the amount
of weight that can fit into a single bin and show that it is at most Π∞(3)+1 ≈ 1.4231.
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Given a packed bin in OPT, we may assume that all items have size at most 1
2 .

Otherwise, there is a single item of size y > 1
2 , replace this item with two items of

size y
2 . If 1

4 <
y
2 ≤ 1

3 , then the weight of each of these two items is y
2 + 1

12 , and their
total weight equals the weight of the original item. If 1

3 <
y
2 ≤ 1

2 , then the weight of
each of these two items is y

2 + 1
6 , and their total weight is even larger than the weight

of the original item. Hence, we can assume that all items have size at most 1
2 .

Consider the case where the bin contains no items of size in I2 or just one such
item. Since, for smaller items, the ratio between weight and size is at most 4

3 , we
conclude that the total weight is at most 4

3 in the case of zero items and at most
25
18 ≈ 1.38889 in the case of one item. If it contains two such items, then since the
remainder of the bin is of size smaller than 1

3 , the difference between the total weight
of the additional items in the bin and their total size is at most Π∞(3) − 1

3 , by
Lemma 5. The difference between the total weight of the items in I2 and their total
size is 2 · (1

6 ) = 1
3 . Thus, the total weight of all items is at most the total difference,

which is at most Π∞(3), plus the total size, which gives Π∞(3) + 1 ≈ 1.4231. Note
that the weights of items of size in (0, 1

2 ] are the same as is used for the proof of
Lemma 5, and therefore the usage of that lemma here is correct.

3. Improved algorithms. In the previous section, we showed better bounds for
two variants of the problem, based on previously known algorithms from [17]. Though
this already gives an improvement over the previously known bounds, the bounds we
have shown are tight bounds, and thus further improvement is possible only using
new algorithms, which we now design. To analyze these algorithms, we use weighting
in a more complex way.

3.1. Perfect conflict graphs. We design an algorithm which uses a prepro-
cessing phase.

Algorithm. Matching Preprocessing

1. Define the following bipartite graph. One set of vertices consists of all
items of size in I1. The other set of vertices consists of all other items. An
edge (a, b) between the vertices of the items of sizes sa > 1

2 and sb ≤ 1
2

occurs if the two following conditions hold:
(a) sa + sb ≤ 1.
(b) (a, b) /∈ E(G).

That is, if these two items can be placed in a bin together. If this edge
occurs, we give it the cost c(a, b) = weight(b), where weight(b) is defined
as above to be sb + 1

j(j+1) , for the integer j such that sb ∈ ( 1
j+1 ,

1
j ] .

2. Find a maximum cost matching in the bipartite graph.
3. Each pair of matched vertices are removed from G and packed into a bin

together.
4. Let G′ denote the induced subgraph over the items that were not packed

in the preprocessing.
5. Compute a feasible coloring of G′ using χ(G′) colors.
6. For each color class, apply the FFD algorithm.

We next analyze this algorithm.
Theorem 9. The above algorithm is a 5

2 = 2.5-approximation algorithm.
Proof. The outline of the proof is as follows. We assign weights to items according

to an optimal packing and call this weight function weight1, or the reduced weights.
Afterwards, we take the total weight of all items, according to weight1, and reassign
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it to items, to get the weight function weight2, so that the total weight of all items
does not grow, and we will be able to apply Corollary 4 to bound the number of bins
packed by the FFD algorithm, as the algorithm is a colorFFD algorithm for these
items. We will analyze the algorithm using weight2 and the optimal packing using
weight1. Specifically, we will use Theorem 1 with these two weights functions. In
what follows, we use the notation weight for the regular weight function (as used in
the proofs for perfect graphs in section 2).

Fix an optimal packing, OPT. We next define a reduced weight function that is
based on the weight function weight, which is defined for perfect graphs in section 2,
with some modifications. For a bin in OPT with no items of size in I1, reduced
weights are defined to be equal to weights according to weight. For an item of size in
I1, the reduced weight is 1, which is equal to its weight according to weight. Given a
bin in OPT with an item of size in I1 which contains additional items, pick an item
of largest size in the bin among the items in the bin with size at most 1

2 , and give
it a reduced weight zero. All other items in the bin receive reduced weights that are
equal to their weights.

We next define a valid matching in the bipartite graph, defined by the algorithm
Matching Preprocessing. Consider the set of items whose reduced weight is zero.
Match each such item to the item of size in I1 that is placed together with it in
a bin of OPT. Consider the cost of this matching. This cost is the sum of the
weights of the items (according to weight) whose reduced weight is zero. Thus the
cost of this matching is exactly the total reduction in the weights of items, i.e., the
difference between the total weight of all items according to weight and the total
weight according to weight1.

Let ω be the cost of the matching removed by the algorithm. Then, by the opti-
mality of the removed matching, we conclude that

∑

x∈I(weight(x)−weight1(x)) ≤ ω.
We reassign weights to items so that an item of size in (0, 1

2 ] that was removed in the
matching (by the algorithm) receives weight zero, and any other item receives a weight
as defined by the function weight. This weight function (after the reassignment) is
called weight2. We have

∑

x∈I
weight2(x) + ω =

∑

x∈I
weight(x) ≤ ω +

∑

x∈I
weight1(x).

Therefore, the total weight according to weight2 is no larger than the total weight
according to weight1. By Theorem 1, we may analyze the algorithm using the weights
weight2 and analyze OPT using the weights weight1. Clearly, each of the bins
removed by the algorithm in the matching has weight of at least 1, since each of
these contains an item of unit weight. Therefore, we can use Corollary 4, since the
weights of items that are packed using FFD are the same as before.

Finally, we need to find an upper bound on the largest amount of the weight of
items that can be packed into a single bin of OPT, according to weight1. Note that,
for every item, its weight according to weight1 is no larger than its weight according
to weight. Using Theorem 8, we can see that if all item sizes are no larger than 1

2 , the
total weight of items that can be packed into one bin has a total weight (according to
weight and thus also according to weight1) smaller than 3

2 . Consider now a bin with
an item of size in I1. If this is the only item in the bin, then the total weight of all
items in this bin is simply 1. Otherwise, let x1 ≥ · · · ≥ xt be the sorted list of other
items in the bin, where x1 is the item which was assigned a zero weight in weight1.
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Fig. 1. The tight example for perfect graphs. The items of each column are packed in one bin
by the optimal solution. In the algorithm, the preprocessing step removes the two top items from
each column, the remaining items all receive the same color, except for � − 1 items of the last row.

Let j ≥ 2 be an integer such that x1 ∈ Ij . The total weight, according to weight1, of
the large item and items x1, . . . , xt is therefore at most

j + 1
j

(

t
∑

i=2

sxi

)

+ 1 ≤ 1 +
j + 1
j

(

1 − 1
2
− 1
j + 1

)

= 1 +
j + 1

2j
− 1
j

= 1 +
j − 1

2j
<

3
2
.

By Corollary 4, the algorithm has an approximation ratio of at most 2.5.
We next show that our analysis of algorithm Matching Preprocessing is tight.
Proposition 10. The approximation ratio of algorithm Matching Prepro-

cessing is at least 2.5.
Proof. Let M and � be large constants and ε = 1

2M . To construct the set of items
we do as follows. We use one sequence of � items a1, . . . , a� each with size 1

2 + ε.
Furthermore, we have (M − 1)� additional items bi,j , 1 ≤ i ≤ �, 1 ≤ j ≤M − 1, each
of size ε. The conflict graph induces a clique with the � items bi,M−1 and contains no
further edges (see Figure 1).

An optimal solution is given by � independent sets Ui = {ai, bi,1, . . . , bi,M−1} with
total size of exactly one for each set. Thus OPT = �.

The preprocessing step finds � pairs, which are {ai, bi,1}. Next, a coloring with �
colors which is found for the remaining items consists of one independent set, which
contains all items bi,j for 1 ≤ i ≤ �, 2 ≤ j ≤M − 2 and additionally contains b1,M−1.
Each other independent set contains a single item bi,M−1 for 2 ≤ i ≤ �. The number
of bins used to color the first independent set is � �(M−3)+1

2M , since this is the total
size of items. Each other independent set consumes one additional bin, thus in total
we get at least 2�− 1 + �

2 −
3�
2M bins. It can be seen that, for M = �2 and � >> 1, the

ratio becomes arbitrarily close to 5
2 .

Remark 11. Algorithm Matching Preprocessing is a 2.5-approximation algo-
rithm for BPC on any hereditary class of graphs for which one can find in polynomial
time a coloring that uses a minimum number of colors.

Remark 11 shows that algorithm Matching Preprocessing is also a 2.5-approx-
imation algorithm for BPC on unit circular-arc graphs, hence improving the result of
[7].

3.2. Conflict graphs that belong to C. In this section, we study an approxi-
mation algorithm for the case where the conflict graph G belongs to C. That is, given
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an induced subgraph of G, G′ = (V ′, E′), and a set of vertices L′ ⊆ V ′, we can find a
coloring of G using a minimum number of colors such that each pair of vertices from
L′ are assigned distinct colors.

We analyze the following algorithm. The weight function weight is defined as in
section 2 for items with size at most 1

2 and for an item x such that sx ∈ I1, weight(x) =
sx + 1

6 . We can use Lemma 7, since our algorithm will follow its conditions.

Algorithm. Greedy Preprocessing

1. While there is a set of three items {a, b, c} that can fit into one bin
(i.e., sa + sb + sc ≤ 1 and {a, b, c} is an independent set of G) such that
weight(a) +weight(b) +weight(c) > 1 and sc ≤ sb ≤ sa ≤ 1

2 , or two items
{a, b} that can fit into one bin (i.e., sa+sb ≤ 1 and {a, b} is an independent
set of G) such that weight(a) + weight(b) > 1, do, as follows.
Choose such a set A of maximum total weight. Delete A from G and assign
a new bin for the items of A that is dedicated to this set of items.
Denote by G′ = (V ′, E′) the resulting conflict graph induced by the re-
maining items.

2. Denote the set of large items by L = {j ∈ V ′ : sj > 1
2}, and denote by

χI(G′) the minimum number of colors used by the optimal solution for
the precoloring extension problem defined by G′ and the set of precolored
vertices L. Compute a feasible coloring of G′ using χI(G′) colors, where
any two items in L are assigned different colors.

3. For each color class, apply the FFD algorithm.

Theorem 12. The approximation ratio of the above algorithm is exactly 7
3 ≈

2.33333.
Proof. Fix an optimal solution OPT. Let weight be the weight function as used

in the algorithm. We use Theorem 1 again and apply a method similar to the proof
of Theorem 9; however, in the proof here we need only one auxiliary weight function
weight1, so the two functions w,w′ that are required for the usage of Theorem 1 are
equal. We assign weights that are based on the packing of OPT and denote this
weight function by weight1 (also called the reduced weights). For an optimal bin
which contains no items of size in I1 and contains no triple of items of total weight
strictly larger than 1 with respect to weight, we use weight1 = weight to define the
weights of items for all items in the bin. For a bin which contains an item x of size in
I1 but contains no other item y such that weight(x) + weight(y) > 1, we again use
weight1 = weight for every item in the bin.

For a bin which contains no items of size in I1 but contains a triple of items
of total weight strictly larger than 1 with respect to weight, let a1, a2, a3 be three
items with largest weights in the bin ordered according to their weight. Note that
sa1 ∈ I2 ∪ I3, since otherwise the sum of weights of the three items cannot exceed 1.
We define the reduction value for this bin to be Δ = weight(a1)+weight(a2)+weight(a3)−1

3 .
The reduction value is used for the definition of weights, according to weight1. For
any item b in this bin such that b �= ai for i = 1, 2, 3, we define weight1(b) = weight(b).
Note that in the preprocessing step, the algorithm removes at least one of a1, a2, and
a3, since otherwise if all three items are not removed, then the preprocessing step
cannot terminate. Let i′ be an index of the item of an item ai such that 1 ≤ i′ ≤ 3,
and ai′ is removed no later than aj for all 1 ≤ j ≤ 3. We define weight1(ai′) =
weight(ai′) − Δ, and, for i �= i′, weight1(ai) = weight(ai).

For a bin which contains an item x of size in I1 and contains another item y such
that weight(x)+weight(y) > 1, let y be such an item with maximum weight according
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to weight. We define the reduction value for this bin to be Δ = weight(x)+weight(y)−1
3 .

For any item b in the bin for b �= x, y, we define weight1(b) = weight(b). Note that at
least one of x and y is removed in the preprocessing step. If y is removed no later than
x, we define weight1(y) = weight(y)−Δ and weight1(x) = weight(x), and otherwise
weight1(y) = weight(y) and weight1(x) = weight(x) − Δ.

Consider a bin which is removed in the greedy preprocessing step. In order to be
able to use Corollary 4, we argue that the total weight of the items in this bin according
to weight1 is greater than 1. First note that the total weight of the items according to
weight is at least 1. Therefore, if for every item a in this bin weight1(a) = weight(a),
we get that the sum of weights in this bin is strictly larger than 1. We will show
that a possible reduction in the weights (i.e., a possible difference between weight1
and weight) does not decrease the sum of weights below 1. Let A be the set of
(two or three items) in this bin and Γ = (∑a∈A weight(a))−1

3 . For an item a ∈ A, we
have weight1(a) < weight(a) if the following conditions hold. Consider the bin to
which a belongs in OPT. Then a value Δ(a) was computed for this bin such that
weight1(a) = weight(a) − Δ(a). We get that a is removed in the preprocessing, and
at the time of the removal of a, it belongs to a set of items A of largest weight that is
valid for removal in the preprocessing step. Moreover, no item of A has been already
removed at the time that a is being removed. This means that, in the greedy process,
we have Γ ≥ Δ(a). Thus we have

∑

a∈A weight1(a) =
∑

a∈A[weight(a) − Δ(a)] ≥
∑

a∈Aweight(a) − 3Γ = 1. Therefore, each of the bins that were removed by the
algorithm in the greedy preprocessing step has weight of at least 1. Therefore, we can
use Lemma 7, since the weights of items that are packed using FFD are the same as
in section 2.

Finally, we need to analyze the largest amount of weight that can be packed into
a single bin of OPT. This analysis is done with respect to weight1. Consider the set
of items A in a given bin of OPT.

If all items in A have size at most 1
3 , then for all a ∈ A, weight1(a) ≤ 4

3 · sa, and
thus the total weight of the items in A is at most 4

3 . This covers both the case where
there is no reduction in the weight of items in weight1 compared to weight and the
case where there is such a reduction for some items.

Next, assume that A has an item x of size in I2, but all weights in this bin were
assigned according to weight (i.e., for all a ∈ A, weight1(a) = weight(a)). This can
happen in two cases.

• If A contains an additional item y of size in I2, then A = {x, y}. This is so
as a third item in the bin would imply a triple whose total weight is strictly
more than 1, and hence we will have weight1(x) �= weight(x). Therefore, in
this case where A = {x, y}, we get a total weight of

sx +
1
6

+ sy +
1
6
≤ 1 +

1
3
≤ 4

3
.

• Otherwise, for all y ∈ A \ {x}, we conclude that sy ∈ (0, 1
3 ].

– If all y ∈ A \ {x} actually have size in (0, 1
4 ], then weight1(y) ≤ 5

4 · sy,
and the total size of all items in A \ {x} is at most 1− sx. Together this
gives a total weight of at most

sx +
1
6

+
5
4
· (1 − sx) =

17
12

− sx
4
.

This value is maximized when sx is minimized, and therefore the total
weight of the items in A is at most 16

12 = 4
3 .
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– Finally, if there is y ∈ A such that sy ∈ I3, then we conclude that all
items of A \ {x, y} have size in (0, 1

6 ], and thus their weights are at most
7
6 times their sizes. This is so because a third item of size in (1

6 ,
1
4 ] in the

bin would imply a triple whose total weight is at least 1
2 + 1

3 + 1
5 > 1. This

triple will force weight1(x) < weight(x), contradicting our assumption.
Therefore, in this case the total weight of the items in A is at most

sx+
1
6

+sy+
1
12

+(1−sx−sy) ·
7
6

=
17
12

− sx + sy
6

≤ 17
12

− 7
72

=
95
72

<
4
3
.

Suppose that A has an item y of size in I1.
• If A = {y}, then the total weight is at most 7

6 .
• Otherwise, let A = {y, x1, x2, . . . , xt}, where sx1 ≥ · · · ≥ sxt is the sorted list

of other items in the bin. Then x1 is an item of largest weight according to
weight among A \ {y}. Let j ≥ 2 be an integer such that x1 ∈ Ij . Let

Δ =
weight(y) + weight(x1) − 1

3
=
sy + 1

6 + sx1 + 1
j(j+1) − 1

3

be the reduction value of this bin. We have weight(y)+weight(x1) = 3Δ+1.
The total weight (according to weight1) of the items y, x1, . . . , xt is therefore
at most

j + 1
j

(

t
∑

i=2

sxi

)

+ weight(y) + weight(x1) − Δ

≤ j + 1
j

(1 − sy − sx1) + 1 +
2
3

(

sy +
1
6

+ sx1 +
1

j(j + 1)
− 1
)

= − (j + 3)(sy + sx)
3j

+
j + 1
j

+
4
9

+
2

3j(j + 1)
.

We use sy ≥ 1
2 and sx1 ≥ 1

j+1 and get total weight of at most

− 3(j + 3)2

18j(j + 1)
+

18(j + 1)2 + 8j(j + 1) + 12
18j(j + 1)

=
23j2 + 26j + 3

18j(j + 1)
=

23
18

+
1
6j

.

If j ≥ 3, we are done. However, if j = 2, then all items but y and x1 are of
size strictly smaller than 1

6 , and thus their weights are at most 7
6 times their

sizes. We get a weight of at most

7
6

(1 − sy − sx1) + 1 +
2
3

(

sy +
1
6

+ sx1 +
1
6
− 1
)

= −sx1 + sy
2

+
31
18

≤ − 5
12

+
31
18

=
47
36

<
4
3
.

It is left to consider the case where all items in A are no larger than 1
2 , but weight1

is not equivalent to weight for this set of items. Such a bin must contain at least one
item of size in I2 (otherwise, this case is already covered). There are two types of
such bins. One option is that A has a single item y of size in I2. The other option is
that A has two items y1, y2 of size in I2.

• Consider the first option and assume first that A contains one item of I2 and
does not contain an item of size in I3. In this case, we can show that the total
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weight according to weight of the items in A is at most 4
3 . This is so because,

in this case, the total weight is at most sy + 1
6 + 5

4 · (1 − sy) = 17
12 − sy

4 ≤ 4
3 ,

where the last inequality holds, since sy > 1
3 .

• Consider the first option and assume that A contains an item of size in I3.
Let y1, y2 be the items of sizes in I2,I3 (respectively) and assume that A =
{y1, y2, x1, . . . , xt}, where sx1 ≥ · · · ≥ sxt , so x1 is an item of largest weight
according to weight in A\{y1, y2}. Let j ≥ 3 be an integer such that sx1 ∈ Ij .
Let

Δ =
weight(y1) + weight(y2) + weight(x1) − 1

3

=
sy1 + 1

6 + sy2 + 1
12 + sx1 + 1

j(j+1) − 1

3

be the reduction value of this bin. We have weight(y1) + weight(y2) +
weight(x1) = 3Δ + 1. The total weight (according to weight1) of the items
in A is therefore at most

j + 1
j

(

t
∑

i=2

sxi

)

+ weight(y1) + weight(y2) + weight(x1) − Δ

≤ j + 1
j

(1 − sy1 − sy2 − sx1) + 1

+
2
3

(

sy1 +
1
6

+ sy2 +
1
12

+ sx1 +
1

j(j + 1)
− 1
)

= − (j + 3)(sy1 + sy2 + sx)
3j

+
j + 1
j

+
1
2

+
2

3j(j + 1)
.

We use sy1 ≥ 1
3 , sy2 ≥ 1

4 , and sx1 ≥ 1
j+1 and get a total weight of at most

− (j + 3)(7j + 19)
36j(j + 1)

+
36(j + 1)2 + 18j(j + 1) + 24

36j(j + 1)

= −7j2 + 40j + 57
36j(j + 1)

+
36j2 + 72j + 36 + 18j2 + 18j + 24

36j(j + 1)
=

47
36

+
1

12j
≤ 4

3
.

• Consider the second option. Assume that A = {y1, y2, x1, . . . , xt}, where
sx1 ≥ · · · ≥ sxt , so x1 is an item of largest weight according to weight in
A \ {y1, y2}. Let j ≥ 3 be an integer such that sx1 ∈ Ij . Let

Δ =
weight(y1) + weight(y2) + weight(x1) − 1

3

=
sy1 + 1

6 + sy2 + 1
6 + sx1 + 1

j(j+1) − 1

3

be the reduction value of this bin. We have weight(y1) + weight(y2) +
weight(x1) = 3Δ + 1. The total weight (according to weight1) of the items
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Fig. 2. The tight example for the class C. The items of each column are packed in one bin by
the optimal solution. In the algorithm, the preprocessing step removes the three top items from each
column, and the remaining items all receive the same color, except for � − 1 items of the last row.

in A is therefore at most

j + 1
j

(

t
∑

i=2

sxi

)

+ weight(y1) + weight(y2) + weight(x1) − Δ

≤ j + 1
j

(1 − sy1 − sy2 − sx1) + 1

+
2
3

(

sy1 +
1
6

+ sy2 +
1
6

+ sx1 +
1

j(j + 1)
− 1
)

= − (j + 3)(sy1 + sy2 + sx)
3j

+
j + 1
j

+
5
9

+
2

3j(j + 1)
.

We use sy1 , sy2 ≥ 1
3 , and sx1 ≥ 1

j+1 and get a total weight of at most

− (j + 3)(2j + 5)
9j(j + 1)

+
9(j + 1)2 + 5j(j + 1) + 6

9j(j + 1)
= −2j2 + 11j + 15

9j(j + 1)

+
9j2 + 18j + 9 + 5j2 + 5j + 6

9j(j + 1)
=

4
3
.

We next show that our analysis of algorithm Greedy Preprocessing is tight.
Let M and � be large constants and ε = 1

3M . To construct the set of items, we do
as follows. We use two sequences of � items each, a1, . . . , a�,b1, . . . , b�, where each
of these items has size 1

3 + ε. Furthermore, we have (M − 2)� additional items ci,j ,
1 ≤ i ≤ �, 1 ≤ j ≤M − 2, each of size ε. The conflict graph induces a clique on the �
items ci,M−2 and contains no further edges (see Figure 2).

An optimal solution is given by � independent sets Ui = {ai, bi, ci,1, . . . , ci,M−2}
with total size of exactly one for each set. Thus OPT = �.

The preprocessing step finds � sets of triples, which are {ai, bi, ci,1}. Next, a col-
oring with � colors which is found for the remaining items consists of one independent
set which contains all items ci,j for 1 ≤ i ≤ �, 2 ≤ j ≤M−3, and additionally contains
c1,M−2. Each other independent set contains a single item ci,M−2 for 2 ≤ i ≤ �. The
number of bins used to color the first independent set is � �(M−4)+1

3M , since �(M−4)+1
3M

is the total size of these items. Each other independent set consumes one additional
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bin, thus in total we get at least 2�−1+ �
3 −

4�
3M bins. It can be seen that, for M = �2

and � >> 1, the ratio becomes arbitrarily close to 7
3 .

Consider now alternative algorithms which remove triples in a different way in
the first step of the algorithm. That is, instead of picking a triple or pair greedily
at each time, it applies a different heuristic. The example actually shows that even
if this step is processed optimally (using an exponential time algorithm), that is, if a
set of triples and pairs with total maximum weight is removed, still the performance
cannot be improved. Therefore, we keep this step simple and do not apply advanced
methods (such as local search; see [1]) that allow the removal of a set of triples and
pairs of a larger weight.

3.3. Bipartite graphs. In this section, we can assume that OPT ≥ 2 and that
the conflict graph contains at least one edge. This holds since OPT = 1 means that
the conflict graph is empty, and the total size of the items is at most 1. Each one of
these properties can be easily checked in polynomial time, and if both conditions hold,
the algorithm returns an optimal solution. Moreover, if the conflict graph is empty,
the problem reduces to standard bin packing, for which FFD has an approximation
ratio of 3

2 [29]. Since the algorithm presented in this section has an approximation
ratio larger than 3

2 , we can assume that the conflict graph contains at least one edge.
In [17], the following simple algorithm was analyzed for graphs which have a

nonempty conflict graph.

The algorithm TWO-SET (TS) of [17].

Find a coloring of the conflict graph with two colors. Pack each color class using a
simple heuristic (Next-Fit, First-Fit (FF), or FFD).

It was shown in [17] that TS is a 2-approximation for all of these suggested heuris-
tics. (Using FFD instead of Next-Fit does not give a better approximation ratio.)

We design an algorithm which gives special treatment to some of the problematic
cases and thus get a 7

4 -approximation.
We start with an analysis of the algorithm TS (with FFD), as a function of the

value OPT. Let A and B denote the sets of the items of the two colors. Let �(A)
and �(B) denote the numbers of bins packed by FFD for each of the two sets, and
let OPT(X) denote the cost of an optimal solution for a set X . Clearly, we have
s(X) ≤ OPT(X) ≤ OPT for X = A,B, and also OPT ≥ s(A) + s(B).

As stated above, Simchi-Levi [29] proved that, for any input Y , the solution of
FFD on this output satisfies FFD(Y ) ≤ 3

2OPT(Y ). Therefore, if the size of one of
the sets (without loss of generality, the set A) is small enough, namely, this set fits
into one bin s(A) ≤ 1, we get TS ≤ FFD(B) + 1 ≤ 3

2OPT + 1.
Otherwise, if for both sets, the output of FFD created at least one bin where the

smallest item that opens a new bin is in the interval (0, 1
3 ]. Then, for each set A and

B, all bins but the last one are occupied by more than 2
3 , and the sum of items in the

two last bins together is more than 1. We get for X = A,B, s(X) > 2
3 (�(X)− 2) + 1.

Thus TS ≤ �(A) + �(B) < 3
2OPT + 1.

Suppose next that both sets A and B do not have a bin opened by an item
with size in the interval (0, 1

3 ]. Then, we remove all items smaller than 1
3 from the

input. Clearly, the output does not change. Each bin contains an item of size in
(1
2 , 1] (and possibly one smaller item as well) or two items in the interval (1

3 ,
1
2 ],

except possibly the last bin for each set, that may contain a single item of this last
interval. Let Z denote the number of the items of size in (1

2 , 1] in A ∪ B, and let V
denote the number of items from A ∪ B with size in the interval (1

3 ,
1
2 ]. Therefore,
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TS ≤ Z + V−2
2 + 2 = Z + V

2 + 1. However, for any packing and thus for an optimal
one, we have that each bin contains at most one item with size larger than 1

2 , and at
most two items with size larger than 1

3 , thus we have OPT ≥ Z and OPT ≥ Z+V
2 .

We get TS ≤ Z+V
2 + Z

2 + 1 ≤ 3
2OPT + 1.

We are left with the case where (without loss of generality) the set A contains a
bin opened by an item in (0, 1

3 ], and B does not. If A does not contain a bin opened by
an item of size in (0, 1

4 ], we can remove all items smaller than 1
4 from the input and get

the same output. Let Z denote again the number of items in (1
2 , 1] and V denote the

number of items in (1
4 ,

1
2 ]. We now argue that V ≤ 3(OPT− Z) + Z = 3OPT− 2Z.

This last inequality holds, since a bin with an item larger than 1
2 can contain at most

one item larger than 1
4 , and any other bin can contain at most three such items.

Therefore, TS ≤ Z + V−2
2 + 2 ≤ Z + 3

2OPT − Z + 1 = 3
2OPT + 1.

Finally, we need to consider the case where A contains at least one bin opened by
an item of size in (0, 1

4 ], and B does not have a bin opened by an item whose size is
at most 1

3 . Thus all bins of A but the last one are occupied by more than 3
4 . We get

s(A) > 3
4 (�(A) − 2) + 1 and s(B) > 1

2�(B). The last inequality holds for any Any-Fit
type algorithm and for FFD in particular. Moreover, note that the packing of B is an
optimal one. This can be proved using simple exchange arguments (see [29]). Thus
we have �(B) ≤ OPT. We get OPT ≥ s(A) + s(B) > 3

4�(A) + 1
2�(B) − 1

2 . Thus
TS < 4

3OPT + 2
3 + 1

3OPT = 5
3OPT + 2

3 . Since both OPT and TS are integers and
our last inequality is a strict inequality, we get TS ≤ 5

3OPT + 1
3 .

We can prove the following lemma.
Lemma 13. If OPT ≥ 3 then the algorithm above satisfies TS ≤ 7

4OPT, and
this bound is tight when OPT = 4.

Proof. We obtained two bounds, and since TS is integer, we conclude that TS ≤
max{	 3

2OPT + 1
, 	 5
3OPT + 1

3
}. If OPT ≥ 4, we get 3
2OPT + 1 ≤ 7

4OPT and
	 5

3OPT + 1
3
 ≤

7
4OPT. For OPT = 3, we get TS ≤ 5 = 5

3OPT.
To see that this bound is tight, consider the following example. Let ε > 0 be a

small number and define the following set of item sizes A = { 1
4 + ε, 1

4 + ε, 1
4 + ε, 1

4 +
ε, 1

4 −2ε, 1
4 −2ε, 1

4 −2ε, 1
4 −2ε}, and B = { 1

2 + ε, 1
2 + ε, 1

2 + ε, 1
2 + ε}. Assume that the

conflict graph has a single edge between one item of size 1
2 + ε and one of the items of

size 1
4 + ε. Then an optimal solution has four bins, each of which has one item of size

1
2 + ε, one item of size 1

4 + ε, and one item of size 1
4 −2ε. Clearly, the two items which

have a conflict do not share a bin. However, assume that the coloring into two colors
partitions the items into A and B. Then, FFD(A) = 3 and FFD(B) = 4. Therefore,
for this example, OPT = 4, and the algorithm returns a solution that uses seven
bins.

Note that if we were considering the asymptotic approximation ratio rather than
the absolute approximation ratio, this analysis of TS proves that its asymptotic ap-
proximation ratio is at most 3

2 .
As we can see, the only case which is left is OPT = 2, which requires special

treatment. This case can be identified by a solution returned by TS of cost 4. Clearly,
such solutions can be achieved also for OPT = 3 and OPT = 4. We define an
algorithm and prove that it succeeds if OPT = 2. Thus, if it fails, then OPT ≥ 3,
which means that the original solution already does not violate the approximation
ratio 7

4 which we would like to prove. We call this algorithm modified Two-Set

(mTS).
If OPT = 2, this means that it is possible to color the input using two colors and

pack each independent set into a single bin. If the conflict graph is connected, there
is a unique way to color the items, and thus this optimal packing can be achieved.
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However, a bipartite disconnected graph has more than one possible coloring with two
colors, since the roles of the two colors in each connected component can be swapped.
The first step of mTS is to color each connected component using two colors. Let z
be the number of components and denote the items of component i by Vi. For each
1 ≤ i ≤ z, this gives two sets Ai and Bi, such that Ai ∪ Bi = Vi, Ai ∩ Bi = ∅,
and s(Ai) ≥ s(Bi). Each set in {Ai, Bi} contains the vertices of Vi that share one
color. Define pi = s(Ai) − s(Bi) and assume that the values pi are sorted such that
p1 ≥ p2 ≥ · · · ≥ pz. Let qi = s(Bi) = s(Ai) − pi. Use the sizes pi to define a
scheduling problem on two machines. Run LPT (Longest Processing Time First) on
this input. This means that two empty sets of indices V1 and V2 are initialized. Then
starting from i = 1, assign i for i = 1, . . . , z to the set (V1 or V2) whose total sum
(of the values pj, where j is a member of the set) is minimal. Graham [12] defined
and analyzed this algorithm for an arbitrary number of machines (subsets). It is not
difficult to see that when the algorithm terminates, |

∑

i∈V1
pi−

∑

i∈V2
pi| ≤ p1 holds.

For 1 ≤ i ≤ z, we define a coloring using two colors (which are defined by the sets C
and D) as follows. If i ∈ V1, then mTS assigns the items in Ai to C and the items in
Bi to D. Otherwise, it assigns the items in Bi to C and the items in Ai to D. This
assignment means that s(C) =

∑

i∈V1
pi +

∑z
i=1 qi and s(D) =

∑

i∈V2
pi +

∑z
i=1 qi.

Thus we have |s(C) − s(D)| = |
∑

i∈V1
pi −

∑

i∈V2
pi| ≤ p1. Assume (without loss of

generality) that s(C) ≥ s(D). Since OPT = 2, s(C) + s(D) ≤ 2. Thus s(D) ≤ 1, and
all of the items assigned to D fit into a single bin. Let i1 be the maximum index in
V1. Now remove all items of Ai1 (where s(Ai1) = pi1 + qi1) from C. We get a total
sum of less than s(D) ≤ 1, and thus the remaining items of C fit into one additional
bin. Finally, the items of Ai1 need to be packed. If indeed OPT = 2, then the items
of Ai1 are packed into a single bin in any optimal solution and thus can be packed
into a third bin. This gives a total of three bins.

We summarize the action of modified Two-Set as follows.

Algorithm. MODIFIED TWO-SET (MTS)

Run TS on the input. If the output consists of four bins, apply the following
algorithm, which assumes OPT = 2. If the algorithm does not fail (that is, each
one of the three bins it creates is valid, in terms of total size), give its output.
Otherwise, give the output of TS as output.

1. Color each connected component of the conflict graph using two colors.
Denote the vertices of connected component 1 ≤ i ≤ z by Vi. Assume
that the two independent sets resulting from connected component Vi are
Ai,Bi, where s(Ai) ≥ s(Bi) and that the sets are sorted so that the values
pi = s(Ai) − s(Bi) are nonincreasing.

2. Apply the algorithm LPT on the values pi to partition the (indices of the)
sets Vi into two subsets V1 and V2, where

∑

i∈V1
pi ≥

∑

i∈V2
pi. Let i1 be

the maximum index in V1, then
∑

i∈V1
pi −

∑

i∈V2
pi ≤ pi1 .

3. Pack all items of
⋃

i∈V1
Ai ∪

⋃

i∈V2
Bi, except for items of Ai1 into one bin.

4. Pack all items of
⋃

i∈V2
Ai ∪

⋃

i∈V1
Bi into one bin.

5. Pack all items of Ai1 into one bin.

We proved the following theorem.
Theorem 14. Algorithm mTS has an approximation ratio of exactly 7

4 .
Proof. We showed that if OPT = 2, the process above succeeds to pack the input

into three bins. Otherwise, the theorem follows from Lemma 13.
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4. Online algorithms. In this section, we discuss online algorithms for interval
graphs.

In the online problem, items arrive one by one. When an item arrives, the follow-
ing information is revealed to the algorithm: the size of the item, the existing edges in
the conflict graph between the new item, and the previous items. The algorithm has
to pack the new item before the next item arrives. Once an item is packed in a bin,
its location cannot be changed. For interval graphs, an item arrives together with its
realization, that is, the coordinates of the interval on the real line, which corresponds
to this item.

For many classes of graphs, the online coloring problem is hard to approximate.
Note that online coloring is a special case of BPC, where all item sizes are zero.

Consider, e.g., the problem on trees. Gyárfás and Lehel [13] proved a deterministic
lower bound of Ω(logn) on the online coloring of bipartite graphs on n vertices, which
holds already for trees. Lovász, Saks, and Trotter [22] showed an online coloring
algorithm which colors such a graph (which is 2 colorable) using O(log n) colors.
This immediately implies an online coloring algorithm for BPC on bipartite graphs,
which is optimal up to a constant multiplicative factor on the competitive ratio. This
algorithm A uses the algorithm of [22] to color the conflict graph using C colors.
Then the items of each color class are packed independently using some reasonable
algorithm for bin packing, e.g., Next-Fit. We get that for each color class i, which
contains �i bins, the total size of items Si of color class i is more than �i−1

2 (since no
two consecutive bins can be combined). We get that

A ≤
C
∑

i=1

�i <

C
∑

i=1

(2Si + 1) ≤ 2OPT + C ≤ O(log n)OPT .

Since the same can be applied for any graph class for which no constant compet-
itive algorithm exists, we focus on a graph class for which such an algorithm exists,
namely, interval graphs. Kierstead and Trotter [20] constructed an online coloring
algorithm for interval graphs, which uses at most 3ω− 2 colors, where ω is the maxi-
mum clique size of the graph. They also presented a matching lower bound of 3ω− 2
on the number of colors in a coloring of an arbitrary online coloring algorithm.

The main idea of the algorithm of [20] is the creation of “levels.” At the time
of the arrival of an interval, it is classified into a level as follows. Denote by Ak the
union of the sets of intervals which currently belong to all levels 1, . . . , k. Intervals
are classified so that the largest cardinality clique in Ak is of size k. Thus, A1 is
simply a set of nonintersecting intervals. On the arrival of an interval, the algorithm
finds the smallest k such that the new interval can join level k, without violating the
rule above. It can be shown that each level can be colored using two colors by an
offline algorithm. Since the algorithm defined here is online, such a coloring cannot be
found, in general. However, it is shown in [20] that at most three colors are required
for each such level, and a coloring using three colors can be found by applying FF
on each level (with disjoint sets of colors). Moreover, the first level can always be
colored using a single color, and ω is equal exactly to the number of levels. Thus a
total number of colors, which is at most 3(ω − 1) + 1 = 3ω − 2, is used.

Note that the chromatic number of interval graphs equals to the size of a maximum
clique, which is equivalent in the case of interval graphs to the largest number of
intervals that intersect any point (see [18, 11]). The technique above implies a 5-
competitive algorithm. We can show that using FF instead of Next-Fit for coloring
each class slightly improves this bound.
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A combined algorithm for interval graphs.
Use the algorithm of [20] to color the arriving intervals and FF to pack the items
of each color.

Theorem 15. The combined algorithm has a competitive ratio of 4.7.
Proof. The proof is similar to the proof of [17] for perfect graphs. We can use the

well-known weight function ŵ defined for FF already in [9] (see also page 219 in [3]).
This weight function is defined as follows:

ŵ(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

6r
5 if 0 ≤ r < 1

6 ,
9r
5 − 1

10 if 1
6 ≤ r < 1

3 ,
6r
5 + 1

10 if 1
3 ≤ r < 1

2 ,

1 if 1
2 ≤ r ≤ 1.

It was shown that, for a set of items J on which FF is applied, we have �(J) ≤
W (J) + 1, where W (J) denotes the total weight of items in J and �(J) is the number
of bins in the packing of J by FF. On the other hand, if we remove the incompatibility
constraint (i.e., assume that the conflict graph has no edges) and let OPT

′ denote
an optimal solution for this instance, we have W (I) ≤ 1.7OPT

′ ≤ 1.7OPT. Let Ij
denote the items colored by the algorithm of [20] by color j, and let C denote the
number of colors which is used. This algorithm colors the items with at most 3χ(G)−
2 ≤ 3OPT − 2 colors; therefore C < 3OPT, and thus we get A ≤

∑C
j=1 �(Ij) <

∑C
j=1(W (Ij) + 1) = W (I) + C ≤ 4.7OPT.

Based on the examples of [17, 19] and [20], we can show a sequence of instances
whose competitive ratio is arbitrarily close to 4.7. The tight example simply combines
the two previously known tight examples. The example of [20] is used as a black box.
Given an interval [x, y], we use the fact that it is possible to construct an example,
which is a sequence of intervals contained in [x, y], where the size of the largest clique
is ω, for a given value of ω, and for which the algorithm of [20] uses the 3ω− 2 colors
1, 2, . . . , 3ω − 2.

We fix a value of OPT = k + 2 and a value of ε >> δ > 0 that is small enough,
and we let � = k

10 . The construction is composed of two phases. In the first phase, we
repeat the construction of [20] with a maximum clique size k+ 1, where all items that
correspond to the vertices which the intervals represent have zero size. We repeat the
construction to have 3k copies of this construction that use the same set of 3k + 1
colors. Since the intervals are colored by the algorithm of [20], all structures are all
colored in the same way. We call these 3k + 1 colors 1, 2, . . . , 3k + 1.

At the end of the first phase, we call the subintervals of the real line such that
each one of them contains a copy of the construction of [20] that uses the color set
{1, 2, . . . , 3k + 1}, [xi, yi] for 1 ≤ i ≤ 3k. Each future interval will completely contain
an interval [xi, yi] and will not have any overlap with other intervals from the first
phase or the second phase.

We next present 3k disjoint intervals one by one (i.e., this set of intervals is an in-
dependent set of G). Each of these intervals contains exactly one interval [xi, yi] of the
first phase, and therefore these intervals cannot be colored using colors 1, 2, . . . , 3k+1,
by the algorithm.

• The first k intervals, which are denoted by ai,p for i = 1, . . . , 10 and p =
1, . . . , �, have sizes according to the following: ai,p has size 1

6 + ε
3p − δ for

1 ≤ i ≤ 5, and otherwise, it has size 1
6 − ε

3p+1 − δ. These k intervals are
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introduced according to the following order:

a1,1, a2,1, a3,1, a6,1, a7,1, a4,1, a5,1, a8,1, a9,1, a10,1, a1,2, . . . .

• The next k intervals are denoted by bi,p for i = 1, . . . , 10 and p = 1, . . . , �.
Their sizes are defined according to the following: the size of bi,p for 1 ≤ i ≤ 5
is 1

3 + ε
3p−1 −δ, and otherwise, the size of bi,p is 1

3−
ε
3p −δ. These k intervals are

introduced in the following order: b1,1, b6,1, b2,1, b7,1, b3,1, b8,1, b4,1, b9,1, b5,1,
b10,1, b1,2, . . . .

• The last k intervals are denoted by ci for i = 1, 2, . . . , k, and each of these
has size of 1

2 + δ.
Note that the coloring algorithm of [20] will color all of the intervals of the second

phase using color 3k + 2, and therefore we need to compute the number of bins that
the FF algorithm uses in order to pack all of these items. Applying FF will open
� bins of the following type: {a1,p, a2,p, a3,p, a6,p, a7,p} for p = 1, 2, . . . , �. It will use
another � bins of the following type: {a4,p, a5,p, a8,p, a9,p, a10,p}. There will be another
5� bins each containing {bi,p, bi+5,p} for i = 1, 2, . . . , 5 and p = 1, 2, . . . , �. Last, the
algorithm will pack each of the items ci separately using another 10� bins. The total
number of bins used to pack the second phase intervals is 17� = 1.7k. By adding the
3k + 1 colors that are used to color the first phase intervals, we get a solution whose
cost is 4.7k + 1 (see Figure 3).

It remains to show that the optimal solution costs k + 2. We first show a
packing of the second phase intervals using exactly k + 2 bins. We use 5� bins
each containing {ai,p, b5+i,p, c5(p−1)+i} for i = 1, . . . , 5 and p = 1, . . . , �. We use
another 5� − 10 bins each containing {a5+i,p−2, bi,p, c5(p+�−3)+i}. We use another
five bins containing {c10(�−1)+i, bi,1} for i = 1, . . . , 5, and another five bins contain-
ing {c10(�−1)+5+i, bi,2} for i = 1, . . . , 5. We have another two bins where the first
one consists of {a6,�−1, a7,�−1, a8,�−1, a9,�−1, a10,�−1} and the second bin consists of
{a6,�, a7,�, a8,�, a9,�, a10,�}. Then, for each one of the 3k constructions of the first
phase, there is a single color out of the list of k + 2 colors (or bins) that is used in
the coloring of the second phase interval that contains this construction. Therefore,
we have a set of k + 1 colors that can be used to color the intervals of the first phase
construction; these are all the colors except the one that is used for the interval of
the second phase. It is possible to complete the coloring of the construction using a
set of k + 1 colors, as the maximum clique size in each such construction is k + 1.
Therefore, we are able to color the entire set of intervals using k + 2 colors, each of
them containing items of total size at most one. Hence, OPT = k + 2.

We can show that an algorithm of much smaller competitive ratio does not exist.
Theorem 16. The competitive ratio of any online algorithm for BPC on interval

graphs has a competitive ratio of at least 155
36 ≈ 4.30556.

In order to prove this theorem, we prove the following two lemmas.
The proof of the next lemma uses a construction similar to the lower bound given

in [20]. In our construction, we prove a lower bound of 3 + c on the competitive ratio.
We assume that we know the optimal value OPT = k, and thus we are allowed to use
a set of at most (3 + c)k bins. The construction is composed of two phases. In the
first phase, we introduce intervals such that the corresponding items have size zero.
We call the intervals that correspond to these items zero sized intervals, where the
size of an interval is unrelated to its length. The size of an interval is simply the size
of the item that is associated with the vertex in the conflict graph that this interval
represents. The maximum cardinality clique among these intervals will be k− 1, and
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Fig. 3. A schematic illustration of the behavior of the algorithm in the example of the proof of
Theorem 15. The large rectangles represent the first part of the input. The thin rectangles represent
the additional intervals. Only the first set of such intervals is shown.

the algorithm is forced to use at least 3k − 5 bins, denoted by 1, 2, . . . , 3k − 5. This
part of the construction follows a similar framework as the lower bound in [20]. The
second phase of our construction is similar to the second phase of the tight example
in the proof of Theorem 15.

Lemma 17. Let c be a lower bound on the asymptotic competitive ratio of any
online algorithm for standard bin packing, which knows the value OPT in advance.
Then the competitive ratio for any online algorithm for BPC on interval graphs is at
least 3 + c.

Proof. Our construction is composed of two phases. During the first phase,
we shrink some parts of the line into single points. We next define the operation
of shrinking an interval [a, b] into a point p. Such an operation is performed only
if the interval [a, b] and each previously presented interval [x, y] satisfy that either
[x, y] ⊆ [a, b] or [x, y] and [a, b] are disjoint. The shrinking operation is a mapping of
the real line onto itself such that the points in [a, b] are mapped to p = a, a point q
such that q < a is mapped to q, and a point q′ > b is mapped to q′ − (b − a). We
note that at the time of the shrinking, each existing interval does not contain p as a
(strictly) inner point. The shrinking operation does not affect the sizes of intervals
which are not shrunk.

Therefore, every interval presented in the past which is contained in [a, b] is also
shrunk into p, and thus such a point inherits a list of colors that such intervals received.
These colors cannot be assigned to any interval that contains the point p.

If at some time during the construction, an algorithm uses more than U =
4
⌈

(3+c)k
4

⌉

bins, the construction is stopped. Therefore, we assume that the algo-
rithm is initially given U bins, or equivalently, a palette of U colors. As soon as all
of these colors are used, the proof is complete, and no further phases are presented.
This is just one stopping condition; we may stop the first phase of the sequence earlier
as well, after the algorithm used 3k − 5 colors from the set of colors {1, 2, . . . , U}. In
this case, a second phase is used.

The first phase is composed of at most k − 1 steps that we define as follows. At
the first step of the first phase, we introduce S disjoint (unit length and zero sized)
intervals, where S = U3kX and X is fixed later. Since the algorithm is using at most
U colors, this means that there exists a set of at least S

U intervals that share the
exact same color c. We shrink all intervals into single points. Later steps result in
additional points.
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Fig. 4. The set of intervals in the case that I1 and I2 receive the same color.

Fig. 5. The set of intervals in the case that I1 and I2 receive distinct colors.

We now define step j > 1 of the first phase. The steps are constructed in a way
that, in the beginning of step j ≥ 1, there is a set of at least U3(k−j)+2X points that
contain a given subset of the U colors (which clearly holds after the first step). These
points are called points of interest. After the first step, all points of interest contain
one fixed color.

Note that at all times, there may exist some other points containing some subsets
of colors. All of these points are called void points.

At the beginning of a step j > 1, we partition U3(k−j+1)+2X of the points of
interest into consecutive sets of four, X U3(k−j+1)+2

4 sets in total. All other points of
interest, if they exist, that do not participate in this become void points.

We next define additional intervals, increasing the size of the largest cardinality
clique (with respect to the number of intervals, i.e., ignoring sizes) by exactly 1. Given
a set of four points of interest a1, a2, a3, a4 (listed from left to right), let b be a point
between a1 and a2, which is not a void point, and let d be a point between a3 and a4,
which is not a void point. Let f be a point between a2 and a3, which is not a void
point. We introduce the zero sized intervals I1 = [a1, b] and I2 = [d, a4].

If they both receive the same color, we introduce the zero sized intervals I3 = [b, f ]
and I4 = [f, d]. The interval I3 intersects with a2 and with I1. The second interval I4
intersects I3, a3, and I2; therefore two new colors must be used. In total, three new
colors were used (See Figure 4).

If I1 and I2 receive distinct colors, we introduce the zero sized interval I5 = [b, d].
Interval I5 intersects with I1, I2, a2, and a3, and thus gets a new color. In total, three
new colors were used (See Figure 5).

We shrink every such interval [a1, a4] into a single point. Each of the new shrunk
points received three new colors.

Note that throughout all of the steps of the first phase, we use at most U colors
(otherwise, this phase is stopped), and each new shrunk point receives exactly three
new colors, since four intervals are introduced only if the first two received the same
color, and otherwise, three intervals of three different colors are introduced. However,
even though the initial sets of colors are the same for all points of interest, the sets
of the three new colors may differ for different sets of four points of interest from the
previous step. Since the number of choices of three colors out of at most U colors is
U3

6 , there are less than U3

6 options to choose a set of three new colors.

We can choose at least (XU3(k−j+1)+2)/4
U3/6 > XU3(k−j)+2 points having the exact

same set of used colors. The points containing these exact sets of colors become the
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points of interest of the next step, and the others become void points of the next step.
Points that are void points of previous steps and are not contained in shrunk intervals
remain void points. Note that the points where the new intervals intersect are points
with no previous intervals, and therefore the clique size increases by exactly 1.

The result of each step is therefore an increase of 3 in the number of colors that
each point of interest contains, whereas the cardinality of the largest clique increased
by 1.

At the end of the k − 1th step, the first phase where we have a set of zero
sized intervals ends, and the online algorithm used at least 3k − 5 colors to color
these intervals, since the first step creates points of interest with one color, and each
additional step increases the number of colors attributed to points of interest by 3.
At this time, the number of points of interest, where each point contains the same set
of 3k − 5 colors, is at least XU2.

Assume that c is a lower bound on the asymptotic competitive ratio of any online
algorithm for standard bin packing, which knows the value OPT = k in advance.
This means that, for any ε > 0, there exists a sequence of at most f(k) items (defined
by their sizes) such that OPT = k, and the algorithm is forced to use at least (c−ε)k
bins. For example, in the proof of Lemma 18, f(k) = 3k. (Note that even if the lower
bound construction uses an infinite number of items, we can always use a subsequence
of the construction of finite length, which gives a lower bound of c− ε.)

We let X = f(k) ·
(

U
3k−5

)

. In this way, we create at least f(k) disjoint subintervals
of the real line (each of them can be obtained from unshrinking a point of interest),
where each contains a set of zero sized intervals such that at least one interval of each
range is colored with colors {1, 2, . . . , 3k− 5}. In the second phase, we will introduce
disjoint intervals which contain these subintervals of the real line obtained in the first
phase. That is, in the conflict graph, a vertex of an interval of the second phase would
be adjacent to a set of vertices such that, for each color in 1, 2, . . . , 3k − 5, at least
one neighbor of the new vertex has this color. Therefore, all colors used in the second
phase would be of a larger index.

In the second phase, we consider the lower bound instance of the bin packing
problem where OPT is known to the algorithm. If the lower bound construction
asks to present an item of size si, we present an interval with size si that overlaps
exactly one subinterval of the real line defined by the first phase (and therefore it
cannot be colored with a color from {1, 2, . . . , 3k − 5}), and it does not intersect any
preceding interval of the second phase. In this way, all intervals of the second phase
are colored with colors greater than 3k − 5, and since they cannot be packed by the
online algorithm using less than (c−ε)k bins, they use colors 3k−4, . . . , (3+c−ε)k−5
(this is without loss of generality after renaming the colors).

To prove the claim, it suffices to show that OPT = k. To see this, note that each
of the first phase construction can be colored using k − 1 colors (as the maximum
clique size in it is k − 1). Therefore, we consider the optimal solution for the bin
packing instance that uses k bins. Then we traverse the first phase constructions one
by one and allocate the intervals in the first phase constructions to k−1 colors among
the existing k colors so that the overlapping interval of the second phase (if there is
such one) has a different color. In this way, the total size of items that are allocated
to a color is at most one, and we obtain a coloring using k colors that satisfies the
conflicts constraints such that the total size of each color class is at most one.

Lemma 18. Any online algorithm for standard bin packing, which knows the
value OPT in advance, has a competitive ratio of at least 47

36 ≈ 1.30556.
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Proof. We use a construction similar to the lower bound given by Yao in [33]
(see also [32]). The difference is that since we commit on a given value of OPT in
advance, we need to pad the sequence with items of size 1 in cases where we would
otherwise simply stop the sequence.

Let N be a large integer which is divisible by 6. The input consists of one of the
following three inputs:

1. N items of size 0.15, followed by 5
6N items of size 1.

2. N items of size 0.15, followed by N items of size 0.34, followed by N
2 items

of size 1.
3. N items of size 0.15, followed by N items of size 0.34, followed by N items of

size 0.51.
It is not difficult to verify that, in all three cases, OPT = N . We use the following
variables. For i = 1, . . . , 6, Xi denotes the number of bins with exactly i items of
size 0.15, after only these items have arrived. For i = 0, . . . , 6, 0 ≤ j ≤ 2, i + j > 0,
Xi,j denotes the number of bins with exactly i items of size 0.15 and j items of size
0.34, after these two sets of items have arrived. Clearly, if i ≥ 3, then Xi,2 = 0 and
if i ≥ 5, then Xi,j = 0 for j �= 0. For convenience, we also let X0,0 = 0. We define
X0 = X0,1 +X0,2 to be the number of bins with only (one or two) items of size 0.34.
Moreover, we have for 1 ≤ i ≤ 6, Xi = Xi,0 +Xi,1 +Xi,2.

The following equalities must hold due to the amounts of items:
∑6

i=1 iXi = N
and

∑6
i=0
∑2
j=0 jXi,j = N .

Let R be the competitive ratio of an algorithm. We can compute the cost of the
algorithm for each of the three inputs. This cost is at most R · N . The costs are
∑6

i=1Xi + 5
6N ,

∑6
i=0Xi + N

2 , since, in these cases, the algorithm must put the large
items into new bins, and X0,2 +X1,2 +X2,1 +X2,2 +X3,1 +X4 +X5 +X6 +N . This
is true, since the following bins can accommodate an item of size 0.51: bins with no
items of size 0.34 and at most three items of size 0.15, bins with one item of each of
these sizes, and bins with only one item which is of size 0.34.

We have three inequalities, which we multiply by the coefficients 1, 2, 3, respec-
tively, and get the following:

2X0,1 + 5X0,2 + 3X1,0 + 3X1,1 + 6X1,2 + 3X2,0 + 6X2,1 + 6X2,2

+ 3X3,0 + 6X3,1 + 6X4,0 + 6X4,1 + 6X5,0 + 6X6,0 +
29
6
N ≤ 6RN.

We have established the following two equalities:
∑6
i=1 iXi = N and

∑6
i=0
∑2

j=0
jXi,j = N , which we multiply by the coefficients 1, 2, respectively. Hence, we get the
following:

2X0,1 + 4X0,2 +X1,0 + 3X1,1 + 5X1,2 + 2X2,0 + 4X2,1 + 6X2,2

+ 3X3,0 + 5X3,1 + 4X4,0 + 6X4,1 + 5X5,0 + 6X6,0 = 3N.

Since all variables are nonnegative, we substitute and get 29
6 N + 3N ≤ 6RN , and

thus R ≥ 47
36 .

5. Conclusion. We have improved the upper bounds for BPC on perfect graphs,
interval graphs (and a few related classes), and bipartite graphs. Most of our results
follow from the adaptation of weighting systems to enable an analysis of algorithms
for BPC, and new algorithms which carefully remove small subgraphs of items which
cause problematic instances. There is still a gap between the inapproximability which
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follows from bin packing and the upper bounds. An open problem would be to close
this gap.

Another open question is the following. As in [17], we used the absolute approxi-
mation ratio to analyze the performance of our algorithms. It can be seen that, using
the asymptotic approximation ratio, we can achieve a slightly better upper bound
for bipartite graphs. It is unclear whether the same is true for other graph classes,
i.e., whether the asymptotic approximation ratio for BPC is strictly lower than the
absolute one for some cases.
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Abstract. This paper describes a new algorithm for solving nonlinear programming problems
with equality constraints. The method introduces the idea of using trust cylinders to keep the
infeasibility under control. Each time the trust cylinder is violated, a restoration step is called
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1. Introduction. We consider the equality constrained optimization problem

minimize f(x)(1.1)
subject to h(x) = 0,

where f : R
n → R and h : R

n → R
m are C2 functions.

Usual algorithms for solving problem (1.1) alternate normal (or “vertical”) steps
towards the feasible set H0 = {x : h(x) = 0} with tangential (or “horizontal”) steps
towards the dual manifold ∇L = {x : ∇L(x, λ) = 0}, where L is the Lagrangian
function. Generally, these steps are obtained from some quadratic model for (1.1).
This feature is shared, for example, by the trust region methods proposed by Biegler,
Nocedal, and Schmid [4], Byrd, Gilbert, and Nocedal [9], Byrd, Hribar, and Nocedal
[10], Dennis and Vicente [15], El-Alem [17], Gomes, Maciel, and Mart́ınez [22], and
Lalee, Nocedal, and Plantenga [23].

In this paper, we propose an algorithm that uses normal and tangential trust
region models in a more flexible way. Our bet is that, rather than taking one normal
and one tangential step per iteration, we might do better if, at some iterations, ∇L
is pursued with some priority, so several successive horizontal steps are taken before
one vertical step is computed. On the other hand, we believe that, in some cases, it
is preferable to move closer and closer to H0, so we systematically force the vertical
step. To allow this to occur, we introduce a single mechanism based on what we call
trust cylinders.

Another feature that distinguishes our method from most of the nonlinear opti-
mization algorithms recently proposed is that, using trust cylinders, we need not rely
on a filter (see, for example, [13, Chap. 15]) or on a merit function (see [22]) to obtain
global convergence. Instead, we accept the horizontal step if it sufficiently decreases
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the Lagrangian function, subject to the condition of staying (dynamically) close to
feasibility, in a sense that will be explained in what follows.

Algorithms that generate feasible iterates, without solving h(x) = 0 explicitly, go
back to the early 1960s, with methods usually classified either as generalized reduced
gradient (see [44, 1, 2]) or as projected gradient (PG) [37, 38]. Variations of the PG
method, including some strategies to relax feasibility in a controlled way, began to
appear at the end of the ’60s with the suggestive denomination of sequential gradient-
restoration algorithm [29, 30]. See also [32, 35, 36]. More recently, Mart́ınez intro-
duced a new class of algorithms, called inexact restoration methods [24, 25, 26, 27, 28],
that also controls infeasibility at each iteration.

Our approach has the flavor of a PG algorithm and could be characterized as
a relaxed feasible point method, with a dynamic control of infeasibility (DCI). We
look for a compromise between allowing a large enough horizontal step, in a direction
approximately tangent to the restrictions h(x) = 0, and keeping infeasibility under
control. The main idea is to force each iterate xk to remain in a trust cylinder defined
by

Ck = {x ∈ R
n : ‖h(x)‖ ≤ ρk},

where ‖.‖ denotes the �2 norm.
The dynamic control of infeasibility is kept defining the “radii” ρk of the trust

cylinders in such a way that

(1.2) ρk = O(‖gp(xk)‖),

where gp(x) stands for the projected gradient, i.e., the orthogonal projection of the
gradient g(x) = ∇f(x) onto the null space of ∇h(x), the Jacobian of h. In our case
of interest, gp(x) will be calculated at regular points of h, where ∇h(x) has full rank.
In this situation, the least squares multiplier estimates, λLS(x), are given by

(1.3) λLS(x) = argmin{‖∇h(x)Tλ+ g(x)‖} = −(∇h(x)∇h(x)T )−1∇h(x)g(x),

and the resulting projected gradient is

(1.4) gp(x) = g(x) + ∇h(x)TλLS(x).

Given xk−1, the kth iteration begins with a restoration step, if necessary, in order
to obtain a point xc = xkc and a radius ρ = ρk such that

‖h(xc)‖ ≤ ρ = O(‖gp(xc)‖)(1.5)

and

‖xc − xk−1‖ = O(‖h(xk−1)‖).(1.6)

A radius ρ = ρk satisfying (1.2) may be defined as ρ = ν np(xc) ρmax, where

(1.7) np(xc) =
‖gp(xc)‖

‖g(xc)‖ + 1

and 10−4 ≤ ν ≤ 1 and ρmax > 0 are constants.
Given xc in Ck, the second part of the kth iteration looks for a horizontal step, δt,

that provides a sufficient decrease for a quadratic approximation of f and guarantees
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Fig. 1.1. The step and the trust cylinders. xc satisfies ‖h(xc)‖ < ρ, while x+ satisfies
‖h(x+)‖ < 2ρ.

that x+ = xc + δt remains in a bigger trust cylinder of radius 2ρ. An optional second
order correction δsoc may also be used to reduce the infeasibility, so xk = xc+δt+δsoc.

Figure 1.1 sketches the vertical and the horizontal steps of a typical iteration.
An advantage of staying close to the feasible set is that a “good horizontal step”

in a level set given by h(x) = c is likely to be close to a “good horizontal step” in the
feasible set given by h(x) = 0 if c is relatively small.

The parameter ρmax = ρkmax is nonincreasing and is responsible for the trusta-
bility of the trust cylinders. It is decreased every time there is evidence that the
reduction of the Lagrangian function obtained in the horizontal step was menaced by
a significant increase in the restoration step.

In the next section, we formalize the DCI algorithm. In section 3, a global conver-
gence result for the algorithm is presented, followed by the local convergence theory
introduced in section 4. Section 5 contains some preliminary numerical results. Fi-
nally, some conclusions and lines for future work are included in section 6.

2. The DCI algorithm. In this section, we depict a typical iteration of our
main algorithm. As usual, we use the Lagrangian function, defined as

L(x, λ) = f(x) + λTh(x),

to evaluate the algorithm behavior. In fact, the control of the trust cylinder radius is
also based on the variation of the Lagrangian at xkc , given by

ΔLkc = Lkc − Lk−1
c ,

where Lkc = L(xkc , λk). Since our algorithm divides the step into two components, one
vertical and one horizontal, this variation is also split according to

(2.1) ΔLkc = ΔLk−1
H + ΔLkV ,

where

ΔLk−1
H = L(xk−1, λk−1) − L(xk−1

c , λk−1),(2.2)
ΔLkV = L(xkc , λ

k) − L(xk−1, λk−1).(2.3)

In the vertical step of the algorithm, we seek a point xc that satisfies (1.5) and
(1.6). Under usual regularity assumptions for ∇h(x) along the iterations, we can
achieve (1.5) and (1.6) with almost every algorithm available for the least squares
problem

minimize ‖h(x)‖2.(2.4)
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Careful line searches in the Cauchy, Gauss–Newton, or Newton directions, or in some
combination of them, can be used, for example, to solve problem (2.4). As a matter of
fact, algorithms for (2.4) that take steps in the form d = −M∇h(x)Th(x), where M
represents a family of uniformly bounded and positive definite matrices, will produce
a “sufficiently” fast convergence to a feasible point, and that is what we need to
guarantee (1.6). In the implementation of the algorithm, we will give preference to a
trust region method. Namely, our restoration step successively solves the linearized
least squares problem

minimize ‖h(x) +Ad‖2

subject to ‖d‖∞ ≤ ΔV S ,(2.5)

where A is an approximation of ∇h(x) and ΔV S > 0 is a trust region radius adequately
updated in the vertical subproblems.

In the horizontal step we solve the quadratic programming problem

minimize q(δ) = g(xc)T δ +
1
2
δTBδ

subject to ∇h(xc)δ = 0,(2.6)
‖δ‖∞ ≤ Δ,

where B is a symmetric approximation of the Hessian of the Lagrangian and Δ > 0
is the trust region radius.

We suppose that, at the beginning of the kth iteration, the previous approximate
solution, xk−1, and the Lagrange multipliers estimate, λk−1, are available. In addition,
we also suppose that the following are known: the upper limit for the trust cylinder
radius, ρmax; the Lagrangian function at some previous iteration j, Lref = L(xjc, λ

j);
the horizontal variation of the Lagrangian, ΔLk−1

H ; and the trust region radii, ΔV S ≥
Δmin and Δ ≥ Δmin.

Algorithm 2.1. The kth iteration of the DCI method.
1. Vertical step:
1.1. xc = xk−1.
1.2. Choose an approximate value for ρ.
1.3. REPEAT
1.3.1. IF ‖h(xc)‖ > ρ
1.3.1.1. Find xc, such that ‖h(xc)‖ ≤ ρ.
1.3.2. gp ← gp(xc); np ← ‖gp(xc)‖/(‖g(xc)‖ + 1).
1.3.3. Choose ρ ∈ [10−4npρmax, npρmax].
1.4. UNTIL ‖h(xc)‖ ≤ ρ.
1.5. Compute λ+.

2. Convergence test:
2.1. IF (np = 0),
2.1.1. QUIT (xc is a stationary point).

3. ρmax update:
3.1. ΔLkV ← L(xc, λ+) − L(xk−1, λk−1).
3.2. IF ΔLkV ≥ 1

2 [Lref − L(xk−1, λk−1)],
3.2.1. ρmax ← ρmax/2.

3.3. IF ΔLkV > − 1
2ΔLk−1

H ,
3.3.1. Lref ← L(xc, λ+).
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4. Horizontal step:
4.1. REPEAT
4.1.1. Compute the Cauchy step δCP , solution of

minimize q(μgp)
subject to ‖μgp‖ ≤ Δ, μ ∈ [0,∞). .

4.1.2. Compute a trial step δt such that
q(δt) ≤ q(δCP ),
‖δt‖ ≤ Δ, and
∇h(xc) δt = 0.

4.1.3. Optionally, compute a second order correction δsoc.
4.1.4. δ+ ← δt + δsoc; x+ ← xc + δ+.
4.1.5. ΔLkH ← L(x+, λ+) − L(xc, λ+); r ← ΔLkH/q(δt).
4.1.6. IF (‖h(x+)‖ > 2ρ) OR (r < η1),
4.1.6.1. Δ ← αRΔ;
4.1.7. ELSE IF r > η2,
4.1.7.1. Δ ← αIΔ.
4.2. UNTIL (‖h(x+)‖ ≤ 2ρ) AND (r ≥ η1).
5. Approximate solution update:
5.1. xk ← x+; λk ← λ+; k ← k + 1.
5.2. Choose Δ ≥ Δmin.

In Algorithm 2.1, we suppose that the restoration step 1.3.1.1 will always succeed.
Obviously, this may not occur, since problem (1.1) may be infeasible. Therefore, some
termination criterion needs to be defined to prevent the algorithm from getting stuck
on this step.

In step 1.3.2 of the algorithm and in the next section, we assume that np is
computed according to (1.7). As a matter of fact, all we need for our convergence
theory is that np = O(‖gp(xc)‖), but we decided to use an explicit formula for np in
order to keep the text more readable. Another choice we made was to define λ+ as
the vector of least squares multipliers (1.3) computed at xkc , although other update
schemes would work as well.

Most of the constants used in Algorithm 2.1 are explicitly shown above, so the
reader does not need to guess the meaning of several obscure Greek letters. We do
prefer to write ‖h(x+)‖ > 2ρ instead of ‖h(x+)‖ > ζρ, for example, to make clear
that, in steps 4.1.6 and 4.2, we are considering a larger trust cylinder. Naturally,
the algorithm will also work if we use ζ = 3, although this modification will slightly
affect the proofs of some lemmas presented in the next section. Only Δmin

1 and the
four constants that control the behavior of the trust region method used to compute
the horizontal step were not specified. These parameters must satisfy 0 < η1 ≤ 1/2,
η1 ≤ η2 < 1, 0 < αR < 1, αI ≥ 1, and Δmin > 0. Possible values are η1 = 10−3,
η2 = 0.7, αR = 0.25, αI = 2.5, and Δmin = 10−5.

The following relations, easily derived from steps 1.3 and 4.2 of Algorithm 2.1, will
be used frequently in the next two sections and are presented here for convenience:

ρk ≤ ρkmax‖gp(xkc )‖,(2.7)

1The parameter Δmin plays no role in the global convergence theory of Algorithm 2.1. It is also
unnecessary for the local convergence theory if we use the true Lagrangian second order polynomial as
the quadratic model q(δ) or if B is a good approximation of ∇2

xxL(x, λ) in the plane that contains the
Cauchy and the quasi-Newton directions, as will become clear in section 4. However, our numerical
tests indicate that keeping Δ ≥ 10−5 may slightly improve the performance of the algorithm, so we
decided to include step 5.2.
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ρkmax ≤ 104ρk
1
np

= 104ρk
‖g(xkc )‖ + 1
‖gp(xkc )‖ ,(2.8)

‖h(xkc )‖ ≤ ‖h(xk−1)‖ ≤ 2ρk−1.(2.9)

The global convergence of DCI will be guaranteed, under reasonable assumptions,
by a typical sufficient decrease argument for the Lagrangian function evaluated at xkc .
The variation of the Lagrangian between two successive iterations is given by (2.1).
The idea is to prevent the decrease of the Lagrangian obtained at the horizontal step
from being destroyed by the restoration. For that, ρkmax is decreased in step 3 of DCI
every time ΔLkV is larger than a fraction of the difference between the Lagrangian at
the current iteration and a reference value Lref fixed in some previous iteration j. If
the increase in ΔLkV significantly menaces the decrease in the Lagrangian obtained
since iteration j, ρmax is divided by 2 and Lref is updated. Lref is also updated
every time ΔLkV > − 1

2ΔLk−1
H . The main argument to guarantee global convergence

establishes, under suitable assumptions, the existence of enough normal space, dy-
namically calibrated for horizontal steps of reasonable size, in the sense that ρkmax
remains bounded away from zero unless lim inf(‖gp(xkc )‖) = 0.

3. Global convergence. The global convergence analysis of the DCI algorithm
is based on the following hypotheses.
H1 (differentiability): f and h are C2.
H2 (compacity): The generated sequences {xck} and {xk}, the Hessian approxima-

tions Bk, and the multipliers {λk} remain uniformly bounded.
H3 (regularity and restoration): The restoration never fails, and Z = {xck} remains

far from the singular set of h, in the sense that h is regular in the closure of Z.
Equivalently, {‖∇h(xck)T∇h(xck)−1‖} remains uniformly bounded. Also, if
the generated sequence {xck} is infinite, it satisfies

(3.1) ‖xck+1 − xk‖ = O(‖h(xk)‖).

H4 (second order correction): ‖δsock‖ = O(‖δtk‖2).
Supposing that H1 holds, we can assure that the remaining hypotheses will hold

if, for example, the feasible set H0 is compact and regular (i.e., ∇h(x) is of maximal
rank on H0) and x0 is feasible. In this case, if we choose an initial ρ0

max sufficiently
small, we can keep ∇h(x) with maximal rank and assure (3.1) using standard algo-
rithms for restoration, such as the Gauss–Newton method. We could also replace the
compacity property of H0 by adequate properties on f , such as requiring f to satisfy
lim‖x‖→∞ f(x) = ∞. In such situations, H2–H4 can be guaranteed by construction.

From now on we assume that the sequences {xkc} and {xk} generated by DCI
satisfy H1–H4. In addition, when we say that a number is a constant, we mean that
it can be used for all k and is associated with these specific sequences generated by
DCI.

Denoting by δkV the vertical step and by δkH the horizontal step in the kth iteration,
we have

δkV = xc
k − xk−1 and δkH = xk − xc

k = δt
k + δksoc.

Hypotheses H1–H4 allow us to choose a constant δmax > 0 such that, for all k,

(3.2) ‖δkt ‖ + ‖δksoc‖ + ‖δkV ‖ ≤ δmax.
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We can also define a second positive constant ξ0 such that, for all k, if ‖x−xkc‖ ≤ δmax,
then

‖∇hj(x)‖ ≤ ξ0, j = 1, . . . ,m,(3.3)
‖∇2hj(x)‖ ≤ ξ0, j = 1, . . . ,m,(3.4)
‖∇f(x)‖ ≤ ξ0,(3.5)
‖∇2f(x)‖ ≤ ξ0,(3.6)

‖∇h(xkc )T∇h(xkc )‖ ≤ ξ0,(3.7)
‖Bk‖ ≤ ξ0,(3.8)
‖λk‖ ≤ ξ0,(3.9)

‖δksoc‖ ≤ ξ0‖δkt ‖2.(3.10)

To simplify our notation, we suppose that the constant ξ0 is large enough so that
(3.1) can be rewritten as

(3.11) ‖xck+1 − xk‖ ≤ ξ0‖h(xk)‖.

The main result of this section, presented in Theorem 3.6, is based on five lemmas.
The first gives an upper limit for the increase in the infeasibility produced by the
horizontal step.

Lemma 3.1. The trial iterate x+ generated in step 4.1.4 of Algorithm 2.1 satisfies

(3.12) ‖h(x+) − h(xck)‖ ≤ ξ0‖δt‖2.

Proof. Since x+ = xc
k + δ+ = xc

k + δt + δsoc, with ‖δ+‖ ≤ δmax, we can use a
Taylor expansion, together with relations (3.4), (3.3), (3.10), and (3.2) and the fact
that ∇h(xck)δtk = 0, to show that, for every j = 1, . . . ,m,

|hj(x+) − hj(xc)| ≤ |∇hj(xc)T (δt + δsoc)| +
ξ0
2
‖δt + δsoc‖2

= |∇hj(xc)T δsoc| +
ξ0
2
‖δt + δsoc‖2

≤ ξ20‖δt‖2 + ξ0(‖δt‖2 + ‖δsoc‖2)
≤ (ξ20 + ξ0 + ξ20δmax)‖δt‖2.

Setting ξ0 =
√
m(ξ20 + ξ0 + ξ20δmax), we get the desired result.

The second lemma establishes that, under H1–H4, each iteration succeeds and
the Lagrangian is sufficiently decreased.

Lemma 3.2. If xkc is not a stationary point for (1.1), then x+ is eventually
accepted in step 4 of DCI. Moreover, we can define positive constants ξ1, ξ2, and ξ3
such that, for all k,

ΔLkH = L(xk, λk) − L(xkc , λ
k)

≤ −ξ1‖gp(xkc )‖min
{

ξ2‖gp(xkc )‖, ξ3
√

ρk
}

.(3.13)

Proof. To simplify the notation we will omit here the superscript k. Suppose that
xc is not stationary for (1.1). Let x+ = xc+δ+ = xc+δt+δsoc be a candidate obtained
in step 4 of the kth iteration of the DCI algorithm, and let λ+ be the corresponding
multiplier.
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Using a Taylor expansion, Lemma 3.1, and relations (3.6), (3.9), (3.5), (3.2),
(3.10), and (3.8), we obtain

ΔL+
H = L(x+, λ+) − L(xc, λ+) = f(x+) − f(xc) + λT+(h(x+) − h(xc))

≤ g(xc)T δt + g(xc)T δsoc +
ξ0
2
‖δt + δsoc‖2 + ξ0ξ0‖δt‖2

≤ q(δt) −
1
2
δTt Bδt + ξ1‖δt‖2

≤ q(δt) + ξ2‖δt‖2,(3.14)

where ξ1 = ξ20 + ξ0 + ξ20δmax + ξ0ξ0 and ξ2 = ξ0/2 + ξ1.
Because δCP , defined in step 4.1.1 of DCI, is a Cauchy step tangent to the con-

straints, we have (see, for example, [13])

‖δCP‖ ≥ min
{

‖gp(xc)‖
‖B‖ ,Δ

}

≥ min
{

‖gp(xc)‖
ξ0

,Δ
}

and

(3.15) q(δCP ) ≤ 1
2
g(xc)T δCP ≤ −1

2
‖gp(xc)‖min

{

‖gp(xc)‖
ξ0

,Δ
}

.

To prove the first part of the lemma, we will show that x+ is always accepted
whenever Δ ≤ Δ, where

(3.16) Δ = min
{

‖gp(xc)‖
4ξ2

,

√

ρ

ξ0

}

.

We start by noting that, since ξ0 < 4ξ2,

(3.17) Δ ≤ ‖gp(xc)‖
ξ0

.

Based on the fact that Δ ≤ Δ and on (3.17), the upper limit of q(δCP ) given by (3.15)
can be simplified to

(3.18) q(δCP ) ≤ −1
2
‖gp(xc)‖Δ.

Combining the conditions ‖δt‖ ≤ Δ and q(δt) ≤ q(δCP ), stated in step 4.1.2 of
the DCI algorithm, with (3.16) and (3.18), we obtain

(3.19) ξ2‖δt‖2 ≤ ξ2Δ2 ≤ ξ2ΔΔ ≤ 1
4
‖gp(xc)‖Δ ≤ −1

2
q(δCP ) ≤ −1

2
q(δt).

Now, from (3.14) and (3.19), we get

(3.20) ΔL+
H ≤ 1

2
q(δt) < 0,

which implies that

(3.21) r =
ΔL+

H

q(δt)
≥ 1

2
≥ η1.
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Since Δ ≤ Δ and ‖h(xc)‖ ≤ ρ, we can use (3.12) and (3.16) to guarantee that

‖h(x+)‖ ≤ ρ+ ξ0‖δt‖2 ≤ ρ+ ξ0Δ
2 ≤ 2ρ.

Therefore, both conditions stated in step 4.2 of the algorithm are satisfied, and x+ is
accepted.

To prove the second part of the lemma, let us recall that, each time the step is
rejected, Δ is multiplied by αR, which means that we can assume the accepted trust
region radius satisfies Δ ≥ αRΔ, where 0 < αR < 1. Combining this with (3.20), the
condition q(δt) ≤ q(δCP ), (3.15), (3.17), and (3.16), we get

ΔL+
H ≤ 1

2
q(δt) ≤

1
2
q(δCP ) ≤ −1

4
‖gp(xc)‖min

{

‖gp(xc)‖
ξ0

,Δ
}

≤ −1
4
‖gp(xc)‖αRΔ.(3.22)

Defining ξ1 = αR/4, ξ2 = 1/(4ξ2), and ξ3 = 1/
√

ξ0, we obtain (3.13) from (3.16) and
(3.22).

Our third lemma defines an upper limit for the (possibly positive) vertical varia-
tion of the Lagrangian, ΔLk+1

V .
Lemma 3.3. There exists a positive constant ξ4 such that

(3.23) ΔLk+1
V ≤ ξ4ρ

k
max‖gp(xkc )‖.

Proof. Using a Taylor expansion, (3.5), (3.9), (3.11), (2.9), and (2.7), we get, for
the vertical variation,

ΔLk+1
V = L(xk+1

c , λk+1) − L(xk, λk)

= f(xk+1
c ) − f(xk) + λk+1Th(xk+1

c ) − λk
T
h(xk)

≤ ξ0‖xk+1
c − xk‖ + ξ0‖h(xk+1

c )‖ + ξ0‖h(xk)‖
≤ (ξ20 + 2ξ0)‖h(xk)‖ ≤ 2(ξ20 + 2ξ0)ρk ≤ ξ4ρ

k
max‖gp(xkc )‖.

Therefore, defining ξ4 = 2(ξ20 + 2ξ0), we obtain the desired result.
Our fourth lemma establishes that, between successive iterations without changes

in ρmax, the Lagrangian decreases proportionally to the descent in the corresponding
horizontal steps.

Lemma 3.4. If ρk+1
max = ρk+2

max = · · · = ρk+jmax, for j ≥ 1, then

(3.24) Lk+jc − Lkc =
k+j
∑

i=k+1

ΔLic ≤
1
4

k+j−1
∑

i=k

ΔLiH + rk,

where rk = 1
2 [Lkref − Lkc ].

Proof. Let us suppose that Lref does not change between iterations k + 1 and
k + j1 − 1, where 0 < j1 ≤ j + 1. In this case, by (2.1) and the criterion defined in
step 3.3 of the algorithm, we have

(3.25) Lk+j1−1
c − Lkc =

k+j1−1
∑

i=k+1

(ΔLiV + ΔLi−1
H ) ≤ 1

2

k+j1−2
∑

i=k

ΔLiH .
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On the other hand, if Lref changes at iteration k + j1, then the condition stated
in step 3.3 of DCI is satisfied. In this case, using the hypothesis that ρmax stays
unchanged at iteration k + j1 (so the inequality in step 3.2 is not satisfied) and the
fact that ΔLkH ≤ 0, for all k, we have

Lk+j1c − Lkc = ΔLk+j1V + L(xk+j1−1, λk+j1−1) − Lkref + [Lkref − Lkc ]

≤ 1
2

(L(xk+j1−1, λk+j1−1) − Lkref ) + [Lkref − Lkc ]

=
1
2

(ΔLk+j1−1
H + Lk+j1−1

c − Lkc ) +
1
2

[Lkref − Lkc ]

≤ 1
4

k+j1−1
∑

i=k

ΔLiH + rk.(3.26)

If j1 ≥ j, then (3.25) and (3.26) imply (3.24).
On the other hand, if Lref is updated at iterations k + j1, . . . , k + js, where

0 < j1 < j2 < · · · < js ≤ j, then rk+j1 = rk+j2 = · · · = rk+js = 0. Therefore,
applying the same procedure described above several times and defining j0 = 0, we
obtain

Lk+jc − Lkc =
s
∑

i=1

[Lk+jic − Lk+ji−1
c ] + Lk+jc − Lk+jsc ≤ 1

4

k+j−1
∑

i=k

ΔLiH + rk.

Our fifth lemma establishes the existence of enough normal space in the trust
cylinders Ck to guarantee that the Lagrangian can be sufficiently decreased. The
idea supporting this lemma is that (3.13) guarantees, asymptotically, that ‖ΔLkH‖ is
bigger than a fraction of

√

ρk, while, on the other hand, ‖ΔLkV ‖ = O(ρk) (see the
proof of Lemma 3.3). This means that a restoration cannot, asymptotically, destroy
the decrease in the Lagrangian achieved at the horizontal step, and this prevents
further ρmax updates.

Lemma 3.5. If DCI generates an infinite sequence {xk}, then the following hold:
(i) There are positive constants ξ5 and ξ6 such that, whenever

(3.27) ρkmax < min{ξ5‖gp(xkc )‖, ξ6},

ρmax does not change at iteration k + 1.
(ii) Furthermore, if lim inf ‖gp(xkc )‖ > 0, then there exists k0 > 0 such that, for

every k ≥ k0,

(3.28) ρkmax = ρk0max.

(iii) If the horizontal step and the vector of Lagrange multipliers satisfy

‖xk − xkc‖ = O(‖gp(xkc )‖),(3.29)
‖λk − λLS(xkc )‖ = O(‖gp(xkc )‖),(3.30)

then (3.28) is satisfied, regardless of the value of lim inf ‖gp(xkc )‖. In other
words, ρkmax remains bounded away from zero.

Proof. Let us consider the first part of the lemma. To prove that ρmax does not
change at iteration k+ 1, we just need to show that ΔLk+1

V < −ΔLkH/2 (see step 3.2
of Algorithm 2.1). From Lemma 3.2, this result is attained whenever

(3.31) ΔLkV <
ξ1ξ2

2
‖gp(xkc )‖2
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and

(3.32) ΔLkV <
ξ1ξ3

2

√

ρk‖gp(xkc )‖.

Condition (3.31) can be easily obtained from Lemma 3.3 and (3.27), taking ξ5 =
ξa5 ≡ ξ1ξ2/(2ξ4). To obtain (3.32), we need a few more steps. First we use (2.8) and
(3.5) to write

(3.33)
√

ρkmax ≤ 102
√

ρk
(ξ0 + 1)1/2

‖gp(xkc )‖1/2 .

Then, taking the square root from both sides of (3.27) and combining the result with
(3.33), we get

(3.34) ρmax ≤
√

ξ510−2
√

ξ0 + 1
√

ρk.

Now, defining ξ5 = ξb5 ≡ 10−4ξ21ξ
2
2/[4ξ

2
4(ξ0 + 1)] and using Lemma 3.3 and (3.27), we

obtain (3.32). The desired result follows from taking ξ5 = min{ξa5 , ξb5}.
In order to prove item (ii), let us define b = lim inf(‖gp(xkc )‖) and choose an

index k0 such that ‖gp(xkc )‖ > b/2 for k ≥ k0. Then, as we proved above, ρkmax ≥
min{ρk0

max, ξ5b/2, ξ6} for k > k0. Thus, ρmax will never be decreased after a certain
iteration k0, as claimed.

To prove the third part of the lemma, we begin observing that (1.3)–(1.4) and
H1–H3 imply that λLS(x) and gp(x) are well defined and of class C1 in a compact
neighborhood of Z, the closure of Z = {xkc}. Therefore, λLS(x) and gp(x) are Lip-
schitz continuous on the iterates in the sense that

(3.35) ‖λLS(xk+1
c ) − λLS(xkc )‖ = O(‖xk+1

c − xkc‖)

and

(3.36) ‖gp(xk+1
c ) − gp(xkc )‖ = O(‖xk+1

c − xkc‖).

From (3.1), (2.9), (2.7), and (3.29) we get

(3.37) ‖xk+1
c − xkc‖ ≤ ‖xk+1

c − xk‖ + ‖xk − xkc‖ = O(‖gp(xkc )‖),

and from (3.36) and (3.37) we obtain

(3.38) ‖gp(xk+1
c )‖ = O(‖gp(xkc )‖).

Noticing that

L(xk+1
c , λk+1) = L(xk+1

c , λLS(xk+1
c )) + [λk+1 − λLS(xk+1

c )]Th(xk+1
c )

and

L(xk, λk) = L(xk, λLS(xk+1
c )) − [λLS(xk+1

c ) − λLS(xkc )]Th(xk)
−[λLS(xkc ) − λk]Th(xk),
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we get the following decomposition of ΔLk+1
V into a sum of four terms:

ΔLk+1
V = L(xk+1

c , λk+1) − L(xk, λk)
= [L(xk+1

c , λLS(xk+1
c )) − L(xk, λLS(xk+1

c ))](3.39)
+[λk+1 − λLS(xk+1

c )]Th(xk+1
c )

+[λLS(xk+1
c ) − λLS(xkc )]Th(xk)

+[λLS(xkc ) − λk]Th(xk).

Using a Taylor expansion, (1.4), hypothesis H2, (2.9), (3.1), (3.4)–(3.7), and
(3.38), we get

L(xk+1
c , λLS(xk+1

c )) − L(xk, λLS(xk+1
c ))

= gp(xk+1
c )T (xk+1

c − xk) +O(‖xk+1
c − xk‖2)

= O(‖gp(xkc )‖ρk + ρk
2
).(3.40)

Since (2.7) implies that ρk2 ≤ ρkmax‖gp(xkc )‖ρk, (3.40) ensures that the first term
in the right-hand side of (3.39) is O(‖gp(xkc )‖ρk).

From (3.30) and (3.38), we deduce that ‖λk+1 − λLS(xk+1
c )‖ and ‖λLS(xkc )−λk‖

are O(‖gp(xkc )‖). From (3.35) and (3.37), we also obtain ‖λLS(xk+1
c ) − λLS(xkc )‖ =

O(‖gp(xkc )‖). Finally, (2.9) ensures that ‖h(xk+1
c )‖ ≤ ‖h(xk)‖ ≤ 2ρk. This implies

that the remaining three terms in the right-hand side of (3.39) are also O(‖gp(xkc )‖ρk).
Together with (2.7), this ensures that there exists ξ7 > 0 such that

(3.41) ΔLk+1
V ≤ ξ7ρ

k
max‖gp(xkc )‖2.

Let ρmax be defined by

(3.42) ρmax = min

{

ξ1ξ2
2ξ7

,
10−4

4ξ0(ξ0 + 1)

(

ξ1ξ3
ξ7

)2
}

.

With arguments entirely similar to those used to show (3.31)–(3.32), we can prove,
from (3.41) and (3.42), that, if ρk0max < ρmax and k ≥ k0, then ΔLk+1

V < − 1
2ΔLkH .

Therefore, ρkmax does not change after k0.
We say that a point x is stationary for (1.1), i.e., it satisfies the KKT conditions

for the problem, if h(x) = 0 and gp(x) = 0. The next theorem states that, under
H1–H4, the sequence {xck} generated by the DCI algorithm has stationary points for
(1.1) in its accumulation set. Some additional conditions are defined to ensure that
every accumulation point is stationary for (1.1).

Theorem 3.6. Under H1–H4, either DCI stops at a stationary point for (1.1),
in a finite number of iterations, or generates a sequence with stationary points in its
accumulation set. In addition, if we impose the horizontal step and the Lagrange mul-
tipliers to satisfy (3.29) and (3.30), then every accumulation point of xck is stationary
for (1.1).

Proof. Let us suppose, by contradiction, that lim inf(‖gp(xkc )‖) = 2b > 0, and let
k0 be such that ‖gp(xkc )‖) > b for k ≥ k0. In this case, item (ii) from Lemma 3.5
allows us to choose k0 ≥ k0 such that, for every k ≥ k0, ρkmax = ρk0max. Together with
(2.8) and (3.5), this implies that ρk ≥ 10−4ρk0maxb/[2(ξ0 + 1)].
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Now, using (3.24) and (3.13), we can assure that, for k > k0,

L(xkc , λ
k) − L(xk0c , λ

k0) =
k
∑

i=k0+1

ΔLic ≤
1
4

k−1
∑

i=k0

ΔLiH + rk0

≤ −(k − k0)θ + rk0 → −∞,

where

(3.43) θ =
1
4
ξ1b min

⎧

⎨

⎩

ξ2b, 10−2ξ3

√

bρk0max
ξ0 + 1

⎫

⎬

⎭

> 0.

This contradicts H1–H2, imposing lim inf(‖gp(xkc )‖) = 0.
For the second part of the theorem, let us assume that (3.29) and (3.30) apply.

In this case, Lemma 3.5 ensures that ρkmax = ρk0max for some k0 and every k ≥ k0.
Suppose, by contradiction, that ‖gp(xc)k� )‖ ≥ b > 0 for an infinite subsequence

{k�}. Let nk be the number of iterations between k0 and k for some index k ∈ {k�}.
In this case, using (3.24) and (3.13) again and taking nk → ∞, we have

L(xkc , λ
k) − L(xk0c , λ

k0) =
k
∑

i=k0+1

ΔLic ≤
1
4

k−1
∑

i=k0

ΔLiH + rk0

≤ −nkθ + rk0 → −∞,(3.44)

where θ is given by (3.43). This also contradicts H1–H2, implying that ‖gp(xk�
c )‖ → 0

for every subsequence of xkc .
Theorem 3.6 can equally be proved if we admit inexact solutions for the subprob-

lems associated with Algorithm 2.1, using fairly loose conditions on the residues for
accepting the step. For instance, we could relax the condition ∇h(xc) δt = 0 or admit
inexact computations of gp(x) and the solution of the quadratic subproblem (2.4).
Although this modification can be interesting for large-scale problems and would not
change the proofs significantly, we preferred not to present it in this article, since its
details might look rather messy on a first reading. We also believe that the second
order correction would play a very interesting role if inexact methods were used.

4. Local convergence. Let N(M) represent the null space of M . Also let
{xkc} and {xk} be sequences generated by Algorithm 2.1, converging to x∗, a “good
minimizer” of problem (1.1). By “good minimizer” we mean that ∇h(x∗) has full row
rank, ∇f(x∗) = −∇h(x∗)Tλ∗ with λ∗ = λLS(x∗), and there is a constant μ1 > 0 such
that, for y ∈ N(∇h(x∗)),

(4.1) μ1‖y‖2 ≤ yT∇2
xxL(x∗, λ∗)y.

In this section, we will restrict our attention to a neighborhood V ∗ of x∗, where,
due to the fact that h is C2 and ∇h(x∗) has full row rank, the orthogonal projector
onto N(∇h(x)), i.e., P (x) = I − ∇h(x)T (∇h(x)∇h(x)T )−1∇h(x), is Lipschitz con-
tinuous. Sometimes we will use the term δc to represent the “full” step taken by the
algorithm, i.e., δc = xk+1

c − xkc = δkH + δk+1
V .

Besides considering hypotheses H1–H4, our analysis of the local convergence of
xkc and xk will be based on four additional local assumptions. The first three of these
assumptions are used in the proof of Lemma 4.1 and are described below.
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A1: λk − λLS(xkc ) = O(‖gp(xkc )‖).
A2: Bk is asymptotically uniformly positive definite in the tangent space to the re-

strictions, which means that, in some neighborhood of x∗, we can redefine μ1
so that

(4.2) μ1‖y‖2 ≤ yTBky ≤ μ2‖y‖2

for y ∈ N(∇h(xkc )), where μ2 is just the constant ξ0 defined in (3.8).
A3: Let δkHN be the minimizer of the quadratic model (2.6) without the trust re-

gion constraint. We assume that, whenever δkHN is within the trust region
(‖δkHN‖ ≤ Δ), it is the first horizontal step tried by the algorithm. In addi-
tion, we also suppose that it satisfies

P (xkc )(Bk −∇2
xxL(x∗, λ∗))δkHN = o(‖δkHN‖).

Assumption A1 is not a stringent condition. Usual estimates for the Lagrange
multipliers (see, for example, [41]) satisfy ‖λk − λ∗‖ = O(‖xkc − x∗‖), so A1 can be
guaranteed by our Lemma 4.2, along with (1.5) and (1.2).

Assumptions A2 and A3 are essentially equivalent to standard conditions for
superlinear convergence in two steps of SQP quasi-Newton methods, such as those
established by Powell in [34]. These assumptions are satisfied, for example, if we define
Bk = ∇xxL(xkc , λk). In a future paper, we intend to incorporate in our analysis the
use of secant reduced Hessian approximation schemes, as well as the inexact solution
of the subproblems involved, in such a way that A2 and A3 are satisfied.

From now on, we also suppose that δsoc = 0. This is done only to simplify
the exposition. In fact, the arguments presented below are still valid if we consider
δsoc = O(‖δt‖2).

Since ∇h(x) and ∇2
xxL(x, λ) are continuous and ∇h(x∗) has full row rank, our

assumptions imply that there is a constant μ3 > 0 and a neighborhood V ∗ of x∗ such
that, for x, xkc ∈ V ∗,

μ3‖λ‖ ≤ ‖∇h(x)Tλ‖ for λ ∈ R
m,(4.3)

P (xkc )(Bk −∇2
xxL(xkc , λLS(xkc )))δkHN = o(‖δkHN‖), and(4.4)

P (xkc )(Bk −∇2
xxL(xkc , λ

k))δkHN = o(‖δkHN‖).(4.5)

Let Zk be a matrix whose columns form an orthonormal basis for the null space
N(∇h(xkc )). We can define the global minimizer of the quadratic model in the tangent
space as δkHN = Zkνk ∈ N(∇h(xkc )). This point clearly satisfies

(4.6) (Zk)T (BkδkHN + ∇xf(xkc )) = (Zk)TBkZkνk + (Zk)T gp(xkc ) = 0.

From (4.2) and the fact that (Zk)TZk = I, matrix ((Zk)TBkZk)−1 satisfies, in
the neighborhood V ∗ and for all u ∈ Rn−m,

(4.7)
1
μ2

‖u‖2 ≤ uT ((Zk)TBkZk)−1u ≤ 1
μ1

‖u‖2.

In the next lemma we will prove the eventual acceptance, in Algorithm 2.1, of

(4.8) δkHN = −Zkνk = −Zk((Zk)TBkZk)−1(Zk)T gp(xkc ).

Lemma 4.1. δkHN is accepted by Algorithm 2.1 for k sufficiently large.



DYNAMIC CONTROL OF INFEASIBILITY IN OPTIMIZATION 1313

Proof. Combining (4.7) and (4.8), we have that

(4.9) ‖δkHN‖ ≤ 1
μ1

‖gp(xkc )‖

for xkc ∈ V ∗. Because the trust region radius satisfies Δ ≥ Δmin at the beginning of
each iteration, assumption A3 and (4.9) imply that, in a suitable V ∗, δ+H will be the
first horizontal step tried by Algorithm 2.1.

For ν ∈ R
n−m, the reduced polynomial

q(ν) = q(Zkν) = ((Zk)T gp(xkc ))T ν + νT ((Zk)TBkZk)ν

has degree 2, with positive definite quadratic form. Therefore, its minimum, q(νk),
satisfies (see [13])

q(δkHN ) = q(Zkνk) = q(νk)

= −1
2

((Zk)T gp(xkc ))T ((Zk)TBkZk)−1(Zk)T gp(xkc )

≤ − 1
2μ2

‖gp(xkc )‖2,(4.10)

where the last inequality comes from (4.7).
Now, using a Taylor expansion, the fact that δkHN = P (xkc )δkHN , (4.5), and (4.9),

we get

ΔL+
H = L(xkc + δkHN , λ

k) − L(xkc , λ
k)

= gp(xkc )T δkHN +
1
2
δk THN∇xx

2L(xkc )δkHN + o(‖δkHN‖2)

= gp(xkc )T δkHN +
1
2
δk THNB

kδkHN + o(‖δkHN‖2)

= q(δkHN ) + o(‖gp(xkc )‖2).(4.11)

It follows from (4.10)–(4.11) that

|r| =
∣

∣

∣

∣

ΔL+
H

q(δkHN )

∣

∣

∣

∣

= 1 +
o(‖gp(xkc )‖2)

‖gp(xkc )‖2/(2μ2)
→ 1,

so one of the acceptance conditions stated in step 4.2 of Algorithm 2.1 is satisfied for
k sufficiently large.

Let us now prove that the other acceptance condition, ‖h(xkc + δkHN )‖ ≤ 2ρk, also
holds. From (4.9), assumption A1, and Lemma 3.5, there exists k0 sufficiently large
so that ρkmax = ρk0max > 0 for k ≥ k0. Therefore, (2.8) and (3.5) guarantee that, for
k ≥ k0, ‖gp(xkc )‖ ≤ βρk, where β = 104(1+ ξ0)/ρk0max. Together with (3.12) and (4.9),
this implies that, for k sufficiently large,

‖h(xkc + δkHN )‖ ≤ ‖h(xkc )‖ + ξ0‖δkHN‖2 ≤ ‖h(xkc )‖ +
ξ0
μ1

2 ‖gp(x
k
c )‖2

≤ ρk
(

1 + β
ξ0
μ1

2 ‖gp(x
k
c )‖
)

.

Since, for k sufficiently large, β ξ0
μ12 ‖gp(xkc )‖ < 1, the step δkHN will eventually be

accepted.
This lemma is based on the fact that Δ ≥ Δmin at the beginning of an iteration.

This condition can be removed if we replace A3 by the following more restrictive
assumption:
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A3′: Let δ+ be obtained as a positive linear combination of δCP and δHN . Also let
δ+ satisfy

P (xkc )(Bk −∇2
xxL(x∗, λ∗))δ+ = o(‖δ+‖).

In this case, we can also prove that δ+ is accepted whenever xkc and xk are in
a suitable neighborhood V ∗ of x∗. Therefore, there exists k1 such that Δk is not
reduced for k > k1, so we can restrict our attention to the case where δkH = δkHN .

Notice that the dynamic control of the infeasibility might force us to compute
more than one single vertical step δ+V , starting from xk, if ‖gp(xk + δ+V )‖ is too small.

At the beginning of iteration k+ 1, we have xc = xk, while the vertical step ends
at xc = xk+1

c . In order to avoid unnecessary updates of ∇h(xkc ), we state our fourth
local assumption:
A4: Each nonzero vertical step δk+1

V = xk+1
c − xk is computed by taking one or more

steps in the form

(4.12) δ+V = −AT (AAT )−1h(xc),

where A satisfies

(4.13) ‖A−∇h(xc)‖ = O(‖gp(xkc )‖).

Vector δ+V given by (4.12) is the usual Gauss–Newton step for solving h(x) = 0,
with an approximation A for the Jacobian ∇h(xc). Using a Taylor expansion, (4.3),
(4.12), (4.13), and the continuity of ∇h(x), it is easy to show that, if xk+1

c �= xk, then
the first vertical step δ+V of iteration k + 1 satisfies

‖δ+V ‖ = O(‖h(xk)‖) and(4.14)
‖h(xk+1

c )‖ ≤ ‖h(xk + δ+V )‖ = o(‖h(xk)‖).(4.15)

As gp(xk) becomes small, it is natural to force a restoration after each horizontal
step. This can be done, for instance, by choosing ρk slightly smaller than ‖h(xk)‖.
In [11] and [12], Coleman and Conn analyze algorithms that alternate a horizontal
step with a single vertical restoration step. Under local assumptions similar to those
presented here, these so called horizontal-vertical algorithms are superlinear conver-
gent in two steps. Coleman and Conn also point out in [11] that the restoration step
adopted by their methods differs from the usual SQP vertical step, since it is based on
xk + δH , while, in the SQP framework, xk is used to define the vertical subproblem.

One difference between these horizontal-vertical algorithms and ours is that we
admit more than one vertical step like (4.12) at each iteration, as mentioned above.
Our main result on the local behavior of the algorithm is based on the following
lemma that, in a sense, expresses analytically the “good” structure we have in the
neighborhood of a “good” KKT point. This approach is similar to the one used by
Powell in [34], although his focus was restricted to each sequence generated by an
SQP algorithm.

It is well known that the function φ(x) = ‖h(x)‖+‖gp(x)‖ can be used to measure
how close x ∈ V ∗ is to x∗. However, we need a stronger result. We want to say that,
in a vicinity of x∗, φ(x) is equivalent to ‖x−x∗‖, in the sense that ‖x−x∗‖ = Θ(φ(x)),
i.e., ‖x− x∗‖ = O(φ(x)) and φ(x) = O(‖x− x∗‖).

Lemma 4.2. There is a neighborhood V ∗ of x∗, where

(4.16) ‖x− x∗‖ = Θ(‖h(x)‖ + ‖gp(x)‖).
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Proof. We just have to show that

(4.17) ‖x− x∗‖ = O(‖h(x)‖) +O(‖gp(x)‖).

The converse follows trivially from the fact that h(x) and gp(x) are Lipschitz contin-
uous in V ∗.

In [18], Fletcher shows that the SQP method has quadratic convergence to a
good minimizer x∗. The same argument can be used to prove that, if δx is an SQP
step from x ∈ V ∗ to x+ = x + δx, where V ∗ is a suitable neighborhood of x∗, then
we have x+ − x∗ = O(‖x − x∗‖2). It is also easy to show (see equations (10.1.11)–
(10.1.13) in [18]) that δx satisfies δx = x+ − x = O(‖gp(x)‖) + O(‖h(x)‖). From
these two relations, it follows that x − x∗ = (x+ − x∗) − (x+ − x) = O(‖x+ − x‖) =
O(‖gp(x)‖) +O(‖h(x)‖).

Byrd [7] and Yuan [45] give examples showing that we cannot expect superlinear
convergence in one step for xkc . However, Byrd [8] points to the possibility of obtaining
superlinear convergence in one step for xk. To understand why this happens, notice
that a vertical step that moves from xk to xk+1

c approaches the feasible set in a
“superlinear” way. After that, the horizontal step superlinearly pushes xk+1

c towards
the dual manifold L∗ = {x ∈ V ∗ : gp(x) = 0}, with δk+1

H tangent to the feasible
directions. Therefore, this horizontal step does not destroy the “vertical superlinear
approximation.” On the other hand, if we start at xkc , the superlinear convergence in
a single step cannot be guaranteed since the vertical step δk+1

V usually is not tangent
to L∗ and, for this reason, δk+1

V can partly spoil the good approach to L∗ obtained
by δkH .

To close this section, we present our main theorem, showing that the algorithm is
2-step superlinearly convergent. Besides, convergence in one step can also be obtained
if we call a restoration at each iteration.

Theorem 4.3. Under H1–H4 and A1–A4, xk and xkc are 2-step superlinearly
convergent to x∗. If a restoration is computed at each xk, then xk converges superlin-
early to x∗.

Proof. Since ‖xk+1 − x∗‖ ≤ ‖xk+1 − xk+1
c ‖+ ‖xk+1

c − x∗‖, (4.9) and (4.16) imply
that

(4.18) ‖xk+1 − x∗‖ = O(‖xk+1
c − x∗‖).

In addition, observing that ‖xk+1
c − x∗‖ ≤ ‖xk − xk+1

c ‖ + ‖xk − x∗‖ and using (3.1)
and (4.16), we have

(4.19) ‖xk+1
c − x∗‖ = O(‖xk − x∗‖).

In order to prove the 2-step superlinear convergence, we shall use the following
relations:

gp(xk) = o(‖xkc − x∗‖),(4.20)
gp(xk+1

c ) = o(‖xk−1
c − x∗‖),(4.21)

h(xk) = o(‖xk−1
c − x∗‖), and(4.22)

h(xk+1
c ) = o(‖xkc − x∗‖).(4.23)

Let us show that these relations are valid, starting with (4.20). Using a Taylor
expansion along with (1.4), we have, for xk ∈ V ∗,

‖gp(xk)‖ = ‖P (xk)Γk‖ + o(‖δkH‖)
≤ ‖(P (xk) − P (xkc ))Γk‖ + ‖P (xkc )Γk‖ + o(‖δkH‖),(4.24)
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where Γk = gp(xkc ) + ∇2
xxL(xkc , λLS(xkc ))δkH .

The continuity of P (x) in V ∗ and (4.9) give us

(4.25) ‖(P (xk) − P (xkc ))Γk‖ = o(‖Γk‖) = o(‖gp(xkc )‖).

In addition, (4.4), (4.8), and (4.9) imply that

(4.26) ‖P (xkc )Γk‖ = ‖P (xkc )(gp(xkc ) +BkδkH)‖ + o(‖δkH‖) = o(‖gp(xkc )‖).

Substituting (4.25) and (4.26) into (4.24) and also considering (4.16), we get (4.20).
To prove (4.23), we need to consider separately two situations. First, let ki be

an infinite subsequence at which no vertical step was made, i.e., xki+1
c = xki . In this

case, the dynamic control of the infeasibility, together with (4.20), implies that

(4.27) ‖h(xki+1
c )‖ = O(‖gp(xki+1

c )‖) = O(‖gp(xki )‖) = o(‖xki
c − x∗‖).

Now let us consider an infinite subsequence of iterations kj at which at least one
vertical step δ+V satisfying A4 was made. In this case, (4.15) and (4.16) imply that

(4.28) ‖h(xkj+1
c )‖ ≤ ‖h(xkj

c + δ+V )‖ = o(‖h(xkj )‖) = o(‖xkj − x∗‖).

Equation (4.23) follows directly from (4.18), (4.27), and (4.28).
Combining (3.12), (4.9), (4.16), (4.18), (4.19), and (4.23), we can write

‖h(xk)‖ = ‖h(xkc )‖ +O(‖δHk‖2) = h(xkc ) +O(‖gp(xkc )‖2)
= ‖h(xkc )‖ +O(‖xkc − x∗‖2) = o(‖xk−1

c − x∗‖),(4.29)

so (4.22) is proved.
Finally, to obtain (4.21), we use a Taylor expansion, (3.1), (4.18), (4.19), (4.20),

and (4.22), so

‖gp(xk+1
c )‖ = ‖gp(xk)‖ +O(‖xk − xk+1

c ‖)
= ‖gp(xk)‖ +O(‖h(xk)‖) = o(‖xk−1

c − x∗‖).

The 2-step superlinear convergence of xkc and xk follows from (4.16) and (4.18)–
(4.23), since these equations imply that

‖xk+1 − x∗‖ = O(‖gp(xk+1)‖ + ‖h(xk+1)‖) = o(‖xk−1 − x∗‖) and(4.30)
‖xk+1

c − x∗‖ = O(‖gp(xk+1
c )‖ + ‖h(xk+1

c )‖) = o(‖xk−1
c − x∗‖).(4.31)

In order to conclude the proof, let us assume a nonzero restoration step is done at
each iteration. Then, (3.12) and (4.15), together with (4.9), (4.16), and (4.19), allow
us to improve (4.22), obtaining

(4.32) ‖h(xk)‖ = ‖h(xkc )‖ +O(‖gp(xkc )‖2) = o(‖xk−1 − x∗‖).

Substituting (4.20) and (4.32) into (4.30) and also considering (4.19), we get

‖xk+1 − x∗‖ = O(‖gp(xk+1)‖ + ‖h(xk+1)‖)
= o(‖xk+1

c − x∗‖ + ‖xk − x∗‖) = o(‖xk − x∗‖),

so the desired superlinear convergence of xk to x∗ is attained.
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5. Numerical experience. The success of an algorithm is based not only on its
theoretical convergence results, but also on its practical behavior. In this section, we
present one possible implementation for the DCI algorithm, along with the numerical
results obtained by applying it to some problems from the CUTEr collection [21].

We do not claim to have implemented the ultimate version of the algorithm. On
the contrary, our implementation is quite simple and should be improved in order
to compete with modern commercial codes. Our only purpose is to show that the
algorithm can successfully solve medium-sized equality constrained problems. Some
hints on how to improve the code are given in the next section.

5.1. A practical implementation of the algorithm. We begin the detailed
description of the algorithm by explaining how the vertical and horizontal steps can
be implemented. After that, we discuss how to solve the linear systems that appear
when computing these steps. Finally, we present a second order correction used to
reduce the infeasibility after applying the horizontal step.

5.1.1. Vertical step. Whenever ‖h(xc)‖ > ρ at the beginning of an iteration,
we need to reduce the infeasibility. Unfortunately, this test is tricky to perform, since
ρ depends on np(xc) and this term, in turn, depends on the matrix ∇h(xc). Naturally,
it would not be wise to compute ∇h(xc) just before calling the restoration, as we will
need to update this matrix after this step. For this reason, in step 1.2 of Algorithm
2.1, we define an approximate value for ρ, replacing np by

nap =
|ΔLH |

|f(xk−1) − f(xk−1
c )| + ‖δk−1

t ‖
.

The restoration is done by applying Powell’s dogleg method [33] to the constrained
linear least squares problem (2.5), replacing x by xc. Again, the solution of this
problem depends on ∇h(xc). Therefore, the first time we try to solve (2.5), we use
A = ∇h(xk−1

c ). If the infeasibility is not sufficiently reduced, we define A = ∇h(xc)
and recompute the step.

To find an approximate solution for the trust region problem, the dogleg method
uses a path consisting of two line segments. The first connects the origin to the
Cauchy point, defined as

sCS = −γA(xc)Th(xc),

where

γ = min
{

ΔV S

‖A(xc)Th(xc)‖
,

‖A(xc)Th(xc)‖2

‖A(xc)A(xc)Th(xc)‖2

}

.

The second line runs from the Cauchy point to the Newton point

(5.1) sNS = −A(xc)T (A(xc)A(xc)T )−1h(xc).

If ‖sNS‖ ≤ ΔV S , then the Newton point is the solution of the problem. Otherwise,
the point of intersection of the dogleg path and the trust region boundary is chosen.

The trust region radius ΔV S used to compute the vertical step is updated using
rules similar to those defined for the horizontal step.

Let Pred denote the predicted reduction and Ared the actual reduction of the
infeasibility. The step is rejected if Ared/Pred < 10−3. In this case, ΔV S is divided
by 4. On the other hand, if Ared/Pred ≥ 0.5, we double ΔV S .
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Sometimes it is necessary to apply the dogleg method several times in order to
obtain the desired level of infeasibility. To avoid recomputing A frequently, we try to
take a new step using the same matrix whenever the dogleg method is able to reduce
‖h(xc)‖ by at least 10%. This expedient is used up to four times in a row, after which
A is recalculated.

After the restoration, ∇h(xc) is available, and we need to choose ρ satisfying the
conditions stated in step 1.3.3 of Algorithm 2.1. These conditions are quite loose, so a
good scheme for defining the trust cylinder radius can be devised, taking into account
some problem characteristics and the values of ρmax and np. In our implementation,
however, a naive rule was used. If the approximate ρ computed in step 1.2 satisfies
10−4np ρmax ≤ ρ ≤ np ρmax, we keep this value. Otherwise, we simply define

ρ = min{np ρmax, 0.75ρmax}.

The reduction obtained by the dogleg method may be small depending on the
curvature of h. When this happens, we abandon the constrained linear least squares
problem and try to apply the Moré and Thuente line search algorithm [31] to the
unconstrained nonlinear least squares problem

(5.2) minimize ‖h(x)‖2,

using a BFGS approximation for the second order part of the Hessian of the objective
function [14].

Since this last approach is more time-consuming than the dogleg method, it is ap-
plied only if ‖h(xc)‖/‖h(xk−1)‖ < 0.95 for three successive dogleg steps. Fortunately,
this is unlikely to occur, as the dogleg method usually works well.

5.1.2. Horizontal step. The horizontal step of the method consists in solving
the quadratic programming problem (2.6). If Z is a matrix that spans the null space of
∇h(xc), then it is possible to rewrite (2.6) as the constrained nonlinear programming
problem

minimize g(xc)TZv +
1
2
vTZTBZv

subject to ‖Zv‖∞ ≤ Δ,(5.3)

where δ was replaced by Zv.
One should notice that B need not be positive definite; thus we cannot use the

dogleg method to solve (5.3), as we did in the vertical step. Instead, we use the
Steihaug–Toint method [40, 42], which is an extension of the conjugate gradient (CG)
method for nonconvex problems.

Since computing the product of Z times a vector several times would be too
costly, we write the Steihaug–Toint algorithm using δ directly, as described by Lalee,
Nocedal, and Plantenga in [23].

The method starts by computing the Cauchy step defined in step 4.1.1 of Al-
gorithm 2.1. If this point falls inside the trust region, it is improved by applying
successive CG iterations until q(δ) ≤ 0.01q(δCP ), a direction of negative curvature is
found, or the trust region boundary is violated. In the last two cases, a point on the
boundary of the trust region is chosen.

5.1.3. Linear systems. In the core of both the vertical and the horizontal
steps, we have linear systems involving AAT . Such systems need to be solved when
we compute
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• the Newton step (5.1) in the dogleg method;
• the Lagrange multipliers (1.3) and, consequently, the projected gradient (1.4);
• the second order correction (see (5.4));
• the projection of the residual vector ontoN(A) in the Steihaug–Toint method.

Two routines are provided for solving these systems. One is based on the sparse
Cholesky decomposition of AAT . The second uses the CG method to generate an
approximate solution.

If we choose to work with the Cholesky decomposition, the approximate minimum
degree algorithm of Amestoy, Davis, and Duff [3] is used to reorder the rows and
columns of AAT , so the fill-in created during the factorization is minimized. For the
CG method, a band preconditioner has been implemented to accelerate the method.

As an attractive alternative, we could use the augmented system approach to solve
such systems, since it reduces the fill-in produced by dense rows in A and keeps the
condition number of the matrix under control. Direct methods for solving symmetric
indefinite augmented systems are presented, for example, in [6, 39], while iterative
approaches are introduced in [19, 5], just to cite a few references. We plan to include
one or more of these algorithms in our code in the near future.

5.1.4. Second order correction. In DCI, a second order correction can be
used to reduce the infeasibility after the horizontal step, as the acceptance of this
compound step is more likely to happen. Clearly, δsoc = 0 would be a possibility for
the second order correction term. In fact, any δsoc = O(‖δt‖2) is acceptable for global
convergence purposes. The nonzero natural candidate corresponds to

δsoc = argmin{‖∇h(xc) δ + (h(xc + δt) − h(xc))‖}
= −∇h(xc)T (∇h(xc)∇h(xc)T )−1(h(xc + δt) − h(xc)).(5.4)

If gp(xc) = g(xc) +∇h(xc)TλLS = argmin{‖∇h(xc)Tλ+ g(xc)‖} is obtained from the
Cholesky factorization of ∇h(xc)∇h(xc)T , the second order correction turns out to be
computationally cheap. On the other hand, if we use iterative methods to compute
gp(xc), it looks reasonable to relax the convergence to gp so that we can save some
time for computing δsoc.

The second order correction is called if, after computing the horizontal step, we
have

‖h(xc + δt)‖ > min{2ρ, 2‖h(xc)‖ + 0.5ρ}

or

‖h(xc)‖ ≤ 10−5 and ‖h(xc + δt)‖ > max{10−5, 2‖h(xc)‖}.

If the second order correction is refused, it is not calculated again at the same global
iteration of Algorithm 2.1.

5.2. Algorithm performance. To analyze the behavior of the algorithm just
described, we used a set of 53 medium-sized equality constrained problems extracted
from the CUTEr collection [21]. The selected problems are presented in Table 5.1.
The number of variables of the problem is given by n, while m is the number of
constraints.

Originally, all of the equality constrained problems of the CUTEr library were
selected to compose the test set. However, at this moment, the DCI algorithm is not
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Table 5.1

Selected medium-sized problems from the CUTEr collection.

Problem n m Problem n m
AUG2D 20200 10000 HAGER1 10001 5000
AUG2DC 20200 10000 HAGER2 10001 5000
AUG3D 27543 8000 HAGER3 10001 5000
AUG3DC 27543 8000 LCH 3000 1
CATENA 3003 1000 LUKVLE1 10000 9998
CATENARY 501 166 LUKVLE10 10000 9998
CHAIN 6402 3201 LUKVLE11 9998 6664
DTOC1L 14995 9990 LUKVLE13 9998 6664
DTOC1NA 7495 4990 LUKVLE14 998 664
DTOC1NB 7495 4990 LUKVLE15 997 747
DTOC1NC 7495 4990 LUKVLE16 9997 7497
DTOC1ND 7495 4990 LUKVLE3 10000 2
DTOC2 5998 3996 LUKVLE4 10000 4999
DTOC3 14999 9998 LUKVLE5 10002 9996
DTOC4 14999 9998 LUKVLE6 9999 4999
DTOC5 9999 4999 LUKVLE7 10000 4
DTOC6 10001 5000 LUKVLE8 10000 9998
EIGENA2 2550 1275 LUKVLE9 10000 6
EIGENACO 1640 820 OPTCTRL3 4502 3000
EIGENB2 2550 1275 ORTHRDM2 4003 2000
EIGENBCO 1640 820 ORTHRDS2 1003 500
EIGENC2 2652 1326 ORTHREGA 2053 1024
EIGENCCO 1722 861 ORTHREGC 1005 500
ELEC 600 200 ORTHREGD 1003 500
GRIDNETB 13284 6724 ORTHRGDM 2003 1000
GRIDNETE 13284 6724 ORTHRGDS 1003 500
GRIDNETH 13284 6724

prepared to handle singular Jacobian matrices, so some of the problems needed to be
excluded from the list.

The DCI algorithm was implemented in Fortran 77, and the executable program
was generated using the ifort 9.0 compiler, under the Fedora 4 Linux operating system.
To evaluate the performance of the new method, it was compared with two freely
available nonlinear programming solvers. The first is Lancelot-B, the well-known
algorithm distributed along with the GALAHAD library [20]. The second is Ipopt
(version 3.3.3) [43], an interior point method that also tackles equality constrained
problems quite well. Both codes include a nice interface for solving CUTEr problems.

The tests were performed on a Dell Optiplex GX280 computer, using an Intel
Pentium 4 540 processor, with a clock speed of 3.2GHz, 1MB of cache memory, a
800MHz front side bus, and the Intel 915G chipset. Exact first and second derivatives
were computed by all of the methods.

The DCI algorithm was designed to declare convergence when both ‖h(x)‖ < εh
and np < εp, as well as when ρmax < εr. However, since Lancelot-B uses the infinity
norm in its convergence criteria, we decided to change the first criterion, stopping the
algorithm when ‖h(x)‖∞ < εh and one of ‖gp‖∞ < εg or np < εp occurs. Besides, it
also terminates if ‖δt‖ < εd‖x‖ for 10 successive iterations or if the restoration fails to
obtain a feasible point. The constants εh = 10−5, εg = 10−5, εp = 10−7, εr = 10−7,
and εd = 10−8 were adopted, so the stopping tolerances are compatible with those
used in Lancelot-B. The Ipopt stopping tolerances were changed accordingly. Default
values were used for the remaining Ipopt parameters. The default settings were also
used in Lancelot-B, except for the maximum number of iterations, which was increased
to 10000.
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Other parameters used in the DCI algorithm are

ρ0
max = max{10−5, 5.1‖h(x0)‖, 50np(x0)},(5.5)
Δ0 = Δ0

V S = max{10‖x0‖, 105},

and Δmin = 10−5. For all of the problems presented here, we used the Cholesky
decomposition to compute the solution of (AAT )s = b, although, for many of them,
it would be preferable to use the preconditioned CG method.

The comparison of the methods was done using the performance profiles defined
by Dolan and Moré [16]. To draw the performance profiles for a set S of solvers on
a set P of problems, we need to compute, for each problem p ∈ P and each solver
s ∈ S, the performance ratio defined by

rp,s =
tp,s

min{tp,s : s ∈ S} ,

where tp,s is the time spent by the solver s to solve problem p. The overall performance
of solver s is represented by the function

P (t) =
1
np
size{p ∈ P : rp,s ≤ t},

where np is the number of problems considered. In words, P (t) is the fraction of the
number of problems that are solved by s within a factor t of the time spent by the
fastest solver (for each problem). Plotting P (t), we get a performance profile for a
particular solver.

For the 53 equality constrained problems selected, the performance profiles of
Lancelot-B, Ipopt, and DCI are shown in Figure 5.1. One can deduce from this
figure that the DCI algorithm took less time than Lancelot-B and Ipopt to obtain
the solution of 47% of the problems, while Ipopt was the best solver for 45% of the
problems, and Lancelot-B took less time in only 9.4% of the cases. Ipopt outperforms
DCI for t between 1.5 and 4.5, but, in general, we may say that DCI presented the
best performance among the solvers.

DCI and Lancelot-B obtained an optimal solution (i.e., a stationary point for
(1.1)) for all of the problems. The Ipopt code, in turn, converged to a point of
local infeasibility when solving the LUKVLE16 problem and ran out of memory after
spending 2920 seconds searching the solution of the LUKVLE11 problem. For all of
the remaining problems, Ipopt also obtained an optimal solution.

To close this section, let us focus our analysis on the behavior of the restoration
scheme adopted in DCI, summarized in Figure 5.2. Each point in the figure represents
one CUTEr problem. The horizontal coordinate of a point is the percentage of the
number of iterations in which only one restoration was done. The vertical coordinate is
the percentage of iterations in which more than one restoration was needed. Diagonal
lines were included to group the problems by the percentage of iterations with one or
more restorations.

The results obtained for the 53 CUTEr problems showed that, on average, the
DCI algorithm performed one restoration in 24.3% of the iterations, while it was nec-
essary to perform more than one restoration in only 9.2% of the iterations. Summing
the figures, we observe that no restoration was made in about two-thirds of the itera-
tions, on average. Besides, if we consider only the iterations in which more than one
restoration was done, the number of restorations was equal to 2 in 62.1% of the cases.
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Our experiments with the CUTEr problems also revealed that the choice of an
initial value for ρmax is still an open problem. For several problems, a particular
value of ρ0

max has led to a much better performance of the algorithm if compared to
(5.5). One possible way to circumvent this problem is to use a few iterations of the
algorithm only to calibrate this parameter, prior to using the rules for updating it.
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6. Conclusions. In this paper, we have presented a new algorithm for solving
nonlinear programming problems with equality constraints. The method uses the idea
of a trust cylinder to keep the infeasibility under control. The radius of this cylinder
is reduced as the algorithm approaches the optimal point. The algorithm is globally
convergent in the sense that its accumulation set has stationary points for (1.1). In
addition, it is also superlinearly convergent under some mild assumptions.

Our current implementation of the algorithm works well when applied to medium-
sized problems, so we believe it worthwhile to investigate its performance for larger
problems. Some of the improvements that are to be made to the code after solving
large-scale problems include

• the use of an augmented system approach to solve the linear systems;
• the reformulation of the algorithm so that inexact solutions for the linear

subroutines are admitted;
• the use of BFGS approximations to the Hessian of the Lagrangian when

computing the horizontal step;
• the definition of clever rules for choosing the initial value of ρmax.

Furthermore, we also have plans to extend the algorithm to solve inequality con-
strained problems.
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[39] O. Schenk and K. Gärtner, On fast factorization pivoting methods for symmetric indefinite
systems, Electron. Trans. Numer. Anal., 23 (2006), pp. 158–179.

[40] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization,
SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

[41] R. A. Tapia, Quasi-Newton methods for equality constrained optimization: Equivalence of
existing methods and a new implementation, in Nonlinear Programming, 3, O. L. Man-
gasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York, 1978, pp.
125–164.



DYNAMIC CONTROL OF INFEASIBILITY IN OPTIMIZATION 1325

[42] Ph. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in
Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, 1981, pp. 57–88.
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1. Introduction. Our objective is to develop new approaches to stochastic op-
timization problems with a constraint in the form of the second order stochastic dom-
inance relation. Such problems, introduced and analyzed in [4, 5], are new models of
risk-averse optimization, in which risk aversion is expressed by the stochastic domi-
nance constraint. Due to its specific structure, the constraint poses new theoretical
and computational challenges.

The relation of stochastic dominance (introduced in statistics in [18, 19] and in
economics in [14, 27]) is defined as follows: Let X and Y be random variables on
a probability space (Ω,F , P ) with distribution functions FX and FY , respectively.
We say that X dominates Y in the first order if FX(η) ≤ FY (η) for all η ∈ R,
and we denote this relation by X �(1) Y . An equivalent condition is that for every
nondecreasing function u(·) one has

(1.1) E[u(X)] ≥ E[u(Y )],

provided the expected values above are finite.
For two integrable random variables X and Y , we say that X dominates Y in

the second order if
∫ η

−∞ FX(t) dt ≤
∫ η

−∞ FY (t) dt for all η ∈ R, and we denote this
relation by X �(2) Y . An equivalent condition is that for every concave nondecreasing
function u(·) condition (1.1) holds true, provided that the expected values on both
sides are finite.

We refer the readers to the monographs [21, 32] for a modern view on the stochas-
tic dominance relations and other comparison methods for random outcomes.

∗Received by the editors September 10, 2007; accepted for publication (in revised form) July
28, 2008; published electronically November 19, 2008. This research was supported by NSF grants
CCR-0306558 and DMS-0603728.

http://www.siam.org/journals/siopt/19-3/70247.html
†RUTCOR, Rutgers University, 640 Bartholomew Rd., Piscataway, NJ 08854 (grudolf@new-

rutcor.rutgers.edu).
‡Department of Management Science and Information Systems, Rutgers University, 94 Rockafeller

Rd., Piscataway, NJ 08854 (rusz@business.rutgers.edu).

1326



STOCHASTIC DOMINANCE CONSTRAINTS: DUALITY AND CUTS 1327

More generally, for an interval I ⊂ R let X �(2,I) Y denote the relation
∫ η

−∞
FX(t) dt ≤

∫ η

−∞
FY (t) dt ∀ η ∈ I.

It is a relaxation of the second order dominance relation. If the interval I is compact,
then this relaxation allows us to overcome technical difficulties in dealing with the
second order dominance relation, as discussed in [4, 5]. If the interval I is reduced
to one point, then the relation X �(2,I) Y becomes the integrated chance constraint
of [16].

An alternative representation of the second order dominance relation can be de-
rived by using the shortfall of a random variable X from a target η ∈ R, defined
as max(0, η − X) (and written compactly as [η − X ]+). By changing the order of
integration one can easily verify that the expected value of the shortfall is given by
the formula E([η − X ]+) =

∫ η

−∞ FX(t) dt. Therefore, we can rewrite the relation
X �(2,I) Y in the following form:

(1.2) E([η −X ]+) ≤ E([η − Y ]+) ∀ η ∈ I.

Consider a stochastic model in which our decisions z ∈ Z affect a random outcome
X = G(z). We assume that z ∈ Z ⊂ Z, where Z is a Banach space and Z is a convex
closed set. The mapping G : Z → L1(Ω,F , P ) is assumed to be continuous and
concave in the sense that for P -almost all ω ∈ Ω the function z 	→ [G(z)](ω) is
concave. Finally, let f : Z → R be a concave objective functional (for example,
f(z) = EG(z)). We are interested in the following problem:

(1.3)

maximize
z

f(z)

subject to G(z) �(2,I) Y,

z ∈ Z.

Here Y ∈ L1(Ω,F , P ) is a benchmark random outcome and I is an interval in R.
As the second order dominance relation carries over to expectations of concave

nondecreasing utility functions, no risk-averse decision maker will prefer random out-
come Y over random outcome G(z) (if I = R). Therefore, if the benchmark out-
come Y represents an “acceptable” risk exposure, the risk exposure of G(z) is even
“more acceptable.” Furthermore, suppose that the objective functional is monotone
(consistent) with respect to the second order stochastic dominance relation, as de-
fined in [24, 25, 26]: G(z′) �(2) G(z) ⇒ f(z′) ≥ f(z). For example, we may use
f(z) = E[G(z)] or f(z) being a negative of a coherent measure of risk. If the solution
of problem (1.3) is unique, then no other feasible outcome G(z′) can strictly dominate
the solution G(z) (see [24, 25, 26]). The essence of the approach via stochastic domi-
nance constraints is that the distribution of the outcome G(z) is indirectly shaped by
the distribution of the benchmark Y , which may also be an artificially constructed
random variable. Reference [23] illustrates this modeling flexibility on an example of
a portfolio problem.

The papers [4, 5] provide the optimality and duality theory for problem (1.3) in
which Lagrange multipliers associated with the dominance constraints are identified
with concave nondecreasing utility functions. In [7] an equivalent inverse form of the
second order stochastic dominance constraint was analyzed, and it was shown that
it is equivalent to a continuum of conditional (average) value at risk constraints [29].
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Moreover, Lagrange multipliers associated with the inverse form of stochastic domi-
nance constraints were identified in [7] with concave rank dependent utility functions
of the dual utility theory [34]. In this way, model (1.3) is related to several classical
models of risk-averse decision making.

However, an efficient solution of problem (1.3), even in the finite-dimensional
linear case, remains a challenge.

In what follows we focus on the stochastic dominance constraint G(z) �(2,I) Y as
the novel element in model (1.3), leaving aside considerations about possible objective
functionals. We also remark that setting the problem in a Banach space Z does not
lead to any significant technical difficulties, as compared to the finite-dimensional
case Z = Rn. Moreover, we hope to apply our formulation to multistage stochastic
optimization problems, with Z representing the space of policies, which is usually
modeled as a subspace of the space of integrable functions (see [30]).

Using (1.2) we obtain a more explicit formulation of (1.3):

(1.4)

maximize
z

f(z)

subject to E([η −G(z)]+) ≤ E([η − Y ]+) ∀ η ∈ I,

z ∈ Z.

When the functions f(·) and G(·) are affine and the set Z is a convex closed poly-
hedron, in section 2 we develop a linear programming formulation of problem (1.4).
But even in the finite-dimensional case, this problem is difficult to solve because its
size grows quadratically with the number of the elementary events considered.

Another approach to (1.4) is the dual method of [5]. It is a specialized nons-
mooth optimization algorithm applied to the dual problem, in the space of concave
nondecreasing functions playing the role of Lagrange multipliers associated with the
dominance constraint. While efficient for some problems, especially portfolio problems
of [8], the dual method is rather complicated.

Our objective is to develop new efficient linear programming formulations which
exploit the specific structure of the stochastic dominance constraint in cut generation
schemes. This results in a significant increase of the size of computationally tractable
problems, as well as in a speedup in the solution of smaller instances. Furthermore,
for problems with first order stochastic dominance constraints G(z) �(1) Y , which
are typically much more difficult, due to the potential nonconvexity of the feasible
region, model (1.3) serves as a powerful convex relaxation (see [6, 22, 23]). Thus, the
speedup also benefits some advanced iterative methods of [23] for problems with first
order constraints.

In sections 2 and 3 we present a primal cutting plane method based on formulation
(1.4). In section 4 we develop a new version of the duality theory for an extended
reformulation of problem (1.4). In section 5 we show how a reduction of the number of
variables in the dual problem can be achieved by employing Strassen’s theorem about
the existence of measures on product spaces with given marginals. This leads to a
dual cutting plane method in section 7. Finally, in section 8 we present numerical
results, along with performance comparisons of the various methods, for portfolio
optimization problems based on real data.

2. A linear representation of the second order stochastic dominance
constraint. In order to solve (1.3) it is necessary to represent the relation �(2,I)
in a tractable form. The usual approach to achieve this is to introduce shortfall
functions. In the finite-dimensional case they correspond to slack variables, but in
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the infinite-dimensional case we need to introduce an appropriate space of the shortfall
functions.

Denote by � the Lebesgue measure on I, and let B be the σ-algebra of Borel
subsets of I. We denote the Banach space of continuous functions on I by C(I). Let
S be the vector space of all real-valued measurable functions s on (I×Ω,B×F , P×�)
satisfying the following conditions:

(i) for every η ∈ I the function s(η, ·) is an element of L1(Ω,F , P );
(ii) for P -almost all ω ∈ Ω the function s(·, ω) is an element of C(I);

(iii) the function ω → maxη∈I |s(η, ω)| is an element of L1(Ω,F , P ).
Owing to the Lebesgue theorem, the function w(η) =

∫

Ω s(η, ω) dP is an element of
C(I). It can be verified directly from the definition that S is a Banach space with the
norm

‖s‖ =
∫

Ω

max
η∈I

|s(η, ω)| dP.

Immediately from (1.2) we obtain the following observation.
Lemma 2.1. Assume that X,Y ∈ L1(Ω,F , P ). Then X �(2,I) Y if and only if

there exists a nonnegative function s ∈ S such that

s(η, ω) ≥ η −X(ω) ∀ η ∈ I ∀ ω ∈ Ω,
∫

Ω

s(η, ω) dP ≤
∫

Ω

[η − Y (ω)]+ dP ∀ η ∈ I.

Let us introduce the notation v(η) = E([η − Y ]+) =
∫

Ω
[η − Y (ω)]+ dP for the

shortfalls of the benchmark variable. Applying Lemma 2.1, we can formulate another
optimization problem which is equivalent to (1.3):

(2.1)

maximize
z,s

f(z)

subject to
∫

Ω

s(η, ω) dP ≤ v(η) ∀ η ∈ I,

[G(z)](ω) + s(η, ω) ≥ η ∀η ∈ I ∀ ω ∈ Ω,

s ≥ 0,
z ∈ Z, s ∈ S.

If the functional f(·) and the mapping G(·) are affine and the set Z is polyhedral,
then problem (2.1) becomes a linear programming problem in Banach spaces. When
the distribution of the benchmark outcome is discrete, one can restrict the range of η
in (2.1) to the realizations of the benchmark Y .

A potential drawback of the above approach is the introduction of the auxiliary
variables s(·, ·) indexed by the set I×Ω. As we shall see in section 8, even in the finite-
dimensional case, when Z = Rn and the probability spaceΩ is finite, formulation (2.1)
may be impractical to solve.

We now present an alternative representation which does not require additional
variables s(·, ·). It is an extension of the representation developed in [17] for integrated
chance constraints.

Theorem 2.2. Assume that X,Y ∈ L1(Ω,F , P ). Then X �(2,I) Y if and only
if for all η ∈ I and all events A ∈ F

E ((η −X) 1A) ≤ v(η).
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Proof. For every event A ∈ F

E ((η −X) 1A) ≤ E([η −X ]+).

This inequality becomes an equation if A = {X < η}, and thus

max
A∈F

E ((η −X) 1A) = E([η −X ]+).

The theorem immediately follows from (1.2).
Using this result we obtain another equivalent formulation of the optimization

problem (1.2):

(2.2)

maximize
z

f(z)

subject to
∫

A

(

η −G(z)
)

dP ≤ v(η), ∀ η ∈ I, ∀ A ∈ F ,

z ∈ Z.

Although the auxiliary variables are no longer present, we have introduced an infinite
family of constraints indexed by the set I ×F . However, we shall show that the new
family of constraints can be efficiently dealt with by a cut generation method.

3. A primal cutting plane method. In this section we assume that I = R and
the probability space Ω is finite, with elementary events ω1, . . . , ωN and corresponding
probabilities p1, . . . , pN . The realizations of the benchmark outcome Y are denoted
by y1, . . . , yD, and the corresponding benchmark shortfalls are vj = E([yj−Y ]+). We
also write Gi(z) for [G(z)](ωi).

It is known from [4, 5] that in the case of a discrete benchmark the second order
dominance condition G(z) �(2) Y is equivalent to finitely many inequalities:

(3.1) E([yj −G(z)]+) ≤ vj , j = 1, . . . , D.

We can thus rewrite problem (2.2) as follows:

(3.2)

maximize
z

f(z)

subject to
∑

i∈A
pi
(

yj −Gi(z)
)

≤ vj ∀ j = 1, . . . , D, ∀ A ⊂ {1, . . . , N},

z ∈ Z.

The last formulation allows for the construction of a cutting plane method. At itera-
tion k we have a collection of subsets (events) A1, . . . , Ak−1 of {1, . . . , N}. We solve
a relaxation of (3.2):

(3.3)

maximize
z

f(z)

subject to
∑

i∈Am

pi
(

yj −Gi(z)
)

≤ vj , j = 1, . . . , D, m = 1, . . . , k − 1,

z ∈ Z.

If the solution zk of this problem (which is assumed to exist) satisfies all constraints
(3.1), then we stop. Otherwise, we find j∗ for which (3.1) is violated, and we define

Ak = {1 ≤ i ≤ N : yj∗ > Gi(zk)}.

The iteration index k is increased by one, and we solve (3.3) again.
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Since (3.1) is violated,
∑

i∈Ak

pi
(

yj∗ −Gi(z)
)

> vj∗ ,

and thus Ak is different than Am, m = 1, . . . , k − 1, used in problem (3.3). As the
possible number of sets that can be added is finite, the method must stop at an optimal
solution of (3.2). Examples in section 8 suggest that in practice a small number of
sets Ak need to be generated in order to find the optimal solution.

4. Lagrangian duality. In this section we derive duality relations for the ex-
tended formulation (2.1). Our derivation uses ideas and techniques developed in [5].
The main difference is that we develop duality relations for the formulation (2.1) in-
volving explicit shortfall variables, in contrast to the duality theory of [5], where we
focused on the dominance constraint in the nonsmooth formulation (1.4).

The difficulty with formulation (2.1) is that no Slater condition can be formulated
for the inequality constraint on the shortfall variables

[G(z)](ω) + s(η, ω) ≥ η ∀ η ∈ I ∀ ω ∈ Ω,

because the nonnegative cone in the space S has no interior. Because of that, we
cannot simply apply general duality schemes from [28] or [16]. We need to exploit the
special structure of problem (2.1).

At first, we introduce several relevant topological vector spaces. We denote by
rca(I) the space of finite signed measures on I and by L∞(Ω,F , P ) the space of
essentially bounded measurable real functions on (Ω,F , P ). Let M denote the vector
space of signed measures on (I × Ω,B × F) such that for every measure λ ∈ M the
marginal measures λI and λΩ, defined by the equations

λI(B) = λ(B ×Ω), B ∈ B,
λΩ(A) = λ(I ×A), A ∈ F ,

satisfy the following conditions:

(4.1) λI ∈ rca(I),
dλΩ
dP

∈ L∞(Ω,F , P ).

Here we implicitly assume that λΩ is absolutely continuous with respect to P .
Theorem 4.1. The space M is the topological dual space to the space S that is,

� is a continuous linear functional on S if and only if there exists λ ∈ M such that
for all s ∈ S

(4.2) �(s) =
∫∫

I×Ω

s(η, ω) dλ.

Proof. Fix any λ ∈ M, λ ≥ 0, and consider the linear functional (4.2). Its value
can be bounded as follows:

|�(s)| ≤
∫∫

I×Ω

max
η∈I

|s(η, ω)| dλ =
∫

Ω

max
η∈I

|s(η, ω)| dλΩ

=
∫

Ω

max
η∈I

|s(η, ω)| dλΩ
dP

(ω) dP ≤
∥

∥

∥

dλΩ
dP

∥

∥

∥

L∞
‖s‖.
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For a general signed measure λ ∈ M we use its Jordan decomposition into a difference
of two nonnegative measures λ = λ+ − λ−, and we define Ω+ and Ω− to be the
support sets of λ+ and λ−, respectively. Using the last displayed inequality we obtain
the estimate

|�(s)| ≤
∣

∣

∣

∣

∫∫

I×Ω+

s(η, ω) dλ+

∣

∣

∣

∣

+
∣

∣

∣

∣

∫∫

I×Ω−

s(η, ω) dλ−

∣

∣

∣

∣

≤
∥

∥

∥

dλ+
Ω

dP

∥

∥

∥

L∞

∫

Ω+
max
η∈I

|s(η, ω)| dP +
∥

∥

∥

dλ−Ω
dP

∥

∥

∥

L∞

∫

Ω−
max
η∈I

|s(η, ω)| dP

≤ max

(

∥

∥

∥

dλ+
Ω

dP

∥

∥

∥

L∞
,
∥

∥

∥

dλ−Ω
dP

∥

∥

∥

L∞

)

∫

Ω

max
η∈I

|s(η, ω)| dP =
∥

∥

∥

dλΩ
dP

∥

∥

∥

L∞
‖s‖,

and we conclude that the linear functional (4.2) is continuous. Thus S∗ ⊃ M.
To prove the converse inclusion, consider the linear subspace of S:

S0 =
{

s ∈ S : s = ϕξ, ϕ ∈ C(I), ξ ∈ L1(Ω,F , P )
}

.

Let � ∈ S∗
0 . Fix A ∈ F , and consider the functional ϕ 	→ �(ϕ1A). It is continuous on

C(I). By the Riesz representation theorem, there exists a measure μ�A ∈ rca(I) such
that

�(ϕ1A) =
∫

I

ϕ(η) dμ�A ∀ ϕ ∈ C(I).

Define the measure λ� on (I ×Ω,B × F) by the formula

λ�(B ×A) = μ�A(B), ∀ B ∈ B, ∀ A ∈ F .

Then

�(ϕ1A) =
∫∫

I×Ω

ϕ(η)1A(ω) dλ�.

It follows that for every s = ϕξ such that ϕ ∈ C(I) and ξ is a step function, i.e.,
ξ =

∑K
k=1 αk1Ak

with some αk ∈ R and Ak ∈ F , k = 1, . . . ,K, the functional � has
the form (4.2) with λ = λ�. As the step functions are dense in L1(Ω,F , P ), for every
ξ ∈ L1(Ω,F , P ) we can find a sequence of step functions ξj → ξ, j → ∞. Since � is
continuous, we obtain

�(ϕξ) = lim
j→∞

�(ϕξj) = lim
j→∞

∫∫

I×Ω

ϕ(η)ξj(ω) dλ� =
∫∫

I×Ω

ϕ(η)ξ(ω) dλ�,

and thus the functional � has the form (4.2) on S0. Moreover, the marginal measure
λ�I satisfies the first part of condition (4.1):

λ�I(B) = λ�(B ×Ω) = μ�Ω ∈ rca(I).

Consider now functions s(η, ω) = ξ(ω) with ξ ∈ L1(Ω,F , P ). As � is continuous, the
functional ξ 	→ �(1ξ) must be continuous on L1(Ω,F , P ). Since

�(1ξ) =
∫∫

I×Ω

ξ(ω) dλ� =
∫

Ω

ξ(ω) dλ�Ω ,
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it is necessary that also the second part of (4.1) is satisfied by λ�Ω . Thus S∗ ⊂ S∗
0

⊂ M.
We can now formulate the Lagrangian L : Z × S × M × rca(I) → R of the

optimization problem (2.1) as follows:

L(z, s, λ, μ) = f(z)−
∫∫

I×Ω

(

η− [G(z)](ω)−s(η, ω)
)

dλ+
∫

I

(

v(η) −
∫

Ω

s(η, ω) dP
)

dμ.

The corresponding Lagrangian dual function LD : M× rca(I) → R is given by

LD(λ, μ) = sup
s≥0, z∈Z

L(z, s, λ, μ)

= sup
s≥0, z∈Z

⎧

⎨

⎩

f(z) +
∫∫

I×Ω

s(η, ω) d(λ − μ× P ) −
∫

I

η dλI+
∫

Ω

[G(z)](ω) dλΩ +
∫

I

v(ω) dμ

⎫

⎬

⎭

.

By examining the second term of this expression we obtain
(4.3)

LD(λ, μ) =

⎧

⎨

⎩

−
∫

I

η dλI +
∫

I

v(η) dμ + sup
z∈Z

{

f(z) +
∫

Ω

[G(z)](ω) dλΩ

}

if λ ≤ μ× P,

+∞ otherwise.

This leads to the following dual problem:

(4.4)

minimize
λ,μ

−
∫

I

η dλI +
∫

I

v(ω) dμ+ sup
z∈Z

{

f(z) +
∫

Ω

[G(z)](ω) dλΩ

}

subject to λ ≤ μ× P,

λ ∈ M+, μ ∈ rca+(I).

Here we use M+ and rca+(I) to denote the sets of all nonnegative measures in M
and rca(I), respectively.

Theorem 4.2 (weak duality). Let c∗ and cL denote the optimum values of the
original problem (2.1) and the Lagrangian dual (4.4), respectively. Then c∗ ≤ cL.

Proof. Let (z, s) be feasible for (2.1). Then for every (λ, μ) ∈ M+ × rca+(I) we
have the inequalities

LD(λ, μ) ≥ L(z, s, λ, μ) ≥ f(z).

Taking the infimum of the left-hand side with respect to (λ, μ) and the supremum of
the right-hand side with respect to feasible (z, s), we obtain the assertion.

In order to prove the strong duality relation we need a constraint qualification
condition, introduced in [4, 5].

Definition 4.3. Problem (2.1) satisfies the uniform dominance condition if there
exists z̃ ∈ Z such that

max
η∈I

{

E
[

(η −G(z̃))+
]

− v(η)
}

< 0.

Theorem 4.4 (strong duality). Assume that problem (2.1) satisfies the uniform
dominance condition and that it has an optimal solution. Then the dual problem (4.4)
has an optimal solution and c∗ = cL.
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Proof. Due to Theorem 4.2, it is sufficient to find (λ̂, μ̂) ∈ M+ × rca+(I) such
that LD(λ̂, μ̂) = c∗.

Let (ẑ, ŝ) be an optimal solution of (2.1). Consider the equivalent problem for-
mulation (1.4). Following [4] we can rewrite it in the abstract form:

maximize
z

f(z)

subject to Γ(z) ∈ K,

z ∈ Z,

where Γ : Z → C(I) is a continuous operator defined as

[Γ(z)](η) = v(η) − E([η −G(z)]+), η ∈ I.

The set K is the cone of nonnegative functions in C(I). Observe that the function
z → η − G(z) is convex, for almost all ω ∈ Ω, and the function x → (x)+ is convex
and nondecreasing. Therefore, the composition E[(η − G(z))+] is a convex function
of z. It follows that the operator Γ is concave with respect to the cone K; that is, for
any z1, z2 in Z and all λ ∈ [0, 1],

Γ(λz1 + (1 − λ)z2) − [λΓ(z1) + (1 − λ)Γ(z2)] ∈ K.

As the topological dual space to C(I) is rca(I), we can introduce the Lagrangian
Λ : Z × rca(I) → R,

(4.5) Λ(z, μ) = f(z) +
∫

I

[Γ(z)](η) dμ.

Let us observe that the uniform dominance condition implies that the following gener-
alized Slater condition is satisfied: There exists a point z̃ ∈ Z such that Γ(z̃) ∈ intK.
Therefore, we can use the necessary conditions of optimality in Banach spaces (see,
e.g., [3, Theorem 3.4]). We conclude that there exists a measure μ̂ ∈ rca+(I) such
that

(4.6) Λ(ẑ, μ̂) = max
z∈Z

Λ(z, μ̂)

and

(4.7)
∫

I

(

v(η) − E([η −G(ẑ)]+)
)

dμ̂ = 0.

This means that c∗ = f(ẑ) = Λ(ẑ, μ̂).
Define the set U =

{

(β,X, z) ∈ R × L1(Ω,F , P ) × Z : β ≤ f(z), X ≤ G(z)
}

.
It follows from (4.6) that β̂ = f(ẑ), X̂ = G(ẑ), and ẑ are the solution of the convex
optimization problem

(4.8) maximize
(β,X,z)∈U

β −
∫∫

I×Ω

[η −X ]+ dP dμ̂.

Indeed, the best value of β is f(z), and, due to the monotonicity of the function
x→ −[η−x]+, the best value of X is G(z). By carrying out the partial maximization
with respect to (β,X) we reduce (4.8) to the right-hand side of (4.6).
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Consider the function ϕ : S → R defined by

ϕ(s) =
∫∫

I×Ω

[

s(η, ω)
]

+ dP dμ̂

at the point ŝ(η, ω) = η − [G(ẑ)](ω), η ∈ I, ω ∈ Ω. By virtue of the necessary
and sufficient condition of optimality for problem (4.8), there exists a subgradient
γ ∈ ∂ϕ(ŝ) such that (β̂, X̂, ẑ) is also a solution of the problem

(4.9) maximize
(β,X,z)∈U

β +
∫∫

I×Ω

γ(η, ω)X dP dμ̂.

By Strassen’s disintegration theorem [33, Theorem 1],

γ(η, ω) ∈ ∂
(

η − X̂(ω)
)

+ =

⎧

⎪

⎨

⎪

⎩

{1} if η > X̂(ω),
{0} if η < X̂(ω),
[0, 1] if η = X̂(ω).

From the definition of the set U and from the fact that γ(η, ω) ≥ 0, for every value of
z the best values of β and X in (4.9) are f(z) and G(z), respectively. It follows that
ẑ is an optimal solution of the problem

maximize
z∈Z

{

f(z) +
∫∫

I×Ω

γ(η, ω)G(z) dP dμ̂

}

.

Define the measure λ̂ as absolutely continuous with respect to μ̂×P with the Radon–
Nikodym derivative

dλ̂

d(μ̂× P )
= γ.

Since 0 ≤ γ ≤ 1, we have 0 ≤ λ̂ ≤ μ̂× P . From (4.3) we obtain

LD(λ̂, μ̂) = −
∫

I

η dλ̂I(η) +
∫

I

v(η) dμ̂+ sup
z∈Z

{

f(z) +
∫

Ω

[G(z)](ω) dλ̂Ω

}

= −
∫∫

I×Ω

ηγ(η, ω) dP dμ̂+
∫

I

v(η) dμ̂+ f(ẑ) +
∫∫

I×Ω

[G(ẑ)](ω)γ(η, ω) dP dμ̂.

It follows from the definition of γ that the first and the last term in this expression
can be written as

−
∫∫

I×Ω

ηγ(η, ω) dP dμ̂+
∫∫

I×Ω

[G(ẑ)](ω)γ(η, ω) dP dμ̂

= −
∫∫

I×Ω

(

η − [G(ẑ)](ω)
)

+ dP dμ̂ = −
∫

I

E
(

η − [G(ẑ)](ω)
)

+ dμ̂.
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Substituting into the last formula for LD(λ̂, μ̂) we conclude that

LD(λ̂, μ̂) = f(ẑ) +
∫

I

[

v(η) − E
(

η − [G(ẑ)](ω)
)

+

]

dμ̂ = f(ẑ) = c∗.

In the last equation we have used the complementarity condition (4.7).
Finally, let us observe that the condition λ ≤ μ×P appearing in the dual problem

implies that λI ≤ μ. This is of importance for the solution method we describe later
in section 7.

5. Reducing the space of Lagrange multipliers. Notice that apart from the
condition λ ≤ μ× p the measure λ ∈ M on the product space I × Ω appears in the
dual optimization problem (4.4) via its marginal measures λI and λΩ. We can exploit
this fact to achieve a reduction of the space of variables similar to that seen in the
case of the primal problem. The main tool for this reduction is Strassen’s theorem on
the existence of measures with given marginals [33, Theorem 6]. We present here its
version in the setting suitable for direct application to our problem.

Theorem 5.1. Let κ ∈ M+, β ∈ rca(I), and let α be a measure on (Ω,F).
There exists a measure λ ∈ M+ having marginal measures λI = β and λΩ = α and
such that λ ≤ κ if and only if

β(B) + α(A) ≤ ψ + κ(B ×A) ∀ B ∈ B ∀ A ∈ F ,

where ψ = β(I) = α(Ω).
Observe that setting B = I we obtain α(A) ≤ κ(B×A) for all A ∈ F . Employing

the definition of M+ we conclude that it is necessary that dα/dP ∈ L∞(Ω,F , P ).
Applying Theorem 5.1 to the dual problem (4.4) with κ = μ× P , we obtain the

following equivalent formulation of the dual problem:

(5.1)

minimize
α,β,μ,ψ

−
∫

I

η dβ +
∫

I

v dμ+ sup
z∈Z

(

f(z) +
∫

Ω

[G(z)](ω) dα
)

subject to β(I) = ψ, α(Ω) = ψ,

β(B) + α(A) ≤ ψ + μ(B)P (A) ∀ B ∈ B ∀ A ∈ F ,

α ≥ 0,
dα

dP
∈ L∞(Ω,F , P ), β, μ ∈ rca+(I).

Note that the measure λ on the product space I × Ω is eliminated from this for-
mulation, at the cost of introducing new constraints indexed by the family B × F .
The merits of this trade-off become apparent for problems with discrete distributions,
where we propose a column generation method.

6. An implied transportation problem. We now focus again on the finite
probability space Ω = {ω1, . . . , ωN} with corresponding probabilities p1, . . . , pN . The
realizations of the benchmark outcome Y are denoted by y1, . . . , yD, and the corre-
sponding benchmark shortfalls are vj = E([yj − Y ]+).

We recall for convenience the dual problem (4.4) in this case. The measure λ
becomes an array λij , i = 1, . . . , N , j = 1, . . . , D. The marginal measures are its row
and column sums, respectively. We obtain the following formulation:

(6.1)

minimize
λ,μ

−
D
∑

j=1

N
∑

i=1

λijyj +
D
∑

j=1

μjvj + sup
z∈Z

{

f(z) +
N
∑

i=1

D
∑

j=1

λijGi(z)

}

subject to λij ≤ piμj , i = 1, . . . , N, j = 1, . . . , D,
λ ≥ 0, μ ≥ 0.
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Consider the marginal sums

αi =
D
∑

j=1

λij , i = 1, . . . , N,

βj =
N
∑

i=1

λij , j = 1, . . . , D.

Vectors α ≥ 0 and β ≥ 0 are marginal sums of a feasible dual variable λ if and only
if the following conditions are satisfied:

(i) for some ψ ≥ 0 we have
∑N
i=1 αi =

∑D
j=1 βj = ψ;

(ii) there exists a transportation flow of value ψ in the network having N source
nodes with supplies α, D destination nodes with demands β, and arc capac-
ities equal to piμj for every arc (i, j), i = 1, . . . , N , j = 1, . . . , D.

In the discrete case Strassen’s theorem takes on the form of the maximum flow–
minimum cut theorem [11, 13]: For all A ⊂ {1, . . . , N} and all B ⊂ {1, . . . , D}

(6.2)
∑

i∈A
αi +

∑

j∈B
βj −

∑

i∈A
pi
∑

j∈B
μj ≤ ψ.

The dual formulation based on this fact and corresponding to (5.1) is

minimize
α,β,μ,ψ

−
D
∑

j=1

yjβj +
D
∑

j=1

vjμj + sup
z∈Z

{

f(z) +
N
∑

i=1

αiGi(z)

}

(6.3)

subject to
N
∑

i=1

αi = ψ,
D
∑

j=1

βj = ψ,

∑

i∈A
αi +

∑

j∈B
βj −

∑

i∈A
pi
∑

j∈B
μj ≤ ψ

∀ A ⊂ {1, . . . , N} ∀ B ⊂ {1, . . . , D}
α ≥ 0, β ≥ 0, μ ≥ 0, ψ ≥ 0.

In this formulation ND dual variables of (6.1) are replaced by N +D marginal sums,
at the cost of introducing 2N+D new constraints, indexed by all possible sets A and B.

If the functions f(·) andGi(·) are affine and the set Z is defined by linear equations
and inequalities, then problem (6.3) becomes a linear programming problem. In a
standard way, the term supz∈Z{f(z) +

∑N
i=1 αiGi(z)} can be replaced by an affine

function of α and linear inequalities involving α. All of these manipulations are the
same as in linear programming duality theory. We illustrate them for a portfolio
example in section 8.

The main difficulty associated with problem (6.3) is the large number of con-
straints. We show in section 7 a way to overcome this difficulty by generating only a
subset of relevant constraints.

7. A dual column generation method. Formulation (6.3) suggests a cutting
plane method of the following form: At iteration k we have pairs of sets Am ⊂
{1, . . . , N} and Bm ⊂ {1, . . . , D}, m = 1, . . . , k− 1. We solve a relaxation of problem
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(6.3):

(7.1)

minimize
α,β,μ,ψ

−
D
∑

j=1

yjβj +
D
∑

j=1

vjμj + sup
z∈Z

{

f(z) +
N
∑

i=1

αiGi(z)

}

subject to
N
∑

i=1

αi = ψ,

D
∑

j=1

βj = ψ,

∑

i∈Am

αi +
∑

j∈Bm

βj −
∑

i∈Am

pi
∑

j∈Bm

μj ≤ ψ, m = 1, . . . , k − 1,

α ≥ 0, β ≥ 0, μ ≥ 0, ψ ≥ 0.

The next step is to verify inequalities (6.2) for all possible sets A and B at the optimal
solution (αk, βk, μk, ψk). To this end, we find a pair Ak, Bk which solves the problem

(7.2) maximize
A⊂{1,...,N}
B⊂{1,...,D}

−ψk +
∑

i∈A
αki +

∑

j∈B
βkj −

∑

i∈A
pi
∑

j∈B
μkj .

Defining the complement event Ac = {1, . . . , N} \ A we observe that the first three
terms in (7.2) describe the required inflow to the set of nodes Ac ∪ B. The last
term in (7.2) is the total capacity of the arcs leading to this set, that is, the arcs
starting in A and ending in B. It follows that problem (7.2) is a problem of finding
a minimal cut in a bipartite graph. It can be solved in a very efficient way by special
network algorithms, as described in [1]. One method, which is closely related to our
transformation, is the following. We formulate the maximum flow problem:

maximize
λ

N
∑

i=1

D
∑

j=1

λij

subject to
D
∑

j=1

λij ≤ αki , i = 1, . . . , N,(7.3)

N
∑

i=1

λij ≤ βkj , j = 1, . . . , D,(7.4)

0 ≤ λij ≤ piμ
k
j , i = 1, . . . , N, j = 1, . . . , D.

If the flow equals ψk, then the optimal solution of (7.1) is also optimal for (6.3). Oth-
erwise, we denote the Lagrange multipliers associated with (7.3) by ζi, i = 1, . . . , N ,
and the Lagrange multipliers associated with (7.4) by ξj , j = 1, . . . , D (they all are
equal to either 0 or 1). We set

Ak = {i : ζi = 0}, Bk = {j : ξj = 0},

and we add the pair (Ak, Bk) to the pairs of sets included in (7.1), increase k by 1,
and continue.

Observe that if the maximum in (7.2) is positive (and thus the maximum flow
in the last displayed problem is smaller than ψk), the new cut is different than the
cuts already included in problem (7.1). As the number of possible cuts is finite, the
method must eventually stop at an optimal solution. In that case the flow in the
network gives us the optimal values of the multipliers λ in the dual problem (6.1).
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8. Numerical illustration. Let R1, . . . , Rn be random return rates of assets
1, . . . , n. We denote the fractions of the initial capital invested in these assets by
z1, . . . , zn. Clearly, the portfolio return rate equals

G(z) = R1z1 + · · · +Rnzn.

The set of possible asset allocations is the simplex

Z = {z ∈ Rn : z1 + · · · + zn = 1, zk ≥ 0, k = 1, . . . , n},

but the approach outlined here easily extends to more general polyhedral sets Z.
Finally, let a benchmark random return rate Y be given; for example, Y may represent
the return rate of an index or the return rate of the current portfolio. The dominance-
constrained portfolio optimization problem takes on the form

maximize
z

E
[

R1z1 + · · · +Rnzn
]

subject to R1z1 + · · · +Rnzn �(2) Y,

z ∈ Z.

This model was introduced as an example in [4] and analyzed in [8].
As discussed in the introduction, no risk-averse decision maker will prefer a port-

folio with return rate Y over a portfolio with return rate R1z1+ · · ·+Rnzn. Therefore,
the risk exposure of the portfolio return rate is “more acceptable” than that of Y .
In our model we use the expected value of the portfolio return rate as the objective
functional, and thus the entire burden of controlling risk is carried by the stochastic
dominance constraint. As the distribution of the returns at the solution is indirectly
shaped by the distribution of the benchmark Y , it is essential that Y be “acceptable,”
for example, the return rate of a broad market index. However, it is easy to addi-
tionally incorporate risk-averse objective functionals to our model, such as coherent
measures of risk (see [2, 9, 10, 20, 31] and the references therein).

In the discrete distribution case, we denote the return of asset k in event i by
rik, i = 1, . . . , N , k = 1, . . . , n, the probabilities of the elementary events by pi,
i = 1, . . . , N , the realizations of the benchmark returns by yj , and the benchmark
shortfalls by

vj =
N
∑

i=1

pi(yj − yi)+.

We obtain the following problem:

maximize
z

N
∑

i=1

n
∑

k=1

pirikzk

subject to
N
∑

i=1

pi

(

yj −
n
∑

k=1

rikzk

)

+

≤ vj , j = 1, . . . , N,

z ∈ Z.

The piecewise linear constraint is dealt with by the primal cutting plane method.



1340 GÁBOR RUDOLF AND ANDRZEJ RUSZCZYŃSKI

Table 8.1

Dimensions of the three formulations.

Scenarios Linear Programming Primal Formulation Dual Formulation
Variables Constraints Variables Constraints Variables Constraints

50 3000 2551 500 1 152 502
100 10500 10101 500 1 302 502
150 23000 22651 500 1 452 502
200 40500 40201 500 1 602 502
500 250500 250001 500 1 1502 502
750 563000 562501 500 1 2252 502
1000 1000500 1000001 500 1 3002 502

The dual problem (6.3) takes on the following form:

minimize
α,β,μ,ψ,ζ

−
N
∑

j=1

yjβj +
N
∑

j=1

vjμj + ζ

subject to
N
∑

i=1

αi = ψ,
N
∑

j=1

βj = ψ,

N
∑

i=1

(pi + αi)rik ≤ ζ, k = 1, . . . , n,

∑

i∈A
αi +

∑

j∈B
βj −

∑

i∈A
pi
∑

j∈B
μj ≤ ψ ∀ A ⊂ {1, . . . , N}

∀ B ⊂ {1, . . . , N}
α ≥ 0, β ≥ 0, μ ≥ 0, ψ ≥ 0.

The variable ζ in the objective function of this problem represents the term

sup
z∈Z

{

f(z) +
N
∑

i=1

αiGi(z)

}

= sup
z∈Z

{

N
∑

i=1

n
∑

k=1

pirikzk +
N
∑

i=1

n
∑

k=1

αirikzk

}

= max
1≤k≤n

N
∑

i=1

(pi + αi)rik.

The constraints involving the sets A and B are dealt with by the dual cutting plane
method.

We considered several problem instances of different sizes, obtained from historical
data on realizations of joint daily returns of n = 500 assets in N days, for seven
different values of N ranging from 50 to 1000. We used the returns in each day as
equally probable realizations of the n-dimensional random vector R. The benchmark
outcome Y was the return rate of the Standard & Poors 500 index. All calculations
were carried out on a 2.00 GHz Pentium 4 PC with 1.00 GB of RAM by using the
AMPL modeling language [12] and with version 9.1 of the CPLEX solver [15].

Table 8.1 compares the sizes of the three formulations: The straightforward linear
programming model (2.1), the primal cutting plane formulation (2.2), and the dual
cutting plane formulation (5.1). In the last two cases we report the initial numbers of
constraints only, without the cuts indexed by the sets A ∈ F and B ∈ B. The numbers
of cuts, which were actually generated in the course of the solution, are reported in
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Table 8.2

Performance of the three approaches.

Scenarios Linear Programming Primal Method Dual Method
CPU Iterations CPU Cuts Iterations CPU Cuts Iterations

50 3.44 570 0.55 9 9 13.81 68 6883
100 20.23 3161 2.03 33 75 407.26 259 156304
150 372.52 7272 3.49 53 267 9144.25 552 1155166
200 373.63 16666 3.90 61 180 - - -
500 - - 6.59 88 924 - - -
750 - - 9.74 123 477 - - -
1000 - - 10.23 117 530 - - -

0

0.5

1

-0.05 0 0.05

Benchmark
Optimal

Fig. 8.1. Cumulative distribution functions of the return rates of the benchmark and optimal
portfolios in the 1000 scenario example.

Table 8.2. This table provides also the CPU times of the simplex solver in the three
cases and the total numbers of simplex iterations performed.

It can be seen from these results that the primal cut generation method is quite
efficient, and it dramatically outperforms the direct linear programming approach.
This is consistent with the results of [17] for integrated chance constraints. In fact,
the direct linear programming model was too large for our computer for 500 scenarios
and more. The dual method is much slower for this problem class, mainly due to
minimal differences between many cuts and severe numerical difficulties associated
with that. For problems with N = 200 scenarios and more, we interrupted the
calculation because of excessive time. Apparently, the number of Strassen cuts is too
large. However, we still believe that the dual formulation is interesting in its own
right and that one day it may find its application.

Finally, Figure 8.1 compares the cumulative distribution functions of the return
rates of the benchmark portfolio (the S&P 500 index) and of the solution to the
dominance-constrained problem for the case of 1000 scenarios. The optimal portfolio
contains only 11 assets, but we can see that they are sufficient to shape the distribution
function in a favorable way. Close inspection reveals that the optimal distribution
function is not entirely below the benchmark (this would mean first order stochastic
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dominance); in the range between −0.02 and −0.015 it is slightly above. However,
the expected shortfall (1.2) is always smaller at the solution than at the benchmark.
This is in line with the results of [23], where similar examples are presented.

Acknowledgments. The authors are grateful to two anonymous referees for
their insightful comments which helped to improve the presentation of this paper.
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[8] D. Dentcheva and A. Ruszczyński, Portfolio optimization with stochastic dominance con-
straints, J. Banking Finance, 30 (2006), pp. 433–451.
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Abstract. This paper concerns a fractional function of the form xT a/
√

xT Bx, where B is
positive definite. We consider the game of choosing x from a convex set, to maximize the function,
and choosing (a, B) from a convex set, to minimize it. We prove the existence of a saddle point
and describe an efficient method, based on convex optimization, for computing it. We describe ap-
plications in machine learning (robust Fisher linear discriminant analysis), signal processing (robust
beamforming and robust matched filtering), and finance (robust portfolio selection). In these appli-
cations, x corresponds to some design variables to be chosen, and the pair (a, B) corresponds to the
statistical model, which is uncertain.
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1. Introduction. This paper concerns a fractional function of the form

(1) f(x, a,B) =
xTa√
xTBx

,

where x, a ∈ R
n and B = BT ∈ R

n×n. We assume that x ∈ X ⊆ R
n\{0} and

(a,B) ∈ U ⊆ R
n×S

n
++. Here S

n
++ denotes the set of n×n symmetric positive definite

matrices.
We list some of the basic properties of the function f . It is (positive) homogeneous

(of degree zero) in x: for all t > 0,

f(tx, a,B) = f(x, a,B).

If

(2) xT a ≥ 0 for all x ∈ X and for all a, with (a,B) ∈ U ,

then for fixed (a,B) ∈ U , f is quasi-concave in x, and for fixed x ∈ X , f is quasi-
convex in (a,B). This can be seen as follows: for γ ≥ 0, the set

{x | f(a,B, x) ≥ γ} =
{

x
∣

∣ γ
√
xTBx ≤ xTa

}

is convex (since it is a second-order cone in R
n), and the set

{(a,B) | f(a,B, x) ≤ γ} =
{

(a,B)
∣

∣ γ
√
xTBx ≥ xT a

}

is convex (since
√
xTBx is concave in B).
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A zero-sum game and related problems. In this paper we consider the zero-
sum game of choosing x from a convex set X , to maximize the function, and choosing
(a,B) from a convex compact set U , to minimize it. The game is associated with the
following two problems:

• max-min problem

(3)
maximize inf

(a,B)∈U
f(x, a,B)

subject to x ∈ X ,
with variables x ∈ R

n,
• min-max problem

(4)
minimize sup

x∈X
f(x, a,B)

subject to (a,B) ∈ U ,

with variables a ∈ R
n and B = BT ∈ R

n×n.
Problems of the form (3) arise in several disciplines including machine learning

(robust Fisher linear discriminant analysis), signal processing (robust beamforming
and robust matched filtering), and finance (robust portfolio selection). In these ap-
plications, x corresponds to some design variables to be chosen, and the pair (a,B)
corresponds to the first and second moments of a random vector, say, Z, which are
uncertain. We want to choose x so that the combined random variable xTZ is well
separated from zero. The ratio of the mean of the random variable to the standard
deviation f(x, a,B) measures the extent to which the random variable can be well
separated from zero. The max-min problem is to find the design variables that are
optimal in a worst-case sense, where worst-case means over all possible statistics.
The min-max problem is to find the least-favorable statistical model, with the design
variables chosen optimally for the statistics.

Minimax properties. The minimax inequality or weak minimax property

(5) sup
x∈X

inf
(a,B)∈U

f(x, a,B) ≤ inf
(a,B)∈U

sup
x∈X

f(x, a,B)

always holds for any X ⊆ R and any U ⊆ S
n
++. The minimax equality or strong

minimax property

(6) sup
x∈X

inf
(a,B)∈U

f(x, a,B) = inf
(a,B)∈U

sup
x∈X

f(x, a,B)

holds if X is convex, U is convex and compact, and (2) holds, which follows from
Sion’s quasi-convex–quasi-concave minimax theorem [25].

In this paper we will show that the strong minimax property holds with a weaker
assumption than (2):

(7) there exists x̄ ∈ X such that x̄T a > 0 for all a with (a,B) ∈ U .

To state the minimax result, we first describe an equivalent formulation of the
min-max problem (4).

Proposition 1. Suppose that X is a cone in R
n that does not contain the origin,

with X ∪ {0} convex and closed, and U is a compact subset of R
n × S

n
++. Suppose

further that (7) holds. Then, the min-max problem (4) is equivalent to

(8)
minimize (a+ λ)TB−1(a+ λ)
subject to (a,B) ∈ U , λ ∈ X ∗,

where a ∈ R
n, B = BT ∈ R

n×n, and λ ∈ R
n are the variables and X ∗ is the dual
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cone of X given by

X ∗ =
{

λ ∈ R
n | λTx ≥ 0 ∀x ∈ X

}

,

in the following sense: if (a�, B�, λ�) solves (8), then (a�, B�) solves (4), and con-
versely if (a�, B�) solves (4), then there exists λ� ∈ X ∗ such that (a�, B�, λ�) solves
(8). Moreover,

inf
(a,B)∈U

sup
x∈X

f(x, a,B) =

(

inf
(a,B)∈U , λ∈X ∗

(a+ λ)TB−1(a+ λ)

)1/2

.

Finally, (8) always has a solution, and for any solution (a�, B�, λ�),

a� + λ� 	= 0.

The proof is deferred to the appendix.
The dual cone X ∗ is always convex. The objective of (8) is convex since a function

of the form f(x,X) = xTX−1x, called a matrix fractional function, is convex over
R
n×S

n
++; see, e.g., [7, section 3.1.7]. Therefore, (8) is a convex problem. We conclude

that the min-max problem (4) can be reformulated as the convex problem (8).
We can solve the max-min problem (3), using a minimax result for the fractional

function f(x, a,B).
Theorem 1. Suppose that X is a cone in R

n that does not contain the origin, with
X ∪ {0} convex and closed, and U is a convex compact subset of R

n × S
n
++. Suppose

further that (7) holds. Let (a�, B�, λ�) be a solution to the convex problem (8) (whose
existence is guaranteed in Proposition 1). Then,

x� = B�−1(a� + λ�) ∈ X ,
and the triple (x�, a�, B�) satisfies the saddle-point property

(9) f(x, a�, B�) ≤ f(x�, a�, B�) ≤ f(x�, a, B) ∀x ∈ X ∀(a,B) ∈ U .
The proof is deferred to the appendix.
We show that the assumption (7) is needed for the strong minimax property to

hold. Consider X = R
n\{0} and U = B1 × {I}, where B1 is the Euclidean ball of

radius one. Then, all of the assumptions hold except for (7). We have

sup
x �=0

inf
(a,B)∈U

xTa√
xTBx

= sup
x �=0

inf
a∈B1

xTa√
xTx

= sup
x �=0

−‖x‖
‖x‖ = −1

and

inf
(a,B)∈U

sup
x �=0

xTa√
xTBx

= inf
a∈B1

sup
x �=0

xT a

‖x‖ = inf
a∈B1

‖x‖‖a‖
‖x‖ = 0.

From a standard result [2, section 2.6] in minimax theory, the saddle-point prop-
erty (9) means that

f(x�, a�, B�) = sup
x∈X

f(x, a�, B�)

= inf
(a,B)∈U

f(x�, a, B)

= sup
x∈X

inf
(a,B)∈U

f(x, a,B)

= inf
(a,B)∈U

sup
x∈X

f(x, a,B).

As a consequence, x� solves (3).
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More computational results. The max-min problem (3) has a unique solution
up to (positive) scaling.

Proposition 2. Under the assumptions of Theorem 1, the max-min problem (3)
has a unique solution up to (positive) scaling, meaning that for any two solutions x�

and y�, there is a positive number α > 0 such that x� = αy�.
The proof is deferred to the appendix.
The convex problem (8) can be reformulated as a standard convex optimization

problem. Using the Schur complement technique [7, Appendix 5.5], we can see that

(a+ λ)TB−1(a+ λ) ≤ t

if and only if the linear matrix inequality (LMI)
[

t (a+ λ)T

a+ λ B

]

� 0

holds. (Here A � 0 means that A is positive semidefinite.) The convex problem (8)
is therefore equivalent to

minimize t

subject to (a,B) ∈ U , λ ∈ X ∗,

[

t (a+ λ)T

a+ λ B

]

� 0,

where the variables are t ∈ R, a ∈ R
n, B = BT ∈ R

n×n, and λ ∈ R
n. When

the uncertainty sets U can be represented by LMIs, this problem is a semidefinite
program (SDP). (Several high-quality open-source solvers for SDPs are available, e.g.,
SeDuMi [26], SDPT3 [27], and DSDP5 [1].) The reader is referred to [6, 29] for more
on semidefinite programming and LMIs.

Outline of the paper. In the next section, we give a probabilistic interpre-
tation of the saddle-point property established above. In sections 3–5, we give the
applications of the minimax result in machine learning, signal processing, and portfo-
lio selection. We give our conclusions in section 6. The appendix contains the proofs
that are omitted from the main text.

2. A probabilistic interpretation.

2.1. Probabilistic linear separation. Suppose z ∼ N (a,B) and x ∈ R
n.

Here, we use N (a,B) to denote the Gaussian distribution with mean a and covariance
B. Then, xT z ∼ N (xT a, xTBx), so

(10) Prob
(

xT z ≥ 0
)

= Φ
(

xT a√
xTBx

)

,

where Φ is the cumulative distribution function of the standard normal distribution.
Theorem 1 with U = {(a,B)} tells us that the right-hand side of (10) is maximized

(over x ∈ X ) by x = B−1(a + λ�), where λ� solves the convex problem (8) with
U = {(a,B)}. In other words, x = B−1(a + λ�) gives the hyperplane through the
origin that maximizes the probability of z being on its positive side. The associated
maximum probability is Φ([(a + λ�)TB−1(a+ λ�)]1/2). Thus, (a+ λ�)TB−1(a+ λ�)
(which is the objective of (8)) can be used to measure the extent to which a hyperplane
perpendicular to x ∈ X can separate a random signal z ∼ N (a,B) from the origin.

We give another interpretation. Suppose that we know the mean E z = a and the
covariance E(z−a)(z−a)T = B of z, but its third and higher moments are unknown.
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0

x

Fig. 1. Illustration of x� = B−1a. The center of the two confidence ellipsoids (whose bound-
aries are shown as dashed line curves) is a, and their shapes are determined by B.

Here E denotes the expectation operation. Then, ExT z = xT a and E(xT z−xTa)2 =
xTBx, so by the Chebyshev bound, we have

(11) Prob
(

xT z ≥ 0
)

≥ Ψ
(

xTa√
xTBx

)

,

where

Ψ(u) =
max{u, 0}2

1 + max{u, 0}2
.

This bound is sharp; in other words, there is a distribution for z with mean a and
covariance B for which equality holds in (11) [3, 30]. Since Ψ is increasing, this
probability is also maximized by x = B−1(a + λ�). Thus, x = B−1(a + λ�) gives
the hyperplane through the origin and perpendicular to x ∈ X that maximizes the
Chebyshev lower bound for Prob(xT z ≥ 0). The maximum value of the Chebyshev
lower bound is p�/(1 + p�), where p� =

[

(a+ λ�)TB−1(a+ λ�)
]1/2. This quantity

assesses the maximum extent to which a hyperplane perpendicular to x ∈ X can
separate from the origin a random signal z, whose first and second moments are
known but otherwise arbitrary. This quantity is an increasing function of p�, so
the hyperplane perpendicular to x ∈ X that maximally separates from the origin a
Gaussian random signal z ∼ N (a,B) also maximally separates, in the sense of the
Chebyshev bound, a signal with known mean and covariance.

When X = R
n\{0}, we have X ∗ = 0, so x = B−1a maximizes the right-hand side

of (10). We can give its graphical interpretation. We find the confidence ellipsoid of
the Gaussian distribution N (a,B), whose boundary touches the origin. This ellipsoid
is tangential to the hyperplane through the origin and perpendicular to x = B−1a.
Figure 1 illustrates this interpretation in R

2.

2.2. Robust linear separation. We now assume that the mean and covariance
are uncertain but known to belong to a convex compact subset U of R

n × S
n
++. We

make one assumption: for each (a,Σ) ∈ U , we have a 	= 0. In other words, we rule
out the possibility that the mean is zero.

Theorem 1 tells us that there exists a triple (x�, a�, B�), with x� ∈ X and
(a�, B�) ∈ U , such that

(12) Φ
(

xT a�√
xTB�x

)

≤ Φ
(

x�T a�√
x�TB�x�

)

≤ Φ
(

x�T a√
x�TBx�

)

∀x ∈ X ∀(a,B) ∈ U .

Here we use the fact that Φ is strictly increasing.
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From the saddle-point property (12), we can see that x� solves

(13)
maximize inf

(a,B)∈U ,z∼N (a,B)
Prob

(

xT z ≥ 0
)

subject to x ∈ X ,

and the pair (a�, B�) solves

(14)
minimize sup

x∈X ,z∼N (a,B)

Prob
(

xT z > 0
)

subject to (a,B) ∈ U .

Problem (13) is to find a hyperplane through the origin and perpendicular to x ∈ X
that separates robustly a normal random variable z on R

n with uncertain first and
second moments belonging to U . Problem (14) is to find the least-favorable model in
terms of the separation probability (when the random variable is normal). It follows
from (10) that (13) is equivalent to the max-min problem (3), and (14) is equivalent
to (4) and hence to the convex problem (8) by Proposition 1. These two problems
can be solved using convex optimization.

We close by pointing out that the same results hold with the Chebyshev bound
as the separation probability.

3. Robust Fisher discriminant analysis. As another application, we consider
a robust classification problem.

3.1. Fisher linear discriminant analysis. In linear discriminant analysis, we
want to separate two classes which can be identified with two random variables in R

n.
Fisher linear discriminant analysis (FLDA) is a widely used technique for pattern
classification, proposed by Fisher in the 1930s. The reader is referred to standard
textbooks on statistical learning, e.g., [13], for more on FLDA.

For a (linear) discriminant characterized by w ∈ R
n, the degree of discrimination

is measured by the Fisher discriminant ratio

F (w, μ+, μ−,Σ+,Σ−) =

(

wT (μ+ − μ−)
)2

wT (Σ+ + Σ−)w
,

where μ+ and Σ+ (μ+ and Σ−) denote the mean and covariance, respectively, of
examples drawn from the positive (negative) class. A discriminant that maximizes
the Fisher discriminant ratio is given by

w̄ = (Σ+ + Σ−)−1(μ+ − μ−),

which gives the maximum Fisher discriminant ratio

sup
w �=0

F (w, μ+, μ−,Σ+,Σ−) = (μ+ − μ−)T (Σ+ + Σ−)−1(μ+ − μ−).

Once the optimal discriminant is found, we can form the (binary) classifier

(15) φ(x) = sgn
(

w̄Tx+ v
)

,

where

sgn(z) =
{

+1, z > 0,
−1, z ≤ 0,
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and v is the bias or threshold. The classifier picks the outcome, given x, according to
the linear boundary between the two binary outcomes (defined by w̄Tx+ v = 0).

We can give a probabilistic interpretation of FLDA. Suppose that x ∼ N (μ+,Σ+)
and y ∼ N (μ−,Σ−). We want to find w that maximizes Prob(wTx > wT y). Here,

x− y ∼ N (μ+ − μ−,Σ+ + Σ−),

so

Prob
(

wTx > wT y
)

= Prob
(

wT (x− y) > 0
)

= Φ

(

wT (μ+ − μ−)
√

wT (Σ+ + Σ−)w

)

.

This probability is called the nominal discrimination probability. Evidently, FLDA
amounts to maximizing the fractional function

f(w, μ+ − μ−,Σ+ + Σ−) =
wT (μ+ − μ−)

√

wT (Σ+ + Σ−)w
.

3.2. Robust Fisher linear discriminant analysis. In FLDA, the problem
data or parameters (i.e., the first and second moments of the two random variables)
are not known but are estimated from sample data. FLDA can be sensitive to the
variation or uncertainty in the problem data, meaning that the discriminant computed
from an estimate of the parameters can give very poor discrimination for another set
of problem data that is also a reasonable estimate of the parameters. Robust FLDA
attempts to systematically alleviate this sensitivity problem by explicitly incorpo-
rating a model of data uncertainty in the classification problem and optimizing for
the worst-case scenario under this model; see [17] for more on robust FLDA and its
extension.

We assume that the problem data μ+, μ−, Σ+, and Σ− are uncertain but known
to belong to a convex compact subset V of R

n × R
n × S

n
++ × S

n
++. We make the

following assumption:

(16) for each (μ+, μ−,Σ+,Σ−) ∈ V , we have μ+ 	= μ−.

This assumption simply means that for each possible value of the means and covari-
ances, the two classes are distinguishable via FLDA.

The worst-case analysis problem of finding the worst-case means and covariances
for a given discriminant w can be written as

(17) minimize f(w, μ+ − μ−,Σ+ + Σ−)
subject to (μ+, μ−,Σ+,Σ−) ∈ V ,

with variables μ+, μ−, Σ+, and Σ−. Optimal points for this problem, say, (μwc
+ , μwc

− ,
Σwc

+ ,Σwc
− ), are called the worst-case means and covariances, which depend on w. With

the worst-case means and covariances, we can compute the worst-case discrimination
probability

Pwc(w) = Φ

(

wT (μwc
+ − μwc

− )
√

wT (Σwc
+ + Σwc

− )w

)

(over the set U of possible means and covariances).
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The robust FLDA problem is to find a discriminant that maximizes the worst-case
Fisher discriminant ratio:

(18)
maximize inf

(μ+,μ−,Σ+,Σ−)∈V
f(w, μ+ − μ−,Σ+ + Σ−)

subject to w 	= 0,

with variable w. Here we choose a linear discriminant that maximizes the Fisher
discrimination ratio, with the worst possible means and covariances that are consistent
with our data uncertainty model. Any solution to (18) is called a robust optimal Fisher
discriminant.

The robust FLDA problem (18) has the form (3) with

U = {(μ+ − μ−,Σ+ + Σ−) ∈ R
n × S

n
++ | (μ+, μ−,Σ+,Σ−) ∈ U}.

In this problem, each element of the set U is a pair of the mean and covariance of the
difference of the two random variables. For this problem, we can see from (16) that
assumption (7) holds. The robust FLDA problem can therefore be solved by using
the minimax result described above.

3.3. Numerical example. We illustrate the result with a classification problem
in R

2. The nominal means and covariances of the two classes are

μ̄+ = (1, 0), μ̄− = (−1, 0), Σ̄+ = Σ̄− = I ∈ R
2×2.

We assume that only μ+ is uncertain and lies within the ellipse

E =
{

μ+ ∈ R
2 | μ+ = μ̄+ + Pu, ‖u‖ ≤ 1

}

,

where the matrix P which determines the shape of the ellipse is

P =
[

0.78 0.64
0.64 0.78

]

∈ R
2×2.

Figure 2 illustrates the setting described above. Here the shaded ellipse corresponds
to E , and the dashed line curves are the set of points μ+ and μ− that satisfy
∥

∥

∥Σ+
−1/2(μ+ − μ̄+)

∥

∥

∥ = ‖μ+ − μ̄+‖ = 1,
∥

∥

∥Σ−
−1/2(μ− − μ̄−)

∥

∥

∥ = ‖μ− − μ̄−‖ = 1.

The nominal optimal discriminant which maximizes the Fisher discriminant ratio
with the nominal means and covariances is given by wnom = (1, 0). The robust optimal
discriminant wrob is computed using the method described above. Figure 2 shows two
linear decision boundaries

xTwnom = 0, xTwrob = 0

determined by the two discriminants. Since the mean of the positive class is uncertain
and the uncertainty is significant in a certain direction, the robust discriminant is
tilted toward the direction.

Table 1 summarizes the results. Here, Pnom is the nominal discrimination prob-
ability and Pwc is the worst-case discrimination probability. The nominal optimal
discriminant achieves Pnom = 0.92, which corresponds to 92% of correct discrimina-
tion without uncertainty. However, with uncertainty present, its nominal discrimi-
nation probability degrades rapidly; the worst-case discrimination probability for the
nominal optimal discriminant is 78%. The robust optimal discriminant performs well
in the presence of uncertainty. It has a worst-case discrimination probability around
83%, 5% higher than that of the nominal optimal discriminant.
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µ+µ−

E
xT wnom = 0 xT wrob = 0

Fig. 2. A simple example for robust FLDA.

Table 1

Robust discriminant analysis results.

Pnom Pwc

Nominal optimal discriminant 0.92 0.78
Robust optimal discriminant 0.87 0.83

4. Robust matched filtering. We consider a signal model of the form

y(t) = s(t)a+ v(t) ∈ R
n,

where a is the steering vector, s(t) ∈ {0, 1} is the binary source signal, y(t) ∈ R
n

is the received signal, and v(t) ∼ N (0,Σ) is the noise. We consider the problem of
estimating s(t), based on an observed sample of y. In other words, the sample is
generated from one of the two possible distributions N (0,Σ) and N (a,Σ), and we are
to guess which one.

After reviewing a basic result on optimal detection with the setting described
above, we show how the minimax result given above allows us to design a robust
detector that takes into account the uncertainty in the model parameters, namely,
the steering vector and the noise covariance.

4.1. Matched filtering. A (deterministic) detector is a function ψ from R
n

(the set of possible observed values) into {0, 1} (the set of possible signal values or
hypotheses). It can be expressed as

(19) ψ(y) =
{

0, h(y) < t,
1, h(y) > t,

which thresholds a detection or test statistic, a function of the received signal, h(y) ∈
R. Here t is the threshold that determines the boundary between the two hypotheses.
A detector with a detection statistic of the form h(y) = wT y is called linear.

The performance of a detector ψ can be summarized by the pair (Pfp, Ptp), where

Pfp = Prob(ψ(y) = 1 | s(t) = 0)

is the false positive or alarm rate (the probability that the signal is falsely detected
when in fact there is no signal) and

Ptp = Prob(ψ(y) = 1 | s(t) = 1)
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is the true positive rate (the probability that the signal is detected correctly). The
optimal detector design problem is a bicriterion problem, with objectives Pfn and
Pfp. The optimal trade-off curve between Pfn and Pfp is called the receiver operating
characteristic (ROC).

The filtered output, with weight vector w ∈ R
n, is given by

wT y(t) = s(t)wT a+ wT v(t).

The power of the steering vector wT a (which is deterministic) at the filtered output
is given by (wT a)2, and the power of the undesired signal wT v at the filtered output
is wTΣw. The signal to noise ratio (SNR) is

S(w, a,Σ) =

(

wT a
)2

wTΣw
.

The optimal ROC curve is obtained using a linear detection statistic h(y) = w�T y
with w� maximizing

f(w, a,Σ) =
wT a√
wTΣw

,

which is the square root of the SNR (SSNR). (See, e.g., [28].) The weight vector that
maximizes SSNR is given by w = Σ−1a. When the covariance is a scaled identity
matrix, the matched filter w = a is optimal. Even when Σ is not a scaled identity
matrix, the optimal weight vector is called the matched filter.

4.2. Robust matched filtering. Matched filtering is often sensitive to the un-
certainty in the input parameters, namely, the steering vector and the noise covariance.
Robust matched filtering attempts to alleviate the sensitivity problem by taking into
account an uncertainty model in the detection problem. (The reader is referred to
the tutorial [15] for more on robust signal detection.)

We assume that the desired signal and covariance matrix are uncertain but known
to belong to a convex compact subset U of R

n×S
n
++. We make a technical assumption:

(20) a 	= 0 ∀(a,Σ) ∈ U .

In other words, we rule out the possibility that the signal we want to detect is zero.
The worst-case SSNR analysis problem of finding a steering vector and a covari-

ance that minimize SSNR for a given weight vector w can be written as

(21)
minimize f(w, a,Σ)
subject to (a,Σ) ∈ U ,

with variables a and Σ. The optimal value of this problem is the worst-case SSNR
(over the uncertainty set U).

The robust matched-filtering problem is to find a weight vector that maximizes
the worst-case SSNR, which can be cast as

(22)
maximize inf

(a,Σ)∈U
f(x, a,B)

subject to w 	= 0,

with variables w. (The thresholding rule h(y) = w�T y that uses a solution w� of this
problem as the weight vector yields the robust ROC curve that characterizes limits
of performance in the worst-case sense.)
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The robust signal detection setting described above is exactly the minimax set-
ting described in the introduction, where a is the steering vector and B is the noise
covariance. For this problem, we can see from the compactness of U and (20) that
assumption (7) holds. We can solve the robust matched-filtering problem (22), using
the minimax result for the fractional function (1).

We close by pointing out that we can handle convex constraints on the weight
vector. For example, in robust beamforming, a special type of robust matched-filtering
problem, we often want to choose the weight vector that maximizes the worst-case
SSNR, subject to a unit array gain for the desired wave and rejection constraints on
interferences [22]. This problem can also be solved using Theorem 1.

4.3. Numerical example. As an illustrative example, we consider the case
when a = (2, 3, 2, 2) is fixed (with no uncertainty) and the noise covariance Σ is
uncertain and has the form

⎡

⎢

⎢

⎣

1 − + −
1 ? +

1 ?
1

⎤

⎥

⎥

⎦

.

(Only the upper triangular part is shown because the matrix is symmetric.) Here,
“+” means that Σij ∈ [0, 1], “−” means that Σij ∈ [−1, 0], and “?” means that
Σij ∈ [−1, 1]. Of course we assume Σ  0. The nominal noise covariance is taken as

Σ̄ =

⎡

⎢

⎢

⎣

1 −.5 .5 −.5
1.0 0.0 .5

1.0 0.0
1.0

⎤

⎥

⎥

⎦

.

Here, the upper-triangular part is shown since the matrix is symmetric. With the
nominal covariance, we compute the nominal optimal weight vector or filter.

The least-favorable covariance, found by solving the convex problem (8) corre-
sponding to the problem data above, is given by

Σlf =

⎡

⎢

⎢

⎣

1.00 0.00 .38 −.12
1.00 .41 .74

1.00 .23
1.00

⎤

⎥

⎥

⎦

.

With the least-favorable covariance, we compute the robust optimal weight vector or
filter.

Table 2 summarizes the results. The nominal optimal filter achieves an SSNR of
5.5 without uncertainty. In the presence of uncertainty, the SSNR achieved by the
filter can degrade rapidly; the worst-case SSNR level for the nominal optimal filter
is 3.0. The robust filter performs well in the presence of model mismatch; it has the
worst-case SSNR of 3.6, which is 20% larger than that of the nominal optimal filter.

5. Worst-case Sharpe ratio maximization. The minimax result has an im-
portant application in robust portfolio selection.

5.1. Mean-variance asset allocation. Since the pioneering work of Markowitz
[20], mean-variance (MV) analysis has been a topic of extensive research. In MV
analysis, the (percentage) returns of risky assets 1, . . . , n over a period are modeled
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Table 2

Robust matched-filtering results.

Nominal SSNR Worst-case SSNR
Nominal optimal filter 5.5 3.0
Robust optimal filter 4.9 3.6

as a random vector a = (a1, . . . , an) in R
n. The input data or parameters needed for

MV analysis are the mean μ and the covariance matrix Σ of a:

μ = E a, Σ = E (a− μ)(a− μ)T .

We assume that there is a risk-free asset with deterministic return μrf and zero vari-
ance.

A portfolio w ∈ R
n+1 is a finite linear combination of the assets. Let wi denote the

amount of asset i held throughout the period. A long position in asset i corresponds
to wi > 0, and a short position in asset i corresponds to wi < 0. The return of a
portfolio w = (w1, . . . , wn) is a (scalar) random variable wT a =

∑n
i=1 wiai, whose

mean and volatility (standard deviation) are μTw and
√
wTΣw, respectively. We

assume that an admissible portfolio w = (w1, . . . , wn) is constrained to lie in a convex
compact subset A of R

n. The portfolio budget constraint on w can be expressed,
without loss of generality, as 1Tw = 1. Here 1 is the vector of all ones. The set of
admissible portfolios subject to the portfolio budget constraint is given by

W =
{

w | w ∈ A, 1Tw = 1
}

.

The performance of an admissible portfolio is often measured by its reward-to-
variability or Sharpe ratio (SR):

S(w, μ,Σ) =
μTw − μrf√
wTΣw

.

The admissible portfolio that maximizes the ratio over W is called the tangency
portfolio (TP). The SR achieved by this portfolio is called the market price of risk. The
TP plays an important role in asset pricing theory and practice (see, e.g., [8, 19, 24]).

If the n risky assets with (single period) returns follow a ∼ N (μ,Σ), then

wT a ∼ N
(

wTμ,wTΣw
)

,

so the probability of outperforming the risk-free return μrf is

Prob
(

aTw > μrf

)

= Φ
(

μTw − μrf√
wTΣw

)

.

This probability is maximized by the TP.
SR maximization is related to the safety-first approach to portfolio selection [23],

through the Chebyshev bound. Suppose E a = μ, E (a−μ)T (a−μ) = Σ and otherwise
arbitrary. Then, E aTw = μTx and E (aTx − μTx)2 = wTΣw, so it follows from the
Chebyshev bound that

Prob
(

aTw ≥ μrf

)

≥ Ψ
(

μTw − μrf√
wTΣw

)

.

In the safety-first approach [23], we want to find a portfolio that maximizes the bound.
Since Ψ is increasing, this bound is also maximized by the TP.
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5.2. Worst-case SR maximization. The input parameters are estimated with
error. Conventional MV allocation is often sensitive to the uncertainty or the esti-
mation error in the parameters, meaning that optimal portfolios computed with an
estimate of the parameters can give very poor performance for another set of param-
eters that is similar and statistically hard to distinguish from the estimate; see, e.g.,
[4, 5, 14, 21], to name a few. Robust MV portfolio analysis attempts to systematically
alleviate the sensitivity problem of conventional MV allocation by explicitly incorpo-
rating an uncertainty model on the input data or parameters in a portfolio selection
problem and carrying out the analysis for the worst-case scenario under this model.
Recent work on robust portfolio optimization includes [9, 10, 11, 12, 18].

In this section, we consider the robust counterpart of the SR maximization prob-
lem. The reader is referred to [16] for the importance of this problem in robust MV
analysis. In this paper, we focus on the computational aspects of the robust counter-
part.

We assume that the expected return μ and covariance Σ of the asset returns are
uncertain but known to belong to a convex compact subset U of R

n × S
n
++. We also

assume there exists an admissible portfolio w̄ ∈ W of risky assets whose worst-case
mean return is greater than the risk-free return:

(23) there exists a portfolio w̄ ∈ W such that μTw > μrf for all (μ,Σ) ∈ U .

Worst-case SR maximization. The zero-sum game of choosing w from W , to
maximize the SR, and choosing (μ,Σ) from U , to minimize the SR, is associated with
the following two problems:

• worst-case SR maximization problem of finding an admissible portfolio w that
maximizes the worst-case SR (over the given model U of uncertainty)

(24)
maximize inf

(μ,Σ)∈U
S(w, μ,Σ)

subject to w ∈ W ,

• worst-case market price of risk analysis (MPRA) problem of finding the least-
favorable statistics (over the uncertainty set U), with portfolio weights chosen
optimally for the asset return statistics,

(25)
minimize sup

w∈W
S(w, μ,Σ)

subject to (μ,Σ) ∈ U .

The SR is not a fractional function of the form (1), so we cannot apply Theorem 1
directly to the zero-sum game given above. We can get around this difficulty by using
the fact that when the domain is restricted to W , the SR has the form (1)

μTw − μrf√
wTΣw

=
wT (μ− μrf1)√

wTΣw
= f(w, μ− μrf1,Σ) ∀w ∈ W

and

(26) S(w, μ,Σ) = f(tw, μ− μrf1,Σ), w ∈ W , t > 0,

whenever S(w, μ,Σ) > 0.
The set

X = cl {tw ∈ R
n | w ∈ W , t > 0}\{0},
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where clA means the closure of the set A and A\B means the complement of B in A,
is a cone in R

n, with X ∪ {0} closed and convex. Assumption (23), along with the
compactness of U , means that

inf
(μ,Σ)∈U

w̄T (μ− μrf1) > 0.

We can therefore apply Theorem 1 to the zero-sum game of choosing w from X , to
maximize f(x, μ−μrf1,Σ), and choosing (μ,Σ) from U , to minimize f(x, μ−μrf1,Σ).

The max-min and min-max problems associated with the game are
• max-min problem

(27)
maximize inf

(μ,Σ)∈U
f(x, μ− μrf1,Σ)

subject to x ∈ X ,

• min-max problem

(28)
minimize sup

x∈X
f(x, μ− μrf1,Σ)

subject to (μ,Σ) ∈ U .

According to Theorem 1, the two problems have the same optimal value:

(29) sup
x∈X

inf
(μ,Σ)∈U

f(x, μ− μrf1,Σ) = inf
(μ,Σ)∈U

sup
x∈X

f(x, μ− μrf1,Σ).

As a result, the SR satisfies the minimax equality

sup
w∈W

inf
(μ,Σ)∈U

S(w, μ,Σ) = inf
(μ,Σ)∈U

sup
w∈W

S(w, μ,Σ),

which follows from (26) and (29).
From Proposition 1, we can see that the min-max problem (28) is equivalent to

the convex problem

(30) minimize (μ− μrf1 + λ)TΣ−1(μ− μrf1 + λ)
subject to (μ,Σ) ∈ U , λ ∈ W⊕

in which the optimization variables are μ ∈ R
n, Σ = ΣT ∈ R

n×n, and λ ∈ R
n. Here

W⊕ is the positive conjugate cone W , which is equal to the dual cone X� of X :

X ∗ = W⊕ =
{

λ ∈ R
n | λTw ≥ 0 ∀w ∈ W

}

.

The convex problem (30) has a solution, say, (μ�,Σ�, λ�). Then,

x� = Σ�−1(μ� − μrf1 + λ�) ∈ X

is a unique solution of the max-min problem (27) (up to positive scaling). Moreover,
the saddle-point property
(31)
f(x, μ�−μrf1,Σ�) ≤ f(x�, μ�−μrf1,Σ�) ≤ f(x�, μ−μrf1,Σ), x ∈ X , (μ,Σ) ∈ U ,

holds. We can see from (26) that

(32) S(w, μ�,Σ�) ≤ S(w�, μ�,Σ�) ≤ S(w�, μ,Σ) ∀w ∈ W ∀(μ,Σ) ∈ U .
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Finally, since 1Tx ≥ 0 for all x ∈ X , we have

1TΣ�−1(μ� − μrf1 + λ�) ≥ 0.

If x� satisfies 1Tx� > 0, the portfolio

(33) w� =
(

1/1Tx�
)

x� =
1

1TΣ�−1(μ� − μrf1 + λ�)
Σ�−1(μ� − μrf1 + λ�)

satisfies the budget constraint and is admissible (i.e., w� ∈ W); i.e., it is a solution
to the worst-case SR maximization (24). Moreover, it is the unique solution to the
worst-case SR maximization (24). The case of 1Tx� = 0 may arise when the set W
is unbounded. In this case, the worst-case SR maximization problem (24) has no
solution, so the game involving the SR has no saddle point.

Minimax properties of the SR. The results established above are summarized
in the following proposition.

Proposition 3. Suppose that the uncertainty set U is compact and convex.
Suppose further that Assumption (23) holds. Let (μ�,Σ�, λ�) be a solution to the
convex problem (30). Then, we have the following:

(i) If 1TΣ−1(μ − μrf1 + λ�) > 0, then the triple (w�, μ�,Σ�) with w� in (33)
satisfies the saddle-point property (32), and w� is the unique solution to the
worst-case SR maximization problem (24).

(ii) If 1TΣ−1(μ − μrf1 + λ�) = 0, then the optimal value of the worst-case SR
maximization problem (24) is not achieved by any portfolio in W.

Moreover, the minimax equality

sup
w∈W

inf
(μ,Σ)∈U

S(w, μ,Σ) = inf
(μ,Σ)∈U

sup
w∈W

S(w, μ,Σ)

holds regardless of the existence of a solution.
The worst-case MPRA problem (25) is equivalent to the min-max problem (28),

which is in turn equivalent to the convex problem (30). This proposition shows that
the TP of the least-favorable model (μ�,Σ�) solves the worst-case SR maximization
problem (24). The saddle-point property (32) means that the portfolio w� in (33) is
the TP of the least-favorable model (μ�,Σ�). The portfolio is called the robust TP.

5.3. Numerical example. We illustrate the result with a synthetic example,
with n = 7 risky assets. The risk-free return is taken as μrf = 5.

Setup. The nominal returns μ̄i and variances σ̄2
i of the risky assets are taken as

μ̄ = [10.3 10.5 5.5 10.5 110 14.4 10.1]T ,

σ̄ = [11.3 18.1 6.8 22.7 24.0 14.7 20.9]T .

The nominal correlation matrix Ω̄ is

Ω̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.00 .07 −.12 .43 −.11 .44 .25
1.00 .73 −.14 .39 .28 .10

1.00 .14 .50 .52 −.13
1.00 .04 .35 .38

1.00 .70 .04
1.00 −.09

1.00

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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The nominal covariance is

Σ̄ = diag(σ̄)Ω̄ diag(σ̄),

where we use diag(u1, . . . , um) to denote the diagonal matrix with diagonal entries
u1, . . . , um.

The mean uncertainty model used in our study is

|μi − μ̄i| ≤ 0.3|μ̄i|, i = 1, . . . , 7,
∣

∣1Tμ− 1T μ̄
∣

∣ ≤ 0.15
∣

∣1T μ̄
∣

∣ .

These constraints mean that the possible variation in the expected return of each
asset is at most 30%, and the possible variation in the expected return of the portfolio
(1/n)1 (in which a fraction 1/n of the budget is allocated to each asset of the n assets)
is at most 15%. The covariance uncertainty model used in our study is

∣

∣Σij − Σ̄ij
∣

∣ ≤ 0.3
∣

∣Σ̄ij
∣

∣ , i, j = 1, . . . , 7,
∥

∥Σ − Σ̄
∥

∥

F
≤ 0.15

∥

∥Σ̄
∥

∥

F
.

(Here, ‖A‖F denotes the Frobenius norm of A, i.e., ‖A‖F = (
∑n

i,j=1 A
2
ij)

1/2.) These
constraints mean that the possible variation in each component of the covariance
matrix is at most 30% and the possible deviation of the covariance from the nominal
covariance is at most 15% in terms of the Frobenius norm.

We consider the case when short selling is allowed in a limited way as follows:

(34) w = wlong − wshort, wlong, wshort � 0, 1Twshort ≤ η1Twlong,

where η is a positive constant and wlong and wshort represent the total long and
short positions at the beginning of the period, respectively. (w � 0 means that w is
componentwise nonnegative.) The last constraint limits the total short position to
some fraction η of the total long position. In our numerical study, we take γ = 0.3.

The asset constraint set is given by the cone

W =
{

w ∈ R
n | w = wlong − wshort, A

[

wlong

wshort

]

� 0
}

,

where

A =

⎡

⎣

−I 0
0 −I

−γ1T 1T

⎤

⎦ ∈ R
(2n+1)×(2n).

A simple argument based on linear programming duality shows that the dual cone of
X = W is given by

X ∗ =
{

λ ∈ R
n

∣

∣

∣

∣

there exists y � 0 such that AT y +
[

λ
−λ

]

= 0
}

.

Comparison results. We can find the robust TP by applying Theorem 1 to
the corresponding problem (27) with the asset allocation constraints and uncertainty
model described above. The nominal TP can be found using Theorem 1 with the
singleton U = {(μ̄, Σ̄)}.
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Table 3

Nominal and worst-case SRs of the nominal and robust TPs.

Nominal SR Worst-case SR
Nominal TP 0.74 0.22
Robust TP 0.57 0.36

Table 4

Outperformance probability of the nominal and robust TPs.

Pnom Pwc

Nominal TP 0.77 0.59
Robust TP 0.71 0.64

Table 3 shows the nominal and worst-case SRs of the nominal optimal and robust
optimal allocations. In comparison with the market portfolio, the robust market
portfolio shows a relatively small decrease in the SR, in the presence of possible
variations in the parameters. The SR of the robust market portfolio decreases about
39% from 0.57 to 0.36, while the SR of the nominal market portfolio decreases about
70% from 0.74 to 0.22.

Table 4 shows the probabilities of outperforming the risk-free asset for the nominal
optimal and robust optimal weight allocations, when the asset returns follow a nor-
mal distribution. Here, Pnom is the probability of beating the risk-free asset without
uncertainty, called the outperformance probability, and Pwc is the worst-case prob-
ability of outperforming the risk-free asset with uncertainty. The nominal optimal
TP achieves Pnom = 0.77, which corresponds to 77% of outperforming the risk-free
asset without uncertainty. However, in the presence of uncertainty in the parameters,
its performance degrades rapidly; the worst-case outperformance probability for the
nominal optimal discriminant is 59%. The robust optimal allocation performs well
in the presence of uncertainty in the parameters, with the worst-case outperformance
probability 5% higher than that of the nominal optimal allocation.

6. Conclusions. The fractional function f(x, a,B) = aTx/
√
xTBx comes up in

many contexts, some of which are discussed above. In this paper, we have established
a minimax result for this function and a general computational method, based on
convex optimization, for computing a saddle point.

The arguments used to establish the minimax result do not appear to be extensible
to other fractional functions that have a similar form. For instance, the extension to
a general fractional function of the form

g(x,A,B) =
xTAx

xTBx
,

which is the Rayleigh quotient of the matrix pair A ∈ R
n×n and B ∈ R

n×n evaluated
at x ∈ R

n, is not possible; see, e.g., [31] for a counterexample. However, the arguments
can be extended to the special case when A is a dyad, i.e., A = aaT , with a ∈ R

n,
and X = R

n\{0}. In this case, the minimax equality

sup
x �=0

inf
(a,B)∈U

(

xT a
)2

xTBx
= inf

(a,B)∈U
sup
x �=0

(

xT a
)2

xTBx

holds with assumption (7); see [17] for the proof.
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Appendix A. Proofs.

A.1. Proof of Proposition 1. We first show that the optimal value of (8) is
positive. We start by noting that

(35) inf
(a,B)∈U

x̄T a√
x̄TBx̄

> 0,

with x̄ in (7), and

(36) inf
(a,B)∈U ,λ∈X ∗

x̄T (a+ λ)√
x̄TBx̄

= inf
(a,B)∈U

inf
λ∈X ∗

x̄T (a+ λ)√
x̄TBx̄

= inf
(a,B)∈U

x̄Ta√
x̄TBx̄

.

Here, we have used (35) and infλ∈X ∗ x̄Tλ = 0. By the Cauchy–Schwarz inequality,
xT (a+ λ)/

√
xTBx is maximized over nonzero x by x = B−1(a+ λ), so

sup
x �=0

xT (a+ λ)/
√
xTBx =

[

(a+ λ)TB−1(a+ λ)
]1/2

.

It follows from the minimax inequality (5), (35), and (36) that

inf
(a,B)∈U ,λ∈X ∗

[

(a+ λ)TB−1(a+ λ)
]1/2

= inf
(a,B)∈U ,λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

≥ sup
x �=0

inf
(a,B)∈U ,λ∈X ∗

xT (a+ λ)√
xTBx

≥ inf
(a,B)∈U ,λ∈X ∗

x̄T (a+ λ)√
x̄TBx̄

> 0.

(Here, we use the fact that the weak minimax property for xT (a+ λ)/
√
xTBx holds

for any U ⊆ R
n × S

n
++ and X ⊆ R

n.)
We next show that (8) has a solution. There is a sequence

{(

a(i) + λ(i), B(i)
) ∣

∣

∣

(

a(i), B(i)
)

∈ U , λ(i) ∈ X ∗, i = 1, 2, . . .
}

such that

(37) lim
i→∞

(

a(i) + λ(i)
)T

B(i)−1
(

a(i) + λ(i)
)

= inf
(a,B)∈U ,λ∈X ∗

(a+ λ)TB−1(a+ λ).

Since U is a compact subset of R
n × S

n
++, we have

sup
{

λmax

(

B−1
) ∣

∣ for all B with (a,B) ∈ U
}

<∞.

(Here λmax(B) is the maximum eigenvalue of B.) Then, S1 = {a(i) + λ(i) ∈ R
n | i =

1, 2, . . . } must be bounded. (Otherwise, there arises a contradiction to (37).) Since
U is compact, the sequence S2 = {(a(i), B(i)) ∈ U | i = 1, 2, . . .} is bounded, which
along with the boundedness of S1 means that S3 = {λ(i) ∈ R

n | i = 1, 2, . . .} is
also bounded. The bounded sequences S2 and S3 have convergent subsequences,
which converge to, say, (a�, B�) and λ�, respectively. Since U and X ∗ are closed,
(a�, B�) ∈ U and λ� ∈ X ∗. The triple (a�, B�, λ�) achieves the optimal value of (8).
Since the optimal value is positive, a� + λ� 	= 0.
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The equivalence between (4) and (8) follows from the following implication:

(38) sup
x∈X

xT a > 0 =⇒ sup
x∈X

xT a√
xTBx

= inf
λ∈X ∗

[

(a+ λ)TB−1(a+ λ)
]1/2

.

Then, (4) is equivalent to

minimize inf
λ∈X ∗

(a+ λ)TB−1(a+ λ)

subject to (a,B) ∈ U .

It is now easy to see that (4) is equivalent to (8).
To establish the implication, we show that

(39) sup
x∈X

xT a√
xTBx

= sup
x �=0

inf
λ∈X ∗

xT (a+ λ)√
xTBx

.

First, suppose that x ∈ X . Then, λTx ≥ 0 for any λ ∈ X ∗ and 0 ∈ X ∗, so
infλ∈X ∗ λTx = 0. Thus,

inf
λ∈X ∗

xT (a+ λ)√
xTBx

=
xT a√
xTBx

.

Next, suppose that x 	∈ X ∪{0}. Note from X ∗∗ = X ∪{0} that there exists a nonzero
λ̄ ∈ X ∗, with λ̄Tx < 0. Then,

inf
λ∈X ∗

xT (a+ λ)√
xTBx

≤ inf
t>0

(

xT a√
xTBx

+
txT λ̄√
xTBx

)

= −∞ ∀x 	∈ X ∪ {0}.

When supx∈X x
Ta > 0, we have from (39) that

inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

> 0.

By the Cauchy–Schwarz inequality,

inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

[

(a+ λ)TB−1(a+ λ)
]1/2

=
[

inf
λ∈X ∗

(a+ λ)TB−1(a+ λ)
]1/2

.

Since (a + λ)TB−1(a + λ) is strictly concave in λ, we can see that there is λ� such
that

(40) inf
λ∈X ∗

(a+ λ)TB−1(a+ λ) = (a+ λ�)TB−1(a+ λ�).

Then,

sup
x �=0

xT (a+ λ�)√
xTBx

= inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

.

As will be seen soon, x� = B−1(a+ λ�) satisfies

(41)
x�T (a+ λ�)√
x�TBx�

= inf
λ∈X ∗

x�T (a+ λ)√
x�TBx�

.
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Therefore,

sup
x �=0

inf
λ∈X ∗

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

.

Taken together, the results established above show that

sup
x∈X

xTa√
xTBx

= sup
x �=0

inf
λ∈X ∗

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

sup
x �=0

xT (a+ λ)√
xTBx

= inf
λ∈X ∗

[

(a+ λ)TB−1(a+ λ)
]1/2

.

We complete the proof by establishing (41). To this end, we derive explicitly the
optimality condition for λ� to satisfy (40):

(42) 2x�T (λ− λ�) ≥ 0 ∀λ ∈ X ∗,

with x� = B�−1(a+ λ�). (See [7, section 4.2.3].) We now show that x� satisfies (41).
To this end, we note that λ̄ is optimal for (41) if and only if

〈

∇λ

(

x�T (a+ λ)
)2

x�TBx�

∣

∣

∣

∣

∣

λ̄

,
(

λ− λ̄
)

〉

≥ 0 ∀λ ∈ X ∗.

Here ∇λh(λ)|λ̄ denotes the gradient of h at the point λ̄. We can write the optimality
condition as

2
x�T

(

a+ λ̄
)

x�T B̄x�
x�T

(

λ− λ̄
)

≥ 0 ∀λ ∈ X ∗.

Substituting λ̄ = λ� and noting that (a + λ)�Tx�/x�TB�x� = 1, the optimality
condition reduces to (42). Thus, we have shown that λ� is optimal for (41).

A.2. Proof of Theorem 1. We will establish the following claims:
• x� = B�−1(a� + λ�) ∈ X .
• (x�, a�, λ�, B�) satisfies the saddle-point property

(43)
xT (a� + λ�)√

xTB�x
≤ x�T (a� + λ�)√

x�TB�x�
≤ x�T (a+ λ)√

x�TBx�
∀x 	= 0 ∀λ ∈ X ∗ ∀(a,B) ∈ U .

• x� and λ� are orthogonal to each other:

(44) x�Tλ� = 0.

The claims of Theorem 1 follow directly from the claims above. By definition of
the dual cone, we have λ�Tx ≥ 0 for all x ∈ X and 0 ∈ X ∗. It follows from (43) and
(44) that

xT a�√
xTB�x

≤ xT (a� + λ�)√
xTB�x

≤ x�T (a� + λ�)√
x�TB�x�

=
x�T a�√
x�TB�x�

≤ x�Ta√
x�TBx�

∀x ∈ X ∀(a,B) ∈ U .
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The saddle-point property (43) is equivalent to showing that

(45) sup
x �=0

xT (a� + λ�)√
xTB�x

=
x�T (a� + λ�)√
x�TB�x�

and

(46) inf
(a,B)∈U ,λ∈X ∗

x�T (a+ λ)√
x�TBx�

=
x�T (a� + λ�)√
x�TB�x�

.

Here, (45) follows from the Cauchy–Schwarz inequality.
We establish (46) by showing an equivalent claim

inf
(c,B)∈V

x�T c√
x�TBx�

=
x�T c�√
x�TB�x�

,

where

c� = a� + λ�, V = {(a+ λ,B) ∈ R
n × S

n
++ | (a,B) ∈ U , λ ∈ X ∗}.

The set V is closed and convex.
We know that (c�, B�) is optimal for the convex problem

(47)
minimize g(c, B) = cTB−1c
subject to (c, B) ∈ V ,

with variables c ∈ R
n and B = BT ∈ R

n×n. From the optimality condition of this
problem that (c�, B�) satisfies, we will prove that (c�, B�) is also optimal for the
problem

(48) minimize x�T c/
√
x�TBx�

subject to (c, B) ∈ V ,

with variables c ∈ R
n and B = BT ∈ R

n×n. The proof is based on an extension of
the arguments used to establish (41).

We derive explicitly the optimality condition for the convex problem (47). The
pair (c�, B�) must satisfy the optimality condition
〈

∇cg(c, B)|(c�,B�) , (c− c�)
〉

+
〈

∇Bg(c, B)|(c�,B�) , (B − B�)
〉

≥ 0 ∀(c, B) ∈ V

(see [7, section 4.2.3]). Here (∇cf(c, B)|(c̄,B̄),∇Bg(c, B)|(c̄,B̄)) denotes the gradient of
f at the point (c, B). Using ∇c(cTB−1c) = 2B−1c, ∇B(cTB−1c) = −B−1ccTB−1,
and 〈X,Y 〉 = Tr(XY ) for X,Y ∈ S

n, where Tr denotes trace, we can express the
optimality condition as

2c�TB�−1(c− c�) − TrB�−1c�c�TB�−1(B −B�) ≥ 0 ∀(c, B) ∈ V

or equivalently

(49) 2x�T (c− c�) − x�T (B −B�)x� ≥ 0 ∀(c, B) ∈ V ,

with x� = B�−1c�.
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To establish the optimality of (c�, B�) for (48), we show that a solution of (48) is
also a solution to the optimization problem

(50) minimize
(

x�T c
)2
/
(

x�TBx�
)

subject to (c, B) ∈ V ,

with variables c ∈ R
n and B = BT ∈ R

n×n and vice versa. To show that (50) is a
convex optimization problem, we must show that the objective is a convex function
of c and B. To do so, we express the objective as the composition

(

x�T c
)2

x�TBx�
= g(H(c, B)),

where g(u, t) = u2/t and H is the function

H(c, B) =
(

x�T c, x�TBx�
)

.

The function H is linear (as a mapping from c and B into R
2), and the function g

is convex (provided t > 0, which holds here). Thus, the composition f is a convex
function of a and B. (See [7, section 3].)

This equivalence between (48) and (50) follows from

x�T c/
(

x�TBx�
)1/2

> 0 ∀(c, B) ∈ V ,

which is a direct consequence of the optimality condition (49):

2x�T c ≥ 2x�T c� + x�T (B −B�)x�

= x�T c� + x�T (c� −B�x�) + x�TBx�

= x�TB�−1x� + x�TBx�

> 0 ∀(c, B) ∈ V .

We now show that (c�, B�) is optimal for (50) and hence for (48). The optimality
condition for (50) is that a pair (c̄, B̄) is optimal for (50) if and only if
〈

∇c

(

x�T c
)2

x�TBx�

∣

∣

∣

∣

∣

(c̄,B̄)
, (c− c̄)

〉

+

〈

∇B

(

x�T c
)2

x�TBx�

∣

∣

∣

∣

∣

(c̄,B̄)
,
(

B − B̄
)

〉

≥ 0 ∀(c, B) ∈ V

(see [7, section 4.2.3]). Using

∇c

(

x�T c
)2

x�TBx�
= 2

cTx�

x�TBx�
x�, ∇B

(

x�T c
)2

x�TBx�
= −

(

cTx�
)2

(x�TBx�)2
x�x�T ,

we can write the optimality condition as

2
x�T c̄

x�T B̄x�
x�T (c− c̄) − Tr

(

x�T c̄
)2

(

x�T B̄x�
)2x

�x�T
(

B − B̄
)

= 2
x�T c̄

x�T B̄x�
x�T (c− c̄) −

(

x�T c̄
)2

(

x�T B̄x�
)2x

�T
(

B − B̄
)

x�

≥ 0 ∀(c, B) ∈ V .
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Substituting c̄ = c�, B̄ = B�, and noting that c�Tx�/x�TB�x� = 1, the optimality
condition reduces to

2x�T (c− c�) − x�T (B −B�)x� ≥ 0 ∀(c, B) ∈ V ,

which is precisely (49). Thus, we have shown that (c�, B�) is optimal for (50), which
in turn means that it is also optimal for (48).

We next show by way of contradiction that x� ∈ X . Suppose that x� 	∈ X . Then,
it follows from X ∗∗ = X ∪{0} that there is λ̄ ∈ X ∗ such that λ̄Tx� < 0. For any fixed
(ā, B̄) in U , we can see from (43) (already established) that

inf
(a,B)∈U , λ∈X ∗

x�T (a+ λ)√
x�TBx�

≤ inf
λ∈X ∗

x�T (ā+ λ)√
x�T B̄x�

≤ x�T ā√
x�T B̄x�

+ inf
t≥0

tx�T λ̄√
x�T B̄x�

= −∞.

However, this is contradictory to the fact that

x�T (a� + λ�)√
x�TB�x�

= inf
(a,B)∈U , λ∗∈X ∗

x�T (a+ λ)√
x�TBx�

must be finite.
We complete the proof by showing λ�Tx� = 0. Since 0 ∈ X ∗, the saddle-point

property (43) implies that

x�T (a� + λ�)√
x�TB�x�

≤ x�Ta�√
x�TB�x�

,

which means x�Tλ� ≤ 0. Since λ ∈ X ∗ and x� ∈ X , we also have x�Tλ� ≥ 0.

A.3. Proof of Proposition 2. Let γ be the optimal value of (3):

(51) γ = sup
x∈X

inf
(a,B)∈U

xT a√
xTBx

.

We can see that for any x ∈ X , the set X = {(
√
xTBx, xT a) | (a,B) ∈ U} cannot lie

entirely above the line r = γσ in the (σ, r) space.
Using the Cauchy–Schwarz inequality, we can show that for any nonzero x and y

(52)
1
2

(√
xTBx+

√

yTBy
)

≥
(

(

x+ y

2

)T

B

(

x+ y

2

)

)1/2

.

Here equality holds if and only if x and y are linearly dependent.
Suppose that there are two solutions x� and y� which are not linearly dependent.

Then, the two sets

X =
{(√

x�TBx�, x�T a
) ∣

∣

∣ (a,B) ∈ U
}

, Y =
{(

√

y�TBy�, y�Ta
) ∣

∣

∣ (a,B) ∈ U
}

lie on and above, but cannot lie entirely above, the line r = γσ in the (σ, r) space. If
x� and y� are not linearly dependent, then it follows from (52) and the compactness
of U that the set Z = {(

√
z�TBz�, z�Ta) | (a,B) ∈ U}, with z� = (x� + y�)/2, lies

entirely above the line r = γσ. Therefore, we have

inf
(a,B)∈U

z�Ta√
z�TBz�

> γ,

which is contradictory to the definition of γ given in (51).
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[31] S. Verdú and H. Poor, On minimax robustness: A general approach and applications, IEEE

Trans. Inform. Theory, 30 (1984), pp. 328–340.



SIAM J. OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 1368–1391

TWO ALGORITHMS FOR THE MINIMUM ENCLOSING BALL
PROBLEM∗

E. ALPER YILDIRIM†

Abstract. Given A := {a1, . . . , am} ⊂ Rn and ε > 0, we propose and analyze two algorithms for
the problem of computing a (1+ ε)-approximation to the radius of the minimum enclosing ball of A.
The first algorithm is closely related to the Frank–Wolfe algorithm with a proper initialization applied
to the dual formulation of the minimum enclosing ball problem. We establish that this algorithm
converges in O(1/ε) iterations with an overall complexity bound of O(mn/ε) arithmetic operations.
In addition, the algorithm returns a “core set” of size O(1/ε), which is independent of both m and n.
The latter algorithm is obtained by incorporating “away” steps into the former one at each iteration
and achieves the same asymptotic complexity bound as the first one. While the asymptotic bound on
the size of the core set returned by the second algorithm also remains the same as the first one, the
latter algorithm has the potential to compute even smaller core sets in practice, since, in contrast
to the former one, it allows “dropping” points from the working core set at each iteration. Our
analysis reveals that the leading terms in the asymptotic complexity analysis are reasonably small.
In contrast to the first algorithm, we also establish that the second algorithm asymptotically exhibits
linear convergence, which provides further insight into our computational results, indicating that the
latter algorithm indeed terminates faster with smaller core sets in comparison with the first one.
We also discuss how our algorithms can be extended to compute an approximation to the minimum
enclosing ball of more general input sets without sacrificing the iteration complexity and the bound
on the core set size. In particular, we establish the existence of a core set of size O(1/ε) for a much
wider class of input sets. We adopt the real number model of computation in our analysis.
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1. Introduction. Given a finite set of points A := {a1, . . . , am} ⊂ R
n, we are

concerned with the problem of computing an approximation to the minimum enclosing
ball of A, which we shall denote by MEB(A).

For c ∈ R
n and a nonnegative ρ ∈ R, let Bc,ρ ⊂ R

n denote the ball centered at c
with radius ρ, i.e.,

Bc,ρ := {x ∈ R
n : ‖x− c‖ ≤ ρ},

where ‖ · ‖ denotes the Euclidean norm.
Given ε > 0, a ball Bc,ρ is said to be a (1 + ε)-approximation to MEB(A) if

(1) A ⊂ Bc,ρ, ρ ≤ (1 + ε)ρA,

where BcA,ρA := MEB(A).
A subset X ⊆ A is said to be an ε-core set (or a core set) of A if

(2) ρX ≤ ρA ≤ (1 + ε)ρX ,

where BcX ,ρX := MEB(X ). Small core sets play an important role in designing efficient
algorithms for large-scale problems, since they provide a compact representation of
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the input set A. If a small ε-core set X is available, then solving the problem on X
already yields a good approximation to MEB(A). Since the center cA of MEB(A) lies
in the convex hull of A (cf. section 2), it follows from Carathéodory’s theorem that
there always exists a 0-core set of size at most n+ 1.

Minimum enclosing balls have numerous important applications in clustering,
nearest neighbor search, data classification, support vector machines, machine learn-
ing, facility location, collision detection, computer graphics, and military operations.
We refer the reader to [24] and the references therein. In particular, many of these
applications give rise to large-scale instances of the MEB problem, and a reasonably
small accuracy suffices for such applications.

The minimum enclosing ball problem has a fairly rich literature dating back to
at least the 19th century [37]. One of the earliest known solution methods is given by
Sylvester [38], which is attributed to Peirce, and later rediscovered by Chrystal [9].
The reader is referred to [6] for a detailed account of the earlier history of this problem.
More recent references include [25, 14, 28, 11, 8, 35, 7, 23, 22, 27, 31, 40, 16, 17, 4, 2,
24, 42, 13, 12, 29, 30, 21, 44, 32].

The earliest known algorithm due to Chrystal and Peirce [38, 9] computes the
exact minimum enclosing ball of m points in the plane in O(m2) operations in the
worst case. For a fixed dimension n, the minimum enclosing ball of m points can be
computed in O(m) operations [27, 40]. However, the dependence on the dimension
n is exponential. Bădoiu, Har-Peled, and Indyk [4] established the existence of an
ε-core set of size O(1/ε2). Note that the size of the core set is independent of m and n.
Based on this result, their algorithm can compute a (1+ε)-approximation to MEB(A)
in O

(

mn/ε2 + (1/ε10) log(1/ε)
)

operations. Bădoiu and Clarkson [2] and Kumar,
Mitchell, and Yıldırım [24] independently discovered the existence of an ε-core set of
size O(1/ε). As noted in [2], this improved core set result can be combined with the al-
gorithm of [4] to obtain an improved running time of O

(

mn/ε+ 1/ε5
)

. The algorithm
of [24] achieves a slightly improved complexity bound of O

(

mn/ε+ (1/ε4.5) log(1/ε)
)

using second-order cone programming combined with column generation. In addi-
tion, Bădoiu and Clarkson [2] proposed another simple algorithm that computes a
(1 + ε)-approximation in O(mn/ε2) operations. In another paper, the same authors
established a tight upper bound of �1/ε� on the size of an ε-core set [3]. However,
their construction is based on the assumption that n ≥ 
1/ε�. The algorithm of Pan-
igrahy [33] computes a (1 + ε)-approximation in O(mn/ε) operations. Note that this
algorithm has the best known dependence on ε, and each of these algorithms is poly-
nomial for fixed ε. If ε is viewed as part of the input data, the minimum enclosing ball
can be formulated as an instance of convex programming problem and can be solved
using the ellipsoid method in O

(

n3m log(1/ε)
)

operations [19]. Alternatively, interior-
point methods yield an overall complexity bound of O

(

n2m3/2 log(1/ε)
)

operations
if the problem is formulated as an instance of second-order cone programming [24].

In this paper, we focus on large-scale instances of the minimum enclosing ball
problem for which a reasonably small value of ε is satisfactory. Throughout this paper,
we adopt the real number model of computation [5], i.e., we assume that arithmetic
operations with real numbers and comparisons can be done at unit cost. We propose
and analyze two algorithms that compute a (1 + ε)-approximation to MEB(A) for a
given ε > 0. Our first algorithm is closely related to the Frank–Wolfe algorithm [15]
applied to the dual formulation of the problem. At each iteration, the algorithm can
only add points to the working core set. The second algorithm is obtained by incorpo-
rating “away” steps into each iteration of the first one (see, e.g., [41, 20]). As such, the
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latter algorithm has the potential to compute a smaller core set than the former one,
since it allows “dropping” points from the working core set at each iteration. A simi-
lar algorithm has recently been proposed for the minimum-volume enclosing ellipsoid
problem [39]. Both of our algorithms compute a (1 + ε)-approximation to MEB(A)
in O(mn/ε) operations, which matches the currently best known dependence on ε. In
addition, each algorithm explicitly computes an ε-core set of size O(1/ε). Our analysis
reveals that the leading terms in the complexity analysis are reasonably small, which
further contributes to the efficiency of our algorithms. Furthermore, we establish that
the second algorithm asymptotically exhibits linear convergence. Our computational
results indicate that the sizes of the core sets returned by our algorithms are generally
much smaller than the corresponding worst-case estimates. Furthermore, as expected,
the latter algorithm almost always outperforms the former one both in terms of the
running time and the core set size.

We also discuss how our algorithms can be extended to compute an approximate
minimum enclosing ball of more general input sets. In particular, we establish that
the asymptotic core set size of O(1/ε) extends to a much larger class of input sets.

We first compare our algorithms with the one proposed by Panigrahy [33], which
computes a (1 + ε)-approximation to the minimum enclosing ball of a finite set of
points in O(mn/ε) arithmetic operations. Panigrahy’s algorithm starts with a ball
whose radius is known to be smaller than that of the minimum enclosing ball and
maintains an upper bound ζ on the difference between these two radii. At each iter-
ation, the algorithm moves the current ball toward the furthest point from the center
until the ball touches that particular point without changing the radius of the ball.
After repeating such iterations O(1/ζ) times, the algorithm either provides a certifi-
cate that an approximate solution has been computed or decides that either the radius
can be increased or the error bound ζ can be decreased. The whole procedure is then
repeated using the new parameters for the radius and the error bound. Similarly to
Panigrahy’s algorithm, each of our algorithms also constructs a sequence of balls, and
our first algorithm moves the center toward the furthest point from the center of the
current ball at each iteration. However, the center moves by only a fraction of this
distance. Furthermore, the second algorithm also allows us to move the current center
away from the closest point in the working core set. Unlike Panigrahy’s algorithm,
our algorithms construct balls of strictly increasing radii in each iteration, and the ra-
dius and the error bound are updated at each iteration. While Panigrahy’s algorithm
checks the termination criterion after each set of O(1/ζ) iterations, our algorithms
employ a simpler termination criterion in each iteration. This strategy has the poten-
tial advantage of earlier termination than that predicted by the theoretical worst-case
estimate. Finally, while Panigrahy exclusively works with an input set of finite points
with more general enclosing shapes, our algorithms can easily be modified to compute
an approximation of the minimum enclosing ball of a much wider class of input sets
without sacrificing the core set bound of O(1/ε).

After the first version of this manuscript had been submitted, Clarkson [10] an-
nounced several results concerning the convergence properties of the Frank–Wolfe
algorithm, which is the main ingredient in both of our algorithms. He studied the
problem of maximizing a general concave function over the unit simplex, of which the
dual formulation of the minimum enclosing problem is a special case. By giving a
general definition of an additive ε-core set, he established core set results for several
variants of the Frank–Wolfe algorithm in a more general setting. Due to the special
structure of the objective function in the dual formulation of the minimum enclosing
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ball problem, his additive core set definition almost matches with our multiplica-
tive core set definition given by (2). He presented an improved complexity bound of
O(mn/ε) for a slightly modified version of the algorithm of [2], which matches the
complexity bounds of our algorithms.

On the other hand, he establishes an ε-core set size of O(1/ε2) for the general
problem using his Algorithm 1.1, which, apart from the choice of the initial solutions,
coincides with our first algorithm that computes a core set of size O(1/ε). He pro-
poses a more sophisticated algorithm (cf. Algorithm 4.2 in [10]), which requires the
computation of the optimal solution of a sequence of subproblems restricted to the
smaller faces of the unit simplex, to establish the improved core set result of O(1/ε).
In addition, he also studies a variant of the Frank–Wolfe algorithm that uses “away”
steps (cf. Algorithm 5.1), for which he establishes a core set size of O(1/ε). However,
this algorithm differs from our second algorithm, since it again requires the computa-
tion of the optimal solution of a sequence of subproblems. In contrast, we establish a
core set size of O(1/ε) using much simpler (and lazier) algorithms. We derive explicit
small constants inside the asymptotic bounds. Finally, we extend each of our algo-
rithms to much more general input sets and establish the existence of core sets of size
O(1/ε). Therefore, while Clarkson’s results apply to a more general class of problems,
we achieve the same or stronger results using simpler algorithms for the special case
of the minimum enclosing ball problem, but we allow more general input sets.

This paper is organized as follows. In the remainder of this section, we define
our notation. In section 2, we discuss optimization formulations for the minimum
enclosing ball problem. Section 3 presents our first algorithm. The second algorithm
is the topic of section 4. We discuss the extensions of our algorithms in section 5.
The computational results are presented in section 6. Finally, we conclude the paper
with some future research directions in section 7.

1.1. Notation. Vectors are denoted by lowercase Roman letters. For a vector
p, pi denotes its ith component. Inequalities on vectors apply to each component.
We reserve ej for the jth unit vector. Uppercase Roman letters are reserved for
matrices. We use log(·) to denote the natural logarithm. Functions and operators are
denoted by uppercase Greek letters. Scalars except for m and n are represented by
lowercase Greek letters unless they represent components of a vector or elements of
a sequence of scalars, vectors, or matrices. We reserve i, j, and k for such indexing
purposes. Uppercase script letters are used for all other objects such as sets, balls,
and ellipsoids.

2. Optimization formulations. In this section, we review the optimization
formulations of the minimum enclosing ball problem. We remark that most of the
material of this section already appears in the earlier literature (see, e.g., [11, 26]).
Some results and proofs are included for the sake of completeness.

Let A := {a1, . . . , am} ⊂ R
n. The minimum enclosing ball of A can be computed

by solving the following optimization problem:

(P1) minc,ρ ρ
subject to

∥

∥ai − c
∥

∥ ≤ ρ, i = 1, . . . ,m,

where c ∈ R
n and ρ ∈ R are the decision variables. By squaring the constraints and

defining γ := ρ2, (P1) can be converted into the following optimization problem with
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smooth, convex quadratic constraints:

(P2) minc,γ γ
subject to

(ai)T ai − 2(ai)T c+ cT c ≤ γ, i = 1, . . . ,m.

The Lagrangian dual of (P2) is given by

(D) maxu Φ(u) :=
m
∑

i=1

ui(ai)Tai −
(

m
∑

i=1

uia
i

)T ( m
∑

i=1

uia
i

)

subject to
m
∑

i=1

ui = 1,

ui ≥ 0, i = 1, . . . ,m,

where u ∈ R
m is the decision variable.

Since (P2) is a concave maximization problem with linear constraints, it follows
from the Karush–Kuhn–Tucker optimality conditions that (cA, γA) ∈ R

n × R is an
optimal solution of (P2) if and only if there exists u∗ ∈ R

m such that

m
∑

i=1

u∗i = 1,(3a)

cA =
m
∑

i=1

u∗i a
i,(3b)

(ai)T ai − 2(ai)T cA + (cA)T cA ≤ γA, i = 1, . . . ,m,(3c)
u∗i
(

(ai)T ai − 2(ai)T cA + (cA)T cA − γA
)

= 0, i = 1, . . . ,m,(3d)
u∗ ≥ 0.(3e)

A simple manipulation of the optimality conditions reveals that

(4) γA = Φ(u∗),

which implies that u∗ ∈ R
m is an optimal solution of (D) and that strong duality

holds between (P2) and (D). Note that the center cA of the minimum enclosing ball
of A is given by a convex combination of the elements of A by (3b). In addition, it
follows from (3d) that only the components of u∗ corresponding to the points on the
boundary of MEB(A) can have a positive value.

Lemma 2.1. Let A = {a1, . . . , am}. The minimum enclosing ball of A exists and
is unique. Let u∗ ∈ R

m denote the optimal solution of (D). Then, MEB(A) = BcA,ρA ,
where

(5) cA =
m
∑

i=1

u∗i a
i, ρA =

√

Φ(u∗).

Proof. Note that A ⊂ B0,ρu , where ρu := maxi=1,...,m
∥

∥ai
∥

∥. By adding the
redundant constraint γ ≤ (ρu)2 to (P2), the feasible region becomes a closed and
bounded set and the objective function is continuous, which establishes the existence
of MEB(A). If there were two different minimum enclosing balls, one can then con-
struct a ball of smaller radius that encloses the intersection of the two balls and
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hence also A, which is a contradiction. The relationships (5) directly follow from the
discussions preceding the lemma.

By Lemma 2.1, MEB(A) can be computed by solving the dual problem (D), which
will be the basis of both of our algorithms in this paper. We close this section by the
following technical result, which will play an important role in finding a good initial
feasible solution in our algorithms. The reader is referred to [18, 4, 12] for the proof
of this result.

Lemma 2.2. Let A = {a1, . . . , am}, and let MEB(A) = BcA,ρA . Then, any
closed half-space that contains cA also contains at least one point aj ∈ A such that
∥

∥aj − cA
∥

∥ = ρA.

3. The first algorithm. Given A := {a1, . . . , am} ⊂ R
n and ε > 0, we present

our first algorithm that computes a (1 + ε)-approximation to MEB(A) in this section.

Algorithm 3.1 The first algorithm that computes a (1 + ε)-approximation to
MEB(A).
Require: Input set of points A = {a1, . . . , am} ⊂ R

n, ε > 0.
1: α← arg maxi=1,...,m

∥

∥ai − a1
∥

∥

2
, β ← arg maxi=1,...,m

∥

∥ai − aα
∥

∥

2;
2: u0

i ← 0, i = 1, . . . ,m;
3: u0

α ← 1/2, u0
β ← 1/2;

4: X0 ← {aα, aβ};
5: c0 ←

∑m
i=1 u

0
ia
i;

6: γ0 ← Φ(u0);
7: κ← arg maxi=1,...,m

∥

∥ai − c0
∥

∥

2
;

8: δ0 ←
(

∥

∥aκ − c0
∥

∥

2
/γ0
)

− 1;
9: k ← 0;

10: While δk > (1 + ε)2 − 1, do
11: loop
12: λk ← δk/[2(1 + δk)];
13: k ← k + 1;
14: uk ← (1 − λk−1)uk−1 + λk−1eκ;
15: ck ← (1 − λk−1)ck−1 + λk−1aκ;
16: Xk ← Xk−1 ∪ {aκ};
17: γk ← Φ(uk);
18: κ← arg maxi=1,...,m

∥

∥ai − ck
∥

∥

2;

19: δk ←
(

∥

∥aκ − ck
∥

∥

2
/γk
)

− 1;
20: end loop
21: Output ck,Xk, uk,

√

(1 + δk)γk.

We now describe Algorithm 3.1 in more detail. In step 1, the algorithm computes
the furthest point aα ∈ A from a1 ∈ A and then computes the furthest point aβ ∈ A
from aα. Steps 2 and 3 initialize the vector u0 ∈ R

m. Note that u0 is a feasible
solution of the dual problem (D). The core set X0 is initialized at step 4. At each
iteration, the algorithm implicitly constructs a “trial” ball with center ck and radius
(γk)1/2. By Lemma 2.1, this ball coincides with MEB(A) if and only if uk is an
optimal solution of (D). Otherwise, at least one point in A lies outside of this ball.
Note that δk satisfies

∥

∥aκ − ck
∥

∥

2 = (1 + δk)γk, where aκ ∈ A is the furthest point
from ck. It follows that the trial ball encloses A if its radius is expanded by a factor
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of (1 + δk)1/2, i.e., Φ(uk) ≤ Φ(u∗) ≤ (1 + δk)Φ(uk). Unless the termination criterion
is satisfied, the new center ck+1 is computed by shifting ck toward the furthest point
aκ, which is added to the working core set Xk+1, and uk+1 is updated accordingly
to ensure that dual feasibility is maintained. The algorithm continues in an iterative
manner by computing a new trial ball corresponding to uk+1.

Algorithm 3.1 is the adaptation of the Frank–Wolfe algorithm to the dual problem
(D). At each iteration, the quadratic objective function Φ(u) of (D) is linearized at
the current feasible solution uk. Since the feasible region of (D) is the unit simplex,
the unit vector eκ, where κ is the index of the furthest point in A from ck, solves the
linearized subproblem. It is easy to verify that

λk = arg max
λ∈[0,1]

Φ
(

(1 − λ)uk + λeκ
)

.

We remark that Algorithm 3.1 uses only the first-order approximation to the
objective function Φ. As such, each iteration is fairly cheap, but the number of iter-
ations is usually significantly higher than other algorithms that use second-order in-
formation such as interior-point methods. However, such general-purpose algorithms
become computationally infeasible for larger problems, since each iteration is usually
much more expensive. This observation provides one of our motivations to develop a
specialized algorithm for this problem.

3.1. Analysis of the first algorithm. This subsection is devoted to the anal-
ysis of Algorithm 3.1.

Lemma 3.1. u0 ∈ R
m satisfies γ0 = Φ(u0) ≥ (1/3)Φ(u∗) = (1/3)γA, where

u∗ ∈ R
m and γA are the optimal solution and the optimal value of (D), respectively.

Furthermore, δ0 ≤ 8.
Proof. For any vectors y, z ∈ R

n and any ϕ ∈ R, it is easy to verify that

(6) ‖(1 − ϕ)y + ϕz‖2 = (1 − ϕ)‖y‖2 + ϕ‖z‖2 − ϕ(1 − ϕ)‖y − z‖2.

Note that

(7) Φ(u0) = (1/2) ‖aα‖2 + (1/2)
∥

∥aβ
∥

∥

2 −
∥

∥(1/2)
(

aα + aβ
)∥

∥

2
= (1/4)

∥

∥aα − aβ
∥

∥

2
,

where we used (6) to derive the second equality. The proof is based on establishing
that at least one of aα and aβ is sufficiently away from the center cA of MEB(A).

First, suppose that
∥

∥a1 − cA
∥

∥ ≥ (1/
√

3)ρA, where ρA is the radius of MEB(A).
Let H be the hyperplane passing through cA that is perpendicular to a1 − cA. Let
H+ denote the closed half-space whose boundary is H and which does not contain a1.
By Lemma 2.2, H+ contains a point aj ∈ A such that

∥

∥aj − cA
∥

∥ = ρA. Therefore,
∥

∥aα − a1
∥

∥

2 ≥
∥

∥a1 − cA
∥

∥

2 + (ρA)2 ≥ (4/3)γA, where γA = Φ(u∗) = (ρA)2 is the
optimal value of (D). It follows from (7) that

Φ(u0) = (1/4)
∥

∥aβ − aα
∥

∥

2 ≥ (1/4)
∥

∥a1 − aα
∥

∥

2 ≥ (1/3)Φ(u∗).

Suppose now that
∥

∥a1 − cA
∥

∥ = θρA, where θ < 1/
√

3. In this case,
∥

∥a1 − aα
∥

∥ ≤
∥

∥a1 − cA
∥

∥+ ‖cA − aα‖, which implies that

‖cA − aα‖ ≥
∥

∥a1 − aα
∥

∥−
∥

∥a1 − cA
∥

∥ ≥ (1 + θ2)1/2ρA − θρA = [(1 + θ2)1/2 − θ]ρA,
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where we again invoked Lemma 2.2 to obtain a lower bound on
∥

∥a1 − aα
∥

∥. Therefore,
one more application of Lemma 2.2 yields

Φ(u0) = (1/4)
∥

∥aβ − aα
∥

∥

2

≥ (1/4)
(

‖aα − cA‖2 + (ρA)2
)

≥ (1/4)
(

1 + θ2 + θ2 − 2θ(1 + θ2)1/2 + 1
)

γA

= (1/2)
(

1 + θ2 − θ(1 + θ2)1/2
)

γA.

It is easy to verify that (1/2)
(

1 + θ2 − θ(1 + θ2)1/2
)

is a decreasing function of θ.
Since θ < 1/

√
3, it follows that

Φ(u0) ≥ (1/2) (1 + 1/3 − 2/3)γA = (1/3)Φ(u∗),

which completes the first part of the proof.
Let aκ be the furthest point in A from c0 = (1/2)(aα + aβ). Then,

∥

∥aκ − c0
∥

∥ ≤ ‖aκ − aα‖ +
∥

∥aα − c0
∥

∥ ,

≤
∥

∥aβ − aα
∥

∥+ (1/2)
∥

∥aβ − aα
∥

∥ = (3/2)
∥

∥aβ − aα
∥

∥ ,

where we used the definition of c0 and the fact that aβ is the furthest point in A
from aα to derive the second inequality. Therefore, δ0 = (‖aκ − c0‖2/γ0) − 1 ≤
[4(9/4)(γ0/γ0)] − 1 = 8, where we used (7). The second part of the assertion fol-
lows.

Lemma 3.1 establishes several properties of the initial feasible solution u0 ∈ R
m.

The next lemma relates the dual objective function values evaluated at the successive
iterates generated by Algorithm 3.1.

Lemma 3.2. For each k = 0, 1, . . . , the following relationship is satisfied:

(8) γk+1 = γk
(

1 +
δ2k

4(1 + δk)

)

.

Proof. Let aκ denote the furthest point from ck. Then, uk+1 =
(

1 − λk
)

uk+λkeκ.
Therefore,

γk+1 = Φ
(

(1 − λk)uk + λkeκ
)

= (1 − λk)
m
∑

i=1

uki (ai)T (ai) + λk(aκ)T (aκ) −
∥

∥

∥

∥

∥

(1 − λk)

(

m
∑

i=1

uki a
i

)

+ λkaκ

∥

∥

∥

∥

∥

2

= (1 − λk)

⎛

⎝

m
∑

i=1

uki (ai)T (ai) −
∥

∥

∥

∥

∥

m
∑

i=1

uki a
i

∥

∥

∥

∥

∥

2
⎞

⎠+ λk(1 − λk)

∥

∥

∥

∥

∥

m
∑

i=1

uki a
i − aκ

∥

∥

∥

∥

∥

2

= (1 − λk)γk + λk(1 − λk)
∥

∥aκ − ck
∥

∥

2

= (1 − λk)γk + λk(1 − λk)(1 + δk)γk

= γk
(

1 +
δ2k

4(1 + δk)

)

,

where we used (6) in the third equality, the definitions of ck and δk in the fourth and
fifth equalities, respectively, and the definition of λk in the last equality.
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We now focus on establishing an upper bound on the number of iterations required
to have an iterate uk with δk sufficiently small. To that end, let us define

(9) τν := min
{

k : δk ≤ 1
2ν

}

, ν = 0, 1, . . . .

Lemma 3.3. τν satisfies the following relationships:

τ0 ≤ 9,(10a)
τν − τν−1 ≤ 12.5(2ν) ν = 1, 2, . . . .(10b)

Proof. Let us first consider τ0. At each iteration k < τ0, we have δk > 1. By
Lemma 3.2,

γk+1 = γk
(

1 +
δ2k

4(1 + δk)

)

,

≥ γk(1 + 1/8),

where we used the fact that 1 + (1/4)(x2/(1 + x)) is an increasing function of x.
Iterating this inequality, we obtain γk+1 ≥ (9/8)k+1γ0. By Lemma 3.1 and the
feasibility of uk+1, we have

γA ≥ γk+1 ≥ (9/8)k+1γ0 ≥ (9/8)k+1 (γA/3) ,

which implies that τ0 ≤ k + 1 ≤ log(3)/ log(9/8) or, equivalently, that τ0 ≤ 9.
Let us now consider τν − τν−1 for ν = 1, 2, . . . . Let μ := τν−1. At each iteration

k with δk > 1/2ν, we similarly have

γk+1 = γk
(

1 +
δ2k

4(1 + δk)

)

≥ γk
(

1 +
1

22+ν(2ν + 1)

)

.

At iteration μ, we have δμ ≤ 1/2ν−1. Since the ball centered at cμ with radius
[(1 + δμ)γμ]1/2 encloses A, it follows that γμ ≤ γA ≤ (1 + δμ)γμ ≤ (1 + (1/2ν−1))γμ.
Together with the repeated application of the inequality above, we have

γA ≥ γμ+k ≥ γμ
(

1 +
1

22+ν(2ν + 1)

)k

≥ γA
1 + (1/2ν−1)

(

1 +
1

22+ν(2ν + 1)

)k

,

which implies that

τν − τν−1 ≤
log
(

1 + 1
2ν−1

)

log
(

1 + 1
22+ν(2ν+1)

)

≤ 1
2ν−1

1
22+ν(2ν+1) + 1

1
22+ν(2ν+1)

=
2
2ν

+ 8(2ν + 1)

≤ 9 + 8(2ν) ≤ (12.5)2ν,

where we used the inequalities log(1 + x) ≤ x for x > −1 and log(1 + x) ≥ x/(x+ 1)
for x > −1.

The following lemma establishes an upper bound on the number of iterations to
obtain an iterate with δk ≤ δ.
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Lemma 3.4. Let δ ∈ (0, 1). Algorithm 3.1 computes an iterate k satisfying δk ≤ δ
in at most 9 + 50/δ iterations.

Proof. Let σ be an integer such that 1/2σ ≤ δ ≤ 2/2σ. Therefore, after at most
τσ iterations, Algorithm 3.1 computes an iterate k satisfying δk ≤ δ. By Lemma 3.3,

τσ = τ0 +
σ
∑

ν=1

(τν − τν−1) ≤ 9 + 12.5
σ
∑

ν=1

2ν ≤ 9 + 25(2σ) ≤ 9 + 50/δ.

We now have all of the ingredients to establish the iteration complexity of Algo-
rithm 3.1.

Theorem 3.1. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), Algorithm 3.1

computes a (1 + ε)-approximation to MEB(A) in at most 9 + 25/ε iterations.
Proof. Let uη denote the final iterate computed by Algorithm 3.1, and let γη =

Φ(uη). Then, the trial ball centered at cη with radius [(1+ δη)γη]1/2 encloses A. Note
that uη is a feasible solution of (D), and δη ≤ (1+ε)2−1 by the termination criterion.
Therefore, (γη)1/2 ≤ ρA ≤ [(1 + δη)γη]1/2 ≤ (1 + ε)(γη)1/2, which implies that the
ball centered at cη with radius [(1 + δη)γη]1/2 is a (1 + ε)-approximation to MEB(A).

By Lemma 3.4, Algorithm 3.1 computes such an iterate with δ ≤ (1 + ε)2 − 1 in
at most 9 + 50/(2ε+ ε2) ≤ 9 + 25/ε iterations.

Theorem 3.1 establishes that Algorithm 3.1 converges in O(1/ε) iterations. The
next result presents the overall complexity.

Theorem 3.2. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), Algorithm 3.1

computes a (1 + ε)-approximation to MEB(A) in at most O(mn/ε) arithmetic opera-
tions.

Proof. The computation of the initial feasible solution u0 requires two furthest
point computations, which can be performed in O(mn) operations. At each iteration,
the dominating work is the computation of the furthest point from the center of the
current trial ball, which also requires O(mn) operations (note that γk can be updated
using (8) in O(1) operations). The result follows from Theorem 3.1.

We remark that the overall complexity of Algorithm 3.1 is linear in the number
of points m and also linear in the dimension n. As such, the worst-case running time
asymptotically matches the currently best known bound due to [33]. In particular,
Theorem 3.2 suggests that Algorithm 3.1 is especially well-suited for large instances
of the minimum enclosing ball problem where a moderately small value of ε (such as
10−3) would be satisfactory.

We close this section by establishing that Algorithm 3.1 explicitly computes a
core set of size O(1/ε), which also asymptotically matches the currently best known
bound.

Theorem 3.3. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), let η denote the

index of the final iterate computed by Algorithm 3.1. Then, Xη ⊆ A is an ε-core set
of A. Furthermore, |Xη| = O(1/ε).

Proof. Let uη denote the final iterate returned by Algorithm 3.1, and let γη =
Φ(uη). Clearly, the restriction of uη to its positive entries is a feasible solution of
the dual formulation of the minimum enclosing ball problem for Xη. Therefore, γη ≤
(ρXη)2 ≤ (ρA)2, where ρXη is the radius of MEB(Xη). However, γA = (ρA)2 ≤
(1 + δη)γη ≤ (1 + ε)2γη by Theorem 3.1. Combining these inequalities, we obtain
ρXη ≤ ρA ≤ (1 + ε)(γη)1/2 ≤ (1 + ε)ρXη as desired.

Note that |Xη| is precisely equal to the number of positive components of uη.
However, the initial solution u0 has only two positive components. Each iteration can
add at most one positive component to uk. Therefore, |Xη| ≤ 11 + 25/ε = O(1/ε) by
Theorem 3.1.
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4. The second algorithm. In this section, we describe our second algorithm,
which is a modification of Algorithm 3.1.

Algorithm 4.1 The second algorithm that computes a (1 + ε)-approximation to
MEB(A).
Require: Input set of points A = {a1, . . . , am} ⊂ R

n, ε > 0.
1: α← arg maxi=1,...,m

∥

∥ai − a1
∥

∥

2
, β ← arg maxi=1,...,m

∥

∥ai − aα
∥

∥

2;
2: u0

i ← 0, i = 1, . . . ,m;
3: u0

α ← 1/2, u0
β ← 1/2;

4: X0 ← {aα, aβ};
5: c0 ←

∑m
i=1 u

0
ia
i;

6: γ0 ← Φ(u0);
7: κ← arg maxi=1,...,m

∥

∥ai − c0
∥

∥

2
, ξ ← arg mini:ai∈X0

∥

∥ai − c0
∥

∥

2;

8: δ+0 ←
(

∥

∥aκ − c0
∥

∥

2
/γ0
)

− 1, δ−0 ← 1 −
(

∥

∥aξ − c0
∥

∥

2
/γ0
)

;

9: δ0 ← max{δ+0 , δ−0 };
10: k ← 0;
11: While δk > (1 + ε)2 − 1, do
12: loop
13: if δk > δ−k , then
14: λk ← δk/[2(1 + δk)];
15: k ← k + 1;
16: uk ← (1 − λk−1)uk−1 + λk−1eκ;
17: ck ← (1 − λk−1)ck−1 + λk−1aκ;
18: Xk ← Xk−1 ∪ {aκ};
19: else

20: λk ← min
{

δ−k
2(1−δ−k )

,
uk

ξ

1−uk
ξ

}

;

21: if λk = ukξ/(1 − ukξ ), then
22: Xk+1 ← Xk\{aξ};
23: else
24: Xk+1 ← Xk;
25: end if
26: k ← k + 1;
27: uk ← (1 + λk−1)uk−1 − λk−1eξ;
28: ck ← (1 + λk−1)ck−1 − λk−1aξ;
29: end if
30: γk ← Φ(uk);
31: κ← arg maxi=1,...,m

∥

∥ai − ck
∥

∥

2
, ξ ← arg mini:ai∈Xk

∥

∥ai − ck
∥

∥

2;

32: δ+k ←
(

∥

∥aκ − ck
∥

∥

2
/γk
)

− 1, δ−k ← 1 −
(

∥

∥aξ − ck
∥

∥

2
/γk
)

;

33: δk ← max{δ+k , δ
−
k };

34: end loop
35: Output ck,Xk, uk,

√

(1 + δk)γk.

Algorithm 4.1 starts off with the same initial solution u0 as the one computed by
Algorithm 3.1. At each iteration, the furthest point in A from the center ck of the
trial ball is computed as in Algorithm 3.1. In contrast, each iteration of Algorithm 4.1
also includes the computation of the closest point to ck among all points in Xk ⊆ A.
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Geometrically, the parameter δ−k is the largest number such that the current ball
shrunken by a factor of (1 − δ)1/2 does not contain any points in Xk for any δ > δ−k .
Algebraically, the step performed by Algorithm 4.1 in this case corresponds to moving
away from the vertex of the unit simplex that minimizes the linear approximation to
Φ(u) at uk, where the minimization is over the vertices {ej : ukj > 0}. The feasible
solution uk is updated in different ways based on these two computations. If δk = δ+k ,
then Algorithm 4.1 uses the exact same update as in Algorithm 3.1. Otherwise, the
new center ck+1 is obtained by moving the current center ck away from the closest
point aξ ∈ Xk. Therefore, Algorithm 4.1 is obtained by incorporating “away” steps
into Algorithm 3.1. For “away” steps, it is easy to verify that

(11) λk = arg max
λ∈[0,uk

ξ/(1−uk
ξ)]

Φ
(

(1 + λ)uk − λeξ
)

.

Note that the range of λ is chosen to ensure that the dual feasibility constraint uk+1 ≥
0 is satisfied.

4.1. Analysis of the second algorithm. The analysis of Algorithm 4.1 is
very similar to that of Algorithm 3.1. As in [39], we call iteration k a plus-iteration
if δk = δ+k . If δk = δ−k and λk = (δ−k )/[2(1 − δ−k )], then we call it a minus-iteration.
The working core set remains unchanged at a minus-iteration. Finally, if δk = δ−k
and λk = ukξ/(1− ukξ ), we then call it a drop-iteration, since the ξth component of uk

drops to 0 and aξ is removed from the working core set.
Our analysis mimics the analysis of [39] for a similar algorithm that computes

an approximation to the minimum-volume enclosing ellipsoid of a finite set of points.
The next lemma establishes a lower bound on the improvement at each plus- or
minus-iteration.

Lemma 4.1. At each plus- or minus-iteration,

(12) γk+1 ≥ γk
(

1 +
δ2k

4(1 + δk)

)

, k = 0, 1, . . . .

Proof. At a plus-iteration, the result directly follows from Lemma 3.2. At a
minus-iteration, a similar application of (6) reveals that

γk+1 = Φ
(

(1 + λk)uk − λkeξ
)

= γk
(

1 +
(δ−k )2

4(1 − δ−k )

)

.

The result easily follows from the observation that

(δ−k )2

4(1 − δ−k )
≥ (δ−k )2

4(1 + δ−k )

and that δ−k = δk at a minus-iteration.
Lemma 4.1 establishes that Algorithm 4.1 makes at least as much improvement

as Algorithm 3.1 at each plus- or minus-iteration. At a drop-iteration, it is easy to
show that γk+1 ≥ γk. However, we can no longer find a positive lower bound on
γk+1 − γk ≥ 0. Using similar reasoning as in [39], each drop-iteration can be paired
with the most recent plus-iteration k at which ukξ was increased from 0, except for
the αth and βth components, which were positive at the initial solution and may be
decreased to zero for the first time. Therefore, we can double the iteration count
(and add two iterations to account for the initial positive components of u0) in the
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analysis of Algorithm 3.1 to establish that Algorithm 4.1 can compute a (1 + ε)-
approximation to MEB(A) in at most twice as many iterations as that required by
Algorithm 3.1. Note that this does not affect the asymptotic iteration bound of
Algorithm 3.1. Furthermore, each iteration still requires O(mn) operations, which
implies that the asymptotic overall complexity of Algorithm 4.1 also remains the
same as that of Algorithm 3.1. Finally, the asymptotic bound on the size of the
core set is also unaffected. However, we remark that Algorithm 4.1 has the potential
to compute even smaller core sets than those returned by Algorithm 3.1 due to the
possible inclusion of minus- and drop-iterations. We summarize these results in the
following theorem.

Theorem 4.1. Given A := {a1, . . . , am} ⊂ R
n and ε ∈ (0, 1), Algorithm 4.1

computes a (1 + ε)-approximation to MEB(A) in O(mn/ε) operations. Furthermore,
upon termination, Xη ⊆ A is an ε-core set and |Xη| = O(1/ε), where η is the index
of the final iterate computed by Algorithm 4.1.

4.2. Linear convergence of the second algorithm. Despite the fact that
Algorithm 4.1 appears to be a simple modification of Algorithm 3.1, it turns out
that these two algorithms actually exhibit different characteristics. In particular,
we establish that Algorithm 4.1 enjoys linear convergence, while a similar rate of
convergence cannot, in general, be expected from Algorithm 3.1.

As observed in [41, 20], the search directions of Algorithm 3.1 always point toward
the extreme points of the unit simplex. Therefore, the angle between these directions
and the gradient of the objective function gets increasingly closer to the right angle in
the situation when the optimal solution lies on the boundary of the unit simplex and is
not an extreme point. For the minimum enclosing ball problem, an optimal solution of
the dual problem will almost always lie in a lower-dimensional face of the unit simplex,
except for the trivial cases such as a single input point or an input set sampled from
the surface of a ball. It follows that Algorithm 3.1 is, in general, expected to exhibit
a sublinear rate of convergence. In fact, this result has been formalized in [41] (see
also [20, Theorem 3]) for the Frank–Wolfe algorithm under even stronger assumptions
than those satisfied by the dual formulation of the minimum enclosing ball problem.

In an attempt to circumvent this drawback of Algorithm 3.1, Algorithm 4.1
works with an enlarged set of search directions by including those directions point-
ing away from the extreme points of the unit simplex. Such a general algorithm
that incorporates “away” steps into the Frank–Wolfe algorithm was first proposed by
Wolfe [41], and its convergence properties have been investigated by several authors.
For the general problem of maximizing a concave function over a polytope, Wolfe [41]
sketched and Guélat and Marcotte [20] detailed the proof of linear convergence un-
der the assumptions of Lipschitz continuity of the gradient of the objective function,
strong concavity of the objective function, and strict complementarity. More recently,
Ahipaşaoğlu, Sun, and Todd [1] established the linear convergence of such an algo-
rithm for the problem of maximizing a concave function over the unit simplex under
a slightly different set of assumptions. Unfortunately, none of these previous results
is directly applicable to our case, since either set of these assumptions implies the
uniqueness of the optimal solution, which is not, in general, satisfied by the dual
formulation of the minimum enclosing ball problem.

We therefore use an argument similar to that of [1] to establish the linear con-
vergence of Algorithm 4.1. We work with a perturbation of the primal formulation
(P2) and show that the distance from an optimal primal-dual solution of the per-
turbed problem to the set of optimal primal-dual solutions of (P2) and (D) satisfies
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a Lipschitz condition using the stability results of Robinson [34] for general nonlinear
programming problems.

Let us define the following perturbation of (P2):

(P(z(u, δ))) minc,γ γ
subject to

(ai)Tai − 2(ai)T c+ cT c ≤ γ + zi(u, δ), i = 1, . . . ,m,

where u ∈ R
m lies on the unit simplex, δ ≥ 0, and z(u, δ) is given by

zi(u, δ) :=
{

δΦ(u) if ui = 0,
(ai)T ai − 2(ai)T c(u) + c(u)T c(u) − Φ(u) else, ; i = 1, . . . ,m,

where

c(u) :=
m
∑

i=1

uia
i.

Let zk := z(uk, δk), k = 0, 1, . . . , where uk ∈ R
m denotes the kth iterate and δk

is the corresponding measure as computed by Algorithm 4.1. By a definition of δk,

(ai)Tai − 2(ai)T ck + (ck)T ck − Φ(uk) ≤ δkΦ(uk), i = 1, . . . ,m,

and

(ai)T ai − 2(ai)T ck + (ck)T ck − Φ(uk) ≥ −δkΦ(uk), if uki > 0,

which implies that |zki | ≤ δkΦ(uk) for i = 1, . . . ,m. We remark that the latter inequal-
ity above is not necessarily satisfied by the kth iterate computed by Algorithm 3.1.
Furthermore,

(13) (uk)T zk =
∑

i:uk
i >0

uki (ai)Tai − 2(ck)T (ck) + (ck)T ck − Φ(uk) = 0,

where we used the definitions of ck and Φ(u) together with the fact that uk lies on
the unit simplex. Using the fact that c(uk) = ck, it follows that (ck,Φ(uk)) is a
feasible solution of (P(zk)). The next lemma establishes that (ck,Φ(uk)) is actually
an optimal solution.

Lemma 4.2. For all k = 0, 1, . . . , (ck,Φ(uk)) is an optimal solution of (P(zk)).
Proof. The feasibility of (ck,Φ(uk)) follows from the discussions preceding the

lemma. Since (P(zk)) is a convex optimization problem and (ck,Φ(uk)) satisfies the
optimality conditions along with uk as the Lagrange multipliers, the result
follows.

Let Ξ(z(u, δ)) denote the optimal value of (P(z(u, δ))). Note that Ξ is a convex
function of z(u, δ), and if u∗ is any Lagrange multiplier corresponding to the optimal
solution of P(0) (equivalently, of (P2)), then u∗ is a subgradient of Ξ at 0. Therefore,
for all k = 0, 1, . . . ,

(14)
Φ(uk) = Ξ(zk) ≥ Ξ(0) + (u∗)T zk

= Φ(u∗) + (u∗ − uk)T zk

≥ Φ(u∗) − ‖uk − u∗‖‖zk‖,

where we used Lemma 4.2 and (13).
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Let Δ denote the diameter of the input set A, i.e., the maximum distance between
any pair of points in A. Since (1/4)Δ2 ≤ Φ(u∗) ≤ Δ2, we have, for all k,

|zki | ≤ δkΦ(uk) ≤ δkΦ(u∗) ≤ δkΔ2,

which implies that ‖zk‖ ≤
√
mΔ2δk.

We will next use the stability results of Robinson [34] to establish an upper bound
on ‖uk − u∗‖. We need to verify that all of the assumptions are satisfied for the un-
perturbed problem (P(0)). Since the problem is convex and Slater’s constraint quali-
fication is satisfied, the constraints are regular at any feasible solution. Furthermore,
let (c∗, γ∗) be the unique optimal solution of (P(0)), and let u∗ be any corresponding
Lagrange multiplier (i.e., any optimal solution of (D)). Then, the Lagrangian function
L : R

n × R × R
m → R for the problem (P(0)) is given by

L((c, γ), u) = γ +
m
∑

i=1

ui
(

(ai)Tai − 2(ai)T c+ cT c− γ
)

.

By taking derivatives with respect to the primal variables (c, γ) ∈ R
n × R, we obtain

∇(c,γ)L((c, γ), u) =
[

0
1

]

+
m
∑

i=1

ui

[

−2ai + 2c
−1

]

,

∇2
(c,γ)L((c, γ), u) =

m
∑

i=1

ui

[

2I 0
0 0

]

,

where I ∈ R
n×n denotes the identity matrix. Note that any direction d ∈ R

n+1

orthogonal to the gradient of the objective function of (P(0)) is of the form d =
[(d′)T , 0]T , where d′ ∈ R

n. Therefore, for any such direction d,

dT∇2
(c,γ)L(c∗, γ∗, u∗)d = 2(d′)Td′ = 2‖d‖2,

since u∗ lies on the unit simplex, which implies that Robinson’s second-order sufficient
condition is satisfied (see Definition 2.1 in [34]) by the optimal solution (c∗, γ∗) of
(P(0)) along with any dual optimal solution u∗. Therefore, by Theorem 4.2 in [34],
there exists a dual optimal solution u∗ and a positive constant � such that

(15) ‖uk − u∗‖ ≤ �‖zk‖ ≤ �
√
mΔ2δk

for all sufficiently small δk. Combining this inequality with (14), we obtain

(16) Φ(u∗) − Φ(uk) ≤ m�Δ4(δk)2

for all sufficiently small δk.
Suppose now that δk ≤ 1/2. Since Φ(uk) ≤ Φ(u∗) ≤ (1 + δk)Φ(uk) ≤ (3/2)Φ(uk),

it follows that

Φ(uk) ≥ (2/3)Φ(u∗) ≥ (1/6)Δ2.

At each plus- or minus-iteration, by Lemma 4.1, we obtain

(17) Φ(uk+1) ≥ Φ(uk)
(

1 +
δ2k

4(1 + δk)

)

≥ Φ(uk) +
δ2kΔ2

36
.
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Combining (16) and (17), at each plus- or minus-iteration, we obtain

(18) Φ(u∗) − Φ(uk+1) ≤ Φ(u∗) − Φ(uk) − δ2kΔ2

36
≤
(

1 − 1
36m�Δ2

)

(Φ(u∗) − Φ(uk))

for all sufficiently small δk. This establishes the linear convergence of Algorithm 4.1.
Theorem 4.2. Given A := {a1, . . . , am} ⊂ R

n, Algorithm 4.1 computes iterates
uk such that Φ(u∗)−Φ(uk) is nonincreasing. Asymptotically, this gap is decreased by
at least a factor of (1 − 1/(36m�Δ2)) at each plus- or minus-iteration. There exist
constants τ̄ and ϑ that depend on the input data such that Algorithm 4.1 computes a
(1 + ε)-approximation to MEB(A) in τ̄ + ϑ log(1/ε) operations for ε ∈ (0, 1).

Proof. Lemma 4.1 and the following discussions imply that Φ(u∗)−Φ(uk) is a non-
increasing sequence. The asymptotic linear convergence follows from (18). Therefore,
we need only to establish the last statement.

Let τ := max{τ1, τ∗}, where τ1 is defined as in (9) and τ∗ is the smallest value of k
such that the inequality (15) is satisfied. After iteration τ , the sequence Φ(u∗)−Φ(uk)
satisfies the relationship (18). By the termination criterion of Algorithm 4.1, it suffices
to compute an iterate k∗ such that Φ(uk∗) ≤ Φ(u∗) ≤ (1+δk∗)Φ(uk∗) ≤ (1+ε)2Φ(uk∗).
This implies that the final iterate satisfies Φ(u∗) − Φ(uk∗) ≤ [(1 + ε)2 − 1]Φ(uk∗).
Since Φ(uk) ≥ (1/6)Δ2 for all k ≥ τ , it follows that the termination criterion is
satisfied if Φ(u∗) − Φ(uk∗) ≤ (1/6)[(1 + ε)2 − 1]Δ2. By (18), Φ(u∗) − Φ(uk+1) ≤
(1 − (1/μ̄))(Φ(u∗) − Φ(uk)) ≤ (1 − (1/μ̄))(Δ2 − (1/6)Δ2) = (5/6)(1 − (1/μ̄))Δ2 at
each plus- or minus-iteration for all k ≥ τ , where μ̄ := 36m�Δ2. Therefore, once
Algorithm 4.1 computes iterate τ , we have

Φ(u∗) − Φ(uτ+k̂) ≤ 5
6

(

1 − 1
μ̄

)k̂

Δ2

after k̂ plus- or minus-iterations. Therefore, if

5
6

(

1 − 1
μ̄

)k̂

Δ2 ≤ 1
6

(2ε+ ε2)Δ2,

then the termination criterion is satisfied after k̂ plus- or minus-iterations. It follows
that k̂ satisfies

log 5 + k̂ log
(

1 − 1
μ̄

)

≤ log ε+ log(ε + 2).

Using the inequality log(1 + x) ≤ x for all x > −1, a sufficient condition in order for
the above inequality to be satisfied is given by

log 5 − k̂

μ̄
≤ log 2 + log ε,

which implies that τ ′ + μ̄ log(1/ε) plus- or minus-iterations will suffice, where τ ′ =
μ̄ log(5/2). By the argument following Lemma 4.1, we can double the iteration
count and add two iterations to account for the drop-iterations, which completes the
proof.

We remark that Theorem 4.2 establishes a polynomial convergence result for
Algorithm 4.1 even if ε is part of the input data. In addition, it implies that the
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convergence is “fast” once inequality (15) is satisfied. However, the bound on the
number of iterations depends on the data as it is not known a priori when the linear
convergence will kick in. As such, it does not provide a better global complexity
bound than that of Theorem 4.1. Nevertheless, the results of this section will shed
some light into the usually better practical performance of Algorithm 4.1 in section 6.

5. Extensions. In this section, we establish that the algorithmic frameworks of
sections 3 and 4 can be used to compute an approximation to the minimum enclosing
ball of more general input sets. While the cost of each iteration of the corresponding
algorithms may depend on the input set, the iteration complexity and the asymptotic
size of the core set remain unchanged. Therefore, the existence of an ε-core set of size
O(1/ε) extends to more general sets including those with uncountably many points.

We remark that the analysis of both of the algorithms heavily relies on the struc-
ture of the dual optimization formulation (D) of the minimum enclosing ball problem
of a finite set of points. In this section, we argue that the same algorithmic framework
can be applied to much more general input sets with minor modifications. We employ
similar arguments as in [43], where a Frank–Wolfe-type algorithm for the problem
of computing the minimum-volume enclosing ellipsoid of a finite set of ellipsoids is
studied. Given a possibly infinite set of points, the primal optimization formulation
(P2) can be extended to a semi-infinite optimization problem with a linear objective
function and infinitely many convex quadratic constraints. The main idea is to ap-
proximate the given input set using only a carefully selected finite subset of points and
then to refine this approximation by adding more points if necessary. This leads to an
approximation of the primal formulation with only a finite number of constraints, and
this approximation is refined by adding more constraints. In the dual formulation, we
therefore start with a finite number of variables and add more variables if necessary.

Let A ⊂ R
n be an arbitrary compact input set, and let us first consider Lemma 3.1,

which establishes the quality of the initial feasible solution computed by each of the
two algorithms. The initial working core set X0 provides the first approximation to
the given input set with only two points. Let Φ0(·) denote the objective function of
the dual formulation of the minimum enclosing ball problem for X0, and let γA denote
the optimal value of the aforementioned semi-infinite primal formulation. The result
of Lemma 3.1 continues to hold, since the proof relies on Lemma 2.2, which remains
true for arbitrary compact input sets. The proof of Lemma 2.2 is based on the argu-
ment that an enclosing ball of smaller radius can be constructed by moving the center
away from the half-space in the direction of the normal vector of the bounding hyper-
plane if the hypothesis of Lemma 2.2 is not satisfied by that half-space. Therefore,
we still have Φ0(u0) ≥ (1/3)γA, which implies that the quality of the initial solution
is independent of the input set.

Similarly, let Φk(·) denote the objective function of the dual formulation of the
minimum enclosing ball problem for Xk ⊂ A. At iteration k in each algorithm, Xk
provides the current finite approximation to A. Let ck ∈ R

n denote the current center.
Each algorithm computes the furthest point in A from ck. In Algorithm 3.1, Xk+1 is
obtained by adding this point to Xk. Unless the furthest point in A already belongs
to Xk, the dual formulation for Xk+1 differs from that for Xk in only one variable.
Therefore, [(uk)T , 0]T is a feasible solution for the new dual formulation that satisfies
Φk+1([(uk)T , 0]T ) = Φk(uk), which implies that the improvement in each iteration still
obeys the relation given by Lemma 3.2, with γk+1 replaced by Φk+1(uk+1) and γk by
Φk(uk). Note that the dimension of uk+1 is one more than that of uk in this case. It
follows that the upper bound on the number of iterations required by Algorithm 3.1 to
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achieve a prescribed accuracy as well as the bound on the core set remain unchanged
for a general compact input set A ⊂ R

n.
The preceding argument establishes the same improvement result at a plus-

iteration of Algorithm 4.1 for a general input set A. Since Xk is finite, the com-
putation of the closest point in Xk is straightforward independently of the input
set. At a minus-iteration, the dimension of the dual formulation remains the same.
Therefore, Lemma 4.1 still applies. At a drop-iteration, we can reverse the argument
employed at a plus-iteration, since the number of dual variables actually decreases in
this case. We conclude that the iteration complexity of Algorithm 4.1 and the upper
bound on the size of the core set also remain unchanged for a general compact input
set A ⊂ R

n. On the other hand, our analysis that leads to the linear convergence of
Algorithm 4.1 is not likely to be extended to more general input sets, since it explic-
itly relies on the stability results for nonlinear programming problems with a finite
number of constraints.

We give another perspective on the extension of the two algorithms to more
general input sets. Let Xη ⊂ A denote the finite set computed by either one of the
two algorithms upon termination on a general input set A. Then, each algorithm
would geometrically behave exactly the same way on the input set Xη as it would on
the original input set A. However, the termination criterion is satisfied for the whole
set A. Clearly, the set Xη ⊂ A is not known a priori and is sequentially generated
by each algorithm. Furthermore, the cost of each iteration is likely to be higher for
a general input set A in comparison with that for Xη. Therefore, the main work
involved in each algorithm is the extraction of the finite set Xη from A.

In order to transform this conceptual algorithmic framework into a practical al-
gorithm, we need to ensure that each operation required by either algorithm can be
carried out efficiently for a given input set. Note that both of the algorithms in this
paper compute the initial feasible solution in a similar fashion. This computation
entails finding the furthest point in the input set from a fixed point. In addition,
similar furthest point computations are performed at each iteration of both of the al-
gorithms. Therefore, the extent of input sets which are amenable to these algorithms
highly depends on the efficiency with which such computations can be performed.

We now specify several input sets for which similar algorithmic frameworks can
be applied.

5.1. Set of balls. Let A = {B1, . . . ,Bm} ⊂ R
n be a set of m balls. Given

Bc,ρ and x ∈ R
n, the furthest point in Bc,ρ from x is given by x∗ = c + ρ(c −

x)/‖c − x‖, which can be computed in O(n) operations. Therefore, each iteration
of Algorithm 3.1 still requires O(mn) operations, which implies that Algorithm 3.1
computes a (1 + ε)-approximation to MEB(A) in O(mn/ε) operations and returns an
ε-core set of size O(1/ε). In addition to computing the furthest point at each iteration,
Algorithm 4.1 also requires the computation of the closest point in a finite set. The
size of this set is bounded above by O(1/ε), which implies that each iteration can
be performed in O(mn + n/ε) operations. Therefore, Algorithm 4.1 can compute a
(1+ε)-approximation to MEB(A) in O(mn/ε+n/ε2) operations and returns an ε-core
set of size O(1/ε).

5.2. Set of ellipsoids. Let A = {E1, . . . , Em} ⊂ R
n be a set of m ellipsoids given

by Ei := {x ∈ R
n : (x − ci)TQi(x − ci) ≤ 1}, where ci ∈ R

n and Qi ∈ R
n×n is sym-

metric and positive definite for i = 1, . . . ,m. The furthest point in an ellipsoid from a
given point can be computed using a tight semidefinite programming relaxation with
a fixed number of constraints in O(nO(1)) operations in the real number model of com-
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putation [43], where O(1) denotes a universal constant greater than three. Therefore,
Algorithm 3.1 computes a (1 + ε)-approximation to MEB(A) in O(mnO(1)/ε) opera-
tions and returns an ε-core set of size O(1/ε). Similarly, Algorithm 4.1 can compute a
(1 + ε)-approximation to MEB(A) in O(mnO(1)/ε+ nO(1)/ε2) operations and returns
an ε-core set of size O(1/ε).

5.3. Set of half ellipsoids. H is said to be a half ellipsoid if it is given by the
intersection of an ellipsoid with a half-space. Let A = {H1, . . . ,Hm}, where Hi :=
{x ∈ R

n : (x − ci)TQi(x − ci) ≤ 1, (f i)Tx ≤ ωi}, where ci ∈ R
n, f i ∈ R

n, ωi ∈ R,
and Qi ∈ R

n×n is symmetric and positive definite for i = 1, . . . ,m. Sturm and
Zhang [36] established that the maximization of any quadratic function over a half
ellipsoid can be cast as a semidefinite programming problem with a fixed number
of constraints similarly to quadratic optimization over an ellipsoid. Therefore, the
asymptotic overall complexity bounds of Algorithms 3.1 and 4.1 are identical to those
for the case of a set of ellipsoids. In particular, both algorithms return an ε-core set
of size O(1/ε).

5.4. Set of intersections of a pair of similar ellipsoids. Two n-dimensional
ellipsoids E1 and E2 are said to be similar if they both admit a representation using
the same semidefinite matrix. This implies that the length and the alignment of the
corresponding axes are the same. Let A = {T1, . . . , Tm}, where Ti := {x ∈ R

n :
(x − ci)TQi(x − ci) ≤ 1, (x − hi)TQi(x − hi) ≤ 1}, where ci ∈ R

n, hi ∈ R
n, and

Qi ∈ R
n×n is symmetric and positive definite for i = 1, . . . ,m. It follows from the

results of [36] that any quadratic optimization problem over the intersection of a pair
of similar ellipsoids can be decomposed into two quadratic optimization problems over
two half ellipsoids. Therefore, the asymptotic complexity bounds of Algorithms 3.1
and 4.1 are identical to those for the case of a set of half ellipsoids. Similarly, both
algorithms return an ε-core set of size O(1/ε).

5.5. Further extensions. We have described several classes of more general in-
put sets for which an approximate minimum enclosing ball can be computed in poly-
nomial time (for fixed ε) using the appropriate extensions of Algorithms 3.1 and 4.1.
Obviously, the results can be extended to input sets that are composed of a combi-
nation of elements from each of the above classes. In particular, it is remarkable that
the existence of an ε-core set of size O(1/ε) extends to much more general classes of
input sets including those with uncountably many points.

Similarly to the discussion in [43], the extent of input sets to which similar algo-
rithmic frameworks can be applied largely depends on the efficiency of the furthest
point computation required at each iteration of each of the two algorithms. It is well
known that the maximization of a convex quadratic function over certain sets (such
as polytopes defined by inequalities) is computationally intractable. Therefore, our
algorithmic framework does not yield a polynomial-time algorithm for an input set of
polytopes. In summary, the discovery of polynomial-time routines for quadratic opti-
mization over other classes of input sets may lead to further efficient generalizations
of our algorithms.

6. Computational results. In this section, we report the results of our compu-
tational experiments. We implemented Algorithms 3.1 and 4.1 in MATLAB. For the
purposes of comparison, we also implemented the first-order algorithm of Bădoiu and
Clarkson [2] (henceforth the BC algorithm). Their simple algorithm starts by setting
any arbitrary point ai ∈ A as the initial center c1. At iteration k, let ajk denote the
furthest point from ck, k = 1, 2, . . . . The center is updated according to the following
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Table 1

Computational results on instances with m � n (ε = 10−3).

Time Core set size Iterations
n m A1 A2 BC A1 A2 BC A1 A2 BC
10 500 0.06 0.03 0.12 4.2 3.9 5.2 168.7 44.5 435.5
10 1000 0.15 0.03 0.14 4.6 3.8 5.4 330.7 41.6 344.4
20 5000 1.7 0.36 3.11 5.9 5.2 7 246.8 46 464.2
20 10000 4.46 0.58 4.65 4.9 4.1 5.8 319.2 36.3 334.4
30 30000 27 6.45 24.59 8.6 6.8 9.1 446.4 103.6 409
50 50000 71.62 16.87 68.78 10.5 9.5 11.8 429.8 98.4 415.1
100 100000 287.99 77.74 268.11 15.9 14.5 16.6 451.7 119 422.6

relation:

ck+1 = [1 − 1/(k + 1)]ck + [1/(k + 1)]ajk , k = 1, 2, . . . .

Bădoiu and Clarkson establish that 1/ε2 such updates suffice in order to obtain a (1+
ε)-approximation to MEB(A). Note that each iteration requires O(mn) operations,
which yields an overall complexity bound of O(mn/ε2).

Similarly to Algorithms 3.1 and 4.1, it is easy to verify that the BC algorithm also
generates a sequence of feasible solutions for the dual formulation of the minimum
enclosing ball problem. Therefore, in order to have a fair and meaningful comparison,
we employed the same termination criterion that we used for Algorithms 3.1 and 4.1
rather than running the BC update for 1/ε2 times.

In contrast with Algorithms 3.1 and 4.1, the objective functions evaluated at the
iterates generated by the BC algorithm are not monotonically increasing in general.
Therefore, the analysis of the BC algorithm uses entirely different tools [2].

The computational experiments were carried out on a Pentium IV processor with
a clock speed of 2.80 GHz and 512 MB RAM running under Linux. We used MATLAB
version 7.3.0.298 (R2006b) in our experiments.

We used three data sets in our experiments. The first data set is restricted to
instances with m� n and was randomly generated as in [1], with sizes (n,m) varying
from (10, 500) to (100, 100000). For each fixed (n,m), ten different data sets were
generated, and the results are reported in terms of the averages over these data sets
in Table 1, which is divided into four sets of columns. The first set of columns reports
the size (n,m). The next three sets of columns present the CPU time, core set size,
and the number of iterations, respectively. Each one of these three sets is further
divided into three columns labeled A1, A2, and BC corresponding to Algorithm 3.1,
Algorithm 4.1, and the BC algorithm, respectively. In all of our experiments, we set
ε = 10−3.

As illustrated by Table 1, each of the three algorithms is capable of quickly com-
puting an approximation to the minimum enclosing ball of the given input set. In
particular, all three algorithms terminated under eight minutes even on the largest
instances. In terms of CPU time, Algorithm 4.1 has significantly better performance
than Algorithm 3.1 and the BC algorithm, both of which have similar running times.
All three algorithms computed very small core sets of similar sizes. Algorithm 4.1
always returned the smallest core sets for each input set. The core sets computed by
Algorithm 3.1 and the BC algorithm have similar sizes with the former being slightly
better than the latter. In terms of the number of iterations, Algorithm 4.1 once again
significantly outperforms the other two algorithms. Unlike Algorithm 3.1, the number
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Table 2

Computational results on instances with n � m (ε = 10−3).

Time Core set size Iterations
n m A1 A2 BC A1 A2 BC A1 A2 BC

10000 100 7.56 7.62 29.9 90.6 90.4 90.8 117.4 118.2 476.6
10000 1000 149.39 148.16 321.25 198.4 197 202 241 238.8 524.2
25000 1000 541.47 539.06 957.02 266.6 265.6 272.4 303.2 301.8 541.2

Table 3

Vertices of the unit simplex (m = n = 1000).

Time Core set size Iterations
ε A1 A2 BC A1 A2 BC A1 A2 BC
1 .24 .25 .19 2 2 2 0 0 1
.1 .83 .83 .82 11 11 11 9 9 10
.01 6.57 6.58 7.27 101 101 101 99 99 100
.001 63.89 64.07 71.36 1000 1000 1000 998 998 999

of iterations of the BC algorithm seems to be independent of the dimensions of the
input set.

A close examination of Table 1 reveals that Algorithm 4.1 resulted in reductions
of 73% to 88% in terms of running time and of 74% to 90% in terms of the number
of iterations in comparison with the other two algorithms. These results seem to
indicate that the linear convergence of Algorithm 4.1 may be responsible for the
improved performance. Furthermore, due to allowing points to be dropped from the
working core set, the sizes of the core sets computed by Algorithm 4.1 are about 10%
to 30% smaller than those returned by the other two algorithms.

The second data set consists of instances with n � m. In particular, we gener-
ated random instances with (n,m) varying from (10000, 100) to (25000, 1000). The
averaged results are presented in Table 2, which is organized similarly to Table 1.
The results indicate that all three algorithms compute core sets of similar sizes. Al-
gorithm 3.1 and Algorithm 4.1 exhibit similar performances in terms of running time
and the number of iterations due to the fact that “away” steps are performed rela-
tively infrequently on such instances. On the other hand, the running time and the
number of iterations of the BC algorithm are considerably larger than either of our
two algorithms. Once again, note that the number of iterations of the BC algorithm
seems to be relatively insensitive to m and n, which suggests a stronger relationship
with 1/ε in comparison with our algorithms.

The final data set we considered is the vertices of the unit simplex. Bădoiu and
Clarkson [3] establish a tight upper bound of �1/ε� on the size of the core set for
such an input set under the assumption that n ≥ 
1/ε�. In an attempt to assess the
performances of the three algorithms on such a data set, we considered the vertices
of the unit simplex with n = 1000 using ε ∈ {1, .1, .01, .001}. The results of this
experiment are presented in Table 3, which is organized similarly to Table 1.

As illustrated by Table 3, all three algorithms have similar performances on the
vertices of the unit simplex in R

n, with n = 1000. Note that both the size of the
core set and the number of iterations grow proportionally to 1/ε. These results are
in agreement with the tight core set bound of [3]. This example illustrates that the
asymptotic bounds on the core set size and the number of iterations for Algorithms 3.1
and 4.1, in general, cannot be improved. However, all three algorithms computed the
exact minimum enclosing ball for ε = 10−3 (and for any ε ≥ 10−3). Therefore, this
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example illustrates that the upper bound of �1/ε� on the size of the core set is no
longer tight for n ≤ 
1/ε�.

We do not compare our algorithms with other exact or approximate algorithms,
since such computational studies have been performed in earlier literature. For in-
stance, it is well known that the minimum enclosing ball problem can be formulated as
an instance of second-order cone programming and interior-point methods can achieve
very high accuracy (e.g., 10−8) in small- and medium-scale instances. However, each
iteration requires the computation and factorization of an (n + 1) × (n + 1) matrix,
which can be performed in O(n3) and O(mn2) operations, respectively [24]. There-
fore, such an approach is not computationally feasible for large instances as illustrated
by the results of [42, 44]. Similarly, exact algorithms [16] perform well on small- and
medium-scale instances, but the performance degrades significantly for large-scale in-
stances [24]. Since our focus is on applications with large-scale instances in which
a moderate accuracy suffices, our computational results indicate that our algorithms
are capable of solving such instances in a reasonable amount of time.

7. Concluding remarks. In this paper, we proposed and analyzed two algo-
rithms that compute an approximation to the minimum enclosing ball of a given finite
set of points. Both algorithms exploit the special structure of the dual formulation
of the problem and can geometrically be viewed as generating a sequence of trial
balls until a ball with desired properties is computed. Each of the two algorithms
is especially well-suited for the large-scale instances of the minimum enclosing ball
problem for which a moderate approximation suffices. Both algorithms can compute
a small core set whose size depends only on the approximation parameter. The sec-
ond algorithm asymptotically exhibits linear convergence, which further contributes
to its efficiency. We have discussed how our algorithms can be extended to more
general input sets without sacrificing the iteration complexity and hence the size of
the core set. In particular, we established that several more general classes of input
sets admit small and finite core sets. Our computational experiments reveal that
both of our algorithms are capable of quickly computing a good approximation to the
minimum enclosing ball of a finite set of points. Algorithm 4.1, which is obtained by
incorporating “away” steps into Algorithm 3.1, seems to exhibit a significantly better
performance than other first-order algorithms. The sizes of the core sets computed
by our algorithms are usually fairly small. The example that consists of the vertices
of the unit simplex illustrates that our analysis, in general, cannot be improved.

While the discovery of efficient algorithms such as interior-point methods rev-
olutionized convex optimization, the computational cost of each iteration of such
algorithms quickly becomes prohibitive as the size of the problems increases. There-
fore, it seems desirable to design specialized algorithms for large-scale problems that
exploit the underlying special structure of the problem. We have developed two such
algorithms for the minimum enclosing ball problem in this paper. We intend to con-
tinue our work on developing specialized algorithms for other classes of large-scale
structured optimization problems in the near future.
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[17] B. Gärtner and S. Schönherr, An efficient, exact, and generic quadratic programming solver
for geometric optimization, in Proceedings of the 16th Annual Symposium on Computa-
tional Geometry, 2000, pp. 110–118.

[18] A. Goel, P. Indyk, and K. R. Varadarajan, Reductions among high-dimensional proximity
problems, in Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, 2001,
pp. 769–778.

[19] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Algorithms Combin. 2, Springer, New York, 1988.
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S. DAMLA AHIPAŞAOĞLU† AND E. ALPER YILDIRIM‡

Abstract. Given A := {a1, . . . , am} ⊂ Rn, we consider the problem of reducing the input set
for the computation of the minimum enclosing ball of A. In this note, given an approximate solution
to the minimum enclosing ball problem, we propose a simple procedure to identify and eliminate
points in A that are guaranteed to lie in the interior of the minimum-radius ball enclosing A. Our
computational results reveal that incorporating this procedure into two recent algorithms proposed
by Yıldırım lead to significant speed-ups in running times especially for randomly generated large-
scale problems. We also illustrate that the extra overhead due to the elimination procedure remains
at an acceptable level for spherical or almost spherical input sets.

Key words. minimum enclosing balls, input set reduction, approximation algorithms

AMS subject classifications. 90C25, 90C46, 65K05

DOI. 10.1137/080727208

1. Introduction. Given A := {a1, . . . , am} ⊂ R
n, we denote the unique mini-

mum enclosing ball of A by MEB(A), i.e.,

MEB(A) = Bc∗,ρ∗ := {x ∈ R
n : ‖x− c∗‖ ≤ ρ∗},

where c∗ ∈ R
n is the optimal center, ρ∗ ∈ R is the optimal radius, and ‖·‖ denotes the

Euclidean norm. Given ε > 0, a ball Bc,ρ is said to be a (1 + ε)-approximate solution
to MEB(A) if

(1) ρ ≤ ρ∗, A ⊂ Bc,(1+ε)ρ.

In this note, given a (1 + ε)-approximate solution Bc,ρ to MEB(A), we propose a
simple condition that should be satisfied by each point in A that lies on the boundary
of MEB(A). Furthermore, we derive an upper bound on the Euclidean distance
between c and c∗.

2. Main result.
Lemma 2.1. Given A := {a1, . . . , am} ⊂ R

n and ε > 0, let Bc,ρ be a (1 + ε)-
approximate solution to MEB(A). Then,

(2) ‖c− c∗‖ ≤ (2ε+ ε2)1/2ρ.

Furthermore, each point ai ∈ A on the boundary of MEB(A) satisfies

(3) ‖ai − c‖ ≥ (1 − (2ε+ ε2)1/2)ρ.

∗Received by the editors June 13, 2008; accepted for publication (in revised form) July 21, 2008;
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Proof. Suppose that c �= c∗. Consider the hyperplane H passing through c∗

perpendicular to c∗ − c. Let H+ denote the closed halfspace bounded by H and not
containing c. Then, by [2, Lemma 2.2], there exists a point aj ∈ H+ ∩ A such that
‖aj − c∗‖ = ρ∗. Therefore, ‖c− aj‖2 ≥ ‖c− c∗‖2 + ‖c∗ − aj‖2, which implies that

‖c− c∗‖2 ≤ ‖c− aj‖2 − ‖c∗ − aj‖2,

≤ (1 + ε)2ρ2 − (ρ∗)2,
≤ (1 + ε)2ρ2 − ρ2,

= (2ε+ ε2)ρ2,

where we used (1) to derive the second and third inequalities. This establishes (2).
Let ai be any point on the boundary of MEB(A). Then, ‖ai − c∗‖ ≤ ‖ai − c‖ +

‖c− c∗‖, which implies that

‖ai − c‖ ≥ ρ∗ − ‖c− c∗‖,
≥ ρ− (2ε+ ε2)1/2ρ,
= (1 − (2ε+ ε2)1/2)ρ,

where we used (1) and (2) to derive the second inequality. This completes the
proof.

3. Computational results. Recently, Yıldırım [2] proposed two first-order al-
gorithms that can compute a (1 + ε)-approximate solution to the minimum enclosing
ball of a finite input set A of points for any given ε > 0. Each algorithm generates a
sequence of approximate minimum enclosing balls Bck,ρk , which converge to MEB(A)
in the limit. Each such ball is a (1+εk)-approximate solution to MEB(A) for a certain
εk > 0, and the algorithm terminates when εk ≤ ε. Both of these algorithms extract
a small core set X ⊆ A and can be extended to much more general input sets without
sacrificing the small core set result.

Lemma 2.1 can be easily incorporated into both of the algorithms in [2] in an
attempt to eliminate interior points in A (with respect to MEB(A)) thereby reducing
the size of the input set. This elimination procedure does not affect the minimum
enclosing ball and may decrease the computational cost of each iteration due to the
reduction in the input size.

In order to assess the implications of Lemma 2.1 in practice, we have performed
computational tests in which the simple elimination procedure proposed in this note
was incorporated into each of the two algorithms in [2]. In our experiments, we checked
the boundary condition (3) at an approximate minimum enclosing ball generated
throughout either algorithm only if the right-hand side of (3) is sufficiently bounded
away from zero. This strategy eliminates the computational cost of checking the
boundary condition at an iterate where it would be unlikely to remove a large subset
of input points. At iterate k, (3) is checked in our computational experiments only if
1 − (2εk + (εk)2)1/2 > 0.55, where 0.55 is a threshold value that was found to work
well empirically.

The computational experiments were carried out on a 3.40 GHz Pentium IV
processor with 1.0 GB RAM using MATLAB version R2006b on four different data
sets. The first two data sets were randomly generated using different procedures
outlined below. The last two sets consist of spherical or almost spherical input sets.

3.1. Random input sets. The first data set was randomly generated as in [2]
with sizes (n,m) varying from (10, 500) to (100, 100000), while the second one was



1394 S. DAMLA AHIPAŞAOĞLU AND E. ALPER YILDIRIM

Table 1

Computational results for the first data set (ε = 10−3).

CPU time Reduced input size
n m A1 A1E Speed-up A2 A2E Speed-up A1E A2E
10 500 0.0594 0.0541 1.10 0.0219 0.0156 1.40 124.2 99.8
10 1000 0.0694 0.0469 1.48 0.0297 0.0203 1.46 202.4 200.7
20 5000 2.2016 0.5078 4.34 0.3594 0.2172 1.65 420.4 330.3
20 10000 3.9844 0.5484 7.27 0.5641 0.1484 3.80 147.8 158.2
30 30000 14.1031 0.8516 16.56 2.8281 0.5562 5.08 121.1 107.3
50 50000 48.9359 5.3875 9.08 12.0109 4.1469 2.90 695.8 400.9
100 100000 141.6518 35.0223 4.04 62.692 30.5357 2.05 1626.2 1650.1

Table 2

Computational results for the second data set (ε = 10−3).

CPU time Reduced input size
n m A1 A1E Speed-up A2 A2E Speed-up A1E A2E
10 500 0.2016 0.1953 1.03 0.0250 0.0094 2.66 12.7 12.2
10 1000 0.2018 0.1469 1.37 0.0484 0.025 1.94 15.4 15
20 5000 3.0062 0.3281 9.16 0.475 0.1109 4.28 38.4 37
20 10000 5.0328 0.3312 15.20 0.9188 0.1812 5.07 42 40.9
30 30000 24.5359 1.2594 19.48 3.9656 0.9094 4.36 85.5 79.7
50 50000 52.8751 4.1865 12.63 13.0204 3.8463 3.39 202.2 213.4
100 100000 267.05 27.9984 9.54 56.1344 20.7188 2.71 430.9 423.8

generated using the standard normal distribution with the same sizes (n,m). We used
ε = 10−3 for both data sets. For each fixed (n,m), ten different problem instances
were generated for each data set. The computational results are reported in terms of
averages over these instances in Table 1 and Table 2, each of which is divided into
three sets of columns. The first set of columns reports the size (n,m). The second
set of columns presents the results regarding the CPU time and is further divided
into two parts, the first of which is devoted to the computational results related to [2,
Algorithm 3.1] (an adaptation of the Frank–Wolfe algorithm to the minimum enclosing
ball problem), while the second one displays those results using [2, Algorithm 4.1] (an
adaptation of the Frank–Wolfe algorithm with away steps to the minimum enclosing
ball problem). In the first part, A1 and A1E denote the CPU times in seconds
using [2, Algorithm 3.1] without and with the elimination procedure, respectively, and
speed-up denotes the resulting speed-up factor in running time due to the elimination
procedure measured in terms of the ratio of A1 to A1E. Similarly, A2 and A2E denote
the CPU times in seconds using [2, Algorithm 4.1] without and with the elimination
procedure, respectively, and speed-up denotes the resulting speed-up factor in running
time measured in terms of the ratio of A2 to A2E. The last set of columns reports
the number of remaining input points upon termination using each algorithm with
the elimination procedure.

As illustrated by Table 1 and Table 2, the incorporation of the elimination pro-
cedure into each of the two algorithms results in significant savings in running times
especially for large instances where m 
 n. The procedure described in Lemma 2.1
identifies and eliminates 75% to 99% of the data points in our experiments, and the
running times may improve by more than a factor of 19 on some instances. It is also
worth noticing that the speed-up factors obtained from Algorithm 3.1 are generally
considerably larger than those obtained with Algorithm 4.1. This may be due to the
reason that the asymptotical linear convergence property of Algorithm 4.1 [2] already
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Fig. 1. Experimental results for almost spherical input sets.

results in significantly better performance compared to that of Algorithm 3.1, which
may not leave much room for further improvement. Finally, we remark that the elim-
ination procedure does not seem to have a noticeable effect on the core set sizes and
on the number of iterations for either of the two algorithms.

3.2. Spherical and almost spherical input sets. In an attempt to assess the
extent of extra overhead due to the elimination procedure, we considered data sets
where all points lie on (or almost on) the unit sphere centered at the origin. An input
set A is said to lie on a κ-approximate unit sphere centered at the origin, denoted by
Sκ, if A ⊂ Sκ := {x ∈ R

n : 1 − κ ≤ ‖x‖ ≤ 1 + κ}. For an input set A ⊂ Sκ where
κ ≥ 0 is small, the elimination procedure will keep testing input points for removal
at each iteration but will be unable to remove a substantial subset of the input set.
In the extreme case where κ = 0, none of the input points can be removed, since
there would be no interior point. This extra overhead will necessarily result in an
increase in the running time of an algorithm that uses the elimination procedure. We
generated random input sets A ⊂ Sκ, where κ ∈ {0, 0.001, 0.01, 0.1, 0.2}, with sizes
(n,m) varying from (10, 500) to (100, 100000) as in our experiments with the first
two data sets. For each choice of experimental parameters, the computational results
averaged over ten data sets are illustrated in Figure 1. The horizontal axis in each
graph corresponds to κ using the logarithmic scale, while the vertical axis in the graph
on the left (on the right) corresponds to the “slow-down” factor measured in terms of
the ratio of the running time of Algorithm 3.1 (Algorithm 4.1) with the elimination
procedure to the running time of the same algorithm without the elimination. A close
examination of these two graphs reveals that the slow-down factors usually remain at
an acceptable level especially for the faster Algorithm 4.1. Note that the elimination
procedure leads to an extra overhead of at most 70% on all instances for Algorithm 4.1.
A comparison of the slow-down and speed-up factors stemming from our experiments
seems to justify the use of the elimination procedure, especially since spherical input
sets would not likely be encountered in practical applications.

We also tested the two algorithms on data sets which consist of the vertices of the
unit simplex where n ∈ {1000, 2500, 5000}. Note that each point in such an input set
lies on the boundary of the minimum enclosing ball, and it is known that each point
should be in the core set if ε ≤ 1/n [1]. We tested each of the two algorithms with
and without the elimination procedure using ε = 1/n. The computational results are
reported in Table 3, which is organized in a similar manner to that of Table 1. Note
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Table 3

Computational results for the vertices of the unit simplex (ε = 1/n).

CPU time
n m A1 A1E A1E/A1 A2 A2E A2E/A2

1000 1000 39.5312 53.625 1.357 40.078 54.219 1.352
2500 2500 251.75 336.7188 1.338 252.234 339.391 1.346
5000 5000 988.2812 1301.5312 1.317 983.25 1289.547 1.311

that the increase in the running time of each algorithm due to the inclusion of the
elimination procedure is only around 35% for large spherical instances.

4. Concluding remarks. In this paper, we have described a procedure that
identifies and eliminates data points that cannot lie on the boundary of the minimum
enclosing ball of a finite set of points. This procedure can be easily incorporated into
any iterative algorithm that generates a sequence of approximate minimum enclosing
balls converging to the minimum enclosing ball of a given input set. Our compu-
tational results demonstrate the resulting significant improvements in the practical
performance of the two algorithms proposed in [2] especially for randomly generated
input sets. The extra overhead of the elimination procedure remains at an acceptable
level for spherical or almost spherical input sets.

Furthermore, the same elimination procedure can also be incorporated into al-
gorithms that can compute an approximate minimum enclosing ball of more general
input sets such as a set of balls or ellipsoids for which the algorithms in [2] can still
be applied. Such input sets can be viewed as an infinite set of points, and condition
(3) essentially means that all input points that lie in the interior of a ball of a certain
radius centered at the current approximate center c can be safely removed without
affecting the optimal solution. In this case, an element of a more general input set
(such as a ball or ellipsoid) can be completely removed if the furthest point on that
element from the current approximate center c already lies in the interior of the afore-
mentioned ball centered at c, which readily implies that every point on that element
should necessarily violate (3). This may lead to considerable savings in the compu-
tation of minimum enclosing balls of more general input sets arising from practical
applications.
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ITERATIVE MINIMIZATION SCHEMES FOR SOLVING THE
SINGLE SOURCE LOCALIZATION PROBLEM∗
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Abstract. We consider the problem of locating a single radiating source from several noisy
measurements using a maximum likelihood (ML) criteria. The resulting optimization problem is
nonconvex and nonsmooth, and thus finding its global solution is in principle a hard task. Exploiting
the special structure of the objective function, we introduce and analyze two iterative schemes for
solving this problem. The first algorithm is a very simple explicit fixed-point-based formula, and the
second is based on solving at each iteration a nonlinear least squares problem, which can be solved
globally and efficiently after transforming it into an equivalent quadratic minimization problem with
a single quadratic constraint. We show that the nonsmoothness of the problem can be avoided
by choosing a specific “good” starting point for both algorithms, and we prove the convergence of
the two schemes to stationary points. We present empirical results that support the underlying
theoretical analysis and suggest that, despite of its nonconvexity, the ML problem can effectively be
solved globally using the devised schemes.

Key words. single source location problem, Weiszfield algorithm, nonsmooth and nonconvex
minimization, fixed-point methods, nonlinear least squares, generalized trust region, semidefinite
relaxation
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1. Introduction.

1.1. The source localization problem. Consider the problem of locating a
single radiating source from noisy range measurements collected using a network of
passive sensors. More precisely, consider an array of m sensors, and let aj ∈ R

n

denote the coordinates of the jth sensor.1 Let x ∈ R
n denote the unknown source’s

coordinate vector, and let dj > 0 be a noisy observation of the range between the
source and the jth sensor:

(1.1) dj = ‖x − aj‖ + εj , j = 1, . . . ,m,

where ε = (ε1, . . . , εm)T denotes the unknown noise vector. Such observations can be
obtained, for example, from the time-of-arrival measurements in a constant-velocity
propagation medium. The source localization problem is the following.

The source localization problem: Given the observed range measurements
dj > 0, find a “good” approximation of the source x satisfying (1.1).

∗Received by the editors July 22, 2007; accepted for publication (in revised form) June 17, 2008;
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The source localization problem has received significant attention in the signal
processing literature and specifically in the field of mobile phones localization [12, 5,
13]. It is also worth mentioning that the interest in wireless localization problems has
increased since the first ruling of the Federal Communications Commission (FCC) for
the detection of emergency calls in the United States in 1996 [17]. Currently, a high
percentage of Enhanced 911 (E911) calls originate from mobile phones. Due to the
unknown location of the wireless E911 calls, these calls do not receive the same quality
of emergency assistance that fixed network 911 calls enjoy. To deal with this problem,
the FCC issued an order on July 12, 1996, requiring all wireless service providers to
report accurate mobile station location information to the E911 operator.

In addition to emergency management, mobile position information is also useful
in mobile advertising, asset tracking, fleet management, location-sensitive billing [12],
interactive map consultation, and monitoring of the mentally impaired [5].

1.2. The maximum likelihood criteria. In this paper we adopt the maximum-
likelihood (ML) approach for solving the source localization problem (1.1); see, e.g.,
[4]. When ε follows a Gaussian distribution with a covariance matrix proportional
to the identity matrix, the source x is the ML estimate that is the solution of the
problem:

(1.2) (ML): min
x∈Rn

⎧

⎨

⎩

f(x) ≡
m
∑

j=1

(‖x − aj‖ − dj)2

⎫

⎬

⎭

.

Note that, in addition to the statistical interpretation, the latter problem is a least
squares problem in the sense that it minimizes the squared sum of the errors.

An alternative approach for estimating the source location x is by solving the
following least squares (LS) problem in the squared domain:

(1.3) (LS): min
x∈Rn

m
∑

j=1

(

‖x − aj‖2 − d2
j

)2
.

Despite of its nonconvexity, the LS problem can be solved globally and efficiently
by transforming it into a problem of minimizing a quadratic function subject to a
single quadratic constraint [1] (more details will be given in section 3.2). However,
the LS approach has two major disadvantages compared to the ML approach: first,
the LS formulation lacks the statistical interpretation of the ML problem. Second, as
demonstrated by the numerical simulations in section 4, the LS estimate provides less
accurate solutions than those provided by the the ML approach.

The ML problem, like the LS problem, is nonconvex. However, as opposed to
the LS problem for which a global solution can be computed efficiently [1], the ML
problem seems to be a difficult problem to solve efficiently. A possible reason for
the increased difficulty of the ML problem is its nonsmoothness. One approach for
approximating the solution of the ML problem is via semidefinite relaxation (SDR)
[4, 1]. We also note that the source localization problem formulated as (ML) can be
viewed as a special instance of sensor network localization problems in which several
sources are present; see, for example, the recent work in [3]; for this class of problems,
semidefinite programming-based algorithms have been developed.

In this paper we depart from the SDR techniques and seek other efficient ap-
proaches to solve the ML problem. This is achieved by exploiting the special structure
of the objective function which allows us to devise fixed-point-based iterative schemes
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for solving the nonsmooth and nonconvex ML problem (1.2). The first scheme admits
a very simple explicit iteration formula given by

xk+1 = M1
(

xk,a
)

(where a ≡ (a1, . . . ,am)),

while the second iterative scheme is of the form

xk+1 ∈ argmin
x

M2
(

x,xk, a
)

and requires the solution of an additional subproblem which will be shown to be effi-
ciently solved. The main goals of this paper are to introduce the building mechanism
of these two schemes, to develop and analyze their convergence properties, and to
demonstrate their computational viability for solving the ML problem (1.2), as well
as their effectiveness when compared with the LS and SDR approaches.

1.3. Paper layout. In the next section, we present and analyze the first scheme,
which is a simple fixed-point-based method. The second algorithm, which is based
on solving a sequence of least squares problems of a similar structure to that of
(1.3), is presented and analyzed in section 3. The construction of both methods
is motivated by two different interpretations of the well-known Weiszfeld method
for the Fermat–Weber location problem [16]. For both schemes, we show that the
nonsmoothness of the problem can be avoided by choosing a specific “good” starting
point. Empirical results presented in section 4 provide a comparison between the
two devised algorithms, as well as a comparison to different approaches such as LS
and SDR. In particular, the numerical results suggest that, despite its nonconvexity,
the ML problem can, for all practical purposes, be globally solved using the devised
methods.

1.4. Notation. Throughout the paper, the following notation is used: vectors
are denoted by boldface lowercase letters, e.g., y, and matrices by boldface uppercase
letters, e.g., A. The ith component of a vector y is written as yi. Given two matrices
A and B, A � B (A � B) means that A−B is positive definite (semidefinite). The
directional derivative of a function f : R

n → R at x̄ in the direction v is defined (if it
exists) by

(1.4) f ′(x; v) ≡ lim
t→0+

f(x̄ + tv) − f(x̄)
t

.

The α-level set of a function f : R
n → R is defined by Lev(f, α) = {x ∈ R

n : f(x) ≤
α}. The collection of m sensors {a1, . . . ,am} is denoted by A.

2. A simple fixed-point algorithm. In this section we introduce a simple
fixed-point algorithm that is designed to solve the ML problem (1.2). The algorithm
is inspired by the celebrated Weiszfeld algorithm for the Fermat–Weber problem,
which is briefly recalled in section 2.1. In section 2.2 we introduce and analyze the
fixed-point scheme designed to solve the ML problem.

2.1. A small detour: Weiszfeld algorithm for the Fermat–Weber prob-
lem. As was already mentioned, the ML problem (1.2) is nonconvex and nonsmooth,
and thus finding its exact solution is in principle a difficult task. We propose a fixed-
point scheme motivated by the celebrated Weiszfeld algorithm [16, 7] for solving the
Fermat–Weber location problem:

(2.1) min
x

⎧

⎨

⎩

s(x) ≡
m
∑

j=1

ωj‖x− aj‖

⎫

⎬

⎭

,
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where ωj > 0 and aj ∈ R
n for j = 1, . . . ,m. Of course, the Fermat–Weber problem is

much easier to analyze and solve than the ML problem (1.2) since it is a well-structured
nonsmooth convex minimization problem. This problem has been extensively studied
in the location theory literature; see, for instance, [11]. Our objective here is to mimic
the Weiszfeld algorithm [16] to obtain an algorithm for solving the nonsmooth and
nonconvex ML problem (1.2). The Weiszfeld method is a very simple fixed-point
scheme that is designed to solve the Fermat–Weber problem. One way to derive it is
to write the first order global optimality conditions for the convex problem (2.1)

∇s(x) =
m
∑

j=1

ωj
x − aj

‖x − aj‖
= 0 ∀x /∈ A

as

x =

∑m
j=1 ωj

aj

‖x−aj‖
∑m
j=1

ωj

‖x−aj‖
,

which naturally calls for the iterative scheme

(2.2) xk+1 =

∑m
j=1 ωj

aj

‖xk−aj‖
∑m

j=1
ωj

‖xk−aj‖
.

For the convergence analysis of the Weiszfeld algorithm (2.2) and modified versions
of the algorithm, see, e.g., [10, 15], and references therein.

2.2. The simple fixed-point algorithm: Definition and analysis. Simi-
larly to the Weiszfeld method, our starting point for constructing a fixed-point al-
gorithm to solve the ML problem is by writing the optimality conditions. Assuming
that x /∈ A we have that x is a stationary point for problem (ML) if and only if

(2.3) ∇f(x) = 2
m
∑

j=1

(‖x − aj‖ − dj)
x − aj
‖x− aj‖

= 0,

which can be written as

x =
1
m

⎧

⎨

⎩

m
∑

j=1

aj +
m
∑

j=1

dj
x− aj

‖x− aj‖

⎫

⎬

⎭

.

The latter relation calls for the following fixed-point algorithm, which we term the
standard fixed point (SFP) scheme.

Algorithm SFP.

(2.4) xk+1 =
1
m

⎧

⎨

⎩

m
∑

j=1

aj +
m
∑

j=1

dj
xk − aj

‖xk − aj‖

⎫

⎬

⎭

, k ≥ 0.

Like in the Weiszfeld algorithm, the SFP scheme is not well defined if xk ∈ A for
some k. In what follows we will show that by carefully selecting the initial vector x0
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we can guarantee that the iterates are not in the sensors set A, therefore establishing
that the method is well defined. At this juncture, it is interesting to notice that
the approach we suggest here for dealing with the points of nonsmoothness that
occur at xk ∈ A is quite different from the common approaches for handling the
nonsmoothness. For example, in order to avoid the nondifferentiable points of the
Fermat–Weber objective function, several modifications of the Weiszfeld method were
proposed; see, e.g., [10, 15], and references therein. However, there do not seem to
have been any attempts in the literature to choose good initial starting points to avoid
the nonsmoothness difficulty. A constructive procedure for choosing a good starting
point for the SFP method will be given at the end of this section.

Before proceeding with the analysis of the SFP method, we record the fact that,
much like the Weiszfeld algorithm (see [7]), the SFP scheme is a gradient method with
a fixed step size.

Proposition 2.1. Let {xk} be the sequence generated by the SFP method (2.4),
and suppose that xk /∈ A for all k ≥ 0. Then

(2.5) xk+1 = xk − 1
2m

∇f
(

xk
)

.

Proof. The proof follows by a straightforward calculation, using the gradient of f
computed in (2.3).

A gradient method does not necessarily converge without additional assumptions
(e.g., assuming that ∇f is Lipschitz continuous and/or using a line search [2]). Nev-
ertheless, we show below that scheme (2.4) does converge.

By Proposition 2.1 the SFP method can be compactly written as

(2.6) xk+1 = T
(

xk
)

,

where T : R
n \ A → R

n is the operator defined by

(2.7) T (x) = x − 1
2m

∇f(x).

In the convergence analysis of the SFP method, we will also make use of the auxiliary
function:

(2.8) h(x,y) ≡
m
∑

j=1

‖x− aj − djrj(y)‖2 ∀x ∈ R
n,y ∈ R

n \ A,

where

rj(y) ≡ y − aj
‖y − aj‖

, j = 1, . . . ,m.

Note that for every y /∈ A, the following relations hold for every j = 1, . . . ,m:

‖rj(y)‖ = 1,(2.9)
(y − aj)T rj(y) = ‖y − aj‖.(2.10)

In Lemma 2.1 below, we prove several key properties of the auxiliary function h
defined in (2.8).
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Lemma 2.1.

(a) h(x,x) = f(x) for every x /∈ A.
(b) h(x,y) ≥ f(x) for every x ∈ R

n,y ∈ R
n \ A.

(c) If y /∈ A, then

(2.11) T (y) = argmin
x∈Rn

h(x,y).

Proof. (a) For every x /∈ A,

f(x) =
m
∑

j=1

(‖x − aj‖ − dj)2

=
m
∑

j=1

(‖x − aj‖2 − 2dj‖x− aj‖ + d2
j)

(2.9),(2.10)
=

m
∑

j=1

(‖x − aj‖2 − 2dj(x − aj)T rj(x) + d2
j‖rj(x)‖2) = h(x,x),

where the last equation follows from (2.8).
(b) Using the definition of f and h given in (1.2) and (2.8), respectively, and the

fact (2.9), a short computation shows that for every x ∈ R
n,y ∈ R

n \ A,

h(x,y) − f(x) = 2
m
∑

j=1

dj
(

‖x− aj‖ − (x − aj)T rj(y)
)

≥ 0,

where the last inequality follows from the Cauchy–Schwarz inequality and using again
(2.9).

(c) For any y ∈ R
n\A, the function x �→ h(x,y) is strictly convex on R

n and
consequently admits a unique minimizer x∗ satisfying

∇xh(x∗,y) = 0.

Using the definition of h given in (2.8), the latter identity can be explicitly written as

m
∑

j=1

(x∗ − aj − djrj(y)) = 0,

which by simple algebraic manipulation can be shown to be equivalent to x∗ = y −
1

2m∇f(y), establishing that x∗ = T (y).
Using Lemma 2.1 we are now able to prove the monotonicity property of the

operator T with respect to f .
Lemma 2.2. Let y /∈ A. Then

f(T (y)) ≤ f(y),

and equality holds if and only if T (y) = y.
Proof. By (2.11) and the strict convexity of the function x �→ h(x,y), one has

h(T (y),y) < h(x,y) for every x = T (y).
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In particular, if T (y) = y, then

(2.12) h(T (y),y) < h(y,y) = f(y),

where the last equality follows from Lemma 2.1(a). By Lemma 2.1(b), h(T (y),y) ≥
f(T (y)), which, combined with (2.12), establishes the desired strict monoton
icity.

Theorem 2.1 given below states the basic convergence results for the SFP method.
In the proof, we exploit the boundedness of the level sets of the objective function f ,
which is recorded in the following lemma.

Lemma 2.3. The level sets of f are bounded.
Proof. The proof follows immediately from the fact that f(x) → ∞ as

‖x‖ → ∞.
Theorem 2.1 (convergence of the SFP method). Let {xk} be generated by (2.4)

such that x0 satisfies

(2.13) f
(

x0) < min
j=1,...,m

f(aj).

Then
(a) xk /∈ A for every k ≥ 0;
(b) for every k ≥ 0, f(xk+1) ≤ f(xk), and equality is satisfied if and only if

xk+1 = xk.
(c) the sequence of function values {f(xk)} converges;
(d) the sequence {xk} is bounded;
(e) every convergent subsequence {xkl} satisfies xkl+1 − xkl → 0;
(f) any limit point of {xk} is a stationary point of f .
Proof. (a) and (b) The proof follows by induction on k using Lemma 2.2.
(c) The proof readily follows from the monotonicity and lower boundedness (by

zero) of the sequence {f(xk)}.
(d) By (b), all of the iterates xk are in the level set Lev(f, f(x0)) which, by

Lemma 2.3, establishes the boundedness of the sequence {xk}.
(e) and (f) Let {xkl} be a convergent subsequence of {xk} with limit point x∗.

Since f(xkl) ≤ f(x0) < minj=1,...,m f(aj), it follows by the continuity of f that
f(x∗) ≤ f(x0) < minj=1,...,m f(aj), proving that x∗ /∈ A. By (2.6)

(2.14) xkl+1 = T
(

xkl
)

.

Therefore, since the subsequence {xkl} and its limit point x∗ are not in A, by the
continuity of ∇f on R

n \ A, we conclude that the subsequence {xkl+1} converges to
a vector x̄ satisfying

(2.15) x̄ = T (x∗).

To prove (e), we need to show that x̄ = x∗. Since both x∗ and x̄ are limit points of
{xk} and since the sequence of function values converges (by (c)), then the continuity
of f over R

n implies that f(x∗) = f(x̄). Invoking Lemma 2.2 for y = x∗, we conclude
that x̄ = x∗, proving claim (e). Part (f) follows from the observation that the equality
x∗ = T (x∗) is equivalent (by the definition of T ) to ∇f(x∗) = 0.

Remark 2.1. It is easy to find a vector x0 satisfying condition (2.13). For example,
Procedure INIT, that will be described at the end of this section, produces a point
satisfying (2.13).
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Combining claims (c) and (f) of Theorem 2.1, we immediately obtain convergence
of the sequence of function values.

Corollary 2.1. Let {xk} be the sequence generated by the SFP algorithm sat-
isfying (2.13). Then f(xk) → f∗, where f∗ is the function value at a stationary point
of f .

We were able to prove the convergence of the function values of the sequence.
The situation is more complicated for the sequence itself, where we were able only
to show that all limit points are stationary points. We can prove convergence of the
sequence itself if we assume that all stationary points of the objective function are
isolated.2 The proof of this claim strongly relies on the following lemma from [8].

Lemma 2.4 (see [8, Lemma 4.10]). Let x∗ be an isolated limit point of a sequence
{xk} in R

n. If {xk} does not converge, then there is a subsequence {xkl} which
converges to x∗ and an ε > 0 such that ‖xkl+1 − xkl‖ ≥ ε.

We can now use the above lemma to prove a convergence result under the as-
sumption that all stationary points of f are isolated.

Theorem 2.2 (convergence of the sequence). Let {xk} be generated by (2.4) such
that x0 satisfies (2.13). Suppose further that all stationary points of f are isolated.
Then the sequence {xk} converges to a stationary point.

Proof. Let x∗ be a limit point of {xk} (its existence follows from the boundedness
of the sequence proved in Theorem 2.1(d)). By our assumption x∗ is an isolated point.
Suppose in contradiction that the sequence does not converge. Then by Lemma 2.4
there exists a subsequence {xkl} that converges to x∗ satisfying ‖xkl+1 − xkl‖ ≥ ε.
However, this is in contradiction to (e) of Theorem 2.1. We thus conclude that {xk}
converges to a stationary point.

The analysis of the SFP method relies on the validity of condition (2.13) on the
starting point x0. We will now show that, thanks to the special structure of the
objective function (ML), we can compute such a point through a simple procedure.
This is achieved by establishing the following result.

Lemma 2.5. Let A ≡ {a1, . . . ,am} be the given set of m sensors, and let

gj(x) =
m
∑

i=1,i�=j
(‖x− ai‖ − di)2, j = 1, . . . ,m.

Then for every j = 1, . . . ,m the following apply:
(i) If ∇gj(aj) = 0, then f ′(aj ;−∇gj(aj)) < 0. Otherwise, if ∇gj(aj) = 0, then

f ′(aj ; v) < 0 for every v = 0. In particular, there exists a descent direction
from every sensor point.

(ii) Every x̄ ∈ A is not a local optimum for the ML problem (1.2).
Proof. (i) For convenience, for every j = 1, . . . ,m we denote

(2.16) fj(x) = (‖x − aj‖ − dj)2

so that the objective function of problem (ML) can be written as

(2.17) f(x) = fj(x) + gj(x)

for every x ∈ R
n and j = 1, . . . ,m. Note that f is not differentiable for every x ∈ A.

Nonetheless, the directional derivative of f at x in the direction v ∈ R
n always exists

2We say that x∗ is an isolated stationary point of f , if there are no other stationary points in
some neighborhood of x∗.
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and is given by

(2.18) f ′(x̄; v) =
{

∇f(x̄)Tv, x̄ /∈ A,
∇gj(aj)Tv − 2dj‖v‖, x̄ = aj .

Indeed, the above formula for x̄ /∈ A is obvious. In the other case, suppose then
that x̄ = aj for some j ∈ {1, . . . ,m}. Noting that gj is differentiable at aj , we have
g′j(aj ; v) = ∇gj(aj)Tv, and using definition (2.16) for fj, we get f ′

j(aj ; v) = −2dj‖v‖,
and hence with (2.17), we obtain the desired formula (2.18) for f ′(aj ; v). Finally, if
∇gj(aj) = 0, then using (2.18) we have

f ′(aj ;−∇gj(aj)) = −‖∇gj(aj)‖2 − 2dj‖∇gj(aj)‖ < 0.

Otherwise, if ∇gj(aj) = 0, then for every v = 0 we have

f ′(aj ; v) = −2dj‖v‖ < 0.

(ii) By part (i) there exists a descent direction from every sensor point x̄ ∈ A. There-
fore, none of the sensor points can be a local optimum for problem (ML).

Using the descent directions provided by Lemma 2.5, we can compute a point x̄
satisfying

f(x̄) < min
j=1,...,m

f(aj)

by the following procedure.
Procedure INIT.
1. t = 1.
2. Set k to be an index for which f(ak) = minj=1,...,m f(aj).
3. Set

(2.19) v0 =
{

−∇gk(ak), ∇gk(ak) = 0,
e, ∇gk(ak) = 0,

where e is the vector of all ones.3

4. While f(ak + tv0) ≥ f(ak), set t = t/2. End
5. The output of the algorithm is ak + tv0.

The validity of this procedure stems from the fact that, by Lemma 2.5, the direction
v0 defined in (2.19) is always a descent direction.

One of the advantages of the SFP scheme is its simplicity. However, the SFP
method, being a gradient method, does have the tendency to converge to local minima.
In the next section we will present a second and more involved algorithm to solve the
ML problem. As we shall see in the numerical examples presented in section 4, the
empirical performance of this second iterative scheme is significantly better than that
of the SFP, both with respect to the number of required iterations and with respect
to the probability of getting stuck in a local/nonglobal point.

3. A sequential weighted least squares algorithm. In this section we study
a different method for solving the ML problem (1.2), which we call the sequential
weighted least squares (SWLS) algorithm. The SWLS algorithm is also motivated
by the construction of the Weiszfeld method, but from a different viewpoint; see
section 3.1. Each iteration of the method consists of solving a nonlinear least squares
problem, whose solution is found by the approach discussed in section 3.2. The
convergence analysis of the SWLS algorithm is given in section 3.3.

3We could have chosen any other nonzero vector.
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3.1. The SWLS algorithm. To motivate the SWLS algorithm, let us first go
back to the Weiszfeld scheme for solving the classical Fermat–Weber location problem,
whereby we rewrite the iterative scheme (2.2) in the following equivalent, but different,
way:

(3.1) xk+1 = argmin
x∈Rn

⎧

⎨

⎩

m
∑

j=1

ωj
‖x − aj‖2

‖xk − aj‖

⎫

⎬

⎭

.

The strong convexity of the objective function in (3.1) (recall that ωj > 0 for all
j) implies that xk+1 is uniquely defined as a function of xk. Therefore, the Weiszfeld
method (2.2) for solving problem (2.1) can also be written as

xk+1 = argmin
x∈Rn

q
(

x,xk
)

,

where

q(x,y) ≡
m
∑

j=1

ωj
‖x− aj‖2

‖y − aj‖
for every x ∈ R

n,y ∈ R
n \ A.

The auxiliary function q was essentially constructed from the objective function
s of the Fermat–Weber location problem, by replacing the norm terms ‖x− aj‖ with
‖x−aj‖2

‖y−aj‖ , i.e., with s(x) = q(x,x). Mimicking this observation for the ML problem
under study, we will use an auxiliary function in which each norm term ‖x−aj‖ in the
objective function (1.2) is replaced with ‖x−aj‖2

‖y−aj‖ , resulting in the following auxiliary
function:

(3.2) g(x,y) ≡
m
∑

i=1

(

‖x− ai‖2

‖y − ai‖
− di

)2

, x ∈ R
n,y ∈ R

n \ A.

The general step of the algorithm for solving problem (ML), the SWLS method,
is now given by

xk+1 ∈ argmin
x∈Rn

g
(

x,xk
)

or more explicitly by the following algorithm.

Algorithm SWLS.

(3.3) xk+1 ∈ argmin
x∈Rn

m
∑

j=1

(

‖x− aj‖2

‖xk − aj‖
− dj

)2

.

The name SWLS stems from the fact that at each iteration k we are required to
solve the following weighted least squares (WLS) version of the LS problem (1.3):

(3.4) (WLS): min
x

m
∑

j=1

ωkj

(

‖x − cj‖2 − βkj

)2
,
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with

(3.5) cj = aj , βkj = dj‖xk − aj‖, ωkj =
1

‖xk − aj‖2 .

Note that the SWLS algorithm as presented above is not defined for iterations
in which xk ∈ A. In our random numerical experiments (cf. section 4) this situation
never occurred; i.e., xk did not belong to A for every k. However, from a theoretical
point of view this issue must be resolved. Similarly to the methodology advocated
in the convergence analysis of the SFP method, our approach for avoiding the sensor
points A is by choosing a “good enough” initial vector. In section 3.3, we introduce
a simple condition on the initial vector x0 under which the algorithm is well defined
and proven to converge.

3.2. Solving the WLS subproblem. We will now show how the WLS sub-
problem (3.4) can be solved globally and efficiently by transforming it into a problem
of minimizing a quadratic function subject to a single quadratic constraint. This
derivation is a straightforward extension of the solution technique devised in [1] and
is briefly described here for completeness.

For a given fixed k (for simplicity we omit the index k below), we first transform
(3.4) into a constrained minimization problem:

(3.6) min
x∈Rn,α∈R

⎧

⎨

⎩

m
∑

j=1

ωj
(

α− 2cTj x + ‖cj‖2 − βj
)2

: ‖x‖2 = α

⎫

⎬

⎭

,

which can also be written as (using the substitution y = (xT , α)T )

(3.7) min
y∈Rn+1

{

‖Ay − b‖2 : yTDy + 2fTy = 0
}

,

where

A =

⎛

⎜

⎝

−2
√
ω1cT1

√
ω1

...
...

−2
√
ωmcTm

√
ωm

⎞

⎟

⎠
, b =

⎛

⎜

⎜

⎜

⎝

√
ω1

(

β1 − ‖c1‖2
)

...
√
ωm

(

βm − ‖cm‖2
)

⎞

⎟

⎟

⎟

⎠

and

D =
(

In 0n×1
01×n 0

)

, f =
(

0
−0.5

)

.

Note that (3.7) belongs to the class of problems consisting of minimizing a quadra-
tic function subject to a single quadratic constraint. Problems of this type are called
generalized trust region subproblems (GTRS). GTRS problems possess necessary and
sufficient optimality conditions from which efficient solution methods can be derived;
see, e.g., [6, 9].

The SWLS scheme is of course more involved than the simpler SFP scheme.
However, as explained above, the additional computations required in SWLS to solve
the subproblem can be done efficiently and are worthwhile, since the SWLS algorithm
usually possesses a much larger region of convergence to the global minimum than the
SFP scheme, which in turn implies that it has the tendency of avoiding local minima
and a greater chance of hitting the global minimum. This will be demonstrated on
the numerical examples given in section 4.
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Table 1

Number of runs (out of 10000) for which Assumption 2 is satisfied for x0 = xLS.

σ 1e-3 1e-2 1e-1 1e+0
Nσ 10000 10000 9927 6281

3.3. Convergence analysis of the SWLS method. In this section we provide
an analysis of the SWLS method. We begin by presenting our underlying assumptions
in section 3.3.1, and in section 3.3.2 we prove the convergence results of the method.

3.3.1. Underlying assumptions. The following assumption will be made
throughout this section.

Assumption 1. The matrix

A =

⎛

⎜

⎜

⎜

⎝

1 aT1
1 aT2
...

...
1 aTm

⎞

⎟

⎟

⎟

⎠

is of full column rank.
This assumption is equivalent to saying that a1, . . . ,am do not reside in a lower-

dimensional affine space (i.e., a line if n = 2 and a plane if n = 3).
To guarantee the well definiteness of the SWLS algorithm (i.e., xk /∈ A for all k),

we will make the following assumption on the initial vector x0.
Assumption 2. x0 ∈ R. where

(3.8) R :=
{

x ∈ R
n : f(x) <

minj{dj}2

4

}

.

A similar assumption was made for the SFP method (see condition (2.13)). Note
that for the true source location xtrue one has f(xtrue) =

∑m
j=1 ε

2
j . Therefore, xtrue

satisfies Assumption 2 if the errors εj are smaller in some sense than the range mea-
surements dj . This is a very reasonable assumption since in real applications the
errors εi are often an order of magnitude smaller than di. Now, if the initial point x0

is good enough in the sense that it is close to the true source location, then Assump-
tion 2 will be satisfied. We have observed through numerical experiments that the
solution to the LS problem (1.3) often satisfies Assumption 2 as the following example
demonstrates.

Example 3.1. Consider the source localization problem with m = 5 and n = 2.
We performed Monte Carlo runs, where in each run the sensor locations aj and the
source location x were randomly generated from a uniform distribution over the square
[−20, 20] × [−20, 20]. The observed distances dj are given by (1.1) with εj being
independently generated from a normal distribution with mean zero and standard
deviation σ. In our experiments σ takes on four different values: 1, 10−1, 10−2, and
10−3. For each σ, Nσ denotes the number of runs for which the condition f(xLS) <
minj d

2
j

4 holds, and the results are given in Table 1. Clearly, Assumption 2 fails only
for high noise levels.

The following simple and important property will be used in our analysis.
Lemma 3.1. Let x ∈ R. Then

(3.9) ‖x− aj‖ > dj/2, j = 1, . . . ,m.
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Proof. Suppose in contradiction that there exists j0 for which ‖x− aj0‖ ≤ dj0/2.
Then

f(x) =
m
∑

j=1

(‖x− aj‖ − dj)2 ≥ (‖x − aj0‖ − dj0 )2 ≥
d2
j0

4
≥ min{dj}2

4
,

which contradicts x ∈ R.
A direct consequence of Lemma 3.1 is that any element in R cannot be one of

the sensors.
Corollary 3.1. If x ∈ R, then x /∈ A.

3.3.2. Convergence analysis of the SWLS method. We begin with the
following result which plays a key role in the forthcoming analysis.

Lemma 3.2. Let δ be a positive number, and let t > δ/2. Then

(3.10)
(

s2

t
− δ

)2

≥ 2(s− δ)2 − (t− δ)2

for every s >
√

δt
2 , and equality is satisfied if and only if s = t.

Proof. Rearranging (3.10) one has to prove

A(s, t) ≡
(

s2

t
− δ

)2

− 2(s− δ)2 + (t− δ)2 ≥ 0.

Some algebra shows that the expression A(s, t) can be written as follows:

(3.11) A(s, t) =
1
t

(s− t)2
(

(

s√
t

+
√
t

)2

− 2δ

)

.

Using the conditions t > δ/2 and s >
√

δt
2 , we obtain

(3.12)
(

s√
t

+
√
t

)2

− 2δ >

(
√

δ

2
+

√

δ

2

)2

− 2δ = 0.

Therefore, from (3.11) and (3.12) it readily follows that A(s, t) ≥ 0 and that equality
holds if and only if s = t.

Thanks to Lemma 3.2, we establish the next result which is essential in proving
the monotonicity of the SWLS method.

Lemma 3.3. Let y ∈ R. Then the function g(x,y) given in (3.2) is well defined
on R

n ×R, and with

(3.13) z ∈ argmin
x∈Rn

g(x,y),

the following properties hold:
(a) f(z) ≤ f(y), and the equality is satisfied if and only if z = y;
(b) z ∈ R.
Proof. By Corollary 3.1, any y ∈ R implies y /∈ A, and hence the function g

given by (cf. (3.2))

g(x,y) =
m
∑

i=1

(

‖x− ai‖2

‖y − ai‖
− di

)2
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is well defined on R
n ×R. Now, by (3.13) and y ∈ R we have

(3.14) g(z,y) ≤ g(y,y) = f(y) <
min{dj}2

4
.

In particular,
(

‖z− aj‖2

‖y − aj‖
− dj

)2

<
d2
j

4
, j = 1, . . . ,m,

from which it follows that

(3.15)
‖z− aj‖2

‖y − aj‖
≥ dj

2
, j = 1, . . . ,m.

Invoking Lemma 3.2, whose conditions are satisfied by (3.15) and Lemma 3.1, we
obtain

(

‖z − aj‖2

‖y − aj‖
− dj

)2

≥ 2(‖z− aj‖ − dj)2 − (‖y − aj‖ − dj)2.

Summing over j = 1, . . . ,m, we obtain

m
∑

j=1

(

‖z − aj‖2

‖y − aj‖
− dj

)2

≥ 2
m
∑

j=1

(‖z − aj‖ − dj)2 −
m
∑

j=1

(‖y − aj‖ − dj)2.

Therefore, together with (3.14), we get

f(y) ≥ g(z,y) ≥ 2f(z) − f(y),

showing that f(z) ≤ f(y). Now, assume that f(y) = f(z). Then by Lemma 3.2 it
follows that the following set of equalities is satisfied:

(3.16) ‖y − aj‖ = ‖z− aj‖, j = 1, . . . ,m,

which after squaring and rearranging reads as

(‖y‖2 − ‖z‖2) − 2aTj (y − z) = 0, j = 1, . . . ,m.

Therefore,
⎛

⎜

⎜

⎜

⎝

1 aT1
1 aT2
...

...
1 aTm

⎞

⎟

⎟

⎟

⎠

(

‖y‖2 − ‖z‖2

−2(y − z)

)

= 0.

Thus, by Assumption 1, z = y, and the proof of (a) is completed. To prove (b), using
(a) and (3.14), we get

f(z) ≤ f(y) < min
j=1,...,m

d2
j

4
,

proving that z ∈ R.
We are now ready to prove the main convergence results for the SWLS method.
Theorem 3.1 (convergence of the SWLS method). Let {xk} be the sequence

generated by the SWLS method. Suppose that Assumptions 1 and 2 hold true. Then
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(a) xk ∈ R for k ≥ 0;
(b) for every k ≥ 0, f(xk+1) ≤ f(xk) and equality holds if and only if xk+1 = xk;
(c) the sequence of function values {f(xk)} converges;
(d) the sequence {xk} is bounded;
(e) every convergent subsequence {xkl} satisfies xkl+1 − xkl → 0;
(f) any limit point of {xk} is a stationary point of f .
Proof. (a) and (b) The proof follows by induction on k using Lemma 3.3.
(c) The proof follows from the fact that {f(xk)} is bounded below (by zero) and

is a nonincreasing sequence.
(d) By (b), all of the iterates xk are in the level set Lev(f, f(x0)) which, by

Lemma 2.3, establishes the boundedness of the sequence {xk}.
(e) Let {xkl} be a convergent subsequence, and denote its limit by x∗. By claims

(a) and (b), we have for every k that

f
(

xk
)

≤ f
(

x0) < min
j=1,...,m

d2
j

4
,

which combined with the continuity of f implies x∗ ∈ R and hence x∗ /∈ A, by
Corollary 3.1. Now, recall that

xkl+1 ∈ argmin g
(

x,xkl
)

.

To prove the convergence of {xkl+1} to x∗, we will show that every subsequence
converges to x∗. Let {xklp+1} be a convergent subsequence, and denote its limit by
y∗. Since

xklp+1 ∈ argmin
x∈Rn

g
(

x,xklp
)

,

the following holds:

g
(

x,xklp
)

≥ g
(

xklp +1,xklp
)

for every x ∈ R
n.

Taking the limits of both sides in the last inequality and using the continuity of the
function f , we have

g(x,x∗) ≥ g(y∗,x∗) for every x ∈ R
n,

and hence

(3.17) y∗ ∈ argmin
x∈Rn

g(x,x∗).

Since the sequence of function values converges, it follows that f(x∗) = f(y∗).
Invoking Lemma 3.3 with y = x∗ and z = y∗, we obtain x∗ = y∗, establishing
claim (e).

(f) To prove the claim, note that (3.17) and x∗ = y∗ imply that

x∗ ∈ argmin
x∈Rn

g(x,x∗).

Thus, by the first order optimality conditions we obtain the following:

0 = ∇xg(x,x∗)|x=x∗ = 4
m
∑

j=1

(‖x∗ − aj‖ − dj)
x∗ − aj
‖x∗ − aj‖

= 2∇f(x∗).
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As a direct consequence of Theorem 3.1, we obtain the following convergence in
function values.

Corollary 3.2. Let {xk} be the sequence generated by the algorithm. Then
f(xk) → f∗, where f∗ is the function value at some stationary point x∗ of f .

As was shown for the SFP algorithm, global convergence of the sequence gener-
ated by the SWLS algorithm can also be established under the same condition, i.e.,
assuming that f admits isolated stationary points.

Theorem 3.2 (convergence of the sequence). Let {xk} be generated by (3.3)
such that Assumptions 1 and 2 hold. Suppose further that all stationary points of f
are isolated. Then the sequence {xk} converges to a stationary point.

Proof. The proof is the same as the proof of Theorem 2.2.

4. Numerical examples. In this section we present numerical simulations il-
lustrating the performance of the SFP and SWLS schemes, as well as numerical com-
parisons with the LS approach and with the SDR of the ML problem. The simulations
were performed in MATLAB, and the semidefinite programs were solved by SeDuMi
[14].

Before describing the numerical results, for the reader’s convenience, we first recall
the SDR proposed in [4], which will be used in our numerical experiments comparisons.
The first stage is to rewrite problem (ML) given in (1.2) as

minx,g

m
∑

j=1

(gj − dj)2

s.t. g2
j = ‖x− aj‖2, j = 1, . . . ,m.

Making the change of variables

G =
(

g
1

)

(

gT 1
)

, X =
(

x
1

)

(

xT 1
)

,

problem (1.2) becomes

minX,G

m
∑

j=1

(Gjj − 2djGm+1,j + d2
j)

s.t. Gjj = Tr(CjX), j = 1, . . . ,m,
G � 0, X � 0,
Gm+1,m+1 = Xn+1,n+1 = 1,
rank(X) = rank(G) = 1,

where

Cj =
(

I −aj
−aTj ‖aj‖2

)

, j = 1, . . . ,m.

Dropping the rank constraints in the above problem, we obtain the desired SDR of
problem (1.2). The SDR is not guaranteed to provide an accurate solution to the ML
problem, but it can always be considered as an approximation of the ML problem.

In the first example, we show that the SWLS scheme usually possesses a larger
region of convergence to the global minimum than the scheme SFP. This last property
is further demonstrated in the second example, which compares the SFP and SWLS
methods and also demonstrates the superiority of the SWLS scheme. The last example
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Fig. 1. The SFP method for three initial points.
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Fig. 2. The SWLS method for three initial points.

illustrates the attractiveness of the solution obtained by the SWLS method over the
SDR and the LS approaches.

Example 4.1 (region of convergence of the SFP and SWLS methods). In this
example we show typical behaviors of the SFP and SWLS methods. Consider an
instance of the source localization problem in the plane (n = 2) with three sensors
(m = 3) in the locations (0.466,0.418), (0.846,0.525) and (0.202,0.672). Figures 1 and
2 describe the results produced by the iterative schemes SFP and SWLS, respectively,
for three initial trial points. The global minimum is (0.4285, 0.9355), and there exists
one additional local minimum at (0.1244, 0.3284). As demonstrated in Figure 2, the
SWLS method might converge to a local minimum; however, it seems to have a greater
chance than the SFP algorithm to avoid local minima; for example, the SWLS con-
verged to the (relatively far) global minimum from the initial starting point (0.5,0.1),
while the SFP converged to the local minimum. We estimated the probability to
converge to the global minimum by invoking both methods for 1681 initial starting
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Table 2

Comparison between the SFP and SWLS methods.

m #tight #(f(x̂SFP) > f(x̂SWLS)) Iter – SFP Iter – SWLS

3 314 152 207(500.2) 26.2 (5)
4 325 96 124(192.6) 29.9(1.8)
5 259 83 93.6(96.2) 30.9(3.1)
10 278 23 66.5 (35.3) 31.6 (1.3)

points, which are the nodes of a 41 × 41 grid over the square [0, 1] × [0, 1]. The SFP
method converged to the global minimum in 45.87% of the runs, while the SWLS
methods converged to the global minimum in 83.28% of the runs. Thus, the SWLS
method has a much wider region of convergence to the global minimum. This was
our observation in many other examples that we ran, which suggests that the SWLS
method has the tendency to converge to the global minimum.

Remark 4.1. As shown in Proposition 2.1, the SFP scheme is just a gradient
method with a fixed step size. Thanks to Lemma 2.5, which as shown in section 2.2
can be used in order to avoid the nonsmoothness, we can of course use more sophisti-
cated smooth unconstrained minimization methods. Indeed, we also tested a gradient
method with an Armijo step-size rule and a trust region method [8], which uses second
order information. Our observation was that, while these methods usually possess an
improved rate of convergence in comparison to the SFP method, they essentially have
the same region of convergence to the global minimum as the SFP algorithm.

Example 4.2 (comparison of the SFP and SWLS methods). We performed Monte
Carlo runs, where in each run the sensor locations aj and the true source loca-
tion were randomly generated from a uniform distribution over the square [−1000,
1000]× [−1000, 1000]. The observed distances dj are given by (1.1) with εj being gen-
erated from a normal distribution with mean zero and standard deviation 20. Both
the SFP and SWLS methods were employed with (the same) initial point, which was
also uniformly randomly generated from the square [−1000, 1000]×[−1000, 1000]. The
stopping rule for both the SWLS and SFP methods was ‖∇f(xk)‖ < 10−5.

The results of the runs are summarized in Table 2. For each value of m, 1000
realizations were generated. The numbers in the first column are the number of
sensors, and in the second column we give the number of runs out of 1000 in which
the SDR of the ML problem was tight; that is, the matrix which is the optimal solution
of the SDR has rank one. We have also compared the SWLS solution with the SDR
solution for these “tight” runs (about a quarter of the runs). In all of these runs,
the SWLS and SDR solutions coincided; i.e., the SWLS method produced the exact
ML solution. The third column contains the number of runs out of 1000 in which the
solution produced by the SFP method was worse than the SWLS method. In all of
the remaining runs, the two methods converge to the same point; thus, there were no
runs in which the SWLS produced worse results. The last two columns contain the
mean and standard deviation of the number of iterations of each of the methods in
the form “mean (standard deviation).”

As can be clearly seen from the table, the SWLS method requires much less
iterations than the SFP method, and in addition it is more robust in the sense that
the number of iterations are more or less constant. In contrast, the standard deviations
of the number of iterations of the SFP method are quite large. For example, the huge
standard deviation 500.2 in the first row stems from the fact that in some of the runs
the SFP algorithm required thousands of iterations!
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Table 3

Mean squared position error of the SDR, LS and SWLS methods.

σ SDR LS SWLS

1e − 3 2.4e − 6 2.7e − 6 1.5e − 6
1e − 2 2.2e − 4 1.6e − 4 1.3e − 4
1e − 1 2.2e − 2 1.9e − 2 1.3e − 2
1e + 0 2.2e + 0 2.7e + 0 2.0e + 0

From the above examples we conclude that the SWLS method does tend to con-
verge to the global minimum. Of course, we can always construct an example in which
the method converges to a local minimum (as was demonstrated in Example 4.1), but
it seems that for random instances this convergence to a nonglobal solution is not
likely.

We should also note that we also compared the SFP and SWLS methods with
the initial point chosen as the solution of the LS problem (1.3). For this choice of
the initial point, the SFP and SWLS methods always converged to the same location
point4 (which is probably the global minimum); however, with respect to the number
of iterations, the SWLS method was still significantly superior to the SFP algorithm.
We have also compared the SWLS solution with the SDR solution for the runs in
which the SDR solution is tight (about a quarter of the runs (cf. column 1 in Table
2)). In all of these runs, the SWLS and SDR solutions coincided; i.e., the SWLS
method produced the exact ML solution.

The last example shows the attractiveness of the SWLS method over the LS and
SDR approaches.

Example 4.3 (comparison with the LS and SDR estimates). Here we compare
the solution of (1.3) and the solution of the SDR with the SWLS solution. The
stopping rule for the SWLS method was ‖∇f(xk)‖ < 10−5. We generated 100 random
instances of the source localization problem with five sensors, where in each run the
sensor locations aj and the source location x were randomly generated from a uniform
distribution over the square [−10, 10]× [−10, 10]. The observed distances dj are given
by (1.1) with εj being independently generated from a normal distribution with mean
zero and standard deviation σ. In our experiments σ takes four different values:
1, 10−1, 10−2, and 10−3. The numbers in the three right columns of Table 3 are the
average of the squared position error ‖x̂ − x‖2 over 100 realizations, where x̂ is the
solution by the corresponding method. The best result for each possible value of σ is
marked in boldface. From the table, it is clear that the SWLS algorithm outperforms
the LS and SDR methods for all four values of σ.
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A SIMPLIFIED APPROACH TO SEMISMOOTH NEWTON
METHODS IN FUNCTION SPACE∗
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Abstract. We present an alternative approach to the analysis of Newton’s method for function
space problems involving semismooth Nemyckii operators. The simple main idea is to apply a local
continuity result to appropriately chosen finite differences. In this respect it runs in parallel to the
theory of Fréchet differentiable Nemyckii operators. This leads to a concise proof of superlinear
convergence under relaxed conditions, compared to previous results. Moreover, extensions of this
technique allow one to prove sharpened bounds on the rate of convergence and study semismooth
Newton methods in the presence of compactness.
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1. Introduction. Newton’s method is a standard algorithm for solving nonlin-
ear systems of equations and optimization problems, both in finite- and in infinite
dimensional normed spaces. For a nonlinear system G(x) = 0 classical assumptions
in the analysis of Newton’s method are Lipschitz continuous differentiability of G in
a neighborhood of a solution x∗ and invertibility of G′(x). Many nonlinear problems
in function space are formulated with the help of a pointwise nonlinear function. The
corresponding operators in function space are called Nemyckii- or superposition op-
erators. Due to their practical importance Nemyckii operators have been analyzed
thoroughly, and many standard results have been established (for a thorough exposi-
tion, see [2]), such as continuity and differentiability.

For a large class of problems the requirement of continuous differentiability is too
strong, because the pointwise nonlinear functions that appear there are not differen-
tiable in the classical sense, but are only semismooth. In the last few years semismooth
Newton methods in function space have been studied (cf., e.g., [8, 14, 12, 13, 6]) with
great success, particularly in the field of PDE-constrained optimal control, where con-
trol constraints can be modeled by semismooth functions. In [12, 13] Newton methods
for problems involving semismooth Nemyckii operators were analyzed, and superlin-
ear convergence was studied in the presence of some smoothing operator that maps Lq
to Lp for q < p. The corresponding proofs (cf. also [6]) rely on sophisticated splittings
of the domain of definition into several subdomains and different estimates there.

Here we consider an alternative approach to the semismoothness of Nemyckii op-
erators, which runs closely in parallel to the corresponding theory for Fréchet differen-
tiability. This approach yields several benefits. First, we can replace global Lipschitz
continuity conditions as used in [12] by weaker growth conditions and thus extend the
theoretical framework for semismooth Newton methods. Second, the semismoothness
of Nemyckii operators can be derived as a simple consequence of a local continuity
result and Hölder’s inequality. Further, we derive sharpened bounds on convergence
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rates and analyze semismooth Newton methods in the presence of compactness. Fi-
nally, we illustrate our results with a simple example from optimal control.

Although this work contains a couple of new results about semismooth Newton
methods, this is not its main emphasis. We rather want to point out new and simpler
techniques for its analysis and its convergence theory. We hope that this makes the
theory of semismooth Newton methods more accessible, and that new ideas may
emerge in this framework.

2. Theoretical framework and outline. Let X be a normed space, Y a linear
space, and G : X → Y a nonlinear mapping. Consider the equation

(1) G(x) = 0,

and assume that there is an x∗ ∈ X that solves this equation; i.e., G(x∗) = 0.
A minimal approach to Newton’s method. Consider Newton’s method for the so-

lution of (1), taking a general point of view. For this purpose let U(x∗) be a neighbor-
hood of x∗, and for all x ∈ U(x∗) let G′(x)(·) : X → Y be invertible linear operators.
They will play the role of derivatives of G(x). Let xk ∈ U(x∗), and define a Newton
step via the update formula

(2) xk+1 := xk −G′(xk)−1G(xk).

The following theorem covers local superlinear convergence of the corresponding New-
ton iteration. Because existence of x∗ is assumed, which is characteristic for semis-
mooth Newton theorems, completeness of X is not required.

Theorem 2.1. For the nonlinear equation (1) define

(3) Θ(x) :=

∥

∥G′(x)−1
(

G′(x)(x − x∗) − (G(x) −G(x∗))
)∥

∥

X

‖x− x∗‖X
.

For xk ∈ U(x∗) the Newton step (2) satisfies

‖xk+1 − x∗‖X = Θ(xk) ‖xk − x∗‖X .

If the consistency condition limx→x∗ Θ(x) = 0 holds, then Newton’s method converges
locally superlinearly to x∗.

Proof. By our assumptions the Newton step xk → xk+1 is well defined in U(x∗).
By its definition and by G(x∗) = 0 we have

‖xk+1 − x∗‖X =
∥

∥xk − x∗ −G′(xk)−1G(xk)
∥

∥

X

=
∥

∥G′(xk)−1
(

G′(xk)(xk − x∗) − (G(xk) −G(x∗))
)∥

∥

X

= Θ(xk) ‖xk − x∗‖X .

If limx→x∗ Θ(x) = 0, then there is a ball around x∗, where Θ(x) < 0.5, and

‖xk+1 − x∗‖X < 0.5 ‖xk − x∗‖X .

In this case the Newton sequence remains in this ball by induction, converges to x∗,
and thus converges superlinearly by definition of the quantity Θ(x).

Classically, G′(x) is taken as the Fréchet derivative of G at x, which, however,
need not exist in many practically relevant cases, such as semismoothness. We will
view G′(x) as an algorithmic construct rather than an analytic object. Any choice of
G′(x) can be used for which the consistency condition limx→x∗ Θ(x) = 0 holds. This
choice is far from being unique.
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Baire–Carathéodory functions and their Nemyckii operators. Consider a measur-
able set Ω ⊂ R

d equipped with a positive measure μ such that μ(Ω) < ∞, two
separable Banach spaces X ,Y (usually X ,Y = R

n), and a function

ψ : X × Ω → Y,

(x, t) �→ ψ(x, t).

For 1 ≤ p ≤ ∞ consider the Bochner–Lebesgue space Lp(Ω,X ) of p-integrable
functions v : Ω → X , and denote its norm by ‖·‖Lp

. As usual, L∞(Ω,X ) is the space
of essentially bounded functions, and for p = ∞ we set p−1 = 0. Let D ⊂ Lp(Ω,X ).
If it is well defined, then the operator

Ψ : D → Ls(Ω,Y),

x �→ Ψ(x) : Ψ(x)(t) = ψ(x(t), t) a.e.

is called the Nemyckii operator from D to Ls(Ω,Y) corresponding to ψ. To be
well defined Ψ must necessarily map measurable functions to measurable functions.
Note that there are several concepts of measurability in Banach spaces that, however,
coincide in separable spaces. As a sufficient condition ψ is usually assumed to be a
Carathéodory function; i.e., ψ is continuous in x and measurable in t. However, since
pointwise limits of measurable functions in separable spaces are measurable (cf., e.g.,
[9, 21.4]), this class can be extended substantially to functions ψ that are pointwise
limits of sequences ψn of Carathéodory functions. Inserting a measurable function
x into Ψ, the sequence of measurable functions Ψn(x) converges pointwise to Ψ(x),
which is consequently measurable. This is the class of Baire–Carathéodory functions
(cf. [2])—an extension that is essential for our theory.

So far Ψ is a mapping between spaces of measurable functions. To assert that
Ψ : Lp(Ω,X ) → Ls(Ω,Y) we have to impose a growth condition on ψ, which reads
(cf. [16, section 26.3]) as follows:

(4) |ψ(x, t)|Y ≤ a(t) + b |x|p/sX for some a ∈ Ls(Ω,R), b ∈ R.

Hence, the behavior of ψ for large x restricts the choice of spaces on which a corre-
sponding Nemyckii operator Ψ can be defined.

Semilinear operator equations. As a convenient framework, consider nonlinear
operators G(x) of the following form, which we will call semilinear operators:

(5) G(x) := Tx+ F (x).

Let us gather our notation introduced so far and fix our theoretical framework by
stating the following set of basic assumptions.

Basic Assumptions 2.2. Let Ω ⊂ R
d be a measurable set, equipped with a

positive measure μ with μ(Ω) <∞. Let X and Y be separable Banach spaces.
Let X and Y be linear spaces and assume that there are 1 ≤ p, q ≤ ∞ such that

X ⊂ Lp(Ω,X ) and Lq(Ω,Y) ⊂ Y . Assume that (X, ‖·‖Lp
) is a normed space.

Let T : X → Y be a linear operator and F : Lp(Ω,X ) → Lq(Ω,Y) a Nemyckii
operator, corresponding to a Carathéodory function f(x, t).

Assume that there is x∗ ∈ X such that G(x∗) = 0. Let

f ′(·, ·)(·) : (X × Ω) ×X → Y,

(x, t, v) �→ f ′(x, t)(v)
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be a function that is a Baire–Carathéodory function in (x, t) and linear in v.
Assume that there is a neighborhood U(x∗) of x∗ such that for every x ∈ U(x∗) the

corresponding linear Nemyckii operator F ′(x)(·) maps X to Y and the linear operator
G′(x) := T + F ′(x),

G′(x)(·) : X → Y,

v �→ Tv + F ′(x)v,

has an inverse G′(x)−1 : Y → X.
Remark 2.3. In many applications T is a linear differential operator, which is

defined on some Sobolev space X := W σ,r(Ω) ↪→ Lp(Ω). Since we do not need the
completeness of X , we are free to equip W σ,r(Ω) with an Lp-norm. This captures the
nonlinearity of F best. Y can be chosen as a dual space that contains Lq(Ω).

In such a setting G(x) = 0 may be a semilinear PDE, but our formulation also
includes systems of PDEs and algebraic equations, which arise in control-constrained
optimal control (cf. section 6 below).

Linearity of T is assumed for simplicity of presentation. Of course, our framework
extends straightforwardly to nonlinear operators T (x) that satisfy suitable smoothness
conditions such as semismoothness.

Basic Assumptions 2.2 define our framework and assert that G : X → Y , G′(x) :
X → Y , and that the Newton steps (2) are well defined on a neighborhood of x∗,
but they are not sufficient to show (superlinear) convergence of the corresponding
iteration. To this end we have to establish a relation between f and f ′. We will do
this conveniently in terms of the function

(6) ψ∗(x, t;α) :=

⎧

⎪

⎨

⎪

⎩

f ′(x, t)(x − x∗(t)) − (f(x, t) − f(x∗(t), t))
|x− x∗(t)|αX

: x 	= x∗(t),

0 : x = x∗(t),

and its limiting behavior at x = x∗(t) for α ≥ 1. In sections 3 and 5, where we study
superlinear convergence of Newton’s method, we will assume continuity of ψ∗(x, t; 1)
at x∗(t) a.e. In section 4 we discuss local boundedness of ψ∗(x, t;α) for α > 1 and rates
of convergence. We may view these assumptions as pointwise consistency conditions.

As a general strategy we will carry over the properties of ψ∗(x, t;α) to its cor-
responding Nemyckii operator Ψ∗(x;α) in suitable spaces. Then, under a smoothing
assumption on G′(x)−1 we invoke Theorem 2.1 by estimating

Θ(x) :=

∥

∥G′(x)−1
(

G′(x)(x − x∗) − (G(x) −G(x∗))
)∥

∥

Lp

‖x− x∗‖Lp

=

∥

∥G′(x)−1
(

F ′(x)(x − x∗) − (F (x) − F (x∗))
)∥

∥

Lp

‖x− x∗‖Lp

(7)

and showing consistency in Lp(Ω,X ). Observe that T cancels out by linearity.
Relation to semismoothness. Theorem 2.1 is closely related to a semismooth New-

ton theorem. Its formulation purely in terms of the domain space makes it independent
of the topology of the image space (an affine covariant formulation; cf. [4]). In view
of (3) the use of operator norms for G′(x)−1 recovers known results on semismooth
Newton methods, such as [12, Theorem 3.12] or [6, Theorem 1.1].
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Although semismooth Newton theorems are very simple, the characterization of
semismoothness as an intrinsic property of G is involved. A straightforward definition
would be via (3) and the requirement limx→x∗ Θ(x) = 0. However, for fixed x∗
there is always some G′(x) such that Θ(x) = 0, which renders this definition of
semismoothness meaningless. The choice of G′(x) has to be restricted and localized
to x. In finite dimensions Rademacher’s theorem gives us an appropriate tool to define
a set-valued generalized derivative ∂G(x), from which G′(x) has to be chosen. With
this restriction a definition via (3) makes sense. However, this construction is not
possible anymore for infinite dimensional spaces.

For this reason [12] first chooses a set-valued mapping ∂G(x) from which G′(x)
has to be taken, and then defines ∂G(x)-semismoothness via this set. For nonlinear
Nemyckii operators F (x), [12] defines ∂F (x) pointwise via ∂f(x, t).

If f is semismooth and f ′(x, t) ∈ ∂f(x, t), then limx→x∗(t) ψ∗(x, t; 1) = 0 a.e. If f
is γ-order semismooth, then ψ∗(x, t; 1 + γ) is bounded a.e. in Ω. So semismoothness
is a particular case in which our results can be applied.

3. Continuity of Ψ∗(x; 1) and superlinear convergence. Our first qualita-
tive convergence result is proved in two simple steps. First, we prove a local version of a
standard result on continuity of Nemyckii operators (cf., e.g., [16, Proposition 26.7(a)]
or [5, Proposition IV.1.1]) for Baire–Carathéodory functions. Second, we apply this
result to ψ∗(x, t; 1) and conclude superlinear convergence of Newton’s method via the
Hölder inequality and a smoothing assumption on G′(x)−1.

Lemma 3.1 (local continuity of Nemyckii operators). Let X , Y be separable
Banach spaces, Ω a measurable subset of R

d, and ψ : X×Ω → Y a Baire–Carathéodory
function. For each measurable function x : Ω → X let Ψ(x) be the measurable function
t → ψ(x(t), t). Let x∗ ∈ Lp(Ω,X ) be given. Then the following assertion holds: If ψ
is continuous with respect to x at (x∗(t), t) for almost all t ∈ Ω, and Ψ maps Lp(Ω,X )
into Ls(Ω,Y) for 1 ≤ p, s <∞, then Ψ is continuous at x∗ in the norm topology.

Proof. This is a slight modification of a well-known lemma of Krasnoselski, which
states global continuity of Ψ for Carathéodory functions ψ. Our proof stays very close
to the proof in [5, Proposition IV.1.1], and our weakened assumptions do not cause
any additional difficulties compared to the standard case.

Because ψ is a Baire–Carathéodory function, Ψ maps measurable functions to
measurable functions. To show its continuity at x∗ for s <∞ we consider an arbitrary
sequence ‖xn − x∗‖Lp

→ 0. By picking a suitable subsequence, we may assume w.l.o.g.
that ‖xn − x∗‖pLp

≤ 2−n and xn(t) → x∗(t) pointwise a.e. (cf., e.g., [9, Theorem
22.31]). Define the function

w(x, t) := |ψ(x, t) − ψ(x∗(t), t)|sY ,

and denote by W the corresponding Nemyckii operator. Inserting the sequence xn,
we conclude that W (xn) → 0 pointwise a.e. because ψ(x, t) is continuous in x at
(x∗(t), t) a.e.

Next we will show W (xn) → 0 in L1(Ω,R) via the convergence theorem of
Lebesgue. For this we construct a function w ∈ L1(Ω,R) that dominates the se-
quence W (xn). Since W (x) ≥ 0 and W (xn) → 0 a.e., we can define the measurable
sets

Ωn := {t ∈ Ω : w(xn(t), t) ≥ w(xm(t), t) ∀m ∈ N} \

⎛

⎝

⋃

1≤k<n
Ωk

⎞

⎠ .
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Hence, the function x :=
∑

n χΩnxn is measurable. Let w := W (x), which is measur-
able as well. By construction, w(t) = supn w(xn(t), t) a.e. Moreover,

∫

Ω

|x(t) − x∗(t)|pX dt ≤
∫

Ω

sup
n

|xn(t) − x∗(t)|pX dt

≤
∞
∑

n=1

‖xn(t) − x∗(t)‖pLp
≤

∞
∑

n=1

2−n = 1.

(8)

Consequently, since x∗ ∈ Lp(Ω,X ), x ∈ Lp(Ω,X ) by the triangle inequality and hence,
because Ψ : Lp(Ω,X ) → Ls(Ω,Y), w = W (x) ∈ L1(Ω,R). Since w dominates W (xn)
we can apply the convergence theorem of Lebesgue to obtain W (xn) → 0 in L1(Ω,R).
Hence, Ψ(xn) → Ψ(x∗) in Ls(Ω,Y). Because xn was arbitrary, we conclude continuity
of the operator Ψ : Lp(Ω,X ) → Ls(Ω,Y) at x∗.

Remark 3.2. Let us add some remarks, concerning the indices s and p:
(i) In general one has to verify the growth condition (4) for ψ to assert that Ψ

maps Lp(Ω,X ) to Ls(Ω,Y).
(ii) If p <∞ and ‖Ψ(x)‖L∞

≤M uniformly for all x ∈ Lp(Ω,X ), then Lemma 3.1
holds for all s < ∞ but not for s = ∞ (except for the case of constant Ψ).
This will turn out to be the main reason for the so-called norm gap that
is observed in the analysis of semismooth Newton methods. The proof of
Lemma 3.1 simplifies in this case because we can use the domination function
w = (2M)s. In section 5 we consider a variant of Lemma 3.1 that shows a
weak form of continuity for s = ∞.

(iii) The case p = ∞ is not covered by Lemma 3.1. However, for s <∞ the proof
carries over, replacing (8) by a suitable expression with essential suprema.
Then, instead of a growth condition it is sufficient that ‖Ψ(x)‖L∞

≤ M
uniformly in a neighborhood of x∗ ∈ L∞(Ω,X ).
The case p = s = ∞ is different in character. Then Ψ is continuous at x∗
if continuity of ψ(x, t) at x∗(t) is uniform in Ω. This is usually a too strong
assumption in the context of semismoothness (cf. Example 3.4 below).

Theorem 3.3. Let G : X → Y be a semilinear operator as defined in (5), and
suppose that Basic Assumptions 2.2 hold. Assume additionally the following:

(i) ψ∗(x, t; 1) as defined in (6) is a Baire–Carathéodory function and

lim
x→x∗(t)

ψ∗(x, t; 1) = 0 for almost all t ∈ Ω.

The corresponding Nemyckii operator Ψ∗(x; 1) maps Lp(Ω,X ) into Ls(Ω,Y)
with s <∞ and s−1 + p−1 = q−1 (hence p > q).

(ii)
∥

∥G′(x)−1
∥

∥

Lq(Ω,Y)→Lp(Ω,X )
≤M holds uniformly on a neighborhood of x∗.

Then Newton’s method converges locally superlinearly to x∗.
Proof. By definition of ψ∗(·, ·; 1) we have for x, x∗ ∈ X

(9) F ′(x)(x − x∗) − (F (x) − F (x∗)) = Ψ∗(x; 1)|x − x∗|X ,

by interpretation of | · |X : Lp(Ω,X ) → Lp(Ω,R) as a Nemyckii operator. By the
Hölder inequality

‖Ψ∗(x; 1)|x − x∗|X‖Lq
≤ ‖Ψ∗(x; 1)‖Ls

‖x− x∗‖Lp
for q−1 = s−1 + p−1.
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By (i) ψ∗(x, t; 1) is continuous at x∗(t) a.e., and we can apply Lemma 3.1 to get
limx→x∗ ‖Ψ∗(x; 1)‖Ls

= 0. Now we estimate Θ(x) as defined in (3), using (ii):

Θ(x) ≤

∥

∥G′(x)−1
∥

∥

Lq→Lp
‖F ′(x)(x − x∗) − (F (x) − F (x∗))‖Lq

‖x− x∗‖Lp

≤M ‖Ψ∗(x; 1)‖Ls
.

Hence, limx→x∗ Θ(x) = 0, which implies superlinear convergence by Theorem 2.1.
Connection to known results. For semismooth functions [12] studies semismooth-

ness of the corresponding Nemyckii operators under an additional global Lipschitz
condition, which corresponds to global boundedness of ψ∗. In [6] semismoothness of
the max-function is studied. In both works Ω is split into three subdomains whose
sizes are carefully balanced. Then the remainder terms are estimated separately.

In our approach via Lemma 3.1 we can relax the global Lipschitz condition and
replace it by weaker growth conditions (4) on ψ∗(x, t; 1). By Proposition A.1 these
follow from growth conditions on f ′ and on local Lipschitz constants of f .

From a structural point of view, our approach via Lemma 3.1 parallels com-
pletely the study of local Fréchet differentiability of Nemyckii operators: replace
f ′(x, t) by f ′(x∗(t), t) in (6) and assume again continuity of ψ∗(x, t; 1) at x∗(t) a.e.
Then Lemma 3.1 and the Hölder inequality yield local Fréchet differentiability of
F : Lp(Ω,X ) → Lq(Ω,Y) at x∗. Just as in Theorem 3.3, p > q is necessary and de-
pends on a growth condition for ψ∗(x, t; 1). Hence, one technique applied to different
remainder terms yields semismoothness or Fréchet differentiability at x∗, respectively.
This unifies the treatment of both concepts and clarifies their relation.

Example 3.4. As an illustration consider the following simple class of examples:

(10) f(x) := max(x, τ)σ , f ′(x) :=

{

0 : x ≤ τ,

σxσ−1 : otherwise,
τ ≥ 0, σ ≥ 1.

Except for special cases f is not differentiable at x = τ and not globally Lipschitz
continuous for σ > 1. For f , f ′, and x∗ : Ω → R we will study ψ∗(x, t;α). Let now
t0 ∈ Ω and x0 := x∗(t0) be fixed. Then by (6),

(11) ψ∗(x, t0;α) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 : x = x0,

−τσ + max(x0, τ)σ

|x− x0|α
: x0 	= x ≤ τ,

σxσ−1(x− x0) − xσ + max(x0, τ)σ

|x− x0|α
: otherwise.

If τ > 0 and x0 	= τ , then ψ∗(x, t0;α) has a jump at x = τ and is thus not a
Carathéodory function, but it is easy to see that it is a Baire–Carathéodory function.
We will show now that limx→x0 ψ∗(x, t0; 1) = 0, regardless of the choice of x0.

If x0 	= τ , then f is differentiable in a neighborhood of x0 and f ′ is Lipschitz
continuous there. If x0 = τ , then the same holds separately for both one-sided
neighborhoods of x0, excluding x0. In both cases there is ε(x0) > 0 such that we can
apply the fundamental theorem of calculus for all x̃ with |x̃− x0| ≤ ε to obtain

(12) |ψ∗(x̃, t0; 1)| ≤
∫ 1

0

|f ′(x̃) − f ′(sx̃+ (1 − s)x0)| ds ≤ L|x̃− x0|.
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Observe that this integral is independent of f ′(x0). Hence, limx→x0 ψ∗(x, t0; 1) = 0
and ψ∗(x, t0;α) is bounded for α ≤ 2. If σ = 1, f ′ is piecewise constant and (12)
vanishes, which implies boundedness of ψ∗(x, t0;α) for all α ≥ 1.

However, and this is a particular feature of semismoothness, these results do not
hold uniformly with respect to x0 (and hence t0). Because f ′ has a jump at x = τ ,
the estimate (12) holds only for ε(x0) < |x0 − τ |. Also boundedness of ψ∗(x, t0;α)
depends on the choice of x0. If x0 is very close to τ , then this bound is very large,
and tends to ∞, if x0 → τ .

If we consider ψ∗(x, t;α) for a continuous function x∗ : Ω → R, then this non-
uniformity occurs if x∗(t) = τ for some t ∈ Ω. As a consequence, Ls bounds for
Ψ∗(x;α) depend on the size of the sets for which x∗(t) is close to τ . In section 4 we
discuss assumptions (essentially on x∗) that allow us to quantify this effect.

Concerning growth conditions in the case σ > 1, f is locally Lipschitz continuous,
and the corresponding local Lipschitz constant satisfies L(x) ≤ a + b|x|σ−1 and also
|f ′(x)| ≤ a+b|x|σ−1. Hence, by Proposition A.1, Ψ∗(·; 1) maps Lp(Ω,R) into Ls(Ω,R)
for p/s ≥ σ − 1. Thus, for successful application of Theorem 3.3 to an equation
G(x) = Tx+ F (x), we have to show (ii) for p/q ≥ σ.

If σ = 1, then f is globally Lipschitz continuous. Then ψ∗ is uniformly bounded
and Theorem 3.3 holds if there is some p > q such that (ii) holds (cf. Remark 3.2).
This is the only case covered by previous results [12, 13, 6].

4. Boundedness of Ψ∗(x; α) and rates of convergence. One way of showing
boundedness of an integral is limiting the size of the sets where the integrand is large.
In the following we will consider an assumption that asserts Ψ∗(x;α) ∈ Ls(Ω,Y) based
on this principle. Following the ideas of [12], we define the set

Ωε(x) :=
{

t ∈ Ω : |ψ∗(x(t), t;α)|Y >
1

εα−1

}

for α > 1

and assume that there are ρ > 0 and C < ∞ such that for its measure μ(Ωε(x)) the
following bounds hold for some γ > 0:

(13) sup
‖x−x∗‖Lp

≤ρ
μ(Ωε(x)) ≤ Cεγ ∀ε > 0.

This assumption means qualitatively that the sets of high nonlinearity are small near
x∗ (cf. the discussion in Example 3.4). In section 6 this assumption is reformulated
as a strict complementarity assumption as known in constrained optimization.

Relations like (13) can be described conveniently in terms of the distribution
function Sv of a measurable nonnegative function v : Ω → R+, defined by

Sv(e) := μ ({t ∈ Ω : v(t) > e}) .

The distribution function measures the size of the sets where v is large. Obviously,
S is positive, monotonically decreasing, and bounded on bounded domains. It has
already been useful in the convergence analysis of interior point methods in function
space (cf. [11, 10]). We will use it now to obtain sharpened estimates for convergence
rates, compared to [12].

Lemma 4.1 (the distribution function). Let Ω be a σ-finite measure space and
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v: Ω → R+ measurable and nonnegative. Then
∫

Ω

v(t)dt =
∫

[0,∞]

Sv(e) de,(14)

Sv(e) = Svs(es).(15)

Let ϕ : [0,∞] → [0,∞] be locally absolutely continuous, strictly monotone (increasing
or decreasing), and bijective. Then

∫

Ω

v(t)dt =
∫

[0,∞]

Sv(ϕ(e))|ϕ′(e)| de.(16)

Proof. Equation (14) is a special case of [15, Theorem 8.8]. Equation (16) follows
from the substitution rule (cf. [15, Theorem 8.1]), which shows that with ẽ = ϕ(e)

∫

[0,∞]

Sv(ẽ) dẽ =
∫

[0,∞]

Sv(ϕ(e))|ϕ′(e)| de.

Equation (15) follows from

Svs(es) = μ ({t ∈ Ω : v(t)s > es}) = μ ({t ∈ Ω : v(t) > e}) = Sv(e).

In terms of the distribution function our assumption (13) reads

(17) S|Ψ∗(x;α)|Y
(

ε1−α
)

≤ min {μ(Ω);Cεγ} ∀ε > 0.

Lemma 4.2. If (13) holds for some 1 < α < 1+γs−1, then there is a neighborhood
of x∗ in X in which Ψ∗(x;α) is uniformly bounded in Ls(Ω,Y).

Proof. By (15) and (17) we have

(18) S|Ψ∗(x;α)|sY

(

ε(1−α)s
)

= S|Ψ∗(x;α)|Y
(

ε1−α
)

≤ min {μ(Ω);Cεγ} .

By (16) with ϕ(ε) = ε(1−α)s and thus ϕ′(ε) = (1 − α)sε(1−α)s−1 we deduce

‖Ψ∗(x;α)‖sLs
=
∫

Ω

|Ψ∗(x;α)|sY dt

=
∫

[0,∞]

S|Ψ∗(x;α)|sY

(

ε(1−α)s
) ∣

∣

∣(1 − α)sε(1−α)s−1
∣

∣

∣ dε.

Inserting (18), we finally obtain for γ + (1 − α)s > 0 and α > 1 the boundedness of

‖Ψ∗(x;α)‖sLs
≤ C

∫

[0,∞]

min {μ(Ω); εγ} ε(1−α)s−1dε

= C

∫

[0,μ(Ω)]

εγ+(1−α)s−1dε+ C

∫

[μ(Ω),∞]

μ(Ω)ε(1−α)s−1dε

≤ c lim
ε→0

εγ+(1−α)s + C + c lim
ε→∞

ε(1−α)s.

(19)

Theorem 4.3. Let G : X → Y be a semilinear operator as defined in (5), and
suppose that Basic Assumptions 2.2 hold. Assume additionally the following:
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(i) ψ∗(x, t;α) as defined in (6) is a Baire–Carathéodory function that satisfies
assumption (13) for some α in the range

(20) 1 < α < α0 :=
1 + γq−1

1 + γp−1
.

(ii)
∥

∥G′(x)−1
∥

∥

Lq(Ω,Y)→Lp(Ω,X )
≤M holds uniformly on a neighborhood of x∗.

Then Newton’s method converges locally superlinearly to x∗ with the rate α.
Proof. By definition of ψ∗(·, ·;α) we have for x, x∗ ∈ X

F ′(x)(x − x∗) − (F (x) − F (x∗)) = Ψ∗(x;α)|x − x∗|αX .

By the Hölder inequality we obtain for s−1 + αp−1 = q−1

‖Ψ∗(x;α)|x − x∗|αX‖Lq
≤ ‖Ψ∗(x;α)‖Ls

‖x− x∗‖αLp
.

Application of Lemma 4.2 shows that ‖Ψ∗(x;α)‖Ls
is uniformly bounded for 1 < α <

1 + γs−1, which holds due to (20). Now we can estimate Θ(x) as defined in (3) and
use (ii):

Θ(x) ≤

∥

∥G′(x)−1
∥

∥

Lq→Lp
‖F ′(x)(x − x∗) − (F (x) − F (x∗))‖Lq

‖x− x∗‖Lp

≤M ‖Ψ∗(x;α)‖Ls
‖x− x∗‖α−1

Lp
.

By Theorem 2.1 this yields local superlinear convergence with the rate α.
Remark 4.4. Under the given restrictions on α, Theorem 4.3 gives us a result as

good as we can expect, but often (13) holds for a whole range α ∈ [1, α] with α ≥ α0.
Then Theorem 4.3 holds only for all α < α0. We may interpret this as Newton’s
method approaching the rate α0 asymptotically from below, a behavior often called
convergence of order α0.

If we additionally assume that ‖Ψ∗(x; 1)‖L∞
is uniformly bounded near x∗ and

α > α0, then we can refine our results slightly. For this we have to use a splitting of Ω
similar to that used in [12] or [6]. However, despite a considerably increased technical
effort, no substantial improvement on α is possible. We merely obtain the closure of
the interval (20).

Theorem 4.5. Let G : X → Y be a semilinear operator as defined in (5), suppose
that Basic Assumptions 2.2 hold, and let p > q. Assume additionally the following:

(i) ψ∗(x, t;α) as defined in (6) is a Baire–Carathéodory function that satisfies
assumption (13) for some α in the range

(21)
1 + γq−1

1 + γp−1
=: α0 < α ≤ p

q
.

(ii)
∥

∥G′(x)−1
∥

∥

Lq(Ω,Y)→Lp(Ω,X )
≤M holds uniformly on a neighborhood of x∗.

(iii) ‖Ψ∗(x; 1)‖L∞
is uniformly bounded in a neighborhood of x∗.

Then Newton’s method converges locally superlinearly to x∗ with the rate α0.
Proof. For x, x∗ ∈ X we abbreviate R(x) := F ′(x)(x− x∗) − (F (x) − F (x∗)) and

δx := x−x∗. Depending on a parameter κ, we divide Ω into two parts. In view of (13)
we call Ωκ the set where |Ψ∗(x;α)|Y > κ1−α and obtain μ(Ωκ) ≤ Cκγ . On Ωκ we use
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the boundedness of ‖Ψ∗(x; 1)‖L∞
and the relation ‖v‖Lq(S) ≤ μ(S)(q

−1−p−1) ‖v‖Lp(S),
which holds for p ≥ q (cf. [1, Theorem 2.8]). This yields

‖R(x)‖Lq(Ωκ) ≤ ‖Ψ∗(x; 1)‖L∞
μ(Ωκ)(q

−1−p−1) ‖δx‖Lp(Ωκ) ≤ Cκγ(q−1−p−1) ‖δx‖Lp(Ω) .

Setting κ := ‖δx‖νLp(Ω) (with ν > 0 to be chosen later), we conclude

‖R(x)‖Lq(Ωκ) ≤ C ‖δx‖νγ(q−1−p−1)+1
Lp(Ω) .(22)

On the remaining set Ω \ Ωκ we apply, as before, the Hölder inequality

(23) ‖R(x)‖Lq(Ω\Ωκ) ≤ ‖Ψ∗(x;α)‖Ls(Ω\Ωκ) ‖δx‖
α
Lp(Ω)

with s−1 := q−1 − αp−1. By construction, |Ψ∗(x;α)|s ≤ κ(1−α)s on Ω \Ωκ and hence
S|Ψ∗(x;α)|sY

(

ε(1−α)s
)

= 0 for ε < κ. Consequently, just as in the proof of Lemma 4.2,
we have the following estimate for α 	= 1 and γ + (1 − α)s 	= 0:

‖Ψ∗(x;α)‖sLs(Ω\Ωκ) ≤ C

∫

[κ,∞]

min {μ(Ω); εγ} ε(1−α)s−1dε

≤ cκγ+(1−α)s + C + c lim
ε→∞

ε(1−α)s.

Hence, for (1 − α)s < 0, γ + (1 − α)s < 0 and for κ ∈ [0, κ] with arbitrary κ > 0

‖Ψ∗(x;α)‖Ls(Ω\Ωκ) ≤ C(κγs
−1+1−α + 1) = C(κ)κγs

−1+1−α.(24)

Hypothesis (21) ensures that the above inequalities for s−1 are valid. By our definition
κ := ‖δx‖ν with ν > 0, κ remains bounded in the following, since δx is always chosen
from a bounded set. Thus we can drop the argument of C(κ). Hence, inserting (24)
with κ = ‖δx‖νLp(Ω) and s−1 = q−1 − αp−1 into (23), we obtain

(25) ‖R(x)‖Lq(Ω\Ωκ) ≤ C ‖δx‖ν(γs
−1+1−α)+α

Lp(Ω) ≤ C ‖δx‖νγ(q−1−αp−1)−ν(α−1)+α
Lp(Ω) .

Finally we compute the norm of R(x) on Ω by adding both components:

‖R(x)‖qLq(Ω) = ‖R(x)‖qLq(Ωκ) + ‖R(x)‖qLq(Ω\Ωκ) .

The summands can be estimated by (22) and (25), respectively, and a choice of ν
that balances both estimates will provide the sharpest results. Thus, comparing the
exponents in (22) and (25), we choose ν such that

(26) νγ(q−1 − p−1) + 1 = νγ(q−1 − αp−1) − ν(α − 1) + α.

Solving this linear equation for ν yields ν = (γp−1 + 1)−1. Note that α cancels out.
Inserting ν into (22), we finally obtain for the contraction Θ(x)

Θ(x) ≤
∥

∥G′(x)−1
∥

∥

Lq→Lp

‖R(x)‖Lq(Ω)

‖δx‖Lp(Ω)

≤ C ‖δx‖α0−1
Lp(Ω) ,

with α0 as defined in (21). This shows superlinear convergence with rate α0.
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Relation to known estimates. In [12, Theorem 3.45] the rate of convergence
of Newton’s method is estimated under assumption (13) for the case of uniformly
bounded ψ∗. Translating the notation used there into our framework, the rate of
convergence β of Newton’s method was estimated in that work by

β = min
{

α0 ; α · (α− 1)/α+ τ

(α− 1) + τ

}

, τ = γ(q−1 − p−1).

Theorems 4.3 and 4.5 show that the second bound can essentially be replaced by α,
which is an improvement because α > 1. Example 3.53 in [12] shows that the rate in
Theorem 4.5 can be considered sharp.

5. Newton’s method and compactness. Consider again the equation G(x) =
0, where G is a semilinear operator satisfying (5). In section 3 we used continuity
of the Nemyckii operator Ψ∗(x; 1) to show local superlinear convergence of Newton’s
method. By lack of continuity from Lp(Ω,X ) to L∞(Ω,Y) (cf. Remark 3.2(ii)) we
encountered a norm gap and needed an Lq → Lp smoothing property of G′(x)−1.

The classical qualitative notion of a smoothing operation is that of a compact
operator, and we will now explore its connection to convergence of Newton’s method.
By the Sobolev embedding theorems, compact embeddings in a space Lq usually imply
some continuous embedding into a stronger space Lp (cf. [1]). So our considerations
are mainly of theoretical interest, but due to the fundamental role of compactness in
analysis this connection is worth investigating.

Lemma 5.1. Let X , Y be separable Banach spaces and Ω a measurable subset of
R
d. Let ψ : X × Ω → Y be a Baire–Carathéodory function. Assume that there is a

constant M <∞ independent of x such that |ψ(x, t)|Y ≤M a.e. in Ω.
For some 1 ≤ p ≤ ∞ let x∗ ∈ Lp(Ω,X ) be given, and let xn be a sequence of

functions that converges to x∗ in Lp(Ω,X ). If ψ(x, t) is continuous with respect to x
at (x∗(t), t) for almost all t ∈ Ω, then

(27) lim
n→∞

∫

Ω

|ψ(xn(t), t) − ψ(x∗(t), t)|qY v(t) dt = 0 ∀ v ∈ L1(Ω,R), ∀ 1 ≤ q <∞.

Proof. Since xn → x∗ in Lp(Ω,X ), by picking a suitable subsequence we may
assume that xn(t) → x∗(t) a.e. Thus, by continuity of ψ(x, t) in x at x∗(t) a.e.
and by continuity of the power function, also |ψ(xn(t), t) − ψ(x∗(t), t)|qY → 0 a.e.
Consequently, for each v ∈ L1(Ω,R) we have

|ψ(xn(t), t) − ψ(x∗(t), t)|qY v(t) → 0 a.e. in Ω.

Because |ψ(x, t)|Y ≤ M for all x ∈ X a.e., this sequence is dominated by (2M)qv ∈
L1(Ω,R), and the convergence theorem of Lebesgue yields (27).

We conclude with a semismooth Newton theorem based on compactness. Just as
Lq − Lp continuity of each G′(x)−1 was not sufficient in Theorem 3.3 (we needed a
uniform bound), compactness of each G′(x)−1 is not sufficient in Theorem 5.2.

Theorem 5.2. Let G : X → Y be a semilinear operator as defined in (5),
suppose that Basic Assumptions 2.2 hold, and let 1 < p < ∞. Assume additionally
the following:

(i) ψ∗(x, t; 1) as defined in (6) is a Baire–Carathéodory function, and

lim
x→x∗(t)

ψ∗(x, t; 1) = 0 for almost all t ∈ Ω.

The corresponding Nemyckii operator Ψ∗(x; 1) maps Lp(Ω,X ) into L∞(Ω,Y).
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(ii) The linear space Y can be equipped with a norm ‖·‖Y such that Lp(Ω,Y) is
compactly embedded into (Y, ‖·‖Y ).

(iii)
∥

∥G′(x)−1
∥

∥

Y→Lp(Ω,X )
≤M holds uniformly on a neighborhood of x∗.

Then Newton’s method converges locally superlinearly to x∗.
Proof. Let xn be an arbitrary sequence in X with ‖xn − x∗‖Lp

→ 0, and define
R(x) := F ′(x)(x − x∗) − (F (x) − F (x∗)). Let p′ be defined by p′−1 + p−1 = 1. Then
1 < p′ < ∞ and Lp′(Ω,Y∗) = (Lp(Ω,Y))∗. Consider v ∈ Lp′(Ω,Y∗). By the Hölder
inequality we estimate

|〈R(xn), v〉| ≤ ‖|R(xn)|Y |v|Y∗‖L1
≤ ‖xn − x∗‖Lp

‖|Ψ∗(xn; 1)|Y |v|Y∗‖Lp′

= ‖xn − x∗‖Lp

(∫

Ω

|ψ∗(xn(t), t; 1)|p
′

Y |v(t)|p
′

Y∗ dt

)p′−1

.

Because ψ∗(x∗(t), t; 1) = 0 a.e., by Lemma 5.1 the last integral expression converges
to 0 for each |v|p

′

Y∗ ∈ L1(Ω). Thus, division by ‖xn − x∗‖Lp
yields

rn :=
R(xn)

‖xn − x∗‖Lp

⇀ 0 in Lp(Ω,Y).

By (ii), rn → 0 in Y , and thus by (iii), en := G′(xn)−1rn → 0 in Lp(Ω,X ). Hence,

lim
n→∞

Θ(xn) = lim
n→∞

∥

∥G′(xn)−1R(xn)
∥

∥

Lp

‖xn − x∗‖Lp

= lim
n→∞

‖en‖Lp
= 0.

Because xn was arbitrary, this implies superlinear convergence by Theorem 2.1.
Often Y is the dual of some Sobolev space W . If there is a compact embedding

E : W → Lp′ , then its adjoint E∗ : Lp → Y with p−1 + p′−1 = 1 is also a compact
embedding, suitable for Theorem 5.2.(ii). For a characterization of compactness in
Lp spaces we refer to [1, Theorem 2.21].

6. Application to an optimal control problem. As an illustration and in
view of Example 3.4 consider the following optimal control problem:

min
1
2
‖y − yd‖2

L2(Ω) +
1

1/σ + 1

∫

Ω

|u|1/σ+1 dt for σ ≥ 1

s.t. − Δy − u = 0, y
∣

∣

∂Ω
= 0, u ≥ τσ for τ ≥ 0.

To compute (u, y) we introduce an adjoint state λ and consider the first-order opti-
mality conditions:

y − yd − Δλ = 0, λ
∣

∣

∂Ω
= 0,

−Δy − max(λ, τ)σ = 0, y
∣

∣

∂Ω
= 0

(28)

with u = max(λ, τ)σ . This is a semilinear system of equations of the form (5) with
x = (y, λ). For σ = 1 its solution in function space by Newton’s method has been
considered in [6, 12] by a formulation in terms of the control u. The consideration
of the system (28) in terms of y and λ is an interesting alternative, which naturally
describes algorithms based on the discretization idea of [7].
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Constructing a linearization. The nonlinearity in this system is given by the
function f(λ) := max(λ, τ)σ , which has been considered in Example 3.4. Using f ′ as
defined in (10), we can construct a Jacobian matrix G′(x) to (28), given by

(29) G′(x) =

(

I −Δ
−Δ −f ′(λ)

)

.

Let x∗ = (y∗, λ∗) be the solution of (28). Computation of the remainder term
yields

G′(x∗ + δx)δx− (G(x∗ + δx) −G(x∗)) =

(

0
R(λ)

)

.

Here R(λ)(t) = ψ∗(λ(t), t;α)|λ(t) − λ∗(t)|α, with ψ∗ defined in (11). The prop-
erties of ψ∗ at x∗ have already been established in Example 3.4. In particular,
limx→x∗ ψ∗(x, t; 1) = 0 and |ψ∗(x, t; 1)| ≤ a(t) + b|x|σ−1. Hence, by Theorem 3.3,
local superlinear convergence of Newton’s method follows if an Lq − Lp smoothing
property holds for some p/q ≥ σ. If σ = 1, then we can use either Theorem 3.3 with
any p > q or Theorem 5.2.

Solvability and smoothing property of G′(x)−1. Let us not go into the details of
invertibility of G′ in the case of a block structure as in (29). It is, however, not hard
to see that G′ inherits a smoothing property of the solution operator of the state
equation. One approach is via a general theory for linear saddle point problems as
can be found, for example, in [3, Chapter III.4].

Since the nonlinear terms in our system depend on the adjoint state λ only, it is
sufficient to consider this component only, setting x = λ. By duality techniques it can
be shown (cf., e.g., [10, Chapter 4]) that a smoothing property holds for q−1 +p−1 = 1
as long as for −Δy = v we have ‖y‖Lp

≤ c ‖v‖L2
. We then obtain

(

δy

δλ

)

= G′(x)−1

(

0
R(λ)

)

=⇒ ‖δλ‖Lp
≤ C ‖R‖Lq

.

In particular, on regular domains p = ∞ and q = 1 are often obtained byH2-regularity
results for solutions of the state equation. Appropriate spaces for convergence analysis
are then X = (H2(Ω), ‖·‖L∞

) and Y = X∗ ⊃ L1(Ω).
Rates of convergence. To study convergence rates we restrict our analysis to the

case σ = 1 for simplicity. Following [12], we assume

(30) μ ({t ∈ Ω : 0 < |λ∗(t)| < ε}) ≤ Cεγ ,

a condition that resembles a strengthened strict complementarity condition. If |λ −
λ∗(t)| < |λ∗(t)| or λ∗(t) = 0, then r = 0. Otherwise, we have r < |λ∗(t)|. Hence, for
any 1 < α <∞

ψ∗(λ, t;α) ≤ |λ∗(t)|
|λ− λ∗(t)|α ≤ |λ∗(t)|1−α,

and thus finally (30) becomes (13):

μ(Ωε(λ)) := μ
({

t ∈ Ω : ψ∗(λ(t), t;α) < ε1−α
})

≤ Cεγ .



A SIMPLIFIED APPROACH TO SEMISMOOTH NEWTON 1431

By Theorem 4.5 we obtain the rate of convergence α as in (21). In particular, for the
very common case γ = 1, q = 1, p = ∞ we obtain α = 2. Thus, Newton’s method
converges locally quadratically in function space.

Appendix.
Proposition A.1 (a growth condition for ψ∗(x, t; 1)). For given x∗ ∈ Lp(Ω,X ),

f(x, t), and f ′(x, t) let ψ∗(x, t; 1) be defined as in (6). Define the local Lipschitz
constant L(x, t) of f with respect to x at (x, t) by

L(x, t) := sup
|x−x̃|X≤1

|f(x, t) − f(x̃, t)|Y
|x− x̃|X

.

Assume that

L(x, t) ≤ a(t) + b |x|p/sX for some a ∈ Ls(Ω,R), b ∈ R,(31)

|f ′(x, t)|X→Y ≤ a(t) + b |x|p/sX for some a ∈ Ls(Ω,R), b ∈ R.(32)

Then ψ∗(x, t; 1) satisfies the growth condition (4).
Proof. By the triangle inequality,

|ψ∗(x, t; 1)|Y ≤ |f ′(x, t)(x − x∗(t))|Y
|x− x∗(t)|X

+
|f(x, t) − f(x∗(t), t)|Y

|x− x∗(t)|X
.

Taking the operator norm of f ′(x, t), by (32) the first part of this sum satisfies (4).
To show the same for the second part we define for n ∈ N and i = 0, . . . , n the

collinear points xi := x · i/n+ x∗(t) · (n− i)/n. For sufficiently large n we can apply
(31) to obtain

(33)
|f(x, t) − f(x∗(t), t)|Y

|x− x∗(t)|X
≤
∑n

i=1 L(xi, t)|xi − xi−1|X
|x0 − xn|X

≤ a(t) +
b

n

n
∑

i=1

|xi|p/sX .

Application of the triangle inequality yields

|xi|p/sX ≤
(

|x|X · i
n

+ |x∗(t)|X · (n− i)
n

)p/s

≤ (max{|x|X , |x∗(t)|X })p/s .

Inserting this into (33), using x∗ ∈ Lp(Ω,X ), yields the desired estimate.
Often there is a relation L(x, t) ≈ sup|x̃−x|X≤1 |f ′(x̃, t)|. Then one of (31) and

(32) is redundant.
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NEW FORMULATIONS FOR OPTIMIZATION UNDER
STOCHASTIC DOMINANCE CONSTRAINTS∗

JAMES LUEDTKE†

Abstract. Stochastic dominance constraints allow a decision maker to manage risk in an op-
timization setting by requiring his or her decision to yield a random outcome which stochastically
dominates a reference random outcome. We present new integer and linear programming formula-
tions for optimization under first- and second-order stochastic dominance constraints, respectively.
These formulations are more compact than existing formulations, and relaxing integrality in the
first-order formulation yields a second-order formulation, demonstrating the tightness of this for-
mulation. We also present a specialized branching strategy and heuristics which can be used with
the new first-order formulation. Computational tests illustrate the potential benefits of the new
formulations.

Key words. stochastic programming, stochastic dominance constraints, risk, probabilistic con-
straints, integer programming
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1. Introduction. Optimization under stochastic dominance constraints is an
attractive approach to managing risk in an optimization setting. The idea is to opti-
mize an objective, such as the expected profit, subject to a constraint that a random
outcome of interest, such as the actual profit, is preferable in a strong sense than
a given reference random outcome. Here, “preferable” is taken to mean that the
random outcome we achieve stochastically dominates the reference outcome. A sim-
ple example application is to choose investments to maximize the expected return,
subject to the constraint that the actual return should stochastically dominate the
return from a given index, such as the S&P 500; see, e.g., [7]. Stochastic dominance
constraints have also been used in risk modeling in power systems with dispersed gen-
eration [10]. In addition, dose-volume restrictions appearing in radiation treatment
planning problems [18] can be formulated as a first-order stochastic dominance con-
straint. Stochastic programming under stochastic dominance constraints has recently
been studied in [4, 5, 6, 8, 11, 12, 24, 25, 26].

Let W and Y be random variables with distribution functions F and G. The
random variable W dominates Y in the first order, written W �(1) Y , if

(1.1) F (η) ≤ G(η) ∀ η ∈ R.

The random variable W dominates Y in the second order, written W �(2) Y , if

(1.2) E
[
max{η −W, 0}

]
≤ E

[
max{η − Y, 0}

]
∀ η ∈ R.

IfW and Y represent random outcomes for which we prefer larger values, then stochas-
tic dominance of W over Y implies a very strong preference for W . In particular, it
is known that (see, e.g., [29]) W �(1) Y if and only if

E[h(W )] ≥ E[h(Y )]
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for all nondecreasing functions h : R → R for which the above expectations exist and
are finite. Thus, if W �(1) Y , any rational decision maker would prefer W to Y . In
addition, W �(2) Y if and only if

E[h(W )] ≥ E[h(Y )]

for all nondecreasing and concave functions h : R → R for which the above expecta-
tions exist and are finite. Thus, if W �(2) Y , any rational and risk-averse decision
maker will prefer W to Y .

In this paper, we present new, computationally attractive formulations for opti-
mization under stochastic dominance constraints. Let X ⊆ R

n, and let f : R
n → R

represent an objective we want to maximize. Let Y be a given random variable, which
we refer to as the reference random variable, and let ξ be a random vector taking val-
ues in R

m. Finally, let g : R
n × R

m → R be a given mapping which represents a
random outcome depending on the decision x and the random vector ξ. We consider
the two optimization problems

(FSDP) max
x

{
f(x) : x ∈ X, g(x, ξ) �(1) Y

}
and

(SSDP) max
x

{
f(x) : x ∈ X, g(x, ξ) �(2) Y

}
.

We will present formulations for these problems for instances when the random vector
ξ and reference random variable Y have finite distributions. That is, we assume ξ can
take at most N values, and Y can take at most D values. In particular, we have the
following.

1. We introduce two new linear formulations for SSDP which have O(N + D)
constraints, as opposed to O(ND) constraints in an existing linear formulation. Com-
putational results indicate that this yields significant improvement in solution time
for instances in which N = D.

2. We introduce a new mixed-integer programming (MIP) formulation for FSDP
which also has O(N +D) constraints. In addition, the linear relaxation of this formu-
lation is also a formulation of SSDP. As a result, the linear programming relaxation of
this formulation is equivalent to the SSDP relaxation proposed in [24], and is shown
to be a tight relaxation of FSDP in [25].

3. We present a specialized branching rule and heuristics for the new FSDP
formulation and conduct computational tests which indicate that provably good, and
in some cases provably optimal, solutions can be obtained for relatively large instances
using this approach.

We do not make any assumptions on the set X or the mapping g in the develop-
ment of the formulations, but computationally we are interested in the case when X
is a polyhedron and g(x, ξ) is affine in x for all possible values of ξ, so that the formu-
lations become linear and linear integer programs, for SSDP and FSDP, respectively.

In [6] it is shown that in some special cases the convex second-order dominance
constraint yields the convexification of the nonconvex first-order dominance con-
straint, and that in all cases, the second-order constraint is a relaxation of the first-
order constraint. Our new formulations further illustrate this close connection by
showing that relaxing integrality in the new formulation for FSDP yields a formula-
tion for SSDP.

In section 2 we review some basic results about stochastic dominance and present
existing formulations for FSDP and SSDP. In section 3 we present the new formula-
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tions for SSDP, and in section 4 we present the new formulation for FSDP. In section
5 we present a specialized branching scheme and some heuristics for solving the new
formulation of FSDP. In section 6 we present some illustrative computational results,
and we close with some concluding remarks in section 7.

2. Review of existing results. For the purpose of developing formulations
for FSDP and SSDP, it will be sufficient to present conditions which characterize
instances when a random variable W stochastically dominates the reference random
variable Y . We will assume the distributions of W and Y are finite and described by

μ{W = wi} = pi, i ∈ N := {1, . . . , N},(2.1)
ν{Y = yk} = qk, k ∈ D := {1, . . . , D},(2.2)

where μ and ν are the probability distributions induced by W and Y , respectively.
Furthermore, we assume without loss of generality that y1 < y2 < · · · < yD.

Given a formulation which guarantees W stochastically dominates Y , a formula-
tion for FSDP or SSDP can be obtained by simply enforcing that g(x, ξ) ≥W . Then,
if ξ has distribution given by P{ξ = ξi} = pi for i ∈ N and we add the constraints

(2.3) wi ≤ g(x, ξi), i ∈ N

to the formulation, then we will have g(x, ξ) �(1) Y if and only if W �(1) Y , and
g(x, ξ) �(2) Y if and only if W �(2) Y . Henceforth, we will consider only formulations
which guarantee stochastic dominance of W over Y , but based on the relation (2.3),
the reader should think of the values wi as decision variables, whereas the values yk
are fixed.

When the reference random variable Y has finite distribution, the conditions for
stochastic dominance can be simplified, as has been observed, for example, in [4, 5].
We let y0 ∈ R be such that y0 < y1 and introduce the notation (·)+ = max {0, ·}.

Lemma 2.1. Let W,Y be random variables with distributions given by (2.1) and
(2.2). Then, W �(2) Y if and only if

(2.4) E[(yk −W )+] ≤ E[(yk − Y )+], k ∈ D,

and W �(1) Y if and only if

(2.5) μ{W < yk} ≤ ν{Y ≤ yk−1}, k ∈ D.

The key simplification is that the infinite sets of inequalities in the definitions (1.1)
and (1.2) can be reduced to a finite set when Y has a finite distribution.

Second-order stochastic dominance (SSD) constraints are known to define a con-
vex feasible region [4]. In fact, condition (2.4) can be used to derive a linear formula-
tion (in an extended variable space) for SSD by introducing variables sik representing
the terms (yk−wi)+; see, e.g., [4]. Thus, W �(2) Y if and only if there exists s ∈ R

ND
+

such that

N∑
i=1

pisik ≤
D∑
j=1

qj(yk − yj)+, k ∈ D,

sik + wi ≥ yk, i ∈ N , k ∈ D.

We refer to this formulation as SDLP. Note that this formulation introduces ND
variables and (N + 1)D constraints.
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It is possible to use the nonsmooth convex constraints (2.4) directly, yielding
a formulation for SSDP that does not introduce auxiliary variables and has O(D)
constraints; and specialized methods can be used to solve this formulation; see [5].
The advantage of using a linear formulation is that it can be solved directly by readily
available linear programming solvers such as the open source solver CLP [9] or the
commercial solver Ilog CPLEX [14]. In addition, if the base problem contains integer
restrictions on some of the variables x, then a linear formulation is advantageous
because it can be solved as a mixed-integer linear program, as opposed to a mixed-
integer nonlinear program.

The condition for second-order dominance given in (2.4) can also be interpreted
as a collection of D integrated chance constraints, as introduced by Klein Haneveld
[15]. In [16], Klein Haneveld and van der Vlerk proposed a cutting plane algorithm
for solving problems with integrated chance constraints and demonstrated its com-
putational efficiency. Due to (2.4), this approach can also be used for problems with
second-order stochastic dominance constraints, as has been observed in [8]. Indepen-
dently, Rudolf and Ruszczyński [26] proposed a primal cutting plane method and a
dual column generation method for optimization problems with SSD constraints, and
the primal method is shown to be computationally efficient. In the case of finite dis-
tributions, the primal cutting plane method is equivalent to the cutting plane method
used for integrated chance constraints in [16].

Condition (2.5) can be used to derive an MIP formulation for a first-order stochas-
tic dominance (FSD) constraint [24, 25]. W �(1) Y if and only if there exists β such
that

N∑
i=1

piβik ≤
k−1∑
j=1

qj , k ∈ D,

wi +Mikβik ≥ yk, i ∈ N , k ∈ D,(2.6)
βik ∈ {0, 1} , i ∈ N , k ∈ D.

We refer to this formulation as FDMIP. Here, Mik is sufficiently large to guarantee
that if βik = 1, then the corresponding constraint (2.6) will be redundant. For exam-
ple, if other constraints in the model imply wi ≥ li, then we can take Mik = yk − li.
Although this formulation was presented in [24, 25], the authors do not recommend us-
ing this formulation for computation, since the linear programming relaxation bounds
are too weak. Instead, because first-order stochastic dominance implies second-order
dominance, any formulation for second-order dominance is a relaxation of first-order
dominance, and the authors therefore propose using the problem SSDP as a relax-
ation for FSDP. Thus, they use the cutting plane algorithm proposed in [26] for solving
problem SSDP, which yields bounds for FSDP, and then they improve these bounds
using disjunctive cuts [1]. In addition, problem SSDP is used as a basis for heuristics
to find feasible solutions for FSDP. It is demonstrated in [25] that the bounds from
using SSDP as a relaxation of FSDP are usually good, and that the heuristics are able
to obtain good feasible solutions. However, these results do not yield a convergent al-
gorithm for finding an optimal solution to FSDP. As these results are based on solving
problem SSDP, an easily implementable and computationally efficient formulation for
solving SSDP will also enhance this approach.

3. New formulations for second-order stochastic dominance. When all
outcomes are equally likely and N = D, a formulation for SSDP based on majoriza-
tion theory [13, 21] can be derived which introduces O(N2) variables but only O(N)
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rows. This has been done implicitly in [6] when proving that in this case the SSD
constraint yields the convexification of the FSD constraint, and explicitly in [17] to
derive a test for SSD. In this section we present two formulations for second-order
dominance between finitely distributed random variables which do not require all out-
comes to be equally likely and allow N 	= D. The formulations will not be based on
the majorization theory, and instead will follow from the following theorem due to
Strassen, which we state here in a form that is convenient for our use.

Theorem 3.1 (see Corollary 1.5.21 in [22]). Let W and Y be random variables
with finite means. Then W �(2) Y if and only if there exists random variables W ′

and Y ′, with the same distributions as W and Y , such that almost surely

E[Y ′|W ′] ≤W ′.

Theorem 3.2. Let W,Y be random variables with distributions given by (2.1)
and (2.2). Then W �(2) Y if and only if there exists π ∈ R

ND
+ which satisfies

D∑
j=1

yjπij ≤ wi, i ∈ N ,(3.1)

D∑
j=1

πij = 1, i ∈ N ,(3.2)

N∑
i=1

piπik = qk, k ∈ D.(3.3)

Proof. First suppose W �(2) Y . By Theorem 3.1, there exists random variables
W ′ and Y ′ (defined, say, on a probability space (Ω,F ,P)) such that E[Y ′|W ′] ≤ W ′

and P{W ′ = wi} = pi for i ∈ N and P{Y ′ = yk} = qk for k ∈ D. Define a vector
π ∈ R

ND by πik = P{Y ′ = yk|W ′ = wi} for i ∈ N , k ∈ D. By definition, π ≥ 0 and∑
k∈D πik = 1 for each i ∈ N . Also, for each k ∈ D

qk = P{Y ′ = yk} =
N∑
i=1

P{Y ′ = yk|W ′ = wi}P{W ′ = wi} =
N∑
i=1

piπik.

Finally, for each i ∈ N

wi ≥ E[Y ′|W ′ = wi] =
D∑
k=1

ykπik

and hence π satisfies (3.1)–(3.3).
Now suppose there exists π ∈ R

ND
+ which satisfies (3.1)–(3.3). Let Ω = {(i, k) :

i ∈ N , k ∈ D}, and define the probability measure P on Ω by P{(i, k)} = piπik.
Note that P is well defined since by (3.2)

∑
k∈D

∑
i∈N piπik = 1. Now define W ′ by

W ′((i, k)
)

= wi for i ∈ N , k ∈ D, and Y ′ by Y ′((i, k)
)

= yk for i ∈ N , k ∈ D. Then,
P{W ′ = wi} = pi

∑
k∈D πik = pi by (3.2), and so W ′ has the same distribution as W .

Also, P{Y ′ = yk} =
∑

i∈N piπik = qk by (3.3), and so Y ′ has the same distribution
as Y . Finally, for each i ∈ N ,

E[Y ′|W ′ = wi] =
D∑
k=1

ykπik ≤ wi
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by (3.1). It follows from Theorem 3.1 that W �(2) Y .
To use Theorem 3.2 to obtain a formulation for SSDP, we replace wi with g(x, ξi)

so that (3.1) becomes

(3.4) g(x, ξi) ≥
D∑
j=1

yjπij , i ∈ N ,

and thus obtain our first new formulation for SSDP given by

(cSSD1) f∗
SSDP = max

x,π

{
f(x) : (3.2), (3.3), (3.4), x ∈ X,π ∈ R

ND
+

}
.

This formulation, which we refer to as cSSD1, introduces ND variables and O(N+D)
linear constraints.

Theorem 3.3. Let W,Y be random variables with distributions given by (2.1)
and (2.2). Then W �(2) Y if and only if there exists π ∈ R

ND
+ which satisfies (3.1),

(3.2), and

(3.5)
N∑
i=1

pi

k−1∑
j=1

(yk − yj)πij ≤
k−1∑
j=1

(yk − yj), qj k = 2, . . . , D.

Proof. First suppose W �(2) Y . Then by Theorem 3.2 there exists π ∈ R
ND
+

which satisfies (3.1)–(3.3). Then,

N∑
i=1

pi

k−1∑
j=1

(yk − yj)πij =
k−1∑
j=1

(yk − yj)
N∑
i=1

piπij =
k−1∑
j=1

(yk − yj)qj

for k = 2, . . . , D by (3.3) and hence π satisfies (3.5).
Now suppose there exists π ∈ R

ND
+ which satisfies (3.1), (3.2), and (3.5). For any

i ∈ N , k ∈ D, we have

(yk − wi)+ ≤
(
yk −

D∑
j=1

yjπij

)+

by (3.1)

=
( D∑
j=1

(yk − yj)πij

)+

by (3.2)

≤
D∑
j=1

(yk − yj)+πij =
k−1∑
j=1

(yk − yj)πij since π ≥ 0.

Thus, for each k ∈ D,

E[(yk −W )+] =
N∑
i=1

pi(yk − wi)+ ≤
N∑
i=1

pi

k−1∑
j=1

(yk − yj)πij

≤
k−1∑
j=1

(yk − yj)qj = E[(yk − Y )+],

where the second inequality follows from (3.5). Thus, condition (2.4) in Lemma 2.1
implies that W �(2) Y .
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When using the formulation arising from Theorem 3.3, it is beneficial for com-
putational purposes to use an equivalent formulation in which we introduce variables
v ∈ R

D and replace the constraints in (3.5) with the 2D constraints

vj −
N∑
i=1

piπij = 0, j ∈ D,(3.6)

k−1∑
j=1

(yk − yj)vj ≤
k−1∑
j=1

(yk − yj)qj , k ∈ D.(3.7)

Thus, our second formulation for SSDP is given by

(cSSD2) f∗
SSDP = max

x,π,v

{
f(x) : (3.2), (3.4), (3.6), (3.7), x ∈ X,π ∈ R

ND
+ , v ∈ R

D
}
.

The advantage of using (3.6) and (3.7) instead of (3.5) is that this yields a formulation
with O(ND) nonzeros, as compared to O(ND2) nonzeros if we used (3.5). This
formulation, which we refer to as cSSD2, introduces (N + 1)D new variables and
O(N +D) linear constraints.

One motivation for introducing formulation cSSD2 is that we have empirical evi-
dence (section 6) that it performs better than cSSD1, at least when solved with the
dual simplex algorithm (as implemented in Ilog CPLEX [14]). cSSD2 is also inter-
esting because a slight generalization of this formulation can be used to compactly
model a collection of expected shortfall constraints of the form

(3.8) E[(yk − g(x, ξ))+] ≤ Lk, k ∈ D,

where y1 < y2 < · · · < yD are given targets and 0 ≤ L1 ≤ L2 ≤ · · · ≤ LD are given
limits on the expected shortfalls of these targets. Note that if

(3.9) Lk = E[(yk − Y )+], k ∈ D,

where Y is a random variable with distribution given by (2.2), then the inequalities
(3.8) are equivalent to (2.4), and hence (3.8) is satisfied exactly when W �(2) Y . If
Lk is not defined by a random variable Y as in (3.9), formulation cSSD2 can still
be extended to directly model (3.8), provided that L1 = 0, which implies that we
require g(x, ξ) ≥ y1 with probability 1. All that is required is to replace the term∑k−1

j=1 (yk − yj)qj in the right-hand side of (3.5) with Lk.

4. A new formulation for first-order stochastic dominance. As in the
case for second-order stochastic dominance, if N = D and all outcomes are equally
likely, a formulation for first-order stochastic dominance which introduces N2 (binary)
variables and O(N) constraints has been presented in [17]. Once again, we are able
to generalize this to the case in which the probabilities are not necessarily equal and
N 	= D.

Theorem 4.1. Let W,Y be random variables with distributions given by (2.1)
and (2.2). Then W �(1) Y if and only if there exists π ∈ {0, 1}ND such that (w, π)
satisfy (3.1), (3.2) and

(4.1)
N∑
i=1

pi

k−1∑
j=1

πij ≤
k−1∑
j=1

qj , k = 2, . . . , D.
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Proof. First suppose W �(1) Y . Then, by condition (2.5) in Lemma 2.1 we have

(4.2) μ{W < yk} ≤ ν{Y ≤ yk−1} =
k−1∑
i=1

qi

for each k ∈ D. In particular, (4.2) for k = 1 implies μ{W ≥ y1} = 1, and hence
wi ≥ y1 for all i ∈ N . Now, for each i ∈ N , k ∈ D, let πik = 1 if yk ≤ wi < yk+1 and
πik = 0 otherwise, where we take yD+1 ≡ +∞. Then,

∑D
k=1 πik = 1 because wi ≥ y1

for all i, and so π satisfies (3.2). It is also immediate by the definition of πik that
wi ≥

∑D
k=1 ykπik and so π satisfies (3.1). Finally, note that wi < yk if and only if∑k−1

j=1 πij = 1. Thus,

μ{W < yk} =
∑

i∈N :wi<yk

pi =
N∑
i=1

pi

k−1∑
j=1

πij .

This combined with (4.2) proves that π satisfies (4.1).
Now suppose π ∈ {0, 1}ND satisfies (3.1), (3.2), and (4.1). Note that by (3.1) and

(3.2) if wi < yk, then
∑k−1
j=1 πij = 1. Thus,

μ{W < yk} =
∑

i∈N :wi<yk

pi ≤
N∑
i=1

pi

k−1∑
j=1

πij ≤
k−1∑
j=1

qj = ν{Y ≤ yk−1},

where the second inequality follows from (4.1). It follows that W �(1) Y by condition
(2.5) in Lemma 2.1.

As in the new formulation for second-order stochastic dominance cSSD2, for com-
putational purposes it is beneficial to use the equivalent formulation obtained by
introducing variables v ∈ R

D and replacing the constraints (4.1) with the constraints

vj −
N∑
i=1

piπij = 0, j ∈ D,(4.3)

k−1∑
j=1

vj ≤
k−1∑
j=1

qj , k ∈ D.(4.4)

Thus, taking wi = g(x, ξi), and using (4.3) and (4.4) in place of (4.1), Theorem 4.1
yields the formulation for FSDP given by

(cFSD) f∗
FSDP = max

x,π

{
f(x) : (3.2), (3.4), (4.3), (4.4), x ∈ X,π ∈ {0, 1}ND

}
.

One advantage of formulation cFSD over FDMIP is that the number of constraints is
reduced from O(ND) to O(N +D), which means it should be more efficient to solve
the linear programming relaxation of cFSD than to solve that of FDMIP. We now
consider the relationship between the relaxation of this formulation and second-order
stochastic dominance.

Theorem 4.2. Let W,Y be random variables with distributions given by (2.1)
and (2.2). Then the linear programming relaxation of cFSD yields a valid formulation
for second-order stochastic dominance. That is, W �(2) Y if and only if there exists
π ∈ R

ND
+ such that (w, π) satisfy (3.1), (3.2), and (4.1).
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Proof. Let π ∈ R
ND
+ and (w, π) satisfy (3.1), (3.2), and (4.1). Then,

N∑
i=1

pi

k−1∑
j=1

πij(yk − yj) =
N∑
i=1

pi

k−1∑
j=1

πij

k∑
l=j+1

(yl − yl−1)

=
k∑
l=2

(yl − yl−1)
N∑
i=1

pi

l−1∑
j=1

πij

≤
k∑
l=1

(yl − yl−1)
l−1∑
j=1

qj by (4.1)

=
k−1∑
j=1

qj(yk − yj),

and hence π also satisfies (3.5), which implies W �(2) Y by Theorem 3.3.
Now suppose W �(2) Y . Then by Theorem 3.2 there exists π ∈ R

ND
+ which

satisfies (3.1)–(3.3). Then, (3.3) implies

N∑
i=1

pi

k−1∑
j=1

πik =
k−1∑
j=1

N∑
i=1

piπik =
k−1∑
j=1

qj

for k = 2, . . . , D and hence (4.1) holds.
As a result, we obtain another formulation for SSDP, but more importantly we

know that the linear programming relaxation of cFSD yields a bound at least as strong
as the bound obtained from the SSDP relaxation.

Next, we illustrate the relationship between the formulation cFSD and FDMIP
by presenting a derivation of cFSD based on strengthening FDMIP. In FDMIP, if
βik = 0, then wi ≥ yk. But, because yk > yk−1 > · · · > y1, then we also know
wi ≥ yk−1 > · · · > y1. Thus, we lose nothing by setting βi,k−1 = · · · = βi1 = 0.
Hence, we can add the inequalities

(4.5) βik ≤ βi,k+1, i ∈ N , k ∈ D,

and maintain a valid formulation. The inequalities (2.6) can then be replaced by

wi −
D∑
k=1

(βi,k+1 − βik)yk ≥ 0, i ∈ N ,

which together with inequalities (4.5) ensure that when βik = 0, we have wi ≥ yk.
We finally obtain the new formulation cFSD by substituting πik = βi,k+1 − βik for
k ∈ D and i ∈ N , where βi,D+1 = 1.

5. Branching and heuristics for FSDP. cFSD yields a mixed-integer pro-
gramming formulation for FSDP. Moreover, if X is a polyhedron and g(x, ξi) are
affine in x for each i, then cFSD is a mixed-integer linear programming formulation.
As has been shown in [25], the optimal value of SSDP yields a good bound on the op-
timal value of FSDP, and hence the bound obtained from relaxing integrality in cFSD
should be good. In addition, because of the compactness of cFSD, this bound can be
calculated efficiently. However, we have found that the default settings in the MIP
solver we use (Ilog CPLEX 9.0 [14]) do not effectively generate good feasible solutions
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for cFSD. In addition, the default branching setting does not help to find feasible
solutions or effectively improve the relaxation bounds. In this section we present a
specialized branching approach and two heuristics which exploit the structure of this
formulation. The computational benefits of these techniques will be demonstrated in
section 6.

5.1. Branching for FSDP. Standard variable branching for mixed-integer pro-
gramming would select a variable πij which is fractional in the current node relaxation
solution, and then branch to create two new nodes, one with πij fixed to one and one
with πij fixed to zero. However, the constraints (3.1) and (3.2) imply that for a fixed
i, the set of variables πij for j ∈ D are essentially selecting which value level yj the
variable wi should be greater than. In particular, the set of variables {πij : j ∈ D}
is a special order set of type 1 (SOS1), that is, at most one of the variables in this
set can be positive. As a result, it is natural to consider using an SOS1 branching
rule (see, e.g., [2]). In this branching scheme, we select a set index i ∈ N , specifying
which special ordered set to branch on, and also choose a level index k ∈ {2, . . . , D}.
Then in the first branch the constraint

∑
j<k πij = 0 is enforced and in the second

branch
∑

j<k πij = 1 is enforced. In an implementation, the first condition is enforced
by changing the upper bound on the variables πij to zero for j < k, and the second
condition is enforced by changing the upper bound on the variables πij to zero for
j ≥ k.

To specify an SOS1 branching rule, we must state how the set and level indices
are chosen. Our branching scheme is based on attempting to enforce the feasibility
condition (2.5),

μ{W < yk} ≤ ν{Y ≤ yk−1}, k ∈ D.

At each node in which we must branch, we find k∗ = min
{
k ∈ D : μ {W < yk} >

ν {Y ≤ yk−1}
}

based on the values of w in the current relaxation solution. Note that
if such a k∗ does not exist, then we have W �(1) Y , so the current solution is feasible.
In this case, if π is not integer feasible (which may happen), then we construct an
integer feasible solution of the same cost as in the proof of Theorem 4.1, and as a
result, branching is not required at this node. We will take k∗ to be the level index
on which we will branch. Note that (3.1) and (3.2) imply that wi ≥ y1 for all i in any
relaxation solution, so that k∗ ≥ 2, making it an eligible branching level index.

We next choose a set index i ∈ N such that

wi < yk∗ ,(5.1) ∑
j<k∗

πij < 1.(5.2)

We claim that such an index must exist. Indeed, let Ωk∗ = {i ∈ N : wi < yk∗}. By
the definition of k∗ we have

∑
i∈Ωk∗ pi >

∑k−1
j=1 qj , and so, in particular, Ωk∗ 	= ∅. If

there were no i ∈ Ωk∗ which also satisfies (5.2), then we would have

N∑
i=1

pi

k∗−1∑
j=1

πij ≥
∑
i∈Ωk∗

pi >

k∗−1∑
j=1

qj ,

violating (4.1). If there are multiple set indices which satisfy (5.1) and (5.2), we
choose an index which maximizes the product (yk∗ − wi)(1 −

∑
j<k∗ πij). In the
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first branch, we enforce
∑
j<k∗ πij = 0, which by (3.1) forces wi ≥ yk∗ . Because of

(5.1), this will make the current relaxation solution infeasible to this branch, and will
promote feasibility of (2.5) at the currently infeasible level k∗. In the second branch,
we enforce

∑
j<k∗ πij = 1, which because of (5.2) will make the current relaxation

solution infeasible for this branch. The motivation for this choice of set index i is to
make progress in both of the branches. The motivation for the choice of level index
k∗ is that in the first branch progress toward feasibility of (2.5) is made, whereas
by selecting k∗ as small as possible, reasonable progress is also made in the second
branch since this enforces πij = 0 for all j ≥ k∗.

5.2. Heuristics for FSDP. We now present some heuristics we have devel-
oped that can be used with formulation cFSD. We first present a simple and efficient
heuristic, called the order-preserving heuristic, and then present a variant of a diving
heuristic which can be integrated with the order-preserving heuristic.

Order-preserving heuristic. Given a solution x∗ to a relaxation of cFSD, let w∗ ∈
R
N be the vector given by w∗

i = g(x∗, ξi) for i ∈ N . The idea behind the order-
preserving heuristic is to use w∗ as a guide to build a solution π̂ ∈ {0, 1}ND which
satisfies (3.2) and (4.1), and then solve the problem with π fixed to π̂. If this problem
is feasible, it yields a feasible solution to cFSD. The heuristic is order-preserving
because it chooses π̂ in such a way that if w∗

i < w∗
i′ , then

∑
j∈D yj π̂ij ≤

∑
j∈D yj π̂i′j ,

so that the constraints (3.4) obtained with this π̂ enforce lower bounds on g(x, ξi)
which are consistent with the ordering of w∗

i = g(x∗, ξi) obtained from the current
relaxation solution. The order-preserving heuristic is given in Algorithm 1. The
algorithm begins by sorting the values of w∗. Then, in lines 2 to 8 a solution π̂ is
constructed which is feasible to (3.2) and (4.1) by working in this order. To see that
π̂ satisfies (3.2), observe that the algorithm will terminate with t = N +1, since when
k = D,

∑t
j=1 pij ≤

∑D
j=1 qj for all t ≤ N , so the loop on line 4 will terminate only

when t > N . Since {i1, . . . , iN} = N , this implies that for each i ∈ N , there is some
k such that the algorithm sets π̂ik = 1. The condition

∑t
j=1 pij ≤

∑k
j=1 qj in line 4

Algorithm 1. Order-preserving heuristic
Data: w∗ ∈ R

N

Sort w∗ to obtain {i1, . . . , iN} = N with w∗
i1

≤ w∗
i2

≤ · · · ≤ w∗
iN

;1

Set t := 1 and π̂ij := 0 for all i ∈ N , j ∈ D;2

for k := 1 to D do3

while t ≤ N and
∑t
j=1 pij ≤

∑k
j=1 qj do4

π̂itk := 1;5

t := t+ 1;6

end7

end8

Solve cSSD(π̂) = maxx{f(x) : x ∈ X, g(x, ξi) ≥
∑D

j=1 π̂ijyj i ∈ N};9

if cSSD(π̂) is feasible then10

Let x̂ be the optimal solution to cSSD(π̂);11

return (x̂, π̂);12

end13
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ensures that (4.1) holds for π̂, since it ensures that for each k ∈ D,

k∑
j=1

N∑
i=1

piπ̂ij =
t(k)∑
j=1

pij ,

where t(k) = max{t :
∑t

j=1 pij ≤
∑k

j=1 qj}.
The main work done in Algorithm 1 is the sorting of w∗ and the solving of

cSSD(π̂). Note that this problem is small relative to the original problem cFSD, since
the O(ND) variables π are fixed, the constraints (3.2) and (4.1) no longer need to be
considered, and the constraints (3.4) reduce to lower bounds on the functions g(x, ξi)
for i ∈ N .

Integrated order-preserving and diving heuristic. Diving is a classic heuristic strat-
egy for integer programs which alternates between fixing one or more integer variables
based on the current linear programming (LP) relaxation solution and resolving the
relaxation. We have developed a variant of the diving heuristic for solving cSSD
which we call the aggressive diving heuristic. For brevity, we only outline the idea
of the heuristic here; for details, we refer the reader to [19]. Within each iteration
of the aggressive diving heuristic, the heuristic repeatedly selects the index i ∈ N
which has minimum value of w∗

i = g(x∗, ξi) and has not yet had πij fixed to one for
any j ∈ D. A variable πik is then fixed to one, where k is the minimum index such
that πik could feasibly be fixed to one and still satisfy (4.1). This is done until one
of the fixings causes inequality (3.4) to be violated by the current solution, that is,
until a πik is fixed to one with w∗

i < yk. Also within an iteration, a similar sequence
of fixings is done for indices i ∈ N which have maximum value of w∗

i until one of
the fixings implies (3.4) is violated by the current solution. After these fixings have
been done, the LP relaxation is resolved, and the next iteration begins. The heuris-
tic terminates when the current LP relaxation yields a feasible integer solution or is
infeasible (where infeasibility would be caused by the lower bounds implied by (3.4)
due to the fixed variables). The key advantages of the aggressive diving heuristic are
that it fixes multiple variables in each iteration, leading to faster convergence, and
that the variables are fixed in such a way that constraints (3.2) and (4.1) will not
become violated.

Integration of the order-preserving heuristic with the aggressive diving heuristic
is accomplished by calling the order-preserving heuristic during each iteration of the
diving heuristic, using the current relaxation solution. If this yields an improved fea-
sible solution, it is saved, but the heuristic still continues the dive until it terminates.
At the end, the best feasible solution found over all iterations in the dive is reported.

6. Computational results. We conducted computational experiments to test
the new formulations for stochastic dominance. Following [17] and [25], we conducted
tests on a portfolio optimization problem with stochastic dominance constraints. In
this problem, we wish to choose the fraction of our investment to invest in n different
assets. The return of asset j is a random variable given by Rj with E[Rj ] = rj .
We are also given a reference random variable Y , and the objective is to maximize
the expected return subject to the constraint that the random return we achieve
stochastically dominates Y . Thus, the portfolio optimization problems we consider
are

(6.1) max
{ n∑
j=1

rjxj : x ∈ X,

n∑
j=1

Rjxj �(k) Y

}
, k = 1, 2,
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where X =
{
x ∈ R

n
+ :

∑n
j=1 xj = 1

}
.

We constructed test instances using the daily returns of 435 stocks (n = 435) in
the S&P 500, for which daily return data was available from January 2002 through
March 2007. We take each daily return as an outcome that occurs with equal prob-
ability. For each desired number of outcomes N , we constructed three instances by
taking the N daily returns immediately preceding March 14 of the years 2005, 2006,
and 2007. For example, the instance for the year 2007 with N = 100 is obtained by
taking the daily returns in the days from November 16, 2006 through March 14, 2007.

For the reference random variable Y , we use the returns that would be obtained
by investing an equal fraction in each of the available assets. That is, we take Y =∑n

j=1 Rj/n. Hence, if Rij is the return that is achieved under outcome i for asset j,
then the distribution of Y is given by ν{Y =

∑n
j=1 R

i
j/n} = 1/N for i ∈ N . Note

that in this case, the number of outcomes of Y is the same as the number of outcomes
of R, i.e., D = N . This is an extreme case: in many settings we would expect D to be
significantly less than N . However, this extreme case will yield challenging instances
for comparing the formulations.

We used CPLEX 9.0 [14] to solve the LP and MIP formulations, and all experi-
ments were done on a computer with two 2.4 GHz processors (although no parallelism
is used) and 2.0 GB of memory. The specialized heuristics and branching for FSDP
were implemented using callback routines provided by the CPLEX callable library.

6.1. Second-order dominance. We first compared the solution times using the
formulations SDLP, cSSD1, and cSSD2 to solve the portfolio optimization problem
(6.1) with SSD constraint (k = 2 in (6.1)). We tested seven different sizes N and three
instances for each size. These linear programs were solved using the dual simplex
method (the default CPLEX setting), and a time limit of 100,000 seconds was used.
Table 6.1 gives the solution time and number of simplex iterations for each formulation

Table 6.1

Computational results for SSDP formulations. * indicates not solved within time limit.

Solution time(s) Iterations
Year N SDLP cSSD1 cSSD2 SDLP cSSD1 cSSD2
2005 200 103 18 3 30851 10336 1921

300 1063 61 19 76438 16879 6019
400 4859 127 23 118328 17692 5698
500 10345 509 17 121067 34380 4770
600 27734 528 39 202490 40430 5854
700 69486 3366 434 318030 112848 20788
800 *100122 8272 1476 *361600 222967 42773

2006 200 83 13 3 20009 7449 2134
300 883 44 8 52457 12004 3244
400 4253 190 25 109493 24398 5549
500 11365 332 63 117559 37086 7904
600 43927 670 198 307680 41360 16443
700 58947 6067 94 346077 173483 13026
800 *100100 10406 50 *433400 245401 6307

2007 200 122 25 9 19359 13771 4597
300 757 61 30 64795 15585 8253
400 4292 214 59 89731 28024 8265
500 12551 609 178 154287 46973 14914
600 27492 1213 271 172905 66164 18611
700 59144 1888 338 308064 92365 19009
800 *100095 23171 74 *385700 544342 8174
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on each instance. From this table it is clear that when using a commercial LP solver,
the new formulations cSSD1 and cSSD2 allow for a much more efficient solution
of SSDP. Formulation cSSD1 yields a solution an order of magnitude faster than
SDLP, whereas cSSD2 yields a solution roughly two orders of magnitude faster. Both
formulations cSSD1 and cSSD2 have O(N) rows as opposed to O(ND) = O(N2) rows
in SDLP, leading to a significantly reduced basis size, so that the time per iteration
using these formulations is significantly less. The additional reduction in computation
time obtained from formulation cSSD2 can be explained by the large reduction in the
number of simplex iterations.

We should stress that because N = D in this test, the relative improvement of
cSSD1 and cSSD2 over SDLP is likely the best case. For instances in which D is
of much more modest size, such as D = 10, we would not expect such an extreme
difference.

6.2. First-order dominance. We next present results of the tests on the port-
folio optimization problem (6.1) in which a first-order stochastic constraint is enforced
(k = 1 in (6.1)).

We tested four solution methods for solving FSDP:
(i) FDMIP: Solve FDMIP with default CPLEX settings.

(ii) cFSD: Solve cFSD with default CPLEX settings and CPLEX SOS1 branch-
ing.

(iii) cFSD+H: Solve cFSD with CPLEX SOS1 branching and specialized heuris-
tic.

(iv) cFSD+H+B: Solve cFSD with CPLEX, specialized heuristic, and specialized
branching.

When solving cFSD with or without the heuristic (but not with the specialized
branching), we declare the sets of variables {πij : j ∈ D} for i ∈ N as SOS1, allowing
CPLEX to perform its general purpose SOS1 branching, as discussed in section 5.1.
We found that this yields better results than having CPLEX perform its default
single variable branching. Note that the specialized branching scheme also uses SOS1
branching, but crucially differs from the CPLEX implementation in the selection of
the SOS1 set and level on which to branch.

The heuristic used in the last two methods is the aggressive diving heuristic inte-
grated with the order-preserving heuristic. In our implementation, we call the heuris-
tic at every node of depth less than five, at every fifth node for the first 100 nodes,
at every 20th node between 100 and 1000 nodes, and at every 100th node thereafter.
When the heuristic is used we turn off the CPLEX heuristics and preprocessing. The
preprocessing was turned off for implementation convenience, but we found it had
little effect for formulation cFSD anyway.

The specialized branching used in the last method is the branching strategy given
in section 5.1. For this case, we set the CPLEX branching variable selection to select
the most fractional variable since this takes the least time and we do not use CPLEX’s
choice of branching variable anyway.

We first compare the time required to solve the root linear program relaxations
and the resulting lower bound from formulations FDMIP and cFSD. These results are
given in Table 6.2. For formulation FDMIP we report the results before and after the
addition of CPLEX cuts. The results obtained after the addition of CPLEX cuts are
under the FDMIP.C column. For cFSD, we report only the results after the initial
relaxation solution, because CPLEX cuts had little effect in this formulation. The
columns under the heading “Percent above cFSD UB report the percent by which the
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Table 6.2

Comparison of root LP relaxations for FSDP formulations.

Time(s) Percent above cFSD UB
Year N cFSD FDMIP FDMIP.C FDMIP FDMIP.C
2005 100 1.0 6.6 41.4 5.36% 3.46%

150 1.8 19.7 89.5 7.64% 6.18%
200 4.7 36.3 196.2 8.42% 5.87%
250 15.1 49.9 365.0 9.34% 6.78%
300 31.0 232.6 681.5 9.78% 7.50%
350 88.0 509.7 1201.0 4.36% 3.05%
400 97.6 427.7 1566.2 5.14% 3.19%

2006 100 0.4 3.9 4.3 0.21% 0.00%
150 3.8 16.2 82.0 1.54% 1.03%
200 4.8 26.3 140.9 1.38% 1.08%
250 17.5 91.1 325.8 3.99% 2.45%
300 16.4 191.3 575.6 4.60% 3.53%
350 52.3 227.7 1157.8 8.49% 6.52%
400 69.1 1254.7 2188.6 6.92% 5.77%

2007 100 2.0 4.5 33.5 7.55% 3.70%
150 8.1 17.0 148.4 7.69% 6.06%
200 17.8 33.3 300.8 9.75% 8.26%
250 36.1 121.4 413.1 14.13% 10.71%
300 43.5 298.6 732.6 11.12% 8.26%
350 114.0 320.9 1060.7 10.80% 10.60%
400 245.7 2010.8 3664.2 11.53% 11.02%

upper bound obtained from the relaxation of FDMIP with or without cuts, exceeds
the upper bound obtained from the relaxation of cFSD. It is clear from Table 6.2
that the relaxation of formulation cFSD provides significantly better upper bounds in
significantly less time.

We next tested how the different methods performed when run for a time limit
of 10,000 seconds. Table 6.3 reports the optimality gap remaining after this time
limit. All formulations were able to solve the 2006 instance with N = 100 in less than
a minute, so this instance is excluded. Using formulation cFSD with the heuristic
and specialized branching, 8 of the remaining 20 instances were solved to optimality
within the time limit, and for these instances the solution time is reported (these are
the instances with “-” in the “Gap” column). From Table 6.3 we observe that even
without the use of specialized heuristic or branching formulation cFSD outperforms
formulation FDMIP. However, in several instances cFSD fails to find a feasible so-
lution, and in several others the optimality gaps for the feasible solutions found are
quite bad. This is remedied to a significant extent by using the specialized heuristic,
in which case a feasible solution is found for every instance, and in most cases it
is within 2% of the upper bound. If, in addition, we use the specialized branching
scheme, the final optimality gaps are reduced even further, with many of the instances
being solved to optimality.

Table 6.4 gives more detailed results for the methods based on formulation cFSD
for the 2005 instances (results for the other instances yield similar insights and are
excluded for brevity). First, for each of these methods, the table indicates the per-
cent by which the final upper bound (“UB” in the table) was below the initial upper
bound obtained simply from solving the LP relaxation (“Root UB” in the table).
These results indicate that by using CPLEX branching, with or without the special-
ized heuristic, very little progress is made in improving the upper bound through
branching. In contrast, the specialized branching scheme improves the upper bound
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Table 6.3

Comparison of optimality gaps for FSDP after time limit. ** indicates no feasible solution found.

Optimality gap cFSD+H+B
Year N FDMIP cFSD cFSD+H Gap Time(s)
2005 100 1.69% 0.68% 0.68% - 864.0

150 2.84% 0.99% 0.73% - 223.1
200 4.46% 1.09% 0.87% - 1987.3
250 8.82% 0.31% 0.24% - 2106.6
300 ** 3.41% 1.21% 1.15%
350 ** ** 2.15% 1.39%
400 ** 10.67% 0.73% 0.31%

2006 150 1.71% 0.77% 0.55% 0.18%
200 1.25% 0.57% 0.55% - 1752.1
250 4.82% 0.97% 0.44% - 274.9
300 4.56% 4.24% 0.85% - 9386.8
350 ** 1.96% 0.65% 0.53%
400 ** 4.77% 1.21% 0.87%

2007 100 0.13% 0.14% 0.15% - 41.6
150 13.90% 4.11% 2.37% 1.85%
200 ** 3.80% 1.64% 0.67%
250 ** 9.13% 2.12% 0.67%
300 ** ** 2.43% 2.01%
350 ** ** 6.74% 6.37%
400 ** ** 5.82% 5.79%

Table 6.4

Lower and upper bounds results using cFSD. ** indicates no feasible solution found.

% UB below Root UB % LB below Best UB
Year N cFSD +H +H+B cFSD +H +H+B
2005 100 0.02% 0.02% 0.69% 0.01% 0.01% 0.01%

150 0.00% 0.00% 0.66% 0.33% 0.07% 0.01%
200 0.00% 0.00% 0.74% 0.36% 0.14% 0.01%
250 0.00% 0.00% 0.20% 0.11% 0.04% 0.01%
300 0.00% 0.00% 0.06% 3.47% 1.17% 1.16%
350 0.00% 0.00% 0.26% ** 1.93% 1.41%
400 0.00% 0.00% 0.23% 11.68% 0.50% 0.31%

considerably. Table 6.4 also reports the percent by which the value of the best feasible
solution found (“LB” in the table) is below the best upper bound found over all meth-
ods (“Best UB” in the table). These results indicate that the specialized heuristic
significantly improves the value of the feasible solutions found, and that integrating
the specialized branching with the heuristic often yields even further improvement in
solution quality.

7. Concluding remarks. More computational experiments need to be per-
formed to test the effectiveness of the new formulations in different settings. For
example, we tested the case in which the number of possible realizations of the refer-
ence random variable, D, is large. The case in which D is small should also be tested
since this is likely the case when a stochastic dominance constraint is used to model
a collection of risk constraints. It would be particularly interesting to test these for-
mulations for radiation treatment planning models with dose-volume constraints. We
expect that when D is small it will be possible to significantly increase the number of
possible realizations, N , of the random vector appearing in the constraints. Another
setting in which to test the new formulations is in two-stage stochastic program-
ming with stochastic dominance constraints, as has been recently studied in [11, 12],
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where they use the previous, less compact formulations for the stochastic dominance
constraints.

Finally, it will be interesting to study a Monte Carlo sampling based approxi-
mation scheme for problems with stochastic dominance constraints that have more
general distributions. Results on sample approximations for probabilistic constraints
(e.g., [3, 20, 23]) may be applied to yield approximations for FSD constraints in which
the random vector ξ appearing in the constraint may have general distribution. It
will be interesting to explore whether the specific structure of the FSD constraint
can yield results beyond direct application of the results for probabilistic constraints.
Similarly, results on sample approximations for optimization problems with expected
value constraints (e.g., [27, 28]) may be applied to yield approximations for second-
order dominance constraints.
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Abstract. The question of determining strong convex underestimators for nonlinear functions is
theoretically and practically of major interest. Unfortunately, results along these lines are quite lim-
ited as very few general procedures are at hand that can be applied to general classes of functions. In
this paper we show how to reduce the question of determining a convex envelope to lower-dimensional
optimization problems when the underlying function is indefinite and (n–1)-convex. Our structural
result about this reduction technique enables us to give descriptions for the convex envelope of a
variety of two-dimensional functions.
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1. Introduction. Many approaches for solving mixed-integer nonlinear opti-
mization problems (MINLP) combine local search methods with algorithms to com-
pute global bounds on convex relaxations of underlying feasible regions (e.g., [5, 2,
16, 1, 4, 13, 14]). Typically, convex relaxations are obtained by replacing all noncon-
vex terms in the original formulation by convex under- and concave overestimators,
respectively. In order to derive strong bounds that allow one to verify the quality
of known feasible solutions, tight estimators are necessary: the tighter the estimator,
the tighter the bound. By definition, the tightest possible convex under- and concave
overestimator of a general nonlinear function are called its envelopes. Despite this
necessity of having convex and concave envelopes at hand, very little is known in the
literature. The limited availability of formulae for the envelopes is due to the fact that
the standard representation of envelopes is a nonconvex optimization problem that
is intractable, in general. In the special case when a multivariate function is concave
in one variable and convex in all the others, Tawarmalani and Sahinidis showed that
the nonconvex optimization problem can be tackled using disjunctive programming
techniques [11]. To the best of our knowledge, we are not aware of other general
techniques in this direction. Indeed, the majority of results about convex envelopes
apply to particular functions only. This includes continuously differentiable univari-
ate functions [5], the product terms given by x1x2 [5, 2, 4, 10] and x1x2x3 [6, 7], and
the bivariate function given by x1/x2 [16, 11, 12]. The most involved functions for
which the convex envelopes are determined analytically are affine transformations of
x1/x2. The function f : [l,u] ⊆ R≥0 × R>0 → R, x �→ x1/x2 is convex in x1 and
x2, but is not convex in both variables simulaneously, i.e., it is indefinite. Our main
theorem applies precisely to functions of this type. It allows us to express the value
of the convex envelope of such a function at a given point as an (n–1)-dimensional
optimization problem. This result can, in turn, be used to determine new formulae
for the convex envelopes of generalizations of the function x �→ x1x2.
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This paper is structured as follows: We begin by introducing the notation and
recall some basic results from convex analysis in section 2. Our main result is given
in section 3. Section 4 deals with computational aspects for evaluating the convex
envelope for (n–1)-convex functions on a box. Section 5 is devoted to three interesting
families of bivariate functions.

2. Preliminaries. Throughout this section we consider twice continuously dif-
ferentiable functions f : Rn → R over a convex compact domain D ⊆ Rn.

Definition 2.1. Let D ⊆ Rn be a convex compact subset, and let f : D → R be
a real-valued function.

(a) A function η : Rn → R∪{±∞} is called an underestimator ( overestimator)
of f on D if η(x) ≤ f(x) (η(x) ≥ f(x)) for all x ∈ D. If η is, in addition,
convex (concave) on D, then we call η a convex underestimator (concave
overestimator).

(b) The tightest convex underestimator of f over D is called the convex envelope,
denoted by vexD[f ], while the tightest concave overestimator of f over D
is called concave envelope, denoted by caveD[f ]. The envelopes are defined
pointwise:

vexD[f ](x) = max {η(x) | η : D → R ∪ {±∞} with
η(x) ≤ f(x) for all x ∈ D, and η convex},

caveD[f ](x) = min {η(x) | η : D → R ∪ {±∞} with
η(x) ≥ f(x) for all x ∈ D, and η concave}.

In the following, we recall some basic facts from convex analysis that are required
for subsequent sections of this paper.

First, we remark that deriving the envelopes for a function is quite hard, in
general. To see this, consider the following representation of the convex envelope that
is used in [9]:

vexD[f ](x) = min {μ | (x, μ) ∈ conv(epiD[f ])},(2.1)

where epiD[f ] := {(x, μ) ∈ Rn+1 | μ ≥ f(x), x ∈ D} denotes the epigraph of f on D.
The representation in formula (2.1) implies that evaluating the convex envelope

of a function f : D ⊆ Rn → R at a single point x ∈ D requires solving the nonlinear
optimization problem

vexD[f ](x) = minμ

s. t.
∑

k

λkxk = x,

∑

k

λkf(xk) = μ,(2.2)

∑

k

λk = 1,

λk ≥ 0 ∀ k,
xk ∈ D ∀ k.

Problem (2.2) is a highly nonconvex optimization model involving two types of vari-
ables: the convex multipliers λk ∈ [0, 1] and the variable vectors xk representing
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suitable points in D. By Caratheodory’s theorem about the representation of points
in a convex set (cf. Theorem 17.1 in [9]), it suffices to consider convex combinations
of at most (n+1) points (xk, f(xk)), xk ∈ D. In particular, such sets of points can
be chosen to be affinely independent; i.e., to be simplices. In our analysis we are
interested in special structured simplices given by the following definition.

Definition 2.2. Let f : Rn → R be a function restricted to a convex compact
domain D ⊆ Rn. For a point x ∈ D, let xk ∈ D and λk ∈ R≥0, k = 1, . . . , t, with
∑t

k=1 λk = 1, be an optimal solution to problem (2.2) such that the points (xk, f(xk))
are vertices of a simplex S, and λk > 0 for all k = 1, . . . , t, t ≤ n + 1. Then, for
x ∈ D, S is said to be minimizing w.r.t. problem (2.2).

The next proposition is easy to prove.
Proposition 2.3. Consider a function f : Rn → R on a convex compact domain

D. For a given point x ∈ D, let S be a minimizing simplex w.r.t. problem (2.2). Then,
each face S′ ⊆ S is a minimizing simplex for all points x′ ∈ D contained in the relative
interior of the projection of S′ on D.

Note that for each point contained in the projection of a simplex S as defined
above, there is indeed a face S′ whose projection contains the point in its relative
interior.

In problem (2.2) we can restrict our attention to those points (xk, f(xk)) which
are extreme points of conv(epiD[f ]). For a continuous function f : D ⊆ Rn → R on
a convex compact domain D, let

Gvex
D [f ] := {x | (x, vexD[f ](x)) is an extreme point of conv(epiD[f ])}

be the generating set of the convex envelope of f on D (cf. [11, 12]). The next
observation provides a sufficient condition under which a point x ∈ D does not belong
to the generating set of its convex envelope.

Observation 1 (cf. Corollary 5 in [12]). Let f : Rn → R be restricted to a
convex compact subset D ⊆ Rn. If there is a line segment s ⊆ D such that x is
contained in the relative interior ri(s) and f is concave over ri(s), then x �∈ Gvex

D [f ].
Tawarmalani and Sahinidis use this observation in [11] to reduce the complexity

of problem (2.2) for those functions

f : D = [l,u] × [v, w] ⊆ Rn × R → R, (x, z) �→ f(x, z),

which are concave in z, but convex whenever z is fixed. The reduction is possible
because

Gvex
D [f ] ⊆ {(x, v) | x ∈ [l,u]} ∪ {(x, w) | x ∈ [l,u]}.

That is, the convex hull of the epigraph of f over [l,u]× [v, w] is the convex hull of the
union of two convex epigraphs restricted to z = v and z = w, respectively. Therefore,
in problem (2.2) only one-dimensional simplices, i.e., segments, need to be considered.

Example 1. Consider the function f : R2 → R, (x1, x2) �→ x1
x2

on a box
D := [l,u] ⊆ R≥0 × R>0. A description of its convex envelope has been provided
in [11]. To obtain this description, problem (2.2) was reformulated as a univariate
minimization problem. An analysis of this optimization problem yields a case dis-
tinction with expressions for the individual cases. Using the fact that the set of the
concave directions is contained in (R2

≥0) ∪ (R2
≤0) for every x ∈ D, the description of
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the convex envelope can be summarized in the following formula:

vexD[x1
x2

](x) =
u1 − x1

u1 − l1

l1

max
(

l2,
u2−x2
u1−x1

(l1 − x1) + x2,
x2

√
l1(u1−l1)

(u1−x1)
√
l1+(x1−l1)

√
u1

)

+
x1 − l1
u1 − l1

u1

min
(

x2−l2
x1−l1 (u1 − x1) + x2, u2,

x2
√
u1(u1−l1)

(u1−x1)
√
l1+(x1−l1)

√
u1

) .(2.3)

From the representation in formula (2.3), one can immediately deduce that the graph
of vexD[x1

x2
] is the union of segments. The first and second entries in the max- and

min-terms correspond to solutions where one endpoint of the segment is given by a
vertex of D, whereas taking the third entry in both terms yields the function first
given in Theorem 2 of [15].

Our ability to derive a formula for the convex envelope of the function x1/x2

relied on the fact that problem (2.2) in this special case can be reduced to a series of
optimization problems in lower dimension, each of which can be solved explicitly.

In the next section we will show that this phenomenon carries over to a much
broader family of functions.

Definition 2.4. Let f : Rn → R be a twice differentiable function.
(a) f is said to be (strictly) (n–1)-convex if and only if for all i ∈ {1, . . . , n} the

function f |xi=x̄i : Rn−1 → R is (strictly) convex for each fixed value x̄i ∈ R.
(b) If f is restricted to a convex domain D, then f is called indefinite (on D) if

and only if for each x ∈ D the Hessian matrix Hf (x) is indefinite.
(c) The set of all concave directions of f at a point x ∈ D is denoted by γf (x),

i.e.,

γf (x) := {y ∈ Rn | y�Hf (x)y < 0}.

Example 2.

(a) For integers n ≥ 2, the family of quadratic functions fn : Rn → R given by
fn(x) := x�Jnx, where Jn ∈ Rn×n with

(Jn) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2n− 3 −2 −2 · · · −2
−2 2n− 3 −2 · · · −2
...

. . .
...

−2 . . . . . . −2 2n− 3 −2
−2 . . . . . . . . . . . −2 2n− 3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

is (n–1)-convex and indefinite on Rn.
(b) The bivariate functions f : R2 → R given by f(x) := exp(x1x2) and f(x) :=

xp1x
q
2 (for p, q ≥ 1) are 1-convex and indefinite on R2

≥0.

3. A structural result. It is the purpose of this section to provide a result
which characterizes the convex envelope for further important classes of functions.
More precisely, we show that for indefinite (n–1)-convex functions restricted to a box
[l,u] ⊆ Rn, the minimal value of convex combinations in problem (2.2) is already
attained when only segments are chosen. To exclude pathological or trivial cases,
we assume in the following that the dimension n ≥ 2 and the box [l,u] ⊆ Rn is
full-dimensional.

Theorem 3.1. Let f : Rn → R be an (n–1)-convex and indefinite function on
D := [l,u], and denote by F the union of all facets of the box D. Then
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(a) the concave envelope of f over its domain is polyhedral, i.e., its generating
set is finite,

(b) the convex envelope of f over its domain is given by the function g : D → R
which maps each vector x ∈ D to

g(x) := min{(1 − λ)f(x1) + λf(x2) | xi ∈ F , i = 1, 2,

(1 − λ)x1 + λx2 = x, 0 ≤ λ ≤ 1}.
(3.1)

Part (a) of Theorem 3.1 follows from Observation 1. Our proof for part (b) relies
on the fact that concave directions are contained in a fixed pair of orthants for each
point x ∈ [l,u]. We show this result first.

Lemma 3.2. Let f : D = [l,u] → R be a twice differentiable function, and let the
collection {O1, . . . ,O2n} be the system of open orthants of the space Rn. Then, the
function f is (n–1)-convex and indefinite if and only if γf (x) is nonempty for each
x ∈ D and there exists an index i ∈ {1, . . . , 2n} such that

∀ x ∈ D : γf (x) ⊆ Oi ∪ (−Oi).

Proof. Sufficiency of the condition is clear: If γf (.) has the described properties,
then f is indefinite and (n–1)-convex on D.

On the other hand, let f be indefinite and (n–1)-convex on D, and let H = Hf (x)
be the Hessian matrix of f at an arbitrary point x ∈ D.

We claim that H has precisely one negative eigenvalue λ1. H being indefinite
has at least one negative eigenvalue λ1. If there were another nonpositive eigenvalue
λ2 or if λ1 were not a simple root, then the space spanned by the corresponding
eigenvectors would contain lines of concave directions of f intersecting a hyperplane
xj = 0 for some j = 1, . . . , n in a point different from 0. This would contradict the
(n–1)-convexity.

Hence, λ1 is the uniquely determined simple negative eigenvalue of H , to which
we can assign the eigenvector v1, which in turn determines a pair U(x) := Oi∪(−Oi)
for some i ∈ {1, . . . , 2n}. From the argumentation above it follows that γf (x) ⊆ U(x).

We will now show that for all other points x′ ∈ D the set γf (x′) is contained
in the union U(x) just defined, and assume to the contrary that there exists a point
x′ ∈ D such that γf (x′) �⊆ U(x). Furthermore, we consider the following composition
h : Rn → R, y �→ h(y) := ψ(φ(y)), where φ maps a point y ∈ D to the eigenvector
v1(y) associated with the negative eigenvalue of Hf (y) such that v1

1(y) = 1, and
ψ : Rn → R takes the form

ψ : v �→
{

min{|v2|, . . . , |vn|} if v ∈ U(x),

−min{|v2|, . . . , |vn|} otherwise.

It is straightforward to check that both φ and ψ are continuous, and hence, h is
continuous, too. For φ we point to the continuous dependency of the eigenvalues on
the entries of a square matrix (see, e.g., [8]).

If zλ := (1 − λ)x + λx′ with λ ∈ [0, 1], then, by assumption, h(z1) > 0 and
h(z0) < 0, and there is a number λ̃ ∈ (0, 1) with h(zλ̃) = 0. This means that the
eigenvector corresponding to the negative eigenvalue of Hf (zλ̃) has a zero component
and, hence, is contained in some coordinate plane. This is a contradiction to the
property of (n–1)-convexity of f .

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. (a) Using Observation 1 and the identity caveD[f ] =
−vexD[−f ], one can easily check that the generating set of caveD[f ] is given by the
set of the vertices of the domain [l,u]. Thus, caveD[f ] is polyhedral.

(b) First, note that the function f is indefinite on D. From Observation 1, it
follows that the convex envelope of f is generated by points in F of D only; i.e.,
Gvex
D [f ] ⊆ F .

Next, we show the correctness of our claim for strictly (n–1)-convex functions.
For this, assume that the value of vexD[f ] at a given point x̄ ∈ D is attained at a
nontrivial convex combination of at least three different points xi ∈ F ; i.e.,

vexD[f ](x̄) =
∑

1≤i≤k
λif(xi), for some λi > 0,

∑

1≤i≤k
λi = 1,

∑

1≤i≤k
λixi = x̄, xi ∈ F ,

with k ≥ 3. It suffices to deduce a contradiction for a simplex generated by three
vertices since, by Proposition 2.3, each triangular face of a minimizing simplex must
be minimizing, too. Without loss of generality, we consider the triangle spanned by
x1,x2, and x3. By symmetry, it suffices to investigate the following two cases:

• x1 = (l1, x1
2, x

1
3, . . . ), x2 = (x2

1, l2, x
2
3, . . . ), x3 = (x3

1, x
3
2, l3, . . . ),

• x1 = (l1, x1
2, x

1
3, . . . ), x2 = (u1, x

2
2, x

2
3, . . . ), x3 = (x3

1, l2, x
3
3, . . . ).

Consider the difference vectors d1,2 := x1−x2, d2,3 := x2−x3, and d3,1 := x3−x1.
If one of the three difference vectors has a zero component, say d1,2, then the direction
d1,2 is contained in a coordinate plane. Thus, f is strictly convex on the segment
between x1 and x2. Otherwise, it is easy to check that two of the three difference
vectors, say d1,2 and d2,3, are contained in two different pairs of open orthants. From
Lemma 3.2, it follows that f is strictly convex on at least one of the segments between
x1 and x2 or between x2 and x3.

In both cases there exist two vertices (xi, f(xi)) and (xj, f(xj)) of a minimizing
simplex such that on the one hand f is strictly convex on the segment between xi

and xj, and on the other hand, the segment spanned by (xi, f(xi)) and (xj, f(xj))
is minimizing, again by Proposition 2.3. This is a contradiction. Thus, we conclude
that for strictly (n–1)-convex functions there are no minimizing simplices with more
than two vertices.

If f is not (n–1)-convex in the strict sense, then the sequence of strictly (n–1)-
convex functions fm : Rn → R, given by fm(x) := f(x) + 1

m

∑

1≤i≤n x
2
i , uniformly

converges to f on D in the C2 norm. By the compactness of D, the functions fm are
indefinite provided that m is sufficiently large. Let

vexD[fm](x) = (1 − λm)fm(x1
m) + λmfm(x2

m), λm ∈ [0, 1],

then, by the compactness of F ×F × [0, 1], there is a convergent subsequence {(x1
mk

,
x2
mk
, λmk

)}k, yielding the statement for f .
It is possible to extend Theorem 3.1 slightly to the case when f is indefinite on

the interior of [l,u]. This extension can be shown by applying standard approxi-
mation techniques to the proof of Theorem 3.1. In fact, if we replace the box [l,u]
in Theorem 3.1 and in its proof by the sequence of boxes [l + 1

n1,u − 1
n1]n, where

1 = (1, . . . , 1)�, then we obtain the desired extension. Due to this observation we will
use the expression indefinite on [l,u] also in this more general sense.
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4. Computing minimizing segments. In this section we will show that de-
termining the value of the convex envelope of an (n–1)-convex indefinite function
f : [l,u] → R at a given point x is computationally tractable.

We first remark that if the given point x is contained in a facet of [l,u], i.e., x ∈ F
(cf. Theorem 3.1), then, since f is convex on each facet, vex[l,u][f ](x) = f(x).

In the following, let x ∈ [l,u] \ F be given. By Theorem 3.1, we have to find a
segment through x which has endpoints in F and provides an optimal solution for
problem (2.2). We can classify the set of all segments through x into subsets where
each subset consists of all segments connecting the same two facets of [l,u].

The idea is to identify a minimizing segment in each class of segments and to
determine the overall minimizing segment afterwards. From both a geometric and
a computational point of view we distinguish the following two cases: subsets of
segments connecting opposite facets of [l,u] (parallel case) and subsets of segments
connecting adjacent facets of [l,u] (nonparallel case).

First, we consider the parallel case. Here, computing minimizing segments is
similar to the case described in [11] where f : Rn → R is assumed to be convex in
the first (n–1) variables, but concave in the last variable.

The proof is based on a reformulation technique following the method used in
[11].

Observation 2 (parallel case). Let f : [l,u] → R be an (n–1)-convex indefinite
function. For a given point x ∈ [l,u] \ F , computing a minimizing segment with
endpoints in parallel facets gives rise to a convex optimization problem.

Proof. Let x ∈ [l,u] \ F be given. Without loss of generality, we consider the set
of all segments through x that connect the two facets of [l,u] given by x1 = l1 and
x1 = u1. Denote by a,b the endpoints of such a segment where a1 = l1 and b1 = u1.
The corresponding subproblem of problem (2.2) reads as

min λf(a) + (1 − λ)f(b) s.t. λa + (1 − λ)b = x, l ≤ a,b ≤ u.(4.1)

The condition x1 = λa1 + (1 − λ)b1 = λl1 + (1 − λ)u1 implies that λ = (u1 −
x1)/(u1 − l1) ∈ (0, 1). Replacing the variable λ in problem (4.1) by the expression
(u1 − x1)/(u1 − l1) results in a convex objective function which is minimized over
linear constraints.

If f is assumed to be strictly (n–1)-convex, then an optimal solution to (4.1) of
Observation 2 is easily seen to be uniquely determined.

Next, we consider the nonparallel case. As we will see, in this case the under-
lying optimization problem can be analyzed elegantly using the notion of unimodal
functions.

Definition 4.1. A differentiable function f : D → R, D convex, is said to be
unimodal if there are no critical points other than global minima and if the set of all
global minima of f on D is convex.

In order to prepare the general analysis, we first discuss a convex formulation for
the minimization problem in the bivariate case.

Lemma 4.2. Let f : [l,u] ⊆ R2 → R be a 1-convex indefinite function. For a
given point x ∈ [l,u]\F , computing a minimizing segment with endpoints in adjacent
facets can be stated as a minimization problem of a unimodal function.

Proof. Without loss of generality, we consider a 1-convex function on a box [l,u],
and assume that a given point x in the interior of [l,u] is contained in a segment
with endpoints (y, l2) and (l1, z). From the conditions x1 = λy + (1 − λ)l1 and
x2 = λl2 +(1−λ)z, we can deduce the following formulation of the problem of finding
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a minimizing segment:

min φ(λ) := λf

(

1
λ

(x1 − (1 − λ)l1), l2

)

+ (1 − λ)f
(

l1,
1

1 − λ
(x2 − λl2)

)

s.t.
1
λ

(x1 − (1 − λ)l1) ∈ [l1, u1],
1

1 − λ
(x2 − λl2) ∈ [l2, u2], 0 < λ < 1.

(4.2)

The function φ is convex on the feasible set of (4.2), since the second derivative
satisfies

φ′′(λ) =
(x1 − l1)2

λ3

∂2f

∂x2
1

(

x1 − (1 − λ)l1
λ

, l2

)

+
(x2 − l2)2

(1 − λ)3
∂2f

∂x2
2

(

l1,
x2 − λl2

1 − λ

)

≥ 0.

Considering the parameter λ as a function of y via λ = x1−l1
y−l1 , we obtain

dφ
dy

(λ(y)) = −dφ
dλ

(λ)
x1 − l1

(y − l1)2
,

and deduce that the parameter λ and the corresponding value of y minimize the
segment value simultaneously. Furthermore, we see that except for global minima,
the derivative dφ

dy is not equal to 0, and that the segment value between two global
minima remains constant, showing the convexity.

We notice that, if f is strictly 1-convex, then its second partial derivatives ∂2f
∂x2

1

and ∂2f
∂x2

2
do not vanish on any nondegenerate interval. Then the same is true for φ′′(λ);

i.e., φ is strictly convex, and the minimal value is attained at a uniquely determined
solution.

In the general (n–1)-convex case, we consider the problem of finding a minimizing
segment with endpoints in adjacent facets F1, F2 for a given point x ∈ [l,u] \ F . If
we let a point y ∈ F1 vary as one endpoint of the segment such that the second one
z ∈ F2 is uniquely determined, then the minimization problem can be stated as

min φ(y) := λ(y)f(y) + (1 − λ(y))f(z(y))
s.t. y ∈ F1, z(y) ∈ F2,

x = λ(y)y + (1 − λ(y))z(y).
(4.3)

The set of feasible vectors y is the intersection of the face F1 and the pointed cone
with vertex x and directions {x− v | v is a vertex of F2}, and hence a convex set.

We are now prepared to prove the following lemma.
Lemma 4.3 (nonparallel case). Let f : [l,u] → R be an (n–1)-convex, indefinite

function. The function φ defined in (4.3) is unimodal on its domain.
Proof. First, we show that all critical points are global minima. Let y0 be a

critical point and y1 be another feasible vector in (4.3). If λ(y0) = λ(y1), then φ is
convex on the segment [y0,y1] according to Observation 2; therefore, φ(y0) ≤ φ(y1).
In the case of λ(y0) �= λ(y1), we consider φ on the one-dimensional segment [y0,y1],
which, together with the segment [z(y0), z(y1)], can be embedded in R2 yielding a
univariate function φ̂(y) := λ(y)f(y)+(1−λ(y))f(z(y)) on the segment [y0, y1], where
y0 and y1 correspond to y0 and y1, respectively. From the discussion of the bivariate
case it follows that φ̂(y0) ≤ φ̂(y1) and hence φ(y0) ≤ φ(y1).

Next, let y0 and y1 be two global minima of φ. Performing the case distinction
λ(y0) = λ(y1) and λ(y0) �= λ(y1) as outlined before allows us to draw the conclusion
that the set of global minima of φ is convex.
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Observation 2 and Lemma 4.3 show that the value of the convex envelope of an
(n–1)-convex indefinite function restricted to a box at a given point can be computed
using standard numerical solvers. Moreover, once the endpoints (y, f(y)), (z, f(z))
of a minimizing segment for y ∈ [l,u] have been found, the intersection of the sub-
differentials of f at y and z when f is restricted to the corresponding facets of [l,u]
yield feasible normals for any supporting hyperplane at (x, vex[l,u][f ](x)).

In the next section we will describe the convex envelopes of some interesting
families of bivariate functions by investigating the reduced nonlinear optimization
problem (3.1) of Theorem 3.1.

In doing so, we will implicitly make use of the fact that in these cases for a given
point x ∈ [l,u] a segment can be minimizing only if its direction is contained in
γf (x). By Lemma 3.2, for all x ∈ [l,u], the sets γf (x) are contained in one fixed
pair of orthants. This allows us to restrict our attention to such segments fitting
the underlying orthant pattern only. For the purpose of illustration, consider the
bivariate functions on R2

≥0 given by f(x) := x1
x2

(cf. Example 1) and f(x) := exp(x1x2)
(cf. Example 3). It is easy to check that

γx1
x2

(x) ⊆ (R2
≥0 ∪ R2

≤0) and γexp(x1x2)(x) ⊆ (R≥0 × R≤0) ∪ (R≤0 × R≥0).

In Figure 4.1(a) and (b), different types of segments through a point x are shown.
The solid segments are possible candidates to minimize since they are contained in
the pair of orthants predetermined by γf (x). The dashed segments do not respect the
orthant pattern w.r.t. γf (x), and can be excluded from further consideration.

x1
x1

x2

x1

x2

x1

f(x) := exp(x1x2)

x2 x2

(b)f(x) := x1
x2

(a)

Fig. 4.1. For the functions given by f(x) := x1
x2

(cf. (a) and Example 1) and f(x) := exp(x1x2)

(cf. (b) and Example 3), the figures show different types of segments connecting points of the facets
of the domain [l,u].

5. Application to the bivariate case. Using our results presented in sections 3
and 4, we will investigate three different families of bivariate functions. Each of them
can be considered as a generalization of the product term x1x2, for which the convex
envelope on a box [l,u] ⊆ R2 is well known (cf. [5, 2]):

vex[l,u][x1x2](x) = max(l2x1 + l1x2 − l1l2, u2x1 + u1x2 − u1u2).(5.1)

Proposition 5.1. Let g : R≥0 → R be a convex and strictly increasing function.
Then the function f : R2

≥0 → R, x �→ g(x1x2), is 1-convex and indefinite. If f is
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restricted to a box [l,u] ⊆ R2
≥0, then on the subset R1 ∪R2 ⊆ [l,u], given by

R1 := {(x1, x2) ∈ D | lixj ≤ −lj(xi − li) + liuj},
R2 := {(x1, x2) ∈ D | uixj ≥ −uj(xi − ui) + uilj},

(5.2)

where liuj ≤ uilj for (i, j) ∈ {(1, 2), (2, 1)} (see Figure 5.1), we have

vex[l,u][f ](x) = f(max(l2x1 + l1x2 − l1l2, u2x1 + u1x2 − u1u2)) =: f∗(x).(5.3)

Moreover, for each point x ∈ R3 := [l,u] \ (R1 ∪ R2), the relative interior of the
projection of the associated minimizing segment is contained in R3, and the endpoints
are contained in parallel facets of [l,u].

x1

l1

R2

l2

R3

u2

u1

x2

R1

Fig. 5.1. Subdivision of a box [l,u] ⊆ R2
≥0 (with l1u2 < u1l2) into three regions with respect

to different expressions of the convex envelope of functions f : R2
≥0 → R given by f(x) := g(x1x2),

where g : R≥0 → R is convex and strictly increasing: R1 := {x ∈ [l,u] | l1x2 ≤ −l2(x1−l1)+l1u2},
R2 := {x ∈ [l,u] | u1x2 ≥ −u2(x1 − u1) + u1l2}, and R3 := [l,u] \ (R1 ∪ R2).

Proof. A straightforward analysis of the Hessian matrix of f immediately shows
the claim of 1-convexity and indefiniteness.

To prove the properties of f∗ : R2 → R as defined in formula (5.3), we first
assume that l1u2 = u1l2 (i.e., [l,u] = R1∪R2). Observe that f∗ is the composition of
the univariate increasing convex function g and the convex envelope of the product
term x1x2 on [l,u] (cf. formula (5.1)), and hence a valid convex underestimator of f
(cf. [5]). On the other hand, the graph of f∗ consists of two families of segments given
by the endpoints

(

l1 + λ(u1 − l1), l2, f(l1 + λ(u1 − l1), l2)
)

,
(

l1, l2 + λ(u2 − l2), f(l1, l2 + λ(u2 − l2))
)

and
(

u1, l2 + μ(u2 − l2),f(u1, l2 + μ(u2 − l2))),
(

l1 + μ(u1 − l1), u2, f(l1 + μ(u1 − l1), u2)
)

,

(5.4)

where λ, μ range over [0, 1]. Hence, f∗ is also an upper estimate of vex[l,u][f ]. This
proves the correctness of the claim in the special case.

In the general case, we may assume without loss of generality that l1u2 < u1l2.
Note thatR1 is just a segment if l1 = 0 and l2 > 0. Assume that for a point x ∈ R1∪R2
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with an associated segment s of a type as described in formula (5.4), there is a segment
s̄ different from s which yields a lower value at the point x. Then, by increasing l1
or u2, or by decreasing u1 or l2, we can construct a box [̄l, ū] containing both s and
s̄ such that [̄l, ū] = R̄1 ∪ R̄2 holds (where R̄1 and R̄2 are given by formula (5.2) using
the bounds l̄1, l̄2, ū1, ū2). This contradicts the minimality of s w.r.t. [̄l, ū].

Now, let x ∈ R3 := [l,u] \ (R1 ∪ R2). Assume first that g is strictly convex and
assume further that the relative interior of the projection of an associated minimizing
segment s̄ is not contained in R3. By Proposition 2.3, s̄ is also minimizing for points in
the interior of R1∪R2, but different from those given in formula (5.4). Let x̄ ∈ R1∪R2

be such a point with a minimizing segment s as defined in formula (5.4). Then the
convex hull of s and s̄ is a facet of the epigraph of vex[l,u][f ] . This yields a similar
contradiction, as in the proof of Theorem 3.1, or is possible only if l1 = l2 = 0, but
then R3 was empty.

If R1 is not a segment, then the minimizing segments associated with points
x ∈ R3 clearly have the stated property. Otherwise, consider (ln1 )n → l1 = 0 (if
l2 > 0) or vice versa. Similarly, the result for functions g that are not necessarily
1-convex in the strict sense follows from an approximation procedure similar to the
one used in the proof of Theorem 3.1.

Example 3. Consider the function f : R2 → R, x �→ exp(x1x2), restricted to a
box [l,u] ⊆ R2

≥0. Then, by Proposition 5.1, the convex envelope of f on R1 ∪ R2

reads as follows:

vex[l,u][exp(x1x2)] = exp(max(l2x1 + l1x2 − l1l2, u2x1 + u1x2 − u1u2)).

For the points x ∈ R3, when l1u2 < u1l2 (cf. Figure 5.1), it suffices to calculate

min λf(a1, l2) + (1 − λ)f(b1, u2),

where λ = u2−x2
u2−l2 , l1 ≤ b1 < a1 ≤ u1, and λa1 + (1 − λ)b1 = x1 (see Observation 2).

In this example, if the x1-bounds are neglected, then, using standard analysis means,
one can compute that the minimum is attained when

b1 − a1

u2 − l2
=

x1 − ln(l2/u2)
u2−l2

x2 − l2 − u2
.

If b1 or a1 do not respect the bounds, then the endpoints of the segment are shifted
such that they are contained in the box [l,u].

This results in the following expression:

vex[l,u][f ](x) = λ(x2) exp
(

l2g1(x1, x2)
)

+
(

1 − λ(x2)
)

exp
(

u2g2(x1, x2)
)

for all x ∈ R3, where λ(x2) := u2−x2
u2−l2 and

g1(x1, x2) := min
{

u1,
x1 − l1
x2 − u2

(l2 − x2) + x1,
x1 − ln(l2/u2)

u2−l2
x2 − u2 − l2

(l2 − x2) + x1

}

,

g2(x1, x2) := max
{

x1 − u1

x2 − l2
(u2 − x2) + x1, l1,

x1 − ln(l2/u2)
u2−l2

x2 − u2 − l2
(u2 − x2) + x1

}

.

Another generalization is presented in the following proposition.
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Proposition 5.2. Let f : [l,u] → R be an indefinite function such that x �→
f(x) = g(x1)h(x2), and the functions g, h are nonnegative, convex, and strictly in-
creasing. Assuming dg(l1)

dx1
h(u2) < dg(u1)

dx1
h(l2), there are points v1, w1 ∈ (l1, u1) such

that

dg(l1)
dx1

h(u2) =
dg(y1)

dx1
h(l2) and

dg(u1)
dx1

h(l2) =
dg(z1)

dx1
h(u2).

Moreover, let R′ ⊂ [l,u] be the quadrilateral with vertices (v1, l2), (u1, l2), (w1, u2),
(l1, u2) as shown in Figure 5.2. Then vex[l,u][f ] restricted to R′ is given by the union
of segments joining points (y1, l2, f(y1, l2)) and (z1, u2, f(z1, u2)), where v1 ≤ y1 ≤ u1,
l1 ≤ z1 ≤ w1, and dg(y1)

dx1
h(l2) = dg(z1)

dx1
h(u2).

For each point x ∈ [l,u]\R′, the relative interior of the projection of the associated
minimizing segment is contained in [l,u] \ R′, where the endpoints are contained in
orthogonal facets of [l,u].

x1

l2

u2

l1

x2

u1v1 w1

R′

Fig. 5.2. Subdivision of a box [l,u] ⊆ R2
≥0 into regions R′ and [l,u]\R′ with respect to different

expressions of the convex envelope of functions f : R2
≥0 → R given by f(x) := g(x1)h(x2), where

g, h : R≥0 → R are convex and strictly increasing. Region R′ is a quadrilateral with vertices (l1, u2),
(u1, l2), (v1, l2), and (w1, u2), where the two pairs of points (l1, u2), (v1, l2), and (u1, l2), (w1, u2),
respectively, have identical slopes in the direction of the x1-variable.

Proof. The first statement follows directly from the properties of f .
Next, let x ∈ R′, and assume that f is strictly 1-convex on [l,u]. Then there exist

points (y1, l2), (z1, u2) ∈ R′ with identical slopes

dg(y1)
dx1

h(l2) =
dg(z1)

dx1
h(u2) =: m

and such that x is contained in the segment spanned by (y1, l2), (z1, u2).
We will show that the plane H given by the two tangents at the points (y1, l2,

f(y1, l2)) and (z1, u2, f(z1, u2)) with slope m is a valid underestimator of the graph
of f on [l,u].

Assume to the contrary that there is a point x̂ ∈ [l,u] whose function value of f
is smaller than the value given by the plane H . This is equivalent to the fact that
there is a point x̃ in the interior of [l,u] with m = dg(x̃1)

dx1
h(x̃2) whose function value is

strictly overestimated by H . We can further assume that the violation among these
points is maximal for x̃.
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Now consider the plane H ′ containing the point (x̃, f(x̃)) obtained from H by
shifting it downwards in the direction of the f -axis. Then H ′ is a valid underestimator
of f . By the construction, there is no point t contained in a facet of [l,u] such that
(t, f(t)) is contained in H ′. Hence, (x̃, f(x̃)) can be separated by a plane from the
graph of f restricted to the facets of [l,u]. But this contradicts the property that
(x̃, f(x̃)) is contained in the convex hull of the graph of f restricted to the facets of
[l,u]. Thus, the plane H is indeed valid for the graph of f proving that the segment
given by (y1, l2, f(y1, l2)) and (z1, u2, f(z1, u2)) is minimizing.

The statement for points x ∈ [l,u] \ R′ and the case when f is not necessarily
strictly 1-convex can be proven with arguments similar to the proof of Proposition
5.1.

Example 4. For numbers p, q > 1, consider the function f : R2 → R, x �→ xp1x
q
2,

on [l,u] ⊆ R2
≥0. If plp−1

1 uq2 < pup−1
1 lq2, then the minimizing segments on R′ as defined

in Proposition 5.2 (see also Figure 5.2) are given by

(y1, y2) :=
(

x1

λ+ μ− λμ
, l2

)

and (z1, z2) :=
(

μx1

λ+ μ− λμ
, u2

)

,

where λ := u2−x2
u2−l2 and μ := ( l2u2

)
q

p−1 .
If p = q, then Proposition 5.1 can also be applied to obtain the description for

the regions R1 and R2 defined in formula (5.2). (Note that by Proposition 5.1, R1

and R2 do not overlap with R′.) For points in [l,u] \ (R′ ∪R1 ∪R2), the projections
of the minimizing segments have a vertex of [l,u] as an endpoint.

Next, we focus on the convex and concave envelopes of an arbitrary bivariate
quadratic polynomial. We remark that Anstreicher and Burer have recently given
a semidefinite representation for the envelopes of this class of functions (see [3]).
However, our results developed in sections 3 and 4 enable us to derive explicit formulae
via a case distinction.

Example 5. Consider an arbitrary bivariate quadratic polynomial f : [l,u] ⊆
R2 → R defined by f(x) := a11x

2
1 + 2a12x1x2 + a22x

2
2 + b1x1 + b2x2 + c, with all

coefficients being real.
If a2

11 +a2
22 = 0, then the convex and concave envelopes are generated by the four

vertices of [l,u] and are, hence, polyhedral. In this case, the formulae of the envelopes
are easy to compute.

Let a2
11 + a2

22 > 0. Setting a21 := a12, we obtain the Hessian matrix Hf of f as
Hf (x) = 2(aij)1≤i,j≤2. This leads to the following cases:

• Case 1. Hf is positive (negative) (semi-)definite. Then f is convex (concave),
and the envelopes are trivial to compute. In the convex case,

vex[l,u][f ](x) = f(x),

and cave[l,u][f ](x) is generated by the four vertices of [l,u].
• Case 2. Hf is indefinite, and a11a22 < 0. Without loss of generality, let
a11 > 0 > a22. Then, f is convex in x1 and concave in x2. For determining a
formula for the envelopes we can make use of Observation 2 or the reduction
technique introduced in [11].
First, assume that the eigenvector related to the negative eigenvalue of Hf has
entries different in sign. An analysis of the reduced underlying optimization
problem (4.1) defined in the proof of Observation 2 shows that the envelopes
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can be computed as

vex[l,u][f ](x) = λf(y1, l2) + (1 − λ)f(z1, u2),
cave[l,u][f ](x) = μf(l1, y2) + (1 − μ)f(u1, z2),

where λ = u2−x2
u2−l2 , μ = u1−x1

u1−l1 ,

y1 = min
(

a12
a11

(1 − λ)(u2 − l2) + x1, u1,
x1−l1
x2−u2

(l2 − x2) + x1

)

,

z1 = max
(

a12
a11
λ(l2 − u2) + x1,

x1−u1
x2−l2 (u2 − x2) + x1, l1

)

,

y2 = max
(

a12
a22

(1 − μ)(u1 − l1) + x2, l2,
u2−x2
u1−x1

(l1 − x1) + x2

)

,

z2 = min
(

a12
a22
μ(l1 − u1) + x2,

x2−l2
x1−l1 (u1 − x1) + x2, u2

)

.

(5.5)

If the eigenvector to the negative eigenvalue of Hf does not have entries
different in sign, then we can choose (1, 0) and (0, 1), respectively, as the
eigenvectors associated with the positive and negative eigenvalues of Hf , re-
spectively. In this case a12 = 0 holds, so formula (5.5) can be simplified
to

y1 = z1 = x1, y2 = z2 = x2.

If a11a22 = 0 and a11 > a22 = 0, then f is strictly convex in x1 and affine
in x2. Hence, the convex envelope is given as in formula (5.5), whereas the
concave envelope is polyhedral.

• Case 3. Hf is indefinite and a11a22 > 0. We may assume that a11, a22 > 0
(otherwise, consider −f and use vex[l,u][−f ](x) = −cave[l,u][f ](x)). Then f
is 1-convex, i.e., the concave envelope is polyhedral. For the convex envelope,
we assume that the eigenvector to the negative eigenvalue of Hf has entries
different in sign (otherwise, consider f(x1, l2 + u2 − x2)). Moreover, let

∂f
∂x2

(l1, u2)(l2 − u2) + f(l1, u2) ≥ ∂f
∂x1

(u1, l2)(l1 − u1) + f(u1, l2).

Set v :=
(

−√
a22,

√
a11

)

. The box [l,u] can be separated into three regions
using the two lines with direction v through the corner points (l1, u2) and
(u1, l2), respectively (see Figure 5.3). In the regions D1 and D2, the convex
envelope is given by segments whose projections to R2 are parallel to the
vector v. Thus, on D1 and D2, the convex envelope reads as

vex[l,u][f ](x) |D1 = λf(y1, l2) + (1 − λ)f(l1, z2),
vex[l,u][f ](x) |D2 = μf(v1, u2) + (1 − μ)f(u1, w2),

where λ = x1−l1
y1−l1 , μ = x1−u1

y1−u1
,

y1 = −
√

a22
a11

(l2 − x2) + x1, z2 = −
√

a11
a22

(l1 − x1) + x2,

v1 = −
√

a22
a11

(u2 − x2) + x1, w2 = −
√

a11
a22

(u1 − x1) + x2.

Validity is seen by expanding these formulae yielding the expressions

g(x1, x2) = a11x
2
1 + 2

√
a11a22x1x2 + a22x

2
2 + (b1 + 2l2(a12 −

√
a11a22))x1

+ (b2 + 2l1(a12 −
√
a11a22))x2 + c− 2l1l2(a12 −

√
a11a22),

h(x1, x2) = a11x
2
1 + 2

√
a11a22x1x2 + a22x

2
2 + (b1 + 2u2(a12 −

√
a11a22))x1

+ (b2 + 2u1(a12 −
√
a11a22))x2 + c− 2u1u2(a12 −

√
a11a22).
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x1

l1

l2

u2

x2

u1

v D2

D3
D1

Fig. 5.3. Subdivision of a box [l,u] ⊆ R2
≥0 into regions D1, D2, and D3 with respect to different

expressions of the convex envelope of a bivariate quadratic polynomial a11x2
1 + 2a12x1x2 + a22x2

2 +
b1x1 + b2x2 + c (with a11 ≥ a22 > 0) that is 1-convex and indefinite. The subdivision is defined
by the two lines with direction v = (−√

a22,
√

a11) through the corner points (l1, u2) and (u1, l2),
respectively.

The functions g and h are clearly convex on their domains D1 and D2, re-
spectively. With an argument as in the proof of Proposition 5.1, the validity
follows. Moreover, it can be deduced that in the middle region D3, the enve-
lope is described by the formulae of Case 2.

6. Conclusions. In this paper we showed that evaluating the value of the convex
envelope of an (n–1)-convex indefinite function on a box is a computationally tractable
task, provided that the number of variables involved is not too large. However, for
deriving analytical formulae based on our structural result (cf. Theorem 3.1), it is
required to have strong analytical and geometrical properties at hand. We are not
aware of practically relevant families of functions with more than three variables for
which we could provide formulae for the envelope following the approach outlined in
Examples 1–5. Indeed, this lack of geometric information limits our ability to turn
the knowledge of Theorem 3.1 into an analytical formula. Still, Observation 2 and
Lemma 4.3 may be applied and can be utilized by a numerical solver for evaluating
the value of the convex envelope at a given point and a normal vector of a supporting
hyperplane.

Acknowledgment. We greatly appreciate the suggestions of two anonymous
referees.
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Abstract. We consider random approximations to deterministic optimization problems. The ob-
jective function and the constraint set can be approximated simultaneously. Relying on concentration-
of-measure results we derive universal confidence sets for the constraint set, the optimal value, and
the solution set. Special attention is paid to solution sets which are not single-valued. With many
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employed to derive confidence sets for constrained estimation problems.
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1. Introduction. Random approximations of deterministic or random optimiza-
tion problems come into play if unknown quantities are replaced with estimates or for
numerical reasons. One solves the approximate problem and hopes that the solution
is a good surrogate for the solution of the true problem. Hence there is the need for
methods that help to evaluate the goodness of the surrogate solution.

Usually the approximating problems can be arranged to a sequence (Pn)n∈N
which approximates the true problem in a suitable sense. Often n can be regarded as
the size of the sample on which the estimates are based. Qualitative stability results,
which make assertions on the (semi-)convergence of the constraint sets, the optimal
values, and the solution sets, are available for convergence almost surely, in probability
and in distribution, cf. [12], [17], [8], [7], [19], [3], and the references therein. Further-
more, there are quantitative results which estimate the distance between the optimal
values and/or solutions sets by suitable probability metrics; see [14] for an overview.

Confidence bounds for optimal values and solution sets provide valuable addi-
tional information. In parametric statistics confidence sets are standard tools. They
contain the true value of a parameter at least with a prescribed probability and should
satisfy some quality criteria, e.g., minimal size. In the traditional way they are derived
from the distribution of a suitable point estimator, which often turns out to be the so-
lution to an appropriate optimization problem. However, the exact distribution of the
estimator for a given sample size n is available only in rare cases. Therefore, usually
the limit distribution is used as a surrogate, i.e., one deals with asymptotic confi-
dence sets. As indicated in [12] and [3], qualitative stability results for convergence
in distribution can also be employed to derive asymptotic confidence sets.

In this paper we will consider a general method which provides for each n a set
which covers the true solution at least with the prescribed probability. Hence we speak
of universal confidence sets. These universal confidence sets have a structure which
resembles that of many confidence sets in statistics. They are suitable neighborhoods
of the solutions to the approximate problems. However, in order to derive such sets,
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we do not try to obtain full knowledge about the true distribution of some statistic.
Instead we rely on uniform concentration-of-measure results and some assumptions
about the true model.

We will also give conditions under which the confidence sets do not only cover the
true set, but converge to it in an appropriate sense. Since in general the diameters
of the neighborhoods will converge to zero with increasing n, universal confidence
sets provide a valuable aid for the decision whether the solution to an approximate
problem is good enough or should be improved choosing a larger n.

Confidence bounds for constraint sets and optimal values will be treated in a
similar way. Confidence sets for the optimal values can help to assess the quality of
the solution to an approximate problem and may be of interest also for model selection.
Confidence bounds for constraint sets are of independent interest if sets have to be
approximated which are defined by inequality constraints. It is obvious that the
method also can be employed for the derivation of confidence sets in statistics if the
quantity under consideration can be obtained as solution to an optimization problem.

We adopt ideas from the paper [13]. In [13] Pflug shows how results about uniform
convergence in probability, supplemented with known convergence rate and tail be-
havior, together with a growth condition for the true objective function can be used
to derive different kinds of confidence sets. Confidence sets in the sense described
above are obtained under the additional assumption that the solution set is single-
valued. Furthermore, sufficient conditions for the assumed convergence conditions are
discussed in [13].

We will pursue the way proposed in [13] farther, take into account also the ap-
proximation of the constraint set, and show how one can proceed if the solution set
is not single-valued. The results are formulated in a general way, allowing, e.g., for
“relaxed” constraint sets and “κ-optimal” solutions.

We will assume that suitable assertions on the (one-sided) uniform convergence
in probability of the objective functions and/or the constraint functions with a con-
vergence rate and tail behavior function are available. Furthermore, we assume some
knowledge about the true model, such as a growth condition for the objective function.

Emphasis in this paper is on the concepts in a general form. Three simple exam-
ples at the end of the paper are in the first instance meant for illustration. Applications
of our results to more complex problems require additional sufficient conditions for the
convergence conditions and methods to estimate the parameters of the true model.
These topics will be discussed elsewhere.

In order to derive confidence sets for each n, we assume full knowledge about
the tail behavior function. If this function is not completely known, the proposed
approach can still be employed to derive asymptotic confidence sets.

The paper is organized as follows. In section 2 we introduce the mathematical
model and show how universal confidence sets can be derived from suitable conver-
gence results. In section 3 and section 4 we prove the needed convergence assertions
for the constraint sets, the optimal values, and the solutions sets. Section 5 con-
tains the examples. The first example is to show how one can deal with the uniform
convergence assumptions in a simple case. Approximation of a chance constraint is
dealt with in the second example. The third example was chosen to demonstrate the
applicability of our results in statistics. We will provide universal confidence bounds
for quantiles, allowing for distribution functions which are not continuous.

2. Universal confidence sets. Let (E, d) be a complete separable metric space
and [Ω,Σ, P ] a complete probability space. We assume that a deterministic optimiza-
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tion problem

(P0) min
x∈Γ0

f0(x)

is approximated by a sequence of random problems

(Pn) min
x∈Γn(ω)

fn(x, ω), n ∈ N.

Additionally to (Pn), for a given κ > 0, we consider so-called κ-relaxations

(Pn,κ) min
x∈Γn,κ(ω)

fn,κ(x, ω), n ∈ N.

The relaxed problems offer the possibility to deal with “relaxed” constraint sets, ob-
jective functions and/or solution sets, which are accurate only up to a small parameter
that depends on n and κ and tends to zero for each κ if n → ∞. Consequently, the
approach can be applied, e.g., to constraint sets and functions which are obtained by
Monte Carlo methods (cf. [15], [11]), or to methods which use plug-in estimators, and
to εn-optimal solutions. Moreover, the relaxed problems are crucial in our approach
for the derivation of outer approximations for constraint sets and solution set (see
section 3).

The following results will be formulated for (Pn,κ). The problem (Pn) is then
regarded as a special case of (Pn,κ) with objective functions and constraint sets that
do not depend on κ.

Γ0 is a nonempty closed subset of E, and the function f0, which maps into the
extended reals R̄1 := R1 ∪ {−∞} ∪ {+∞}, is a lower semicontinuous function. For
each n ∈ N and κ > 0, Γn,κ|Ω → 2E is a closed-valued measurable multifunction,
and fn,κ|E × Ω → R̄1 is a lower semicontinuous random function, which is supposed
to be (B(E) ⊗ Σ, B̄1) measurable. B(E) denotes the Borel-σ-field of E and B̄1 the
σ-field which is generated by the Borel sigma field B1 of R1 and {+∞}, {−∞}. Fur-
thermore, we assume that all objective functions are (almost surely) proper functions,
i.e., functions with values in (−∞,+∞] which are not identically ∞.

The measurability conditions imposed here do not have the weakest form. We use
them for sake of simplicity. They are satisfied in many applications and guarantee that
all functions of ω needed in the following have the necessary measurability properties.
Moreover, the lower semicontinuity assumption of the objective functions fn,κ can be
dropped. Imposing this condition, however, we can omit some technical details in the
proofs.

In the following, the optimal values are denoted by Φ. Φn,κ(ω) := infx∈Γn,κ(ω)

fn,κ(x, ω) is the optimal value for the realization (Pn,κ(ω)) of the approximate prob-
lem, while Φ0 := infx∈Γ0 f0(x) is the optimal value to (P0). Ψn,κ(ω) and Ψ0 denote
the corresponding solution sets.

Our main concern will be with the solution sets Ψ0 and Ψn,κ. We aim at proving
assertions of the form

(1) ∀κ > 0 : sup
n≥n0(κ)

P{ω : Ψn,κ(ω) \ Uβn,κΨ0 �= ∅} ≤ H(κ)

and

(2) ∀κ > 0 : sup
n≥n0(κ)

P{ω : Ψ0 \ Uβn,κΨn,κ(ω) �= ∅} ≤ H(κ).
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Here (βn,κ)n∈N is a sequence of nonnegative numbers which tends to zero for each
κ > 0, and H|R+ → R+ is a function with limκ→∞ H(κ) = 0. UαX denotes an open
neighborhood of the set X with radius α: UαX := {x ∈ E : d(x,X) < α}. ŪαX
means its closure.

In stochastic programming, objective functions and constraint functions which
are expectations of random functions are of special interest. If the true, but unknown
distribution is replaced with the empirical measure, one often obtains a convergence
rate of the form β̃n,κ = κ√

n
for these functions. As we shall see later, the rate βn,κ

which occurs in (1) and (2) is a nondecreasing function of β̃n,κ. Hence the neighbor-
hoods grow with increasing κ and become smaller with increasing n, cf. section 5.
Examples of H are given in section 5 and [13].

It is desirable that the following assumption (C) is satisfied. Let κn(ε) := max{κ :
βn,κ ≤ ε}.

(C) For all κ > 0 (βn,κ)n∈N converges monotonically to zero, and for all ε > 0
limn→∞ κn(ε) → ∞ is satisfied.

If (C) is fulfilled, inequality (1) implies the following property of (Ψn)n∈N :
For each ε > 0 and an arbitrary compact set K ⊂ E we have for sufficiently large

n,

P{ω : (Ψn(ω) \ UεΨ0) ∩K �= ∅} ≤ P{ω : Ψn(ω) \ Uβn,κn(ε)Ψ0 �= ∅}
≤ H(κn(ε)).

Hence the condition

(3) ∀ε > 0 ∀ compact K : lim
n→∞

P{ω : (Ψn(ω) \ UεΨ0) ∩K �= ∅} = 0

holds.
Sequences (Ψn)n∈N satisfying condition (3) are called inner approximations in

probability to Ψ0 (cf. [8], [20]). Roughly spoken, inner approximations tend to a sub-
set of Ψ0 in the particular convergence mode under consideration. For the aims of this
paper, convergence in probability is the appropriate mode. In a corresponding way
one can show that a sequence which fulfills condition (2) for a sequence (βn,κ)n∈N with
the above properties is a so-called outer approximation in probability to Ψ0. Outer
approximations tend to cover Ψ0. A sequence which is an inner and an outer approx-
imation in probability to Ψ0 is (Kuratowski–Painlevé)-convergent in probability to
Ψ0.

Because of the relationship to inner and outer approximations in probability, we
will call a sequence (Ψn,κ)n∈N fulfilling relation (1) an inner approximation in proba-
bility to Ψ0 with convergence rate βn,κ and tail behavior function H (in short, an inner
(βn,κ,H)-approximation) and a sequence (Ψn,κ)n∈N fulfilling (2) an outer approxima-
tion in probability to Ψ0 with convergence rate βn,κ and tail behavior function H (in
short, an outer (βn,κ,H)-approximation). Sequences (Ψn,κ)n∈N which are inner and
outer (βn,κ,H)-approximations in probability to Ψ0, such that (βn,κ)n∈N satisfies con-
dition (C), are called (βn,κ,H)-convergent in probability to Ψ0. (βn,κ,H)-convergence
in probability is closely related to the normalized convergence investigated in [2].

In order to derive universal confidence sets to the level ε0, i.e., a sequence of
random sets (Cn)n∈N with the property supn≥n0

P{ω : Ψ0 \ Cn(ω) �= ∅} ≤ ε0, we
can proceed as follows.

Suppose that an outer (βn,κ,H)-approximation (Ψn,κ)n∈N to Ψ0 is available and
choose to ε0 > 0 a κ0 > 0 such that H(κ0) ≤ ε0. The sets

(4) Cn := Uβn,κ0
Ψn,κ0
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have the desired property. Of course, one is interested in small confidence sets; hence
(βn,κ)n∈N should go to zero as fast as possible and H(κ) should converge to zero as
fast as possible if κ tends to infinity.

Unfortunately, under reasonable conditions one obtains inner approximations for
the solution set only; see, for instance, the following example.

Example E1. Consider the family of minimization problems {P̃n, n ∈ N0} with
E = R1, Γ0 = Γn = [−1,+1], f0(x) ≡ 0, and fn(x) = min{|x|, 1

n}. Then (fn)n∈N
converges uniformly to f0, but Ψn = {0} for all n ∈ N , while Ψ0 = [−1,+1].

Inner approximations will serve our purpose if all approximating problems (Pn)
have solutions which are uniformly bounded and the solution set to the problem (P0) is
single valued, because in this case inner approximations are also outer approximations,
and we can proceed as above.

What can be done if the solution set to (P0) is not single valued? Taking into
account that we need knowledge about convergence rates anyway, we can exploit this
knowledge to determine suitable relaxing sequences (ρn,κ)n∈N , which tend to zero for
each κ > 0 and consider ρn,κ-optimal solutions, denoted by Ψr

n,κ.
The problem, that in general only inner approximations can be obtained, is also

apparent for the constraint sets. An example will be considered in section 5.
As mentioned, for reasonable confidence sets one would like to have limn→∞ β

(i)
n,κ =

0 and limκ→∞ Hi(κ) = 0 for all sequences (β(i)
n,κ)n∈N and functions Hi which occur

in the following. These properties are, however, not needed to prove the results in
section 3 and section 4. We only assume throughout the paper that the sequences
(β(i)
n,κ)n∈N belong to the class B of nonincreasing sequences of positive numbers and

the functions Hi belong to the class H of nonincreasing functions which are defined
on R+ and map into R+.

3. Approximation of the constraint set. In this section we consider con-
straint sets, which are given by inequality constraints, and their approximations.
Results of that kind are, of course, needed if approximation of the constraint set is
inherent in the problem under consideration. Moreover, because of the equations

Ψ0 = {x ∈ Γ0 : f0(x) − Φ0 ≤ 0} and
Ψn(ω) = {x ∈ Γn : fn(x, ω) − Φn(ω) ≤ 0},

the statements can be employed to derive assertions on the behavior of the solution
sets, regarding the difference between the true objective function and the optimal value
as constraint function. As the optimal values for problems with ρn,κ-relaxed constraint
sets may depend on κ, the resulting “constraint function” g̃n,κ := fn − Φn,κ may
depend on κ, too. Furthermore, when applying Theorem 1 below to the solution sets,
the multifunctions Qn, which occur in this theorem, will be interpreted as constraint
sets; hence we have to allow that they depend on κ, too.

We assume that the feasibility set Γ0 in (P0) can be written as

Γ0 =
{

x : gj0(x) ≤ 0, j ∈ J
}

∩Q0,

where J = {1, . . . , jM} is a finite index set, the functions gj0|E → R1, j ∈ J, are
lower semicontinuous in all points x ∈ E, and Q0 is a closed nonempty subset of E.
Furthermore, we assume that Γ0 is nonempty.

For each κ > 0, the set Q0 is approximated by a sequence (Qn,κ)n∈N of closed-
valued measurable multifunctions, and the functions gj0, j ∈ J, are approximated by
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sequences (gjn,κ)n∈N of functions gjn,κ|E → R1, j ∈ J, which are (B(E) ⊗ Σ,B1)-
measurable. Furthermore, we assume that the functions gn,κ(·, ω) are lower semicon-
tinuous for all ω ∈ Ω. Also these measurability and semicontinuity properties could
be weakened.

Hence the approximate constraint set Γn,κ has the form

Γn,κ(ω) =
{

x ∈ E : gjn,κ(x, ω) ≤ 0, j ∈ J
}

∩Qn,κ(ω).

Under our assumptions Γn,κ is a closed-valued measurable multifunction.
If we have Qn,κ(ω) ≡ Q0 = E, we will use the denotation Γ̂0 and Γ̂n,κ, respec-

tively:

Γ̂0 =
{

x ∈ E : gj0(x) ≤ 0, j ∈ J
}

and

Γ̂n,κ(ω) :=
{

x ∈ E : gjn,κ(x, ω) ≤ 0, j ∈ J
}

.

In the following we employ functions ν, μ, and λ. They are assumed to belong
to the set Λ of functions λ̃|R1 → R1 which are right-continuous, nondecreasing,
nonconstant, and have the property λ̃(0) = 0. By the superscript −1 we denote their
inverses: λ̃−1(y) := inf{x ∈ R : λ̃(x) ≥ y}.

Theorem 1 (inner approximation of the constraint set). Assume that the fol-
lowing conditions are satisfied:

(CI1) There exists a function H1 ∈ H and for all κ > 0 a sequence (β(1)
n,κ)n∈N ∈ B

such that

sup
n∈N

P{ω : Qn,κ(ω) \ U
β

(1)
n,κ
Q0 �= ∅} ≤ H1(κ).

(CI2) There exists a function H2 ∈ H and for all κ > 0 a sequence (β(2)
n,κ)n∈N ∈ B

such that

sup
j∈J

sup
n∈N

P{ω : inf
x∈UQ0\Γ0

(gjn,κ(x, ω) − gj0(x)) ≤ −β(2)
n,κ} ≤ H2(κ)

for a suitable neighborhood UQ0.
(CI3) There exists a function ν ∈ Λ such that for all ε > 0

UεΓ0 ⊃ Uν(ε)Q0 ∩ Uν(ε)Γ̂0.

(CI4) There exists a function μ ∈ Λ such that for all ε > 0

∀ x ∈ UεQ0 \ UεΓ̂0 ∃j ∈ J : gj0(x) ≥ μ(ε).

Then for all κ > 0, β(3)
n,κ = max{ν−1(β(1)

n,κ), ν−1(μ−1(β(2)
n,κ))}, and n0(κ) = min{l :

U
ν(β

(3)
l,κ)

Q0 ⊂ UQ0} the relation supn≥n0(κ) P{ω : Γn,κ(ω) \ U
β

(3)
n,κ

Γ0 �= ∅} ≤ H1(κ) +

jMH2(κ) holds.
Proof. Assume that for given κ > 0, n ≥ n0(κ), and ω ∈ Ω the relation Γn,κ(ω) \

U
β

(3)
n,κ

Γ0 �= ∅ holds. Then there is xn,κ(ω) ∈ Γn,κ(ω) which does not belong to U
β

(3)
n,κ

Γ0.
Because of (CI3) we have xn,κ(ω) /∈ U

ν(β
(3)
n,κ)

Q0 or xn,κ(ω) ∈ U
ν(β

(3)
n,κ)

Q0 and xn,κ(ω) /∈
U
ν(β

(3)
n,κ)

Γ̂0.
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In the first case we obtainQn,κ\Uν(β(3)
n,κ)

Q0 �= ∅. Hence, because of ν(β(3)
n,κ) ≥ β

(1)
n,κ,

Qn,κ(ω) \ U
β

(1)
n,κ
Q0 �= ∅, and we can employ (CI1).

In the second case we obtain by (CI4) for at least one j ∈ J , gj0(xn,κ(ω)) ≥
μ(ν(β(3)

n,κ)) ≥ β
(2)
n,κ; hence, because of U

ν(β
(3)
n,κ)

Q0 ⊂ UQ0, infx∈UQ0\Γ0(gjn,κ(x, ω) −
gj0(x)) ≤ −β(2)

n,κ. It remains to employ (CI2).
Condition (CI1) says that the sequence (Qn,κ)n∈N is an inner (β(1)

n,κ,H1)-approxi-
mation to Q0. Condition (CI2) claims—roughly speaking—that the functions gjn,κ
outside Γ0 do not take values that are “essentially” less than the value of gj0 at the
same point. It is a relaxed one-sided version of the uniform concentration-of-measure
assumption that was used in [13] for the objective functions. Because of its rela-
tionship to a lower semicontinuous approximation in probability (cf. [8], [20]), each
sequence (gjn,κ)n∈N which satisfies condition (CI2) could be called a lower semicontin-
uous approximation in probability to gj0 at UQ0\Γ0 with convergence rate β(2)

n,κ and tail
behavior function H2. (CI2) is a crucial assumption in our approach. Unfortunately,
so far there are only a few sufficient conditions which are directly applicable; see, for
instance, [13] and the examples at the end of the paper. A general approach for the
derivation of sufficient conditions which can serve as a bridge to the concentration-of-
measure results for sequences of random variables will be provided elsewhere.

The assumptions (CI3) and (CI4) are conditions about the true model. (CI4)
requires that at least one constraint function gj0 grows outside Γ̂0 with a certain rate.
This rate can sometimes be derived from the model; see section 5. In general cases it
will have to be estimated. Replacing μ with estimates, however, changes the overall
convergence rate and will be discussed elsewhere. Condition (CI3) is an assumption
about the mutual position and the curvature of Q0 and Γ̂0. It can be dispensed with if
Qn,κ ≡ Q0 and (CI4) is sharpened to (CI4-W); see Corollary 1 below. (CI2) can then
be slightly weakened to (CI2-W). (CI4-W) refers to a function μ̃ which is determined
with respect to the distance to Γ0, not to Γ̂0. μ̃ will in general be different from μ;
compare the following example.

Example E2. Let E = R2, Q0 = {(x, y) : y = 2x}, jM = 1, and g1
0(x, y) = x.

Then Γ̂0 = (−∞, 0] × R1 and Γ0 = {(x, y) : x ≤ 0, y = 2x}. Consequently we obtain
for all ε > 0

∀x ∈ UεQ0 \ UεΓ̂0 : g1
0(x) ≥ ε, but

∀x ∈ Q0 \ UεΓ0 : g1
0(x) ≥ ε√

5
.

Corollary 1. Assume that Qn,κ ≡ Q0 holds and the following assumptions are
satisfied:

(CI2-W) There exists a function H2 ∈ H and for all κ > 0 a sequence (β(2)
n,κ)n∈N ∈

B such that

sup
j∈J

sup
n∈N

P{ω : inf
x∈Q0\Γ0

(gjn,κ(x, ω) − gj0(x)) ≤ −β(2)
n,κ} ≤ H2(κ).

(CI4-W) There exists a function μ̃ ∈ Λ such that for all ε > 0

∀ x ∈ Q0 \ UεΓ0 ∃j ∈ J : gj0(x) ≥ μ̃(ε).

Then for all κ > 0 and β
(3)
n,κ = μ̃−1(β(2)

n,κ) the relation supn∈N P{ω : Γn,κ(ω) \
U
β

(3)
n,κ

Γ0 �= ∅} ≤ jMH2(κ) holds.
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Proof. Assume that for given κ > 0, n ∈ N , and ω ∈ Ω the relation Γn,κ(ω) \
U
β

(3)
n,κ

Γ0 �= ∅ holds. Then there is xn,κ(ω) ∈ Γn,κ(ω) which does not belong to
U
β

(3)
n,κ

Γ0. Because of Qn,κ ≡ Q0, xn,κ(ω) belongs to Q0, and we can immediately

make use of (CI4-W), which gives gj0(xn,κ(ω)) ≥ μ̃(β(3)
n,κ) ≥ β

(2)
n,κ. Consequently

infx∈Q0\Γ0(gjn,κ(x, ω) − gj0(x)) ≤ −β(2)
n,κ. It remains to employ (CI2-W).

Later on, Corollary 1 can immediately be applied to obtain results about the
approximation of the solution set if the constraint set remains fixed.

Remark 1. Sometimes, concentration-of-measure results are formulated for strict
inequalities. Therefore we would like to mention that the conclusion of Theorem 1
does not change if condition (CI2) is replaced by the weaker condition (CI2-S) below
and at the same time the stronger condition (CI4-S) is imposed instead of (CI4). This
holds correspondingly for further assertions.

(CI2-S) There exists a function H2 ∈ H and for all κ > 0 a sequence (β(2)
n,κ)n∈N ∈

B such that

sup
j∈J

sup
n∈N

P{ω : inf
x∈UQ0\Γ0

(gjn,κ(x, ω) − gj0(x)) < −β(2)
n,κ} ≤ H2(κ)

for a suitable neighborhood UQ0.
(CI4-S) There exists a function μ ∈ Λ such that for all ε > 0

∀ x ∈ UεQ0 \ UεΓ̂0 ∃j ∈ J : gj0(x) > μ(ε).

If we want to exploit Theorem 1 for solution sets we have to deal with one con-
straint function only. Therefore we provide a further specialization of Theorem 1,
namely for jM = 1 and g1

0 =: g0, g1
n,κ =: gn,κ. Additionally, in order to give an

example for the function μ in (CI4), we replace (CI4) with a special growth condi-
tion (Gr-g0), which is inspired by the growth condition in [13]. (Gr-g0) specifies μ as
μ(ε) = c1ε

δ1 for all ε > 0 with UεQ0 ⊂ Uθ1Q0.
Corollary 2. Assume that (CI1), (CI2), (CI3), and the following condition

(Gr-g0) are satisfied.
(Gr-g0) There exist constants c1 > 0, δ1 > 0, and θ1 > 0 such that

∀x ∈ Ūθ1Q0 : g0(x) ≥ c1 · d
(

x, Γ̂0

)δ1
.

Then for all κ > 0, β(3)
n,κ = max{ν−1(β(1)

n,κ), ν−1((
β(2)

n,κ

c1
)

1
δ1 )}, and n0(κ) = min{l :

U
β

(3)
l,κ

Q0 ⊂ Ūθ1Q0 ∩ UQ0} the relation

sup
n≥n0(κ)

P{ω : Γn,κ(ω) \ U
β

(3)
n,κ

Γ0 �= ∅} ≤ H1(κ) + H2(κ)

holds.
An important reason for considering constraint functions gjn,κ which depend on

κ is the intended application of Theorem 1 to the derivation of assertions about the
solution set. If one is interested in the constraint set only, the following special case
of Theorem 1 will be applicable in many cases. Often one has inequality constraints
and perhaps the intersection with a fixed set Q0. Usually the functions gn do not
depend on κ, and a convergence rate of the form β

(2)
n,κ = κ

γn
can be assumed. Then

instead of (CI2) the following condition can be used and the growth condition can be
given with respect to Γ0.
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(CI2’) There exists a function H2 ∈ H and a sequence (γn)n∈N which tends to
∞ such that for all κ > 0

sup
n∈N

P{ω : γn

(

inf
x∈Q0\Γ0

(gn(x, ω) − g0(x)
)

≤ −κ} ≤ H2(κ).

(Gr-g0-Γ0) There exist constants c1 > 0, δ1 > 0, and θ1 > 0 such that

∀x ∈ Q0 ∩ Ūθ1Γ0 : g0(x) ≥ c1 · d(x,Γ0)δ1 .

In this case Corollary 2 can be simplified in the following way:
Corollary 3. Assume that jM = 1 and for all n ∈ N gn,κ ≡ gn and Qn,κ ≡ Q0

holds. Additionally, suppose that (CI2’) and (Gr-g0-Γ0) are satisfied. Then for all
κ > 0 and n0(κ) = min{l : γl ≥ ( κθ1 )δ1} the relation

sup
n≥n0(κ)

P

{

ω : Γn(ω) \ U κ

γ

1
δ1
n

Γ0 �= ∅
}

≤ H2

(

c1κ
δ1
)

holds.
Proof. Let κ̃ := c1κ

δ1 . With β
(2)
n,κ̃ = κ̃

γn
and μ̃(ε) = c1ε

δ1 for 0 < ε ≤ θ1 we can
apply Corollary 1, taking into account that, additionally, β(3)

n,κ̃ ≤ θ1 has to be satisfied.
We obtain for κ̃, β(3)

n,κ̃ = ( κ̃
c1γn

)
1

δ1 = κ

γ
1

δ1
n

, and n0(κ) = min{l : β(3)
l,κ̃ ≤ θ1} = min{l :

γl ≥ ( κθ1 )δ1} the inequality supn≥n0(κ) P{ω : Γn(ω) \ U
β

(3)
n,κ̃

Γ0 �= ∅} ≤ H2(κ̃), which

yields the conclusion.
As mentioned in the introduction, in general, the sequence (Γn)n∈N approximates

a subset of Γ0 only. In order to obtain outer approximations, additional assumptions
have to be imposed. Qualitative stability theory usually assumes that the condition
Γ0 ⊂ cl{x ∈ Q0 : gj0(x) < 0, ∀j ∈ J} is fulfilled where cl denotes the closure.
In order to obtain also a convergence rate and a tail behavior function, we impose
a “quantified version” of this assumption with a (negative) growth function μ; see
(CO3) in Theorem 2. Unfortunately, a condition of that kind is useless if one intends
to employ the result for the solution set, because (CO3) can not be satisfied by
g̃0 := f0 − Φ0.

Hence in Theorem 3 we will provide a second approach which uses “relaxed”
inequality constraints. The simple principle can be explained using a modified version
of Example E1.

Example E3. Let E = R1, Γ0 = Γn = [−1,+1], g0(x) ≡ 0, and gn(x) =
min{|x|, 1

n}. Then (gn)n∈N converges uniformly to g0. We consider Γ0 := {x ∈ R1 :
g0(x) ≤ 0} and Γn := {x ∈ R1 : gn(x) ≤ 0}. Obviously, Γn = {0} for all n ∈ N , while
Γ0 = [−1,+1]; i.e., only a subset of Γ0 is approximated. If we, however, consider
the sets Γ̃n := {x ∈ R1 : gn(x) ≤ 1

n}, which are defined by the “relaxed” inequality
constraint gn(x) ≤ 1

n , we see that even Γ̃n = Γ0 holds for all n ∈ N .
Similarly, we weaken the “≤ 0” inequality constraints by “≤ ρn,κ” with suitably

chosen sequences (ρn,κ)n∈N of positive reals which satisfy limn→∞ ρn,κ = 0 ∀κ > 0.
For the formulation of (CO3) we need the “ε-interior” of Γ0. Let, for a given

ε > 0, CI(ε) := Γ0 \ Uε(E \ Γ0). Ūε denotes the closure of Uε. The requirement
Γ0 ⊂ ŪεCI(ε) is needed since we allow for rather general sets Γ0.

Condition (CO1) below is the “outer” counterpart to (CI1), and condition (CO2)
is the “upper semicontinuous” counterpart to (CI2).
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Theorem 2 (outer approximation of the constraint set (CO3)). Assume that the
following conditions are satisfied:

(CO1) There exists a function H1 ∈ H and for all κ > 0 a sequence (β(1)
n,κ)n∈N ∈

B such that

sup
n∈N

P
{

ω : Q0 \ Uβ(1)
n,κ
Qn,κ(ω) �= ∅

}

≤ H1(κ).

(CO2) There exists a function H2 ∈ H and for all κ > 0 a sequence (β(2)
n,κ)n∈N ∈

B such that

sup
j∈J

sup
n∈N

P

{

ω : sup
x∈Γ0

(

gjn,κ(x, ω) − gj0(x)
)

≥ β(2)
n,κ

}

≤ H2(κ).

(CO3) There exist ε̃ > 0 and a function μ ∈ Λ such that for all 0 < ε ≤ ε̃
Γ0 ⊂ ŪεCI(ε) and

∀x ∈ CI(ε) ∀j ∈ J : gj0(x) ≤ −μ(ε).

Then for all κ > 0, β(3)
n,κ = max{β(1)

n,κ, μ−1(2β(2)
n,κ)}, and n0(κ) = min{l : β(3)

l,κ ≤ 2ε̃}
the relation

sup
n≥n0(κ)

P
{

ω : Γ0 \
(

U
β

(3)
n,κ

Γ̂n,κ(ω) ∩ U
β

(1)
n,κ
Qn,κ(ω)

)

�= ∅
}

≤ H1(κ) + jMH2(κ)

holds.
Proof. Assume that for given κ > 0, n ≥ n0(κ), and ω ∈ Ω the relation Γ0 \

(U
β

(3)
n,κ

Γ̂n,κ(ω) ∩ U
β

(1)
n,κ
Qn,κ(ω)) �= ∅ holds. Then there is xn,κ(ω) ∈ Γ0 which does not

belong to U
β

(3)
n,κ

Γ̂n,κ(ω) ∩ U
β

(1)
n,κ
Qn,κ(ω).

If xn,κ(ω) /∈ U
β

(1)
n,κ
Qn,κ(ω), we can employ (CO1).

Now suppose that xn,κ(ω) /∈ U
β

(3)
n,κ

Γ̂n,κ(ω). Because of β(3)
n,κ ≤ 2ε̃ and the first

part of condition (CO3), we find x̃n,κ(ω) ∈ CI(β
(3)
n,κ

2 ) with x̃n,κ(ω) /∈ Γ̂n,κ(ω); i.e.,
gj0n,κ(x̃n,κ(ω), ω) > 0 for at least one j0 ∈ J . The second part of (CO3) implies
gj00 (x̃n,κ(ω)) ≤ −μ(

β(3)
n,κ

2 ) ≤ −β(2)
n,κ. It remains to employ (CO2).

Unfortunately, the result is not the “symmetric” counterpart to the statement of
Theorem 1. In order to obtain an assertion of the form

sup
n≥n0(κ)

P
{

ω : Γ0 \ Uβ(3)
n,κ

Γn,κ(ω) �= ∅
}

≤ H(κ),

we would need functions νn,κ and conditions similar to (CI3) for each n and κ.
Now we consider ρn,κ-relaxed inequality constraints. Let

Γ̂rn,κ(ω) := {x ∈ E : gjn,κ(x, ω) ≤ ρn,κ, j ∈ J}

and

Γrn,κ(ω) = Γ̂rn,κ(ω) ∩Qn,κ(ω).

Theorem 3 (outer approximation of the constraint set, relaxation). Assume
that (CO1) and (CO2) are satisfied. Then for all κ > 0 and
ρn,κ = β

(2)
n,κ the relation

sup
n∈N

P
{

ω : Γ0 \
(

Γ̂rn,κ(ω) ∩ U
β

(1)
n,κ
Qn,κ(ω)

)

�= ∅
}

≤ H1(κ) + jMH2(κ)

holds.
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Proof. Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relation Γ0\(Γ̂rn,κ(ω)∩
U
β

(1)
n,κ
Qn,κ(ω)) �= ∅ is fulfilled. Then there is xn,κ(ω) ∈ Γ0 which does not belong to

Γ̂rn,κ(ω) ∩ U
β

(1)
n,κ
Qn,κ(ω). Hence gj0(xn,κ(ω)) ≤ 0 ∀j ∈ J and xn,κ(ω) ∈ Q0, but either

xn,κ(ω) /∈ U
β

(1)
n,κ
Qn,κ(ω) or gjn,κ(xn,κ(ω), ω) > β

(2)
n,κ = ρn,κ for at least one j ∈ J .

In the first case we obtain Q0 \ Uβ(1)
n,κ
Qn,κ(ω) �= ∅ and employ (CO1).

The second case yields supx∈Γ0
(gjn,κ(x, ω) − gj0(x)) ≥ β

(2)
n,κ for at least one j ∈ J ,

and we make use of (CO2).
Remark 2. A corresponding result holds if U

β
(1)
n,κ
Qn,κ is replaced with Qn,κ in

condition (CO1) and in the assertion. This observation is of importance if we apply
the result to the solution set and have to deal with a constraint set which was obtained
via relaxation: The constraint set will then play the role of Q in Theorem 3, and an
additional enlargement of Qn,κ by a neighborhood should be avoided.

Relaxing the constraints means enlarging the approximating sets. Hence the ques-
tion arises under what conditions (Γrn,κ)n∈N is also an inner approximation. Results
of that kind will help to assess the quality of an outer approximation. An inspection
of the proof to Theorem 1 shows that with ρn,κ = β

(2)
n,κ the following statement can

be obtained. The “price” for the relaxation is the additional factor 2 in the definition
of β(2)

n,κ.
Theorem 4 (inner approximation of the constraint set, relaxation). Assume

that (CI1), (CI2), (CI3), and (CI4) are satisfied. Then for all κ > 0, ρn,κ = β
(2)
n,κ,

β
(3)
n,κ = max{ν−1(β(1)

n,κ), ν−1(μ−1(2β(2)
n,κ))}, and n0(κ) = min{l : U

ν(β
(3)
l,κ)

Q0 ⊂ UQ0}
the relation

sup
n≥n0(κ)

P
{

ω : Γrn,κ(ω) \ U
β

(3)
n,κ

Γ0 �= ∅
}

≤ H1(κ) + jMH2(κ)

holds.
The assertions about inner and outer approximations provided so far can be

combined to several convergence statements. As an example, we will summarize what
we obtain for only one constraint function under a growth condition. In the following
we combine conditions like (CI1) and (CO1). The assumption that in both conditions
the same function H1 and the same sequences (β(1)

n,κ)n∈N occur is no restriction. If
the original functions or sequences are different we can always take the maximum.

Theorem 5 (approximation of the constraint set, relaxation). Assume that
jM = 1, (CI3), and (Gr-g0) are satisfied. Furthermore, suppose that (CI1) and (CO1)
are fulfilled with the same function H1 ∈ H and the same sequences (β(1)

n,κ)n∈N ∈ B,
and (CI1) and (CO2) are fulfilled with the same function H2 ∈ H and the same
sequences (β(2)

n,κ)n∈N ∈ B.

Then for all κ > 0, ρn,κ = β
(2)
n,κ, β

(3)
n,κ = max{β(1)

n,κ, β
(2)
n,κ, ν−1(β(1)

n,κ), ν−1((2β(2)
n,κ

c1
)

1
δ1 )},

and n0(κ) = min{l : U
ν(β

(3)
l,κ)

Q0 ⊂ UQ0} the relation

sup
n≥n0(κ)

P
{

ω :
(

Γrn,κ(ω) \ U
β

(3)
n,κ

Γ0

)

∪ (Γ0 \
(

Γ̂rn,κ(ω) ∩Qn,κ(ω)
)

�= ∅
}

≤ 2H1(κ) + 2H2(κ)

holds.
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Proof. We have

P{ω : (Γrn,κ(ω) \ U
β

(3)
n,κ

Γ0) ∪ (Γ0 \ (Γ̂rn,κ(ω) ∩Qn,κ(ω)) �= ∅}

≤ P{ω : Γrn,κ(ω) \ U
β

(3)
n,κ

Γ0 �= ∅} + P{ω : Γ0 \ (Γ̂rn,κ(ω) ∩Qn,κ(ω)) �= ∅}.

The assumptions of Theorem 3 and Theorem 4 are satisfied with μ(ε) = c1ε
δ1 and

β̃
(1)
n,κ = β̃

(2)
n,κ = β

(3)
n,κ.

Finally, for sake of convenience, we give a special case of Theorem 5 which uses
assumptions that correspond to those of Corollary 3. The following condition will be
imposed:

(CO2’) There exist a function H2 ∈ H and a sequence (γn)n∈N , which tends to
∞, such that for all κ > 0

sup
n∈N

P

{

ω : γn sup
x∈Γ0

(gn(x, ω) − g0(x)) ≥ κ

}

≤ H2(κ).

Corollary 4. Assume that jM = 1, for all n ∈ N gn,κ ≡ gn holds, and (Gr-
g0-Γ0) is satisfied. Additionally, suppose that (CI2’) and (CO2’) are fulfilled with the
same function H2 ∈ H and the same sequences (β(2)

n,κ)n∈N ∈ B. Then for all κ > 0,
Γ0 = {x ∈ Q0 : g0(x) ≤ 0},Γrn,κ(ω) = {x ∈ Q0 : gn(x, ω)) ≤ κ√

n
}, β(3)

n,κ = ( 2κ
c1γn

)
1

δ1 ,
and n0(κ) = min{l : γl ≥ 2κ

c1θ
δ1
1

} the relation

sup
n≥n0(κ)

P
{

ω :
(

Γrn,κ(ω) \ U
β

(3)
n,κ

Γ0

)

∪
(

Γ0 \ Γrn,κ(ω)
)

�= ∅
}

≤ 2H2(κ)

holds.
Proof. We have

P
{

ω :
(

Γrn,κ(ω) \ U
β

(3)
n,κ

Γ0

)

∪
(

Γ0 \ Γrn,κ(ω)
)

�= ∅
}

≤ P
{

ω : Γrn,κ(ω) \ U
β

(3)
n,κ

Γ0 �= ∅
}

+ P
{

ω : Γ0 \ Γrn,κ(ω) �= ∅
}

.

Firstly, assume that for given κ > 0, n ≥ n0(κ) and ω ∈ Ω the relation Γrn,κ(ω) \
U
β

(3)
n,κ

Γ0 �= ∅ is satisfied. Then there is xn,κ(ω) ∈ Γrn,κ(ω) which does not belong to
U
β

(3)
n,κ

Γ0. Because of n ≥ n0(κ) we have β(3)
n,κ ≤ θ1. Consequently, by (Gr-g0-Γ0),

g0(xn,κ(ω) ≥ c1(β(3)
n,κ)δ1 = 2κ

γn
. Hence infx∈Qo\Γ0(gn(x, ω) − g0(x)) ≤ κ

γn
− 2κ

γn
= − κ

γn
,

and we can employ (CI2’).
Now, assume that for given κ > 0, n ≥ n0(κ), and ω ∈ Ω the relation P{ω :

Γ0 \ Γrn,κ(ω) �= ∅} is satisfied. Then there is xn,κ(ω) ∈ Γ0 which does not belong
to Γrn,κ(ω). Because of xn,κ(ω) ∈ Q0 we obtain gn(xn,κ(ω), ω) > κ√

n
, and finally

supx∈Γ0
(gn(x, ω) − g0(x)) ≥ κ

γn
. It remains to employ (CO2’).

4. Approximation of the optimal values and the solution sets. We turn
to the optimal values and the solutions sets of the problems (P0) and (Pn,κ).

In the following, the constraint sets and their approximations are not supposed
to have a special form. Especially, Γn,κ can be described by inequality constraints as
in section 3, but it can also denote a set originating from a relaxation like Γrn,κ.

We do not impose compactness conditions on Γ0 and Γn,κ. Instead, for the sake
of simplicity, we assume that the original and the approximating problems have a
solution.
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We start with the consideration of the optimal values. Results of this kind are,
among others, needed for assertions about the solution sets. The assertion of Theorem
6 says, roughly speaking, that the optimal values of the approximate problem are
greater (in the in-probability sense) than the true optimal value. The denotation
“lower approximation” in the theorem is chosen because of the relationship to lower
semicontinuity of a function of one variable—in our case the “variable” n.

Theorem 6 (lower approximation of the optimal value). Assume that the fol-
lowing conditions are satisfied:

(VL1) There exists a function H1 ∈ H and for all κ > 0 a sequence (β(1)
n,κ)n∈N ∈ B

such that

sup
n∈N

P
{

ω : Γn,κ(ω) \ U
β

(1)
n,κ

Γ0 �= ∅
}

≤ H1(κ).

(VL2) There exists a function H2 ∈ H and to all κ > 0 a sequence (β(2)
n,κ)n∈N ∈ B

such that

sup
n∈N

P

{

ω : inf
x∈UΓ0

(fn,κ(x, ω) − f0(x)) ≤ −β(2)
n,κ

}

≤ H2(κ)

for a suitable neighborhood UΓ0.
(VL3) There exists a function λ ∈ Λ such that for all ε > 0

∀ x ∈ Uλ(ε)Γ0 ∩ UΓ0 : f0(x) ≥ Φ0 − ε.

Then for all κ > 0, β(3)
n,κ = max{2λ−1(β(1)

n,κ), 2β(2)
n,κ}, and n0(κ) = min{l : U

λ(
β
(3)
l,κ
2 )

Γ0 ⊂
UΓ0} the relation

sup
n≥n0(κ)

P
{

ω : Φn,κ(ω) − Φ0 ≤ −β(3)
n,κ

}

≤ H1(κ) + H2(κ)

holds.
Proof. Assume that for given κ > 0, n ≥ n0(κ), and ω ∈ Ω the relation Φn,κ(ω) ≤

Φ0 − β
(3)
n,κ holds. Then there exists xn,κ(ω) ∈ Γn,κ(ω) such that fn,κ(xn,κ(ω), ω) =

Φn,κ(ω) ≤ Φ0 − β
(3)
n,κ.

Firstly, let xn,κ(ω) ∈ U
λ(

β
(3)
n,κ
2 )

Γ0. Then infx∈UΓ0(fn,κ(x, ω) − f0(x)) ≤ fn,κ(xn,κ

(ω), ω) − f0(xn,κ(ω)) ≤ Φn,κ(ω) − Φ0 + β(3)
n,κ

2 ≤ −β(3)
n,κ

2 ≤ −β(2)
n,κ, and we can employ

(VL2).
Secondly, if xn,κ(ω) /∈ U

λ(
β
(3)
n,κ
2 )

Γ0, we have Γn,κ(ω) \ U
β

(1)
n,κ

Γ0 �= ∅. It remains to
employ (VL1).

The proof shows that the following assertion also holds, which applies to the
important special case Γn,κ ≡ Γ0.

Corollary 5. Assume that Γn,κ ≡ Γ0 and the following condition is satisfied:
(VL2’) There exists a function H2 ∈ H and to all κ > 0 a sequence (β(2)

n,κ)n∈N ∈ B
such that

sup
n∈N

P

{

ω : inf
x∈Γ0

(fn,κ(x, ω) − f0(x)) ≤ −β(2)
n,κ

}

≤ H2(κ).

Then for all κ > 0 the relation

sup
n∈N

P
{

ω : Φn,κ(ω) − Φ0 ≤ −β(2)
n,κ

}

≤ H2(κ)

holds.
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In the following we consider the counterpart, so-called upper approximations, and
distinguish two cases according to whether

∀κ > 0 : sup
n≥n0(κ)

P
{

ω : Γ0 \ Uβ(1)
n,κ

Γn,κ(ω) �= ∅
}

≤ H1(κ) or

∀κ > 0 : sup
n≥n0(κ)

P {ω : Γ0 \ Γn,κ(ω) �= ∅} ≤ H1(κ)

is imposed. The first case, which is dealt with in Theorem 7, occurs if outer approx-
imations are derived under condition (CO3). The second case, which is considered
in Theorem 8, comes into play if Γn,κ is obtained via relaxation; compare Remark 2.
Recall that minimization is always taken with respect to Γn,κ. Hence, in Theorem 7
and Theorem 8 we will find different convergence rates.

Theorem 7 (upper approximation of the optimal value I). Assume that the
following conditions are satisfied:

(VU1) There exists a function H1 ∈ H and for all κ > 0 a sequence (β(1)
n,κ)n∈N ∈

B such that

sup
n∈N

P
{

ω : Γ0 \ Uβ(1)
n,κ

Γn,κ(ω) �= ∅
}

≤ H1(κ).

(VU2) There exists a function H2 ∈ H and for all κ > 0 a sequence (β(2)
n,κ)n∈N ∈

B such that

sup
n∈N

P

{

ω : sup
x∈UΨ0

(fn,κ(x, ω) − f0(x)) ≥ β(2)
n,κ

}

≤ H2(κ)

for a suitable neighborhood UΨ0.
(VU3) There exists a function λ ∈ Λ such that for all ε > 0

∀ x ∈ Uλ(ε)Ψ0 ∩ UΨ0 : f0(x) ≤ Φ0 + ε.

Then for all κ > 0, β(3)
n,κ = max{2λ−1(β(1)

n,κ), 2β(2)
n,κ}, and n0(κ) = min{l : U

λ(
β
(3)
l,κ
2 )

Ψ0 ⊂
UΨ0} the relation

sup
n≥n0(κ)

P
{

ω : Φn,κ(ω) − Φ0 ≥ β(3)
n,κ

}

≤ H1(κ) + H2(κ)

holds.
Proof. Assume that for given κ > 0, n ≥ n0(κ), and ω ∈ Ω the relation Φn,κ(ω) ≥

Φ0 + β
(3)
n,κ holds. Then there exists xn,κ(ω) ∈ Γn,κ(ω) such that fn,κ(xn,κ(ω), ω) =

Φn,κ(ω) ≥ Φ0+β(3)
n,κ. To xn,κ(ω) we select x̃n,κ(ω) ∈ Γn,κ(ω) such that d(x̃n,κ(ω),Ψ0) =

minx∈Γn,κ(ω) d(x,Ψ0).
Firstly, assume that x̃n,κ(ω) ∈ U

λ(
β
(3)
n,κ
2 )

Ψ0. Then fn,κ(x̃n,κ(ω), ω) ≥ Φn,κ(ω) ≥

Φ0 + β
(3)
n,κ ≥ f0(x̃n,κ(ω)) +

β(3)
n,κ

2 and consequently, supx∈UΨ0
(fn,κ(x, ω) − f0(x)) ≥

β(3)
n,κ

2 ≥ β
(2)
n,κ. Hence we can make use of (VU2).

If x̃n,κ(ω) /∈ U
λ(

β
(3)
n,κ
2 )

Ψ0, we have Γ0 \ U
β

(1)
n,κ

Γn,κ(ω) �= ∅ and we can employ
(VU1).

If we impose the special upper semicontinuity condition (UCon) for f0, we obtain
the following corollary.
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Corollary 6 (upper approximation of the optimal value I). Assume that (VU1),
(VU2), and the following condition (UCon) are satisfied:

(UCon) There exist constants c2 > 0, δ2 > 0, and θ2 > 0 such that

∀x ∈ Ūθ2Ψ0 : f0(x) ≤ Φ0 + c2d(x,Ψ0)δ2 .

Then, for all κ > 0, β(3)
n,κ = max{2c2(β(1)

n,κ)δ2 , 2β(2)
n,κ}, and n0(κ) = min{l : Uλl,κ

Ψ0 ⊂

UΨ0 ∩ Ūθ2Ψ0} with λl,κ = (
β

(3)
l,κ

2c2
)

1
δ2 the relation

sup
n≥n0(κ)

P
{

ω : Φn,κ(ω) − Φ0 ≥ β(3)
n,κ

}

≤ H1(κ) + H2(κ)

holds.
Proof. We employ Theorem 7. Because of (UCon) we can choose λ(ε) = ( εc2 )

1
δ2

and consequently λ−1(ε) = c2ε
δ2 .

A similar corollary can be proved for the lower approximation of the optimal
values. We give only the result for the upper approximation because we will use it in
the following. Furthermore, the assertions can be supplemented by results similar to
Corollary 3 and Corollary 4.

We could also consider a variant of (UCon) which refers to Ψ̂0 instead of Ψ0. We
refrain from giving a corresponding statement because (UCon) requires only f0 not
to vary too much outside Ψ0. It is in its importance not comparable to a growth
condition which requires that f0 has to grow outside the reference set with a certain
rate.

Theorem 8 (upper approximation of the optimal value II). Assume that the
following conditions are satisfied:

(VU1-R) There exists a function H1 ∈ H such that

sup
n∈N

P {ω : Γ0 \ Γn,κ(ω) �= ∅} ≤ H1(κ).

(VU2-R) There exists a function H2 ∈ H and for all κ > 0 a sequence (β(2)
n,κ)n∈N ∈

B such that

sup
n∈N

P

{

ω : sup
x∈Ψ0

(fn,κ(x, ω) − f0(x)) ≥ β(2)
n,κ

}

≤ H2(κ).

Then for all κ > 0 the relation

sup
n∈N

P
{

ω : Φn,κ(ω) − Φ0 ≥ β(2)
n,κ

}

≤ H1(κ) + H2(κ)

holds.
Proof. Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relation Φn,κ(ω) ≥

Φ0 + β
(2)
n,κ holds. Then there exists xn,κ(ω) ∈ Γn,κ(ω) such that fn,κ(xn,κ(ω), ω) =

Φn,κ(ω) ≥ Φ0+β(2)
n,κ. To xn,κ(ω) we select x̃n,κ(ω) ∈ Γn,κ(ω) such that d(x̃n,κ(ω),Ψ0) =

minx∈Γn,κ(ω) d(x,Ψ0).
If x̃n,κ(ω) ∈ Ψ0 we have

fn,κ(x̃n,κ(ω), ω) ≥ Φn,κ(ω) ≥ Φ0 + β(2)
n,κ = f0(x̃n,κ(ω)) + β(2)

n,κ

and consequently, supx∈Ψ0
(fn,κ(x, ω)−f0(x)) ≥ β

(2)
n,κ. Hence (VU2-R) can be utilized.

Otherwise we have Γ0 \ Γn,κ(ω) �= ∅ and can employ the first assumption.
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Now we turn to the solution sets. We use the abbreviation

Ψ̂0 = {x ∈ E : f0(x) ≤ Φ0}.

Theorem 9 (inner approximation of the solution set). Assume that (VL1),
(VL2), and the following assumptions are satisfied:

(SI3) There exists a function H3 ∈ H and for all κ > 0 a sequence (β̂(2)
n,κ)n∈N ∈ B

and n0(κ) such that

sup
n≥n0(κ)

P
{

ω : Φn,κ(ω) − Φ0 ≥ β̂(2)
n,κ

}

≤ H3(κ).

(SI4) There exists a function ν ∈ Λ such that for all ε > 0

UεΨ0 ⊃ Uν(ε)Γ0 ∩ Uν(ε)Ψ̂0.

(SI5) There exists a function μ ∈ Λ such that for all ε > 0

∀ x ∈ UεΓ0 \ UεΨ̂0 : f0(x) ≥ Φ0 + μ(ε).

Then for all κ > 0, β(3)
n,κ = max{ν−1(β(1)

n,κ), ν−1(μ−1(β(2)
n,κ + β̂

(2)
n,κ))}, and n1(κ) =

min{l ≥ n0(κ) : U
ν(β

(3)
l,κ)

Γ0 ⊂ UΓ0} the relation

sup
n≥n1(κ)

P
{

ω : Ψn,κ(ω) \ U
β

(3)
n,κ

Ψ0 �= ∅
}

≤ H1(κ) + H2(κ) + H3(κ)

holds.
Proof. Let g̃n,κ(x, ω) := fn,κ(x, ω) − Φn,κ(ω), g̃0(x) := f0(x) − Φ0. Then

Ψn,κ(ω) = Γn,κ(ω) ∩ {x ∈ E : g̃n,κ(x, ω) ≤ 0} and Ψ0 = Γ0 ∩ {x ∈ E : g̃0(x) ≤ 0}.
Furthermore,

sup
n≥n0(κ)

P

{

ω : inf
x∈UΓ0\Ψ0

(g̃n,κ(x, ω) − g̃0(x)) ≤ −β(2)
n,κ − β̂(2)

n,κ

}

≤ sup
n≥n0(κ)

P

{

ω : inf
x∈UΓ0\Ψ0

(fn,κ(x, ω) − f0(x)) ≤ −β(2)
n,κ

}

+ sup
n≥n0(κ)

P
{

ω : −Φn,κ(ω) + Φ0 ≤ −β̂(2)
n,κ

}

≤ H2(κ) + H3(κ) =: H̃2(κ).

It remains to apply Theorem 1 with β̃
(2)
n,κ = β

(2)
n,κ + β̂

(2)
n,κ and H̃2.

When applying our results to problems in decision theory or estimation theory, the
most critical assumption is probably (SI4). Fortunately, there are several important
applications where some quantities do not vary with n and ν can be avoided or, as in
our third example, (SI4) is easy to verify.

We emphasize that we can choose ν(ε) = ε if Γn,κ ≡ Γ0 and the growth condition
is given with respect to Ψ0.

(SI5-W) There exists a function μ̃ ∈ Λ such that for all ε > 0

∀ x ∈ Γ0 \ UεΨ0 : f0(x) ≥ Φ0 + μ̃(ε).

This case is considered in [13]. Imposing the special form of μ̃ in [13], Pflug’s result
can be derived from Corollary 3.
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Furthermore, if Uε̃Ψ0 ⊂ Γ0 for a suitable ε̃ > 0, we can also deal with ν(ε) = ε
for all ε ≤ ε̃.

In the general case, however, if the constraint set and the objective function are
approximated simultaneously and the solution lies on the boundary of the constraint
set, ν cannot be ignored. Only in rare cases one should have enough information to
determine it exactly. One way out are adaptive methods for successive approxima-
tion of ν. However, even if one does not succeed in determining ν with satisfactory
accuracy, our results still yield assertions on the convergence rate, albeit without a
reliable constant. Results of that kind can be used to derive asymptotic confidence
sets if a limiting distribution is not available.

The following corollary incorporates sufficient conditions for the needed approxi-
mation of the optimal value. It combines Theorem 9 and Corollary 6.

Corollary 7 (inner approximation of the solution set). Assume that (VL1)
and (VU1) are fulfilled with the same function H1 and the same sequences (β(1)

n,κ)n∈N ,
and (VL2) and (VU2) are fulfilled with the same function H2 and the same sequences
(β(2)
n,κ)n∈N . Furthermore, suppose that (SI4), (UCon), and the following condition are

satisfied:
(Gr-f0) There exist constants c1 > 0, δ1 > 0, and θ1 > 0 such that

∀x ∈ Ūθ1Γ0 : f0(x) − Φ0 ≥ c1 · d(x, Ψ̂0)δ1 .

Then for all κ > 0, β(3)
n,κ = max{ν−1(β(1)

n,κ), ν−1((
β̂(2)

n,κ+β(2)
n,κ

c1
)

1
δ1 )}, β̂(2)

n,κ = max{2c2
(β(1)
n,κ)δ2 , 2β(2)

n,κ}, n1(κ) = min{l : U
β

(3)
l,κ

Γ0 ⊂ UΓ0, Uλ̂l,κ
Ψ0 ⊂ UΨ0, β

(3)
l,κ ≤ θ1, λ̂l,κ ≤

θ2}}, and λ̂n,κ = ( β̂
(2)
n,κ

2c2
)

1
δ1 the relation

sup
n≥n1(κ)

P
{

ω : Ψn,κ(ω) \ U
β

(3)
n,κ

Ψ0 �= ∅
}

≤ 2H1(κ) + 2H2(κ)

holds.
Proof. We apply Theorem 9 together with Corollary 6. (SI3) is satisfied with

β̂
(2)
n,κ, H3 = H1 + H2, and n̂0(κ) = min{l : λ̂l,κ ≤ θ2, Uλ̂l,κ

Ψ0 ⊂ UΨ0}. Theorem 9
with μ−1(ε) = ( εc1 )

1
δ1 yields the conclusion.

The following condition covers the cases dealt with in Theorem 5 or Corollary 4.
(CK-R) There exists a function H1 ∈ H and for all κ > 0 a sequence (β(1)

n,κ)n∈N ∈
B such that

sup
n∈N

P
{

ω :
(

Γn,κ(ω) \ U
β

(1)
n,κ

Γ0

)

∪ (Γ0 \ Γn,κ(ω)) �= ∅
}

≤ H1(κ).

If (CK-R) is satisfied, also (VL1) and (VU1) are fulfilled with H1 and β
(1)
n,κ.

Consequently, if Γn,κ = Γrn,κ, we can employ Theorem 5 or Corollary 4 in order to
determine a suitable ρn,κ and formulate sufficient conditions for (VL1) and (VU1).

Finally, we consider outer approximations of the solution set via ρn,κ-optimal
solutions of the approximating problems.

Let

Ψ̂r
n,κ(ω) := {x ∈ E : fn,κ(x, ω) ≤ Φn,κ(ω) + ρn,κ}.

Γn,κ can, e.g., be specified as U
β

(1)
n,κ

Γn or as Γrn,κ.
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Theorem 10 (outer approximation of the solution set, relaxation). Assume that
(VU1), (VU2), and the following assumption are satisfied:

(SO3) There exists a function H3 ∈ H and for all κ > 0 a sequence (β̂(2)
n,κ)n∈N ∈ B

and n0(κ) such that

sup
n≥n0(κ)

P
{

ω : Φn,κ(ω) − Φ0 ≤ −β̂(2)
n,κ

}

≤ H3(κ).

Then for all κ > 0, ρn,κ = β
(2)
n,κ+ β̂

(2)
n,κ, and β(3)

n,κ = max{β(1)
n,κ, β

(2)
n,κ+ β̂

(2)
n,κ} the relation

sup
n≥n0(κ)

P
{

ω : Ψ0 \ (Ψ̂r
n,κ(ω) ∩ U

β
(1)
n,κ

Γn,κ(ω)) �= ∅
}

≤ H1(κ) + H2(κ) + H3(κ)

holds.
Proof. Let n ≥ n0(κ). We apply Theorem 3 and underline the denotations

that correspond to that in Theorem 3. With g
n,κ

(x, ω) := fn,κ(x, ω) − Φn,κ(ω) and
g
0
(x) := f0(x) − Φ0 we have Ψ0 = {x ∈ Γ0 : g

0
(x) ≤ 0} and Ψ̂r

n,κ(ω) := {x ∈
E : g

n,κ
(x, ω) ≤ ρn,κ}. Furthermore, let Q

n,κ
= Γn,κ, Γ̂

r

n,κ = Ψ̂r
n,κ, Q0

= Γ0, and

Γ̂0 = Ψ̂0.
Because of

P

{

ω : inf
x∈Ψ0

((fn,κ(x, ω) − Φn,κ(ω)) − (f0(x) − Φ0)) ≥ β(2)
n,κ + β̂(2)

n,κ

}

≤ P

{

ω : inf
x∈Ψ0

(fn,κ(x, ω) − f0(x)) ≥ β(2)
n,κ

}

+ P
{

ω : −Φn,κ(ω) + Φ0 ≥ β̂(2)
n,κ

}

≤ H2(κ) + H3(κ) =: H2(κ)

condition (CO2) is satisfied with β(2)

n,κ
= β

(2)
n,κ + β̂

(2)
n,κ and H2.

A similar result can be obtained if we impose (VU1-R) and (VU2-R); compare
the remark after Theorem 3.

5. Examples.

5.1. Example 5.1—Approximation of the objective functions. Firstly,
we will discuss a simple example in order to show how one can deal with the uniform
convergence assumption for the objective functions. At the first glance this assump-
tion seems to be rather restrictive. There is, however, a growing number of results
from probability theory yielding assertions of that kind; cf. [16], [1], [13]. Neverthe-
less there is still the need for sufficient conditions for the convergence assumptions.
The following example, though very simple, is intended to show how one can pro-
ceed in principle also in more involved cases. The approach will be further developed
elsewhere.

We assume E = Rp and consider a fixed compact constraint set K and a linear
objective function q(z)Tx with x = (x1, . . . , xp)T q = (q1, . . . , qp)T , and qi|Rm → R1.
z is the realization of a random vector Z with a given distribution PZ on the sigma-
field of Borel sets of Rm. The range of q(Z) is supposed to be bounded. The problem

(P0) min
x∈K

Eq(Z)Tx

is approximated, replacing the expectation E with respect to PZ by the expectation
with respect to the empirical distribution based on a sequence (Z(j))j∈N of indepen-
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dent random vectors which are distributed according to PZ :

(Pn) min
x∈K

1
n

n
∑

j=1

q
(

Z(j)
)T
x.

We assume Eq(Z) �= 0, because otherwise the problem becomes trivial, and abbreviate
m := maxi=1,...,p supω |qi(Z(ω))|. We consider the sets Kk = {x ∈ K : k−1 < ||x|| ≤
k}, k = 1, 2, . . . , where || · || denotes the Euclidean norm, and a suitable neighborhood
ŪK. Let IK := {k : Kk ∩ ŪK �= ∅}. Hence we obtain by Hoeffding’s inequality ([4],
[1]):

P

⎧

⎨

⎩

ω : sup
x∈ŪK

| 1
n

n
∑

j=1

q(Z(j)(ω))Tx− Eq(Z)Tx| ≥ κ√
n

⎫

⎬

⎭

≤
∑

k∈IK

P

⎧

⎨

⎩

ω : sup
x∈Kk

| 1
n

n
∑

j=1

q(Z(j)(ω))Tx− Eq(Z)Tx| ≥ κ√
n

⎫

⎬

⎭

≤
∑

k∈IK

P

⎧

⎨

⎩

ω : max
i=1,...,p

| 1
n

n
∑

j=1

qi(Z(j)(ω)) − Eqi(Z)| ≥ κ

k
√
n

⎫

⎬

⎭

≤ 2p
∑

k∈IK

e−
κ2

2k2m2 =: H2(κ).

Of course this inequality can be further improved. For example, due to the
linearity, it is enough to consider the boundary of K instead of the whole set K.
Employing other concentration-of-measure inequalities, the boundedness condition
for q(Z) can also be weakened. We give the rough estimation above, because the
basic idea of the approach can often be utilized, even if the functions have a more
involved form.

In order to derive assertions about the solution set, we can employ Theorem 9
and (in case of a nonunique solution) Theorem 10. (VL1), (VU1), and (VU1-R) are
satisfied with H1 ≡ 0. (VL2), (VU2), and (VU2-R) are fulfilled with β

(2)
n,κ = κ√

n
and

H2. The function ν, which occurs in condition (SI4), can be determined if we assume
a special form of K. It remains to investigate the semicontinuity condition (UCon)
and the growth condition (Gr-f0), where we can replace Ūθ1Γ0 with Γ0.

We have f0(x) − Φ0 ≤ ||Eq(Z)||d(x,Ψ0); hence (UCon) is satisfied with c2 =
||Eq(Z)|| and δ2 = 1. (Gr-f0) refers to the distance to Ψ̂0. To x ∈ Γ0 we find
x̂0 ∈ {x ∈ Rp : Eq(Z)Tx = Φ0} such that |f0(x) − Φ0| = |Eq(Z)T (x − x̂0)| =
||Eq(Z)|| · ||x − x̂0|| = ||Eq(Z)||d(x, Ψ̂0). Consequently (Gr-f0) is satisfied with
c1 = ||Eq(Z)|| and δ1 = 1.

5.2. Example 5.2—Approximation of a probabilistic constraint. Sec-
ondly, we consider the approximation of a constraint set which is determined by a
probabilistic constraint. Replacing the true probability measure with the empirical
measure, we obtain a sequence of approximating constraint functions.

In detail, we assume that the constraint function has the special form

g0(x) = α− PZ((−∞, γ(x)]) = α− FZ(γ(x)).
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Z is a real-valued random variable with given distribution PZ on the σ-field B1.
α ∈ (0, 1) denotes a probability level and γ|E → R1 a given concave function. The
inequality constraint g0(x) ≤ 0 then reads as P{ω : Z(ω) ≤ γ(x)} ≥ α. We assume
that

Γ0 = Γ̂0 = {x ∈ E : g0(x) ≤ 0} �= ∅.

The approximating constraint set has the form

Γn(ω) = {x ∈ E : α− Fn(γ(x), ω) ≤ 0}

with the empirical distribution function Fn .
In order to fulfill (CI2’) and (CO2’) we can directly apply the Dvoretzky–Kiefer–

Wolfowitz inequality with Massart’s bound ([10], [1]), and we obtain P{ω :
√
n supx∈R1

|(α− Fn(γ(x), ω)) − (α− FZ(γ(x))| > κ} ≤ 2e−2κ2
.

(CI3) is not needed. In order to fulfill (Gr-g0), we will impose growth conditions
for FZ and γ.

Assume that, for the given probability level α, the α-quantile qα of FZ is unique
and consider a compact set K̃ such that qα ∈ intK̃. Furthermore, let XK̃ := {x ∈ E :
γ(x) ∈ K̃} and suppose that the following conditions are satisfied:

(IG) There exist positive constants c1,γ , c1,F , δ1,γ , and δ1,F such that ∀y ∈ K̃
with y < qα : α − FZ(y) > c1,Fd(y, qα)δ1,F and ∀x ∈ XK̃ : γ(x) <
qα − c1,γd(x,Γ0)δ1,γ .

(Gr-g0) with K̃ instead of UQ0 and a strict inequality is then satisfied with
c̃1 = cF (c1,γ)δF and δ̃1 = δ1,γ · δF .

If Γ0 is single-valued, it remains to apply Theorem 1. Otherwise we employ
Theorem 2 and assume that the following condition is satisfied:

(OG) There exist positive constants c2,γ , c2,F , δ2,γ , and δ2,F such that ∀y ∈ K̃
with y > qα : FZ(y) − α > c2,Fd(y, qα)δ2,F . Furthermore, there exists an
ε̃ > 0 such that CI(ε̃) �= ∅ and ∀x ∈ Γ0 \CI(ε̃) : γ(x) > qα + c2,γd(x, (E \
Γ0)δ2,γ .

Hence, with respect to (CO3) we obtain for all 0 < ε ≤ ε̃ Γ0 ⊂ ŪεCI(ε) and
∀x ∈ Γ0 \ CI(ε̃) : g0(x) < −c̃2d(x,E \ Γ0)δ̃2 with c̃2 = cF (c2,γ)δF and δ̃2 = δ2,γ · δF .
Thus in Theorem 2 we can choose μ(ε) = c̃2ε

δ̃2 .

Consequently, for all κ ≤ ε̃, β(3)
n,κ = max{( κc̃1 )

1
δ̃1 n

− 1
2δ̃1 , (2 κ

c̃2
)

1
δ̃2 n

− 1
2δ̃2 }, and n0(κ) =

min{l : β(3)
l,κ ≤ 2κ̃, γ(Γ0 \ CI(

β
(3)
l,κ

2 )) ⊂ K} the relation supn≥n0(κ) P{ω : (Γn(ω) \
U
β

(3)
n,κ

Γ0) ∪ (Γ0 \ (U
β

(3)
n,κ

Γn(ω)) �= ∅} ≤ 4e−2κ2
holds.

5.3. Example 5.3—Quantile estimation. Finally, we consider quantile es-
timation because here relaxation of the constraint set comes into play in a natural
way. Papers dealing with quantile estimation usually assume that the distribution
function is strictly increasing in a neighborhood of the quantile (cf. [5], [6]). There
are, however, applications where one cannot a priori assume that the lower and the
upper quantile coincide.

We consider, as in the foregoing example, a real-valued random variable Z with
distribution PZ and distribution function FZ . We will, for a fixed α ∈ (0, 1), investi-
gate the lower α-quantile

qlα := inf
{

x ∈ R1 : FZ(x) ≥ α
}

.
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We consider the constraint set

Γ0 := {x ∈ R : FZ(x) ≥ α}

and the optimization problem

(P0) min
x∈Γ0

x.

As FZ is upper semicontinuous by definition, the set Γ0 is closed and the minimum
qlα will be attained.

(P0) could be approximated replacing FZ by the empirical distribution function
Fn. Unfortunately, the set {x ∈ R1 : Fn(x) ≥ α}, in general, does not approximate
the whole set Γ0. In [20] we showed that with a suitable relaxation ρn,κ the solutions
to the approximate problems convergence in probability to the desired quantile. Here
we can proceed in a similar way; consider the modified constraint set Γn,κ with

Γn,κ(ω) :=
{

x ∈ R : Fn(x, ω) > α− κ√
n

}

and investigate the approximating optimization problems

(Pn,κ) min
x∈Γn,κ

x.

(Pn,κ) has a unique solution, too.
In order to obtain a convergence rate, we need some knowledge about FZ , e.g., a

growth condition.
Theorem 11 (quantile estimation). Assume that there exist constants c > 0,

δ > 0, and θ > 0 such that ∀ x ∈ ŪθΓ0 : FZ(x) < α− cd(x,Γ0)δ. Then for all κ > 0,
β

(3)
n,κ = (2κ

c )
1
δn− 1

2δ , and n0(κ) = min{l : β(3)
l,κ ≤ θ} the relations

sup
n≥n0(κ)

P{ω : (Γn,κ(ω) \ U
β

(3)
n,κ

Γ0) ∪ (Γ0 \ Γn,κ(ω)) �= ∅} ≤ 2e−2κ2
and

sup
n≥n0(κ)

P{ω : (Ψn,κ(ω) \ U
β

(3)
n,κ

Ψ0) ∪ (Ψ0 \ Uβ(3)
n,κ

Ψn,κ(ω)) �= ∅} ≤ 2e−2κ2

hold.
Proof. In order to prove the first assertion, we employ Corollary 4 with strict

inequalities; compare Remark 1. Condition (Gr-g0-Γ0) is fulfilled by assumption.
Due to the Dvoretzky–Kiefer–Wolfowitz inequality with Massart’s bound ([10], [1]),
“strict” variants of (CI2’) and (CO2’) are satisfied with γn = n

1
2 and H2(κ) = e−2κ2

.
The second assertion could be derived via a variant of Theorem 9, which takes

into account that the objective function is not approximated. We will instead give a
direct proof.

Assume that for given κ > 0, n ≥ n0(κ), and ω ∈ Ω the relation (Ψn,κ(ω) \
U
β

(3)
n,κ

Ψ0) ∪ (Ψ0 \ U
β

(3)
n,κ

Ψn,κ(ω)) �= ∅ holds. Then there are xn,κ(ω) ∈ Ψn,κ(ω) and
x0 ∈ Ψ0 such that either xn,κ(ω) ≤ x0 − β

(3)
n,κ or x0 ≤ xn,κ − β

(3)
n,κ is satisfied. Since

the solutions Ψ0 and Ψn,κ consist of the left boundary points of the constraint sets,
we obtain (Γn,κ(ω) \U

β
(3)
n,κ

Γ0) ∪ (Γ0 \ Γn,κ(ω)) �= ∅, and the conclusion follows by the
first assertion.
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Abstract. By considering the epigraphs of conjugate functions, we extend the Fenchel duality,
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1. Introduction. The famous Fenchel duality theorem can be stated as follows
(cf. [30, Corollary 2.8.5]): For any family of finitely many proper lower semicontinuous
convex functions f0, f1, . . . , fn on a Banach space X , if domfi0 ∩ int

(
⋂

i�=i0domfi
)

�= ∅
for some i0 ∈ {0, 1, . . . , n}, then their conjugate functions f∗

0 , f
∗
1 , . . . , f

∗
n satisfy the

relation

(1.1) inf
x∈X

( n
∑

i=0

fi(x)
)

= max

{

−
n
∑

i=0

f∗
i (x∗i ) :

n
∑

i=0

x∗i = 0

}

,

and, in fact, the following stronger relation holds for any x∗ ∈ X∗:

(1.2) inf
x∈X

{

n
∑

i=0

fi(x) − 〈x∗, x〉
}

= max

{

−
n
∑

i=0

f∗
i (x∗i ) :

n
∑

i=0

x∗i = x∗

}

.

Background information on the Fenchel duality theory can be found in Rockafellar [28]
(see also [1, 2, 16, 27, 30]). This theory is a fundamental tool for establishing penalty
results in nonlinear programming (cf. [8]). Moreover, it also plays an important role
in the theory of best approximation (cf. [14, 20]), error bound analysis [12], in the
study of monotone operators [25], and also in the KKT theory in connection with the
following convex programming:

min
x∈X

f0(x)

subject to (s.t.) fi(x) ≤ 0 (i = 1, . . . , n).

The Fenchel duality enables us to transform the original problem (primal problem)
into an optimization problem on the dual space (dual problem). In some cases, es-
pecially in optimal control problems, the dual problems are easier to handle than
the original ones (see [13, Example 25.2], [15]). Stimulated by the study of semi-
infinite programming problems (see [17, 21] and the references therein), it is both
interesting and useful to extend the Fenchel duality applicable to a family {fi}i∈I of
proper lower semicontinuous convex functions on a Banach space with the index set
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http://www.siam.org/journals/siopt/19-3/71680.html
†Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territory, Hong

Kong (gyli@math.cuhk.edu.hk, kfng@math.cuhk.edu.hk).

1489



1490 LI GUOYIN AND NG KUNG FU

I, which is allowed to be infinite. In this present paper, much of our study is based
on the consideration of the epigraphs of the conjugate functions and is motivated by
the recent work of Jeyakumar and his collaborators (see [9, 10, 19], for example); we
provide characterizations (and sufficient conditions) for the following property: For
any x∗ ∈ X∗,

inf
x∈X

{f(x) − 〈x∗, x〉}

= max

{

−
∑

i∈I
f∗
i (x∗i ) : x∗i ∈ X∗ and

∑

i∈I
〈x∗i , x〉 = 〈x∗, x〉 for any x ∈ X

}

,

where f is the sum function of {fi : i ∈ I}, that is, f(x) =
∑

i∈I fi(x) for all x ∈ X .
As an application, we present a fuzzy KKT condition in section 5 for the semi-infinite
programming problem.

2. Preliminaries. Throughout this paper, X denotes a Banach space and X∗

denotes its topological dual. We use B(x, ε) (resp. B(x, ε)) to denote the open (resp.
closed) ball of X with center x and radius ε. For a set A in X , the interior (resp.
relative interior, closure, convex hull, affine hull, linear span) of A is denoted by intA
(resp. riA, A, coA, affA, spanA) (if A is a subset of X∗, its weak∗ closure is denoted by
A
w∗

). Let A be a nonempty subset of X . The indicator function δA : X → R∪{+∞}
and the support function σA : X∗ → R ∪ {+∞} of A are, respectively, defined by

(2.1) δA(x) :=
{

0 if x ∈ A,
+∞ otherwise,

and σA(x∗) = supx∈A〈x∗, x〉 for all x∗ ∈ X∗. Let Γ(X) denote the class of proper
lower semicontinuous convex functions on X , Γc(X) := {f ∈ Γ(X) : f is continuous
and real-valued on X}, and Γ+(X) := {f ∈ Γ(X) : f is nonnegative on X}. For
a proper function f on X , the effective domain and the epigraph are, respectively,
defined by domf := {x ∈ X : f(x) < +∞} and epif := {(x, r) ∈ X × R : f(x) ≤ r}.
The subdifferential of f at x ∈ X is defined by

(2.2) ∂f(x) =
{

{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y) − f(x) for all y ∈ X} if x ∈ domf,
∅ otherwise.

More generally, for any ε ≥ 0, the ε-subdifferential of f at x ∈ X is defined by
(2.3)

∂εf(x) =
{

{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y) − f(x) + ε for all y ∈ X} if x ∈ domf,
∅ otherwise.

As usual, for a proper function f on X , its conjugate function f∗ : X∗ → R ∪ {+∞}
is defined by f∗(x∗) = sup

x∈X
{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗. In particular, one has

(2.4) (δA)∗(x∗) = σA(x∗) for all x∗ ∈ X∗.

The definition of f∗ entails that 〈x∗, x〉 ≤ f∗(x∗) + f(x) (Young’s inequality) for any
x ∈ X and x∗ ∈ X∗. Moreover, for any ε ≥ 0 and x ∈ domf ,

(2.5) x∗ ∈ ∂εf(x) ⇔ f∗(x∗)+f(x) ≤ 〈x∗, x〉+ε ⇔ (x∗, ε+〈x∗, x〉−f(x)) ∈ epif∗.

In particular, we have the following Young’s equality:

x∗ ∈ ∂f(x) ⇔ 〈x∗, x〉 = f∗(x∗) + f(x).
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From the definitions, it is clear that, for any proper lower semicontinuous convex
functions f1, f2 on X ,

(2.6) f1 ≤ f2 ⇔ f∗
1 ≥ f∗

2 ⇔ epif∗
1 ⊆ epif∗

2 .

Moreover, it is known that f∗ ∈ Γ(X∗) for any f ∈ Γ(X) (cf. [30, Theorem 2.3.3]).
As usual, X∗ ×R and (X ×R)∗ are identified and, for convenience, we use the norms
defined by

‖(x, α)‖ = max{‖x‖, |α|} for all (x, α) ∈ X × R

and

‖(x∗, α)‖ = ‖x∗‖ + |α| for all (x∗, α) ∈ X∗ × R.

IfH is a subspace ofX , the restrictions and the corresponding norms of the restrictions
are defined as follows: x∗|H ∈ H∗, (x∗|H , α) ∈ H∗ × R = (H × R)∗, ‖x∗‖H :=
sup{〈x∗, x〉 : x ∈ H, ‖x‖ ≤ 1}, and

(2.7) ‖(x∗|H , α)‖ = ‖x∗‖H + |α|.

Let I be an index set, and let F(I) denote the collection of all finite subsets of I
(thus F(I) is a directed set ordered under the inclusion relation). Let {ai : i ∈ I} ⊆
R ∪ {+∞}. We define the sum of {ai : i ∈ I} by

∑

i∈I
ai = lim

A∈F(I)

∑

i∈A
ai,

provided that the (unconditional) limit lim
A∈F(I)

∑

i∈A
ai exists as a member of R∪{+∞}.

In particular, if ai ≥ 0 for all i ∈ I, then
∑

i∈I ai exists and

(2.8)
∑

i∈I
ai = sup

A∈F(I)

∑

i∈A
ai ≤ +∞.

Remark 2.1. Let {ai, bi, ci}i∈I ⊆ R be such that ai ≤ bi ≤ ci for all i ∈ I.
Suppose that

∑

i∈I ai and
∑

i∈I ci exist in R. Then
∑

i∈I bi also exists in R (because
0 ≤ bi − ai ≤ ci − ai and

∑

i∈I(ci − ai) < +∞).
Let {fi : i ∈ I} be a family of extended real-valued functions on X . We define

their sum function f as follows: Let Df := {x ∈ X :
∑

i∈I fi(x) exists in R∪ {+∞}};
we define

f(x) =
∑

i∈I
fi(x) for all x ∈ Df .

In particular, if fi ∈ Γ+(X) for all i ∈ I, then Df = X and

(2.9)

(

∑

i∈I
fi

)

(x) = sup
A∈F(I)

∑

i∈A
fi(x) for all x ∈ X.

For x∗ ∈ X∗ and a family {x∗i }i∈I of elements in X∗, the notation

(2.10) x∗ =
∑

i∈I

∗
x∗i
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means that 〈x∗, h〉 = limA∈F(I)
∑

i∈A〈x∗i , h〉 for each h ∈ X . Let {Ai}i∈I be a family
of the subsets of X∗. The set {x∗ ∈ X∗ : ∃x∗i ∈ Ai for all i ∈ I such that x∗ =
∑∗

i∈I x
∗
i } will be denoted by

∑

i∈I
∗Ai. It is easy to check that

∑

i∈I
∗Ai is convex if

each Ai is convex and that
∑

i∈I
∗
Ai =

∑

i∈IAi if I is a finite set. Moreover, {Ai}i∈I
is said to be weak∗ summable if

∑

i∈I
∗
x∗i exists in X∗ (that is, (2.10) holds for some

x∗ ∈ X∗) whenever x∗i ∈ Ai for each i ∈ I.
Remark 2.2. The above definition is slightly different from [32]: Our notation

∑

i∈I
∗Ai does not require the family {Ai}i∈I to be weak∗ summable.

A useful relationship between epif∗ and ∂εf is given in the following formula
observed by Burachik and Jeyakumar in [9] (we note that, as observed in [3], this
formula works even when f is merely a proper function):
(2.11)

epif∗ =
⋃

ε≥0

{(x∗, ε+ 〈x∗, x〉 − f(x)) : x∗ ∈ ∂εf(x)} for all f ∈ Γ(X), x ∈ domf.

Throughout this paper, unless explicitly mentioned otherwise, I is an arbitrary index
set (that is, the cardinality |I| ≤ +∞). For convenience, we list below several known
results that will be useful for us.

Lemma 2.1 (cf. [30]). Let I be a finite set, and let {f, fi : i ∈ I} ⊆ Γ(X) be such

that f(x) =
∑

i∈Ifi(x) for all x ∈ X. Then epif∗ =
∑

i∈Iepif∗
i

w∗

, and, moreover,
the result can be strengthened to epif∗ =

∑

i∈Iepif∗
i if there exists i0 ∈ I such that

domfi0 ∩ int
(
⋂

i�=i0 (domfi)
)

�= ∅.
Remark 2.3. Let I be a finite set, and let C be a closed convex subset of X . Recall

that sqriC := {x ∈ C :
⋃

λ≥0 λ(C − x) is a closed subspace}. A weaker generalized
interior point regularity condition ensuring epif∗ =

∑

i∈Iepif∗
i is as follows (cf. [5,

23]): There exists i0 ∈ I such that

0 ∈ sqri
∏

i�=i0

(domfi − domfi0).

The following lemma can be found in [20, Lemma 2.3]. We note that it has been
also derived in [4, section 4.3] via a different approach.

Lemma 2.2. Let {fi : i ∈ I} ⊆ Γ(X). Suppose that there exists x0 ∈ X such that
supi∈I fi(x0) <∞. Then

epi(sup
i∈I

fi)∗ = co
⋃

i∈I
epif∗

i

w∗

,

where supi∈I fi : X → R ∪ {+∞} is defined by (supi∈I fi)(x) = supi∈I fi(x) for all
x ∈ X.

Remark 2.4. Let f ∈ Γ(X) and A := {x : f(x) ≤ 0} �= ∅. Then δA = supλ>0 λf ,
and it follows from Lemma 2.2 that

(2.12) epi(δA)∗ = co
⋃

λ>0

epi(λf)∗
w∗

=
⋃

λ>0

epi(λf)∗
w∗

,

where the last equality holds because
⋃

λ>0 epi(λf)∗ is a convex set.
For continuous functions, the following result in [31] will play an important role.
Lemma 2.3. Let {f, fi : i ∈ I} ⊆ Γc(X) be such that f(x) =

∑

i∈Ifi(x) for all
x ∈ X. Then {∂fi(x)}i∈I is weak∗ summable, and the following relation holds:

∂f(x) =
∑

i∈I

∗
∂fi(x)

w∗

for all x ∈ X.
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Moreover, if I is countable, then
∑

i∈I
∗
∂fi(x) is weak∗ closed, and hence

∂f(x) =
∑

i∈I

∗
∂fi(x) for all x ∈ X.

3. Strong Fenchel duality and its characterization. In this section, we
provide some characterization of the strong Fenchel duality (in the sense that (1.2)
holds for all x∗ ∈ X∗). To do this, we need the following lemma.

Lemma 3.1. Let {f, fi : i ∈ I} ⊆ Γ(X) be such that

(3.1) f(x) =
∑

i∈I
fi(x) for all x ∈ X.

Then the following inclusion holds:

(3.2)
∑

i∈I

∗
epif∗

i

w∗

⊆ epif∗.

Proof. Let (x∗, α) ∈
∑

i∈I
∗epif∗

i , that is, for each i ∈ I, there exists (x∗i , αi) ∈
X∗ × R, with f∗

i (x∗i ) ≤ αi such that

(3.3)
∑

i∈I
αi = α and

∑

i∈I
〈x∗i , x〉 = 〈x∗, x〉 for all x ∈ X.

Since epif∗ is weak∗ closed, to prove (3.2), it suffices to show that f∗(x∗) ≤ α. Let
x ∈ domf . Note that

(3.4) 〈x∗i , x〉 − fi(x) ≤ sup
z∈X

{〈x∗i , z〉 − fi(z)} = f∗
i (x∗i ) ≤ αi.

Applying Remark 2.1 and making use of (3.1), (3.3), and (3.4), we note that
∑

i∈I f
∗
i (x∗i )

exists, and

〈x∗, x〉 − f(x) =
∑

i∈I

(

〈x∗i , x〉 − fi(x)
)

≤
∑

i∈I
f∗
i (x∗i ) ≤

∑

i∈I
αi = α.

Taking supremum over all x in domf , this implies that

(3.5) f∗(x∗) = sup
x∈domf

(

〈x∗, x〉 − f(x)
)

≤
∑

i∈I
f∗
i (x∗i ) ≤ α,

as required to show. This completes the proof.
The following result is known [9] (see also [11, Corollary 3.4]) for the special case

when I is finite.
Theorem 3.2. Let {f, fi : i ∈ I} be as in Lemma 3.1. Then the following

statements are equivalent:
(i)

(3.6)

∂εf(x) ⊆
⋃

{

∑

i∈I

∗
∂εifi(x) :

∑

i∈I
εi = ε, each εi ≥ 0

}

for all ε ≥ 0 and x ∈ X.

(ii) ∂εf(x) =
⋃
{
∑

i∈I
∗∂εifi(x) :

∑

i∈I εi = ε, each εi ≥ 0
}

for all ε ≥ 0 and x ∈
domf.
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(iii) epif∗ =
∑

i∈I
∗epif∗

i .
(iv) For any x∗ ∈ X∗,

inf
x∈X

{f(x) − 〈x∗, x〉} = max

{

−
∑

i∈I
f∗
i (x∗i ) :

∑

i∈I

∗
x∗i = x∗

}

,

that is, f∗(x∗) = min
{
∑

i∈If
∗
i (x∗i ) :

∑

i∈I
∗
x∗i = x∗

}

.
Any of the statements (i)–(iv) implies that
(v) infx∈X f(x) = max

{

−
∑

i∈If
∗
i (x∗i ) :

∑

i∈I
∗
x∗i = 0

}

.
Proof. First, (v) follows from (iv) by letting x∗ = 0. Thus, we need only to show

the equivalence of (i)–(iv).
[(i) ⇒ (ii)] Let x ∈ domf , ε ≥ 0, and εi ≥ 0 be such that

∑

i∈I εi = ε. To prove
(i) ⇒ (ii), it suffices to show that

(3.7)
∑

i∈I

∗
∂εifi(x) ⊆ ∂εf(x).

To do this, let x∗ =
∑

i∈I
∗x∗i ∈ X∗, where each x∗i ∈ ∂εifi(x). Then, from Young’s

inequality and (2.5), we have

〈x∗i , x〉 − εi ≤ f∗
i (x∗i ) + fi(x) − εi ≤ 〈x∗i , x〉.

Therefore, by Remark 2.1,
∑

i∈I(f
∗
i (x∗i ) + fi(x) − εi) exists in R and

∑

i∈I
f∗
i (x∗i ) + f(x) − ε =

∑

i∈I

(

f∗
i (x∗i ) + fi(x) − εi

)

≤
∑

i∈I
〈x∗i , x〉 = 〈x∗, x〉.(3.8)

On the other hand, note that f∗(x∗) ≤
∑

i∈I f
∗
i (x∗i ) because, for each z ∈ domf , one

has

(3.9) 〈x∗, z〉 − f(z) =
∑

i∈I

(

〈x∗i , z〉 − fi(z)
)

≤
∑

i∈I
f∗
i (x∗i ).

Thus, by (3.8),

f∗(x∗) + f(x) − ε ≤
∑

i∈I
f∗
i (x∗i ) + f(x) − ε ≤ 〈x∗, x〉.

Therefore, x∗ ∈ ∂εf(x), and (3.7) holds.
[(ii) ⇒ (iii)] In view of Lemma 3.1, it suffices to show that epif∗ ⊆

∑

i∈I
∗epif∗

i .
To do this, let (x∗, α) ∈ epif∗. We have to show that (x∗, α) ∈

∑

i∈I
∗epif∗

i . Take
an arbitrary x ∈ domf ; from (2.11), there exists ε ≥ 0 such that x∗ ∈ ∂εf(x) and
α = ε + 〈x∗, x〉 − f(x). It follows from (ii) that there exist εi ≥ 0 and x∗i ∈ ∂εifi(x)
(

so (x∗i , αi) ∈ epif∗
i , where αi := εi + 〈x∗i , x〉 − fi(x)

)

such that ε =
∑

i∈I εi and
x∗ =

∑

i∈I
∗
x∗i . Thus

(x∗, α) =
∑

i∈I

∗
(x∗i , αi) ∈

∑

i∈I

∗
epif∗

i ,

as required to show.
[(iii) ⇒ (iv)] Let x∗ ∈ X∗. Note first that, by (3.9),

(3.10) −f∗(x∗) = inf
z∈domf

{f(z) − 〈x∗, z〉} ≥ −
∑

i∈I
f∗
i (x∗i )
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whenever {x∗i : i ∈ I} ⊆ X∗, with x∗ =
∑

i∈I
∗
x∗i . Thus, to prove (iv), it remains to

show that there exists x∗i ∈ X∗ (i ∈ I) such that x∗ =
∑

i∈I x
∗
i and

(3.11) inf
z∈domf

{f(z) − 〈x∗, z〉} ≤ −
∑

i∈I
f∗
i (x∗i ).

To do this, we can suppose that infz∈domf{f(z) − 〈x∗, z〉} > −∞, that is, f∗(x∗) <
+∞. Then (x∗, f∗(x∗)) ∈ epif∗. It follows from (iii) that (x∗, f∗(x∗)) ∈

∑

i∈I
∗epif∗

i ,
that is, there exist (x∗i , αi) ∈ epif∗

i (i ∈ I) such that

(3.12)
∑

i∈I

∗
x∗i = x∗ and

∑

i∈I
αi = f∗(x∗).

We claim that {x∗i : i ∈ I} satisfies (3.11). In fact, since (x∗i , αi) ∈ epif∗
i (i ∈ I),

Young’s inequality implies that, for any z ∈ X ,

(3.13) 〈x∗i , z〉 − fi(z) ≤ f∗
i (x∗i ) ≤ αi (i ∈ I).

Since
∑

i∈Ifi(z) = f(z) ∈ R if z ∈ domf , it follows from (3.12) and Remark 2.1 that
∑

i∈If
∗
i (x∗i ) exists and, for any z ∈ domf ,

〈x∗, z〉 − f(z) =
∑

i∈I

(

〈x∗i , z〉 − fi(z)
)

≤
∑

i∈I
f∗
i (x∗i ) ≤

∑

i∈I
αi = f∗(x∗).

Taking supremum over all z ∈ domf , this implies that f∗(x∗) ≤
∑

i∈If
∗
i (x∗i ) ≤

∑

i∈Iαi = f∗(x∗). In view of (3.13), this forces that f∗
i (x∗i ) = αi for all i ∈ I.

Therefore, we obtain that

inf
z∈domf

{f(z) − 〈x∗, z〉} = −f∗(x∗) = −
∑

i∈I
αi = −

∑

i∈I
f∗
i (x∗i ).

Thus (3.11) holds as claimed.
[(iv) ⇒ (i)] Let ε ≥ 0, x ∈ X , and x∗ ∈ ∂εf(x). By the definition of f∗(x∗), (iv)

means that

f∗(x∗) = min

{

∑

i∈I
f∗
i (x∗i ) :

∑

i∈I

∗
x∗i = x∗

}

.

Thus, there exist x∗i ∈ X∗, with
∑

i∈I
∗
x∗i = x∗ such that f∗(x∗) =

∑

i∈If
∗
i (x∗i ).

Hence

f∗(x∗) + f(x) − 〈x∗, x〉 =
∑

i∈I

(

f∗
i (x∗i ) + fi(x) − 〈x∗i , x〉

)

,

where 0 ≤ f∗
i (x∗i ) + fi(x) − 〈x∗i , x〉 for all i ∈ I (by Young’s inequality). Since

x∗ ∈ ∂εf(x) (that is f∗(x∗) + f(x) − 〈x∗, x〉 ≤ ε), it follows that there exist εi ≥ 0
(i ∈ I) such that

∑

i∈Iεi = ε and

f∗
i (x∗i ) + fi(x) − 〈x∗i , x〉 ≤ εi for all i ∈ I.

Then x∗i ∈ ∂εifi(x) (i ∈ I) and x∗ ∈
∑

i∈I
∗∂εifi(x) (as x∗ =

∑

i∈I
∗x∗i ). Therefore, x∗

belongs to the set on the right-hand side of (i). This completes the proof.
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Note 3.1. The property (v), sometimes referred as the Fenchel duality, is strictly
weaker (even when |I| = 2) than the properties (i)–(iv) listed in Theorem 3.2. Exam-
ples can be found in [5, pp. 2798–2799] and [26, Example 11.1 and Example 11.3].

Corollary 3.3 (an extension of the Fenchel duality). Let {fi, h, f : i ∈ I∪J} ⊆
Γ(X), with I ∩ J = ∅, |J | < +∞, and

h(x) =
∑

i∈I
fi(x) and f(x) =

∑

i∈I
fi(x) +

∑

j∈J
fj(x) for all x ∈ X.

Suppose that

(3.14) epih∗ =
∑

i∈I

∗
epif∗

i ,

and (at least) one of the following conditions holds:

(3.15) (i) domh∩int
(

⋂

j∈J
domfj

)

�= ∅.

(ii) There exists j0 ∈ J such that

(3.16) int(domh) ∩ domfj0 ∩ int
(

⋂

j∈J\{j0}
domfj

)

�= ∅.

Then

(3.17) epif∗ =
∑

i∈I

∗
epif∗

i +
∑

j∈J
epif∗

j ,

and, in particular, one has

(3.18) inf
x∈X

f(x) = max

⎧

⎨

⎩

−
∑

i∈I
f∗
i (x∗i ) −

∑

j∈J
f∗
j (y∗j ) :

∑

i∈I

∗
x∗i +

∑

j∈J
y∗j = 0

⎫

⎬

⎭

.

Proof. First, from the implication (iii) ⇒ (v) in Theorem 3.2, we need only to
show (3.17). Since {fj, h, f : j ∈ J} ⊆ Γ(X) and f = h+

∑

j∈J fj , Lemma 2.1 implies
that

epif∗ = epih∗ +
∑

j∈J
epif∗

j ,

provided that (i) or (ii) holds. Consequently, (3.17) holds by (3.14).

4. Sufficient conditions. This section is devoted to providing sufficient condi-
tions ensuring that, for {fi, f : i ∈ I} ⊆ Γ(X), epif∗ =

∑

i∈I
∗epif∗

i (see Theorem 3.2
(iii)), where

(4.1) f(x) =
∑

i∈I
fi(x) for all x ∈ X.
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4.1. Continuous type. Throughout this subsection, we assume that f and each
fi are continuous, that is,

(4.2) {fi, f : i ∈ I} ⊆ Γc(X).

Theorem 4.1. Assume (4.1) and (4.2). Then

(4.3) epif∗ =
∑

i∈I

∗
epif∗

i

w∗

.

Proof. Let x ∈ X . By continuity, each ∂fi(x) �= ∅; take x∗i ∈ ∂fi(x). By Lemma
2.3, there exists x∗ ∈ ∂f(x) such that x∗ =

∑

i∈I
∗
x∗i . Denote r := 〈x∗, x〉 − f(x)

and ri = 〈x∗i , x〉 − fi(x). It follows from (4.1) that r =
∑

i∈Iri. Moreover, by (2.5),
each (x∗i , ri) ∈ epif∗

i , and so (x∗, r) ∈
∑

i∈I
∗epif∗

i . Therefore, by Lemma 3.1, ∅ �=
∑

i∈I
∗epif∗

i ⊆ epif∗. Thus, since epif∗ is weak∗ closed, if (4.3) is not true, then there

exists (x∗, α) ∈ epif∗\
∑

i∈I
∗epif∗

i

w∗

. Recalling that a linear functional h on X∗ is
the form h(x∗) = 〈a, x∗〉 for some a ∈ X if and only if h is continuous in the weak∗

topology of X∗ (cf. [29, p. 112, Theorem 1], it follows from the separation theorem
that there exists (x0, r0) ∈ X × R such that

(4.4) sup

{

〈y∗, x0〉 + βr0 : (y∗, β) ∈
∑

i∈I

∗
epif∗

i

}

< 〈x∗, x0〉 + αr0.

Considering β > 0 large, it follows that r0 ≤ 0. We claim that r0 < 0. Indeed, if r0 =
0, then (4.4) means sup{〈y∗, x0〉 : (y∗, β) ∈

∑

i∈I
∗epif∗

i } < 〈x∗, x0〉. Since x∗ ∈ domf∗

and Im ∂f is norm dense in domf∗ (cf. [24, Theorem 3.18]), there exist a∗ ∈ Im ∂f
(so a∗ ∈ ∂f(a) for some a ∈ X) such that sup

{

〈y∗, x0〉 : (y∗, β) ∈
∑

i∈I
∗epif∗

i

}

<
〈a∗, x0〉. By Lemma 2.3, this implies that

(4.5) sup

{

〈y∗, x0〉 : (y∗, β) ∈
∑

i∈I

∗
epif∗

i

}

< 〈a∗0, x0〉

for some a∗0 ∈
∑

i∈I
∗
∂fi(a). Note that a∗0 can be expressed in the form a∗0 =

∑

i∈I
∗
a∗i ,

with each a∗i ∈ ∂fi(a). Since each 〈a∗i , a〉 = fi(a)+f∗
i (a∗i ) (Young’s equality), it follows

from (4.1) that 〈a∗0, a〉 = f(a) +
∑

i∈If
∗
i (a∗i ), and hence that (a∗0, β0) ∈

∑

i∈I
∗epif∗

i ,
where β0 := 〈a∗0, a〉 − f(a) ∈ R. But then sup

{

〈y∗, x0〉 : (y∗, β) ∈
∑

i∈I
∗epif∗

i

}

≥
〈a∗0, x0〉, contradicting (4.5). Henceforth, without loss of generality, we may assume
that r0 = −1. Then (4.4) becomes

(4.6) sup

{

〈y∗, x0〉 − β : (y∗, β) ∈
∑

i∈I

∗
epif∗

i

}

< 〈x∗, x0〉 − α.

Note that 〈x∗, x0〉−α ≤ f(x0) by Young’s inequality and the fact that (x∗, α) ∈ epif∗,
and it follows from (4.6) that

sup

{

〈y∗, x0〉 − β : (y∗, β) ∈
∑

i∈I

∗
epif∗

i

}

< f(x0).(4.7)

Moreover, for each i ∈ I, pick x∗i ∈ ∂fi(x0). Define x∗0 :=
∑

i∈I
∗x∗i (this is well-defined

by Lemma 2.3). Let α0 := 〈x∗0, x0〉−f(x0). Note from Young’s equality that 〈x∗i , x0〉 =
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fi(x0) + f∗
i (x∗0) for each i ∈ I, and it follows from (4.1) that α0 =

∑

i∈If
∗
i (x∗i ), and

hence that (x∗0, α0) =
∑

i∈I
∗(x∗i , f

∗
i (x∗i )) ∈

∑

i∈I
∗epif∗

i . Consequently, by (4.7),
〈x∗0, x0〉 − α0 < f(x0), contradicting the definition of α0.

If I is countable and if another assumption, namely,

(4.8) dom f∗ = Im ∂f

is added, the following result shows that the set
∑

i∈I
∗epif∗

i is weak∗ closed.
Theorem 4.2. Assume (4.8) in addition to (4.1) and (4.2), and suppose that I

is countable. Then epif∗ =
∑

i∈I
∗epif∗

i .
Proof. Noting that epif∗ = gphf∗ + {0} × [0,+∞) and,

(4.9)
∑

i∈I

∗
epif∗

i + {0} × [0,∞) ⊆
∑

i∈I

∗
epif∗

i

(because epif∗
i + {0}× [0,∞) = epif∗

i for each i) and making use of Theorem 4.1, we
need only to show that

(4.10) gphf∗ ⊆
∑

i∈I

∗
epif∗

i ,

where gphf∗ denotes the graph of f∗. To see (4.10), let (x∗, α) ∈ gphf∗. Then
x∗ ∈ domf∗ = Im ∂f thanks to (4.8). Hence there exists x ∈ X such that x∗ ∈ ∂f(x).
By Lemma 2.3, x∗ can be expressed in the form

x∗ =
∑

i∈I

∗
x∗i ,

where each x∗i ∈ ∂fi(x). By Young’s equality, f∗(x∗) = 〈x∗, x〉 − f(x) and each
f∗
i (x∗i ) = 〈x∗i , x〉 − fi(x), and it follows from (4.1) that

∑

i∈I f
∗
i (x∗i ) = 〈x∗, x〉 − f(x),

that is,
∑

i∈I f
∗
i (x∗i ) = f∗(x∗) = α. Therefore, (x∗, α) =

∑

i∈I
∗(x∗i , f

∗
i (x∗i )) ∈

∑

i∈I
∗epif∗

i .
This completes the proof.

4.2. Nonnegative type. Throughout this subsection, we assume that f and
each fi are nonnegative-valued, that is,

(4.11) {fi, f : i ∈ I} ⊆ Γ+(X).

Theorem 4.3. Assume (4.1) and (4.11). Then

(4.12) epif∗ =
⋃

J⊆I,
|J|<∞

∑

i∈J
epif∗

i

w∗

=
∑

i∈I

∗
epif∗

i

w∗

.

Proof. Since each epif∗
i is a convex set containing the origin (because fi ≥ 0),

one has from (2.6) and Lemma 3.1 that
⋃

J⊆I,
|J|<∞

∑

i∈J
epif∗

i ⊆
∑

i∈I

∗
epif∗

i ⊆ epif∗,

and hence
⋃

J⊆I,
|J|<∞

∑

i∈J
epif∗

i

w∗

⊆
∑

i∈I

∗
epif∗

i

w∗

⊆ epif∗.(4.13)
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For each J ⊆ I, with |J | <∞, let gJ denote the sum function of {fi : i ∈ J}, namely,
gJ(x) =

∑

i∈J fi(x) for all x ∈ X . Since each fi is nonnegative-valued, we have that,
by (4.1) and (2.9),

(4.14) f =
∑

i∈I
fi = sup

J⊆I,
|J|<∞

gJ .

Hence, by Lemma 2.2 (applied to {gJ : J ⊆ I, |J | < +∞}) and Lemma 2.1, we have
that

(4.15) epif∗ =
⋃

J⊆I,
|J|<∞

epig∗J
w∗

=
⋃

J⊆I,
|J|<∞

∑

i∈J
epif∗

i

w∗w
∗

(note that
⋃

J⊆I,
|J|<∞

epig∗J is a convex set since epig∗J1
⊆ epig∗J2

if J1 ⊆ J2). Combining

this with (4.13) and (4.15), we see that (4.12) holds because the set on the right-hand
side of (4.15) is equal to that on the left-hand side of (4.13)

(

to see the latter fact,
note that, for any J ⊆ I, with |J | < +∞, one has

∑

i∈J
epif∗

i

w∗

⊆
⋃

J⊆I,
|J|<∞

∑

i∈J
epif∗

i

w∗

,

and so

⋃

J⊆I,
|J|<∞

∑

i∈J
epif∗

i

w∗w
∗

⊆
⋃

J⊆I,
|J|<∞

∑

i∈J
epif∗

i

w∗

.

This completes the proof.
Next, we seek some sufficient conditions to ensure that the set

∑∗
i∈I epif∗

i in
Theorem 4.3 is weak∗ closed. It would be convenient for us to introduce some new
notation first. Let Y be a Banach space, and let J be a finite set. Let {Ki}i∈J be
closed convex cones of Y . Following [28], we define γ(Ki; J) by

(4.16) γ(Ki; J) = inf

{∥

∥

∥

∥

∥

∑

i∈J
yi

∥

∥

∥

∥

∥

:
∑

i∈J
‖yi‖ = 1, each yi ∈ Ki

}

.

When J = {1, 2} and Y is a Hilbert space, the corresponding value of cos−1 γ(Ki; J) is
termed as the angle between the closed convex cones K1 and K2 (see [7] for a detailed
discussion). Given y∗ ∈ Y ∗ and any subspace Z of Y , y∗|Z denotes the restriction of
y∗ to Z and ‖y∗‖Z denotes the corresponding norm of y∗|Z in Z∗. Furthermore, let
D ⊆ Y ∗; we define D|Z := {y∗|Z : y∗ ∈ D}. Let K be a subset of Y (resp. Y ∗), the
(negative) polar of K is denoted by K◦ and is defined by K◦ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≤ 0
for all y ∈ K}) (resp. K◦ = {y ∈ Y : 〈y∗, y〉 ≤ 0 for all y∗ ∈ K}). From the definition,
it is clear that if K1 and K2 are two subsets of Y (resp. Y ∗) and K1 ⊆ K2, then
K◦

2 ⊆ K◦
1 .

When H is a subspace of X , Y = X∗ × R, Z = H × R, and each Ki (i ∈ J) is a
weak∗ closed convex cone of Y, Ki|Z (i ∈ J) and γ(Ki|Z ; J) are, respectively, defined
by

(4.17) Ki|Z = {(x∗|H , α) : (x∗, α) ∈ Ki}
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and
(4.18)

γ(Ki|Z ; J) = inf

{∥

∥

∥

∥

∥

∑

i∈J
(x∗i |H , αi)

∥

∥

∥

∥

∥

:
∑

i∈J
‖(x∗i |H , αi)‖ = 1, each (x∗i , αi) ∈ Ki

}

(

see (4.16)
)

. If H is finite-dimensional, the infimum in (4.18) is attained and hence
can be replaced by minimum.

An important special case (that we shall consider in the next theorem) is as
follows: Each fi is given in the form

(4.19) fi(x) = max{〈a∗i , x〉 + ri, 0} + δCi(x),

where Ci are closed convex subsets of X with
⋂

i∈I Ci �= ∅ and a∗i ∈ X∗ and ri ∈ R.
Let Di denote the convex hull of the set (a∗i ,−ri) ∪ (0, 0), and let Ki denote the set
epiσCi . Then Di is a weak∗ compact set in X∗ × R containing the origin, and Ki is
a weak∗ closed convex cone in X∗ × R. We observe that

(4.20) co{
(

{a∗i }× [−ri,∞)
)

∪
(

{0}× [0,∞)
)

} = co{(a∗i ,−ri)∪ (0, 0)}+ {0}× [0,∞).

Indeed, let (x∗, r) ∈ co{
(

{a∗i } × [−ri,∞)
)

∪
(

{0} × [0,∞)
)

}. There exist t ∈ [0, 1],
ε, δ ≥ 0 such that (x∗, r) = t(a∗i ,−ri+ ε) + (1− t)(0, δ) = t(a∗i ,−ri) + (0, tε+ (1− t)δ).
Note that tε+(1−t)δ ≥ 0. It follows that (x∗, r) ∈ co{(a∗i ,−ri)∪(0, 0)}+{0}× [0,∞),
and hence co{

(

{a∗i }×[−ri,∞)
)

∪
(

{0}×[0,∞)
)

} ⊆ co{(a∗i ,−ri)∪(0, 0)}+{0}×[0,∞).
As the converse inclusion can be verified similarly, (4.20) is seen to hold. Consequently,
we have that

epif∗
i = epi(max{〈a∗i , ·〉 + ri, 0})∗ + epi(δCi)

∗

= co{epi(〈a∗i , ·〉 + ri)∗ ∪
(

{0} × [0,∞)
)

} + epi(δCi)
∗

= co{
(

{a∗i } × [−ri,∞)
)

∪
(

{0} × [0,∞)
)

} + epi(δCi)
∗

= co{(a∗i ,−ri) ∪ (0, 0)} + epi(δCi)
∗

= Di +Ki,(4.21)

where the first equality follows from (4.19) and Lemma 2.1, the second equality follows
from Lemma 2.3, and the fourth equality holds by (4.20) and the fact epi(δCi)∗ =
epi(δCi)∗ + {0} × [0,+∞). Therefore, the condition (C1) in the following theorem is
satisfied if the functions fi are given in the form (4.19).

Theorem 4.4. Let I be a compact metric space. Assume (4.1), (4.11), and the
following assumptions:

(C1) For each i ∈ I, there exist a weak∗ compact convex set Di in X∗ × R

containing the origin, and a weak∗ closed convex cone Ki in X∗ × R such that

(4.22) epif∗
i = Di +Ki.

(C2)
∑

i∈I diam(Di) < ∞, where diam(Di) denotes the diameter of Di (i ∈ I),
i.e., diam(Di) := sup{‖x− y‖ : x, y ∈ Di}.

(C3) There exist i0 ∈ I and a finite-dimensional subspace H of X such that
K◦
i0
⊆ Z := H × R (denote the corresponding dimension of Z by m).
(C4) For any J ⊆ I with |J | = m, γ(Ki|Z ; J) > 0.
(C5) The set-valued mapping i �→ Ki|Z is upper semicontinuous, i.e., for any

i ∈ I,

lim sup
i→i

(Ki|Z) ⊆ Ki|Z ,
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where lim supi→i(Ki|Z) := {x∗ ∈ Z∗ : ∃ x∗i ∈ Ki|Z such that x∗ = limi→i x
∗
i (in the

norm of Z∗)}. Then
∑

i∈I
∗epif∗

i is weak∗ closed and

(4.23) epif∗ =
∑

i∈I

∗
epif∗

i .

Proof. By Theorem 4.3, we need only prove the weak∗-closedness assertion. De-
note Y := X ×R, and so Y ∗ is identified with X∗×R. Denote Ai := epif∗

i ⊆ Y ∗ and
A :=

∑

i∈I
∗
Ai. Let a∗ ∈ A

w∗
. We have to show that a∗ ∈ A. To do this, we take a

sequence {a∗k} ⊆ A such that a∗k → a∗ on Z := H×R (thanks to the assumption that
H is finite-dimensional and the weak∗ topology coincides with the norm topology on
a finite-dimensional space). For each k ∈ N, noting that a∗k ∈ A =

∑

i∈I
∗Ai, there

exists a sequence in
⋃

J⊆I,
|J|<∞

∑

i∈J Ai weak∗ converging (and hence in norm ‖ · ‖Z) to

a∗. Thus, there exist a finite subset Ik of I and a∗i,k ∈ Ai (i ∈ Ik) such that

(4.24)

∥

∥

∥

∥

∥

a∗k −
∑

i∈Ik

a∗i,k

∥

∥

∥

∥

∥

Z

≤ 1
k
.

Hence

(4.25) lim
k→∞

‖u∗k − a∗‖Z → 0,

where u∗k :=
∑

i∈Ik
a∗i,k. Note that u∗k ∈

∑

i∈Ik
Di+

∑

i∈Ik
Ki

(

by (4.22)
)

. Since Z is of
dimension m and each Ki is a (convex) cone, it follows from the Carathédory theorem
[27, Corollary 17.1.2] that, for each k ∈ N, there exist {i1,k, i2,k, . . . , im,k} ⊆ Ik, such
that

(4.26) u∗k =
∑

i∈Ik

y∗i,k +
m
∑

j=1

z∗ij,k
on Z

for some y∗i,k ∈ Di (i ∈ Ik) and z∗ij,k
∈ Kij,k

(1 ≤ j ≤ m). Let I ′ :=
⋃

k∈N
Ik and set

y∗i,k := 0 for any i ∈ I ′\Ik. For each fixed k ∈ N, it follows from (4.26) that

(4.27) u∗k =
∑

i∈I′
y∗i,k +

m
∑

j=1

z∗ij,k
on Z,

where y∗i,k ∈ Di for all i ∈ I ′
(

thanks to the assumption that each Di contains the
origin

)

. Next, we show that

(4.28) {z∗ij,k
|Z}k∈N are bounded sequences for all 1 ≤ j ≤ m.

To prove this, we suppose on the contrary that {z∗ij,k
|Z}k∈N is an unbounded sequence

for some j ∈ {1, 2, . . . ,m}. By passing to a subsequence if necessary, we may assume
that

(4.29) lim
k→∞

m
∑

j=1

‖z∗ij,k
‖Z → ∞.
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Dividing by
∑m

j=1 ‖z∗ij,k
‖Z on both sides of (4.27), we obtain

(4.30)
u∗k

∑m
j=1 ‖z∗ij,k

‖Z
=

∑

i∈I′ y
∗
i,k

∑m
j=1 ‖z∗ij,k

‖Z
+

m
∑

j=1

z∗ij,k
∑m

j=1 ‖z∗ij,k
‖Z

on Z.

Note that {‖u∗k‖Z}k∈N is a bounded numerical sequence (since ‖u∗k − a∗‖Z → 0), and

(4.31)

∥

∥

∥

∥

∥

∑

i∈I′
y∗i,k

∥

∥

∥

∥

∥

Z

≤
∑

i∈I′
‖y∗i,k‖ ≤

∑

i∈I
diam(Di) <∞.

Moreover, since I is compact, we may assume without loss of generality that ij,k → ij
for some ij ∈ I (1 ≤ j ≤ m) as k → ∞. Considering subsequences if necessary, we
may assume that there exists z∗j ∈ X∗ such that the bounded sequence

(4.32)
z∗ij,k

∑m
j=1 ‖z∗ij,k

‖Z
→ z∗j on Z (1 ≤ j ≤ m)

(thanks to the fact that Z is finite-dimensional). By (4.32), it is clear that
∑m
j=1 ‖z∗j ‖Z

= 1. Moreover, assumption (C5) entails that each z∗j |Z ∈ Kij
|Z . Finally, by passing

to the limits in (4.30) and making use of (4.31) and (4.29), we have
∑m

j=1 z
∗
j = 0

on Z. Then γ(Ki|Z , {i1, i2, . . . , im}) = 0, contradicting assumption (C4). Therefore,
(4.28) is proved.

By the compactness of I again and by passing to subsequences if necessary, we
may assume that ij,k → îj for some îj ∈ I as k → ∞ (1 ≤ j ≤ m). For each j, since
Z is finite-dimensional and by (4.28), we may assume that z∗ij,k

→ z∗j on Z for some
z∗j ∈ X∗. By (C5), z∗j |Z ∈ Kîj

|Z , and so there exists ω∗
j ∈ Kîj

such that z∗j = ω∗
j on

Z. Hence, replacing z∗j by ω∗
j if necessary, we may assume without loss of generality

that

(4.33) z∗j ∈ Kîj
(1 ≤ j ≤ m).

Since u∗k → a∗ on Z
(

by (4.25)
)

, (4.27) implies that

(4.34)
∑

i∈I′
y∗i,k = u∗k −

m
∑

j=1

z∗ij,k
→ a∗ −

m
∑

j=1

z∗j on Z as k → ∞.

Since I ′ is countable, we may represent I ′ in the form that I ′ = {i1, . . . , in, . . . }, and
hence

∑

n∈N

y∗in,k → a∗ −
m
∑

j=1

z∗j on Z as k → ∞.

Since y∗i1,k ∈ Di1 and Di1 |Z is compact, there exists an infinite subset N1 ⊆ N such
that {y∗i1,k}k∈N1 converges to y∗i1 on Z for some y∗i1 ∈ Di1 . Inductively, we can find a
sequence of infinite subsets Nn ⊆ N such that Nn+1 ⊆ Nn and, for each n ∈ N,

(4.35) {y∗in,k}k∈Nn converges to y∗in on Z for some y∗in ∈ Din .
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Since
∑

n∈N
‖y∗in‖ ≤

∑

i∈I ‖y∗i ‖ ≤
∑

i∈I diamDi < +∞
(

by the assumption (C2)
)

,
∑

n∈N
y∗in exists as an element in X∗, and, in particular,

(4.36)
∑

n∈N

y∗in ∈
∑

n∈N

∗
Din .

Similarly, for all k ∈ N,
∑

n∈N

‖y∗in,k‖ ≤
∑

i∈I
diamDi < +∞,

and thus, for any ε > 0, there exists n0 ∈ N such that, for all n′ ≥ n0,

(4.37)
∑

n>n′

‖y∗in,k‖ ≤
∑

n>n′

diam(Din) ≤ ε/2 for all k ∈ N.

Note that, for any fixed n′ ≥ n0, (by (4.35) and (4.34)) there exists k0 ∈ N (depending
on n′) such that

‖y∗in,k0 − y∗in‖Z ≤ ε

4n′ for all n ∈ {1, . . . , n′} and
∥

∥

∥

∥

∥

∥

a∗ −
m
∑

j=1

z∗j −
∑

n∈N

y∗in,k0

∥

∥

∥

∥

∥

∥

Z

≤ ε/4.

It follows from (4.37) that, for any n′ ≥ n0,
∥

∥

∥

∥

∥

∥

a∗ −
m
∑

j=1

z∗j −
n′
∑

n=1

y∗in

∥

∥

∥

∥

∥

∥

Z

≤

∥

∥

∥

∥

∥

∥

a∗ −
m
∑

j=1

z∗j −
∑

n∈N

y∗in,k0

∥

∥

∥

∥

∥

∥

Z

+
n′
∑

n=1

‖y∗in,k0 − y∗in‖Z +
∑

n>n′

‖y∗in,k0‖Z

≤ ε.

Since ε is arbitrary, one has

(4.38) a∗ =
m
∑

j=1

z∗j +
∑

n∈N

y∗in on Z.

Then, one has

(4.39) a∗ −
m
∑

j=1

z∗j −
∑

n∈N

y∗in ∈ Z⊥.

From (4.33) and (4.35), we know that each z∗j ∈ Kîj
and yin ∈ Din , and it follows from

(4.36) that
∑m

j=1 z
∗
j +

∑

n∈N
y∗in ∈

∑m
j=1Kîj

+
∑

n∈N

∗
Din . Therefore, (4.39) entails

that

(4.40) a∗ ∈
m
∑

j=1

Kîj
+
∑

n∈N

∗
Din + Z⊥.
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Note from the bipolar theorem (cf. [30, Theorem 1.1.9]) and assumption (C3) that
Z⊥ ⊆ Ki0 . It follows that a∗ ∈

∑m
j=1Kîj

+
∑

n∈N

∗
Din +Ki0 . Since 0 ∈ Di ∩Ki, one

has

a∗ ∈
m
∑

j=1

Kîj
+
∑

n∈N

∗
Din +Ki0 =

∑

n∈N

∗
Din +

⎛

⎝

m
∑

j=1

Kîj
+Ki0

⎞

⎠ ⊆
∑

i∈I

∗
(Di +Ki) = A,

as required to show. This completes the proof.
Corollary 4.5. Let I be a compact metric space, and let fi be given by (4.19).

Assume (4.1), (4.11), and the following assumptions:
(B1)

∑

i∈I(‖a∗i ‖ + |ri|) <∞.
(B2) There exists i0 ∈ I such that H := span(Ci0) is of finite dimension. (Denote

the corresponding dimension by n.)
(B3) For any J ⊆ I\{i0} with |J | ≤ n+ 1, it holds that

Ci0 ∩
(

⋂

i∈J
intHCi

)

�= ∅,

where intHCi := {x ∈ Ci : there exists ε > 0 s.t. B(x, ε) ∩H ⊆ Ci}.
(B4) The mapping i �→ Ci ∩H is lower semicontinuous, i.e., for any i ∈ I,

Ci ∩H ⊆ lim inf
i→i

(Ci ∩H).

Then the conclusion of Theorem 4.4 holds.
Proof. Define Di := co{(a∗i ,−ri) ∪ (0, 0)}, and Ki := epiσCi . Then, as we have

mentioned before, assumption (C1) in Theorem 4.4 holds
(

see (4.21)
)

. Therefore, to
finish the proof, it suffices to show that the assumptions (C2)–(C5) in Theorem 4.4 are
satisfied. First of all, from condition (B1), we see that

∑

i∈I diamDi <∞, and hence
assumption (C2) holds. To see (C3), noting that Z⊥ = (spanCi0 )⊥×{0} ⊆ epiσCi0

=
Ki0 , one has K◦

i0
⊆ Z. Therefore, assumption (C3) holds with m := n+1. To see that

assumption (C4) holds with m := n+1, we proceed by contradiction and suppose that
there exists J0 ⊆ I, with |J0| = n + 1 such that γ(epiσCi |H×R; J0) = 0. Noting that
H × R is finite-dimensional, it follows from (4.18) that there exist (x∗i , αi) ∈ epiσCi

(i ∈ J0) such that

(4.41)
∑

i∈J0

(

‖x∗i ‖H + |αi|
)

= 1,

(4.42)
∑

i∈J0

x∗i = 0 on H, and
∑

i∈J0

αi = 0.

We claim that

(4.43) x∗i = 0 on H for all i ∈ J0.

Granting this, we have 0 = σCi∩H(x∗i ) ≤ σCi(x∗i ) ≤ αi for all i ∈ J0. This together
with the second equality of (4.42) implies that αi = 0 for all i ∈ J0. However, this
and (4.43) contradict (4.41). To see (4.43), we divide our proof into two cases.

Case 1: i0 /∈ J0,
Case 2: i0 ∈ J0.
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For Case 1, we note that J0 ⊆ I\{i0}, and it follows from (B3) that
⋂

j∈J0
intHCi �=

∅. Thus there exist x0 ∈ X and ε > 0 such that x0 ∈ B(x0, ε) ∩H ⊆ Ci for all i ∈ J0.
Recalling the fact that (x∗i , αi) ∈ epiσCi (i ∈ J0) and the definition of ‖ ·‖H , it follows
from (4.42) that

ε
∑

i∈J0

‖x∗i ‖H =
∑

i∈J0

(

〈x∗i , x0〉 + ε‖x∗i ‖H
)

≤
∑

i∈J0

sup
x∈B(x0,ε)∩H

〈x∗i , x〉

≤
∑

i∈J0

sup
x∈Ci

〈x∗i , x〉

≤
∑

i∈J0

αi = 0.(4.44)

Thus (4.43) holds in this case. For Case 2, one applies (B3) again, and there exist
x0 ∈ Ci0 and ε > 0 such that x0 ∈ B(x0, ε) ∩ H ⊆ Ci for all i ∈ J0\{i0}. Hence
supx∈B(x0,ε)∩H〈x

∗
i , x〉 ≤ supx∈Ci

〈x∗i , x〉, that is,

(4.45) 〈x∗i , x0〉 + ε‖x∗i ‖H = sup
x∈B(x0,ε)∩H

〈x∗i , x〉 ≤ σCi(x
∗
i ) for all i ∈ J0\{i0}.

Since (x∗i , αi) ∈ epiσCi for all i ∈ J0 and x0 ∈ Ci0 (so 〈x∗i0 , x0〉 ≤ αi0), it follows from
(4.42) that

ε
∑

i∈J0\{i0}
‖x∗i ‖H =

∑

i∈J0

〈x∗i , x0〉 + ε
∑

i∈J0\{i0}
‖x∗i ‖H ≤

∑

i∈J0

αi = 0.

This together with the first equality in (4.42) gives that x∗i = 0 on H for all i ∈ J0.
Thus (4.43) also holds in this case. Finally, for (C5), fix an i ∈ I. Consider i→ i and
(x∗i , αi) ∈ H∗ × R (i ∈ I) be such that (x∗i , αi) ∈ epiσCi |H×R, with (x∗i , αi) → (x∗, α)
for some (x∗, α) ∈ H∗×R. Let x ∈ Ci∩H . By (B4) and since H is of finite dimension,
there exists a sequence {xi} ⊆ Ci ∩H such that xi → x. It follows that

〈x∗, x〉 = lim
i→i

〈x∗i , xi〉 ≤ lim sup
i→i

σCi∩H(x∗i ) ≤ lim
i→i

αi = α.

This implies that (x∗, α) ∈ epiσC
i
|H×R, and hence (C5) in Theorem 4.4 holds. There-

fore, the assumptions (C2)–(C5) in Theorem 4.4 hold. This finishes the proof.

5. Application to the KKT theory. We first establish an ε-sum rule involving
possibly infinitely many convex functions. In the special case where I = ∅, the
following result has been presented in [18] (see also [30, Corollary 2.6.7]).

Theorem 5.1. Let I, J be two index sets with I ∩ J = ∅ and |J | < ∞.
Let {fi}i∈I ⊆ Γ+(X) and {fj}j∈J ⊆ Γ(X). Let f ∈ Γ(X) be such that f(x) =
∑

i∈Ifi(x) +
∑

j∈Jfj(x) for each x ∈ X. Let ε ≥ 0 and x ∈ X. Then we have

(5.1) ∂εf(x) ⊆
⋂

η>0

⋃

I′⊆I,
|I′|<∞

⎧

⎨

⎩

∑

i∈I′
∂εifi(x) +

∑

j∈J
∂εjfj(x) :

∑

i∈I′
εi +

∑

j∈J
εj ≤ ε+ η

⎫

⎬

⎭

w∗

.

Proof. To see the inclusion, let x∗ ∈ ∂εf(x), η > 0, and let V be a weak∗

neighborhood of 0. It suffices to show that there exist I ′ with |I ′| < +∞, εi, εj ≥ 0
(i ∈ I ′, j ∈ J) such that

(5.2)
∑

i∈I′
εi +

∑

j∈J
εj ≤ ε+ η
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and

(5.3) x∗ ∈
∑

i∈I′
∂εifi(x) +

∑

j∈J
∂εjfj(x) + V.

Let h :=
∑

i∈Ifi. Note that h ∈ Γ+(X) (since fi ∈ Γ+(X) and h(x0) < +∞ for all
x0 ∈ domf). From Lemma 2.1 (applied to {h, fj : j ∈ J}) and Theorem 4.3, we have

epif∗ = epi

⎛

⎝h+
∑

j∈J
fj

⎞

⎠

∗

= epih∗ +
∑

j∈J
epif∗

j

w∗

=
⋃

I′⊆I,
|I′|<∞

∑

i∈I′
epif∗

i

w∗

+
∑

j∈J
epif∗

j

w∗

=
⋃

I′⊆I,
|I′|<∞

∑

i∈I′
epif∗

i +
∑

j∈J
epif∗

j

w∗

.

Since x∗ ∈ ∂εf(x), it follows from (2.5) and the above expression that

(5.4) (x∗, ε+ 〈x∗, x〉 − f(x)) ∈
⋃

I′⊆I,
|I′|<∞

∑

i∈I′
epif∗

i +
∑

j∈J
epif∗

j

w∗

,

and hence there exist I ′ ⊆ I with |I ′| < ∞, (x∗i , ri) ∈ epif∗
i (i ∈ I ′), and (x∗j , rj) ∈

epif∗
j (j ∈ J) such that

(5.5) x∗ ∈
∑

i∈I′
x∗i +

∑

j∈J
x∗j + V

and

(5.6)
∑

i∈I′
ri +

∑

j∈J
rj ≤ (ε+ η/2) + 〈x∗, x〉 − f(x).

By shrinking V if necessary, we may assume without loss of generality that

(5.7)

∣

∣

∣

∣

∣

∣

〈

∑

i∈I′
x∗i +

∑

j∈J
x∗j − x∗, x

〉

∣

∣

∣

∣

∣

∣

≤ η/2.

For each k ∈ I ′∪J , let εk := f∗
k (x∗k)+fk(x)−〈x∗k , x〉; then εk ≥ 0 (Young’s inequality),

and x∗k ∈ ∂εkfk(x)
(

see (2.5)
)

. Thus (5.3) holds by (5.5). It remains to show (5.2). To
see this, note that (x∗k, rk) ∈ epif∗

k , and so εk ≤ rk+fk(x)−〈x∗k , x〉 for each k ∈ I ′∪J .
Further,

∑

i∈I′ fi(x) +
∑

j∈J fj(x) ≤ f(x) (since fi are nonnegative for all i ∈ I). It
follows from (5.6) that

∑

k∈I′∪J
εk ≤

∑

k∈I′∪J
rk + f(x) −

〈

∑

i∈I′∪J
x∗k, x

〉

≤
〈

x∗ −
∑

k∈I′∪J
x∗k, x

〉

+ (ε + η/2),

and so (5.2) holds by (5.7). This completes the proof.
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Let |I| ≤ +∞. Consider the following semi-infinite programming

min
x∈X

f0(x)

s.t. fi(x) ≤ 0 (i ∈ I),(5.8)

where {f0, fi : i ∈ I} ⊆ Γ(X). We say that x is a feasible point of (5.8) if f0(x) < +∞
and fi(x) ≤ 0 for all i ∈ I. For any ε ≥ 0, a feasible point x of (5.8) is called an
ε-solution if f0(x) ≤ f0(x) + ε for all feasible points x of (5.8). As an application
of the preceding theorem, we have the following fuzzy KKT result for (5.8). In the
special case when ε = 0, X is reflexive and {f0, fi : i ∈ I} ⊆ Γc(X). The fuzzy KKT
condition was first derived by Jeyakumar, Lee, and Dinh in [19]. In the special case
when ε = 0 and each fi (i ∈ I) is epi-closed, this result was also established by Boţ,
Csetnek, and Wanka in [3, 6] via the perturbation approach (indeed, [3, 6] gave the
corresponding result for a more general problem: The cone constraint problem).

Theorem 5.2. Let ε ≥ 0, and let x be an ε-solution of (5.8). Let U be a
weak∗-neighborhood of 0 and η > 0. Then there exist a finite subset I ′ of I and
{εi : i ∈ {0} ∪ I ′} ∪ {λi : i ∈ I ′} ⊆ [0,+∞) such that

(5.9) 0 ≤
∑

i∈I′∪{0}
εi ≤ ε + η, −(ε+ η) ≤

∑

i∈I′
λifi(x) ≤ 0,

and

(5.10) 0 ∈ x∗0 +
∑

i∈I′
x∗i + U

for some

(5.11) x∗0 ∈ ∂ε0f0(x) and x∗i ∈ ∂εi(λifi)(x) (i ∈ I ′).

Proof. Define f : X → R ∪ {+∞} by

f(x) = f0(x) +
∑

i∈I
gi(x),

where gi = δAi and Ai := {x ∈ X : fi(x) ≤ 0}. Then f(x) = f0(x) < +∞ and
f ∈ Γ(X). Moreover, since x is an ε-solution of (5.8), one has f(x) ≤ f(x) + ε for all
x ∈ X so that 0 ∈ ∂εf(x). We assume without loss of generality that the given weak∗

neighborhood U is convex. Note that each gi is a nonnegative function (i ∈ I). From
Theorem 5.1 (applied to {I, {0}, {gi}i∈I , f0, ε} in place of {I, J, {fi}i∈I , {fj}j∈J , ε}),
there exist a finite subset I ′ of I and {εi : i ∈ {0} ∪ I ′} ⊆ [0,∞) such that

(5.12) ε0 +
∑

i∈I′
εi ≤ ε+

η

2
and 0 ∈ x∗0 +

∑

i∈I′
z∗i +

U

2

for some x∗0 ∈ ∂ε0f0(x) and z∗i ∈ ∂εigi(x) (i ∈ I ′). Since gi = δAi , it follows from (2.4)
that g∗i (z∗i ) = supa∈Ai

〈z∗i , a〉 ≤ 〈z∗i , x〉 + εi. By (2.12) (applied to fi in place of f), it
follows that

(z∗i , 〈z∗i , x〉 + εi) ∈
⋃

λ>0

epi(λfi)∗
w∗

.
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Hence, for each i ∈ I ′, there exist λi > 0 and (x∗i , si) ∈ epi(λifi)∗ such that

(5.13) z∗i ∈ x∗i +
U

2|I ′| ,

(5.14) 〈z∗i − x∗i , x〉 < η/(4|I ′|),

and

(5.15) |〈z∗i , x〉 + εi − si| < η/(4|I ′|).

By (2.11)
(

applied to {λifi, x} in place of {f, x}
)

, for each i ∈ I ′ there exists εi ≥ 0
such that

(5.16) x∗i ∈ ∂εi(λifi)(x) and si = εi + 〈x∗i , x〉 − λifi(x).

Thus, letting ε0 := ε0, (5.11) holds. By (5.12) and (5.13), (5.10) also holds. Since
each εi ≥ 0 and fi(x) ≤ 0 (i ∈ I ′), we note that

max

⎧

⎨

⎩

∑

i∈{0}∪I′
εi , −

∑

i∈I′
λifi(x)

⎫

⎬

⎭

≤
∑

i∈{0}∪I′
εi −

∑

i∈I′
λifi(x);

thus to prove (5.9), it suffices to show that

(5.17)
∑

i∈{0}∪I′
εi −

∑

i∈I′
λifi(x) ≤ ε+ η.

To do this, note that, for each i ∈ I ′,

εi − λifi(x) = si − 〈x∗i , x〉 = (si − 〈z∗i , x〉) + 〈z∗i − x∗i , x〉 <
(

εi +
η

4|I ′|

)

+
η

4|I ′|
(

see (5.14), (5.15), and (5.16)
)

. Hence it follows from (5.12) that

ε0 +
∑

i∈I′

(

εi − (λifi)(x)
)

< ε0 +
∑

i∈I
εi + η/2 ≤ ε + η.

Thus (5.17) is true, and the proof is completed.
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MULTIVARIABLE UTILITY FUNCTIONS∗

MARIA B. CHIAROLLA† AND ULRICH G. HAUSSMANN‡

Abstract. Utility functions of several variables are ubiquitous in economics. Their maximiza-
tion requires inversion of the gradient map. Using convex analysis tools, we provide a representation
of an extension of this inverse that accounts for possible constraints. To solve economic equilib-
rium problems, the utility functions of the agents are frequently aggregated into a representative
(agent’s) utility function. We establish regularity and inversion properties of such representative
utility functions.

Key words. multivariable utility functions, representative agent utility function, convex analysis
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DOI. 10.1137/070702266

1. Introduction. Concave functions appear frequently in economics, e.g., as
production functions (translating “input” into “output”) and as utility functions
(producing an ordering of “preferences”); cf. [1], [2], [3], [7], [8], [9], [10], [11]. In
early, simple dynamic utility maximization problems, utility functions depended on
one variable—consumption of a single good. But more recently models where pref-
erences depend on the consumption of several goods, cf. [2], or on several variables
such as leisure and money supply in addition to consumption, cf. [3], [10], require
multivariable utility functions. And of course the variables are constrained—typically
the variable xi lies in an interval. The two main properties of utility functions used
in these settings, inversion of the derivative and aggregation of the functions, are well
understood in the scalar case, cf. [9], but less so in the multivariable case. It is the
purpose of this paper to remedy this situation.

Utility functions are assumed to be strictly increasing, strictly concave, and usu-
ally smooth, with “derivative equal to zero at infinity,” meaning in the scalar case
that limx→∞ ux(x) = 0, where ux is the derivative of the function. If the feasible
set in the utility maximization is bounded as in [11], then conditions at infinity can
be dispensed with; however, that excludes the interesting cases. Dana and Pontier
[7] present a nice perspective on Arrow–Debreu and Arrow–Radner equilibriums in
a dynamic, stochastic economy with exogenous endowment without assumptions on
the utility functions at zero or infinity, but in the single variable case. In [5] we study
equilibrium in a dynamic, stochastic economy with endogenous endowment consisting
in part from the return on labor provided to produce the commodity. And in [4] we
study the simpler problem of a static, deterministic economy. Both of these papers
work with multivariable utility functions and rely on the present work. Smooth utility
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functions of several variables are also considered by Bank and Riedel [2] for a port-
folio optimization problem rather than an equilibrium problem, but they do not use
a general representation of the extension of the inverse of the gradient of the utility
function. Nonsmooth multivariable utility functions are considered in [8] for the prob-
lem of maximizing terminal utility derived from a portfolio of financial instruments
under transaction costs.

We explain first the inversion result. Let y� denote the transpose of y. Consider
the problem

max
x∈A

{u(x) − y�x}(1.1)

for a concave, strictly increasing function u and a convex set A. u may be a production
function transforming a quantity x of resources into goods (or cash after the sale of the
goods), and y is the price vector of the resources. Given a price y, the manager of the
facility wants to determine the resources x required to maximize profit, so he wants
to solve (1.1). The solution is x = (∇u)−1(y) if y ∈ ∇u(A). But what if y is not in
this set? Convex analysis treats this problem by extending u to uA, which is defined
to be −∞ off A. Then the solution is x = (∂uA)−1(y) = ∂u∗A(y), where ∂f(x) is the
supergradient of a concave function f at x and f∗ is the concave conjugate of f . The
question then is to find the (effective) domain of ∂u∗A since (1.1) has a solution when
y lies in this domain. In section 3 we show that the mapping ∂u∗A is single-valued; we
call it IuA . Then we estimate its domain, and we show that IuA(y) = (∇u)−1(PA(y)),
where PA is a suitable projection of y onto ∇u(A), so IuA is an extension of (∇u)−1.
We study its regularity; the tools are standard results from convex analysis; cf. [12].

In section 3 we allow somewhat general sets A, but in the economic applications
A usually has more structure. In the above interpretation each component xi must
lie in the interval of available resources, xi ≥ 0 or possibly xi ∈ [0, bi], which can be
transformed into [0, 1] by rescaling. In [5] where u is an agent’s utility function and
x = (c, l), with c a consumption rate and l a leisure rate, A = [0,∞) × [0, 1], i.e., we
have “box” constraints. This is the setting for aggregation of several utility functions
and preference sets treated in section 4.

We sketch now a simple equilibrium problem to indicate the purpose of aggrega-
tion of utility functions. We have J agents. Agent j is endowed with ρj units of a
resource which he can sell at price y. The resource is transformed into consumables; z
units of resource produces v(z) units of consumable. The price of a consumable good
is one. Agent j obtains utility uj(cj , rj) from consuming cj units of good and holding
rj units of the resource. His personal set of preferences is described by a set in Aj ;
now we restrict Aj to be a right parallelepiped; i.e., his preferences are subject to
“box” constraints. He wishes to maximize uj over Aj , subject to a budget constraint
cj ≤ y(ρj − rj) or equivalently

max
(c,r)∈Aj

{uj(c, r) − η[c+ y r]} with solution (cj , rj) = Iu
j

Aj (η(1, y)),

where η is a Lagrange multiplier and must satisfy (1, y) ·Iu
j

Aj (η(1, y)) = y ρj . Observe
that the budget constraint will reduce to an equality at the max. The total amount
of resource in the economy is

∑J
j=1 ρ

j := Z, and the amount of good produced will
be v(z), where z = Z −

∑

j r
j . Equilibrium holds if all of the goods are consumed,

i.e., v(z) =
∑

j c
j (market clearing). The question is, Can a price y be found so that

equilibrium is obtained?
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If there is only one agent in the economy (with utility function u), then the equi-
librium problem can be solved as follows: Since market clearing implies c = v(z), r =
Z − z, take y such that IuA(η(1, y)) = (v(z), Z − z), i.e., η(1, y) = ∇u(v(z), Z − z) =
(uc(v(z), Z − z), ur(v(z), Z − z)). z and y are unknown, but the choice of y implies
that

y =
ur(v(z), Z − z)
uc(v(z), Z − z)

.(1.2)

However, if z solves the auxiliary maximization problem

max
z≤Z

u(v(z), Z − z),

then the right side of (1.2) is v′(z), and the solution of this maximization problem gives
z independent of y; the latter can then be found as v′(z). Then (c, r) = IuA(η(1, y))
solves the agent’s problem. Market clearing follows from IuA(η(1, y)) = (v(z), Z − z).

Motivated by this result when J = 1, we introduce a representative agent with a
utility function u(c, r; Λ), which is an aggregation of uj and depends on a parameter
Λ = (λ1, . . . , λJ), with λj > 0; cf. (4.1). The properties of this function are less
transparent in the multivariable case, but we show that they are sufficient to apply
the above process to solve the problem. This (in addition to the characterization of
IuA above) is the main result of the paper and is applied to a static example as above
in [4] and to a stochastic dynamic equilibrium model in [5].

In section 2 we summarize our notation. Section 3 contains the result on the
extension of the inverse of ∇u. Here we keep A fairly general, but in section 4 we
study the properties of the aggregated utility function assuming that each set Aj is a
(possibly semi-infinite) right parallelepiped, i.e., a box.

2. Notation. We summarize some notation and results from convex analysis on
�n (but in the context of concave functions); our reference is [12]. A set is affine if it
is the translate of a subspace of �n, including {0} and �n. int(A) denotes the interior
of the set A, cl(A) denotes its closure, bdy(A) denotes its boundary, aff(A) denotes
its affine hull (smallest affine set containing A), and ri(A) denotes the relative interior
of A, i.e., the interior of A relative to aff(A). If u is a function �n �→ [−∞,∞), then
the (effective) domain of u is dom(u) := {x : u(x) > −∞} and im(u) := u(dom(u)).
u is nondecreasing if u(x) ≤ u(x′) whenever x, x′ ∈ dom(u) and x ≤ x′ and where the
latter inequality in �n is taken componentwise. u is strictly increasing if u(x) < u(x′)
for such x, x′, with x 
= x′; i.e., u is strictly increasing in each of its n arguments.
The function u is (strictly) concave if it is (strictly) concave on dom(u), which we
assume to be nonempty. This makes the function a proper, concave function in the
terminology of convex analysis.

The conjugate function of the concave function u is defined as

u∗(y) := inf
x∈
n

{x�y − u(x)}.

Observe that ū := −u is convex if u is concave and its (convex) conjugate function is

ū∗(y) := sup
x∈
n

{x�y − ū(x)} = −u∗(−y).

This implies that dom(ū∗) := {y : ū∗(y) <∞} = −dom(u∗).



1514 MARIA B. CHIAROLLA AND ULRICH G. HAUSSMANN

The supergradients of u at x are all y ∈ �n such that for all z

u(z) − u(x) ≤ (z − x)�y.

The set of all supergradients (called the superdifferential) is denoted by ∂u(x), and
dom(∂u) := {x : ∂u(x) 
= ∅} is the (effective) domain of ∂u. If we write ∂oū for the
subgradient of the convex function ū (both ∂ and ∂o are generalized gradients in the
sense of Clarke [6]), then ∂u = −∂o(ū), so the results for convex functions can be
translated to concave functions. We observe that if u is concave, then

(x− x′)�y ≤ u(x) − u(x′) ≤ (x − x′)�y′(2.1)

for all x 
= x′ and all y ∈ ∂u(x), y′ ∈ ∂u(x′), with strict inequality in the case u is
strictly concave. If in addition u is differentiable on int(dom(u)), then ∂u = {∇u},
the gradient of u, on this set. Note that ∂u is monotone in the terminology of convex
analysis and strictly monotone in the case of strict concavity. Note bene (N.b.) for
A ⊂ �n a multivalued function g : A �→ 2


n

is monotone if (x − x′)�(y − y′) ≤ 0 for
all y ∈ g(x), y′ ∈ g(x′), and x, x′ ∈ A. It is strictly monotone if the inequality is strict
for x 
= x′, y 
= y′. We have translated monotonicity from the convex setting to the
concave by reversing the inequality; hence if n = 1 the graph of g is decreasing rather
than increasing. Finally when ∂u = {∇u}, we will write ∂u = ∇u.

The recession cone of a convex set A ∈ �n is, cf. Theorem 8.1 of [12]

0+A := {z ∈ �n : A+ z ⊂ A}.

If u is a closed, proper concave function, then ū is a proper convex function and its
recession function is, cf. Theorem 8.5 of [12] (n.b. dom(ū) = dom(u)),

(ū0+)(x) := sup
z∈dom(ū)

[ū(z + x) − ū(z)] = − inf
z∈dom(u)

[u(z + x) − u(z)].

Then Theorem 13.3 of [12] implies that

inf
y∈dom(u∗)

y�x = − sup
y∈dom(ū∗)

y�x = −(ū0+)(x).(2.2)

The normal cone to A at x ∈ A, denoted by NA(x), consists of the outward
normals to A at x. It is empty for x /∈ A and is {0n} for x ∈ int(A). Here 0n denotes
the zero vector in �n. Note that aff(NA(x)) = NA(x) −NA(x) is a subspace. Define

χA(x) :=
{

0 if x ∈ A,
∞ if x /∈ A;

it is the indicator function of A. Then ∂oχA(x) = NA(x) for x ∈ A and is empty for
x /∈ A. Define uA(x) := u(x) − χA(x), �n+ := {x ∈ �n : xi ≥ 0, i = 1, . . . , n}, and
�n++ := {x ∈ �n : xi > 0, i = 1, . . . , n}.

We shall have occasion to decompose �n as a direct sum of orthogonal subspaces,
�n = Z ⊕ Z⊥. Then x ∈ �n decomposes as x = z ⊕ z⊥. We denote by ∂zu(x)
the superdifferential with respect to z of u at x, similarly for ∇zu(x). In section 4
the subspaces Z will always be generated by a subset of the standard basis vectors
�e1, . . . , �en, but in section 3 a rotation may intervene.
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3. The inverse. For a positive integer n, consider a function u : �n �→ [−∞,∞).
Henceforth we work under the following assumptions. The smoothness assumptions
are very strong relative to the current work in convex analysis, but they are standard
in a large part of the mathematical finance and economics literature.

Assumption 1.

(i) u is upper semicontinuous, concave, and nondecreasing, and int(dom(u)) 
= ∅;
(ii) u is continuous on dom(u);
(iii) u is continuously differentiable on int(dom(u)).
From (i) it follows that u is a closed, proper concave function. (ii) removes some

possible pathologies at any boundary of dom(u), and (i) and (iii) imply that ∂u = ∇u
on int(dom(u)) ⊂ dom(∂u). Typically for us int(dom(u)) = �n or xo +�n++ for some
xo ∈ �n.

Assumption 2.

(i) A 
= ∅, convex, A ⊂ �n+ ∩ dom(u), and A is closed relative to dom(u);
(ii) dom(∂uA) ⊂ int(dom(u)) ∩A;

(iii) u is strictly increasing, strictly concave on dom(∂uA).
From Assumption 2(i) it follows that uA is a closed, proper concave function with

dom(uA) = A. Assumption 2(ii) implies that ri(A) = ri(dom(uA)) ⊂ dom(∂uA) ⊂
int(dom(u)) and hence Theorem 23.8 of [12] implies ∂uA(x) = ∂u(x) − NA(x) since
∂oχA(x) = NA(x). Furthermore (the last inclusion follows from Assumption 2(ii)
again)

int(dom(u)) ∩A ⊂ dom(∂u) ∩A = dom(∂uA) ⊂ int(dom(u)) ∩A,(3.1)

so dom(∂uA) = int(dom(u))∩A is convex and ∂uA(x) = {∇u(x)}−NA(x), and hence
∇u(x) ∈ ∂uA(x) on dom(∂uA) with equality on int(A).

Note that Assumption 2(ii) can often be satisfied by extending u. For example,
if u(x) =

√
x+ 1 on dom(u) := [0,∞) = A, then (ii) fails, but by extending the

effective domain to dom(u) := (−1,∞) we assure Assumption 2(ii) without changing
the problem (1.1).

Assumption 3. There exists μ ∈ 0+A such that for all x ∈ 0+A

inf
z∈dom(∂uA)

∇u(z)�x ≤ μ�x.(3.2)

Because ∂u is monotone, Assumption 3 is a growth condition at infinity.
Example 3.1.
(i) n = 1 and u(x) = ln(x−ε), so dom(u) = dom(∂u) = (ε,∞). Take A = (0,∞)

if ε = 0 or [0,∞); if ε < 0, then Assumptions 1, 2, and 3 are satisfied with
μ = 0.

(ii) n = 2 and

u(x1, x2) :=
{

(x1 − ε1)γ1(x2 − ε2)γ2 if xi ≥ εi, i = 1, 2,
−∞ if xi < εi,

with γi > 0, γ1 + γ2 < 1; then dom(∂u) = (ε1, ε2) +�2
++ = int(dom(u)), and

u satisfies Assumption 1. If
(a) A = [0,∞) × [0, 1], then Assumption 2 holds for εi ≤ 0. Note that

dom(∂uA) = A if both εi < 0, but dom(∂uA) = A∩�2
++ if both εi = 0;

(b) A = [0,∞) × {0} and we require ε2 < 0, then dom(∂uA) = A if ε1 < 0,
but dom(∂uA) = A ∩ {x1 > 0} if ε1 = 0. Assumption 2 holds. Observe
that NA(x) = {0} × � for x ∈ ri(A) and NA(x) = (−∞, 0] × � for
x = (0, 0) and is empty otherwise.
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In both cases 0+A = [0,∞)× {0} and Assumption 3 holds with μ = 02 since
γ1 < 1, γ2 > 0.

(iii) For A = [0,∞) × {0}, it is also interesting to consider the case γ2 = 0, i.e.,

u(x1, x2) :=
{

(x1 − ε1)γ1 if x1 ≥ ε1,

−∞ if x1 < ε1,

with 0 < γ1 < 1. Assumption 1 holds with dom(∂u) = (ε1,∞) × � =
int(dom(u)). Since dom(∂uA) = A for ε1 < 0, dom(∂uA) = (0,∞) × {0} for
ε1 = 0; then Assumption 2 holds. Assumption 3 also holds with μ = 02.

(iv) For μo ≥ 0, u(x1, x2) := μox1 − x−1
1 +

√
x2 and A := (0,∞) × [0, 1) satisfy

Assumptions 1, 2, and 3 with μ = (μo, 0).
Later we shall be considering several utility functions which we will want to define

on the same space �n, but not all of the functions will depend on all n arguments.
Example 3.1(iii) above gives such a function.

Recall (3.1) and define

RuA := ∇u(A ∩ int(dom(u))) = ∇u(dom(∂uA)).(3.3)

Notice that as u is strictly increasing on dom(∂uA), then RuA ⊂ �n++. Recall that
∇u ∈ ∂uA on dom(∂uA) with equality on int(A). Although ∇uA is only defined
on int(A), we extend it as grAu(x) := ∇u(x) for x ∈ dom(∂uA). We explain in
Remark 3.11 below why this works for us even when int(A) = ∅. Since ∇u is strictly
monotone on A∩ int(dom(u)), we should be able to invert grAu on RuA , but we want
to extend this inverse function as far as possible so that it solves (1.1) for as large a
selection of y as possible. Note that (∇u)−1 will usually not be the correct extension;
for example, if n = 1 additional conditions (the Inada conditions) must be imposed
for this to be true.

As uA is a closed, proper concave function, the conjugate concave function of uA
is again closed, proper, and concave, and is

u∗A(y) = inf
x∈
n

{x�y − uA(x)} = inf
x∈A

{x�y − u(x)}.

Proposition 3.2. Under Assumptions 1 and 2, there exists a continuous, mono-
tone function IuA : int(dom(u∗A)) → dom(∂uA) = dom(∂u)∩A that extends (grAu)−1

beyond RuA and solves (1.1). IuA is strictly monotone on RuA . If ∇u is p times
continuously differentiable, then so is IuA on int(RuA ).

Proof. The solution of (1.1) is

IuA(y) := arg min
x∈
n

{x�y − uA(x)} = {x : y ∈ ∂uA(x)} = ∂u∗A(y)(3.4)

according to Theorem 23.5 and Corollary 23.5.1 of [12]. The strict concavity of uA
on dom(∂uA) and (2.1) implies that IuA is single-valued, so ∂u∗A(y) is a singleton and
hence a bounded set, and Theorem 23.4 of [12] implies that dom(IuA) = dom(∂u∗A) =
int(dom(u∗A)). Moreover, y ∈ RuA implies that y = ∇u(x) for some x ∈ dom(∂uA),
i.e., y ∈ ∂uA(x) and hence x ∈ ∂u∗A(y) = IuA(y), cf. Corollary 23.5.1 of [12] and we
conclude that IuA = (grAu)−1 on RuA ; i.e., IuA extends the inverse of grAu beyond
RuA , and im(IuA) = dom(∂u∗∗A ) = dom(∂uA).

Since IuA is single-valued, then IuA = ∇u∗A, and so u∗A is differentiable on
dom(IuA). Since IuA is proper and concave, then it is continuous on this set; cf.
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Theorem 25.5 of [12]. The concavity of u∗A implies that IuA = ∇u∗A is monotone.
Strict concavity of u on dom(∂uA) implies

(x1 − x2)�(∇u(x1) −∇u(x2)) < 0 for x1 
= x2 ∈ dom(∂uA), so
(IuA(y1) − IuA(y2))�(y1 − y2) < 0 for y1 
= y2 ∈ RuA .(3.5)

It follows that IuA is strictly monotone on RuA .
Let us now look at the differentiability of IuA . If ∇u is differentiable, then the

Hessian of u at x, i.e., Hu(x), exists and is negative definite, and hence so is its inverse
(Hu(x))−1. The inverse function theorem now implies that IuA is p times continuously
differentiable on int(RuA) if ∇u is.

We now find inner and outer estimates for dom(IuA). Define the polar of a
nonempty convex cone K as K◦ := {y : y�x ≤ 0 ∀x ∈ K}, and observe that
(−K)◦ = −K◦.

Proposition 3.3. Under Assumptions 1, 2, and 3,

μ− int((0+A)◦) ⊂ dom(IuA) ⊂ −int((0+A)◦).

Proof. For the inner estimate it suffices to show that infy∈dom(u∗
A) y

�x ≤
infy∈μ−(0+A)◦ y

�x since this implies cl(μ − (0+A)◦) ⊂ cl(dom(u∗A)), and hence μ −
int((0+A)◦) = int(cl(μ− (0+A)◦)) ⊂ int(cl(dom(u∗A))) = ri(dom(u∗A)) ⊂ dom(∂u∗A) =
dom(IuA). As A ⊂ �n+, then 0+A cannot contain any nontrivial subspace, so Corollary
14.6.1 of [12] implies that int((0+A)◦) 
= ∅, and the same must be true for dom(u∗A);
hence int(dom(u∗A)) = ri(dom(u∗A)).

From (2.2) and concavity

inf
y∈dom(u∗

A)
y�x = inf

z∈dom(uA)
[uA(z + x) − uA(z)] ≤ inf

z∈dom(uA)
y∈∂uA(z)

y�x.(3.6)

If x /∈ 0+A = 0+(ri(A)), then the second infimum is −∞ since for some z ∈ ri(A) ⊂
dom(uA) we must have z+x /∈ ri(A) and a slight perturbation of z produces z′ ∈ ri(A)
(so uA(z′) > −∞) with z′ + x /∈ cl(A) ⊃ dom(uA); hence uA(z′ + x) = −∞.

For x ∈ 0+A, (3.6) and (3.2) imply

inf
y∈dom(u∗

A)
y�x ≤ inf

z∈dom(∂uA)
y∈∂uA(z)

y�x ≤ inf
z∈dom(∂uA)

∇u(z)�x ≤ μ�x.

On the other hand, if x ∈ 0+A, then

inf
y∈μ−(0+A)◦

y�x = μ�x+ inf
y∈−(0+A)◦

y�x.

But y ∈ −(0+A)◦ ⇔ y�z ≤ 0 ∀z ∈ −(0+A) ⇒ y�x ≥ 0. Taking lim‖y‖↓0 yields
infy∈−(0+A)◦ y

�x = 0, so for all x

inf
y∈dom(u∗

A)
y�x ≤ inf

y∈μ−(0+A)◦
y�x

and the inner approximation follows.
For the outer approximation, observe that for z ∈ 0+A and y ∈ �n

sup
x∈A

{u(x) − y�x} ≥ sup
x∈A+z

{u(x) − y�x} = sup
x∈A

{u(z + x) − y�(z + x)}

= sup
x∈A

{u(z + x) − y�x} − y�z ≥ sup
x∈A

{u(x) − y�x} − y�z
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Fig. 1. A, dom(∂uA), dom(IuA), and RuA .

since u is strictly increasing and 0+A ⊂ �n+. Hence u∗A(y) ≤ u∗A(y) + y�z, i.e.,
y�z ≥ 0 for all z ∈ 0+A and y ∈ dom(u∗A). But y ∈ −(0+A)◦ ⇔ y�z ≥ 0 ∀z ∈ 0+A,
so dom(IuA) ⊂ dom(u∗A) ⊂ −(0+A)◦. The result follows since dom(IuA) is open; cf.
Proposition 3.2.

Remark 3.4. We observe that if μ = 0, then our estimates are exact, i.e., dom(IuA)
= −(0+A)◦.

Example 3.5. Let u(x1, x2) := 2
√
x1 + μox2 + x2

1+x2
and A := [0, 1] × [0,∞), so

dom(∂u) = (0,∞)× (−1,∞), RuA = [1,∞)× (μo, μo + 1], and dom(IuA) = {y ∈ �2 :
y2 > μo}. In Figure 1 we have used μo = 0.5. In the left panel the shaded region is
A, and with the left boundary deleted it is dom(∂uA). The arrows denote outward
normals. In the right panel RuA is the shaded region, dom(IuA) is the region above
the dashed line, and the arrows represent the projection PuA ; cf. Corollary 3.9.

Remark 3.6. Write Hu(x) for the Hessian of u at x. If u is twice continu-
ously differentiable on int(dom(u)), then ∇IuA is a continuous function on RuA since
∇IuA(y) = (Hu(IuA(y)))−1.

Remark 3.7. Sometimes u will also depend on a parameter, i.e., u(x, t); neverthe-
less, ∇u(x, t) will still denote the gradient of u with respect to x only. Assumptions 1, 2,
and 3 are assumed to hold for each t. For such u with t in an interval T , IuA is a func-
tion of (y, t) and RuA also depends on t. If ∇u(x, t) is continuously differentiable in
(x, t), then IuA is continuously differentiable in {(y, t) : y ∈ int(RuA(t)), t ∈ int(T )}.
This follows again from the implicit function theorem.

Let us give a representation of IuA(y) as a projection of dom(IuA) onto RuA

parallel to a vector in NA(x), the set of outward normals to A at x, for some x ∈ A
such that y = ∇u(x). If A is a polyhedral set, then NA(x) is constant on each face, so
the projection is particularly simple to identify; cf. Examples 3.5 and 4.8 and Figures 1
and 2.

Lemma 3.8. For every y ∈ dom(IuA) there exists a unique x ∈ dom(∂uA) such
that y + �n = ∇u(x) for some �n ∈ NA(x).

Proof. Define the convex function x �→ hy(x) := x�y − u(x) so ∂oh
y(x) = y −

∂u(x). Recall ∂o denotes the subgradient. Then dom(hy) = dom(u) and Assumptions
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1(iii) and 2(ii) and Theorem 23.4 of [12] imply

ri(dom(hy)) = int(dom(u)) ⊃ dom(∂uA) ⊃ ri(dom(uA)) = ri(A) 
= ∅.

Hence Theorem 27.4 of [12] yields that x = IuA(y), cf. (3.4), if and only if there
exists x∗ ∈ ∂oh

y(x) such that −x∗ ∈ NA(x). Since x∗ ∈ ∂oh
y(x), then y − x∗ ∈

y−∂ohy(x) = ∂u(x). But x = IuA(y) ∈ dom(∂uA) ⊂ int(dom(u)), so y−x∗ = ∇u(x).
Hence y ∈ ∇u(x) −NA(x) for x = IuA(y).

IuA(y) is the only such x since ∇u(x) − �n = ∇u(x′) − �n′ = y implies

[∇u(x) −∇u(x′)]�[x− x′] = [�n− �n′]�[x− x′] ≥ 0

because x �→ NA(x) = ∂oχ(x) is maximal monotone, being the convex subdifferential
of a convex function. This contradicts the strict concavity of u on dom(∂uA).

Corollary 3.9. There exists a projection PuA : dom(IuA) �→ RuA such that

IuA(y) = (∇u)−1(PuA(y)).

Proof. The required projection is PuA(y) := ∇u(x) with x given by Lemma
3.8.

Remark 3.10. Corollary 3.9 implies that dom(IuA) =
⋃

x∈A∩ Int(dom(u))[∇u(x) −
NA(x)]. If x ∈ bdy(A) ∩ dom(∂u), then ∇u(x) ∈ RuA ∩ bdy(RuA ) and IuA extends
(grAu)−1 across these boundary points of RuA ; cf. Example 3.5 and Figure 1. The
other boundary points of RuA are not in RuA and in fact are on bdy(dom(IuA)).

Remark 3.11. Let us explain the situation when int(A) = ∅. Consider x ∈ ri(A).
Then �n decomposes into NA(x)⊥⊕NA(x), with aff(A) a translation of NA(x)⊥. For
convenience take n = 2, μ = 02, A = [0,∞) × {b}, with b ≥ 0, so NA(x)� = {x :
x2 = 0}. For maxx∈A[u(x)− y�x] the map of interest is the partial derivative ux1 or,
to embed it in �2, (ux1 , 0). For any y ∈ �2 with 0 < y1 < ux1(0, b), the appropriate
inverse image projects y into (y1, 0) and then takes the inverse under (ux1 , 0) to pro-
duce x = ((ux1(·, b))−1(y1), b) ∈ ri(A). On the other hand, (∇u)−1(PuA(y)) projects
y into (y1, yo2) ∈ ∇u(A) for some yo2. Then (∇u)−1(y1, yo2) is the same x as above. A
similar situation occurs for y1 ≥ ux1(0, b); either approach maps y into (0, b). It is
much more convenient to work with ∇u rather than (ux1 , 0); that is why we defined
grAu as the restriction of ∇u to A ∩ int(dom(u)).

Definition 3.12. If cl(A) is polyhedral, then it has a finite number of nonempty
faces of dimension less than n, call them C̄k, k = 1, . . . ,K; cf. Theorem 19.1 of [12].
Define Ck := ri(C̄k), k = 1, . . . ,K, and C0 := int(A), possibly empty. Then C0, . . . , CK
is a partition of cl(A), cf. Theorem 18.2 of [12], and C1, . . . , CK is a partition of
bdy(A). Set Sk := (IuA)−1(Ck), k = 0, . . . ,K. Then S0 = (IuA)−1(int(A)) =
∇u(int(A)) = int(RuA). Write bdy(RuA ,Sk) for the boundary between RuA and
Sk.

We now discuss differentiability of IuA off RuA .
Corollary 3.13. Assume that A is a polyhedron and ∇u is continuously dif-

ferentiable. Then IuA and PuA are continuously differentiable on int(Sk) for each k.
The directional derivative of IuA parallel to the boundary is continuous, but normal
to the boundary it is not.

Proof. NA(x) is independent of x for x ∈ Ck, i.e., NA(x) = NA(Ck). Now for
y ∈ Sk we have an orthogonal decomposition y = y⊥ ⊕ yo, with yo ∈ aff(NA(Ck)),
and similarly for x ∈ Ck we have x = x⊥ ⊕ xo, with xo ∈ aff(NA(Ck)), same for all
x ∈ Ck, and x⊥ ∈ aff(NA(Ck))⊥, the subspace parallel to aff(Ck). This is equivalent
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to rotating and reordering the axes so that aff(Ck) is parallel to the span of the
standard basis vectors {e1, . . . , e�}; of course the transformation changes with k. Then
PuA(y) = ∇u(x⊥ ⊕ xo) = ∇x⊥u(x⊥ ⊕ xo) ⊕∇xou(x⊥ ⊕ xo) where, ∇x⊥ denotes the
gradient with respect to x⊥ and similarly for ∇xo . Moreover PuA(y) = y⊥ ⊕ φ(y⊥),
where φ(y⊥) = ∇xou(x⊥(y⊥)⊕xo) and x⊥(y⊥) is the solution of y⊥ = ∇x⊥u(x⊥⊕xo).
The Hessian with respect to x⊥ of u(x⊥ ⊕ xo) is negative definite since Hu is. The
implicit function theorem now implies the continuous differentiability of x⊥. The
continuous differentiability on int(Sk) follows since IuA(y) = x⊥(y⊥) ⊕ xo.

Since ∇IuA(y) = (Hu(IuA(y)))−1, then the directional derivative of IuA(·) in the
direction v at y ∈ RuA (where IuA = (∇u)−1) is

(IuA)′(y; v) =
(

Hu(IuA(y))
)−1

v.

For y = y⊥ ⊕ yo ∈ Sk the Jacobian of PuA intervenes (PuA is just I on RuA), so we
obtain

(IuA)′(y; v) =
(

Hu(IuA(y))
)−1

(

I 0
∇φ(y⊥) 0

)

v

=
(

Hu(IuA(y))
)−1

(

I 0
(Hu(IuA(y)))xox⊥((Hu(IuA(y)))x⊥x⊥)−1 0

)

v(3.7)

=
(

((Hu(IuA(y)))x⊥x⊥)−1 0
0 0

)

v,

where (Hu)x⊥x⊥ := ( ∂
∂x⊥ )2u has dimension dim(y⊥)×dim(y⊥) = �× �, (Hu)xox⊥ :=

∂2

∂xo∂x⊥u has dimension dim(yo)×dim(y⊥) = (n − �) × �, and I, 0 are the iden-
tity and zero matrices, respectively, of appropriate dimensions. We use the obvious
matrix notation for linear transformations mapping aff(N (Ck))⊥ ⊕ aff(NA(Ck)) �→
aff(NA(Ck))⊥ ⊕ aff(N (Ck)).

Note that bdy(RuA ,Sk) ⊂ Sk ∩ RuA , and for y ∈ bdy(RuA ,Sk), PuA(y) = y.
Then the two versions of (IuA)′ agree only if v is orthogonal to aff(NA(Ck)). We
conclude that the directional derivatives of IuA in the directions parallel to NA(Ck)
are discontinuous across the boundary.

A similar result holds for the boundaries between Sk and Sj since the dimension
of (Hu)x⊥x⊥ decreases when the dimension of Ck decreases.

This work can be extended to the time-dependent case. Consider a function
u(x, t), where t ∈ T denotes time. We maintain Assumptions 1, 2, and 3 for each t,
and we assume that A = A(t) is polyhedral. We say that it is p times continuously
differentiable if the maps t �→ ak(t) are p times continuously differentiable, where the
ak, k ∈ K, are the generators of A(t) (terminology of section 19 of [12]). The following
proposition extends Proposition 3.2, Remark 3.7, and Corollary 3.13. Recall that ∇
refers to the gradient with respect to x only. We write IuA(y, t) for IuA(·,t)(y) and
similarly for PuA .

Proposition 3.14. If t �→ A(t) and (x, t) �→ ∇u(x, t) are continuous on T ,
int(dom(u)) × T , respectively, then so are IuA(y, t) and PuA(y, t) on dom(IuA) :=
{(y, t) : y ∈ dom(IuA(·,t)), t ∈ T }. If A and ∇u are continuously differentiable in
(x, t), then IuA(y, t) and PuA(y, t) are similarly continuously differentiable on {(y, t) :
y ∈ Sk(t), t ∈ int(T )} for each k. The directional derivative with respect to y in the
normal direction is discontinuous across the boundary of Sk(t).

Proof. From Proposition 3.2 we know that IuA is continuous in y on each t-section
of dom(IuA). On the other hand, the continuity of ∇u gives that of t �→ RuA(t), cf.
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(3.3), and hence of (y, t) �→ PuA(y, t), cf. the proof of Corollary 3.13. Moreover
IuA(y, t) is the solution x of ∇u(x, t) = PuA(y, t), so the joint continuity follows from
the implicit function theorem.

The piecewise continuous differentiability follows similarly.
Remark 3.15. We can also compute the time derivative of IuA(·,t)(y) when A is

constant. For y ∈ RuA(t)

∂

∂t
IuA(·,t)(y) = −

(

Hu(·,t)((∇u(·, t))−1(y))
)−1 ∂

∂t
∇u(x, t)

∣

∣

∣

x=(∇u(·,t))−1(y)
.(3.8)

For y ∈ Sk(t), y⊥ and xo are constant since A is; moreover IuA(·,t)(y) = x = x⊥ ⊕ xo,
with x⊥ solution of y⊥ = ∇x⊥u(x⊥ ⊕ xo, t). Then 0 = ∇x⊥x⊥u(x⊥ ⊕ xo, t) ∂∂tx

⊥ +
∂
∂t∇x⊥u(x⊥ ⊕ xo, t), and hence

∂

∂t
x⊥ = −

[

∇x⊥x⊥u(x⊥ ⊕ xo, t)
]−1 ∂

∂t
∇x⊥u(x⊥ ⊕ xo, t).

It follows that

∂

∂t
IuA(·,t)(y) = −

(

((Hu(·,t)(IuA(·,t)(y)))x⊥x⊥)−1

0

)

∂

∂t
∇x⊥u(x, t)

∣

∣

∣

x=IuA(·,t)(y)
.(3.9)

We conclude that ∂
∂tI

uA(·,t)(y) is continuous except at the boundaries of RuA(t) and
each Sk(t). Moreover ∂

∂tI
uA(·,t)(y) is orthogonal to NA(IuA(·,t)(y)) since, cf. (3.9),

( 0 I )

(

((Hu(·,t)(IuA(·,t)(y)))x⊥x⊥)−1 ∂
∂t∇x⊥u(x, t)

∣

∣

∣

x=IuA(·,t)(y)
0dim(yo)

)

= 0,

and this holds for all y ∈ �+
n since NA(IuA(·,t)(y)) = {0n} for y ∈ RuA(t).

4. Aggregate utility function. We now aggregate the actions of several agents
into the action of a single representative agent. His utility function must opportunely
weight the utility functions of the individual agents in the economy; the factor Λ
below will accomplish this. We strengthen Assumption 2 so that A corresponds to
“box” constraints.

Assumption 2
′
.

(i) A =
∏n
i=1Di ⊂ dom(u), Di =

⎧

⎪

⎨

⎪

⎩

[0,∞) or (0,∞) if i ∈ M,

[0, 1] or (0, 1] if i ∈ M̃,

{0} if i ∈ Mo,

M∪M̃ ∪Mo = {1, . . . , n}, A closed relative to dom(u);
(ii) dom(∂uA) ⊂ int(dom(u)) ∩A;

(iii) u is strictly increasing, strictly concave on dom(∂uA).
In (i) above the inclusion or exclusion of 0 in Di is determined by the requirement

that A be closed in the relative topology of dom(u). The more general case where
the left end point of Di is ai and the right is bi > ai is reduced to the above by
shifting the origin to a and changing the scale. This will not alter the concavity or
regularity of u. M gives the variables which are unbounded so 0+A =

∏

i∈MDi,
M̃ gives the variables which are bounded, and Mo gives those variables that do not
affect u. Write m for card(M) = dim(0+A), so if we think of 0+A as �m+ ⊕{0}, then
−(0+A)◦ = �m+ ⊕�n−m.
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We will aggregate J utility functions, u1, . . . , uJ ; we assume that for each j, uj

and Aj satisfy Assumptions 1, 2′, and 3 with corresponding Dj
i , Mj, M̃j , Mj

o, mj ,
and μj . We may assume that

⋂

j Mj
o = ∅.

For Λ = (λ1, . . . , λJ) ∈ �J++ we will define the function u(x; Λ) as a supremal
convolution on �n:

u(x; Λ) := sup
∑

j x
j=x

J
∑

j=1

λju
j
Aj (xj),(4.1)

where xj = (xj1, . . . , x
j
n)� ∈ �n.

We require more notation. Define

Iu(y; Λ) :=
J
∑

j=1

Iu
j

Aj

( y

λj

)

,(4.2)

and set D(Λ) := dom(Iu(. ; Λ)) =
⋂

j λjdom(Iu
j

Aj ), an open set since dom(Iu
j

Aj ) =
int(dom((ujAj ))∗). Then Proposition 3.3 implies

∅ 
=
⋂

j

(

λjμ
j + �mj

++ ⊕�n−mj
)

⊂ D(Λ) ⊂
⋂

j

(

�mj

++ ⊕�n−mj
)

.(4.3)

Observe that if μj = 0 for all j, then D(Λ) =
⋂

j

(

�mj

++ ⊕�n−mj
)

. Define

Ro(Λ) :=
{

y ∈ D(Λ) :
J
⋂

j=1

aff
(

NAj

(

Iu
j

Aj

( y

λj

)))

= {0n}
}

.(4.4)

Note that Ro(Λ) ⊃ D(Λ) ∩
⋃

j λj int(Ruj

Aj
) (since NAj (x) = {0n} for x ∈ int(Aj)),

but the inclusion may be strict. If Mj
o 
= ∅, then int(Ruj

Aj
) = ∅, and if Cjk is a vertex

of Aj , then aff(NAj (Cjk)) = �n.
Definition 4.1. Ro is set-continuous if for y ∈ Ro(Λ) there exists ε > 0 such

that whenever y′,Λ′ satisfy maxj ‖ y
′

λ′
j
− y

λj
‖ < ε, then y′ ∈ Ro(Λ′).

Lemma 4.2. Ro(Λ) ⊂ �n++ is open, and Ro is set-continuous.
Proof. Suppose y ∈ D(Λ) but y /∈ �n++, so yi ≤ 0 for some i /∈

⋃

j Mj ; cf.
(4.3). Since uj is strictly increasing on dom(∂ujAj ), then Ruj

Aj
= ∇uj(dom(∂ujAj )) ⊂

�n++, so Puj

Aj
projects y

λj
into �n++. Then �nj of Lemma 3.8 can be written as

�nj =
∑

�∈L α
j
� ẽ
j
� , where αj� > 0, ẽj� is plus or minus a standard basis vector, and

the convex hull of {ẽ� : � ∈ L} generates the convex cone NAj (Iu
j

Aj ( yλj
)). Because

Puj

Aj
projects y

λj
into �n++ and yi ≤ 0, then �ei is one of the ẽj� for all j, and hence

�ei ∈ NAj (Iu
j

Aj ( yλj
)) for all j. From the definition of Ro it follows that y /∈ Ro(Λ),

and hence Ro(Λ) ⊂ �n++.
Next we show that Ro(Λ) is open. D(Λ) is open; take y ∈ Ro(Λ), and write x̂j( yλj

)
for Iu

j

Aj ( yλj
). Recall that we set Cj0 = int(Aj); cf. Definition 3.12. If x̂j( yλj

) ∈ int(Aj),
then so is x̂j( y

′

λj
) for y′ a sufficiently small pertubation of y; cf. Proposition 3.2. If

x̂j( yλj
) ∈ Cjk, then x̂j( y

′

λj
) ∈ Cjk or x̂j( y

′

λj
) ∈ Cjk′ with cl(Cjk′) ⊃ Cjk since Cjk is relatively

open (think of Cjk as an edge with the end point removed and Cjk′ as the relative interior
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of an adjoining face). In the latter case it follows that NAj (x̂j( y
′

λj
)) ⊂ NAj (x̂j( yλj

)).
In any case

⋂J
j=1 aff(NAj (Iu

j

Aj ( y
′

λj
))) ⊂

⋂J
j=1 aff(NAj (Iu

j

Aj ( yλj
))) = {0n}, and hence

y′ ∈ Ro(Λ).
The set continuity of Ro is established as in the previous paragraph but with y′

λj

replaced by y′

λ′
j

since y ∈ D(Λ) if and only if y
λj

∈ dom(Iu
j

Aj ) for all j, and dom(Iu
j

Aj )
is open.

Recall that bdy(Aj) decomposes into the relatively open pieces Cjk, k > 0. We
will demand a bit more regularity of uj:

if Cjk ∩ dom(∂uj) 
= ∅, then Cjk ⊂ dom(∂uj).(4.5)

Theorem 4.3. Assume that uj, j = 1, . . . , J , are utility functions satisfying
Assumptions 1, 2′, and 3. If (4.5) holds for each j, then the following hold:

(i) For each Λ ∈ �J++, u(. ; Λ) : �n �→ [−∞,∞) is a closed, proper, concave,
nondecreasing function on �n with dom(u(·; Λ)) = A :=

∑J
j=1 A

j. For each x ∈ A

there exist x̂j ∈ Aj such that

x =
∑

j

x̂j , u(x; Λ) =
∑

j

λju
j
Aj (x̂j).(4.6)

Moreover Iu(. ; Λ) is the inverse of ∂u(. ; Λ) and is monotone. u(. ; Λ) is strictly
concave on dom(∂u(. ; Λ)) = im(Iu(. ; Λ)).

(ii) im(Iu(. ; Λ)) = Ã :=
∑

j dom(∂ujAj ) is convex. For x ∈ Ã there exists y ∈
(Iu(. ; Λ))−1(x) such that

x̂j = Iu
j

Aj

(

y

λj

)

.(4.7)

(iii) u(·; Λ) is continuously differentiable on Au(Λ) := Iu(Ro(Λ); Λ). This set
is dense in A. Moreover (∇u(·; Λ))−1 = Iu(·; Λ) on ∇u(Au(Λ); Λ) = Ro(Λ), so
Iu(y; Λ) is a continuous, monotone extension of (∇u(·; Λ))−1, strictly monotone on
cl(Ro(Λ)) ∩ D(Λ). u(. ; Λ) is strictly increasing on Au(Λ). For y ∈ Ro(Λ) we have

∇u(Iu(y; Λ); Λ) = y.(4.8)

(iv) For each x ∈ Au(Λ),

∇u(x; Λ) = λj∇uj(x̂j) − �nj(x̂j), j = 1, . . . , J,(4.9)

where �nj(x̂j) ∈ NAj (x̂j) and for each i = 1, . . . , n there exists j(i) such that [�nj(i)

(x̂j(i))]i = 0.
(v) If for each j, ∇uj(x) is continuously differentiable, then ∇u(x; Λ) is piecewise

continuously differentiable.
Proof. Define the convex function f j := −λjujAj . Recall that for a concave

function u, (−u)∗(y) = −u∗(−y). From this and (4.3) it follows that
⋂

j

int
(

dom((f j)∗)
)

= −
⋂

j

int
(

dom((λju
j
Aj )∗)

)


= ∅.

It follows from Theorem 16.4 of [12] that u is closed, concave, and proper and (4.6)
holds with x̂j ∈ Aj . Evidently dom(u(. ; Λ)) = A. Since the constraint in (4.1) can
be relaxed to

∑

xj ≤ x, then it follows that u is nondecreasing.
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The same theorem also implies

u∗(y; Λ) =
∑

j

(λju
j
Aj )∗(y) =

∑

j

λju
j∗
Aj

( y

λj

)

.

Now Theorem 23.8 of [12] implies that the superdifferential of u∗(·; Λ) is

∂u∗(y; Λ) =
∑

j

∂(λju
j
Aj )∗(y) =

∑

j

∂uj∗Aj

( y

λj

)

=
∑

j

Iu
j

Aj

( y

λj

)

= Iu(y; Λ);(4.10)

cf. (4.2). Thus ∂u∗(y; Λ) is single-valued on D(Λ). We can now conclude that the
concave function u∗ is continuously differentiable, cf. Theorems 25.1 and 25.5 of [12],
on D(Λ) = dom(Iu) = dom(∂u∗), and as usual ∂u∗ = (∂u)−1; i.e., Iu is the inverse
of ∂u. Furthermore as the supergradient of a concave function, Iu is monotone.

Since ∂u∗ is single-valued, then ∂u(x) ∩ ∂u(x′) = ∅ for x 
= x′. As in the proof
of Theorem 26.3 of [12], this implies that u is strictly concave on dom(∂u) = im(Iu).
That this set is convex will follow from (ii). This establishes (i) of the theorem.

We turn to (ii). Notice that Ã is convex since, cf. (3.1),

Ã =
∑

j

[dom(∂uj) ∩Aj ] =
∑

j

[Aj ∩ int(dom(uj))].

As im(Iu) ⊂ Ã, cf. (4.2) and Proposition 3.2, it suffices to show the reverse inclusion.
In the process we shall establish (4.7). For x ∈ Ã we consider the maximization
problem whose value is u(x; Λ):

{

sup
{

f(x1, . . . , xJ) : (x1, . . . , xJ ) ∈ C,
∑

j x
j = x

}

,

f(x1, . . . , xJ) :=
∑J

j=1 λju
j
Aj (xj), C :=

∏J
j=1 A

j .
(4.11)

Note that the unique solution is (x̂1, . . . , x̂J ). Let us first modify the problem to
ensure that there is always a feasible solution in ri(C) so that we can apply some
Lagrange multiplier results.

Consider x ∈ Ã ⊂ A =
∑

j A
j . If some components of x have certain values, to be

made precise below, the constraints in (4.11) will fix the corresponding components
of xj in any decomposition x =

∑

j x
j , with xj ∈ Aj , and hence these components

may be removed from (4.11), reducing x to x̄ and xj to x̄j . We will show that for
any decomposition x̄ =

∑

j x̄
j , with x̄j ∈ Āj , there is a decomposition x̄ =

∑

j x̃
j ,

with x̃j ∈ ri(Āj), where Āj is the set corresponding to Aj after dropping the fixed
components.

We now find the components which will be dropped. Suppose that xi = 0; then
for any decomposition x =

∑

j x
j , with xj ∈ Aj , i.e., xji ∈ Dj

i so xji ≥ 0, we must
have xji = 0, and hence there is no maximization in (4.11) over xji , j = 1, . . . , J .
Moreover if the largest possible value of xi is finite, i.e., if dji , the right end point of
Dj
i , is finite for all j, equivalently, dji ∈ {0, 1}, equivalently, i /∈

⋃

j Mj, equivalently,
i ∈

⋂

j(M̃j ∪Mj
o), then 0 ≤ xi ≤

∑

j d
j
i = card{j : i ∈ Mj}. Now suppose that for

such an i, xi = card{j : i ∈ Mj}; then for any decomposition x =
∑

j x
j , we must

have xji = dji ; i.e., again in (4.11) there is no maximization over xji , j = 1, . . . , J .
We summarize as follows: Set I(x) := {i ∈ {1, . . . , n} : xi = 0} ∪ {i ∈

⋂

j(M̃j ∪
Mj

o) : xi =
∑

j d
j
i }, and let no = card(I(x)), where card denotes cardinality. Observe
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that I(x) = ∅, i.e., no = 0, if and only if x ∈ int(A), and no = n if and only if x is an
extreme point of A.

Set n̄ = n − no, decompose �n = �n̄ ⊕ �no , and write x = x̄ ⊕ xo. For any
decomposition x =

∑

j x
j ∈

∑

j A
j and any i ∈ I(x) we have xjoi = 0 if xi = 0 or

xjoi = dji if xi =
∑

j d
j
i , i.e., xjo fixed, so there is no maximization to be done over

these components of xj . Define Āj as the orthogonal projection of Aj onto �n̄. We
can then replace the maximization problem by

{

sup
{

f(x̄1, . . . , x̄J ) : (x̄1, . . . , x̄J ) ∈ C̄,
∑J

j=1 x̄
j = x̄

}

,

f(x̄1, . . . , x̄J ) :=
∑J

j=1 λju
j
Aj (x̄j ⊕ xjo), C̄ :=

∏J
j=1 Ā

j .

We may think of the new problem as having dropped the coordinates in I(x). If x̂j

decomposes as x̂j = x̄j ⊕ xjo, then (x̄1, . . . , x̄J ) ∈ C̄ is feasible for the new problem.
For any i /∈ I(x) not all x̄ji can be 0, so if any are, we can perturb the x̄ji slightly to
make them all positive while maintaining the constraint

∑

j x̄
j
i = x̄i. Similarly not all

x̄ji can be dji , and hence we can perturb the nonzero x̄ji (i.e., j such that i ∈ M̃j since
for i ∈ Mj

o we must have x̄ji = 0) so that all are less than one. This provides a feasible
solution in ri(C̄). The problem can be put in standard form as follows: x̄ ∈ �n̄ is fixed;
let fi(x̄1, . . . , x̄J ) := x̄i −

∑J
j=1 x̄

j
i , i = 1, . . . , n̄. Then dom(fi) = �n̄J . Moreover if

gj(x̄1, . . . , x̄J ) := λju
j
Aj (x̄j ⊕ xjo), then the problem is to maximize

∑

j gj subject to
fi = 0, i = 1, . . . , n̄.

Below we will introduce the Lagrange multiplier ȳ. The following calculations will
aid us in identifying it. Observe that

⋂J
j=1 ri(dom(gj)) =

⋂J
j=1 ri(Āj ⊕ �n̄(J−1)) =

∏J
j=1 ri(Āj) 
= ∅. From this and Theorem 23.8 of [12] follows that

∂

⎡

⎣

J
∑

j=1

gj +
n̄
∑

i=1

ȳifi

⎤

⎦ =
J
∑

j=1

∂gj +
n̄
∑

i=1

ȳi∂fi.

We compute

∑

j ∂gj(x̄
1, . . . , x̄J ) =

(

λ1∂x̄1u1
A1(x̄1 ⊕ xo1), . . . , λJ∂x̄JuJAJ (x̄J ⊕ xJo)

)

,
∑n̄

i=1 ȳi∂fi(x̄
1, . . . , x̄J ) = −

∑n̄
i=1 ȳi(�ei, . . . , �ei) = −(ȳ, . . . , ȳ).

Here ∂x̄j refers to supergradients with respect to x̄j ∈ �n̄.
Now Corollary 28.2.2 and Theorem 28.3 of [12] allow us to infer that there exists

a multiplier ȳ ∈ �n̄ such that 0 ∈ ∂[
∑

j gj +
∑

i ȳifi]; i.e., for every j (recalling
x̂j = ¯̂xj ⊕ x̂jo)

ȳ ∈ λj∂x̄jujAj (x̂j) = λj [∂x̄juj(x̂j) −NĀj ( ¯̂xj)] = λj∇x̄juj(x̂j) − λjNĀj ( ¯̂xj).

Note that ∇x̄j refers to the gradient with respect to x̄j ∈ �n̄. The last equality holds
by Theorem 25.6 of [12]. Hence for some �̄nj ∈ NĀj ( ¯̂xj) we have

ȳ

λj
+ �̄n

j
= ∇x̄juj(x̂j).

Since x ∈ Ã, then x =
∑

j x
j , with xj ∈ dom(∂ujAj ), for some {xj}. But

xjo = x̂jo, so if no > 0, then both xj , x̂j ∈ Cjk for some k. Now (4.5) implies that
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x̂j ∈ dom(∂ujAj ), and hence ∇uj(x̂j) = ∇x̄juj(x̂j) ⊕ ∇xjouj(x̂j) exists. In addition,
NAj (x̂j) decomposes into NĀj ( ¯̂xj) ⊕ No, where No (same for all j) is an orthant of
�no . Since ∇xjouj(x̂j) ∈ �no , then

⋂

j λj [∇xjouj(x̂j) −No] 
= ∅. Let yo be a point in
this set. If we set y := ȳ ⊕ yo, then for some �njy(x̂j) ∈ NAj (x̂j),

y

λj
+ �njy(x̂j) = ∇uj(x̂j).(4.12)

Lemma 3.8 and Corollary 3.9 imply that x̂j = Iu
j

Aj ( yλj
), so we have found y such that

Iu(y; Λ) = x; i.e., y ∈ (Iu(·; Λ))−1(x), and (4.7) holds.
We turn to the proof of (iii). Fix Λ. As ∂u = (∂u∗)−1 = (Iu)−1 and u is

differentiable where ∂u is single valued, then u is differentiable where Iu is one-to-
one. We will show that Iu(. ; Λ) is one-to-one on Ro(Λ) ⊂ �n++, cf. Lemma 4.2, by
showing that it is strictly monotone on cl(Ro(Λ)). Fix j for now. If y ∈ λjRuj

Aj
(cf.

(3.3)), then Iu
j

Aj ( yλj
) = (∇uj)−1( yλj

) is strictly monotone in y.

Recall Sjk = (Iu
j

Aj )−1(Cjk); we can decompose �n = aff(NAj (Cjk))⊥⊕aff(NAj (Cjk))
and accordingly for y ∈ Sjk, y = yj⊥ ⊕ yjo, and for x ∈ Cjk, x = xj⊥ ⊕ xjo with xjo

depending only on j and k, not on x. We set J (Cjk) := {i : xi = xj⊥i , x ∈ Cjk}, i.e.,
the set of component indices of xj⊥ or of yj⊥.

For y ∈ λjSjk, Iu
j

Aj ( yλj
) = (Iu

j

Aj ( yλj
))⊥⊕ (Iu

j

Aj ( yλj
))o := xj⊥(y

j⊥

λj
)⊕xjo ∈ Cjk with

xjo constant, i.e., Cjk = {x⊥ ⊕ xjo : x⊥ ∈
∏

i∈J (Cj
k)D

j
i }, and xj⊥(y

j⊥

λj
) is the solution

of ∇x⊥ujAj (x⊥⊕xjo) = yj⊥

λj
. We conclude that for y ∈ λjSjk, (Iu

j

Aj ( yλj
))⊥ is constant

in yjo and strictly monotone in yj⊥ and (Iu
j

Aj ( yλj
))o is constant.

If y ∈ bdy(λjSjk) and yn→ y with yn ∈ λjSjk, then NAj (Iu
j

Aj (yn

λj
))⊂NAj (Iu

j

Aj ( yλj
)),

i.e., Iu
j

Aj (yn

λj
) ∈ Cjk, I

uj

Aj ( yλj
) ∈ Cjk′ with cl(Cjk) ⊃ Cjk′ . Since aff(NAj (Iu

j

Aj (yn

λj
))) =

aff(NAj (Cjk)) is independent of n, we can use this decomposition, i.e., the decompo-
sition corresponding to J (Cjk). We may take yn such that yj⊥n = yj⊥. Passing to
the limit as n→ ∞ allows us to establish the monotonicity properties of Iu

j

Aj ( yλj
) on

cl(λjSjk).
Recall that Sj0 := int(Ruj

Aj
), possibly empty; cf. Definition 3.12. For y ∈ D(Λ),

y lies in λjSjk(j) for each j and some selection k(j) ∈ {0, 1, . . . ,K}. For y, y′ ∈
⋂

j cl(λjSjk(j)), y 
= y′, we have

(y − y′)�(Iu(y; Λ) − Iu(y′; Λ)) =
∑

j

(yj⊥ − y′j⊥)�
((

Iu
j

Aj

( yj

λj

))⊥
−
(

Iu
j

Aj

(y′j

λj

))⊥)

+
∑

j

(yjo − y′jo)�
((

Iu
j

Aj

( yj

λj

))o

−
(

Iu
j

Aj

(y′j

λj

))o)

=
∑

j

(yj⊥ − y′j⊥)�
((

Iu
j

Aj

( yj

λj

))⊥
−
(

Iu
j

Aj

(y′j

λj

)

)⊥)

≤ 0.(4.13)

In fact the last inequality is strict unless yj⊥ − y′j⊥ = 0 for all j because (Iu
j

Aj ( y
j

λj
))⊥

is strictly monotone in yj⊥

λj
on Sjk.
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If y, y′ ∈ cl(Ro(Λ)) ∩ (
⋂

j cl(λjSjk(j))), y 
= y′, then y − y′ = (yj⊥ − y′j⊥) ⊕
(yjo−y′jo) and (yj⊥−y′j⊥)i = (y−y′)i for i ∈ J (Cjk(j)). Note we use the same decom-
position on bdy(Sjk(j)) as in the interior; cf. the monotonicity argument of Iu

j

Aj above.
On Ro(Λ) we have

⋂

j aff(NAj (Iu
j

Aj ( yλj
))) = {0n}, i.e.,

∑

j aff(NAj (Iu
j

Aj ( yλj
)))⊥ =

�n, equivalently,
⋃

j J (Cjk(j)) = {1, . . . , n}. It follows that if yj⊥ − y′j⊥ = 0 for all j,
then y − y′ = 0, a contradiction, so Iu(. ; Λ) is strictly monotone on

⋂

j cl(λjSjk(j)).
Thus the inequality in (4.13) must be strict.

The argument extends to any y′ for which the line segment [y, y′] contains a
subsegment which lies in cl(Ro(Λ)) because Iu is monotone. To see this, suppose
[y, z] is such a subsegment lying in one of the pieces used in the previous paragraph.
Then

(y − y′)�(Iu(y; Λ) − Iu(y′; Λ))

=
‖y − y′‖
‖y − z‖ (y − z)�(Iu(y; Λ) − Iu(z; Λ)) +

‖y − y′‖
‖z − y′‖ (z − y′)�(Iu(z; Λ) − Iu(y′; Λ))

< 0

since the first term on the right is negative and the second is nonpositive.
It follows that Iu(·; Λ) is strictly monotone on cl(Ro(Λ)) and only there. Hence

Iu(. ; Λ) is one-to-one on Ro(Λ), and so ∂u(x) is single-valued for x ∈ Iu(Ro(Λ); Λ) =
Au(Λ) (and only there) and u is continuously differentiable there; cf. Theorem 25.5
of [12]. As the set of points where u is differentiable, Au(Λ) is dense in int(dom(u))
= int(A). Since

⋂

jMj
o = ∅, then aff(A) = �n, so int(A) is dense in A; i.e., Au(Λ) is

dense in A. As Iu(. ; Λ)−1 = ∇u(. ; Λ) on Iu(Ro(Λ); Λ), then (4.8) holds on Ro(Λ).
∇u(. ; Λ) ∈ Ro(Λ) ⊂ �n++, cf. Lemma 4.2, so u is strictly increasing on Au(Λ); cf.

(2.1).
Next we prove (iv). Let x ∈ Au(Λ), y := (Iu(. ; Λ))−1(x), a singleton for x ∈

Au(Λ), and let x̂j be given by (4.7); then (4.8) and (4.12) imply

∇u(x; Λ) = y = λj∇uj(x̂j) − λj�n
j
y(x̂j) for all j,

and hence (4.9) follows. Fix i. If [�njy(x̂j)]i 
= 0 for all j, then �ei ∈ aff(NAj (x̂j)) for
all j, since aff(NAj (x̂j)) is the subspace spanned by a subset (depending on j) of the
standard basis vectors. It follows that �ei ∈

⋂

j aff(NAj (x̂j)), a contradiction, since
y ∈ Ro(Λ). Hence for every i there exists j such that uxi(x; Λ) = λju

j
xi

(x̂j).
Finally turning to (v), (4.2), Proposition 3.2, and Corollary 3.13 imply that

Iu(. ; Λ) is continuously differentiable except on
⋃

k,j bdy(Sjk). By the inverse function
theorem ∇u(. ; Λ) is piecewise continuously differentiable.

We are able to extend ∇u(·; Λ) to Ã if we control the behavior of ∇uj near points
on bdy(A) not in dom(∂uj), i.e., where ‖∇uj‖ = ∞. Of necessity such points (if any)
are on bdy(�n++), i.e., constitute some of the faces of bdy(A); cf. (4.5). The condition
is as follows: For every j and bounded sequence {xk} ⊂ Aj ,

if lim
k→∞

ujxi
(xk) = ∞ for some i, then lim

k→∞
xki = 0.(4.14)

Corollary 4.4. Assume (4.14). Then ∇u(. ; Λ) can be extended continuously
to Ã such that on Ã we have Iu(∇u(x; Λ); Λ) = x. Moreover (4.8) holds for y ∈
cl(Ro(Λ)) and (4.9) holds on Ã.
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Proof. The extensions of the equations follows by continuity once ∇u(. ; Λ) has
been extended. For x ∈ Ã and any sequence xk → x, xk ∈ Au(Λ), there exist
yk ∈ Ro(Λ) ⊂ �n++ with xk = Iu(yk; Λ) =

∑

j I
uj

Aj (y
k

λj
) =

∑

j x̂
k,j . Then ‖x̂k,j‖ ≤

‖x‖ + 1 for k sufficiently large. Now x̂k,j ∈ Cjlj is of the form x̂k,j = x̂k,j⊥ ⊕ xljo,
with xljo ∈ aff(NAj (Cjlj )), and we can decompose yk = yk,j⊥ ⊕ yk,jo. By extracting
subsequences J times we may assume that lj is independent of k since the number
of faces is finite. Then λj∇uj(x̂k,j) = yk + �nj(x̂k,j) for all j by (4.9). We claim that
{yk} is bounded.

Assume that for a subsequence ‖yk‖ → ∞. Since
∑

aff(NAj (Cjlj ))⊥ = �n, then
there exists jo such that ‖yk,jo⊥‖ → ∞, i.e., yki → ∞ for some i such that �njoi (x̂k,jo ) =
0 since �njo(x̂k,jo ) ∈ aff(NAjo (Cjoljo

)). Then ujoxi
(x̂k,jo ) = yki /λjo → ∞, cf. (4.9), and

hence x̂k,joi → 0 by (4.14). For all j we have λjujxi
(x̂k,j) = yki + �nji (x̂

k,j), and the
geometry implies that �nji (x̂

k,j) ≥ 0 unless x̂k,ji = 0. Again by taking subsequences,
we can arrange that either x̂k,ji = 0 for all k so that limk x̂

k,j
i = 0 or �nji (x̂

k,j) ≥ 0
for all k so ujxi

(x̂k,j) ≥ yki /λj → ∞, and hence again limk x̂
k,j
i = 0. It follows that

xi = limk x
k
i = limk

∑

j x̂
k,j
i = 0 so x /∈ Ã =

∑

j dom(∂ujAj ) since (4.14) implies that
{xi = 0} ∩ dom(∂ujoAjo ) = ∅. This contradiction implies that {yk} is bounded.

We can conclude that {yk} contains convergent subsequences, again denoted by
{yk}, with limit y ∈ cl(Ro(Λ)). Hence

x = lim
k
xk = lim

k
Iu(yk; Λ) = lim

k

∑

j

Iu
j

Aj

(yk

λj

)

=
∑

j

Iu
j

Aj

( y

λj

)

= Iu(y; Λ).

Moreover this limit is unique since Iu(. ; Λ) is strictly monotone on cl(Ro(Λ)). It
follows that ∇u(x; Λ) := y is a continuous extension of ∇u.

We note that Cobb–Douglas utility functions satisfy (4.14), as do functions such
that cl(Aj) ⊂ dom(∂uj) since the assumption is void in this case.

Remark 4.5. Since Ã =
∑

j dom(∂ujAj ) and dom(∂ujAj ) is closed except possibly
on some of the Cjk ⊂ bdy(�n++), then Ã has the same structure. In fact a face (in
bdy(�n++)) of cl(Ã) is contained in Ã if and only if the corresponding face of each
cl(dom(∂ujAj )) is contained in dom(∂ujAj ), i.e., for any set Io ⊂ {0, 1, . . . , n},

{x ∈ A : xi = 0, i ∈ Io} ⊂ Ã⇔ {x ∈ Aj : xi = 0, i ∈ Io} ⊂ dom(∂ujAj ) for all j.

Example 4.6. Let us consider a setting which arises in [3]. We take J = 2, and
we make Assumptions 1, 2′, and 3, with μj = 0 in (3.2), and the “Inada” condition,
i.e., �n++ = dom(∂uj) ⊂ dom(uj) ⊂ �n+. (If u has the form u(x1 ⊕ x2) = g(x1), cf.
Example 3.1(iii), we require only that g satisfies this condition.)

We can conclude that

lim
x→bdy(
n

++)
‖∇uj(x)‖ = ∞.(4.15)

We see this as follows: For xo ∈ bdy(�n++) but xo /∈ dom(uj) and for w ∈ �n+ such
that xo + w ∈ dom(∂uj), ∇uj monotone implies

∇uj(xo + εw)�w(1− ε) ≥
∫ 1

ε

∇uj(xo + tw)�w dt = uj(xo +w)− uj(xo + εw) → +∞
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as ε → 0. If xo ∈ bdy(�n++) ∩ dom(uj), then ∅ = ∂uj(xo) = U(xo) − Ndom(uj)(xo),
where U(xo) is the closure of the convex hull of all limits of ∇uj(xm) with xm → xo;
cf. Theorem 25.6 of [12]. Since Ndom(uj)(xo) 
= ∅ for xo ∈ dom(uj), then U(xo) = ∅,
so ‖∇uj(xm)‖ must be unbounded.

We take n = 3, with A1 = ([0,∞)2 × |0, 1])∩dom(u1) and A2 = ([0,∞)2 ×{0})∩
dom(u2). A and Ã are easy to compute, but Au(Λ) is more complicated. Of interest
are the pieces of Aj which lie in dom(∂(uj)); these are C1

o = int(A1), C1
1 = �2

++×{1},
and C2

1 = �2
++ × {0}. We find Ro(Λ) which is composed of λj int(Ruj

Aj
), j = 1, 2,

plus sets of the form λ1S1
k1

∩ λ2S2
k2

with k1, k2 such that NA1(C1
k1

) is orthogonal to
NA2(C2

k2
).

Since Mj = {1, 2}, M̃1 = M2
o = {3} and M̃2 = M1

o = ∅, then

S1
0 = Ru1

A1
= {y ∈ �3

++ : y3 ≥ u1
x3

(x1(y1, y2), x2(y1, y2), 1)},

Ru2
A2

= �2
++ × {0}, D(Λ) = �2

++ ×�,

where x1(y1, y2), x2(y1, y2) satisfy (u1
x1

(x1, x2, 1), u1
x2

(x1, x2, 1)) = (y1, y2), and

S1
1 = {y ∈ �3 : y1 > 0, y2 > 0, y3 ≤ u1

x3
(x1(y1, y2), x2(y1, y2), 1)}, S2

1 = �2
++ × �,

since Sjk = (Iu
j

Aj )−1(Cjk). There are no other Sjk’s. We also have aff(NA1(C1
1)) =

aff(NA2(C2
1)) = {(0, 0)}×�, and hence Ro(Λ) = λ1int(Ru1

A1
) and Au(Λ) = Iu(Ro(Λ);

Λ) = Iu
1
A1 (int(Ru1

A1
)) + Iu

2
A2 (λ1

λ2
int(Ru1

A1
)),

Au(Λ) = (0,∞)2 × (0, 1) + (0,∞)2 × {0} = (0,∞)2 × (0, 1),
Ã = (0,∞)2 × (0, 1] + (0,∞)2 × {0} = (0,∞)2 × (0, 1],
A = [0,∞)2 × [0, 1] ∩ dom(u1) ∩ dom(u2).

Note that Au(Λ) is all of (0,∞)2 × (0, 1) because for x in this set we can solve

λ1u
1
x1

(ξ1, ξ2, x3) − λ2u
2
x1

(x1 − ξ1, x2 − ξ2, 0) = 0,

λ1u
1
x2

(ξ1, ξ2, x3) − λ2u
2
x2

(x1 − ξ1, x2 − ξ2, 0) = 0

for (ξ1, ξ2) ∈ (0, x1) × (0, x2). Then x = Iu(y; Λ) for y = λ1∇u1(ξ1, ξ2, x3).
For x ∈ Au(Λ), x̂1 ∈ (0,∞)2×(0, 1) and x̂2 ∈ (0,∞)2×{0} since x̂j ∈ dom(∂ujAj )

always and x̂1
3 = x3. Then the normals in (4.9) are �n1(x̂1) = 0 and �n2(x̂2) =

(0, 0, n3)�, and (4.9) becomes

ux1(x; Λ) = λ1u
1
x1

(x̂1) = λ2u
2
x1

(x̂2),

ux2(x; Λ) = λ1u
1
x2

(x̂1) = λ2u
2
x2

(x̂2),(4.16)

ux3(x; Λ) = λ1u
1
x3

(x̂1),

where we have dropped the uninteresting equality ux3(x; Λ) = −�n2
3(x̂2). The extension

given by Corollary 4.4 is obvious.
Example 4.7. Again take J = 2, μj = 0, dom(uj) = �3

+, and dom(∂uj) = �3
++,

with u2(x) := u2(x1, x2) (we are thinking of something like u1(x1, x2, x3) = x
1
3
1 x

1
3
2 x

1
6
3

and u2(x1, x2, x3) = x
1
3
1 x

1
3
2 ). We take A1 = [0,∞) × [0, 1] × [0,∞) and A2 = [0,∞) ×

[0, 1] × {0}.
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Then M1 = {0, 2}, M2 = {0}, M̃1 = M̃2 = {1}, M2
o = {2}, and M1

o = ∅. The
pieces of A1 in dom(∂u1) are C1

0 = int(A1) and C1
1 = (0,∞) × {1} × (0,∞), a face,

and for A2 they are C2
1 = (0,∞) × (0, 1) × {0}, a face, and C2

2 = (0,∞) × {1} × {0},
an edge. Moreover

S1
1 = {(y1, y2, y3) : y1 = u1

x1
(x1, 1, x3), y2 ≤ u1

x2
(x1, 1, x3), y3 = u1

x3
(x1, 1, x3),

(x1, x3) ∈ �2
++},

S2
1 = {(y1, y2) : y1 = u2

x1
(x1, x2, 0), y2 = u2

x2
(x1, x2, 0), (x1, x2) ∈ (0,∞) × (0, 1)}

×�,
S2

2 = {(y1, y2) : y1 = u2
x1

(x1, 1, 0), y2 ≤ u2
x2

(x1, 1, 0), x1 ∈ (0,∞)} × �

and aff(NA1(C1
1 )) = {0} × � × {0}, NA2(C2

1) = {(0, 0)} × �, and aff(NA2(C2
2 )) =

{0} × �2. Observe that

Ru1
A1

= {(y1, y2, y3) : y1 = u1
x1

(x1, 1, x3), y2 ≥ u1
x2

(x1, 1, x3), y3 = u1
x3

(x1, 1, x3),

(x1, x3) ∈ �2
++},

Ru2
A2

= {(y1, y2) : y1 = u2
x1

(x1, x2, 0), y2 = u2
x2

(x1, x2, 0), (x1, x2) ∈ (0,∞) × (0, 1]}
×{0},

and D(Λ) = �++ ×� ×�++. Thus

Ro(Λ) = λ1int(Ru1
A1

) ∪ [λ1S1
1 ∩ λ2S2

1 ].

If y ∈ λ1int(Ru1
A1

), then Iu
1
( yλ1

) ∈ int(A1), so Iu(y) ∈ int(A1) + A2 = (0,∞) ×
(0, 2) × (0,∞). If y ∈ λ1S1

1 ∩ λ2S2
1 , then Iu

1
( yλ1

) ∈ C1
1 and Iu

2
( yλ2

) ∈ C2
1 , and hence

Iu(y) ∈ C1
1 + C2

1 = (0,∞) × (1, 2) × (0,∞).
Let us show that Au(Λ) = (0,∞)× (0, 2)× (0,∞). For x ∈ (0,∞)× (0, 1]× (0,∞)

we can find x̂j by solving ∇ξ[λ1u
1(ξ1, ξ2, x3) + λ2u

2(x1 − ξ1, x2 − ξ2, 0)] = 0, i.e.,
x̂1 = (ξ1, ξ2, x3)�, x̂2 = x− x̂1, where

λ1u
1
x1

(ξ1, ξ2, x3) − λ2u
2
x1

(x1 − ξ1, x2 − ξ2, 0) = 0,
λ1u

1
x2

(ξ1, ξ2, x3) − λ2u
2
x2

(x1 − ξ1, x2 − ξ2, 0) = 0,
(4.17)

and (ξ1, ξ2) ∈ (0, x1)×(0, x2). For each ξ2 the intermediate value and implicit function
theorems give a continuous function ξ1(ξ2) satisfying the first equation. Similarly from
the second we obtain ξ2(ξ1). Their intersection in the rectangle gives the solution.
Then x̂1 = (ξ1, ξ2, x3) and x = Iu(y; Λ) with y = λ1∇u1(ξ1, ξ2, x3) = λ2∇u2(x1 −
ξ1, x2 − ξ2, 0).

For x ∈ (0,∞) × (1, 2] × (0,∞) the same argument gives a solution (ξ1, ξ2) ∈
(0, x1) × [x2 − 1, 1] if we work with supergradients; i.e., we replace ujx2

(ξ1, 1, x3)
whenever it occurs by the interval (multivalued function) (−∞, ujx2

(ξ1, 1, x3)) (due
to the constraint x2 = 1; cf. the normal in (4.9)). So again x = Iu(y; Λ) with
y = λ1∇u1(ξ1, ξ2, x3), and Iu maps onto (0,∞) × (0, 2) × (0,∞). Then

A = [0,∞) × [0, 2] × [0,∞), Ã = (0,∞) × (0, 2] × (0,∞), Au(Λ) = int(A).

Observe that �n1(x̂1) = (0, n1
2, 0) where n1

2 = 0 unless x̂1 ∈ C1
3 ; otherwise �n1 = 0.

Moreover �n2(x̂2) = (0, n2
2, n

2
3) with n2

2 = 0 unless x̂2 ∈ C2
2 . From (4.17) we see that
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n1
2 > 0 if and only if λ1u

1
x2

(ξ1, 1, x3) > λ2u
2
x2

(x1− ξ1, x2−1, 0) and n2
2 > 0 if and only

if λ1u
1
x2

(ξ1, x2 − 1, x3) < λ2u
2
x2

(x1 − ξ1, 1, 0). Here ξ1 is the solution of (4.17), with
ξ2 = 1 in the first case and ξ2 = x2 − 1 in the second. Note that nj2 = 0 if x2 ≤ 1.

Theorem 4.3(iv) gives

ux1(x; Λ) = λ1u
1
x1

(x̂1) = λ2u
2
x1

(x̂2),

ux2(x; Λ) = λ1u
1
x2

(x̂1) − n1
2 = λ2u

2
x2

(x̂2) − n2
2,

ux3(x; Λ) = λ1u
1
x3

(x̂1),

where we have dropped the uninformative equality ux3(x; Λ) = n2
3 ∈ �.

Example 4.8. In this example we do not assume the Inada condition at 0, so
take J = 2 and assume that uj satisfy Assumptions 1, 2′, and 3 with μj = 0 and
A1 = [0,∞) × [0, 1], A2 = [0,∞) × {0}. We assume that dom(∂uj) contains [0,∞)2.
Then n = 2, Mj = {1}, M̃1 = M2

o = {2}, and M̃2 = M1
o = ∅.

The sets C1
k, k = 1, . . . , 5, are (0,∞) × {0}, {(0, 0)}, {0}× (0, 1), {(0, 1)}, (0,∞)×

{1} in order, and C2
1 = (0,∞) × {0} and C2

2 = {(0, 0)}. Moreover Ru1
A1

is the subset
of �2

++ with boundaries given by the three curves {y = ∇u1(ξ, 0) : ξ ≥ 0}, {y =
∇u1(0, ξ) : ξ ∈ (0, 1)}, {y = ∇u1(ξ, 1) : ξ ≥ 0}, Ru2

A2
= {∇u2(ξ, 0) : ξ ≥ 0} and

D(Λ) = �1
++ ×�. Figure 1 of [3] shows

⋃

k S1
k ∩ �2

++.

S1
1 = {y ∈ �2 : y1 = u1

x1
(ξ, 0), y2 ≥ u1

x2
(ξ, 0), ξ > 0},

S1
2 = {y ∈ �2 : y ≥ ∇u1(0, 0)},

S1
3 = {y ∈ �2 : y1 ≥ u1

x1
(0, ξ), y2 = u1

x2
(0, ξ), 1 > ξ > 0},

S1
4 = {y ∈ �2 : y1 ≥ u1

x1
(0, 1), y2 ≤ u1

x2
(0, 1)},

S1
5 = {y ∈ �2 : y1 = u1

x1
(ξ, 1), y2 ≤ u1

x2
(ξ, 1), ξ > 0},

S2
1 = {y ∈ �2 : 0 < y1 < u2

x1
(0, 0)},

S2
2 = {y ∈ �2 : y1 ≥ u2

x1
(0, 0)}.

Now aff(NA1(C1
2)) = aff(NA1(C1

4)) = aff(NA2(C2
2 )) = �2, aff(NA1(C1

1)) = aff(NA1(C1
5))

= aff(NA2(C2
1)) = {0} × �, and aff(NA1(C1

3)) = �× {0}. Thus

Ro(Λ) = λ1int(Ru1
A1

) ∪ [λ1S1
3 ∩ λ2S2

1 ].

If y ∈ λ1int(Ru1
A1

), then Iu
1
( yλ1

) ∈ int(A1), so Iu(y) ∈ int(A1) + A2 = (0,∞) ×
(0, 1). If y ∈ λ1S1

3 ∩ λ2S2
1 , then Iu

1
( yλ1

) ∈ C1
3 and Iu

2
( yλ2

) ∈ C2
1 . Hence Iu(y) ∈

C1
3 + C2

1 = (0,∞) × (0, 1), and in fact

Au(Λ) = (0,∞) × (0, 1), Ã = A = [0,∞) × [0, 1].

For x = (x1, x2) ∈ Au(Λ), x̂1
2 = x2 ∈ (0, 1), so �n1

2(x̂1) = 0. Hence

ux1(x; Λ) = λ1u
1
x1

(x̂1) − �n1
1(x̂1) = λ2u

2
x1

(x̂2) − �n2
1(x̂2),

ux2(x; Λ) = λ1u
1
x2

(x̂1),

where �nj1(x̂j) ≤ 0 and is nonzero only if x̂j1 = 0. We have dropped the uninformative
equality involving the arbitrary �n2

2(x̂2). Since x̂1
1 + x̂2

1 = x1 > 0, then at least one of
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0 1 2 3
−1

0

1

2

3

4

5

Ru1
A1

S1
1 S1

2

S1
3

S1
4S1

5

dom(Iu
1

A
1)

0 1 2 3
−1

0

1

2

3

4

5

Ru2
A2

S2
1 S2

2

dom(Iu
2

A
2)

0 1 2 3
−1

0

1

2

3

4

5

S1
3 ∩ S2

1

Ru1
A1

dom(Iu) with Λ=(1,1)

Fig. 2. The domains of I
u1

A1 , I
u2

A2 , Iu.

x̂j1 > 0. In fact x determines when �nj1(x̂j) < 0 as follows: �n1
1(x̂1) < 0 if and only

if λ1u
1
x1

(0, x2) < λ2u
2
x1

(x1, 0), and �n2
1(x̂2) < 0 if and only if λ1u

1
x1

(x) > λ2u
2
x1

(0, 0)
(look at F ′(0), F ′(x1), where F (ξ) := λ1u

1(ξ, x2) + λ2u
2(x1 − ξ, 0); cf. the definition

of u(. ; Λ)).
We have computed some of the sets in the y-space for u1(x) := 3(x1 + 1)1/3 (x2 +

1)1/2 and u2(x) = 2(x1 + 1
4 )1/2 and plotted them in Figure 2. The arrows correspond

to the projections; i.e., they are outward normals to Cjk. The third panel exhibits Ro

as part of dom(Iu) when Λ = (1, 1).
Remark 4.9. If we replace u2 in Example 4.8 by u2(x1, x2) := μ1x1 − x−1

1 , A2 by
(0,∞) × {0}, then dom(Iu

2
A2 ) = {y ∈ �2 : y1 > μ1} = S2

1 and Ru2
A2

= (μ1,∞) × {0}.
There are no other S2

k . With Λ = (1, 1) again, dom(Iu(. ,Λ)) = {y ∈ �2 : y1 > μ1}
and Ro(Λ) is the intersection of dom(Iu(. ,Λ)) with Ro(Λ) of the third panel of
Figure 2, after the lightly shaded part has been extended infinitely to the right.
Moreover A = (0,∞) × [0, 1], Ã = (0,∞) × (0, 1], and Au = (0,∞) × (0, 1).
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SPARSE SOS RELAXATIONS FOR MINIMIZING FUNCTIONS
THAT ARE SUMMATIONS OF SMALL POLYNOMIALS∗

JIAWANG NIE† AND JAMES DEMMEL‡

Abstract. This paper discusses how to find the global minimum of functions that are sum-
mations of small polynomials (“small” means involving a small number of variables). Some sparse
sum of squares (SOS) techniques are proposed. We compare their computational complexity and
lower bounds with prior SOS relaxations. Under certain conditions, we also discuss how to extract
the global minimizers from these sparse relaxations. The proposed methods are especially useful in
solving sparse polynomial system and nonlinear least squares problems. Numerical experiments are
presented which show that the proposed methods significantly improve the computational perfor-
mance of prior methods for solving these problems. Lastly, we present applications of this sparsity
technique in solving polynomial systems derived from nonlinear differential equations and sensor
network localization.

Key words. polynomials, sum of squares (SOS), sparsity, nonlinear least squares, polynomial
system, nonlinear differential equations, sensor network localization
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DOI. 10.1137/060668791

1. Introduction. Global optimization of multivariate polynomial functions con-
tains quite a broad class of optimization problems. It has wide and important appli-
cations in science and engineering. Recently, there has been much work on globally
minimizing polynomial functions using representation theorems from real algebraic
geometry for positive polynomials. The basic idea is to approximate nonnegative
polynomials by sum of squares (SOS) polynomials. This approximation is also called
SOS relaxation, since not every nonnegative polynomial is SOS. Here a polynomial is
said to be SOS if it can be written as a sum of squares of other polynomials. The
advantage of SOS polynomials is that a polynomial is SOS if and only if a certain
semidefinite program (SDP) formed by its coefficients is feasible. Since SDP [29] has
efficient numerical methods, we can check whether a polynomial is SOS by solving a
particular SDP.

To be more specific, suppose we wish to find the global minimum value f∗ of a
polynomial function f(x) of vector x = (x1, x2, . . . , xn) ∈ R

n. The SOS relaxation
finds a lower bound γ for f∗ such that the polynomial f(x) − γ is SOS. Obviously,
f(x) − γ being SOS implies that f(x) − γ is nonnegative for every real vector x.
Hence such a γ is a lower bound. The maximum γ found this way is called the SOS
lower bound, which is often denoted by f∗

sos. The relation f∗
sos ≤ f∗ always holds

for every polynomial f(x) (it is possible that f∗
sos = −∞). When f∗

sos = f∗, we
say the SOS relaxation is exact. We refer to [13, 22, 23] for more details on SOS
relaxations for polynomial optimization problems. There are two important issues for
applying SOS relaxation in global optimization of polynomial functions: the quality
and computational complexity.
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The quality means how good is the SOS lower bound f∗
sos. In practice, as ob-

served in [22], many nonnegative polynomials that are not “artificially” constructed
are SOS. However, Blekherman [4] pointed out that there are much more nonnegative
polynomials than SOS polynomials. But usually SOS relaxation provides very good
approximations, although theoretically it can fail with high probability. When SOS
relaxation is not exact, i.e., f∗

sos < f∗, there are methods to fix it by applying modified
SOS relaxations. Nie, Demmel, and Sturmfels [20] proposed to use SOS representa-
tions of f(x)−γ modulo the gradient ideal of f(x), and show that the minimum value
f∗ can be obtained when f∗ is attained at some point. Schweighofer [26] proposes to
minimize f(x) over a semialgebraic set called the gradient tentacle, and shows that
the minimum value f∗ can be computed when f∗ > −∞ but not attainable. Jibetean
and Laurent [10] and Lasserre [14] propose perturbing f(x) by adding a higher degree
polynomial with tiny coefficients, and showed that the lower bounds will converge to
the minimum value f∗. Recently, Laurent [16] gave a survey on solving polynomial
optimization by using semidefinite relaxations. We refer to [10, 14, 16, 20, 26] for
related work.

Another important issue for SOS relaxation is the computational complexity.
Suppose f(x) has degree 2d (it must be even for f(x) to have a finite minimum).
Then f(x) has up to

(

n+2d
2d

)

monomials. The condition that f(x) − γ being SOS
reduces to an SDP the size of whose linear matrix inequality (LMI) is

(

n+d
d

)

with
(

n+2d
2d

)

variables. These numbers can be huge for moderate n and d, say, n = 2d = 10.
For large scale polynomial optimization problems, the general SOS relaxation is very
difficult to implement numerically. Sometimes this complexity makes the applicability
of SOS relaxation very limited. We refer to [22, 23] for the connection between SOS
relaxation and SDP.

Prior work. There is some work on exploiting sparsity in polynomial optimiza-
tion when the polynomials are sparse. In such situations, sparse SOS relaxations are
available and the resulting SDPs have reduced sizes, and hence larger problems can be
solved. Here being sparse means that the number of monomials with nonzero coeffi-
cients is much smaller than the maximum possible number

(

n+2d
2d

)

. Kojima et al. [12]
and Parrilo [24] discussed how to exploit sparsity of SOS relaxations in unconstrained
polynomial optimization. Kim et al. [11] and Lasserre [15] discussed sparse SOS re-
laxations for constrained polynomial optimization problems and showed convergence
under certain conditions. Waki et al. [28] proposed a heuristic procedure to exploit
sparsity for minimizing polynomials by chordal extension of the correlation sparsity
pattern graph (csp graph): the vertices of the csp graph are the variables x1, . . . , xn;
the edge (xi, xj) exists whenever xixj appears in one monomial of f(x). To find one
chordal extension, [28] proposed to use the symbolic sparse Cholesky factorization of
the csp matrix with minimum degree ordering. If the chordal extension of the csp
graph is also sparse, then the sparsity technique in [28] works well. However, if the
chordal extension of the csp graph is much less sparse, then that sparsity technique
might still be too expensive to be implementable for some practical problems.

Contributions. In many practical applications, the polynomials are not only
sparse, but also given with certain sparsity patterns. For instance, the polynomials
are often summations of other “small” polynomials, i.e., polynomials involving only
a small number of variables. Sometimes, these representations contain useful infor-
mation that might help us save computations significantly. These sparsity patterns
are often ignored in prior work, where these polynomials would be treated using the
usual “dense” algorithms. The main contribution of this paper is to propose new
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sparse SOS relaxation techniques taking the given sparsity pattern into account, and
to show numerical experiments demonstrating their accuracy and speed.

In this paper, we consider the polynomial optimization problem of the form

min
x∈Rn

f(x) =
m
∑

i=1

fi(xΔi),(1.1)

where Δi ⊂ [n] = {1, 2, . . . , n}. Here each fi(xΔi) is a polynomial in xΔi = (xj |j ∈
Δi). Let deg(fi) = 2di and 2d = deg(f) = max{2d1, . . . , 2dm} (we assume each fi
has even degree along with f). One basic and natural idea for solving problem (1.1)
is to find the maximum γ such that

f(x) − γ =
m
∑

i=1

si(xΔi),

where each si(xΔi) is an SOS polynomial in xΔi instead of all the variables x1, . . . , xn.
Exploiting this sparsity pattern can save significant computation without sacrificing
much solution quality for many practical problems. In addition to presenting its
numerical implementation, this paper will also discuss the theoretical properties of
this sparse SOS relaxation and its variations.

The main distinction of our sparse SOS technique from earlier work like Waki et al.
[28] is that we do not use the chordal extension of csp graphs. In the case that the
csp graph of f(x) in (1.1) is chordal, our sparsity technique is almost the same as the
one in [28]. However, if the csp graph of f(x) is not chordal and its chordal extension
is much less sparse, then our sparsity technique is significantly more efficient. If the
csp graph of f(x) is not chordal and its chordal extension is also sparse, then our
sparsity technique is slightly more efficient while not losing much quality of solution.
Furthermore, our sparsity technique can be applied to solve bigger dense polynomial
optimization problems which cannot be solved by other existing methods. This is due
to the observation that every polynomial g(x) is a summation of monomials whose
number of variables is at most the degree deg(g). So, when deg(g) is small, like 4 or
6, then the formulation (1.1) is a good sparse model. The numerical computations
show that our sparsity technique is usually more efficient than other existing methods
in solving problems of the form (1.1).

We remark that for a given polynomial f(x), there is a flexibility to choose the
summands fi(xΔi) in (1.1). Sometimes, this flexibility is very useful, since it allows us
to choose among various sparse relaxations and select the most efficient one from them.
The best choice of fi(xΔi) is usually problem dependent and there is no general rule.
However, for practical problems like solving polynomial systems or nonlinear least
squares, there are natural choices for fi(xΔi). This is illustrated in section 4 and
section 5.

Polynomial optimization problems of the form (1.1) have important practical ap-
plications: (i) Solving polynomial systems: Many large scale polynomial equations are
often sparse, and each equation might involve just a few variables, e.g., the polynomial
equations obtained from discretization in nonlinear differential equations. Such poly-
nomial systems can be equivalently transformed to global polynomial optimization
problems of the form (1.1). We will show that the proposed sparse SOS relaxation
is exact when the polynomial system has at least one real solution. (ii) Nonlinear
least squares: Many difficult problems in statistics, biology, engineering, or other ap-
plications require solving certain nonlinear least squares problems and finding their
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global optimal solutions. If each equation is sparse, then sparse polynomial optimiza-
tion (1.1) is a very natural model and our sparsity technique is very suitable. Sensor
network localization is one important application of this kind.

Outline. This paper is organized as follows. Section 2 introduces some notation
and background for SOS relaxations, section 3 discusses properties of the sparse SOS
relaxation and its variations, section 4 presents some numerical implementations, and
section 5 shows applications. Lastly, section 6 draws some conclusions and discusses
future work in this area.

2. Preliminaries. This section introduces some notations and backgrounds in
SOS relaxation methods for minimizing polynomial functions.

Throughout this paper, we will use the following notation: R is the field of real
numbers; N is the set of nonnegative integers; R

Δi = {(xk1 , . . . , xk�
) : xkj ∈ R} when

Δi = {k1, k2, . . . , k�}; R[X ]: the ring of real polynomials in X = (x1, x2, . . . , xn);
R[XΔi ]: the ring of real polynomials in XΔi = (xk)k∈Δi ;

∑

R[X ]2: SOS polynomials
in R[X ];

∑

R[XΔi ]2: SOS polynomials in R[XΔi ];
∑

RN [X ]2: SOS polynomials in
R[X ] with degree at most 2N ;

∑

RN [XΔi ]2: SOS polynomials in R[XΔi ] with degree
at most 2N ; ‖x‖2 =

√

x2
1 + x2

2 + · · · + x2
n; xα = xα1

1 xα2
2 . . . xαn

n for α ∈ N
n; supp(α)

= {i ∈ [n] : αi �= 0}; supp(f) = {α ∈ N
n : the coefficient of xα in f(x) is nonzero};

|F | denotes the cardinality of set F ; AT denotes the transpose of matrix A; A � (	)0
means matrix A is positive semidefinite (definite); Md(y) is the moment matrix of
order d about x ∈ R

n; MΔi

d (y) is the moment matrix of order d about xΔi ∈ R
Δi ;

MF (y) is the moment matrix generated monomials with support F .

2.1. SOS and semidefinite programming (SDP). A polynomial p(x) in
x = (x1, . . . , xn) is said to be sum of squares (SOS) if p(x) =

∑

i p
2
i (x) for some

polynomials pi(x). Obviously, if p(x) is SOS, then p(x) is nonnegative; i.e., p(x) ≥ 0
for all x ∈ R

n. However, the converse is not true. If p(x) is nonnegative, then p(x) is
not necessarily SOS. In other words, the set of SOS polynomials (which forms a cone)
is properly contained in the set of nonnegative polynomials (which forms a larger
cone). The process of approximating nonnegative polynomials by SOS polynomials is
called SOS relaxation. For instance, the polynomial

x4
1 + x4

2 + x4
3 + x4

4 − 4x1x2x3x4

= 1
3

{

(

x2
1 − x2

2 − x2
4 + x2

3

)2 +
(

x2
1 + x2

2 − x2
4 − x2

3

)2 +
(

x2
1 − x2

2 − x2
3 + x2

4

)2

+ 2(x1x4 − x2x3)2 + 2(x1x2 − x3x4)2 + 2(x1x3 − x2x4)2
}

is SOS. This identity immediately implies that

x4
1 + x4

2 + x4
3 + x4

4 − 4x1x2x3x4 ≥ 0, ∀(x1, x2, x3, x4) ∈ R
4,

which is one arithmetic-geometric mean inequality.
The advantage of SOS polynomials over nonnegative polynomials is that it is

more tractable to check whether a polynomial is SOS. To test whether a polynomial
is SOS is equivalent to testing the feasibility of some SDP [22, 23], which has efficient
numerical solvers. To illustrate this, suppose polynomial p(x) has degree 2d (SOS
polynomials must have even degree). Then p(x) is SOS if and only if [22, 23] there
exists a symmetric matrix W � 0 such that

p(x) = md(x)T W md(x),
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where md(x) is the column vector of monomials up to degree d. For instance,

m2(x1, x2) =
[

1, x1, x2, x
2
1, x1x2, x

2
2

]T
.

As is well known, the number of monomials in x up to degree d is
(

n+d
d

)

. Thus the size
of matrix W is

(

n+d
d

)

. This number can be very large. For instance, when n = d = 10,
(

n+d
d

)

≥ 105. However, for fixed d (e.g., d = 2),
(

n+d
d

)

is polynomial in n. On the other
hand, it is NP-hard (with respect to n) to tell whether a polynomial is nonnegative
whenever 2d ≥ 4 (even when d is fixed) [13].

2.2. SOS relaxation in polynomial optimization. Let f(x) =
∑

α fαx
α be

a polynomial in x. Consider the global optimization problem

f∗ := min
x∈Rn

f(x).

This problem is NP-hard when deg(f) ≥ 4. The standard SOS relaxation is

f∗
sos := max γ

s.t. f(x) − γ is SOS.

Obviously we have that f∗
sos ≤ f∗. In practice, SOS provides very good approxima-

tions, and often gives exact global minimum, i.e., f∗
sos = f∗, even though theoretically

there are many more nonnegative polynomials than SOS polynomials [4].
In terms of SDP, the SOS relaxation can also be written as

f∗
sos := max γ(2.1)

s.t. f(x) − γ = md(x)TWmd(x)(2.2)
W � 0(2.3)

where 2d = deg(f). The decision variable in the above is (γ,W ) instead of x. The
above program is convex about (γ,W ). A lower bound f∗

sos can be computed by
solving the resulting SDP. It can be shown [13] that the dual of (2.1)–(2.3) is

f∗
mom := min

y

∑

|α|≤2d

fαyα(2.4)

s.t. Md(y) � 0(2.5)
y0,...,0 = 1.(2.6)

Here Md(y) is the moment matrix generated by y = (yα), a vector indexed by mono-
mials of degree at most 2d. The rows and columns of moment matrix Md(y) are
indexed by integer vectors. Each entry of Md(y) is defined as

Md(y)(α, β) := yα+β , ∀|α|, |β| ≤ d.

For instance, when d = 2 and n = 2, the vector

y = [ y0,0, y1,0, y0,1, y2,0, y1,1, y0,2, y3,0, y2,1, y1,2, y0,3, y4,0, y3,1, y2,2, y1,3, y0,4 ]

defines moment matrix

M2(y) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y0,0 y1,0 y0,1 y2,0 y1,1 y0,2
y1,0 y2,0 y1,1 y3,0 y2,1 y1,2
y0,1 y1,1 y0,2 y2,1 y1,2 y0,3
y2,0 y3,0 y2,1 y4,0 y3,1 y2,2
y1,1 y2,1 y1,2 y3,1 y2,2 y1,3
y0,2 y1,2 y0,3 y2,2 y1,3 y0,4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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For SOS relaxation (2.1)–(2.3) and its dual problem (2.4)–(2.6), strong duality holds
[13]; i.e., their optimal values are equal (f∗

sos = f∗
mom). Hence f∗

mom is also a lower
bound for the global minimum f∗ of f(x).

Now let us see how to extract minimizer(s) from optimal solutions to (2.4)–(2.6).
Let y∗ be one optimal solution. If moment matrix Md(y∗) has rank one, then there
exists one vector w such that Md(y∗) = wwT . Normalize w so that w(0,...,0) = 1.
Set x∗ = w(2 : n + 1). Then the relation Md(y∗) = wwT immediately implies that
y∗ = m2d(x∗), i.e., y∗α = (x∗)α, so f∗

mom = f(x∗). This says that a lower bound of
f(x) is attained at one point x∗. So x∗ is one global minimizer.

When moment matrix Md(y∗) has rank more than one, the process described
above does not work. However, if Md(y∗) satisfies the so-called flat extension condi-
tion

rankMk(y∗) = rankMk+1(y∗)

for some 0 ≤ k ≤ m − 1, we can extract more than one minimizer (in this case the
global solution is not unique). When the flat extension condition is met, it can be
shown [7] that there exist distinct vectors u1, . . . , ur such that

Md(y∗) = λ1md(u1) ·md(u1)T + · · · + λrmd(ur) ·md(ur)T

for some λi > 0,
∑r
i=1 λi = 1. Here r = rankMd(y∗). The set {u1, . . . , ur} is

called an r-atomic representing support for moment matrix Md(y∗). All the vectors
u1, . . . , ur can be shown to be global minimizers. They can be computed by solving
some particular eigenvalue problem. We refer to [7] for flat extension conditions in
moment problems and [9] for extracting minimizers.

2.3. Exploiting sparsity in SOS relaxation. As mentioned in the previous
subsections, the size of matrix W in SOS relaxation is

(

n+d
d

)

, which can be very large.
So SOS relaxation is expensive when either n or d is large. This is true for general
dense polynomials. However, if f(x) is sparse, i.e., its support F = supp(f) is small,
the size of the resulting SDP can be reduced significantly. Without loss of generality,
assume (0, . . . , 0) ∈ F . Then supp(f) = supp(f − γ) for any number γ.

Suppose f(x) − γ =
∑

i φi(x)2 is an SOS decomposition. Then by Theorem 1 in
[25] we have

supp(φi) ⊂ F0 :=
(

the convex hull of
1
2
Fe

)

where Fe = {α ∈ F : α is an even integer vector}. There exists some work [12, 28]
on exploiting sparsity further. Here we briefly describe the technique introduced in
[28].

For polynomial f(x), define its csp graph G = ([n], E) such that (i, j) ∈ E if and
only if xixj appears in some monomial of f(x). Let {C1, C2, . . . , CK} be the set of
all maximal cliques of graph G. Waki et al. [28] proposed to represent f(x) − γ as

f(x) − γ =
K
∑

i=1

si(x), each si(x) being SOS supp(si) ⊂ Ci.

Theoretically, when f(x) − γ is SOS, the above representation may not hold (see
Example 3.5). It is also difficult to find all the maximal cliques of graph G. Waki
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et al. [28] propose to replace {C1, C2, . . . , CK} by the set of all maximal cliques of one
chordal extension of G. We refer to [3] for properties of chordal graphs. For chordal
graphs, there are efficient methods to find all the maximal cliques. Chordal extension
is essentially the sparse symbolic Cholesky factorization; the sparsity of matrix factors
represents the chordal extension. To find the minimum chordal extension requires
sparse Cholesky factorization with the smallest number of fill-ins, which is difficult
generally. However, some heuristics like minimum degree ordering are usually efficient
in practice in finding a good approximation. We refer to [28] for more details on how
to get an efficient chordal extension.

We remark that in the worst case the sparse SOS relaxation above might be
weaker than the general dense SOS relaxation even when the chordal extension is
applied, as shown by Example 3.5.

There is much work in exploiting sparsity in SOS relaxations. We refer to [8, 11,
12, 24, 28] and the references therein.

3. The sparse SOS relaxation. Throughout this paper, we assume f(x) =
∑m

i=1 fi(xΔi). Let ‖Δ‖ be the maximum cardinality of Δi, i.e., ‖Δ‖ = maxi |Δi|. We
are interested in the case that ‖Δ‖ � n. To find the global minimum f∗ of f(x), we
propose the following sparse SOS relaxation:

f∗
Δ := max γ

s.t. f(x) − γ ∈
m
∑

i=1

∑

Rd[xΔi ]
2.

In terms of SDP, the above SOS relaxation is essentially the same as

f∗
Δ := max γ(3.1)

s.t. f(x) − γ =
m
∑

i=1

md(xΔi)
TWimd(xΔi),(3.2)

Wi � 0, i = 1, . . . ,m.(3.3)

Notice that (3.2) is an identity. Let

(3.4) Fi = {α ∈ N
n : supp(α) ⊂ Δi, |α| ≤ 2d}, F =

⋃

Fi.

Write f(x) =
∑

α fαx
α. Since f(x) =

∑

i fi(xΔi), fα �= 0 implies that α ∈ F . By
comparing coefficients of both sides of (3.2), we have equality constraints

f0 − γ =
m
∑

i=1

Wi(0, 0), fα =
m
∑

i=1

∑

η+τ=α

Wi(η, τ), ∀α �= 0.(3.5)

Now we derive the dual problem for (3.1)–(3.3). Notice that constraint (3.2)
is equivalent to the equality constraints (3.5). Let y = (yα)α∈F be the Lagrange
multipliers for equations in (3.5), and Ui be the Lagrange multipliers for inequalities
in (3.3). Each Ui is also positive semidefinite. The Lagrange function for problem
(3.1)–(3.3) is

L = γ +

(

f0 − γ −
∑

i

Wi(0, 0)

)

y0 +
∑

0�=α∈F

(

fα −
m
∑

i=1

∑

η+τ=α

Wi(η, τ)

)

yα +
∑

i

Wi • Ui

= γ(1 − y0) +
∑

α∈F
fαyα +

m
∑

i=1

∑

α∈F

∑

η+τ=α

Wi(η, τ)
(

Ui(η, τ) − yα

)

.
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So we can see that

max
γ,Wi

L(γ,Wi, yα, Ui) =

{

∑

α fαyα if y0 = 1, Ui = MΔi

d (y) � 0 ;
+∞ otherwise.

Therefore the dual of (3.1)–(3.3) is

f∗
Σ := min

∑

α∈F
fαyα(3.6)

s.t. MΔi

d (y) � 0, i = 1, . . . ,m(3.7)
y0 = 1.(3.8)

3.1. Complexity comparison. Since the dual of the standard or sparse SOS
relaxation not only returns the SOS lower bound but also provides the moment matrix
to help extract minimizers, we compare the computational complexity of (2.4)–(2.6)
and (3.6)–(3.8). The LMI (2.5) is of size

(

n+d
d

)

= O(nd) and has
(

n+2d
2d

)

= O(n2d)
decision variables. At each step of an interior-point method (e.g., the dual scaling
method [2]), the complexity for solving (2.4)–(2.6) is O(n6d). On the other hand, (3.7)
has m LMIs, which are of sizes at most

(‖Δ‖+d
d

)

= O(‖Δ‖d), and O
(

m
(‖Δ‖+2d

2d

))

=
O(m‖Δ‖2d) decision variables. At each step of interior-point methods, the complexity
for solving (3.6)–(3.8) is O(m3‖Δ‖6d). When ‖Δ‖ is independent of n and m = O(np)
with p < 2d, then

O
(

m3‖Δ‖6d
)

� O
(

n6d
)

.

Therefore (3.6)–(3.8) is much easier to solve than (2.4)–(2.6).
The complexity of sparse SOS relaxation in [28] depends on the chordal extension

of the csp graph. In the worst case, it can be as big as for the general SOS relaxation
(2.4)–(2.6). Let Ω be the maximum size of the maximal cliques of the chordal exten-
sion. In practice, Ω is often bigger than or equal to ‖Δ‖. When Ω > ‖Δ‖, the SOS
relaxation (3.6)–(3.8) is usually more efficient.

3.2. Lower bound analysis. Recall that Fi = {α ∈ N
n : supp(α) ⊂ Δi, |α| ≤

2d}. From the representation (1.1) of f(x), we have

supp(f) ⊆
m
⋃

i=1

Fi.

This leads us to think that the relaxation (3.6)–(3.8) should give reasonable lower
bounds, although it might be weaker than the general SOS (see Example 3.5).

Theorem 3.1. The optimal values f∗
Σ, f

∗
Δ, f

∗
sos, and f∗ satisfy the relationship

f∗
Σ = f∗

Δ ≤ f∗
sos ≤ f∗.

Proof. The latter two inequalities are obvious because the feasible region defined
by (3.7)–(3.8) contains the one defined by (2.5)–(2.6). To prove the first equality,
by the standard duality argument for convex program, it suffices to show that (3.7)
admits a strict interior point. Define ŷ = (ŷα)α∈F as

ŷα :=

∫

Rn x
αe−‖x‖2

2 dx
∫

Rn e−‖x‖2
2 dx

.
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For every nonzero vector ξ = (ξα)α∈Fi , we have

ξT MΔi

d (ŷ) ξ =

∫

Rn

(

∑

|α|≤d ξαx
α
)2

e−‖x‖2
2dx

∫

Rn e−‖x‖2
2dx

> 0.

So MΔi

d (ŷ) 	 0 for every 1 ≤ i ≤ m. Therefore ŷ is an interior point for (3.6)–(3.8),
which implies the strong duality f∗

Σ = f∗
Δ.

Remark 3.2. Theorem 3.1 implies that the lower bound f∗
Δ given by (3.1)–(3.3)

is weaker than the SOS lower bound f∗
sos. There are examples such that f∗

Δ < f∗
sos

(see Example 3.5). However, in many numerical simulations, the lower bound f∗
Δ is

very useful. For randomly generated polynomials, as shown in section 4, it frequently
happens that f∗

Δ = f∗
sos. On the other hand, under some conditions, we can prove

f∗
Δ = f∗

sos.
Suppose Δ1,Δ2, . . . ,Δm satisfy the running intersection property:

For every 1 ≤ i ≤ m− 1, ∃ k ≤ i such that Δi+1 ∩

⎛

⎝

i
⋃

j=1

Δj

⎞

⎠ � Δk.(3.9)

Theorem 3.3. Suppose (3.6)–(3.8) has an optimal solution y∗ such that each
MΔi

di
(y∗) has a representing measure μi on R

Δi . If condition (3.9) holds, then f∗
Δ =

f∗
sos.

Proof. For any Δi,Δj , MΔi∩Δj

d (y∗) is a common principle submatrix of MΔi

d (y∗)
and MΔj

d (y∗). So the marginals of measures μi are consistent; i.e., the restrictions of
these measures on the common subspaces are the same. By Lemma 6.4 in [15], there
exists a measure on R

n such that μi is the marginal of μ with respect to Δi for all
i = 1, . . . ,m. Define vector ỹ such that

Md(ỹ) =
∫

Rn

md(x)md(x)Tμ(dx).

Then every MΔi

d (y∗) is a principle submatrix of Md(ỹ). So ỹα = y∗α whenever
supp(α) ⊂ Δj for some j. Since the fα �= 0 implies supp(α) ⊂ Δj for some j, we
know the objective value of (3.6) is the same for y∗ and ỹ. Thus f∗

sos ≤ f∗
Δ. Since

f∗
sos ≥ f∗

Δ, we get f∗
sos = f∗

Δ.
Remark 3.4. The running intersection property (3.9) alone is not sufficient to

guarantee the equality f∗
Δ = f∗

sos, as shown by the following example.
Example 3.5. f(x) = f1(x1, x2) + f2(x2, x3) where f1 = x4

1 + (x1x2 − 1)2 and
f2 = x2

2x
2
3 + (x2

3 − 1)2. Solving dense SOS relaxation (2.1)–(2.3) and sparse SOS
relaxation (3.1)–(3.3) numerically, we find that

f∗
Δ ≈ 5.0 · 10−5 < f∗

sos ≈ 0.8499.

Actually the minimum f∗ ≈ 0.8650. First, solve equation ∇f(x) = 0, and evaluate
f(x) on these critical points, and then we find the minimum of these critical values is
about 0.8650. So f∗ < 1. Second, we prove that the minimum f∗ is attainable. Let
{x(k)} be a sequence such that f(x(k)) → f∗ as k goes to infinity. We claim that the
sequence {x(k)} must be bounded.
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Otherwise, suppose x(k) → ∞. Thus at least one of coordinates x(k)
1 , x

(k)
2 , x

(k)
3

should go to infinity. If either x(k)
1 or x(k)

3 goes to infinity, then f(x(k)) goes to
infinity, which is not possible. So x

(k)
2 → ∞. Since {f(x(k))} is bounded, without

loss of generality, we assume x(k)
1 → a1, x

(k)
1 x

(k)
2 → a12, x

(k)
2 x

(k)
3 → a23, x

(k)
3 → a3 for

some numbers a1, a12, a23, a3. If a3 = 1, then x
(k)
2 is convergent to a2, which is not

possible. And, if a3 �= 0, then x
(k)
2 x

(k)
3 goes to infinity, which is also not possible. So

a3 = 0, and hence

f
(

x(k)
)

≥
(

x2
3 − 1

)2 → 1 > f∗,

which is a contradiction.
So the sequence {x(k)} is bounded and has an accumulation point x∗. Then we

must have f(x∗) = f∗, which means that f∗ is attained at some point. From the
computation of critical values, we know f∗ ≈ 0.8650. For this polynomial, both the
dense and sparse SOS relaxation are not exact: f∗

Δ < f∗
sos < f∗, and the method in

[28] gives the same lower bound f∗
Δ.

Corollary 3.6. If all fi are quadratic and condition (3.9) holds, then
f∗
sos = f∗

Δ.
Proof. When all fi are quadratic, i.e., di = 1, the entries of moment matrix

MΔi
1 are the first and second order moments. The positive semidefiniteness of MΔi

1

implies MΔi
1 has a representing measure. Then the conclusion is immediately implied

by Theorem 3.3.
Remark 3.7. If the running intersection condition (3.9) fails, then Corollary 3.6

is no longer true, as shown by the example below.
Example 3.8. Consider the polynomial f(x) = f1(x1, x2)+f2(x2, x3)+f3(x1, x3)

where f1 = 1
2 (x2

1 +x2
2)+2x1x2, f2 = 1

2 (x2
2 +x2

3)+2x2x3, and f3 = 1
2 (x2

1 +x2
3)+2x1x3.

In this case

Δ1 = {1, 2}, Δ2 = {2, 3}, Δ3 = {1, 3}.

The running intersection property (3.9) fails. But we have f∗
Δ = −∞ < f∗

sos =
f∗ = 0.

3.3. Extraction of minimizers. In this subsection, we discuss how to extract
minimizer(s) x∗ = (x∗1, . . . , x

∗
n). Suppose y∗ = (y∗α)α∈F is one optimal solution to

(3.6)–(3.8). Let δi = {i} for every i. The entries of y∗ whose indices are supported in
δi are

y∗0 , y
∗
ei
, y∗2ei

, . . . , y∗2dei
,

which are the entries of the moment matrix M δi

d (y∗). So coordinate x∗i can be ex-
tracted from moment matrix M δi

d (y∗) if it satisfies the flat extension condition. Let
Vi be the set of all the points that can be extracted from the moment matrix M δi

d (y∗).
If Vi is a singleton, then x∗i has a unique choice.

The situation is more subtle if some Vi has cardinality greater than one. Suppose
for some i, j ∈ [n] we have |Vi| > 1 and |Vj| > 1. Can x∗i x

∗
j appear simultaneously

in the optimal solution x∗ for arbitrarily chosen x∗i ∈ Vi, x∗j ∈ Vj? The answer is
obviously no! For instance, the polynomial

(

x2
1 − 1

)2
+

(

x2
2 − 1

)2
+ (x1 − x2)2
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has only two global minimizers ±(1, 1). We find that V1 = V2 = {1,−1} . But
obviously (1,−1) and (−1, 1) are not global minimizers.

Now what is the rule for matching x∗i and x∗j if |Vi| > 1 or |Vj | > 1? So far
we have not yet used the information of moment matrix MΔi

d (y∗). If MΔi

d (y∗) also
satisfies the flat extension condition, we can extract the tuples x∗Δi

= (x∗k)k∈Δi from
MΔi

d (y∗). Let XΔi be the set of all such tuples that can be extracted from MΔi

d (y∗).
One might ask whether Vi and XΔi are consistent, that is, does x∗Δi

∈ XΔi imply that
x∗k ∈ Vk for all k ∈ Δi? Under the flat extension assumption, the answer is yes, which
is due to the following theorem.

Theorem 3.9. Suppose y∗ is one optimal solution to (3.6)–(3.8) such that all
MΔi

d (y∗) satisfy the flat extension condition. Then for any x∗Δi
∈ XΔi , it holds that

x∗k ∈ Vk for all k ∈ Δi.
Proof. Let XΔi = {x(1)

Δi
, x

(2)
Δi
, . . . , x

(r)
Δi

} be the r-atomic representing support for
MΔi

d (y∗). Then we have decomposition

MΔi

d (y∗) =
r

∑

�=1

λ�m2

(

x
(�)
Δi

)

m2

(

x
(�)
Δi

)T

for some λ1, . . . , λr > 0,
∑r
�=1 λ� = 1. Notice that M δk

d (y∗) is a principle submatrix
of MΔi

d (y∗). So we also have that for every k ∈ Δi

M δk

d (y∗) =
r

∑

�=1

λ�m2

(

x
(�)
k

)

m2

(

x
(�)
k

)T

.

This means that {x(1)
k , x

(2)
k , . . . , x

(r)
k } is a r-atomic representing support for moment

matrix M δk

d (y∗) (some x
(�)
k might be the same). By the definition of Vi, we have

{x(1)
k , . . . , x

(r)
k } ⊆ Vk.

Theorem 3.10. Suppose y∗ is one optimal solution to (3.6)–(3.8) such that
all MΔi

d (y∗) satisfy the flat extension condition. Then any x∗ = (x∗1, . . . , x
∗
n) with

x∗k ∈ Vk and x∗Δi
∈ XΔi for all k and i is a global optimal minimizer of f(x).

Proof. Fix x∗ as in the theorem. Since MΔi

d (y∗) satisfies the flat extension
condition, we have the decomposition

MΔi

d (y∗) = λΔimd(x∗Δi
)m2(x∗Δi

)T + M̂Δi ,

where 1 ≥ λΔi > 0 and M̂Δi � 0. Now let λ = mini λΔi > 0 and

MΔi = (λΔi − λ)m2(x∗Δi
)m2(x∗Δi

)T + M̂Δi � 0.

Notice that M̂Δi and MΔi are also moment matrices. Without loss of generality, we
can assume λ < 1, since otherwise eachMΔi

2 (y∗) has rank one and then x∗ is obviously
a global minimizer. For every α ∈ Fi, define ŷα =

(

x∗Δi

)α and ŷ = (ŷα)α∈F . Let
ỹ = (ỹα)α∈F be the vector such that y∗ = λŷ + (1 − λ)ỹ. Then it holds

MΔi

d (y∗) = λMΔi

d (ŷ) + (1 − λ)MΔi

d (ỹ).

Obviously vector ỹ is feasible for (3.7)–(3.8) since

MΔi

d (ỹ) =
1

1 − λ

(

MΔi

d (y∗) − λMΔi

d (ŷ)
)

=
1

1 − λ
MΔi � 0.
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Since y∗ is optimal, we can see
∑

α∈F fαy
∗
α ≤

∑

α∈F fαŷα and
∑

α∈F fαy
∗
α ≤

∑

α∈F
fαỹα. By linearity, it holds

f∗
Δ =

∑

α∈F
fαy

∗
α = λ

∑

α∈F
fαŷα + (1 − λ)

∑

α∈F
fαỹα.

Therefore, we must have
∑

α∈F fαŷα = f∗
Δ since 0 < λ < 1. On the other hand, by

the definition of ŷ, we know f(x∗) =
∑

α∈F fαŷα = f∗
Δ. Thus x∗ is one point at which

the polynomial f(x) attains its lower bound f∗
Δ, which implies that x∗ is a global

minimizer of f(x∗).
The algorithm for minimizing f(x) via sparse SOS relaxation (3.1)–(3.3) is as

follows.
Algorithm 3.11 (Minimizing sum of polynomials).

Input: n,m,Δi, fi(xΔi) (i = 1, . . . ,m)
Output: Vi and XΔi (i = 1, . . . ,m)
Begin

Step 1: Solve the dual problem (3.6)–(3.8). Get the optimal solution y∗.
Step 2: For each 1 ≤ k ≤ n, find the set Vk of points that can be extracted

from M δk

d (y∗).
Step 3: For every k with |Vk| > 1, find the set XΔi from MΔi

d (y∗) whenever
k ∈ Δi.

End
As an example, let us illustrate how to solve the global optimization problem

min
x∈R3

(

x2
1 − 1

)2
+ (x1 − x2)4

︸ ︷︷ ︸

f1(xΔ1)

+ (x2 − x3)4
︸ ︷︷ ︸

f2(xΔ2)

and find global minimizers. Here Δ1 = {1, 2} and Δ2 = {2, 3}. Solve the dual
problem (3.6)–(3.8) and we get solutions

MΔ1
1 (y∗) = MΔ2

1 (y∗) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 0
1 0 0 1 1 1
1 0 0 1 1 1
1 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Both MΔ1
1 (y∗) and MΔ2

1 (y∗) have rank two and satisfy the flat extension condition.
Using the technique from [9], we can extract

V1 = V2 = V3 = {−1, 1}

and

XΔ1 =
{[

−1
−1

]

,

[

1
1

]}

, XΔ2 =
{[

−1
−1

]

,

[

1
1

]}

.

Since the x2-component from XΔ1 and XΔ2 must be the same, we know there are two
global minimizers x∗ = ±(1, 1, 1).
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3.4. Nonlinear least squares problems. Now we consider the special case
that each fi(xΔi) is a square of some polynomial, say, fi(xΔi) = g2

i (xΔi). Then the
global minimization of f(x) =

∑

i fi(xΔi) is equivalent to solving the nonlinear least
squares (NLS) problem associated with the polynomial system:

g1(xΔ1) = g2(xΔ2) = · · · = gm(xΔm) = 0.(3.10)

In this situation, the polynomial function is often nonconvex and it is very difficult for
general numerical optimization schemes like branch-bound to find the global minimizer
of f(x).

Theorem 3.12. If the polynomial system (3.10) admits a solution, then the
sparse SOS relaxation (3.1)–(3.3) is exact; i.e., f∗

Δ = f∗
sos = f∗.

Proof. Obviously f∗ = 0. And γ = 0 is a feasible solution to problem (3.1)–(3.3),
since f(x) itself is a sparse SOS representation as in (3.2)–(3.3). So f∗

Δ ≥ 0, and hence
all the inequalities in the Theorem 3.1 become equalities.

Remark 3.13. When the polynomial system (3.10) admits a solution, we neces-
sarily have f∗ = 0. This might be trivial in some sense. However, the optimal solution
y∗ to the dual problem (3.6)–(3.8) can help recover the real zeros of polynomial system
(3.10), which are absolutely the global minimizers of f(x). See the example below.

Example 3.14. Consider the sparse polynomial system

2x2
1 − 3x1 + 2x2 − 1 = 0,

2x2
i + xi−1 − 3xi + 2xi+1 − 1 = 0 (i = 2, . . . , n− 1),

2x2
n + xn−1 − 3xn − 1 = 0.

This polynomial system is consistent and has at least two real solutions. Set n = 20.
We apply sparse SOS relaxation (3.1)–(3.3) to solve the least squares problem and
get the lower bound f∗

Δ ≈ −2.0 · 10−11. Using the optimal dual solution, we obtain
two real solutions (only the first four digits are shown):

x̂ = (1.8327, −0.1097, −0.5929, −0.6860, −0.7032, −0.7064, −0.7070, −0.7071, −0.7071, −0.7071,

− 0.7071, −0.7070, −0.7068, −0.7064, −0.7051, −0.7015, −0.6919, −0.6658, −0.5960, −0.4164)

x̃ = (−0.5708, −0.6819, −0.7025, −0.7063, −0.7070, −0.7071, −0.7071, −0.7071, −0.7071, −0.7071,

− 0.7071, −0.7070, −0.7068, −0.7064, −0.7051, −0.7015, −0.6919, −0.6658, −0.5960, −0.4164).

3.5. A sparser SOS relaxation. From Theorem 3.12, we know the sparse
SOS relaxation (3.1)–(3.3) is exact whenever the polynomial system (3.10) admits
a solution, and the optimal dual solution can help recover the real zeros. This fact
makes it possible to exploit the sparsity of each fi(xΔi) further. In (3.1)–(3.3), we
assume each fi(xΔi) is a dense polynomial. However, if each fi(xΔi) is sparse, we can
get a sparser SOS relaxation. It is obvious that

supp(fi) ⊆ Gi + Gi,

where Gi is the convex hull of {α ∈ N
n : 2α ∈ supp(fi)}. This motivates us to propose

the sparser SOS relaxation

f∗
Δs

:= max γ(3.11)

s.t. f(x) − γ =
m
∑

i=1

mGi(x)TWimGi(x),(3.12)

Wi � 0, i = 1, . . . ,m.(3.13)
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Here mGi(xΔi) is the column vector of all monomials in x with exponents from Gi.
The size of matrix Wi is equal to the cardinality of Gi. Similar to (3.1)–(3.3), the dual
of (3.11)–(3.13) can be derived to be

f∗
Σs

:= min
∑

α

fαyα(3.14)

s.t. MGi(y) � 0, i = 1, . . . ,m,(3.15)
y0 = 1.(3.16)

Here the sparse moment matrix MGi(y) is indexed by vectors from Gi and defined as

MGi(y)(α, β) = yα+β

for all α, β ∈ Gi.
Theorem 3.15. The optimal values f∗

Σs
, f∗

Δs
, f∗

Σ, f
∗
Δ, f

∗
sos and f∗ satisfy the

relationship

f∗
Σs

= f∗
Δs

≤ f∗
Σ = f∗

Δ ≤ f∗
sos ≤ f∗.

Proof. Applying the standard duality theory in convex programming as in the
proof of Theorem 3.1, we can get the first equality from the left by proving (3.12)–
(3.13) has a strict interior point. Since the relaxation (3.11)–(3.13) is a special case
of (3.1)–(3.3), we obtain the first inequality from the left. The other relations follow
Theorem 3.1.

Theorem 3.16. Suppose fi(xΔi) = g2
i (xΔi). If the polynomial system (3.10)

admits a solution, then the sparse SOS relaxation (3.11)–(3.13) is exact, i.e., f∗
Δs

=
f∗
sos = f∗.

Proof. The proof is almost the same as for Theorem 3.12. Obviously f∗ = 0.
And γ = 0 is a feasible solution, since f(x) itself is a sparse SOS representation as in
(3.12)–(3.13). So f∗

Δs
≥ 0, and hence all the inequalities in the Theorem 3.15 become

equalities.
Remark 3.17. When the polynomial system (3.10) admits a solution, we must

have f∗ = 0. This lower bound itself might not be interesting. However, the optimal
dual solution y∗ to (3.14)–(3.16) can help recover the real zeros of polynomial system
(3.10), which are absolutely the global minimizers of f(x). This observation is very
important and has many applications. See examples in subsection 5.1.

4. Numerical examples. In this section, we present some numerical experi-
ments using sparse SOS relaxations (3.1)–(3.3) and (3.11)–(3.13). First, we use them
to solve some test problems from unconstrained optimization. Second, we generate
various random polynomials, test the performance of these sparse SOS relaxations,
and compare with other methods. All the computations are implemented on a Linux
machine with 0.98 GB memory and 1.46 GHz CPU. The SOS relaxations are solved by
the software SeDuMi [27] using the YALMIP [17] interface. Throughout this section,
the computation time is in CPU seconds. The accuracy of relaxations is measured by

|f(x̂)−f̂ |
max{1,|f(x̂)|} , where x̂ is one extracted solution and f̂ is the computed lower bound.

4.1. Some global optimization test problems. In this subsection, we apply
SOS relaxations (3.1)–(3.3) and (3.11)–(3.13) to solve some global optimization test
problems from [6, 18, 19]. The relaxation (3.1)–(3.3) is usually applied when each
fi(Δi) is almost dense, and the sparser relaxation (3.11)–(3.13) is usually applied
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Table 1

The performance of sparse SOS relaxation (3.1)–(3.3).

Chained singular Chained wood Gen. Rosen.
n accu. time accu. time accu. time

100 3.2e − 09 2.72 3.5e − 10 1.52 9.0e − 8 0.95
200 3.0e − 10 5.29 3.7e − 10 2.25 1.8e − 7 1.46
300 5.0e − 09 8.01 3.8e − 10 3.19 2.7e − 7 2.24
400 5.0e − 10 11.64 3.9e − 10 4.12 3.6e − 7 2.88
500 4.9e − 09 33.09 3.9e − 10 5.12 4.5e − 7 3.45

when each fi(Δi) is sparse. All the test functions in this subsection have global
minimum f∗ = 0. So we use the absolute value of the lower bounds f∗

Δ or f∗
Δs

to
measure the accuracy of the relaxation.

First, consider the following test functions.
• The chained singular function [6]:

f(x) =
1

105

∑

i∈J

(

(xi + 10xi+1)2 + 5(xi+2 − xi+3)2 + (xi+1 − 2xi+2)4

+ 10(xi − 10xi+3)4
)

where J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4. The factor 1
105 is used

to scale the coefficients to avoid numerical troubles.
• The chained wood function [6]

f(x) =
∑

i∈J

(

100
(

xi+1 − x2
i

)2
+ (1 − xi)2 + 90

(

xi+3 − x2
i+2

)2
+ (1 − xi+2)2

+ 10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)2
)

where J = {1, 3, 5, . . . , n− 3} and n is a multiple of 4.
• The generalized Rosenbrock function [19]:

f(x) =
n

∑

i=2

{

100
(

xi − x2
i−1

)2
+ (1 − xi)2

}

.

We apply SOS relaxation (3.1)–(3.3) to minimize these polynomial functions. The
relaxation (3.1)–(3.3) is solved by the software SeDuMi using the YALMIP interface.
The accuracy and consumed CPU time are in Table 1. The problems are solved from
size 100 to 500. For these polynomials, the relaxation (3.1)–(3.3) is almost the same
as the one in [28]. This is because the csp graphs of these polynomials are chordal
graphs. However, if the csp graphs are sparse but their chordal extensions are much
dense, then the relaxation in [28] is very similar to the dense SOS relaxation. In
such situations, the relaxation (3.1)–(3.3) might be more suitable. For example, to
minimize the sparse polynomial

(

x2
1 + x2

2 − 1
)2

+
(

x2
2 + x2

3 − 1
)2

+ · · · +
(

x2
n−1 + x2

n − 1
)2

+
(

x2
n + x2

1 − 1
)2
,

the chordal extension of the csp graph is the complete graph, and hence the sparse
SOS relaxation using chordal extension is the same as the dense SOS relaxation.
However, the sparse relaxation (3.1)–(3.3) is very suitable for this problem.



MINIMIZING SUMMATION OF SMALL POLYNOMIALS 1549

Table 2

The performance of sparse SOS relaxation (3.11)–(3.13).

Broyden tridiagonal Broyden banded Disc. bound val.
n accu. time n accu. time n accu. time

100 1.2e − 7 2.65 10 3.6e − 11 9.72 10 6.0e − 12 0.92
200 2.3e − 7 2.69 15 2.2e − 10 17.28 20 3.4e − 11 1.57
300 5.0e − 7 3.58 20 1.6e − 10 25.27 25 1.6e − 11 2.28
400 3.0e − 6 4.53 25 1.8e − 10 35.19 30 1.1e − 11 2.47
500 4.1e − 6 5.44 30 4.9e − 10 45.30 35 3.9e − 11 3.00

Second, consider the following test functions.
• Broyden tridiagonal function [18]:

f(x) =
n

∑

i=1

((3 − 2xi)xi − xi−1 − 2xi+1 + 1)2 ,

where x0 = xn+1 = 0.
• Broyden banded function [18]:

f(x) =
n

∑

i=1

⎛

⎝xi
(

2 + 10x2
i

)

+ 1 −
∑

j∈Ji

(1 + xj)xj

⎞

⎠

2

,

where Ji = {j : j �= i,max(1, i− 5) ≤ j ≤ min(n, i+ 1)}.
• Discrete boundary value function [6]:

f(x) =
n

∑

i=1

(

2xi − xi−1 − xi+1 +
1
2
h2(xi + ti + 1)3

)2

,

where h = 1
n+1 , ti = ih, and x0 = xn+1 = 0.

These three polynomials have sparse summand polynomial f∗
Δi

. So we apply the
sparser SOS relaxation (3.11)–(3.13) and solve it by the software SeDuMi using the
YALMIP interface. The computational results are in Table 2. All the problems are
solved quite well in a few seconds.

For the Broyden tridiagonal function, we can also apply the sparse relaxation
(3.1)–(3.3) or chordal extension from [28]. They are slightly more expensive. For
n = 500, the problem can be solved in about ten seconds with similar accuracy.
However, for the Broyden banded function and discrete boundary value function, the
relaxation (3.1)–(3.3) and the method in [28] are much more expensive. For instance,
when n has values 10 or bigger, they are usually difficult to implement due to computer
memory restrictions.

We should mention that the Broyden banded function and discrete boundary value
function have different representations as sums of small polynomials. For instance,
if we expand all the squares, then they are sums of small polynomials which all
have only two variables. However, the sparse SOS relaxations based on these new
representations are usually too loose and not useful in practice, because they are very
likely to be primarily infeasible and often no lower bounds can be obtained.

One interesting observation in Table 2 is that the accuracy for the Broyden tridi-
agonal function is not as high as for the other two functions. One possible reason
is that the global minimizer of Broyden tridiagonal function is not unique and there
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Table 3

Computational results for quartic polynomials with different sizes.

‖Δ‖ = 3 ‖Δ‖ = 4
CPU seconds accu CPU seconds accu

n max avr. min max max avr. min max
20 0.85 0.62 0.54 4.1e − 9 1.46 1.15 0.91 2.4e − 9
40 1.22 1.07 0.91 1.9e − 9 2.86 2.49 2.25 2.9e − 9
60 1.80 1.55 1.45 2.9e − 9 4.43 4.17 3.91 3.1e − 9
80 2.30 2.18 2.02 2.3e − 9 6.26 5.94 5.24 3.7e − 9
100 3.02 2.70 2.33 2.8e − 9 7.85 7.41 7.01 5.0e − 9

are additional numerical troubles caused from extracting minimizers. This illustrates
that the computation is more numerically difficult when there are multiple global
solutions.

4.2. Randomly generated test problems. In this subsection, we present the
computational results for randomly generated polynomials. The aim is to test the
performance of the sparse SOS relaxation (3.1)–(3.3) for minimizing random polyno-
mials and compare with other sparse SOS methods. For these randomly generated
polynomials, solve the sparse relaxation (3.1)–(3.3) by the software SeDuMi using the
YALMIP interface. Then we get lower bounds f∗

Δ and extract minimizers x̂. Since
we do not know the true global minimizers in advance, the accuracy of x̂ can be mea-
sured by err = |f(x̂)−f∗

Δ|
max{1,|f(x̂)|} . The smaller err is, the more accurate x̂ is, since f∗

Δ is a
guaranteed lower bound.

4.2.1. Randomly generated sums of small polynomials. In this subsub-
section, we randomly generate sparse polynomials f(x) of the form (1.1) and use them
to test the performance of the sparse relaxation (3.1)–(3.3). Then the csp graph of
f(x) is usually not chordal, and its chordal extension is often much less sparse. So the
method in [28] is usually expensive for these polynomials. We let m = n and choose
fi to have the form

fi(xΔi) = md(xΔi)
T · Ai · md(xΔi) + bTi m2d−1(xΔi),

where Δi are chosen to be random subsets of [n] with cardinality at most ‖Δ‖. Here
Ni =

(|Δi|+d
d

)

, Ai = nINi + BBT , B ∈ R
Ni×Ni , and bi ∈ R

(|Δi|+d−1
d−1 ) are random. So

each Ai is positive definite. This choice guarantees that the global minimizers of f(x)
are contained in some compact set.

First, let 2d = 4 and n be 20, 40, 60, 80, 100. For each ‖Δ‖ (3 or 4) and n, we
generate 100 random polynomials in the way described above. For each one, we solve
the sparse SOS relaxation (3.1)–(3.3) by the software SeDuMi using the YALMIP
interface, and get the lower bound f∗

Δ and optimal dual solution ŷ. For all these
randomly generated polynomials, the moment matrices MΔi

d (ŷ) have numerical rank
one. So we can easily extract the minimizer x̂. The maximum, average, and minimum
of consumed CPU time are in Table 3. For these random polynomials, we just record
the maximum error of the extracted minimizers. From Table 3, for Δ = 4, we can
find the global minimizer of a quartic sparse polynomial of 100 variables with error
O(10−9) within about 8 CPU seconds.

Second, let n = 30 and 2d be 4, 6, 8. For each ‖Δ‖ (3 or 4) and 2d, we generate 100
random polynomials in the way described in the above. For each one, solve the sparse
SOS relaxation (3.1)–(3.3) by the software SeDuMi using the YALMIP interface,
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Table 4

Computational results for polynomials of size n = 30 with different degrees.

‖Δ‖ = 3 ‖Δ‖ = 4
CPU seconds err CPU seconds err

2d max avr min max max avr min max
4 1.01 0.87 0.77 2.5e − 9 2.33 1.93 1.65 2.4e − 9
6 3.22 2.96 2.67 1.8e − 9 17.16 14.92 11.71 2.2e − 9
8 13.07 11.44 10.13 1.7e − 8 136.67 119.90 107.28 9.4e − 8

and get the lower bounds f∗
Δ and optimal dual solution ŷ. Similarly, all moment

matrices MΔi

d (ŷ) have rank one, and the minimizer x̂ can be extracted easily. The
maximum, average, and minimum of the consumed CPU time, and the maximum
error of extracted minimizers are in Table 4. For ‖Δ‖ = 4, the global minimizer
of such generated polynomials of degree 8 and 30 variables can be found with error
O(10−8) within about 120 seconds.

We remark that the sparsity technique in [28] is too expensive to be implementable
for minimizing these random polynomials generated in the way as above because of
computer memory limitations. For these random polynomials, the sparsity technique
using chordal extension is almost as expensive as the general dense SOS relaxation.
This is because the chordal extensions of csp graphs of these polynomials are usually
much more dense than the original csp graphs. However, as we have seen in the above,
the SOS relaxation (3.1)–(3.3) is very suitable for these polynomials.

4.2.2. Random sparse polynomials with given chordal extension. In this
subsubsection, we generate random sparse polynomials in a similar way as in [28],
and compare the performance of our sparse SOS relaxation (3.1)–(3.3) with the one
in [28] using chordal extension. Generate a chordal graph randomly such that the
size of every maximal clique is at most 6. Let {C1, . . . , Cm} be the set of maximal
cliques. If we choose Δi = Ci, then the sparse SOS relaxation (3.1)–(3.3) is the same
as the one using chordal extension. Therefore, to make a reasonable comparison, for
each Ci, we choose a random subset Δi ⊆ Ci. Choose each small polynomial fi to
have the form

fi(xΔi) = md(xΔi)
T · Ai · md(xΔi) + bTi m2d−1(xΔi).

Here Ni =
(|Δi|+d

d

)

, Ai = nINi +BBT , B ∈ R
Ni×Ni , and bi ∈ R

(|Δi|+d−1
d−1 ) are random.

The global minimizers of f(x) =
∑

i fi(xΔi) generated as above always exist and are
contained in some compact set.

For polynomials randomly generated as above, the technique in [28] using chordal
extension is a good choice, because there exists one sparse chordal extension of the
csp graph. Now we compare the computational results for these two methods.

First, let 2d = 4 and n be 20, 40, 60, 80, 100. For each n, generate 50 random
polynomials as above. For each of these random polynomials, solve the relaxation
(3.1)–(3.3), find a chordal extension of the csp graph of f(x), and then apply the
sparse relaxation in [28]. Both relaxations are solved by the software SeDuMi using
the YALMIP interface. Then we extract minimizers x̂ from moment matrices. The
computational results are in Table 5. For these solved problems, we just record the
maximum error of the relaxation. Second, let n = 30 and 2d be 4, 6, 8. For each 2d,
generate 50 random polynomials as above. For each one, solve the problem by the
relaxation (3.1)–(3.8) and the one in [28] using chordal extension. They are solved by
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Table 5

Comparison with chordal extension on quartic polynomials.

Relaxation (3.1)–(3.3) Relaxation using chordal extension
CPU seconds accu CPU seconds accu

n max avr. min max max avr. min max
20 1.75 1.21 0.96 6.8e − 9 2.15 1.78 1.43 5.5e − 9
40 3.07 2.69 2.24 7.5e − 9 4.08 3.51 3.12 4.9e − 9
60 4.99 4.54 3.82 6.7e − 9 7.88 6.93 5.65 6.4e − 9
80 6.59 5.87 5.23 6.3e − 9 10.84 9.57 8.59 5.7e − 9
100 9.34 7.64 7.11 7.2e − 9 13.45 12.76 11.74 4.3e − 9

Table 6

Comparison with chordal extension on polynomials with 30 variables.

Relaxation (3.1)–(3.3) Relaxation using chordal extension
CPU seconds accu CPU seconds accu

2d max avr. min max max avr. min max
4 2.87 1.98 1.35 7.2e − 9 3.06 2.21 1.69 4.3e − 9
6 22.61 16.78 10.53 6.9e − 9 32.15 23.91 13.51 5.1e − 9
8 193.45 131.17 98.75 6.7e − 9 253.79 186.84 112.37 5.8e − 9

the software SeDuMi using the YALMIP interface. The computational results are in
Table 6.

From Tables 5 and 6, we observe that for polynomials randomly generated as
above the sparse SOS relaxation (3.1)–(3.3) is slightly more computationally efficient
than the one using chordal extension. As we can see, for these random polynomials,
there is not much difference between the qualities of these two kinds of sparse SOS
relaxations. The distinction between their qualities depends on specific problems. Of
course, theoretically the sparse relaxation using chordal extension in [28] is at least
as tight as the relaxation (3.1)–(3.3).

4.2.3. Random dense polynomials. In this subsubsection, we test the per-
formance of our sparse SOS relaxation on minimizing general dense polynomials. We
observe that every polynomial f(x) is a summation of monomials whose number of
variables is at most the degree deg(f). So the sparse SOS relaxation (3.1)–(3.3) is at-
tractive when the degree 2d is small like 4. We generate the random dense polynomials
as follows:

f(x) = md(x)T ·A ·md(x) + bTm2d−1(x).

Here N =
(

n+d
d

)

, A = nIN +BBT , B ∈ R
N×N is a random matrix, and b ∈ R

(n+2d−1
n )

is a random vector. So the global minimizers of f(x) generated this way are contained
in some compact set. Note that f(x) is also a summation of small polynomials. Let
Δi be the subsets of [n] with cardinality 2d. Then we can write

f(x) =
( n
2d)
∑

i=1

fi(xΔi)

for some small polynomials fi(xΔi).
Since ‖Δ‖ = 2d, which should not be big for the effectiveness of the sparse relax-

ation (3.1)–(3.3), we test for the case that 2d = 4. Let n be 16, 17, 18, 19, 20, 21, 22, 23.
For each pair (n, d) of these values, generate 50 random examples as above. For each
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Table 7

Computational results for dense quartic polynomials.

n— 16 17 18 19 20 21 22 23
max time 335.29 569.74 901.32 1505.45 2249.19 3257.86 4734.25 7060.72
avr. time 241.48 455.32 751.69 1245.22 2070.70 2989.45 4497.84 6419.53
min time 205.60 397.11 688.58 1052.70 1893.02 2676.62 4197.95 5874.28
accuracy 7.3e − 9 6.7e − 9 7.4e − 9 6.9e − 9 8.1e − 9 6.5e − 9 7.9e − 9 8.5e − 9

random polynomial, solve the sparse relaxation (3.1)–(3.3) by the software SeDuMi
using the YALMIP interface. The consumed CPU time and the accuracy of relax-
ation are in Table 7. We can see that the obtained solutions are very good within
reasonably acceptable time. When n ≥ 24, the sparse relaxation (3.1)–(3.3) is then
also too expensive to be implementable due to computer memory restrictions.

For these randomly generated dense polynomials, the general dense SOS relax-
ation and sparse SOS relaxations like in [28] are not implementable for n ≥ 16, due
to either computer memory shortage or unacceptable long running time. However,
when 2d is small like 4, the sparse SOS relaxation (3.1)–(3.3) can solve bigger dense
polynomial optimization problems which can not be solved by other methods.

5. Applications. Minimizing a summation of small polynomials arises in vari-
ous applications. Many big polynomials in applications often come in this form. In
such situations, the sparse SOS relaxation (3.1)–(3.3) or (3.11)–(3.13) is very useful.
In this section, we show some applications in solving sparse polynomial systems and
sensor network localization.

5.1. Solving sparse polynomial system. Suppose we are trying to solve the
sparse polynomial system

g1(xΔ1) = 0, g2(xΔ2) = 0, . . . , gm(xΔm) = 0.

In some applications, these equations are redundant or even inconsistent. When the
polynomial system does not admit a solution, we want to seek a least squares solution,
which is often useful in applications.

This problem can be formulated as finding the global minimizer of the sparse
polynomial

f∗ := min
x∈Rn

f(x) =
m
∑

i=1

g2
i (xΔi).

The polynomial system has a real zero if and only if f∗ = 0. When f∗ = 0, the global
minimizers are precisely the real zeros of the polynomial system. When f∗ > 0, the
global minimizers are the least squares solutions.

One important sparse polynomial system of the above form is from computing
the numerical solutions of nonlinear differential equations. Consider the two-point
BVP

F (t, x, x′, x′′) = 0, x(a) = α, x(b) = β,

where F (t, x, x′, x′′) is a polynomial function in t, x, x′, x′′. To find the numerical
solution, the central difference approximation with a uniform mesh is often used to
discretize the derivatives. Let N be a positive integer and set h = b−a

N+1 . Then we get
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Table 8

The performance of (3.11)–(3.13) solving the equations in Example 5.1.

N Eqn. error ‖xk − x(tk)‖∞ ‖xk − x(tk)‖∞/h2 Time
5 2.8937e − 07 7.0252e − 05 2.5291e − 003 0.52

10 2.3329e − 07 1.9570e − 05 2.3680e − 003 0.77
20 5.2879e − 07 1.5041e − 05 6.6331e − 003 1.18
30 2.6194e − 07 1.9413e − 05 1.8656e − 002 2.09
40 3.0304e − 07 4.3344e − 05 7.2861e − 002 3.99
50 6.5375e − 07 1.5124e − 04 3.9338e − 001 6.82
60 1.5271e − 06 4.8695e − 04 1.8119e + 00 7.77
70 1.2555e − 06 5.2428e − 04 2.6429e + 00 9.16
80 9.7315e − 07 6.1330e − 04 4.0239e + 00 9.78
90 2.7519e − 06 1.9311e − 03 1.5991e + 01 10.81

100 1.8628e − 06 8.1425e − 04 8.3062e + 00 8.79

polynomial difference equations

F

(

tk, xk,
xk+1 − xk−1

2h
,
xk−1 − 2xk + xk+1

h2

)

= 0, k = 1, . . . , N,

where x0 = α, xN+1 = β, and tk = a + hk. Every polynomial on the left involves
2 or 3 variables xk−1, xk, xk+1. So this is a sparse polynomial system. There are
several methods for solving this kind of polynomial system, like Newton’s method
and homotopy methods. Newton’s method is very fast, but often require an accurate
initial guess. Homotopy methods do not require a “satisfactory” guess and work well
for small N , but are expensive to implement for large N . We refer to [1] and the
references therein for work in this area. When N is large, this polynomial system
is large but sparse. We solve this system by applying the sparse SOS relaxation
(3.11)–(3.13) for big N (up to 100 or even bigger).

Example 5.1 ([1]). Consider a basic BVP

x′′ − 2x3 = 0, x(0) =
1
2
, x(1) =

1
3
.

The exact solution to this problem is x(t) = 1
t+2 . Now we discretize the differential

equation with mesh size h = 1
N+1 , then get the difference equation

1
2
− 2x1 + x2 − 2h2x3

1 = 0,

xk−1 − 2xk + xk+1 − 2h2x3
k = 0, k = 2, . . . , N − 1

xN−1 − 2xN +
1
3
− 2h2x3

N = 0.

This is a polynomial system about x1, x2, . . . , xN . We can solve this polynomial
system as a nonlinear least squares problem by applying sparse SOS relaxation (3.11)–
(3.13). The computational results are in Table 8. The equation error is defined to
be the infinity norm of the residuals of the left-hand side of the polynomial system,
which measures the quality of how the polynomial systems are solved. The obtained
solutions have equation error from O(10−6) to O(10−7). If we want to make them
more accurate, they can be used as the initial guesses in Newton’s methods for refining.
The accuracy of the discretization is defined to be the difference between computed
solution xk and true solution x(tk) = 1

2+tk
where tk = k

N+1 . Since the discretization
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has error O(h2), we expect that ‖xk − x(tk)‖∞/h2 is a constant. When N ≤ 40, we
can see that ‖xk−x(tk)‖∞/h2 is almost constant. When N ≥ 50, SeDuMi experienced
numerical troubles, and the returned solutions are not as accurate as for the smaller
Ns. This explains why ‖xk − x(tk)‖∞ and ‖xk − x(tk)‖∞/h2 becomes bigger for
N ≥ 50. Time records the CPU seconds consumed by the SDP solver SeDuMi. For
N = 100, the computation takes less CPU time than for N = 80 or N = 90. This is
because the numerical troubles make SeDuMi terminate earlier.

Example 5.2. Consider another BVP

x′′ +
1
2

(x+ t)3 = 0, x(0) = 0, x(1) = 0.

Now we discretize the differential equation with mesh size h = 1
N+1 and get the

difference equation

2x1 − x2 +
1
2
h2(x1 + t1)3 = 0,

2xi − xi−1 − xi+1 +
1
2
h2(xi + ti)3 = 0, i = 2, . . . , N − 1,

2xN − xN−1 +
1
2
h2(xN + tN )3 = 0.

This is a polynomial system about x1, x2, . . . , xN . We can solve this polynomial
system as a nonlinear least squares problem by applying sparse SOS relaxation (3.11)–
(3.13). When N = 30, we get the following real solution within about 2.5 CPU seconds
(only the first four digits are shown):

(−0.0159, −0.0312, −0.0459, −0.0600, −0.0735, −0.0864, −0.0985, −0.1099, −0.1205, −0.1302,

−0.1391, −0.1470, −0.1540, −0.1599, −0.1646, −0.1682, −0.1705, −0.1715, −0.1710, −0.1689,

−0.1651, −0.1596, −0.1521, −0.1425, −0.1307, −0.1164, −0.0995, −0.0796, −0.0567, −0.0302).

For solving polynomial systems arising from BVPs, the sparse SOS method based
on chordal extension like in [28] and (3.1)–(3.3) have similar performance, because
the csp matrices are banded and the Cholesky factors are sparse. But they are much
more expensive than the further sparse SOS relaxation (3.11)–(3.13). This is because
(3.11)–(3.13) has further used the sparsity of each small polynomial gi(xΔi) resulting
from BVPs.

5.2. Sensor network localization. The sensor network location problem is
basically described as follows: find a sequence of unknown vectors x1, x2, . . . , xn ∈
R
k(k = 1, 2, . . . ) (they are called sensors) such that distances between these sensors

and some other known vectors a1, . . . , am (they are called anchors) are equal to some
given numbers. Now each xi itself is a k-dimensional vector. To be more specific, let
A = {(i, j) ∈ [n] × [n] : i < j, ‖xi − xj‖2 = dij}, and B = {(i, k) ∈ [n] × [m] : ‖xi −
ak‖2 = eik}, where dij , eik are given distances. Then the sensor network localization
problem is to find vectors x1, x2, . . . , xn such that ‖xi − xj‖2 = dij for all (i, j) ∈ A
and ‖xi − ak‖2 = eik for all (i, k) ∈ B. Notice that A and B give only some partial
pairs of distances. A does not contain all the pairs (i, j) such that i < j, and neither
does B.

Sensor network localization is also known as the graph realization problem or the
distance geometry problem. Given a graph G = (V,E) along with a real number
associated with each edge, graph realization is to assign each vertex a coordinate so
that the Euclidean distance between any two adjacent vertices is equal to the real
number associated with that edge.
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The locations of sensors can be determined from the polynomial system

‖xi − xj‖2
2 = d2

ij , ∀ (i, j) ∈ A,
‖xi − ak‖2

2 = e2ik, ∀ (i, k) ∈ B.

Usually solving this polynomial system directly is very expensive. Here we solve
this polynomial system as a nonlinear least squares problem. Minimize the quartic
polynomial function

f(x) :=
∑

(i,j)∈A

(

‖xi − xj‖2
2 − d2

ij

)2
+

∑

(i,k)∈B

(

‖xi − ak‖2
2 − e2ik

)2
,(5.1)

where x = [x1, . . . , xn]. x∗ is a solution to sensor network localization problem if
and only if x∗ is a global minimizer of f(x) such that f(x∗) = 0. When x∗ is a global
minimizer such that f(x∗) > 0, the distances di,j and eik are not consistent, and x∗

is a solution in the least squares sense. This polynomial f(x) is of the form (1.1), and
our sparse SOS relaxation (3.1)–(3.3) can be applied to solve the problem.

We randomly generate test problems which are similar to those given in [5].
First, we randomly generate n = 500 sensor locations x∗1, . . . , x∗n from the unit square
[−0.5, 0.5] × [−0.5, 0.5]. The anchors {a1, a2, a3, a4} (m = 4) are chosen to be four
fixed points (±0.45, ±0.45). Choose edge set A such that for every sensor x∗i there
are at most 10 sensors x∗j (j > i) with (i, j) ∈ A and ‖x∗i − x∗j‖2 ≤ 0.3. For every
(i, j) ∈ A, compute the distance ‖x∗i − x∗j‖2 = dij . Choose edge B such that every
anchor is connected to all the sensors within distance 0.3. For every (i, k) ∈ B, com-
pute the distance ‖x∗i − ak‖2 = eik. Then we apply sparse SOS relaxation (3.1)–(3.8)
to minimize polynomial function (5.1). The accuracy of computed sensor locations
x̂1, . . . , x̂n will be measured by the Root Mean Square Distance (RMSD), which is
defined as RMSD =

(

1
n

∑n
i=1 ‖x̂i − x∗i ‖2

2

)
1
2 . We use SeDuMi to solve the sparse SOS

relaxation (3.1)–(3.8) on a Linux machine with 1.46 GHz CPU and 0.98GB memory.
The problem can be solved within about 18 CPU minutes with accuracy O(10−6).

The sparse SOS method based on chordal extension like in [28] is usually not
practical for solving sensor network localization problems, because the corresponding
csp matrices usually do not have sparse Cholesky factorizations and the resulting
chordal extensions are often too dense to be useful. We refer to [21] for more details
about sparse SOS methods for sensor network localization.

6. Conclusions and discussions. This paper proposes sparse SOS relaxations
for minimizing polynomial functions that are summations of small polynomials. We
discuss various properties of these relaxations and the computational issues. We
also present applications of this sparsity technique in solving polynomial equations
derived from nonlinear differential equations and sensor network localization. As a
special case, this sparsity technique provides a heuristic approach to solve bigger dense
polynomial optimization problems.

In order to exploit the sparsity, the polynomial and its SOS representation must
be sparse. In many applications, the polynomials are often given with sparsity pat-
tern (1.1), and then the sparsity technique proposed in this paper is very suitable.
If the sparsity pattern is not given, one important future work is how to represent
the polynomial in a sparse pattern such that the technique proposed in this paper is
most efficient. Of course, one simple choice is to consider each monomial as a small
polynomial.
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The idea of this sparse SOS relaxation can be applied in a similar way to solve
constrained polynomial optimization problems, provided the objective and constraint
polynomials are also sums of small polynomials. See Kim et al. [11] and Lasserre [15]
for related work. To get the global minimum, high order relaxations are usually
necessary. Lasserre [15] proved the convergence under the running intersection prop-
erty. However, unlike the general dense SOS relaxation for minimizing polynomials
over compact sets, the convergence might fail when the running intersection property
does not hold. As a counterexample, consider the Minimum Cover Set Problem. Let
G = (V,E) be a graph with vertex set V = [3] and edge set E = {(1, 2), (1, 3), (2, 3)}.
To find the minimum cover set is equivalent to solving

min
x∈R3

f1(xΔ1) + f2(xΔ2) + f3(xΔ3)

s.t. x2
1 = x1, x

2
2 = x2, x

2
3 = x3,

x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 ≥ 1,

where Δ1 = {1, 2}, Δ2 = {1, 3}, Δ3 = {2, 3} and f1(xΔ1) = 1
2 (x1 + x2), f2(xΔ2) =

1
2 (x1 + x3), f3(xΔ3) = 1

2 (x2 + x3). The running intersection property now fails. How-
ever, it can be shown that the global minimum f∗ = 2 and the lower bounds given by
sparse SOS relaxations are at most 3

2 . The sparse SOS relaxations do not converge
for this example.

Another important future work is to apply the sparse SOS relaxations in solving
big real sparse polynomial systems arising from nonlinear differential equations.
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1. Introduction. The quadratic assignment problem (QAP) may be stated in
the following form:

(1) min
X∈Πn

trace
(

AXBXT
)

,

where A and B are given symmetric n × n matrices, and Πn is the set of n × n
permutation matrices.

It is well known that the QAP contains the symmetric traveling salesman problem
(TSP) as a special case. To show this, we denote the complete graph on n vertices
with edge lengths (weights) Dij = Dji > 0 (i �= j), by Kn(D), where D is called the
matrix of edge lengths (weights). The TSP is to find a Hamiltonian circuit of minimum
length in Kn(D). The n vertices are often called cities, and the Hamiltonian circuit
of minimum length the optimal tour.

To see that TSP is a special case of QAP, let C1 denote the adjacency matrix of
Cn (the standard circuit on n vertices):

C1 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 · · · 0 1
1 0 1 0 · · · 0

0 1 0 1
. . .

...
...

. . . . . . . . . . . .
0 0 1
1 0 · · · 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now the TSP problem is obtained from the QAP problem (1) by setting A = 1
2D and

B = C1. To see this, note that every Hamiltonian circuit in a complete graph has
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adjacency matrix XC1X
T for some X ∈ Πn. Thus we may concisely state the TSP as

(2) TSPopt := min
X∈Πn

trace

(

1
2
DXC1X

T

)

.

The symmetric TSP is NP-hard in the strong sense [20], and therefore so is the
more general QAP. In the special case where the distance function of the TSP instance
satisfies the triangle inequality (metric TSP), there is a celebrated 3/2-approximation
algorithm due to Christofides [9]. It is a long-standing (since 1975) open problem to
improve on the 3/2 constant, since the strongest negative result is that a (1 + 1/219)-
approximation algorithm is not possible, unless P=NP [21].

In the case when the distances are Euclidean in fixed dimension (the so-called pla-
nar or geometric TSP), the problem allows a polynomial-time approximation scheme
[1]. A recent survey of the TSP is given by Schrijver [22, Chapter 58].

Main results and outline of this paper. In this paper we will consider
semidefinite programming (SDP) relaxations of the TSP. We will introduce a new
SDP relaxation of TSP in section 2, which is motivated by the theory of associa-
tion schemes. Subsequently, we will show in section 3 that the new SDP relaxation
coincides with the SDP relaxation for QAP introduced in [26] when applied to the
QAP reformulation of TSP in (2). Then we will show in section 4 that the new SDP
relaxation dominates the relaxation due to Cvetković et al. [5]. The relaxation of
Cvetković et al. is known to be dominated by the Held–Karp linear programming
bound [6, 15], but we show in section 5 that the new SDP bound is not dominated by
the Held–Karp bound (or vice versa).

Notation. The space of p × q real matrices is denoted by R
p×q, the space of

k×k symmetric matrices is denoted by Sk, and the space of k×k symmetric positive
semidefinite matrices by S+

k . We will sometimes also use the notation X � 0 instead
of X ∈ S+

k , if the order of the matrix is clear from the context. By diag(X) we mean
the n-vector composed of the diagonal entries of X ∈ Sn.

We use In to denote the identity matrix of order n. Similarly, Jn and en denote
the n × n all-ones matrix and all ones n-vector, respectively, and 0n×n is the zero
matrix of order n. We will omit the subscript if the order is clear from the context.

The Kronecker product A ⊗ B of matrices A ∈ R
p×q and B ∈ R

r×s is defined as
the pr × qs matrix composed of pq blocks of size r × s, with block ij given by AijB
(i = 1, . . . , p), (j = 1, . . . , q).

The Hadamard (component-wise) product of matrices A and B of the same size
will be denoted by A ◦B.

2. A new SDP relaxation of TSP. In this section we show that the optimal
value of the following semidefinite program provides a lower bound on the length
TSPopt of an optimal tour:

(3)

min 1
2 trace

(

DX(1)
)

subject to
X(k) ≥ 0, k = 1, . . . , d
∑d
k=1X

(k) = J − I,

I +
∑d

k=1 cos
(

2πik
n

)

X(k) � 0, i = 1, . . . , d
X(k) ∈ Sn, k = 1, . . . , d,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

where d = � 1
2n	 is the diameter of Cn.
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Note that this problem involves nonnegative matrix variables X(1), . . . , X(d) of
order n. The matrix variables X(k) have an interesting interpretation in terms of
association schemes.

Association schemes. We will give a brief overview of this topic; for an intro-
duction to association schemes, see Chapter 12 in [10], and in the context of SDP,
[11].

Definition 2.1 (Asssociation scheme). Assume that a given set of n×n matrices
B0, . . . , Bt has the following properties:

(1) Bi is a 0 − 1 matrix for all i and B0 = I;
(2)

∑

iBi = J ;
(3) Bi = BTi∗ for some i∗;
(4) BiBj = BjBi for all i, j;
(5) BiBj ∈ span{B1, . . . , Bt}.

Then we refer to {B1, . . . , Bt} as an association scheme. If the Bi’s are also symmet-
ric, then we speak of a symmetric association scheme.

Note that item (4) (commutativity) implies that the matrices B1, . . . , Bt share a
common set of eigenvectors, and therefore can be simultaneously diagonalized. Note
also that an association scheme is a basis of a matrix-∗ algebra (viewed as a vector
space). Moreover, one clearly has

trace
(

BiB
T
j

)

= 0 if i �= j.

Since the Bi’s share a system of eigenvectors, there is a natural ordering of their
eigenvalues with respect to any fixed ordering of the eigenvectors. Thus the last
equality may be interpreted as

(4)
∑

k

λk(Bi)λk(Bj) = 0 if i �= j,

where the λk(Bi)’s are the eigenvalues of Bi with respect to the fixed ordering.
The association scheme of particular interest to us arises as follows. Given a

connected graph G = (V,E) with diameter d, we define |V | × |V | matrices A(k)

(k = 1, . . . , d) as follows:

A
(k)
ij =

{

1 if dist(i, j) = k
0 else, (i, j ∈ V ),

where dist(i, j) is the length of the shortest path from i to j.
Note that A(1) is simply the adjacency matrix of G. Moreover, one clearly has

I +
d
∑

k=1

A(k) = J.

It is well known that, for G = Cn, the matrices A(k) (k = 1, . . . , d ≡ �n/2	) together
with A(0) := I form an association scheme, since Cn is a distance regular graph.

It is shown in the Appendix to this paper that for G = Cn, the eigenvalues of the
matrix A(k) are

λm
(

A(k)
)

= 2 cos(2πmk/n), m = 0, . . . , n− 1, k = 1, . . . , �(n− 1)/2	,

and, if n is even,

λn/2
(

A(k)
)

= cos(kπ) = (−1)k.
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In particular, we have

(5) λm
(

A(k)
)

= λk
(

A(m)
)

k,m = 1, . . . , �(n− 1)/2	.

Also note that

(6) λm
(

A(k)
)

= λn−m
(

A(k)
)

, k,m = 1, . . . , �(n− 1)/2	,

so that each matrix A(k) (k = 1, . . . , d) has only 1 + �n/2	 distinct eigenvalues.

Verifying the SDP relaxation (3). We now show that setting X(k) = A(k)

(k = 1, . . . , d) gives a feasible solution of (3). We only need to verify that

I +
d
∑

k=1

cos
(

2πik
n

)

A(k) � 0, i = 1, . . . , d.

We will show this for odd n, the proof for even n being similar.
Since the A(k)’s may be simultaneously diagonalized, the last linear matrix in-

equality (LMI) is the same as

2 +
d
∑

k=1

λk
(

A(i)
)

λj
(

A(k)
)

≥ 0, i, j = 1, . . . , d,

and by using (5) this becomes

2 +
d
∑

k=1

λk
(

A(i)
)

λk
(

A(j)
)

≥ 0, i, j = 1, . . . , d.

Since λ0(A(i)) = 2 (i = 1, . . . , d), and using (4), one can easily verify that the last
inequality holds. Indeed, one has

2 +
d
∑

k=1

λk
(

A(i)
)

λk
(

A(j)
)

= 2 +
1
2

n−1
∑

k=1

λk
(

A(i)
)

λk
(

A(j)
)

(by (6))

= 2 − 1
2
λ0

(

A(i)
)

λ0

(

A(j)
)

+
1
2

n−1
∑

k=0

λk
(

A(i)
)

λk
(

A(j)
)

=
{

2 − 2 + 0 = 0 if (i �= j), by (4),
2 − 2 + 1

2

∑n−1
k=0

(

λk
(

A(i)
))2 ≥ 0 if (i = j).

Thus we have established the following result.
Theorem 2.1. The optimal value of the SDP problem (3) provides a lower bound

on the optimal value TSPopt of the associated TSP instance.

3. Relation of (3) to an SDP relaxation of QAP. An SDP relaxation of the
QAP problem (1) was introduced in [26], and further studied for specially structured
instances in [7].
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When applied to the QAP reformulation of TSP in (2), this SDP relaxation takes
the form:

(7)

min 1
2 trace(C1 ⊗D)Y

subject to
trace(((I ⊗ (J − I))Y + ((J − I) ⊗ I)Y = 0
trace(Y ) − 2eT y = −n
(

1 yT

y Y

)

� 0, Y ≥ 0.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

It is easy to verify that this is indeed a relaxation of problem (2), by noting that
setting Y = vec(X)vec(X)T and y = diag(Y ) gives a feasible solution if X ∈ Πn.

In this section we will show that the optimal value of the SDP problem (7) actually
equals the optimal value of the new SDP relaxation (3). The proof is via the technique
of symmetry reduction.

Symmetry reduction of the SDP problem (7). Consider the following form
of a general SDP problem:

(8) p∗ := min
X�0,X≥0

{trace(A0X) : trace(AkX) = bk, k = 1, . . . ,m} ,

where the Ai (i = 0, . . . ,m) are given symmetric matrices.
If we view (7) as an SDP problem in the form (8), the data matrices of problem

(7) are

(9)
(

0 0T

0 1
2C1 ⊗D

)

,

(

0 0T

0 I ⊗ (J − I) + (J − I) ⊗ I,

)

,

(

0 −eT
−e 2I

)

,

(

1 0T

0 0

)

.

Definition 3.1. We define the automorphism group of a matrix Z ∈ R
k×k as

aut(Z) = {P ∈ Πk : PZPT = Z}.

Symmetry reduction of problem (8) is possible under the assumption that the
multiplicative matrix group

G :=
m
⋂

i=0

aut(Ai)

is nontrivial. We call G the symmetry group of the SDP problem (8).
For the matrices (9), the group G is given by the matrices

(10) G :=
{(

1 0T

0 P ⊗ I

)

: P ∈ Dn
}

,

where Dn is the (permutation matrix representation of) dihedral group of order n,
i.e., the automorphism group of Cn.

The basic idea of symmetry reduction is given by the following result.
Theorem 3.1 (see, e.g., [8]). If X is a feasible (resp. optimal) solution of the

SDP problem (8) with symmetry group G, then

X̄ :=
1
|G|

∑

P∈G
PTXP

is also a feasible (resp. optimal) solution of (8).
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Thus there exist optimal solutions in the set

AG :=

{

1
|G|

∑

P∈G
PTXP : X ∈ R

n×n

}

.

This set is called the centralizer ring (or commutant) of G and it is a matrix ∗-algebra.
For the group defined in (10), it is straightforward to verify that the centralizer ring
is given by

(11) AG :=
{(

α xT

y C ⊗ Z

) ∣

∣

∣

∣

α ∈ R, C = CT circulant, Z ∈ R
n×n, x, y ∈ R

n2
}

,

where xT = [x1e
T . . . xne

T ] and yT = [y1eT . . . yneT ] for some scalars xi and yi (i =
1, . . . , n), where e ∈ R

n is the all-ones vector, as before.
Thus we may restrict the feasible set of problem (7) to feasible solutions of the

form (11).
If we divide y and Y in (7) into blocks

y =
(

(

y(1)
)T

· · ·
(

y(n)
)T

)T

,

and

Y =

⎛

⎜

⎝

Y (11) · · · Y (1n)

...
. . .

...
Y (n1) · · · Y (nn)

⎞

⎟

⎠
,

where y(i) ∈ R
n and Y (ij) = Y (ji)T ∈ R

n×n, then feasible solutions of (7) satisfy

(12)

⎛

⎜

⎜

⎜

⎝

1
(

y(1)
)T · · ·

(

y(n)
)T

y(1) Y (11) · · · Y (1n)

...
...

. . .
...

y(n) Y (n1) · · · Y (nn)

⎞

⎟

⎟

⎟

⎠

� 0.

Feasible solutions have the following additional structure (see [26] and Theo-
rem 3.1 in [7]):

• Y (ii) (i = 1, . . . , n) is a diagonal matrix;
• Y (ij) (i �= j) is a matrix with zero diagonal;
• trace(JY (ij)) = 1 (i, j = 1, . . . , n);
•
∑n

i=1 Y
(ij) = e

(

y(j)
)T

(j = 1, . . . , n);
• diag(Y ) = y.

Since diag(Y ) = y for feasible solutions, we have y(i) = diag(Y (ii)) (i = 1, . . . , n).
Moreover, since we may also assume the structure (11), we have that

y(i) = yie (i = 1, . . . , n),

for some scalar values yi. This implies that the diagonal elements of Y (ii) all equal
yi. Since the diagonal elements of Y (ii) sum to 1, we have yi = 1/n and diag(Y (ii)) =
(1/n)e. Thus the condition

(

1 yT

y Y

)

� 0
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reduces to

Y − 1
n2
J � 0

by the Shur complement theorem. This is equivalent to

(I ⊗Q∗)Y (I ⊗Q) − 1
n2

(I ⊗Q∗)J(I ⊗Q) � 0,

where Q is the discrete Fourier transform matrix defined in (25) in the Appendix.
Using the properties of the Kronecker product and of Q, we get

⎛

⎜

⎝

Q∗Y (11)Q · · · Q∗Y (1n)Q
...

. . .
...

Q∗Y (n1)Q · · · Q∗Y (nn)Q

⎞

⎟

⎠
− J ⊗

⎛

⎜

⎝

1
n · · · 0
...

. . .
...

0 · · · 0

⎞

⎟

⎠
� 0.

Recall that Y (ii) = 1
nI and that we may assume Y (ij) (i �= j) to be symmetric

circulant, say

Y (ij) =
d
∑

k=1

x
(ij)
k Ck, (i �= j),

where Ck (k = 1, . . . , d) forms a basis of the symmetric circulant matrices with zero
diagonals (see the Appendix for the precise definition). Note that the nonnegativity
of Y (ij) is equivalent to x(ij)

k ≥ 0 (k = 1, . . . , d). Since trace(JY (ij)) = 1, one has

d
∑

k=1

x
(ij)
k =

1
2n

(i �= j).

Since
∑n
i=1 Y

(ij) = e
(

y(j)
)T

= 1
nJ , one also has

d
∑

k=1

n
∑

i=1

x
(ij)
k Ck =

1
n
J.

By the definition of the Ck’s, this implies that

(13)
n
∑

i=1

x
(ij)
k =

{

1
n if 1 ≤ k ≤ �(n− 1)/2	,
1
2n if k = n/2 (n even).

Moreover,

Q∗Y (ij)Q =
d
∑

k=1

x
(ij)
k Dk, (i �= j),

where Dk is the diagonal matrix with the eigenvalues (26) of Ck on its diagonal.
Thus the LMI becomes

(14)

⎛

⎜

⎜

⎝

1
nI · · ·

∑d
k=1 x

(1n)
k Dk

...
. . .

...
∑d

k=1 x
(1n)
k Dk · · · 1

nI

⎞

⎟

⎟

⎠

− J ⊗

⎛

⎜

⎝

1
n · · · 0
...

. . .
...

0 · · · 0

⎞

⎟

⎠
� 0.
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The left-hand side of this LMI is a block matrix with each block being a diagonal
matrix. Thus this matrix has a chordal sparsity structure (n disjoint cliques of size
n). We may now use the following lemma to obtain the system of LMI’s (3).

Lemma 3.1 (cf. [14]). Assume a nt× nt matrix has the block structure

M :=

⎛

⎜

⎝

D(11) · · · D(1n)

...
. . .

...
D(n1) · · · D(nn)

⎞

⎟

⎠
,

where D(ij) ∈ St are diagonal (i, j = 1, . . . , n). Then M � 0 if and only if
⎛

⎜

⎜

⎝

D
(11)
ii · · · D

(1n)
ii

...
. . .

...
D

(n1)
ii · · · D

(nn)
ii

⎞

⎟

⎟

⎠

� 0 i = 1, . . . , t.

Applying the lemma to the LMI (14), and setting

(15) X
(k)
ij = 2nx(ij)

k , k = 1, . . . , �n/2	

yields the system of LMI’s in (3).
Thus we have established the following result.
Theorem 3.2. The optimal values of the semidefinite programs (3) and (7) are

equal.

4. Relation of (3) to an SDP relaxation of Cvetković et al. We will
now show that the new SDP relaxation (3) dominates an SDP relaxation (16) due
to Cvetković et al. [5]. This latter relaxation is based on the fact that the spectrum
of the Hamiltonian circuit Cn is known. In particular, the smallest eigenvalue of its
Laplacian is zero and corresponds to the all ones eigenvector, while the second smallest
eigenvalue equals 2 − 2 cos

(

2π
n

)

.
The relaxation takes the form

TSPopt ≥ min
1
2
trace(DX)

subject to

(16)

Xe = 2e,
diag(X) = 0,

0 ≤ X ≤ J,
2I −X +

(

2 − 2 cos
(

2π
n

))

(J − I) � 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Note that the matrix variable X corresponds to the adjacency matrix of the minimal
length Hamiltonian circuit.

Theorem 4.1. The SDP relaxation (3) dominates the relaxation (16).
Proof. Assume that givenX(k) ∈ Sn (k = 1, . . . , d) satisfies (3). Then, diag(X(1)) =

0, while (13) and (15) imply

X(k)e = 2e (k = 1, . . . , �(n− 1)/2	),

and X(n/2)e = e if n is even. In particular, one has X(1)e = 2e. It remains to show
that

2I −X(1) +
(

2 − 2 cos
(

2π
n

))

(J − I) � 0,
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which is the same as showing that

(17) 2I −X(1) +
(

2 − 2 cos
(

2π
n

)) d
∑

k=1

X(k) � 0,

since

d
∑

k=1

X(k) = J − I.

We will show that the LMI (17) may be obtained as a nonnegative aggregation of the
LMI’s

I +
d
∑

k=1

X(k) � 0

and

I +
d
∑

k=1

cos
(

2πik
n

)

X(k) � 0 (i = 1, . . . , d).

The matrix of coefficients of these LMI’s is a (d + 1) × (d + 1) matrix, say A, with
entries:

Aij = cos
(

2πij
n

)

(i, j = 0, . . . , d).

Since we may rewrite (17) as

2I +
(

1 − 2 cos
(

2π
n

))

X(1) +
(

2 − 2 cos
(

2π
n

)) d
∑

k=2

X(k) � 0,

we need to show that the linear system Ax = b has a nonnegative solution, where

b :=
[

2,
(

1 − 2 cos
(

2π
n

))

,

(

2 − 2 cos
(

2π
n

))

, . . . ,

(

2 − 2 cos
(

2π
n

))]T

.

One may verify that, for n odd, the system Ax = b has a (unique) solution given by

xi =
4
n

{

d
(

1 − cos
(

2π
n

))

if i = 0
cos

(

2π
n

)

− cos
(

2πi
n

)

for i = 1, . . . , d.

Note that x is nonnegative, as it should be. If n is even, the solution is

xi =
4
n

⎧

⎪

⎨

⎪

⎩

(n−1)
2

(

1 − cos
(

2π
n

))

if i = 0,
cos

(

2π
n

)

− cos
(

2πi
n

)

for i = 1, . . . , d− 1,
1
2 cos

(

2π
n

)

− 1
2 cos

(

2πi
n

)

for i = d.

In the section with numerical examples, we will present instances where the new
SDP relaxation (3) is strictly better than (16).
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Fig. 1. The weighted graph used in the proof of Theorem 5.1.

5. Relation to the Held–Karp bound. One of the best-known linear pro-
gramming (LP) relaxations of TSP is the LP with subtour elimination constraints:

TSPopt ≥ min
1
2
trace(DX)

subject to

(18)

Xe = 2,
diag(X) = 0,

0 ≤ X ≤ J,
∑

i∈I, j /∈I Xij ≥ 2 ∀ ∅ �= I ⊂ {1, . . . , n}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

This LP relaxation dates back to 1954 and is due to Dantzig, Fulkerson, and Johnson
[6]. Its optimal value coincides with the LP bound of Held and Karp [15] (see, e.g.,
Theorem 21.34 in [16]), and the optimal value of the LP is commonly known as the
Held–Karp bound.

The last constraints are called subtour elimination inequalities and model the fact
that Cn is 2-connected. Although there are exponentially many subtour elimination
inequalities, it is well known that the LP (18) may be solved in polynomial time using
the ellipsoid method; see, e.g., Schrijver [22], section 58.5.

It was shown by Goemans and Rendl [12] that this LP relaxation dominates the
SDP relaxation (16) by Cvetković et al. [5]. The next theorem shows that the LP
relaxation (18) does not dominate the new SDP relaxation (3), or vice versa.

Theorem 5.1. The LP subtour elimination relaxation (18) does not dominate
the new SDP relaxation (3), or vice versa.

Proof. Define the 8× 8 symmetric matrix X̄ as the weighted adjacency matrix of
the graph shown in Figure 1.

The matrix X̄ satisfies the subtour elimination inequalities, since the minimum
cut in the graph in Figure 1 has weight 2.

On the other hand, there does not exist a feasible solution of (3) that satisfies
X(1) = X̄, as may be shown using SDP duality theory.

Conversely, in section 7 we will provide examples where the optimal value of (18)
is strictly greater than the optimal value of (3) (see, e.g., the instances gr17, gr24,
and bays24 there).

6. An LMI cut via the number of spanning trees. In addition to the sub-
tour elimination inequalities, there are several families of linear inequalities known for
the TSP polytope; for a review, see Naddef [18] and Schrijver [22, Chapter 58].
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Of particular interest to us is a valid nonlinear inequality that models the fact
that Cn has n distinct spanning trees. To introduce the inequality we require a general
form of the matrix tree theorem; see, e.g., Theorem VI.29 in [24] for a proof.

Theorem 6.1 (Matrix tree theorem). Let a simple graph G = (V,E) be given and
associate with each edge e ∈ E a real variable xe. Define the (generalized) Laplacian
of G with respect to x as the |V | × |V | matrix with entries

L(G)(x)ij :=

⎧

⎨

⎩

∑

e : e∩i�=∅ xe if i = j,

−xe if {i, j} = e,
0 else.

Now all principal minors of L(G)(x) of order |V | − 1 equal:

(19)
∑

T

∏

e∈T
xe,

where the sum is over all distinct spanning trees T of G.
In particular, if L(G)(x) is the usual Laplacian of a given graph, then xe = 1

for all edges e of the graph, and expression (19) evaluates to the number of spanning
trees in the graph.

Thus if X corresponds to the approximation of the adjacency matrix of a minimum
tour, then one may require that

(20) det (2I −X)2:n,2:n ≥ n,

where X2:n,2:n denotes the principle submatrix of X obtained by deleting the first row
and column.

The inequality (20) may be added to the above SDP relaxations (16) and (3)
(with X = X(1)), since the set

{Z � 0 : detZ ≥ n}

is LMI representable; see, e.g., Nemirovski [19, section 3.2].
We know from numerical examples that (20) is not implied by the relaxation of

Cvetković et al. (16), but do not know any examples where it is violated by a feasible
X(1) of the new relaxation (3). Nevertheless, we have been unable to show that (20)
(with X = X(1)) is implied by (3).

7. Numerical examples. In Table 1 we give the lower bounds on some small
TSPLIB1 instances for the two SDP relaxations (3) and (16), as well as the LP re-
laxation with all subtour elimination constraints (18) (the Held–Karp bound). These
instances have integer data, and the optimal values of the relaxations were rounded
up to obtain the bounds in the table.

The SDP problems were solved by the interior point software CSDP [2] using the
Yalmip interface [17] and Matlab 6.5, running on a PC with two 2.1 GHz dual-core
processors and 2GB of memory.

Note that the relaxation (3) can indeed be strictly better than (16), as is clear
from the gr17, bays24, and bays29 instances. Also, since the LP relaxation (18) gives
better bounds than (3) for all four instances, it is worth recalling that this will not
happen in general, by Theorem 5.1.

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Table 1

Lower bounds on some small TSPLIB instances from various convex relaxations.

Problem SDP bound (16) SDP bound (3) (time) LP bound (18) TSPopt

gr17 1810 2007 (39s) 2085 2085
gr21 2707 2707 (139s) 2707 2707
gr24 1230 1271 (1046s) 1272 1272

bays29 1948 2000 (2863s) 2014 2020

Table 2

Results for instances on n = 8 cities, constructed from the facet-defining inequalities.

Inequality SDP bound (16) SDP bound (3) Held–Karp bound (18) RHS

1 2 2 2 2
2 1.098 1.628 2 2
3 1.172 1.172 2 2
4 8.507 8.671 9 10
5 9 9 9 10
6 8.566 8.926 9 10
7 8.586 8.586 9 10
8 8.570 8.926 9 10
9 9 9 9 10
10 8.411 8.902 9 10
11 8.422 8.899 9 10
12 0 0 0 0
13 10.586 10.667 11 12
14 12 12 12 13

15 12.408 12.444 12 2
3

14

16 14 14.078 14 16
17 16 16 16 18
18 16 16 16 18
19 16 16 16 18
20 15.185 15.926 16 18
21 18 18.025 18 20
22 20 20 20 22
23 23 23.033 23 26
24 34.586 34.739 35 38

The LMI cut from (20) was already satisfied by the optimal solutions of (16) and
(3) for the four instances.

A second set of test problems was generated by considering all facet-defining
inequalities for the TSP polytope on 8 nodes; see [3] for a description of these in-
equalities, as well as the SMAPO project web site.2

The facet-defining inequalities are of the form 1
2 trace(DX) ≥ RHS where D ∈ Sn

has nonnegative integer entries and RHS is an integer. From each inequality, we form
a symmetric TSP instance with distance matrix D. Thus the optimal value of the
TSP instance is the value RHS. In Table 2 we give the optimal values of the LP
relaxation (18) (i.e., the Held–Karp bound), the SDP relaxation of Cvetković et al.
(16), and the new SDP relaxation (3) for these instances, as well as the right-hand-side
RHS of each inequality 1

2 trace(DX) ≥ RHS. For n = 8, there are 24 classes of facet-
defining inequalities. The members of each class are equal modulo a permutation of
the nodes, and we need therefore consider only one representative per class. The first
three classes of inequalities are subtour elimination inequalities.

2http://www.iwr.uni-heidelberg.de/groups/comopt/software/SMAPO/tsp/
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The numbering of the instances in Table 2 coincides with the numbering of the
classes of facet-defining inequalities on the SMAPO project web site.

The new SDP bound (3) is only stronger than the Held–Karp bound (18) for the
instances 16, 21, and 23 in Table 2, and for the instances 1, 5, 9, 12, 14, 17, 18, 19, and
22 the two bounds coincide. For the remaining 18 instances the Held–Karp bound is
better than the SDP bound (3). However, if the bounds are rounded up, the SDP
bound (3) is still better for the instances 16, 21 and 23, whereas the two (rounded)
bounds are equal for all the other instances. Adding the LMI cut from (20) did not
change the optimal values of the SDP relaxations (16) or (3) for any of the instances.

For n = 9, there are 192 classes of facet-defining inequalities of the TSP polytope
[4]. Here the SDP bound (3) is better than the Held–Karp bound for 23 out of the 192
associated TSP instances. Similar to the n = 8 case, when rounding up, the rounded
SDP bound remains better in all 23 cases and coincides with the rounded Held–Karp
bound in all the remaining cases.

8. Concluding remarks. Wolsey [25] showed that the optimal value of the LP
relaxation (18) is at least 2/3 the length of an optimal tour for metric TSP (see also
[23]). An interesting question is whether a similar result may be proved for the new
SDP relaxation (3).

Finally, the computational perspectives of the SDP relaxation (3) are somewhat
limited due to its size. However, since it provides a new polynomial-time convex
approximation of TSP with a rich mathematical structure, it is our hope that it may
lead to a renewed interest in improving approximation results for metric TSP.

Appendix: Circulant matrices. Our discussion of circulant matrices is con-
densed from the review paper by Gray [13].

A circulant matrix has the form

(21) C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c0 c1 c2 · · · cn−1

cn−1 c0 c1

cn−1 c0 c1
...

...
. . . . . . . . . . . .

c1
c1 · · · cn−1 c0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Thus the entries satisfy the relation

(22) Cij = c(j−i) mod n.

The matrix C has eigenvalues

λm(C) = c0 +
n−1
∑

k=1

cke
−2π

√
−1mk/n, m = 0, . . . , n− 1.

If C is symmetric with n odd, this reduces to

(23) λm(C) = c0 +
(n−1)/2
∑

k=1

2ck cos(2πmk/n), m = 0, . . . , n− 1,

and when n is even we have

(24) λm(C) = c0 +
n/2−1
∑

k=1

2ck cos(2πmk/n) + cn/2 cos(mπ), m = 0, . . . , n− 1.
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The circulant matrices form a commutative matrix ∗-algebra, as do the symmetric
circulant matrices. In particular, all circulant matrices share a set of eigenvectors,
given by the columns of the discrete Fourier transform matrix :

(25) Qij :=
1√
n
e−2π

√
−1ij/n, i, j = 0, . . . , n− 1.

One has Q∗Q = I, and Q∗CQ is a diagonal matrix for any circulant matrix C. Also
note that Q∗e =

√
ne.

We may define a basis C(0), . . . , C�n/2� for the symmetric circulant matrices as
follows: to obtain C(i) we set ci = cn−i = 1 in (21) and all other cj ’s to zero. (We set
C0 = 2I and also multiply Cn/2 by 2 if n is even.)

By (23) and (24), the eigenvalues of these basis matrices are

(26) λm(C(k)) = 2 cos(2πmk/n), m = 0, . . . , n− 1, k = 0, . . . , �n/2	.

Also note that

λm(C(k)) = λn−m(C(k)), m = 1, . . . , �n/2	, k = 0, . . . , �n/2	

so that each matrix C(k) has only 1 + �n/2	 distinct eigenvalues.
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Abstract. In this paper we consider optimization problems where the objective function is given
in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is
that the involved multidimensional integrals (expectations) cannot be computed with high accuracy.
The aim of this paper is to compare two computational approaches based on Monte Carlo sampling
techniques, namely, the stochastic approximation (SA) and the sample average approximation (SAA)
methods. Both approaches, the SA and SAA methods, have a long history. Current opinion is that
the SAA method can efficiently use a specific (say, linear) structure of the considered problem, while
the SA approach is a crude subgradient method, which often performs poorly in practice. We intend
to demonstrate that a properly modified SA approach can be competitive and even significantly
outperform the SAA method for a certain class of convex stochastic problems. We extend the
analysis to the case of convex-concave stochastic saddle point problems and present (in our opinion
highly encouraging) results of numerical experiments.

Key words. stochastic approximation, sample average approximation method, stochastic pro-
gramming, Monte Carlo sampling, complexity, saddle point, minimax problems, mirror descent al-
gorithm
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1. Introduction. In this paper we first consider the following stochastic opti-
mization problem:

(1.1) min
x∈X

{

f(x) = E[F (x, ξ)]
}

,

and then we deal with an extension of the analysis to stochastic saddle point problems.
Here X ⊂ R

n is a nonempty bounded closed convex set, ξ is a random vector whose
probability distribution P is supported on set Ξ ⊂ R

d and F : X × Ξ → R. We
assume that the expectation

(1.2) E[F (x, ξ)] =
∫

Ξ
F (x, ξ)dP (ξ)

is well defined and finite valued for every x ∈ X . Moreover, we assume that the
expected value function f(·) is continuous and convex on X . Of course, if for every
ξ ∈ Ξ the function F (·, ξ) is convex on X , then it follows that f(·) is convex. With
these assumptions, (1.1) becomes a convex programming problem.

A basic difficulty of solving stochastic optimization problem (1.1) is that the mul-
tidimensional integral (expectation) (1.2) cannot be computed with a high accuracy
for dimension d, say, greater than five. The aim of this paper is to compare two
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computational approaches based on Monte Carlo sampling techniques, namely, the
stochastic approximation (SA) and the sample average approximation (SAA) meth-
ods. To this end we make the following assumptions.

(A1) It is possible to generate an independent identically distributed (iid) sample
ξ1, ξ2, . . . , of realizations of random vector ξ.

(A2) There is a mechanism (an oracle), which, for a given input point (x, ξ) ∈
X ×Ξ returns stochastic subgradient—a vector G(x, ξ) such that g(x) := E[G(x, ξ)] is
well defined and is a subgradient of f(·) at x, i.e., g(x) ∈ ∂f(x).

Recall that if F (·, ξ), ξ ∈ Ξ, is convex and f(·) is finite valued in a neighborhood
of a point x, then (cf. Strassen [28])

(1.3) ∂f(x) = E [∂xF (x, ξ)] .

In that case we can employ a measurable selection G(x, ξ) ∈ ∂xF (x, ξ) as a stochastic
subgradient. At this stage, however, this is not important, we shall see later other
relevant ways for constructing stochastic subgradients.

Both approaches, the SA and SAA methods, have a long history. The SA method
is going back to the pioneering paper by Robbins and Monro [21]. Since then SA
algorithms became widely used in stochastic optimization (see, e.g., [3, 6, 7, 20, 22] and
references therein) and, due to especially low demand for computer memory, in signal
processing . In the classical analysis of the SA algorithm (it apparently goes back to
the works [5] and [23]) it is assumed that f(·) is twice continuously differentiable and
strongly convex and in the case when the minimizer of f belongs to the interior of X ,
exhibits asymptotically optimal rate1 of convergence E[f(xt)−f∗] = O(t−1) (here xt is
tth iterate and f∗ is the minimal value of f(x) over x ∈ X). This algorithm, however,
is very sensitive to a choice of the respective stepsizes. Since “asymptotically optimal”
stepsize policy can be very bad in the beginning, the algorithm often performs poorly
in practice (e.g., [27, section 4.5.3.]).

An important improvement of the SA method was developed by Polyak [18] and
Polyak and Juditsky [19], where longer stepsizes were suggested with consequent
averaging of the obtained iterates. Under the outlined “classical” assumptions, the
resulting algorithm exhibits the same optimal O(t−1) asymptotical convergence rate,
while using an easy to implement and “robust” stepsize policy. It should be mentioned
that the main ingredients of Polyak’s scheme—long steps and averaging—were, in a
different form, proposed already in Nemirovski and Yudin [15] for the case of problems
(1.1) with general-type Lipschitz continuous convex objectives and for convex-concave
saddle point problems. The algorithms from [15] exhibit, in a nonasymptotical fashion,
the O(t−1/2) rate of convergence. It is possible to show that in the general convex
case (without assuming smoothness and strong convexity of the objective function),
this rate of O(t−1/2) is unimprovable. For a summary of early results in this direction,
see Nemirovski and Yudin [16].

The SAA approach was used by many authors in various contexts under different
names. Its basic idea is rather simple: generate a (random) sample ξ1, . . . , ξN , of size
N , and approximate the “true” problem (1.1) by the sample average problem

(1.4) min
x∈X

⎧

⎨

⎩

f̂N(x) = N−1
N
∑

j=1

F (x, ξj)

⎫

⎬

⎭

.

1Throughout the paper, we speak about convergence in terms of the objective value.
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Note that the SAA method is not an algorithm; the obtained SAA problem (1.4) still
has to be solved by an appropriate numerical procedure. Recent theoretical studies
(cf. [11, 25, 26]) and numerical experiments (see, e.g., [12, 13, 29]) show that the SAA
method coupled with a good (deterministic) algorithm could be reasonably efficient
for solving certain classes of two-stage stochastic programming problems. On the
other hand, classical SA-type numerical procedures typically performed poorly for
such problems.

We intend to demonstrate in this paper that a properly modified SA approach can
be competitive and even significantly outperform the SAA method for a certain class
of stochastic problems. The mirror descent SA method we propose here is a direct
descendent of the stochastic mirror descent method of Nemirovski and Yudin [16].
However, the method developed in this paper is more flexible than its “ancestor”:
the iteration of the method is exactly the prox-step for a chosen prox-function, and
the choice of prox-type function is not limited to the norm-type distance-generating
functions. Close techniques, based on subgradient averaging, have been proposed
in Nesterov [17] and used in [10] to solve the stochastic optimization problem (1.1).
Moreover, the results on large deviations of solutions and applications of the mirror
descent SA to saddle point problems, to the best of our knowledge, are new.

The rest of this paper is organized as follows. In section 2 we focus on theory
of the SA method applied to (1.1). We start with outlining the relevant–to-our-goals
part of the classical “O(t−1)” SA theory (section 2.1), along with its “O(t−1/2)”
modifications (section 2.2). Well-known and simple results presented in these sections
pave the road to our main developments carried out in section 2.3. In section 3
we extend the constructions and results of section 2.3 to the case of the convex-
concave stochastic saddle point problem. In concluding section 4 we present results
(in our opinion, highly encouraging) of numerical experiments with the SA algorithm
(sections 2.3 and 3) applied to large-scale stochastic convex minimization and saddle
point problems. Section 5 gives a short conclusion for the presented results. Finally,
some technical proofs are given in the appendix.

Throughout the paper, we use the following notation. By ‖x‖p, we denote the �p
norm of vector x ∈ R

n, in particular, ‖x‖2 =
√
xTx denotes the Euclidean norm, and

‖x‖∞ = max{|x1|, . . . , |xn|}. By ΠX , we denote the metric projection operator onto
the set X , that is, ΠX(x) = arg minx′∈X ‖x− x′‖2. Note that ΠX is a nonexpanding
operator, i.e.,

(1.5) ‖ΠX(x′) − ΠX(x)‖2 ≤ ‖x′ − x‖2 ∀x′, x ∈ R
n.

By O(1), we denote positive absolute constants. The notation 	a
 stands for the
largest integer less than or equal to a ∈ R and �a� for the smallest integer greater
than or equal to a ∈ R. By ξ[t] = (ξ1, . . . , ξt), we denote the history of the process
ξ1, . . . , up to time t. Unless stated otherwise, all relations between random variables
are supposed to hold almost surely.

2. Stochastic approximation, basic theory. In this section we discuss theory
and implementations of the SA approach to the minimization problem (1.1).

2.1. Classical SA algorithm. The classical SA algorithm solves (1.1) by mim-
icking the simplest subgradient descent method. That is, for chosen x1 ∈ X and a
sequence γj > 0, j = 1, . . . , of stepsizes, it generates the iterates by the formula

(2.1) xj+1 = ΠX(xj − γjG(xj , ξj)).
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Of course, the crucial question of that approach is how to choose the stepsizes γj . Let
x∗ be an optimal solution of (1.1). Note that since the set X is compact and f(x) is
continuous, (1.1) has an optimal solution. Note also that the iterate xj = xj(ξ[j−1])
is a function of the history ξ[j−1] = (ξ1, . . . , ξj−1) of the generated random process
and hence is random.

Denote

(2.2) Aj = 1
2
‖xj − x∗‖2

2 and aj = E[Aj ] = 1
2
E
[

‖xj − x∗‖2
2

]

.

By using (1.5) and since x∗ ∈ X and hence ΠX(x∗) = x∗, we can write

(2.3)

Aj+1 = 1
2

∥

∥ΠX(xj − γjG(xj , ξj)) − x∗
∥

∥

2

2

= 1
2

∥

∥ΠX(xj − γjG(xj , ξj)) − ΠX(x∗)
∥

∥

2

2

≤ 1
2

∥

∥xj − γjG(xj , ξj) − x∗
∥

∥

2

2

= Aj + 1
2
γ2
j ‖G(xj , ξj)‖2

2 − γj(xj − x∗)TG(xj , ξj).

Since xj = xj(ξ[j−1]) is independent of ξj , we have

(2.4)
E
[

(xj − x∗)TG(xj , ξj)
]

= E
{

E
[

(xj − x∗)TG(xj , ξj) |ξ[j−1]

]}

= E
{

(xj − x∗)TE
[

G(xj , ξj) |ξ[j−1]

]}

= E
[

(xj − x∗)T g(xj)
]

.

Assume now that there is a positive number M such that

(2.5) E
[

‖G(x, ξ)‖2
2

]

≤M2 ∀x ∈ X.

Then, by taking expectation of both sides of (2.3) and using (2.4), we obtain

(2.6) aj+1 ≤ aj − γjE
[

(xj − x∗)T g(xj)
]

+ 1
2
γ2
jM

2.

Suppose further that the expectation function f(x) is differentiable and strongly
convex on X , i.e., there is constant c > 0 such that

f(x′) ≥ f(x) + (x′ − x)T∇f(x) + 1
2
c‖x′ − x‖2

2, ∀x′, x ∈ X,

or equivalently that

(2.7) (x′ − x)T (∇f(x′) −∇f(x)) ≥ c‖x′ − x‖2
2 ∀x′, x ∈ X.

Note that strong convexity of f(x) implies that the minimizer x∗ is unique. By
optimality of x∗, we have that

(x− x∗)T∇f(x∗) ≥ 0 ∀x ∈ X,

which together with (2.7) implies that (x − x∗)T∇f(x) ≥ c‖x − x∗‖2
2. In turn, it

follows that (x − x∗)T g ≥ c‖x− x∗‖2
2 for all x ∈ X and g ∈ ∂f(x), and hence

E
[

(xj − x∗)T g(xj)
]

≥ cE
[

‖xj − x∗‖2
2

]

= 2caj.

Therefore, it follows from (2.6) that

(2.8) aj+1 ≤ (1 − 2cγj)aj + 1
2
γ2
jM

2.
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Let us take stepsizes γj = θ/j for some constant θ > 1/(2c). Then, by (2.8), we
have

aj+1 ≤ (1 − 2cθ/j)aj + 1
2
θ2M2/j2.

It follows by induction that

(2.9) E
[

‖xj − x∗‖2
2

]

= 2aj ≤ Q(θ)/j,

where

(2.10) Q(θ) = max
{

θ2M2(2cθ − 1)−1, ‖x1 − x∗‖2
2

}

.

Suppose further that x∗ is an interior point of X and ∇f(x) is Lipschitz contin-
uous, i.e., there is constant L > 0 such that

(2.11) ‖∇f(x′) −∇f(x)‖2 ≤ L‖x′ − x‖2 ∀x′, x ∈ X.

Then

(2.12) f(x) ≤ f(x∗) + 1
2
L‖x− x∗‖2

2, ∀x ∈ X,

and hence

(2.13) E
[

f(xj) − f(x∗)
]

≤ 1
2
LE
[

‖xj − x∗‖2
2

]

≤ 1
2
LQ(θ)/j,

where Q(θ) is defined in (2.10).
Under the specified assumptions, it follows from (2.9) and (2.13), respectively, that

after t iterations, the expected error of the current solution in terms of the distance
to x∗ is of order O(t−1/2), and the expected error in terms of the objective value is of
order O(t−1), provided that θ > 1/(2c). The simple example of X = {x : ‖x‖2 ≤ 1},
f(x) = 1

2
c xTx, and G(x, ξ) = ∇f(x) + ξ, with ξ having standard normal distribution

N (0, In), demonstrates that the outlined upper bounds on the expected errors are
tight within factors independent of t.

We have arrived at the O(t−1) rate of convergence in terms of the expected value
of the objective mentioned in the Introduction. Note, however, that the result is
highly sensitive to a priori information on c. What would happen if the parameter c
of strong convexity is overestimated? As a simple example, consider f(x) = x2/10,
X = [−1, 1] ⊂ R, and assume that there is no noise, i.e., G(x, ξ) ≡ ∇f(x). Suppose,
further that we take θ = 1 (i.e., γj = 1/j), which will be the optimal choice for c = 1,
while actually here c = 0.2. Then the iteration process becomes

xj+1 = xj − f ′(xj)/j =
(

1 − 1
5j

)

xj ,

and hence starting with x1 = 1,

xj =
j−1
∏

s=1

(

1 − 1
5s

)

= exp

{

−
j−1
∑

s=1

ln
(

1 +
1

5s− 1

)

}

> exp

{

−
j−1
∑

s=1

1
5s− 1

}

> exp
{

−
(

0.25 +
∫ j−1

1

1
5t− 1

dt

)}

> exp
{

−0.25 + 0.2 ln 1.25 − 1
5

ln j
}

> 0.8j−1/5.
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That is, the convergence is extremely slow. For example, for j = 109, the error of the
iterated solution is greater than 0.015. On the other hand, for the optimal stepsize
factor of θ = 1/c = 5, the optimal solution x∗ = 0 is found in one iteration.

It could be added that the stepsizes γj = θ/j may become completely unaccept-
able when f loses strong convexity. For example, when f(x) = x4, X = [−1, 1],
and there is no noise, these stepsizes result in a disastrously slow convergence: |xj | ≥
O([ln(j+1)]−1/2). The precise statement here is that with γj = θ/j and 0 < x1 ≤ 1

6
√
θ
,

we have that xj ≥ x1√
1+32θx2

1[1+ln(j+1)]
for j = 1, 2, . . . .

We see that in order to make the SA “robust”—applicable to general convex ob-
jectives rather than to strongly convex ones—one should replace the classical stepsizes
γj = O(j−1), which can be too small to ensure a reasonable rate of convergence even
in the “no noise” case, with “much larger” stepsizes. At the same time, a detailed
analysis shows that “large” stepsizes poorly suppress noise. As early as in [15] it
was realized that in order to resolve the arising difficulty, it makes sense to separate
collecting information on the objective from generating approximate solutions. Specif-
ically, we can use large stepsizes, say, γj = O(j−1/2) in (2.1), thus avoiding too slow
motion at the cost of making the trajectory “more noisy.” In order to suppress, to
some extent, this noisiness, we take, as approximate solutions, appropriate averages
of the search points xj rather than these points themselves.

2.2. Robust SA approach. Results of this section go back to Nemirovski and
Yudin [15, 16]. Let us look again at the basic relations (2.2), (2.5), and (2.6). By
convexity of f(x), we have that f(x) ≥ f(xt) + (x − xt)T g(xt) for any x ∈ X , and
hence

E
[

(xt − x∗)T g(xt)
]

≥ E
[

f(xt) − f(x∗)
]

.

Together with (2.6), this implies (recall that at = E
[

1
2
‖xt − x∗‖2

2

]

)

γtE
[

f(xt) − f(x∗)
]

≤ at − at+1 + 1
2
γ2
tM

2.

It follows that whenever 1 ≤ i ≤ j, we have

(2.14)
j
∑

t=i

γtE
[

f(xt) − f(x∗)
]

≤
j
∑

t=i

[at − at+1] + 1
2
M2

j
∑

t=i

γ2
t ≤ ai + 1

2
M2

j
∑

t=i

γ2
t ,

and hence, setting νt = γt
∑ j

τ=i γτ
,

(2.15) E

[

j
∑

t=i

νtf(xt) − f(x∗)

]

≤ ai + 1
2
M2
∑j

t=i γ
2
t

∑j
t=i γt

.

Note that νt ≥ 0 and
∑j

t=i νt = 1. Consider the points

(2.16) x̃ji =
j
∑

t=i

νtxt,

and let

(2.17) DX = max
x∈X

‖x− x1‖2.
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By convexity of X , we have x̃ji ∈ X , and, by convexity of f , we have f(x̃ji ) ≤
∑j

t=i νtf(xt). Thus, by (2.15) and in view of a1 ≤ D2
X and ai ≤ 4D2

X , i > 1, we get

(2.18)

(a) E

[

f(x̃j1) − f(x∗)
]

≤ D2
X +M2

∑j
t=1 γ

2
t

2
∑j
t=1 γt

for 1 ≤ j,

(b) E

[

f(x̃ji ) − f(x∗)
]

≤ 4D2
X +M2

∑j
t=i γ

2
t

2
∑j
t=i γt

for 1 < i ≤ j.

Based on the resulting bounds on the expected inaccuracy of approximate solutions x̃ji ,
we can now develop “reasonable” stepsize policies along with the associated efficiency
estimates.

Constant stepsizes and basic efficiency estimate. Assume that the number N of
iterations of the method is fixed in advance and that γt = γ, t = 1, . . . , N . Then it
follows by (2.18(a)) that

(2.19) E
[

f
(

x̃N1
)

− f(x∗)
]

≤ D2
X +M2Nγ2

2Nγ
.

Minimizing the right-hand side of (2.19) over γ > 0, we arrive at the constant stepsize
policy

(2.20) γt =
DX

M
√
N
, t = 1, . . . , N,

along with the associated efficiency estimate

(2.21) E
[

f
(

x̃N1
)

− f(x∗)
]

≤ DXM√
N

.

With the constant stepsize policy (2.20), we also have, for 1 ≤ K ≤ N ,

(2.22) E
[

f
(

x̃NK
)

− f(x∗)
]

≤ DXM√
N

[

2N
N −K + 1

+
1
2

]

.

When K/N ≤ 1/2, the right-hand side of (2.22) coincides, within an absolute constant
factor, with the right-hand side of (2.21). Finally, for a constant θ > 0, passing from
the stepsizes (2.20) to the stepsizes

(2.23) γt =
θDX

M
√
N
, t = 1, . . . , N,

the efficiency estimate becomes

(2.24) E
[

f
(

x̃NK
)

− f(x∗)
]

≤ max
{

θ, θ−1
} DXM√

N

[

2N
N −K + 1

+
1
2

]

, 1 ≤ K ≤ N.

Discussion. We conclude that the expected error in terms of the objective of Ro-
bust SA algorithm (2.1), (2.16), with constant stepsize policy (2.20), after N iterations
is of order O(N−1/2) in our setting. Of course, this is worse than the rate O(N−1) for
the classical SA algorithm as applied to a smooth strongly convex function attaining
minimum at a point from the interior of the set X . However, the error bounds (2.21)
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and (2.22) are guaranteed independently of any smoothness and/or strong convexity
assumptions on f . All that matters is the convexity of f on the convex compact set X
and the validity of (2.5). Moreover, scaling the stepsizes by positive constant θ affects
the error bound (2.24) linearly in max{θ, θ−1}. This can be compared with a possibly
disastrous effect of such scaling in the classical SA algorithm discussed in section 2.1.
These observations, in particular the fact that there is no necessity in “fine tuning”
the stepsizes to the objective function f , explain the adjective “robust” in the name
of the method. Finally, it can be shown that without additional, as compared to
convexity and (2.5), assumptions on f , the accuracy bound (2.21) within an absolute
constant factor is the best one allowed by statistics (cf. [16]).

Varying stepsizes. When the number of steps is not fixed in advance, it makes
sense to replace constant stepsizes with the stepsizes

(2.25) γt =
θDX

M
√
t
, t = 1, 2, . . . .

From (2.18(b)) it follows that with this stepsize policy, one has, for 1 ≤ K ≤ N ,

(2.26) E
[

f
(

x̃NK
)

− f(x∗)
]

≤ DXM√
N

[

2
θ

(

N

N −K + 1

)

+
θ

2

√

N

K

]

.

Choosing K as a fixed fraction of N , i.e., setting K = �rN�, with a fixed r ∈ (0, 1),
we get the efficiency estimate

(2.27) E
[

f
(

x̃NK
)

− f(x∗)
]

≤ C(r) max
{

θ, θ−1
} DXM√

N
, N = 1, 2, . . . ,

with an easily computable factor C(r) depending solely on r. This bound, up to a
factor depending solely on r and θ, coincides with the bound (2.21), with the advantage
that our new stepsize policy should not be adjusted to a fixed-in-advance number of
steps N .

2.3. Mirror descent SA method. On a close inspection, the robust SA algo-
rithm from section 2.2 is intrinsically linked to the Euclidean structure of R

n. This
structure plays the central role in the very construction of the method (see (2.1)), the
same as in the associated efficiency estimates, like (2.21) (since the quantities DX , M
participating in the estimates are defined in terms of the Euclidean norm, see (2.17)
and (2.5)). By these reasons, from now on, we refer to the algorithm from section 2.2
as the (robust) Euclidean SA (E-SA). In this section we develop a substantial gener-
alization of the E-SA approach allowing us to adjust, to some extent, the method to
the geometry, not necessary Euclidean, of the problem in question. We shall see in
the meantime that we can gain a lot, both theoretically and numerically, from such
an adjustment. A rudimentary form of the generalization to follow can be found in
Nemirovski and Yudin [16], from where the name “mirror descent” originates.

Let ‖ · ‖ be a (general) norm on R
n and ‖x‖∗ = sup‖y‖≤1 y

Tx be its dual norm.
We say that a function ω : X → R is a distance-generating function modulus α > 0
with respect to ‖ · ‖, if ω is convex and continuous on X , the set

(2.28) Xo = {x ∈ X : ∂ω(x) �= ∅}

is convex (note that Xo always contains the relative interior of X) and restricted
to Xo, ω is continuously differentiable and strongly convex with parameter α with
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respect to ‖ · ‖, i.e.,

(2.29) (x′ − x)T (∇ω(x′) −∇ω(x)) ≥ α‖x′ − x‖2 ∀x′, x ∈ Xo.

A simple example of a distance-generating function is ω(x) = 1
2
‖x‖2

2 (modulus 1 with
respect to ‖ · ‖2, Xo = X).

Let us define function V : Xo ×X → R+ as follows:

(2.30) V (x, z) = ω(z) −
[

ω(x) + ∇ω(x)T (z − x)
]

.

In what follows we shall refer to V (·, ·) as prox-function associated with distance-
generating function ω(x) (it is also called Bregman distance [4]). Note that V (x, ·) is
nonnegative and is a strongly convex modulus α with respect to the norm ‖ · ‖. Let
us define prox-mapping Px : R

n → Xo, associated with ω and a point x ∈ Xo, viewed
as a parameter, as follows:

(2.31) Px(y) = arg min
z∈X

{

yT (z − x) + V (x, z)
}

.

Observe that the minimum in the right-hand side of (2.31) is attained since ω is
continuous on X and X is compact, and all the minimizers belong to Xo, whence the
minimizer is unique, since V (x, ·) is strongly convex on Xo. Thus, the prox-mapping
is well defined.

For ω(x) = 1
2
‖x‖2

2, we have Px(y) = ΠX(x− y) so that (2.1) is the recurrence

(2.32) xj+1 = Pxj (γjG(xj , ξj)), x1 ∈ Xo.

Our goal is to demonstrate that the main properties of the recurrence (2.1) (which
from now on we call the E -SA recurrence) are inherited by (2.32), whatever be the
underlying distance-generating function ω(x).

The statement of the following lemma is a simple consequence of the optimal-
ity conditions of the right-hand side of (2.31) (proof of this lemma is given in the
appendix).

Lemma 2.1. For every u ∈ X,x ∈ Xo, and y ∈ R
n, one has

V (Px(y), u) ≤ V (x, u) + yT (u− x) +
‖y‖2

∗
2α

.(2.33)

Using (2.33) with x = xj , y = γjG(xj , ξj), and u = x∗, we get

γj(xj − x∗)TG(xj , ξj) ≤ V (xj , x∗) − V (xj+1, x∗) +
γ2
j

2α
‖G(xj , ξj)‖2

∗.(2.34)

Note that with ω(x) = 1
2
‖x‖2

2, one has V (x, z) = 1
2
‖x − z‖2

2, α = 1, ‖ · ‖∗ = ‖ · ‖2.
That is, (2.34) becomes nothing but the relation (2.6), which played a crucial role
in all the developments related to the E-SA method. We are about to process, in
a completely similar fashion, the relation (2.34) in the case of a general distance-
generating function, thus arriving at the mirror descent SA. Specifically, setting

(2.35) Δj = G(xj , ξj) − g(xj),

we can rewrite (2.34), with j replaced by t, as

(2.36) γt(xt−x∗)T g(xt) ≤ V (xt, x∗)−V (xt+1, x∗)−γtΔT
t (xt−x∗)+

γ2
t

2α
‖G(xt, ξt)‖2

∗.
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Summing up over t = 1, . . . , j, and taking into account that V (xj+1, u) ≥ 0, u ∈ X ,
we get

(2.37)
j
∑

t=1

γt(xt − x∗)T g(xt) ≤ V (x1, x∗) +
j
∑

t=1

γ2
t

2α
‖G(xt, ξt)‖2

∗ −
j
∑

t=1

γtΔT
t (xt − x∗).

Setting νt = γt
∑ j

i=1 γi
, t = 1, . . . , j, and

(2.38) x̃j1 =
j
∑

t=1

νtxt

and invoking convexity of f(·), we have
j
∑

t=1

γt(xt − x∗)T g(xt) ≥
j
∑

t=1

γt [f(xt) − f(x∗)]

=

(

j
∑

t=1

γt

)[

j
∑

t=1

νtf(xt) − f(x∗)

]

≥
(

j
∑

t=1

γt

)

[f(x̃j) − f(x∗)] ,

which combines with (2.37) to imply that

(2.39) f(x̃j1) − f(x∗) ≤
V (x1, x∗) +

∑j
t=1

γ2
t

2α‖G(xt, ξt)‖2
∗ −
∑j

t=1 γtΔ
T
t (xt − x∗)

∑j
t=1 γt

.

Let us suppose, as in the previous section (cf. (2.5)), that we are given a positive
number M∗ such that

E
[

‖G(x, ξ)‖2
∗
]

≤M2
∗ ∀x ∈ X.(2.40)

Taking expectations of both sides of (2.39) and noting that (i) xt is a deterministic
function of ξ[t−1] = (ξ1, . . . , ξt−1), (ii) conditional on ξ[t−1], the expectation of Δt is
0, and (iii) the expectation of ‖G(xt, ξt)‖2

∗ does not exceed M2
∗ , we obtain

(2.41) E

[

f(x̃j1) − f(x∗)
]

≤ maxu∈X V (x1, u) + (2α)−1M2
∗
∑j
t=1 γ

2
t

∑j
t=1 γt

.

Assume from now on that the method starts with the minimizer of ω:

x1 = argminXω(x).

Then, from (2.30), it follows that

(2.42) max
z∈X

V (x1, z) ≤ D2
ω,X ,

where

(2.43) Dω,X :=
[

max
z∈X

ω(z) − min
z∈X

ω(z)
]1/2

.

Consequently, (2.41) implies that

(2.44) E

[

f(x̃j1) − f(x∗)
]

≤
D2
ω,X + 1

2αM
2
∗
∑j

t=1 γ
2
t

∑j
t=1 γt

.
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Constant stepsize policy. Assuming that the total number of steps N is given in
advance and γt = γ, t = 1, . . . , N , optimizing the right-hand side of (2.44) over γ > 0
we arrive at the constant stepsize policy

(2.45) γt =
√

2αDω,X

M∗
√
N

, t = 1, . . . , N

and the associated efficiency estimate

(2.46) E
[

f
(

x̃N1
)

− f(x∗)
]

≤ Dω,XM∗

√

2
αN

(cf. (2.20), (2.21)). For a constant θ > 0, passing from the stepsizes (2.45) to the
stepsizes

(2.47) γt =
θ
√

2αDω,X

M∗
√
N

, t = 1, . . . , N,

the efficiency estimate becomes

(2.48) E
[

f
(

x̃N1
)

− f(x∗)
]

≤ max
{

θ, θ−1
}

Dω,XM∗

√

2
αN

.

We refer to the method (2.32), (2.38), and (2.47) as the (robust) mirror descent SA
algorithm with constant stepsize policy.

Probabilities of large deviations. So far, all our efficiency estimates were upper
bounds on the expected nonoptimality, in terms of the objective, of approximate
solutions generated by the algorithms. Here we complement these results with bounds
on probabilities of large deviations. Observe that by Markov inequality, (2.48) implies
that

(2.49) Prob
{

f
(

x̃N1
)

− f(x∗) > ε
}

≤
√

2 max
{

θ, θ−1
}

Dω,XM∗

ε
√
αN

∀ε > 0.

It is possible, however, to obtain much finer bounds on deviation probabilities when
imposing more restrictive assumptions on the distribution of G(x, ξ). Specifically,
assume that

(2.50) E

[

exp
{

‖G(x, ξ)‖2
∗ /M

2
∗

}]

≤ exp{1} ∀x ∈ X.

Note that condition (2.50) is stronger than (2.40). Indeed, if a random variable Y sat-
isfies E[exp{Y/a}] ≤ exp{1} for some a > 0, then by Jensen inequality, exp{E[Y/a]} ≤
E[exp{Y/a}] ≤ exp{1}, and therefore, E[Y ] ≤ a. Of course, condition (2.50) holds if
‖G(x, ξ)‖∗ ≤M∗ for all (x, ξ) ∈ X × Ξ.

Proposition 2.2. In the case of (2.50) and for the constant stepsizes (2.47), the
following holds for any Ω ≥ 1:

(2.51)

Prob

{

f
(

x̃N1
)

− f(x∗) >

√
2 max

{

θ, θ−1
}

M∗Dω,X(12 + 2Ω)√
αN

}

≤ 2 exp{−Ω}.

Proof of this proposition is given in the appendix.
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Varying stepsizes. Same as in the case of E-SA, we can modify the mirror descent
SA algorithm to allow for time-varying stepsizes and “sliding averages” of the search
points xt in the role of approximate solutions, thus getting rid of the necessity to fix
in advance the number of steps. Specifically, consider

(2.52)
Dω,X :=

√
2 sup
x∈Xo,z∈X

[

ω(z) − ω(x) − (z − x)T∇ω(x)
]1/2

= sup
x∈Xo,z∈X

√

2V (x, z)

and assume that Dω,X is finite. This is definitely so when ω is continuously differen-
tiable on the entire X . Note that for the E-SA, that is, with ω(x) = 1

2
‖x‖2

2, Dω,X is
the Euclidean diameter of X .

In the case of (2.52), setting

(2.53) x̃ji =
∑j
t=i γtxt
∑j
t=i γt

,

summing up inequalities (2.34) over K ≤ t ≤ N , and acting exactly as when deriving
(2.39), we get for 1 ≤ K ≤ N ,

f
(

x̃NK
)

− f(x∗) ≤
V (xK , x∗) +

∑N
t=K

γ2
t

2α‖G(xt, ξt)‖2
∗ −
∑N
t=K γtΔ

T
t (xt − x∗)

∑N
t=K γt

.

Noting that V (xK , x∗) ≤ 1
2
D

2

ω,X and taking expectations, we arrive at

(2.54) E
[

f
(

x̃NK
)

− f(x∗)
]

≤
1
2
D

2

ω,X + 1
2αM

2
∗
∑N

t=K γ
2
t

∑N
t=K γt

(cf. (2.44)). It follows that with a decreasing stepsize policy

γt =
θDω,X

√
α

M∗
√
t

, t = 1, 2, . . . ,(2.55)

one has for 1 ≤ K ≤ N ,

(2.56) E
[

f
(

x̃NK
)

− f(x∗)
]

≤ Dω,XM∗√
α
√
N

[

2
θ

N

N −K + 1
+
θ

2

√

N

K

]

(cf. (2.26)). In particular, with K = �rN� for a fixed r ∈ (0, 1), we get an efficiency
estimate

(2.57) E
[

f
(

x̃NK
)

− f(x∗)
]

≤ C(r) max
{

θ, θ−1
} Dω,XM∗√

α
√
N

,

completely similar to the estimate (2.27) for the E-SA.
Discussion. Comparing (2.21) to (2.46) and (2.27) to (2.57), we see that for

both the Euclidean and the mirror descent robust SA, the expected inaccuracy, in
terms of the objective, of the approximate solution built in course of N steps is
O(N−1/2). A benefit of the mirror descent over the Euclidean algorithm is in the
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potential possibility to reduce the constant factor hidden in O(·) by adjusting the
norm ‖ · ‖ and the distance-generating function ω(·) to the geometry of the problem.

Example. Let X = {x ∈ R
n :
∑n
i=1 xi = 1, x ≥ 0} be a standard simplex.

Consider two setups for the mirror descent SA:
— Euclidean setup, where ‖ · ‖ = ‖ · ‖2 and ω(x) = 1

2‖x‖2
2, and

— �1-setup, where ‖ · ‖ = ‖ · ‖1, with ‖ · ‖∗ = ‖ · ‖∞ and ω is the entropy function

(2.58) ω(x) =
n
∑

i=1

xi lnxi.

The Euclidean setup leads to the Euclidean robust SA, which is easily imple-
mentable (computing the prox-mapping requires O(n lnn) operations) and guarantees
that

(2.59) E
[

f
(

x̃N1
)

− f(x∗)
]

≤ O(1) max
{

θ, θ−1
}

MN−1/2,

with M2 = supx∈X E
[

‖G(x, ξ)‖2
2

]

, provided that the constant M is known and the
stepsizes (2.23) are used (see (2.24), (2.17), and note that the Euclidean diameter of
X is

√
2).

The �1-setup corresponds to Xo = {x ∈ X : x > 0}, Dω,X =
√

lnn, α = 1, and
x1 = argminXω = n−1(1, . . . , 1)T (see appendix). The associated mirror descent SA
is easily implementable: the prox-function here is

V (x, z) =
n
∑

i=1

zi ln
zi
xi
,

and the prox-mapping Px(y) = argmin z∈X
[

yT (z − x) + V (x, z)
]

can be computed in
O(n) operations according to the explicit formula

[Px(y)]i =
xie

−yi

∑n
k=1 xke

−yk
, i = 1, . . . , n.

The efficiency estimate guaranteed with the �1-setup is

(2.60) E
[

f
(

x̃N1
)

− f(x∗)
]

≤ O(1) max
{

θ, θ−1
}
√

lnnM∗N
−1/2,

with

M2
∗ = sup

x∈X
E
[

‖G(x, ξ)‖2
∞
]

,

provided that the constant M∗ is known and the constant stepsizes (2.47) are used
(see (2.48) and (2.40)). To compare (2.60) and (2.59), observe that M∗ ≤M , and the
ratio M∗/M can be as small as n−1/2. Thus, the efficiency estimate for the �1-setup
never is much worse than the estimate for the Euclidean setup, and for large n, can
be far better than the latter estimate:

√

1
lnn

≤ M√
lnnM∗

≤
√

n

lnn
, N = 1, 2, . . . ,

both the upper and the lower bounds being achievable. Thus, when X is a standard
simplex of large dimension, we have strong reasons to prefer the �1-setup to the usual
Euclidean one.
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Note that ‖ · ‖1-norm can be coupled with “good” distance-generating functions
different from the entropy one, e.g., with the function

(2.61) ω(x) = (lnn)
n
∑

i=1

|xi|1+
1

ln n , n ≥ 3.

Whenever 0 ∈ X and Diam‖·‖1(X) ≡ maxx,y∈X ‖x− y‖1 equal to 1 (these conditions
can always be ensured by scaling and shifting X), for the just-outlined setup, one
has Dω,X = O(1)

√
lnn, α = O(1), so that the associated mirror descent robust SA

guarantees that with M2
∗ = supx∈X E

[

‖G(x, ξ)‖2
∞
]

and N ≥ 1,

(2.62) E

[

f
(

x̃N
rN�

)

− f(x∗)
]

≤ C(r)
M∗

√
lnn√
N

(see (2.57)), while the efficiency estimate for the Euclidean robust SA is

(2.63) E

[

f(x̃N
rN�) − f(x∗)
]

≤ C(r)
M Diam‖·‖2(X)

√
N

,

with

M2 = sup
x∈X

E
[

‖G(x, ξ)‖2
2

]

and Diam‖·‖2(X) = max
x,y∈X

‖x− y‖2.

Ignoring logarithmic in n factors, the second estimate (2.63) can be much better than
the first estimate (2.62) only when Diam‖·‖2(X) � 1 = Diam‖·‖1(X), as it is the case,
e.g., when X is an Euclidean ball. On the other hand, when X is an ‖ · ‖1-ball or
its nonnegative part (which is the simplex), so that the ‖ · ‖1- and ‖ · ‖2-diameters of
X are of the same order, the first estimate (2.62) is much more attractive than the
estimate (2.63) due to potentially much smaller constant M∗.

Comparison with the SAA approach. We compare now theoretical complexity
estimates for the robust mirror descent SA and the SAA methods. Consider the case
when (i) X ⊂ R

n is contained in the ‖ · ‖p-ball of radius R, p = 1, 2, and the SA in
question is either the E-SA (p = 2), or the SA associated with ‖ · ‖1 and the distance-
generating function2 (2.61), (ii) in SA, the constant stepsize rule (2.45) is used, and
(iii) the “light tail” assumption (2.50) takes place.

Given ε > 0, δ ∈ (0, 1/2), let us compare the number of steps N = NSA of
SA, which, with probability ≥ 1 − δ, results in an approximate solution x̃N1 such
that f(x̃N1 ) − f(x∗) ≤ ε, with the sample size N = NSAA for the SAA result-
ing in the same accuracy guarantees. According to Proposition 2.2 we have that
Prob

[

f(x̃N1 ) − f(x∗) > ε
]

≤ δ for

(2.64) NSA = O(1)ε−2D2
ω,XM

2
∗ ln2(1/δ),

where M∗ is the constant from (2.50) and Dω,X is defined in (2.43). Note that the
constant M∗ depends on the chosen norm, D2

ω,X = O(1)R2 for p = 2, and D2
ω,X =

O(1) ln(n)R2 for p = 1.
This can be compared with the estimate of the sample size (cf. [25, 26])

(2.65) NSAA = O(1)ε−2R2M2
∗
[

ln(1/δ) + n ln (RM∗/ε)
]

.

2In the second case, we apply the SA after the variables are scaled to make X the unit ‖ · ‖1-ball.
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We see that both SA and SAA methods have logarithmic in δ and quadratic (or nearly
so) in 1/ε complexity in terms of the corresponding sample sizes. It should be noted,
however, that the SAA method requires solution of the corresponding (deterministic)
problem, while the SA approach is based on simple calculations as long as stochastic
subgradients could be easily computed.

3. Stochastic saddle point problem. We show in this section how the mirror
descent SA algorithm can be modified to solve a convex-concave stochastic saddle
point problem. Consider the following minimax (saddle point) problem:

min
x∈X

max
y∈Y

{

φ(x, y) = E[Φ(x, y, ξ)]
}

.(3.1)

Here X ⊂ R
n and Y ⊂ R

m are nonempty bounded closed convex sets, ξ is a random
vector whose probability distribution P is supported on set Ξ ⊂ R

d, and Φ : X×Y ×
Ξ → R. We assume that for every (x, y) ∈ X × Y , the expectation

E[Φ(x, y, ξ)] =
∫

Ξ

Φ(x, y, ξ)dP (ξ)

is well defined and finite valued and that the expected value function φ(x, y) is convex
in x ∈ X and concave in y ∈ Y . It follows that (3.1) is a convex-concave saddle
point problem. In addition, we assume that φ(·, ·) is Lipschitz continuous on X × Y .
It is well known that, in the above setting, (3.1) is solvable, i.e., the corresponding
“primal” and “dual” optimization problems

min
x∈X

[

max
y∈Y

φ(x, y)
]

and max
y∈Y

[

min
x∈X

φ(x, y)
]

,

respectively, are solvable with equal optimal values, denoted φ∗, and pairs (x∗, y∗) of
optimal solutions to the respective problems form the set of saddle points of φ(x, y)
on X × Y .

As in the case of the minimization problem (1.1), we assume that neither the func-
tion φ(x, y) nor its sub/supergradients in x and y are available explicitly. However,
we make the following assumption.

(A′2) We have at our disposal an oracle which, given an input of point (x, y, ξ) ∈
X × Y × Ξ, returns a stochastic subgradient, that is, (n + m)-dimensional vector
G(x, y, ξ) =

[

Gx(x, y, ξ)
−Gy(x, y, ξ)

]

such that vector

g(x, y) =
[

gx(x, y)
−gy(x, y)

]

=
[

E[Gx(x, y, ξ)]
−E[Gy(x, y, ξ)]

]

is well defined, gx(x, y) ∈ ∂xφ(x, y), and −gy(x, y) ∈ ∂y(−φ(x, y)).
For example, if for every ξ ∈ Ξ the function Φ(·, ·, ξ) is convex-concave and the

respective subdifferential and integral operators are interchangeable, we ensure (A′2)
by setting

G(x, y, ξ) =
[

Gx(x, y, ξ)
−Gy(x, y, ξ)

]

∈
[

∂xΦ(x, y, ξ)
∂y(−Φ(x, y, ξ))

]

.

Let ‖ · ‖x be a norm on R
n and ‖ · ‖y be a norm on R

m, and let ‖ · ‖∗,x and ‖ · ‖∗,y
stand for the corresponding dual norms. As in section 2.1, the basic assumption we
make about the stochastic oracle (aside from its unbiasedness, which we have already
postulated) is that we know positive constants M2

∗,x and M2
∗,y such that

(3.2) E

[

‖Gx(u, v, ξ)‖2
∗,x

]

≤M2
∗,x and E

[

‖Gy(u, v, ξ)‖2
∗,y

]

≤M2
∗,y ∀(u, v) ∈ X × Y.
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3.1. Mirror SA algorithm for saddle point problems. We equip X and Y
with distance-generating functions ωx : X → R modulus αx with respect to ‖ · ‖x,
and ωy : Y → R modulus αy with respect to ‖ · ‖y. Let Dωx,X and Dωy,Y be the
respective constants (see definition (2.42)). We equip R

n × R
m with the norm

(3.3) ‖(x, y)‖ =
√

αx

2D2
ωx,X

‖x‖2
x + αy

2D2
ωy,Y

‖y‖2
y,

so that the dual norm is

(3.4) ‖(ζ, η)‖∗ =

√

2D2
ωx,X

αx
‖ζ‖2

∗,x +
2D2

ωy,Y

αy
‖η‖2

∗,y

and set

(3.5) M2
∗ =

2D2
ωx,X

αx
M2

∗,x +
2D2

ωy,Y

αy
M2

∗,y.

It follows by (3.2) that

E
[

‖G(x, y, ξ)‖2
∗
]

≤M2
∗ .(3.6)

We use the notation z = (x, y) and equip the set Z = X × Y with the distance-
generating function

ω(z) =
ωx(x)

2D2
ωx,X

+
ωy(y)

2D2
ωy,Y

.

It is immediately seen that ω indeed is a distance-generating function for Z modulus
α = 1 with respect to the norm ‖ · ‖ and that Zo = Xo × Y o and Dω,Z = 1. In what
follows, V (z, u) : Zo × Z → R and Pz(ζ) : R

n+m → Zo are the prox-function and
prox-mapping associated with ω and Z (see (2.30), (2.31)).

We are ready now to present the mirror SA algorithm for saddle point problems.
This is the iterative procedure (compare with (2.32))

zj+1 = Pzj (γjG(zj , ξj)),(3.7)

where the initial point z1 ∈ Z is chosen to be the minimizer of ω(z) on Z. As before
(compare with (2.38)), we define approximate solution z̃j1 = (x̃j1, ỹ

j
1) of (3.1) after j

iterations as

(3.8) z̃j1 =
∑j
t=1 γtzt
∑j

t=1 γt
.

We refer to the procedure (3.7), (3.8) as the saddle point mirror SA algorithm.
Let us analyze convergence properties of the algorithm. We measure quality of

an approximate solution z̃ = (x̃, ỹ) by the error

εφ(z̃) :=
[

max
y∈Y

φ(x̃, y) − φ∗

]

+
[

φ∗ − min
x∈X

φ(x, ỹ)
]

= max
y∈Y

φ(x̃, y) − min
x∈X

φ(x, ỹ).

By convexity of φ(·, y), we have

φ(xt, yt) − φ(x, yt) ≤ (xt − x)T gx(xt, yt) ∀x ∈ X
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and by concavity of φ(x, ·),

φ(xt, y) − φ(xt, yt) ≤ (y − yt)T gy(xt, yt) ∀y ∈ Y

so that for all z = (x, y) ∈ Z,

φ(xt, y) − φ(x, yt) ≤ (xt − x)T gx(xt, yt) + (y − yt)T gy(xt, yt) = (zt − z)T g(zt).

Using once again the convexity-concavity of φ, we write

(3.9)

εφ(z̃j1) = max
y∈Y

φ
(

x̃j1, y
)

− min
x∈X

φ
(

x, ỹj1

)

≤
[

j
∑

t=1

γt

]−1 [

max
y∈Y

j
∑

t=1

γtφ(xt, y) − min
x∈X

j
∑

t=1

γtφ(x, yt)

]

≤
[

j
∑

t=1

γt

]−1

max
z∈Z

j
∑

t=1

γt(zt − z)T g(zt).

To bound the right-hand side of (3.9), we use the result of the following lemma (its
proof is given in the appendix).

Lemma 3.1. In the above setting, for any j ≥ 1, the following inequality holds:

(3.10) E

[

max
z∈Z

j
∑

t=1

γt(zt − z)T g(zt)

]

≤ 2 +
5
2
M2

∗

j
∑

t=1

γ2
t .

Now to get an error bound for the solution z̃j1, it suffices to substitute inequality
(3.10) into (3.9) to obtain

(3.11) E
[

εφ

(

z̃j1

)

]

≤
[

j
∑

t=1

γt

]−1 [

2 +
5
2
M2

∗

j
∑

t=1

γ2
t

]

.

Constant stepsizes and basic efficiency estimates. For a fixed number of steps N ,
with the constant stepsize policy

γt =
2θ

M∗
√

5N
, t = 1, . . . , N,(3.12)

condition (3.6) and estimate (3.11) imply that

(3.13)

εφ
(

z̃N1
)

≤ 2 max
{

θ, θ−1
}

M∗

√

5
N

= 2 max
{

θ, θ−1
}

√

10
[

αyD2
ωx,XM

2
∗,x+αxD2

ωy,Y M
2
∗,y

]

αxαyN
.

Variable stepsizes. Same as in the minimization case, assuming that

(3.14)
Dω,Z :=

√
2 supz∈Zo,w∈Z

[

ω(w) − ω(z) − (w − z)T∇ω(z)
]1/2

=
√

2
[

supz∈Zo,w∈Z V (z, w)
]1/2
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is finite, we can pass from constant stepsizes on a fixed “time horizon” to decreasing
stepsize policy

γt =
θDω,Z

M∗
√
t
, t = 1, 2, . . .

(compare with (2.55) and take into account that we are in the situation of α = 1),
and from the averaging of all iterates to the “sliding averaging”

z̃ji =
∑j

t=i γtzt
∑j

t=i γt
,

arriving at the efficiency estimates (compare with (2.56) and (2.57))

(3.15)
ε
(

z̃NK
)

≤ Dω,ZM∗√
N

[

2
θ

N

N −K + 1
+

5θ
2

√

N

K

]

, 1 ≤ K ≤ N,

ε
(

z̃N
rN�

)

≤ C(r) max
{

θ, θ−1
} Dω,ZM∗√

N
, r ∈ (0, 1).

Probabilities of large deviations. Assume that instead of (3.2), the following stronger
assumption holds:

(3.16)
E
[

exp
{

‖Gx(u, v, ξ)‖2
∗,x /M

2
∗,x
}]

≤ exp{1},
E
[

exp
{

‖Gy(x, y, ξ)‖2
∗,y /M

2
∗,y
}]

≤ exp{1}.

Proposition 3.2. In the case of (3.16), with the stepsizes given by (3.12) and
(3.6), one has, for any Ω > 1,

(3.17) Prob
{

εφ
(

z̃N1
)

>
(8+2Ω) max{θ,θ−1}√5M∗√

N

}

≤ 2 exp{−Ω}.

Proof of this proposition is given in the appendix.

3.2. Application to minimax stochastic problems. Consider the following
minimax stochastic problem:

(3.18) min
x∈X

max
1≤i≤m

{

fi(x) = E[Fi(x, ξ)]
}

,

where X ⊂ R
n is a nonempty bounded closed convex set, ξ is a random vector

whose probability distribution P is supported on set Ξ ⊂ R
d, and Fi : X × Ξ → R,

i = 1, . . . ,m. We assume that the expected value functions fi(·), i = 1, . . . ,m, are
well defined, finite valued, convex, and Lipschitz continuous on X . Then the minimax
problem (3.18) can be formulated as the following saddle point problem:

min
x∈X

max
y∈Y

{

φ(x, y) =
m
∑

i=1

yifi(x)

}

,(3.19)

where Y = {y ∈ R
m :
∑m

i=1 yi = 1, y ≥ 0}.
Assume that we are able to generate independent realizations ξ1, . . . , of random

vector ξ, and, for given x ∈ X and ξ ∈ Ξ, we can compute Fi(x, ξ) and its stochastic
subgradient Gi(x, ξ) such that gi(x) = E[Gi(x, ξ)] is well defined and gi(x) ∈ ∂fi(x),



1592 A. NEMIROVSKI, A. JUDITSKY, G. LAN, AND A. SHAPIRO

x ∈ X , i = 1, . . . ,m. In other words, we have a stochastic oracle for the problem
(3.19) such that assumption (A′2) holds, with

G(x, y, ξ) =
[ ∑m

i=1 yiGi(x, ξ)
−
(

F1(x, ξ), . . . , Fm(x, ξ)
)

]

(3.20)

and

g(x, y) = E[G(x, y, ξ)] =
[ ∑m

i=1 yigi(x)
−
(

f1(x), . . . , fm(x)
)

]

∈
[

∂xφ(x, y)
−∂yφ(x, y)

]

.(3.21)

Suppose that the set X is equipped with norm ‖ · ‖x, whose dual norm is ‖ · ‖∗,x,
and a distance-generating function ω modulus αx with respect to ‖ · ‖x, and let
R2
x =

D2
ωx,X

αx
. We equip the set Y with the norm ‖ · ‖y = ‖ · ‖1, so that ‖ · ‖∗,y = ‖ · ‖∞,

and with the distance-generating function

ωy(y) =
m
∑

i=1

yi ln yi

and set R2
y =

D2
ωy,Y

αy
= lnm. Next, following (3.3), we set

‖(x, y)‖ =

√

‖x‖2
x

2R2
x

+
‖y‖2

1

2R2
y

,

and hence

‖(ζ, η)‖∗ =
√

2R2
x‖ζ‖2

∗,x + 2R2
y‖η‖2

∞.

Let us assume uniform bounds:

max
1≤i≤m

E
[

‖Gi(x, ξ)‖2
∗,x
]

≤M2
∗,x, E

[

max
1≤i≤m

|Fi(x, ξ)|2
]

≤M2
∗,y, i = 1, . . . ,m.

Note that

E
[

‖G(x, y, ξ)‖2
∗
]

= 2R2
x E

[

∥

∥

m
∑

i=1

yiGi(x, ξ)
∥

∥

2

∗,x

]

+ 2R2
y E
[

‖F (x, ξ)‖2
∞
]

,

and since y ∈ Y ,

∥

∥

∥

∥

∥

m
∑

i=1

yiGi(x, ξ)

∥

∥

∥

∥

∥

2

∗,x

≤
(

m
∑

i=1

yi‖Gi(x, ξ)‖∗,x

)2

≤
m
∑

i=1

yi‖Gi(x, ξ)‖2
∗,x.

It follows that

(3.22) E
[

‖G(x, y, ξ)‖2
∗
]

≤M2
∗ ,

where

M2
∗ = 2R2

xM
2
∗,x + 2R2

yM
2
∗,y = 2R2

xM
2
∗,x + 2M2

∗,y lnm.
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Let us now use the saddle point mirror SA algorithm (3.7)–(3.8) with the constant
stepsize policy

γt =
2

M∗
√

5N
, t = 1, 2, . . . , N.

When substituting the value of M∗, we obtain the following from (3.13):

(3.23)
E
[

εφ
(

z̃N1
)]

= E

[

max
y∈Y

φ
(

x̂N1 , y
)

− min
x∈X

φ
(

x, ŷN1
)

]

≤ 2M∗

√

5
N ≤ 2

√

10[R2
xM

2
∗,x+M2

∗,x lnm]
N .

Discussion. Looking at the bound (3.23), one can make the following important
observation. The error of the saddle point mirror SA algorithm in this case is “almost
independent” of the number m of constraints (it grows as O(

√
lnm) as m increases).

The interested reader can easily verify that if an E-SA algorithm were used in the
same setting (i.e., the algorithm tuned to the norm ‖ · ‖y = ‖ · ‖2), the corresponding
bound would grow with m much faster (in fact, our error bound would be O(

√
m) in

that case).
Note that properties of the saddle point mirror SA can be used to reduce signifi-

cantly the arithmetic cost of the algorithm implementation. To this end let us look at
the definition (3.20) of the stochastic oracle: In order to obtain a realization G(x, y, ξ),
one has to compute m random subgradients Gi(x, ξ), i = 1, . . . ,m, and then their con-
vex combination

∑m
i=1 yiGi(x, ξ). Now let η be an independent of ξ and uniformly

distributed on [0, 1] random variable, and let ı(η, y) : [0, 1] × Y → {1, . . . ,m} equal
to i when

∑i−1
s=1 ys < η ≤

∑i
s=1 ys. That is, random variable ı̂ = ı(η, y) takes values

1, . . . ,m with probabilities y1, . . . , ym. Consider random vector

(3.24) G(x, y, (ξ, η)) =
[

Gı(η,y)(x, ξ)
−
(

F1(x, ξ), . . . , Fm(x, ξ)
)

]

.

We refer to G(x, y, (ξ, η)) as a randomized oracle for problem (3.19), the corresponding
random parameter being (ξ, η). By construction, we still have E

[

G(x, y, (ξ, η))
]

=
g(x, y), where g is defined in (3.21), and, moreover, the same bound (3.22) holds
for E

[

‖G(x, y, (ξ, η))‖2
∗
]

. We conclude that the accuracy bound (3.23) holds for the
error of the saddle point mirror SA algorithm with randomized oracle. On the other
hand, in the latter procedure only one randomized subgradient Gı̂(x, ξ) per iteration is
computed. This simple idea is further developed in another interesting application of
the saddle point mirror SA algorithm to bilinear matrix games, which we discuss next.

3.3. Application to bilinear matrix games. Consider the standard matrix
game problem, that is, problem (3.1) with

φ(x, y) = yTAx + bTx+ cT y,

where A ∈ R
m×n, and X and Y are the standard simplexes:

X =

⎧

⎨

⎩

x ∈ R
n : x ≥ 0,

n
∑

j=1

xj = 1

⎫

⎬

⎭

, Y =

{

y ∈ R
m : y ≥ 0,

m
∑

i=1

yi = 1

}

.
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In the case in question it is natural to equip X (respectively, Y ) with the ‖·‖1-norm on
R
n (respectively, R

m). We choose entropies as the corresponding distance-generating
functions:

ωx(x) =
n
∑

i=1

xi lnxi, ωy(x) =
m
∑

i=1

yi ln yi

[

⇒ D2
ωx,X

αx
= lnn,

D2
ωy,Y

αy
= lnm

]

.

According to (3.3), we set

‖(x, y)‖ =

√

‖x‖2
1

2 lnn
+

‖y‖2
1

2 lnm
⇒ ‖(ζ, η)‖∗ =

√

2‖ζ‖2
∞ lnn+ 2‖η‖2

∞ lnm.(3.25)

In order to compute the estimates G(x, y, ξ) of g(x, y) = (b + AT y,−c− Ax), to
be used in the saddle point mirror SA iterations (3.7), we use the randomized oracle

(3.26) G(x, y, ξ) =
[

c+Aı(ξ1,y)

−b−Aı(ξ2,x)

]

,

where ξ1 and ξ2 are independent uniformly distributed on [0, 1] random variables and
ĵ = ı(ξ1, y), î = ı(ξ2, x) are defined as in (3.24) (i.e., ĵ can take values 1, . . . ,m, with
probabilities y1, . . . , ym and î can take values 1, . . . , n, with probabilities x1, . . . , xn),
and Aj , [Ai]T are jth column and ith row in A, respectively.

Note that

(3.27) g(x, y) ≡ E

[

G
(

x, y,
(

ĵ, î
))]

∈
[

∂xφ(x, y)
∂y(−φ(x, y))

]

.

Besides this,

|G(x, y, ξ)i| ≤ max1≤j≤m ‖Aj + b‖∞, 1 ≤ i ≤ n,
|G(x, y, ξ)i| ≤ max1≤j≤n ‖Aj + c‖∞, n+ 1 ≤ i ≤ n+m,

whence, invoking (3.25), for any x ∈ X , y ∈ Y , and ξ,

(3.28) ‖G(x, y, ξ)‖2
∗ ≤M2

∗ = 2 lnn max
1≤j≤m

‖Aj + b‖2
∞ + 2 lnm max

1≤j≤n
‖Aj + c‖2

∞.

The bottom line is that our stochastic gradients along with the just-defined M∗ satisfy
both (A′2) and (3.16), and therefore with the constant stepsize policy (3.12), we have

E
[

εφ
(

z̃N1
)]

= E

[

max
y∈Y

φ
(

x̃N1 , y
)

− min
x∈X

φ
(

x, ỹN1
)

]

≤ 2M∗

√

5
N

(3.29)

(cf. (3.13)). In our present situation, Proposition 3.2 in a slightly refined form (for
proof, see the appendix) reads as follows.

Proposition 3.3. With the constant stepsize policy (3.12), for the just-defined
algorithm, one has for any Ω ≥ 1, that

(3.30) Prob
{

εφ
(

z̃N1
)

> 2M∗

√

5
N + 4M√

N
Ω
}

≤ exp
{

−Ω2/2
}

,

where

(3.31) M = max
1≤j≤m

‖Aj + b‖∞ + max
1≤j≤n

‖Aj + c‖∞.
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Discussion. Consider a bilinear matrix game with n ≥ m, ln(m) = O(1) ln(n),
and b = c = 0 (so that M∗ = O(1)

√
lnnM and M = maxi,j |Aij |; see (3.28), (3.31)).

Suppose that we are interested to solve it within a fixed relative accuracy ρ, that is,
to ensure that the (perhaps random) approximate solution z̃N1 , which we get after N
iterations, satisfies the error bound

εφ(z̃N) ≤ ρ max
1≤i, j≤n

|Aij |

with probability at least 1 − δ. According to (3.30), to this end, one can use the
randomized saddle point mirror SA algorithm (3.7), (3.8), (3.26) with stepsizes (3.12),
(3.28) and with

(3.32) N = O(1)
lnn+ ln(1/δ)

ρ2
.

The computational cost of building z̃N1 with this approach is

C(ρ) = O(1)
[lnn+ ln(1/δ)] [R + n]

ρ2

arithmetic operations, where R is the arithmetic cost of extracting a column/row
from A given the index of this column/row. The total number of rows and columns
visited by the algorithm does not exceed the number of steps N as given in (3.32) so
that the total number of entries in A used in the course of the entire computation
does not exceed

M = O(1)
n(lnn+ ln(1/δ))

ρ2
.

When ρ is fixed, m = O(1)n and n is large, M is incomparably less than the total
number mn of entries in A. Thus, our algorithm exhibits sublinear-time behavior :
it produces reliable solutions of prescribed quality to large-scale matrix games by
inspecting a negligible, as n → ∞, part of randomly selected data. Note that ran-
domization here is critical.3 It can be seen that a deterministic algorithm, which is
capable to find a solution with (deterministic) relative accuracy ρ ≤ 0.1, has to “see”
in the worst case at least O(1)n rows/columns of A.

4. Numerical results. In this section, we report the results of our computa-
tional experiments where we compare the performance of the robust mirror descent
SA method and the SAA method applied to three stochastic programming problems,
namely: a stochastic utility problem, a stochastic max-flow problem, and a network
planning problem with random demand. We also present a small simulation study of
the performance of randomized mirror SA algorithm for bilinear matrix games.

The algorithms we were testing are the two variants of the robust mirror descent
SA. The first variant, the E-SA, is as described in section 2.2; in terms of section 2.3,
this is nothing but mirror descent robust SA with Euclidean setup; see the example
in section 2.3. The second variant, referred to as the non-Euclidean SA (N-SA), is
the mirror descent robust SA with �1-setup; see, the example in section 2.3.

3The possibility to solve matrix games in a sublinear-time fashion by a randomized algorithm
was discovered by Grigoriadis and Khachiyan [9]. Their “ad hoc” algorithm is similar, although not
completely identical to ours, and possesses the same complexity bounds.
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Table 4.1

Selecting stepsize policy.

[method: N-SA, N:2,000, K:10,000, instance: L1]
θ

Policy 0.1 1 5 10
Variable −7.4733 −7.8865 −7.8789 −7.8547
Constant −6.9371 −7.8637 −7.9037 −7.8971

These two variants of the SA method are compared with the SAA approach in
the following way: fixing an iid. sample (of size N) for the random variable ξ, we
apply the three aforementioned methods to obtain approximate solutions for the test
problem under consideration, and then the quality of the solutions yielded by these
algorithms is evaluated using another iid. sample of size K >> N . It should be noted
that SAA itself is not an algorithm, and in our experiments, it was coupled with
the non-Euclidean restricted memory level (NERML) [2]—a powerful deterministic
algorithm for solving the sample average problem (1.4).

4.1. Preliminaries.
Algorithmic schemes. Both E-SA and N-SA were implemented according to the

description in section 2.3, the number of steps N being the parameter of a particular
experiment. In such an experiment, we generated ≈ log2N candidate solutions x̃Ni ,
with N−i+1 = min[2k, N ], k = 0, 1, . . . , �log2N�. We then used an additional sample
to estimate the objective at these candidate solutions in order to choose the best of
these candidates, specifically, as follows: we used a relatively short sample to choose
the two “most promising” of the candidate solutions, and then a large sample (of size
K � N) to identify the best of these two candidates, thus getting the “final” solution.
The computational effort required by this simple postprocessing is not reflected in the
tables to follow.

The stepsizes. At the “pilot stage” of our experimentation, we made a decision on
which stepsize policy—(2.47) or (2.55)—to choose and how to identify the underlying
parameters M∗ and θ. In all our experiments, M∗ was estimated by taking the
maxima of ‖G(·, ·)‖∗ over a small (just 100) calls to the stochastic oracle at randomly
generated feasible solutions. As about the value of θ and type of the stepsize policy
((2.47) or (2.55)), our choice was based on the results of experimentation with a
single test problem (instance L1 of the utility problem, see below); some results of
this experimentation are presented in Table 4.1. We have found that the constant
stepsize policy (2.47) with θ = 0.1 for the E-SA and θ = 5 for the N-SA slightly
outperforms other variants we have considered. This particular policy, combined with
the aforementioned scheme for estimating M∗, was used in all subsequent experiments.

Format of test problems. All our test problems are of the form minx∈X f(x),
f(x) = E[F (x, ξ)], where the domain X either is a standard simplex {x ∈ R

n : x ≥
0,
∑

i xi = 1} or can be converted into such a simplex by scaling of the original
variables.

Notation in the tables. Below,
• n is the design dimension of an instance,
• N is the sample size (i.e., the number of steps in SA, and the size of the sample

used to build the stochastic average in SAA),
• Obj is the empirical mean of the random variable F (x, ξ), x being the approxi-

mate solution generated by the algorithm in question. The empirical means are taken
over a large (K = 104 elements) dedicated sample,

• CPU is the CPU time in seconds.
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Table 4.2

SA versus SAA on the stochastic utility problem.

- L1: n = 500 L2: n = 1,000 L3: n = 2,000 L4: n = 5,000
ALG. N Obj CPU Obj CPU Obj CPU Obj CPU

N-SA 100 −7.7599 0 −5.8340 0 −7.1419 1 −5.4688 3
1,000 −7.8781 2 −5.9152 2 −7.2312 6 −5.5716 13
2,000 −7.8987 2 −5.9243 5 −7.2513 10 −5.5847 25
4,000 −7.9075 5 −5.9365 12 −7.2595 20 −5.5935 49

E-SA 100 −7.6895 0 −5.7988 1 −7.0165 1 −4.9364 4
1,000 −7.8559 2 −5.8919 4 −7.2029 7 −5.3895 20
2,000 −7.8737 3 −5.9067 7 −7.2306 15 −5.4870 39
4,000 −7.8948 7 −5.9193 13 −7.2441 29 −5.5354 77

SAA 100 −7.6571 7 −5.6346 8 −6.9748 19 −5.3360 44
1,000 −7.8821 31 −5.9221 68 −7.2393 134 −5.5656 337
2,000 −7.9100 72 −5.9313 128 −7.2583 261 −5.5878 656
4,000 −7.9087 113 −5.9384 253 −7.2664 515 −5.5967 1,283

Table 4.3

The variability for the stochastic utility problem.

- N-SA E-SA SAA
Obj CPU Obj CPU Obj CPU

Inst N Mean Dev (Avg.) Mean Dev (Avg.) Mean Dev (Avg.)
L2 1,000 −5.9159 0.0025 2.63 −5.8925 0.0024 4.99 −5.9219 0.0047 67.31
L2 2,000 −5.9258 0.0022 5.03 −5.9063 0.0019 7.09 −5.9328 0.0028 131.25

4.2. A stochastic utility problem. Our first experiment was carried out with
the utility model

(4.1) min
x∈X

{

f(x) = E

[

φ
(

n
∑

i=1

(i/n+ ξi)xi
)

]}

,

where X = {x ∈ R
n : x ≥ 0,

∑n
i=1 xi = 1}, ξi ∼ N (0, 1) are independent and φ(·) is a

piecewise linear convex function given by φ(t) = max{v1 + s1t, . . . , vm + smt}, where
vk and sk are certain constants. In our experiment, we used m = 10 breakpoints, all
located on [0, 1]. The four instances L1, L2, L3, L4 we dealt with were of dimension
varying from 500 to 2,000, each instance—with its own randomly generated function
φ. All the algorithms were coded in ANSI C, and the experiments were conducted on
an Intel PIV 1.6GHz machine with Microsoft windows XP professional.

We run each of the three aforementioned methods with various sample sizes on
every one of the instances. The results are reported in Table 4.2.

In order to evaluate stability of the algorithms, we run each of them 100 times;
the resulting statistics are shown in Table 4.3. In this relatively time-consuming
experiment, we restrict ourselves with a single instance (L2) and just two sample
sizes (N = 1,000 and 2,000). In Table 4.3, “Mean” and “Dev” are, respectively, the
mean and the deviation, over 100 runs, of the objective value Obj at the resulting
approximate solution.

The experiments demonstrate that as far as the quality of approximate solutions
is concerned, N-SA outperforms E-SA and is almost as good as SAA. At the same
time, the solution time for N-SA is significantly smaller than the one for SAA.

4.3. Stochastic max-flow problem. In the second experiment, we consider
simple two-stage stochastic linear programming, namely, a stochastic max-flow prob-
lem. The problem is to optimize the capacity expansion of a stochastic network. Let
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Table 4.4

SA versus SAA on the stochastic max-flow problem.

- F1 F2 F3 F4
(m, n) (50,500) (100, 1,000) (100, 2,000) (250, 5,000)

ALG. N Obj CPU Obj CPU Obj CPU Obj CPU

N-SA 100 0.1140 0 0.0637 0 0.1296 1 0.1278 3
1,000 0.1254 1 0.0686 3 0.1305 6 0.1329 15
2,000 0.1249 3 0.0697 6 0.1318 11 0.1338 29
4,000 0.1246 5 0.0698 11 0.1331 21 0.1334 56

E-SA 100 0.0840 0 0.0618 1 0.1277 2 0.1153 7
1,000 0.1253 3 0.0670 6 0.1281 16 0.1312 39
2,000 0.1246 5 0.0695 13 0.1287 28 0.1312 72
4,000 0.1247 9 0.0696 24 0.1303 53 0.1310 127

SAA 100 0.1212 5 0.0653 12 0.1310 20 0.1253 60
1,000 0.1223 35 0.0694 84 0.1294 157 0.1291 466
2,000 0.1223 70 0.0693 170 0.1304 311 0.1284 986
4,000 0.1221 140 0.0693 323 0.1301 636 0.1293 1,885

G = (N,A) be a diagraph with a source node s and a sink node t. Each arc (i, j) ∈ A
has an existing capacity pij ≥ 0 and a random implementing/operating level ξij .
Moreover, there is a common random degrading factor η for all arcs in A. The goal is
to determine how much capacity to add to the arcs, subject to a budget constraint,
in order to maximize the expected maximum flow from s to t. Denoting by xij the
capacity to be added to arc (i, j), the problem reads

(4.2) max
x

⎧

⎨

⎩

f(x) = E[F (x; ξ, η)] :
∑

(i,j)∈A
cijxij ≤ b, xij ≥ 0, ∀(i, j) ∈ A

⎫

⎬

⎭

,

where cij is the per unit cost for the capacity to be added, b is the total available
budget, and F (x; ξ, η) denotes the maximum s − t flow in the network when the
capacity of an arc (i, j) is ηξij(pij + xij). Note that the above is a maximization
rather than a minimization problem.

We assume that the random variables ξij , θ are independent and uniformly dis-
tributed on [0, 1] and [0.5, 1], respectively, and consider the case of pij = 0, cij = 1 for
all (i, j) ∈ E, and b = 1. We randomly generated 4 network instances (referred to as
F1, F2, F3, and F4) using the network generator GRIDGEN available on DIMACS
challenge. The push-relabel algorithm [8] was used to solve the second stage max-flow
problem.

In the first test, each algorithm (N-SA, E-SA, SAA) was run once at each test
instance; the results are reported in Table 4.4, where m, n stand for the number of
nodes, respectively, arcs in G. Similar to the stochastic utility problem, we investi-
gate the stability of the methods by running each of them 100 times. The resulting
statistics is presented in Table 4.5, whose columns have exactly the same meaning as
in Table 4.3.

This experiment fully supports the conclusions on the methods suggested by the
experiments with the utility problem.

4.4. A network planning problem with random demand. In the last ex-
periment, we consider the so-called SSN problem of Sen, Doverspike, and Cosares
[24]. This problem arises in telecommunications network design where the owner of
the network sells private-line services between pairs of nodes in the network, and the
demands are treated as random variables based on the historical demand patterns.
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Table 4.5

The variability for the stochastic max-flow problem.

- N-SA E-SA SAA
Obj Avg. Obj Avg. Obj Avg.

Inst N Mean Dev CPU Mean Dev CPU Mean Dev CPU

F2 1,000 0.0691 0.0004 3.11 0.0688 0.0006 4.62 0.0694 0.0003 90.15
F2 2,000 0.0694 0.0003 6.07 0.0692 0.0002 6.91 0.0695 0.0003 170.45

The optimization problem is to decide where to add capacity to the network to min-
imize the expected rate of unsatisfied demands. Since this problem has been studied
by several authors (see, e.g., [12, 24]), it could be interesting to compare the results.
Another purpose of this experiment is to investigate the behavior of the SA method
when the Latin hyperplane sampling (LHS) variance reduction technique (introduced
in [14]) is applied.

The problem has been formulated as a two-stage stochastic linear programming
as follows:

(4.3) min
x

{

f(x) = E[F (x, ξ)] : x ≥ 0,
∑

i

xi = b

}

,

where x is the vector of capacities to be added to the arcs of the network, b (the
budget) is the total amount of capacity to be added, ξ denotes the random demand,
and F (x, ξ) represents the number of unserved requests, specifically,

(4.4) F (x, ξ) = min
s,f

⎧

⎨

⎩

∑

i

si :

∑

i

∑

r∈R(i)Arfir ≤ x+ c
∑

r∈R(i) fir + si = ξi, ∀i
fir ≥ 0, si ≥ 0, ∀i, r ∈ R(i)

⎫

⎬

⎭

.

Here,
• R(i) is the set of routes used for traffic i (traffic between the source-sink pair

of nodes # i),
• ξi is the (random) demand for traffic i,
• Ar are the route-arc incidence vectors (so that jth component of Ar is 1 or 0

depending on whether arc j belongs to the route r),
• c is the vector of current capacities, fir is the fraction of traffic i transferred via

route r, and s is the vector of unsatisfied demands.
In the SSN instance, there are dimx = 89 arcs and dim ξ = 86 source-sink

pairs, and components of ξ are independent random variables with known discrete
distributions (from 3 to 7 possible values per component), which result in ≈ 1070

possible demand scenarios.
In the first test with the SSN instance, each of our 3 algorithms was run once

without and once with the LHS technique; the results are reported in Table 4.6. We
then tested the stability of algorithms by running each of them 100 times; see statistics
in Table 4.7. Note that experiments with the SSN problem were conducted on a more
powerful computer: Intel Xeon 1.86GHz with Red Hat Enterprize Linux.

As far as comparison of our three algorithms is concerned, the conclusions are
in full agreement with those for the utility and the max-flow problem. We also see
that for our particular example, the LHS does not yield much of an improvement,
especially when a larger sample size is applied. This result seems to be consistent
with the observation in [12].
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Table 4.6

SA versus SAA on the SSN problem.

- Without LHS With LHS
Alg. N Obj CPU Obj CPU

N-SA 100 11.0984 1 10.1024 1
1,000 10.0821 6 10.0313 7
2,000 9.9812 12 9.9936 12
4,000 9.9151 23 9.9428 22

E-SA 100 10.9027 1 10.3860 1
1,000 10.1268 6 10.0984 6
2,000 10.0304 12 10.0552 12
4,000 9.9662 23 9.9862 23

SAA 100 11.8915 24 11.0561 23
1,000 10.0939 215 10.0488 216
2,000 9.9769 431 9.9872 426
4,000 9.8773 849 9.9051 853

Table 4.7

The variability for the SSN problem.

- N-SA E-SA SAA
Obj Avg. Obj Avg. Obj Avg.

N LHS Mean Dev CPU Mean Dev CPU Mean Dev CPU

1,000 no 10.0624 0.1867 6.03 10.1730 0.1826 6.12 10.1460 0.2825 215.06
1,000 yes 10.0573 0.1830 6.16 10.1237 0.1867 6.14 10.0135 0.2579 216.10
2,000 no 9.9965 0.2058 11.61 10.0853 0.1887 11.68 9.9943 0.2038 432.93
2,000 yes 9.9978 0.2579 11.71 10.0486 0.2066 11.74 9.9830 0.1872 436.94

4.5. N-SA versus E-SA. The data in Tables 4.3, 4.4, and 4.6 demonstrate that
with the same sample size N , the N-SA somehow outperforms the E-SA in terms of
both the quality of approximate solutions and the running time.4 The difference in
solutions’ quality, at the first glance, seems slim, and one could think that adjusting
the SA algorithm to the “geometry” of the problem in question (in our case, to
minimization over a standard simplex) is of minor importance. We, however, do
believe that such a conclusion would be wrong. In order to get a better insight, let
us come back to the stochastic utility problem. This test problem has an important
advantage—we can easily compute the value of the objective f(x) at a given candidate
solution x analytically.5 Moreover, it is easy to minimize f(x) over the simplex—on a
closest inspection, this problem reduces to minimizing an easy-to-compute univariate
convex function so that we can approximate the true optimal value f∗ to high accuracy
by bisection. Thus, in the case in question, we can compare solutions x generated
by various algorithms in terms of their “true inaccuracy” f(x) − f∗, and this is the
rationale behind our “Gaussian setup.” We can now exploit this advantage of the
stochastic utility problem for comparing properly N-SA and E-SA. In Table 4.8, we
present the true values of the objective f(x̄) at the approximate solutions x̄ generated
by N-SA and E-SA as applied to the instances L1 and L4 of the utility problem
(cf. Table 4.3) along with the inaccuracies f(x̄) − f∗ and the Monte Carlo estimates
̂f(x̄) of f(x̄) obtained via 50,000-element samples. We see that the difference in

4The difference in running times can be easily explained: with X being a simplex, the prox-
mapping for E-SA takes O(n ln n) operations versus O(n) operations for N-SA.

5Indeed, (ξ1, . . . , ξn) ∼ N (0, In), so that the random variable ξx =
∑

i(ai + ξi)xi is normal with
easily computable mean and variance, and since φ is piecewise linear, the expectation f(x) = E[φ(ξx)]
can be immediately expressed via the error function.



ROBUST STOCHASTIC APPROXIMATION 1601

Table 4.8

N-SA versus E-SA.

Method Problem ̂f(x̄), f(x̄) f(x̄) − f∗ Time

N-SA, N = 2,000 L2: n = 1,000 −5.9232/ − 5.9326 0.0113 5.00
E-SA, N = 2,000 L2 −5.8796/ − 5.8864 0.0575 6.60
E-SA, N = 10,000 L2 −5.9059/ − 5.9058 0.0381 39.80
E-SA, N = 20,000 L2 −5.9151/ − 5.9158 0.0281 74.50

N-SA, N = 2,000 L4: n = 5,000 −5.5855/ − 5.5867 0.0199 25.00
E-SA, N = 2,000 L4 −5.5467/ − 5.5469 0.0597 44.60
E-SA, N = 10,000 L4 −5.5810/ − 5.5812 0.0254 165.10
E-SA, N = 20,000 L4 −5.5901/ − 5.5902 0.0164 382.00

the inaccuracy f(x̄) − f∗ of the solutions produced by the algorithms is much more
significant than is suggested by the data in Table 4.3 (where the actual inaccuracy
is “obscured” by the estimation error and summation with f∗). Specifically, at the
common for both algorithm sample sizes N = 2,000, the inaccuracy yielded by N-SA
is 3–5 times less than the one for E-SA and in order to compensate for this difference,
one should increase the sample size for E-SA (and hence the running time) by factor
5–10. It should be added that in light of theoretical complexity analysis carried out
in Example 2.3, the outlined significant difference in performances of N-SA and E-SA
is not surprising; the surprising fact is that E-SA works at all.

4.6. Bilinear matrix game. We consider here a bilinear matrix game

min
x∈X

max
y∈Y

yTAx,

where both feasible sets are the standard simplexes in R
n: Y = X = {x ∈ R

n :
∑n

i=1 xi = 1, x ≥ 0}. We consider two versions of the randomized mirror SA algo-
rithm (3.7), (3.8) for the saddle point problem. The first algorithm, the E-SA, uses
1
2
‖x‖2

2 as ωx, ωy and ‖ · ‖2 as ‖ · ‖x, ‖ · ‖y. The second algorithm, the N-SA, uses the
entropy function (2.58) as ωx, ωy and the norm ‖ · ‖1 as ‖ · ‖x, ‖ · ‖y. To compare
the two procedures, we compute the corresponding approximate solutions z̃N1 and
compute the exact values of the error:

ε
(

z̃N1
)

= max
y∈Y

yTAx̃N1 − min
x∈X

[

ỹN1
]T
Ax, i = 1, 2.

In our experiments we consider symmetric matrices A of two kinds. The matrices of
the first family, parameterized by α > 0, are given by

Aij =
(

i+ j − 1
2n− 1

)α

, 1 ≤ i, j ≤ n.

The second family of matrices, which are also parameterized by α > 0, is given by

Aij =
(

|i− j| + 1
2n− 1

)α

, 1 ≤ i, j ≤ n.

We use the notations E1(α) and E2(α) to refer to the experiments with the matrices
of the first and second kind with parameter α. We present in Table 4.9 the results of
experiments conducted for the matrices A of size 104 × 104. We made 100 simulation
runs in each experiment and present the average error (column Mean), standard
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Table 4.9

SA for bilinear matrix games.

E2(2), ε(z̃1) = 0.500 E2(1), ε(z̃1) = 0.500 E2(0.5), ε(z̃1) = 0.390

N-SA ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU

N Mean Dev CPU Mean Dev CPU Mean Dev CPU

100 0.0121 3.9 e−4 0.58 0.0127 1.9 e−4 0.69 0.0122 4.3 e−4 0.81
1,000 0.00228 3.7 e−5 5.8 0.00257 2.2 e−5 7.3 0.00271 4.5 e−5 8.5
2,000 0.00145 2.1 e−5 11.6 0.00166 1.0 e−5 13.8 0.00179 2.7 e−5 16.4

E-SA ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU

N Mean dev (Avg.) Mean Dev (Avg.) Mean Dev (Avg.)
100 0.00952 1.0 e−4 1.27 0.0102 5.1 e−5 1.77 0.00891 1.1 e−4 1.94
1,000 0.00274 1.3 e−5 11.3 0.00328 7.8 e−6 17.6 0.00309 1.6 e−5 20.9
2,000 0.00210 7.4 e−6 39.7 0.00256 4.6 e−6 36.7 0.00245 7.8 e−6 39.2

E1(2), ε(z̃1) = 0.0625 E1(1), ε(z̃1) = 0.125 E1(0.5), ε(z̃1) = 0.138

N-SA ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU

N Mean Dev (Avg.) Mean Dev (Avg.) Mean Dev (Avg.)
100 0.00817 0.0016 0.58 0.0368 0.0068 0.66 0.0529 0.0091 0.78
1,000 0.00130 2.7 e−4 6.2 0.0115 0.0024 6.5 0.0191 0.0033 7.6
2,000 0.00076 1.6 e−4 11.4 0.00840 0.0014 11.7 0.0136 0.0018 13.8

E-SA ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU ε
(

z̃N
1

)

CPU

N Mean Dev (Avg.) Mean Dev (Avg.) Mean Dev (Avg.)
100 0.00768 0.0012 1.75 0.0377 0.0062 2.05 0.0546 0.0064 2.74
1,000 0.00127 2.2 e−4 17.2 0.0125 0.0022 19.9 0.0207 0.0020 18.4
2,000 0.00079 1.6 e−4 35.0 0.00885 0.0015 36.3 0.0149 0.0020 36.7

deviation (column Dev) and the average running time (with excluded time to compute
the error of the resulting solution). For comparison, we also present the error of the
initial solution z̃1 = (x1, y1).

Our basic observation is as follows: Both N-SA and E-SA succeed to reduce the
solution error reasonably fast. The N-SA implementation is preferable as it is more
efficient in terms of running time. For comparison, it takes Matlab from 10 (for the
simplest problem) to 35 seconds (for the hardest one) to compute just one answer
g(x, y) =

[

AT y
−Ax

]

of the deterministic oracle.

5. Conclusions. It is shown that for a certain class of convex stochastic opti-
mization and saddle point problems, robust versions of the SA approach have similar
theoretical estimates of computational complexity, in terms of the required sample
size, to the SAA method. Numerical experiments, reported in section 4, confirm this
conclusion. These results demonstrate that for considered problems, a properly imple-
mented mirror descent SA algorithm produces solutions of comparable accuracy to the
SAA method for the same sample size of generated random points. On the other hand,
the implementation (computational) time of the SA method is significantly smaller
with a factor of up to 30–40 for considered problems. Thus, both theoretical and
numerical results suggest that the robust mirror descent SA is a viable alternative to
the SAA approach, an alternative which at least deserves testing in particular applica-
tions. It is also shown that the robust mirror SA approach can be applied as a random-
ization algorithm to large-scale deterministic saddle point problems (in particular, to
minimax optimization problems and bilinear matrix games) with encouraging results.

6. Appendix. Proof of Lemma 2.1. Let x ∈ Xo and v = Px(y). Note that v ∈
argmin z∈X [ω(z) + pT z], where p = ∇ω(x) − y. Thus, ω is differentiable at v and v ∈
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Xo. As ∇vV (x, v) = ∇ω(v) −∇ω(x), the optimality conditions for (2.31) imply that

(∇ω(v) −∇ω(x) + y)T (v − u) ≤ 0 ∀u ∈ X.(6.1)

For u ∈ X , we therefore have

V (v, u) − V (x, u) =
[

ω(u) −∇ω(v)T (u− v) − ω(v)
]

−
[

ω(u) −∇ω(x)T (u − x) − ω(x)
]

= ∇ω(v) −∇ω(x) + y)T (v − u) + yT (u− v)
≤ yT (u− v) − V (x, v),

where the last inequality is due to (6.1). By Young’s inequality,6 we have

yT (x− v) ≤ ‖y‖2
∗

2α
+
α

2
‖x− v‖2,

while V (x, v) ≥ α
2 ‖x− v‖2, due to the strong convexity of V (x, ·). We get

V (v, u) − V (x, u) ≤ yT (u− v) − V (x, v) = yT (u− x) + yT (x − v) − V (x, v)

≤ yT (u− x) +
‖y‖2

∗
2α

,

as required in (2.33).
Entropy as a distance-generating function on the standard simplex. The only

property which is not immediately evident is that the entropy w(x) =
∑n
i=1 xi lnxi

is strongly convex, modulus 1 with respect to ‖ · ‖1-norm, on the standard simplex
X =

{

x ∈ R
n : x ≥ 0,

∑n
i=1 xi

}

. We are in the situation where Xo = {x ∈ X :
x > 0} and in order to establish the property in question, it suffices to verify that
hT∇2ω(x)h ≥ ‖h‖2

1 for every x ∈ Xo. Here is the computation:
[

∑

i

|hi|
]2

=

[

∑

i

(x−1/2
i |hi|)x1/2

i

]2

≤
[

∑

i

h2
ix

−1
i

][

∑

i

xi

]

=
∑

i

h2
ix

−1
i = hT∇2ω(x)h,

where the inequality follows by Cauchy inequality.
Proof of Lemma 3.1. By (2.33), we have, for any u ∈ Z, that

γt(zt − u)TG(zt, ξt) ≤ V (zt, u) − V (zt+1, u) +
γ2
t

2
‖G(zt, ξt)‖2

∗(6.2)

(recall that we are in the situation of α = 1). This relation implies that for every
u ∈ Z, one has

γt(zt − u)T g(zt) ≤ V (zt, u) − V (zt+1, u) +
γ2
t

2
‖G(zt, ξt)‖2

∗ − γt(zt − u)TΔt,(6.3)

where Δt = G(zt, ξt) − g(zt). Summing up these inequalities over t = 1, . . . , j, we get

j
∑

t=1

γt(zt − u)T g(zt) ≤ V (z1, u) − V (zt+1, u) +
j
∑

t=1

γ2
t

2
‖G(zt, ξt)‖2

∗ −
j
∑

t=1

γt(zt − u)TΔt.

Now we need the following simple lemma.

6For any u, v ∈ Rn, we have, by the definition of the dual norm, that ‖u‖∗‖v‖ ≥ uT v, and hence
(‖u‖2

∗/α + α‖v‖2)/2 ≥ ‖u‖∗‖v‖ ≥ uT v.
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Lemma 6.1. Let ζ1, . . . , ζj be a sequence of elements of R
n+m. Define the se-

quence vt, t = 1, 2, . . . in Zo as follows: v1 ∈ Zo and

vt+1 = Pvt(ζt), 1 ≤ t ≤ j.

Then, for any u ∈ Z, the following holds:

(6.4)
j
∑

t=1

ζTt (vt − u) ≤ V (v1, u) + 1
2

j
∑

t=1

‖ζt‖2
∗.

Proof. Using the bound (2.33) of Lemma 2.1 with y = ζt and x = vt (so that
vt+1 = Pvt(ζt)) and recalling that we are in the situation of α = 1, we obtain the
following for any u ∈ Z:

V (vt+1, u) ≤ V (vt, u) + ζTt (u− vt) + 1
2
‖ζt‖2

∗.

Summing up from t = 1 to t = j, we conclude that

V (vj+1, u) ≤ V (v1, u) +
j
∑

t=1

ζTt (u− vt) + 1
2

j
∑

t=1

‖ζt‖2
∗,

which implies (6.4) due to V (v, u) ≥ 0 for any v ∈ Zo, u ∈ Z.
Applying Lemma 6.1 with v1 = z1, ζt = −γtΔt, we get

(6.5)
j
∑

t=1

γtΔT
t (u− vt) ≤ V (z1, u) +

1
2

j
∑

t=1

γ2
t ‖Δt‖2

∗ ∀u ∈ Z.

Observe that

E‖Δt‖2
∗ ≤ 4E‖G(zt, ξt)‖2

∗ ≤ 4

(

2D2
ωx,X

αx
M2

∗,x +
2D2

ωy,Y

αy
M2

∗,y

)

= 4M2
∗

so that when taking the expectation of both sides of (6.5), we get

(6.6) E

[

sup
u∈Z

{

j
∑

t=1

γtΔT
t (u− vt)

}]

≤ 1 + 2M2
∗

j
∑

t=1

γ2
t

(recall that V (z1, ·) is bounded by 1 on Z). Now we proceed exactly as in section 2.2:
we sum up (6.3) from t = 1 to j to obtain

(6.7)

j
∑

t=1

γt(zt − u)T g(zt) ≤ V (z1, u) +
j
∑

t=1

γ2
t

2
‖G(zt, ξt)‖2

∗ −
j
∑

t=1

γt(zt − u)TΔt

= V (z1, u) +
j
∑

t=1

γ2
t

2
‖G(zt, ξt)‖2

∗ −
j
∑

t=1

γt(zt − vt)TΔt +
j
∑

t=1

γt(u − vt)TΔt.

When taking into account that zt and vt are deterministic functions of ξ[t−1] =
(ξ1, . . . , ξt−1) and that the conditional expectation of Δt, ξ[t−1] being given, van-
ishes, we conclude that E[(zt− vt)TΔt] = 0. We take now suprema in u ∈ Z and then
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expectations on both sides of (6.7):

E

[

sup
u∈Z

j
∑

t=1

γt(zt − u)T g(zt)

]

≤ sup
u∈Z

V (z1, u) +
j
∑

t=1

γ2
t

2
E‖G(zt, ξt)‖2

∗

+ sup
u∈Z

j
∑

t=1

γt(u − vt)TΔt

(by (6.6)) ≤ 1 +
M2

∗
2

j
∑

t=1

γ2
t +

[

1 + 2M2
∗

j
∑

t=1

γ2
t

]

= 2 +
5
2
M2

∗

j
∑

t=1

γ2
t ,

and we arrive at (3.10).
Proof of Propositions 2.2 and 3.2. We provide here the proof of Proposition 3.2

only. The proof of Proposition 2.2 follows the same lines and can be easily recon-
structed using the bound (2.39) instead of the relations (6.5) and (6.7) in the proof
below.

First of all, with M∗ given by (3.6), one has

∀(z ∈ Z) : E
[

exp{‖G(z, ξ)‖2
∗/M

2
∗}
]

≤ exp{1}.(6.8)

Indeed, setting px =
2D2

ωx,XM
2
∗,x

αxM2
∗

, py =
2D2

ωy,Y M
2
∗,y

αyM2
∗

, we have px + py = 1, whence,
invoking (3.4),

E
[

exp{‖G(z, ξ)‖2
∗/M

2
∗}
]

= E
[

exp{px‖Gx(z, ξ)‖2
∗,x/M

2
∗,x + py‖Gy(z, ξ)‖2

∗,y/M
2
∗,y}
]

,

and (6.8) follows from (3.16) by the Hölder inequality.
Setting ΓN =

∑N
t=1 γt and using the notation from the proof of Lemma 3.1,

relations (3.9), (6.5), and (6.7) combined with the fact that V (z1, u) ≤ 1 for u ∈ Z,
imply that

(6.9)
ΓN εφ(z̃N ) ≤ 2 + 1

2

N
∑

t=1

γ2
t

[

‖G(zt, ξt)‖2
∗ + ‖Δt‖2

∗
]

︸ ︷︷ ︸

αN

+
N
∑

t=1

γt(vt − zt)TΔt

︸ ︷︷ ︸

βN

.

Now, from (6.8), it follows straightforwardly that

(6.10) E
[

exp
{

‖Δt‖2
∗/(2M∗)2

}]

≤ exp{1}, E
[

exp
{

‖G(zt, ξt)‖2
∗/M

2
∗
}]

≤ exp{1},

which, in turn, implies that

(6.11) E[exp{αN/σα}] ≤ exp{1}, σα =
5
2
M2

∗

N
∑

t=1

γ2
t ,

and therefore, by Markov inequality, for any Ω > 0,

(6.12) Prob{αN ≥ (1 + Ω)σα} ≤ exp{−Ω}.

Indeed, we have by (6.8)

‖g(zt)‖∗ = ‖E[G(zt, ξt)|ξ[t−1]]‖∗ ≤
√

E(‖G(zt, ξt)‖2
∗|ξ[t−1]) ≤M∗
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and

‖Δt‖2
∗ = ‖G(zt, ξt) − g(zt)‖2

∗ ≤ (‖G(zt, ξt)‖∗ + ‖g(zt)‖∗)2 ≤ 2‖G(zt, ξt)‖2
∗ + 2M2

∗ ,

which implies that

αN ≤
N
∑

t=1

γ2
t

2
[

3‖G(zt, ξt)‖2
∗ + 2M2

∗
]

.

Further, by the Hölder inequality, we have the following from (6.8):

E

[

exp

{

γ2
t

[

3
2‖G(zt, ξt)‖2

∗ +M2
∗
]

5
2γ

2
tM

2
∗

}]

≤ exp(1).

Observe that if r1, . . . , ri are nonnegative random variables such that E[exp{rt/σt}] ≤
exp{1} for some deterministic σt > 0, then, by convexity of the exponent, w(s) =
exp{s} and

(6.13) E

[

exp

{

∑

t≤i rt
∑

t≤i σt

}]

≤ E

⎡

⎣

∑

t≤i

σt
∑

τ≤i στ
exp{rt/σt}

⎤

⎦ ≤ exp{1}.

Now applying (6.13) with rt = γ2
t

[

3
2‖G(zt, ξt)‖2

∗ +M2
∗
]

and σt = 5
2γ

2
tM

2
∗ , we obtain

(6.11).
Now let ζt = γt(vt − zt)TΔt. Observing that vt, zt are deterministic functions

of ξ[t−1], while E[Δt|ξ[t−1]] = 0, we see that the sequence {ζt}Nt=1 of random real
variables forms a martingale difference. Besides this, by strong convexity of ω with
modulus 1 w.r.t. ‖ · ‖ and due to Dω,Z ≤ 1, we have

u ∈ Z ⇒ 1 ≥ V (z1, u) ≥ 1
2
‖u− z1‖2,

whence the ‖ · ‖-diameter of Z does not exceed 2
√

2 so that |ζt| ≤ 2
√

2γt‖Δt‖∗, and
therefore

E
[

exp
{

|ζt|2/
(

32γ2
tM

2
∗
)} ∣

∣ξ[t−1]

]

≤ exp{1}

by (6.10). Applying Cramer’s deviation bound, we obtain, for any Ω > 0,

(6.14) Prob

⎧

⎨

⎩

βN > 4ΩM∗

√

√

√

√

N
∑

t=1

γ2
t

⎫

⎬

⎭

≤ exp{−Ω2/4}.

Indeed, for 0 ≤ γ, setting σt = 4
√

2γtM∗ and taking into account that ζt is a deter-
ministic function of ξ[t], with E[ζt|ξ[t−1]] = 0 and E[exp{ζ2

t /σ
2
t }|ξ[t−1]] ≤ exp{1}, we

have

0 < γσt ≤ 1 ⇒
(

as ex ≤ x+ ex
2
)

E[exp{γζt}|ξ[t−1]] ≤ E[exp
{

γ2ζ2
t

}

|ξ[t−1]]

≤ E

[

(

exp
{

ζ2
t /σ

2
t

})γ2σ2
t |ξ[t−1]

]

≤ exp
{

γ2σ2
t

}

;

γσt > 1 ⇒
E[exp{γζt}|ξ[t−1]] ≤ E

[

exp
{

[ 1
2
γ2σ2

t + 1
2
ζ2
t /σ

2
t

}

|ξ[t−1]

]

≤ exp
{

1
2
γ2σ2

t + 1
2

}

≤ exp
{

γ2σ2
t

}

,
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that is, in both cases, E[exp{γζt}|ξ[t−1]] ≤ exp{γ2σ2
t }. Therefore,

E[exp{γβi}] = E
[

exp{γβi−1}E[exp{γζi}|ξ[i−1]]
]

≤ exp
{

γ2σ2
i

}

E[exp{γβi−1}],

whence E[exp{γβN}] ≤ exp{γ2
∑N
t=1 σ

2
t }, and thus, by Markov inequality for every

Ω > 0, it holds

Prob

⎧

⎨

⎩

βN > Ω

√

√

√

√

N
∑

t=1

σ2
t

⎫

⎬

⎭

≤ exp

{

γ2
N
∑

t=1

σ2
t

}

exp

⎧

⎨

⎩

−γΩ

√

√

√

√

N
∑

t=1

σ2
t

⎫

⎬

⎭

.

When choosing γ = 1
2
Ω
(

∑N
t=1 σ

2
t

)−1/2

, we arrive at (6.14).
Combining (6.9), (6.10), and (6.14), we get the following for any positive Ω and

Θ:

Prob

⎧

⎨

⎩

ΓN εφ(z̃t) > 2 +
5
2

(1 + Ω)M2
∗

N
∑

t=1

γ2
t + 4

√
2ΘM∗

√

√

√

√

N
∑

t=1

γ2
t

⎫

⎬

⎭

≤ exp{−Ω} + exp
{

−1
4

Θ2

}

.

When setting Θ = 2
√

Ω and substituting (3.12), we obtain (3.17).
Proof of Proposition 3.3. As in the proof of Proposition 3.2, when setting ΓN =

∑N
t=1 γt and using the relations (3.9), (6.5), and (6.7), combined with the fact that

‖G(z, ξy)‖∗ ≤M∗, we obtain

ΓN εφ(z̃N ) ≤ 2 +
N
∑

t=1

γ2
t

2
[

‖G(zt, ξt)‖2
∗ + ‖Δt‖2

∗
]

+
N
∑

t=1

γt(vt − zt)TΔt

≤ 2 +
5
2
M2

∗

N
∑

t=1

γ2
t +

N
∑

t=1

γt(vt − zt)TΔt

︸ ︷︷ ︸

αN

.(6.15)

Recall that by definition of Δt, ‖Δt‖∗ = ‖G(zt, ξt)−g(zt)‖∗ ≤ ‖G(zt, ξt)‖+‖g(zt)‖∗ ≤
2M∗.

Note that ζt = γt(vt−zt)TΔt is a bounded martingale difference, i.e., E(ζt|ξ[t−1]) =
0 and |ζt| ≤ 4γtM (here M is defined in (3.31)). Then, by Azuma–Hoeffding’s in-
equality [1] for any Ω ≥ 0,

(6.16) Prob

⎛

⎝αN > 4ΩM

√

√

√

√

N
∑

t=1

γ2
t

⎞

⎠ ≤ e−Ω2/2.

Indeed, let us denote vt = (v(x)
t , v

(y)
t ) and Δt = (Δ(x)

t ,Δ(y)
t ). When taking into

account that ‖v(x)
t ‖1 ≤ 1, ‖v(y)

t ‖1 ≤ 1 and ‖xt‖1 ≤ 1, ‖yt‖1 ≤ 1, we conclude that

|(vt − zt)TΔt| ≤
∣

∣

∣

∣

(

v
(x)
t − xt

)T

Δ(x)
t

∣

∣

∣

∣

+
∣

∣

∣

∣

(

v
(y)
t − yt

)T

Δ(y)
t

∣

∣

∣

∣

≤ 2
∥

∥

∥Δ(x)
t

∥

∥

∥

∞
+ 2
∥

∥

∥Δ(y)
t

∥

∥

∥

∞
≤ 4 max

1≤j≤m
‖Aj + b‖∞ + 4 max

1≤j≤n
‖Aj + c‖∞

= 4M.
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We conclude from (6.15) and (6.16) that

Prob

⎛

⎝ΓN εφ(z̃N ) > 2 +
5
2
M2

∗

N
∑

t=1

γ2
t + 4ΩM

√

√

√

√

N
∑

t=1

γ2
t

⎞

⎠ ≤ e−Ω2/2,

and the bound (3.30) of the proposition can be easily obtained by substituting the
constant stepsizes γt as defined in (3.12).
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[22] A. Ruszczyński and W. Syski, A method of aggregate stochastic subgradients with on-line
stepsize rules for convex stochastic programming problems, Math. Prog. Stud., 28 (1986),
pp. 113–131.



ROBUST STOCHASTIC APPROXIMATION 1609

[23] J. Sacks, Asymptotic distribution of stochastic approximation, Ann. Math. Stat., 29 (1958),
pp. 373–409.

[24] S. Sen, R.D. Doverspike, and S. Cosares, Network planning with random demand,
Telecomm. Syst., 3 (1994), pp. 11–30.

[25] A. Shapiro, Monte Carlo sampling methods, in Stochastic Programming, Handbook in OR &
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SHAPE OPTIMIZATION UNDER UNCERTAINTY—A STOCHASTIC
PROGRAMMING PERSPECTIVE∗
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Abstract. We present an algorithm for shape optimization under stochastic loading and rep-
resentative numerical results. Our strategy builds upon a combination of techniques from two-stage
stochastic programming and level-set-based shape optimization. In particular, usage of linear elastic-
ity and quadratic objective functions permits us to obtain a computational cost which scales linearly
in the number of linearly independent applied forces, which often is much smaller than the number
of different realizations of the stochastic forces. Numerical computations are performed using a level
set method with composite finite elements both in two and in three spatial dimensions.

Key words. two-stage stochastic programming, shape optimization in elasticity, level set
method
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DOI. 10.1137/070702059

1. Introduction. Uncertainty is a prevailing issue in many, if not most, practical
shape optimization problems. In the optimization of elastic structures, one usually
deals with volume and in particular surface loadings which are not fixed but vary
stochastically over time. Decisions on the shape have to be made before the stochastic
forcing is applied. Thus, an optimal structure for the expectation of the stochastic
loading does not properly reflect the actual stochastic optimization set up. Indeed,
one observes a striking similarity with two-stage stochastic programming. Our work
received inspiration from this field, and this paper is intended to work out this analogy
in the case of shape optimization for linear elastic material laws and stochastic volume
and surface loadings.

Optimization under uncertainty depends on information available on the uncer-
tain problem components. At the one end, there are worst-case approaches, as in
online or robust optimization [3,14]. These approaches assume that only the ranges of
the uncertain parameters are known, without distributional information. At the other
end, stochastic optimization deals with models where uncertainty can be captured by
a probability distribution. Stochastic optimization has been analyzed in continuous
time, as, for example, in stochastic dynamic programming or stochastic control [18,27].
In particular, there exists a rich theory and methodology to treat stochastic uncer-
tainty in (mostly finite-dimensional) mathematical programming models, mainly lin-
ear [49], less often linear mixed-integer or nonlinear programming models [12, 46, 55].
In two-stage stochastic programming [16, 33, 47], first-stage decisions must be taken
without knowing the realizations of the random data, and then, after observation of
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the random data, a second-stage (or recourse) decision is taken. The requirement
that the first-stage decision must not depend on the future observation is referred to
as nonanticipativity. This notion extends accordingly if the two-stage scheme of al-
ternating decision and observation is expanded into a (finite) multistage scheme. For
a recent comprehensive overview we refer to [58]. Related work on nonlinear models
can be found in optimal design of structural systems under uncertainty; see [40] and
references therein. The essential difference from the present work is that design deci-
sions in these contributions vary in Euclidean spaces, while our design decisions are
shapes (open sets) in suitable working domains.

Shape optimization under deterministic loading is a well-developed field, which
can be seen as an instance of PDE-constrained infinite-dimensional optimization; see,
e.g., the books [4, 15, 54]; a brief review of the points relevant for us is presented
below. We are not aware of two- or multistage stochastic programming approaches
in shape optimization, or more generally in PDE-constrained optimization. There
are, however, recent approaches in shape optimization which generalize the single
load assumption. In so-called multiload approaches a fixed (usually small) number
of different loading configurations is considered, and optimization refers to this set
of configurations; see, e.g., [7, 29, 59] and references therein, as well as [11] for an
one-dimensional (1D) model. In these approaches each evaluation of the objective
functional requires a separate computation for each of the possible stochastic forces,
which renders them infeasible if the set of possible forces is large, as, for example,
is the case when one aims at approximating a continuous distribution of forces. A
more efficient method was derived for a truss model in [10], where it is shown that
optimization of the expected compliance is equivalent to a convex problem and hence
efficiently solvable. This, however, is based on additional geometrical assumptions,
namely, on considering a fixed ground structure, and leaving only the thickness of
the bars to be optimized. A robust probabilistic approach for the optimization of
beam models is discussed in [1], whereas in [41] structural reliability is discussed for
beam geometries with uncertain load magnitude. Worst-case situations in a multiload
context have also been considered; see, e.g., [13].

The paper is organized as follows. In section 1.1 we formulate the stochastic
shape optimization problem considered in this paper. Then in section 1.2 we review
deterministic shape optimization based on a level formulation. Then in section 1.3
we recall finite-dimensional, two-stage stochastic optimization to underline the close
similarity of the approach to shape optimization to be discussed here. In section 2 the
two-stage shape optimization with stochastic volume and surface loads is introduced
the primal and dual stochastic state equations are investigated in section 2.1, and a
representation of the stochastic shape gradient is given in section 2.2. A finite element
discretization for elastic domains described via level sets is discussed in section 3. In
section 3.1 we introduce composite finite elements and suitable multigrid methods to
apply them for the efficient solution of the discrete primal and dual problem in section
3.2, whereas in section 3.3 the actual numerical algorithm based on a regularized
gradient descent is presented. Finally, in section 4 we discuss various applications in
two and three space dimensions and show corresponding numerical results.

1.1. Setup of the shape optimization problem. In shape optimization one
seeks the shape O of a body which optimizes certain response properties. We shall
focus here on optimality criteria which depend on the linear elastic response to applied
forces. Therefore we start by describing the elastic problem. Given an admissible
shape O ⊂ R

d (d = 2, 3) representing the elastic body, the displacement u : O → R
d
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is determined as the solution of the following system of linear partial differential
equations:

−div (Ae(u)) = f(ω) in O ,

u = 0 on ΓD ,(1.1)
(Ae(u))n = g(ω) on ΓN ,

(Ae(u))n = 0 on ∂O \ ΓN \ ΓD .

Here, e(u) = 1
2 (∇u + ∇u�) is the linearized strain tensor and A = (Aijkl)ijkl the

elasticity tensor. We shall for simplicity focus on isotropic materials, where Aijkl =
2μδikδjl+λδijδkl, where δij denotes the Kronecker symbol and μ, λ the positive Lamé
constants of the material. We consider only admissible shapes O which are subsets
of a fixed, bounded working domain D ⊂ R

d. On ΓD ⊂ ∂O we assume homogeneous
Dirichlet boundary conditions u = 0, and on ΓN ⊂ ∂O we assume inhomogeneous
Neumann boundary conditions, with ΓD ∩ ΓN = ∅. Both parts of the boundary are
kept fixed during the optimization. Precisely, we shall fix a certain open set O∗ ⊂ D,
restrict the class of admissible shapes to O such that O∗ ⊂ O ⊂ D, and assume that
ΓD,ΓN ⊂ ∂O∗ ∩ ∂D. Then necessarily ΓD,ΓN ⊂ ∂O. Finally, f(ω) ∈ L2(D; R

d) and
g(ω) ∈ L2(ΓN ; R

d) are random volume forces and surface loads, respectively, and ω is
a realization on a probability space Ω. Standard results show that for any connected
open set O with Lipschitz boundary and any fixed realization ω, the elasticity problem
(1.1) has a unique weak solution u = u(O, ω) ∈ H1(O; R

d) [19, 39].
The unique solution to (1.1) can be equivalently characterized as the unique min-

imizer of a corresponding quadratic variational problem. In fact, u(O, ω) minimizes

E(O, u, ω) :=
1
2
A(O, u, u) − l(O, u, ω) with(1.2)

A(O, ψ, ϑ) :=
∫
O
Aijkleij(ψ)ekl(ϑ) dx ,(1.3)

l(O, ϑ, ω) :=
∫
O
fi(ω)ϑi dx+

∫
∂O

gi(ω)ϑi dHd−1(1.4)

among all u in H1
ΓD

(O; R
d) := {u ∈ H1(O; R

d) |u = 0 on ΓD in the sense of traces};
see [19,26,39] for details. Here and below, we implicitly sum over repeated Cartesian
indices.

As an objective functional J we consider

J(O, ω) = J(O, u(O, ω)) :=
∫
O
j(u(O, ω)) dx+ γ

∫
∂O

dHd−1,(1.5)

where γ is a nonnegative control parameter. The second term measuring surface area
serves as a regularization. We assume that j(·) is linear or quadratic and does not
depend explicitly on the realization ω.

A shape optimization problem under uncertainty is then formulated as

(1.6) minimize {Eω (J(O, ω)) : O ∈ Uad},

where Uad is the set of admissible shapes, e.g., Uad := {O ⊂ D : O open and of finite
perimeter O∗ ⊂ O, Per(O) < ∞}, where Per(O) = dHd−1(∂O) and for notational
simplicity we write ∂) for the reduced boundary. Here and below, Eω (. . . ) represents
the expected value with respect to the probability distribution of the random variables
f(ω), g(ω).
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We emphasize that we solve the elasticity problem only in the physical domain O.
This differs from common practice in shape optimization, which is based on solving
the elasticity problem on D with very small (but still positive) values of the elasticity
constants λ and μ on D \ O. For existence results in this context we refer to [9] and
references therein. Our approach is closer to physical reality but brings some technical
difficulties. The surface area term in the definition of the cost functional (1.5) ensures
rectifiability of the domain boundary for configurations with finite energy but is not
expected to guarantee existence of an optimal design. From a theoretical viewpoint,
we are unaware of any result for the existence of solutions for the presently consid-
ered shape optimization problem. From a numerical viewpoint, this requires robust
techniques to solve elasticity problems on badly shaped domains, which are discussed
below. Furthermore, numerically different regularization strategies can be considered.

In the optimization problem (1.6) there is a natural information constraint stating
that first, and independently of the realizations of f(ω), g(ω), the shape O has to be
selected. Then, after observation of f(ω), g(ω), (1.1) determines the displacement field
u = u(O, ω), leading to the objective value J(O, ω). This manifests the interpretation
of (1.6) as a two-stage random optimization problem: In the outer optimization, or
first stage, the nonanticipative decision on O has to be taken. After observation of
f(ω), g(ω) the second-stage optimization problem is the mentioned variational prob-
lem, given O and ω. This second-stage optimization process is neither associated
with further stochastic parameters nor with the optimization of additional material
properties. In fact, it consists of the determination of the elastic displacement, which
in turn is required for the computation of the elastic energy and the cost functional.
Even though there is no additional decision making involved, the variational structure
of the elasticity problem we are solving gives an obvious analogy to the second-stage
problem in stochastic programming.

1.2. Deterministic level-set-based shape optimization. For the readers’
convenience and to introduce notation we here briefly sketch the general procedure in
deterministic shape optimization, where the volume and surface forces do not depend
on a stochastic realization ω. Furthermore, we give an outline of our level set approach.

To get started, we consider variations Ov = (Id + v)(O) of a smooth elastic
domain O for a smooth vector field v defined on the working domain D. The shape
derivative [22] of the objective functional J in the direction v takes the form

J′(O)(v) = J,O(O, u(O))(v) + J,u(O, u(O))(u′(O)(v))(1.7)

=
∫
∂O

(v · n) (j(u(O)) + γ h) dHd−1 +
∫
O
j,u(u(O)) (u′(O)(v)) dx .

Here, h denotes the mean curvature on ∂O, defined as the sum of the principal
curvatures, and u′(O)(v) denotes the shape derivative of the elastic displacement
defined by u′(O)(v) = limt→0[u((Id + tv)O) − u(O)]/t.

In order to avoid the need of a separate evaluation of u′(O)(v) for any infinitesimal
domain displacement v, we seek a simpler expression for the J,u term. This is obtained
by determining the variation of u with v implicitly, through its definition. Precisely,
u(O) was defined as the weak solution of (1.1), i.e.,

A(O, u(O), ϑ) = l(O, ϑ)(1.8)

for all ϑ ∈ H1
ΓD

(O; R
d). Differentiating this with respect to the variation v of the

domain O (which in this entire discussion is assumed to be sufficiently smooth), we
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get

A(O, u′(O)(v), ϑ) = l,O(O, ϑ)(v) −A,O(O, u(O), ϑ)(v) with(1.9)

A,O(O, ψ, ϑ)(v) =
∫
∂O

(v · n)Aijkleij(ψ)ekl(ϑ) dHd−1 ,(1.10)

l,O(O, ϑ)(v) =
∫
∂O

(v · n) (fi + gi h+ ∂ngi)ϑi dHd−1.(1.11)

We observe that J,u(O, u(O))(·) is a linear bounded functional on L2(D; R
d). There-

fore we can consider the dual problem and define p(O) ∈ H1
ΓD

(D; R
d) to be the

solution of

A(O, ϑ, p(O)) = −J,u(O, u(O))(ϑ)(1.12)

for all ϑ in H1
ΓD

(O; R
d). For the purpose of later reference let us also give a variational

interpretation of this dual approach. Equation (1.12) corresponds to the fact that
p(O) ∈ H1

ΓD
(O; R

d) minimizes the quadratic functional

F (q) =
1
2
A(O, q, q) + J,u(O, u(O))(q)(1.13)

among all q ∈ H1
ΓD

(O; R
d). In the strong formulation, we thus ask for a solution p

of the system of partial differential equations −div (Ae(p(O))) = −j,u(u(O)), with
p(O) = 0 on ΓD and Ae(p(O)) · n = 0 on ∂O \ ΓD. Choosing ϑ = u′(O)(v) in (1.12)
and recalling (1.19), one finally rewrites the shape derivative (1.7) of the objective
functional as follows:

J′(O)(v) = J,O(O, u(O))(v) −A(O, u′(O)(v), p(O))
= J,O(O, u(O))(v) − l,O(O, p(O))(v) +A,O(O, u(O), p(O))(v)

=
∫
∂O

(v · n)
[
j(u(O)) + γ h− (fi + gi h+ ∂ngi) pi(O)

+Aijkleij(u(O))ekl(p(O))
]

dHd−1 .(1.14)

In order to permit the topology of the domain O to change, we consider an implicit
description of shapes in terms of a level set function φ : D → R. In particular, the
elastic body is represented by O = {φ < 0} := {x ∈ D |φ(x) < 0}, and its boundary
∂O corresponds to the zero level set of φ, i.e., D ∩ ∂O = {φ = 0}. Shape optimiza-
tion and shape analysis for elastic solids via level set methods has been investigated
by various authors [9, 23, 36, 52]. In particular, Allaire and coworkers [4–6, 9] have
extensively studied a level set modeling of shapes in 2D and 3D structural optimiza-
tion and compared and combined this approach with homogenization methods. In [8]
they recently investigated topological optimization in the context of minimizing the
expected elastic stress.

Interface propagation based on level sets was first introduced by Osher and
Sethian [43] and since then attracted very much attention due to their enormous
flexibility. For a general overview we refer to [42,51]. If a domain boundary ∂O prop-
agates with speed v, the evolution of the corresponding level set function φ is given by
the level set equation ∂tφ+ |∇φ| v ·n = 0, where n = ∇φ

|∇φ| is the field of outer normals
on the level sets. In fact, the level set equation identifies variations s = ∂φ of the
level set function with variations v · n of the level sets in the direction of the normal
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n. Even though hypersurfaces are described in the level set context by functions on
the whole domain, suitable implementations lead to efficient numerical algorithms as
well [2, 34, 57]. Fairly general shapes can be effectively described and modeled with
level sets [38]. Shape sensitive analysis as introduced by Sokolowski and Zolésio [54]
can be phrased elegantly in terms of level sets. Let us rewrite the objective functional
J(O) in terms of a level set function φ and define

J (φ) := J({φ < 0}).(1.15)

Due to the above identification we obtain for the shape derivative of J (φ) with respect
to a variation s of φ (again, working for the moment on smooth domains and away
from degeneracies and topological changes)

J ′(φ)(s) = J′({φ < 0})
(
−s |∇φ|−1n

)
.(1.16)

For the relaxation of the shape functional we now consider a gradient descent

∂tφ(t) = −gradGJ (φ)

with respect to a metric G on the space of variations of the level set function φ (cf. [45]).
This metric ensures smoothness of the descent path and is expected to approximate a
regular minimizer from the set of all minimizers. For an overview on optimal design
based on level sets and suitable energy descent methods we refer to a recent survey by
Burger and Osher [17]. From (1.14) we learn that the support of J′(O)(·) is contained
in ∂O \ ΓD. Thus, we take into account a regularized gradient descent based on the
metric

G(ζ, ξ) =
∫
D

ζξ +
ρ2

2
∇ζ · ∇ξ dx ,(1.17)

which is related to a Gaussian filter with width ρ. For the time discretization, we
consider Armijo rule as a step size control, and starting with an initial level set function
φ0 we iteratively compute a sequence of level set functions (φk)k=1,... given by

G(φk+1 − φk, ξ) = −τJ ′(φk)(ξ)(1.18)

for all test functions ξ and a sequence of time steps (τk)k=1,.... In each time step a
linear elliptic problem of the type (Id− ρ2

2 Δ)φ = r has to be solved. Alternatively, one
might consider a relaxation of shapes described via an evolution of signed distance
functions [21,28]. For the spatial discretization we consider piecewise affine continuous
finite element functions on the working domain D. Shape relaxations tend to create
fine scale structures and complicated domains O. To evaluate the objective functional
itself and the shape derivative, the elastic displacement u on O has to be computed
solving the Euler Lagrange equations (1.1) of the inner, elastic minimization subprob-
lem. Here, we apply multilevel composite finite elements introduced by Hackbusch
and Sauter [31, 50]. They incorporate the characteristic behavior of the solution on
fine scales into the coarse scale shape functions without, necessarily, adding degrees
of freedom.

1.3. Two-stage stochastic programming revisited. Before we apply two-
stage stochastic programming to our shape optimization problem, let us recall the
basic concepts from finite-dimensional stochastic optimization. Consider the random
linear program

(1.19) min
{
c�x+ q�y : Tx+Wy = z(ω), x ∈ X, y ∈ Y

}
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for finite-dimensional polyhedra X and Y in Euclidean space together with the infor-
mation constraint

decide x 	→ observe ω 	→ decide y = y(x, ω).

We assume that the minimum exists; possibly making the spaces larger, we can also
without loss of generality replace the condition y ∈ Y by y ≥ 0 (that is, yi ≥ 0 for all
i). We also remark that given x and z(ω) there are multiple solutions y from which
we have to select one.

Let us emphasize the two-stage characteristic of this optimization problem. In-
deed, rewriting (1.19) yields

min
x

{
c�x+ min

y
{q�y : Wy = z(ω) − Tx, y ∈ Y } : x ∈ X

}
= min

{
c�x+ Φ(z(ω) − Tx) : x ∈ X

}
,(1.20)

where Φ(v) := min{q�y : Wy = v, y ∈ Y } is the value function of a linear program
with parameters on the right-hand side. The cost functional we aim to minimize is
j(x, ω) := c�x+ Φ(z(ω) − Tx). The representation (1.20) gives rise to understanding
the search for a “best” nonanticipative decision x in the initial random optimization
problem as the search for a “minimal” member in the family of random variables
{j(x, ω) : x ∈ X}, where x is seen as an “index” varying in the set X . In a risk-
neutral setting, these random variables are ranked by their expectations, leading to
the (nonlinear) optimization problem

(1.21) min{QE(x) := Eω (j(x, ω)) : x ∈ X}.

The straightforward but crucial idea is to detect structural properties and algorithmic
possibilities in (1.21) by resorting to the dual of the linear program with value function
Φ(·). Indeed, one observes

Φ(v) = min
{
q�y : Wy = v, y ≥ 0

}
= max

{
v�y : W�y ≤ q

}
= max
l=1,...,L

d�l v ,
(1.22)

where {dl}l=1,...,L denotes the set of vertices of the dual polyhedron {y : W�y ≤ q},
which is assumed compact, and v = z(ω) − Tx. Recalling the cost functional j(x, ω),
we can rewrite (1.21) and obtain

(1.23) min

{
c�x+

S∑
σ=1

πσ max
l=1,...,L

d�l (zσ − Tx) : x ∈ X

}

in the case of a discrete probability distribution with realizations zσ and probabilities
πσ for σ = 1, . . . , S. Here, S is the total number of scenarios. Thus, minimizing QE

amounts to minimizing a piecewise linear convex function over a polyhedron. Let
us emphasize that in our concrete setup, the functional to be minimized in (1.23)
depends linearly on the random variable z, which can be exploited further in the
actual numerical minimization.

Algorithmically, two aspects are important: By its very definition, computing
QE(x) in (1.21) would amount to solving min{q�y : Wy = zσ − Tx, y ≥ 0} for
all scenarios zσ with σ = 1, . . . , S and this again at any new iteration point x. In
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(1.23) this is prevented by using dual information. Here, the situation is particularly
comfortable since cutting planes generated in adaptations of bundle methods, see,
e.g., [48,53], capture (at least approximately) information on the objective also locally
around iteration points. The second aspect is that (sub)gradient information on QE

is made available by the help of the dual, cf. (1.23).
The facts reviewed above form our guideline for treating shape optimization under

uncertainty: Departing from the outlined two-stage model with shape decisions in the
first stage and displacements in the second, we will formulate an (infinite-dimensional)
counterpart to the expectation problem (1.21). The variational formulation of the
elasticity system will provide an inner optimization problem in the spirit of (1.20).
As in (1.22) a duality argument will provide information for the shape derivative. In
what follows, the domain O replaces the variable x, the elastic deformation u(O, ω)
the optimal solution y being a minimizer of the above Φ(v), where v depends on x and
z(ω). Finally, as a counterpart to the cost functional j(x, ω) we consider the objective
functional J(O, ω). Moreover, as above, in each iteration of a descent method linearity
of the elasticity PDE will avoid the solution of as many related PDEs as there are
scenarios.

2. Two-stage stochastic programming formulation of shape optimiza-
tion. We now present our stochastic shape optimization scheme, which incorporates
the techniques from deterministic shape optimization discussed in section 1.2 and the
two-stage stochastic programming reviewed in section 1.3. In our setting, the second
stage optimization problem is the variational problem of linearized elasticity, where
for a fixed elastic domain O and random state ω one seeks a displacement u which
minimizes the energy E(O, u, ω) defined in (1.2). In turn, the objective functional
can be computed from the domain O and the displacement u and hence can be seen
as a function of O and the random state ω. We observe the following information
constraints:

decide O 	→ observe ω 	→ compute u = u(O, ω) .

In other words, one first selects a domain O (like in section 1.3 one decided for some x),
then random volume and boundary forces f(ω) and g(ω) are applied (the counterpart
of the right-hand side z(ω) in (1.19)), and only at this point the elastic displacement
u (the counterpart of the degree of freedom y in (1.19)) and hence the objective
functional can be computed. Thus, in analogy to (1.20) we can reformulate the
random shape optimization problem in a two-stage optimization manner as follows:

min
{
J(O, ω) : u(O, ω) = argminu∈H1

ΓD
(O;Rd)E(O, u, ω)

}
.

As mentioned above, O has the role of the first-stage and u(O, ω) of the second-stage
decisions. Finally, the stochastic program

(2.1) min {QE(O) := Eω (J(O, ω)) : O ∈ Uad}

arises as the “natural” counterpart to (1.21). Replacing the variational problem in
(2.1) by its Euler equation enables us to introduce the (dual or) adjoint system needed
to effectively compute gradients of the stochastic objective functional.

2.1. Stochastic primal and dual problem. We start from the analysis of the
second-stage problem. As illustrated in section 1.3, in order to determine the shape
derivative of the objective function it is convenient to solve both the primal and the
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dual elastic problem as a counterpart of (1.22) in two-stage stochastic programming.
Precisely, given O and ω we seek a primal solution u(O, ω) ∈ H1

ΓD
(D; R

d) and a dual
solution p(O, ω) ∈ H1

ΓD
(D; R

d) such that

A(O, u(O, ω), ϑ) = l(O, ϑ, ω) ,(2.2)
A(O, ϑ, p(O, ω)) = −J,u(O, u(O, ω))(ϑ)(2.3)

for all ϑ ∈ H1
ΓD

(D; R
d). The function u(O, ω) entering the dual problem is the solution

to the primal problem. Let us emphasize that as in (1.22) both the primal and the
dual state solve variational problems, in fact (1.2) and (1.13), respectively.

A key simplification in the solution of these equations arises from the general fact
that the solution of a linear problem depends linearly on the data. We phrase this
fact first in general terms and then discuss the implications in our setting. Let AO :
H1

ΓD
→ H−1

ΓD
(D; R

d) be the elliptic operator induced by the quadratic form A(O, ·, ·),
in fact AO(u)(ϑ) = A(O, u, ϑ). By the positivity of the elastic coefficients, for any
Lipschitz, connected domain O, and under the assumption that ΓD ⊂ ∂O has positive
(d−1)-dimensional measure, the operator AO is bounded and coercive on the Hilbert
space H1

ΓD
(D; R

d) and therefore invertible. This implies that for any l ∈ H−1
ΓD

(D; R
d)

one can find a unique solution u to AO(u, ϑ) = l(ϑ), namely, u = A−1
O l. Therefore

both (2.2) and (2.3) have a unique solution, which depends linearly on the right-hand
side.

We now consider the specific case of interest here, namely, the dependence of u
and p on ω. The crucial point is that the left-hand side of both equations, i.e., the
quadratic form A(O, ·, ·), does not depend on ω. The right-hand side depends on ω
only through f , g, and u, and this dependence is linear. Here, it is important that
the integrand j entering the objective function is linear or quadratic. We shall now
exploit this fact in order to obtain an efficient algorithm, which does not require us
to solve (2.2) and (2.3) for every ω but only for a representative subset (a “basis”).

We start from the primal problem (2.2). Since the right-hand side is linear in
the forces f and g, and A does not depend on ω, the solution u depends linearly
on the forces f and g. In order to make this more explicit, assume that f and g are
random combinations of finitely many forces f1, . . . , fK ∈ L2(D; R

d) and g1, . . . , gM ∈
H1(D; R

d), respectively, i.e.,

f(ω) =
K∑
k=1

αk(ω)fk, g(ω) =
M∑
m=1

βm(ω)gm.

Here, the αk(ω) and βm(ω) are stochastic coefficients. For later convenience we assume
that

∑K
k=1 αk(ω) =

∑M
m=1 βk(ω) = 1. (This can always be achieved by a rescaling of

the coefficients of fk’s and gm’s such that their corresponding sums are both smaller
than 1. Adding two virtual loads equal to zero, we easily can ensure the equality sign.)
We assume that ω follows a discrete distribution with scenarios ωσ and probabilities
πσ, with σ = 1, . . . , S (

∑S
σ=1 πσ = 1); continuous distributions can be recovered in

the limit S → ∞. For any pair (k,m) ∈ {1, . . . ,K} × {1, . . . ,M} let ukm(O) be the
solution to the elasticity system (1.1)km, which is (1.1) with right-hand sides fk, gm.
Then, for any σ = 1, . . . , S,

(2.4) ū(O, ωσ) :=
K∑
k=1

M∑
m=1

αk(ωσ)βm(ωσ)ukm(O)
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solves (1.1) for ω = ωσ. In the numerical implementation, we confine to K + M
displacements, where each of them corresponds either to a single volume force or
a single boundary force and vanishing components with respect to all other forces.
To simplify the presentation, we consider here an overdetermined system of KM
spanning displacements. This is a substantial algorithmic shortcut, in the case that
the discretization parameter of the probability measure S is larger than the sum of
the K +M effective base forces.

An analogous argument applies to the dual problem (2.3). We first determine, for
each pair (k,m) ∈ {1, . . . ,K}×{1, . . . ,M}, the solution pkm(O) of the basis problem

A
(
O, ϑ, pkm(O)

)
= −J,u

(
O, ukm(O)

)
(ϑ) for all ϑ ∈ H1

ΓD

(
D; R

d
)
.(2.5)

Since j depends linearly or quadratically on u, the dependence of j,u on u is linear
(possibly trivial). Therefore (2.4) and the above-introduced normalization implies

J,u(O, ū(O, ωσ))(ϑ) =
K∑
k=1

M∑
m=1

αk(ωσ)βm(ωσ)J,u(O, ukm(O))(ϑ),

and linearity of the inverse operator A−1
O gives

(2.6) p̄(O, ωσ) =
K∑
k=1

M∑
m=1

αk(ωσ)βm(ωσ)pkm(O) .

Obviously, p̄(O, ωσ) is the weak solution p̄ of −div (Ae(p̄)) = −j′(ū(O, ωσ)) on the
domain O with p̄ = 0 on ΓD and Ae(p̄) · n = 0 on ∂O \ ΓD.

2.2. Shape gradient in the stochastic optimization problem. Now, with
the primal solution ū(O, ωσ) for a particular realization ωσ at hand, the stochastic
program (2.1) can be rewritten as follows:

min

{
γ

∫
∂O

dHd−1 +
S∑
σ=1

πσ

∫
O
j(ū(O, ωσ)) dx :

ū(O, ωσ) :=
K∑
k=1

M∑
m=1

αk(ωσ)βm(ωσ)ukm(O), σ = 1, . . . , S

}
.(2.7)

Using the primal solution for the elastic deformation ū(O, ωσ) and the dual solution
p̄(O, ωσ) for any realization ωσ, we deduce the stochastic shape derivative (1.7) of the
objective functional J(O, ωσ) and achieve, from (1.14),

J′(O, ωσ)(v) = J,O(O, ū(O, ωσ))(v) − l,O(O, p̄(O, ωσ))(v)
+A,O(O, ū(O, ωσ), p̄(O, ωσ))(v)

=
∫
∂O

(v · n)
(
j(ū(O, ωσ)) + γ h− (fi(ωσ) + gi(ωσ)h+ ∂ngi) p̄i(O, ωσ)

+Aijkleij(ū(O, ωσ))ekl(p̄(O, ωσ))
)

dHd−1 .(2.8)

Finally, the shape derivative of our actual stochastic cost functional, namely, of the
expectation of the cost QE(O) in the case of S scenarios (ωσ)σ=1,...,S , is given by

Q′
E
(O)(v) = Eω (J′(O, ω)(v)) =

S∑
σ=1

πσJ
′(O;ωσ)(v) .(2.9)
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In the algorithm this shape derivative can be used as a descent direction. Thereby,
first the KM primal and dual base states are computed. These allow for the efficient
evaluation of the effective deformations ū(O, ωσ) and the effective dual states p̄(O, ωσ)
for a set of S scenarios ωσ with S usually much larger than KM .

3. Multiscale finite element implementation. In this section we detail the
concrete numerical algorithm and consider a finite element approach for the represen-
tation of the level set function φ on the working domain D, which implicitly describes
the discrete elastic domain O as the sublevel set of the discrete level set function.
The elastic state equations for ukm and the corresponding set of dual problems for
pkm are discretized as well with finite elements. Here, we pick up the composite finite
element approach originally proposed by [31] and investigated in the level set context
for complicated 3D geometries in [35]. Finally, we will discuss the time step control
used in our descent scheme.

3.1. Finite element spaces. Without any restriction we suppose our working
domain D to be a hexahedron (d = 3) or a rectangle (d = 2), respectively. In a first
step, a hierarchical grid is generated based on successive subdivision of hexahedrons
(resp., rectangles) into 8 (resp., 4) equally sized child hexahedrons (resp., rectangles).
Next, each cell of the resulting fine grid is split into 6 tetrahedra (2 triangles) such that
a regular simplicial grid Th of the domain D is obtained. We denote the simplicial
elements of this grid by T ∈ Th and the set of nodes by Nh = {Xi}i∈Ih

with a
corresponding index set Ih. Let us emphasize that we do not represent this simplicial
grid explicitly. Instead access to element data is implicitly encoded in look up tables.
Here, h indicates the grid size. Let Vh be the space of continuous, piecewise affine
functions on Th with the canonical basis {Φi}i∈Ih

, given by Θi(Xj) = δij . In what
follows, discrete variables will always be capitalized, whereas continuous ones will
be lowercase. Now, we consider a discrete level set function Φ(x) =

∑
i∈Ih

ΦiΘi(x).
As a consequence, the discrete domain Oh = {x ∈ D |Φ(x) < 0} is polygonal. This
algorithmic advantage justifies the use of a tetrahedral grid. A solution of the state
equation (2.2) and the dual problem (2.3) is defined on the elastic domain only. Here,
we explicitly work with a void phase D \ O, and, at variance with [6, 9], we do not
consider a softer elastic material outside of actual elastic body O to be optimized.
Thus, we have to define suitable finite element spaces on the discrete elastic domain
Oh implicitly described by a level set function Φ ∈ Vh. A straightforward mesh
generation based on a marching cube-type algorithm [37, 56] leads to badly shaped
tetrahedra with a significant impact on the condition number of the linear systems to
be solved. Explicit grid generation would require a regular remeshing of the boundary
∂Oh followed by the actual meshing algorithm in Oh ⊂ R

d [24, 44]. Both steps are
fairly complicated in the case of general elastic domains and result in nonhierarchical,
unstructured meshes which do not allow for a multilevel algorithm for the discrete
PDE problems. To avoid these drawbacks we construct a suitable composite finite
element space. In contrast to explicit meshing approaches, the geometry is encoded
in the design of the basis functions, which still correspond to grid nodes of the regular
underlying grid. In fact, given a basis function Θi ∈ Vh whose support intersects
the discrete elastic domain Oh, we define the corresponding composite finite element
basis function Θcfe

i (x) = χOh
(x)Θi(x), selecting the part of the old basis function

contained in the elastic domain [31]. Here, χOh
denotes the characteristic function

of the discrete domain Oh. Let us remark that there are also degrees of freedom at
nodes outside the actual domain as long as the support of the corresponding basis
function interests Oh. Collecting all of these basis functions we obtain the composite
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finite element space

Vcfe

h := {Θcfe

i (x) = χOh
(x)Θi(x) | supp Θi ∩ Oh �= ∅},

and the resulting nodal index set Icfe

h is a subset of the index set Ih. Hence, far
from the domain boundary the basis functions coincide with the standard basis func-
tions, whereas in the vicinity of the boundary, the standard basis is modified to
resolve the domain geometry. Finally, let us incorporate boundary data and define
Vcfe

h,ΓD
= (Vcfe

h )3 ∩H1
ΓD

(D; R
d) as the space of discrete vector valued functions which

vanish on the Dirichlet boundary ΓD. For the sake of simplicity, we assume here
ΓD to be resolved on the underlying regular grid. Thus, no special treatment of the
Dirichlet boundary condition in the construction of the composite finite elements [32]
is required. Indeed, to conserve the Dirichlet boundary condition we furthermore
freeze the level set function φ in a small neighborhood of the Dirichlet boundary ΓD
and the Neumann boundary ΓN on which the surface load is applied. Hence, in this
region the body still behaves elastic but does not undergo any optimization. As basis
functions for the vector valued problem we consider Θcfe

i ej with i ∈ Icfe

h and 1 ≤ j ≤ d.

3.2. Discrete primal and dual solutions. Given the composite finite element
space Vcfe

h,ΓD
we can solve the primal and the dual problem numerically. Explicitly,

the discrete primal solutions are defined as the finite element functions Ukm ∈ Vcfe

h,ΓD

solving

A
(
Oh, U

km,Θ
)

= lkm(Oh,Θ)(3.1)

for all Θ ∈ Vcfe

h,ΓD
, where lkm(Oh,Θ) :=

∫
Oh

fki Θi dx+
∫
∂Oh

gmi Θi dHd−1 for 1 ≤ k ≤
K and 1 ≤ m ≤ M . The corresponding set of dual solutions are those functions
P km ∈ Vcfe

h,ΓD
for which

A
(
Oh,Θ, P km

)
= −J,u

(
Oh, U

km
)

(Θ)(3.2)

for all Θ ∈ Vcfe

h,ΓD
. For the variation of the cost functional J with respect to the dis-

crete elastic displacement U we obtain J,u(Oh, U
km)(Θ) =

∫
Oh

j,u(Ukm)(Θ) dx. Due
to the assumption that j(·) is a linear or quadratic polynomial, the resulting inte-
grant is at most quadratic and can be integrated exactly using a Gauss quadrature
rule. In the case of the compliance cost functional J(O, u(O, ω)) = lkm(O, ukm, ω) +
γ
∫
∂O dHd−1, we derive as usual from (3.1) the representation J,u(Oh, U

km)(Θ) =
A(Oh, U

km,Θ) =
∫
Oh

Aijkleij(Ukm)ekl(Θ) dx. The numerical solution of (3.1) and
(3.2) both require numerical quadrature for the assembly of the stiffness
matrix (A(Oh,Θiej ,Θres))i,r∈Icfeh ,1≤j,s≤d and the right-hand side vectors
(lkm(Oh,Θres))r∈Icfeh ,1≤s≤d and (−J,u(Oh, U

km)(Θres))r∈Icfeh ,1≤s≤d, respectively. For
this purpose, on simplices of the original mesh which are intersected by the domain
boundary ∂Oh a local, virtual grid is generated. Based on a look up table the cells
generated by the marching cube-type method in the construction of the composite
finite elements are subdivided into simplices. On these simplices and on the sim-
plices within Oh not intersected by the domain boundary a one point, center of mass
quadrature rule is applied. The evaluation of the boundary integral

∫
∂Oh

gms Θr dHd−1

is treated analogously.
As long as the discrete domain Oh is connected in the following discrete sense,

namely, for every node Xi with i ∈ Icfe

h there is a chain of nodes (Xj)j=0,...,n with
j ∈ Icfe

h such that [Xj, Xj+1] is an edge of Th, X0 = Xi, and Xn is a node on ΓD,
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we easily verify that there exist unique solutions Ukm and P km of (3.1) and (3.2),
respectively. The resulting symmetric linear systems of equations are solved with a
conjugate gradient method for d = 2 and with a multigrid method for d = 3. In
general a still high condition number for the corresponding linear system of equations
on the finest grid level will reflect the badly shaped support of single composite basis
functions. Here, in particular the multigrid method leads to convergence rates which
are independent of the grid size h and—for a wide range of problems—the geometric
complexity of the domain. For the multigrid solver, we first recursively construct
coarse grid matrices and right-hand sides. Here, the underlying hierarchical grid in-
duces a canonical projection operator for any grid level to the next finer one generated
by the cell subdivision. Let us emphasize that this applies not only for the hierarchical
hexahedral grid but analogously for the associated simplicial mesh as well. Based on
the projection operator a standard Galerkin projection [30] is applied both for the
matrices and the right-hand sides. We then use a multigrid method with V cycles
and symmetric Block–Gauß–Seidel iterations as a smoother. Thereby, we gather the
3 spatial components of the solution at a grid node and apply the Gauß–Seidel iter-
ations on the resulting 3 × 3 blocks. In the applications considered here, 3 pre- and
post-smoothing steps in the V cycle turned out to be a reasonable choice. For details
on the composite finite element approach and the multigrid method we refer to [35].

3.3. Discrete gradient descent algorithm. The numerical relaxation of the
shape functional is based on the time discretized, regularized gradient descent scheme
given in (1.18) and applied to the spatially discrete stochastic shape functional

QE,h(Oh) := Eω (J (Φ, ω)) =
S∑
σ=1

πσJ (Φ, ωσ),(3.3)

where the shape functional J for a discrete level set function Φ is defined in a straight-
forward way by J (Φ, ωσ) := J({Φ < 0}, ωσ) for any realization ωσ. Here, for the
ease of presentation we notationally do not distinguish continuous and discrete shape
functionals; in fact, in what follows discrete shape functionals always involve the cor-
responding discrete solution of the state equation. For an initial level set function
Φ0 ∈ Vh we iteratively compute a sequence of level set functions (Φk)k=1,... given by

G
(
Φk+1 − Φk,Ξ

)
= −τEω

(
J ′ (Φk, ω) (Ξ)

)
(3.4)

for all Ξ ∈ Vh. Hence, in every time step the vector (Eω(J ′(Φk, ω)(Ψi)))i∈Ih
of

variations of the expectation of the objective functional J in all basis directions Ψi

for i ∈ Ih has to be evaluated. Furthermore, one has to solve the linear system of
equations resulting from a standard finite element discretization of G. As already
discussed the time step τ is chosen according to a simple variant of the Armijo step
size control. Indeed, given a constant β ∈ (0, 1) we accept a time step τ if the condition

Eω

(
J

(
Φk+1, ω

))
− Eω

(
J

(
Φk, ω

))
≤ −βG

(
Φk+1 − Φk,Φk+1 − Φk

)
is satisfied; otherwise the timestep is reduced.

Let us now detail the evaluation of J ′(Φ)(Ξ) in the spatially discrete setting. For
any scenario of the stochastic loading ωσ with σ = 1, . . . , S we obtain a discrete effec-
tive displacement Ū(Oh, ωσ) ∈ Vcfe

h,ΓD
and an effective dual solution P̄ (Oh, ωσ) ∈ Vcfe

h,ΓD
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as the following linear combinations of Ukm and P km (cf. (2.4), (2.6)), respectively:

Ū(Oh, ωσ) =
K∑
k=1

M∑
m=1

αk(ωσ)βm(ωσ)Ukm(Oh) ,

P̄ (Oh, ωσ) =
K∑
k=1

M∑
m=1

αk(ωσ)βm(ωσ)P km(Oh) .

Given the discrete primal solution Ū(Oh, ωσ) the variation of the objective functional
(cf. (1.5))

J (Φ, ωσ) =
∫
Oh

j
(
Ū(Oh, ωσ)

)
dx+ γ

∫
∂Oh

dHd−1

for a particular realization ωσ of the stochastic loading and a shape domain Oh im-
plicitly defined by the discrete level set function Φ (that is, Oh = {Φ < 0}) can be
computed as follows (cf. (1.16) and (2.8)):

J ′(Φ, ωσ)(Ξ) = J′(Oh, ωσ)
(
−Ξ |∇Φ|−1N

)
=

∫
∂Oh

(
−Ξ|∇Φ|−1

) (
j
(
Ū(Oh, ωσ)

)
+ γ H

− (fi(ωσ) + gi(ωσ)H + ∂Ngi(ωσ)) P̄i(Oh, ωσ)
+ Aijkleij

(
Ū(Oh, ωσ)

)
ekl

(
P̄ (Oh, ωσ)

) )
dHd−1 .(3.5)

Here, N denotes the outer normal on ∂Oh and H a discrete mean curvature function
on ∂Oh. As a suitable approximation we consider N and H to be piecewise affine
on ∂Oh. The discrete mean curvature vector H N is defined on each vertex X on
∂Oh as the gradient vector of the area functional with respect to the position of the
vertex (cf. [25] for the resulting formula and the relation to the continuous mean
curvature). For the numerical integration we apply a Gauss quadrature of degree 4.
Hence, the integration is exact as long as f and g are (piecewise) affine functions on
R
d. Finally, the discrete counterpart of the shape derivative of our actual stochastic

cost functional, namely, the expectation of the discrete cost functional QE,h(Oh) in
the case of S scenarios (ωσ)σ=1,...,S (cf. (3.3)), is given by

Q′
E,h(Oh)(V ) = Eω (J ′(Φ, ω)(Ξ)) =

S∑
σ=1

πσJ ′(Φ, ωσ)(Ξ) ,(3.6)

where V = −Ξ|∇Φ|−1N is the normal variation corresponding to the variation Ξ of
the level set function Φ. In the algorithm this shape derivative can be used as a descent
direction. In any step of the considered time-discrete gradient descent (3.4) one has
to compute for the current discrete domain Oh once the KM discrete primal base de-
formations Ukm(Oh) and the corresponding discrete dual base states P km(Oh). From
these, we can efficiently compute the effective deformations Ū(O, ωσ) and the effective
dual states P̄ (O, ωσ) for a possibly very large set of scenarios {ωσ |σ = 1, . . . , S}, and
using (3.5) and (3.6) we then evaluate the stochastic descent direction.

4. Computational results. As discussed above the major characteristic of two-
stage stochastic shape optimization investigated here is that one first decides the do-
main O, and then the stochastic loading is observed. Hence, we expect the resulting
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Fig. 4.1. The initial domain considered in the computation of the optimal shapes in Figures 4.2
and 4.3 is depicted on the left. On the right the different contributions to the objective function are
plotted over the number of iterations. The upper curve shows the robust decay of the objective
functional, whereas the lower curve and the middle curve display the evolution and the interplay of
the compliance functional and the enclosed volume term, respectively.

optimal shapes to differ significantly from those obtained in the case of an optimiza-
tion for the load straightforwardly computed as the expected value of the stochastic
loads. In what follows we consider shape optimization applications in two and three
dimensions which in particular reflect this consideration. Let us assume a vanishing
volume load f(ω) and Neumann boundary conditions g(ω) with support ΓN . As ex-
plained above, we assume neither ΓD nor Γ′

N not to be modified in the actual shape
optimization. Indeed, we choose 7h as the size of this neighborhood of ΓD and ΓN ,
where the level set function is kept fixed. As the objective function, we take into
account a sum of the expectation of the compliance load

∫
ΓN

g(ω) ·u(O, ω) dHd−1 and
the weighted volume η

∫
∂O dHd−1 of the structure, where η is a positive constant.

4.1. 2D carrier plate. The first application in 2D is a carrier plate, where
we optimize the shape of the carrier construction between a floor slap, whose lower
boundary is assumed to be the Dirichlet boundary, and the upper plate, on which
the loading is applied. Figure 4.1 depicts the initial shape and a sketch of a par-
ticular instance of the stochastic loading on the upper plate. Figures 4.2, 4.3, and
4.4 show results obtained by the stochastic optimization algorithm presented here.
Each realization of the stochastic load is spatially uniform on the upper plate; real-
izations only differ by the direction of the force. Hence, two base loads g1 and g2

are required to span a load space containing all realizations of the stochastic load.
Hence, m = 2, whereas S ranges from 2 in Figure 4.2 to 20 in Figure 4.3 to 21 in
Figure 4.4. In Figure 4.3 a slightly nonsymmetric set of stochastic scenarios is taken
into account, whereas the stochastic load configuration in Figure 4.4 is symmetric.
The resulting optimal domains reflect this break of symmetry. Both figures show on
the single stochastically optimal shape the von Mises stress distribution for different
load scenarios. For the stochastic optimization result in Figure 4.2, we have evaluated
the relative error in the stress when refining the underlying grid once. Explicitly, we
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Fig. 4.2. A direct comparision of two-scale stochastic optimization and deterministic optimiza-
tion for an averaged load is shown. On the right, a stochastically optimal shape is rendered together
with the two underlying load scenarios ω1 and ω2 on the upper plate, with surface loads g(ω1) and
g(ω2) both with probability 1

2
. On the left the optimal shape colorcoded with the von Mises stress is

drawn for a deterministic load 1
2
g(ω1) + 1

2
g(ω2).

1

10

20

Fig. 4.3. Stochastic shape optimization based on 20 scenarios is depicted. On the left the
different loads g(ωσ) with probabilities πσ are sketched. Each arrow represents one scenario where
the arrow length is determined by the corresponding force intensity weighted with the probability πσ

of the corresponding scenario. On the right the von Mises stress distribution is color coded on the
optimal shape for 10 out of the 20 realizations of the stochastic loading. Due to the nonsymmetric
loading configuration the resulting shape is nonsymmetric as well. In particular, the right carrier
is significantly thicker than the left one, whereas the connecting diagonal stray pointing up right is
thinner than the one point down left.

obtain a relative error
∫
O[Aijkleij(Ūh(O) − Ūh

2
(O))]2 dx/

∫
O[Aijkleij(Ūh(O))]2 dx of

about 0.25 percent. Here, Ūh(O) is the solution for the grid size h = 2−8 and Ūh
2
(O)

the corresponding solution on grid size h = 2−9 for the same discrete domain O.

4.2. 2D cantilever. The second application deals with shape optimization of a
2D cantilever. The initial domain and the optimal shape in the case of deterministic
loading are shown in Figure 4.5. Here, the cantilever is fixed on the left side, and a
downward pointing force is applied on the right. In Figure 4.6 the dependence of the
computed optimal shape on the initial domain is depicted. In Figure 4.7 we focus
on the coefficient in front of the volume penalty term and its impact on the optimal
shape. A stochastic counterpart is presented in Figure 4.8 with 21 different scenarios
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1

10

Fig. 4.4. Results for a symmetric load configuration with 21 scenarios, to be contrasted with
those reported with a nonsymmetric configuration in Figure 4.3. Again on the left the configuration
is sketched, and on the right the von Mises stress distribution in plotted in the case of the first 10
scenarios.

Fig. 4.5. The initial domain for the computation in the case of a cantilever geometry is rendered
on the left. The left boundary is a Dirichlet boundary where the cantilever is attached to a vertical
wall. The center part of the right boundary is the support ΓN of the boundary force, which is a
deterministic downward-pointing force in this sketch. The resulting optimal shape computed by the
proposed level set algorithm is plotted on the right and color coded with the von Mises stress. The
corresponding stochastic case is reported in Figure 4.8.

pulling in different directions. Again the realizations of the stochastic load on the
smaller plate on the right are spatially uniform. Thus, the space of realization is 2D,
and we can choose m = 2.

The subset of the domain Ω, which does not undergo an optimization but is still
treated as elastic material, is indicated by the hatched box texture in Figures 4.1
and 4.5. The diameter of the initial domain is 0.9, and the Lamé coefficients in all
instances are λ = 40 and μ = 40. For the parameters in the objective functional we
choose η = 8 in the application in Figures 4.2, 4.3, and 4.4, whereas η = 0.3 in the
case of Figure 4.5. Here, instead of a regularizing surface area term we consider an
iterative regularization strategy based on a weaker morphological operator applied
during the gradient descent. In all 2D computations the underlying grid is a uniform
grid with 257 × 257 nodes; the discrete primal and dual state equations are solved
using a conjugate gradient approach. Furthermore, we take into account β = 0.2
for the parameter in the Armijo rule and reduce halve the step size as required.
Finally, we set ρ = 6h for the computations in Figures 4.3 and 4.4 and ρ = 4h
in Figures 4.2 and 4.5, where ρ is the filter parameter in the regularized gradient
descent. As mentioned above, we regularize the discrete shape boundary after a
couple of iterations applying the morphological operator D(s)E(2s)D(s), where D(·)
and E(·) are discrete dilation and erosion operators, respectively. These operators
are implemented via a fast marching method [51]. We set s = 0.5h for the width
parameter of these operators. Starting from the initial configuration, the decay of the
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Fig. 4.6. Results for different initial shapes for the deterministic cantilever computation (see
Figure 4.5). The top row shows the intial guess. The corresponding optimal shapes and energy plots
are depicted in the second and third rows, respectively. In all cases, η is fixed to 0.3. The middle
and right simulation results are obviously local minima with values of the cost functional that are
fairly close, as indicated by the error plot.
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Fig. 4.7. Results for variations of the volume penalization parameter η. In all shown test runs,
the initial shape shown in Figure 4.6 on the right was used. From left to right, the optimal solutions
correspond to the choices η = 0.2, η = 0.5, and η = 1.

different energy contributions is plotted already on the right-hand side in Figure 4.1.
The underlying stochastic scenario is shown in Figure 4.4.

4.3. VSS and EVPI. As stochastic programs are known to be computation-
ally hard to solve, the question arises whether the additional effort pays off compared
to solving simpler deterministic problems. There are two common concepts to mea-
sure the quality of the stochastic solution: the value of the stochastic solution (VSS)
and the expected value of perfect information (EVPI) (see [16] for details). We com-
puted these two values for the instance shown in Figure 4.2. The optimal objective
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1

10

21

Fig. 4.8. Stochastic shape optimization in the cantilever case with 21 scenarios. The different
loads g(ωσ) with probabilities πσ are sketched on the left. The von Mises stress distribution is color
coded on the stochastically optimal shape for 10 out of the 21 scenarios.

Table 4.1

Let O1 denote the optimal shape from Figure 4.3 and O2 the one from Figure 4.4. The table
shows the cost functionals arising from the different stochastic loadings shown in Figures 4.3 and
4.4, respectively, evaluated at O1 and O2.

O1 O2

objective from Figure 4.3 4.32398 4.4342
objective from Figure 4.4 5.54182 5.35328

value of the recourse problem (2.1) is denoted by RP, and we consider the following
deterministic program, which is called the expected value problem:

EV := min {J(O, ω̄) : O ∈ Uad} ,

where ω̄ indicates that all occuring random variables are substituted by their expec-
tations. Let OEV ∈ arg min{J(O, ω̄) : O ∈ Uad}. Note that in our example, OEV is
shown in Figure 4.2 on the left. Next, we can define the expected result of using the
EV solution as EEV :=

∑S
σ=1 πσJ(OEV, ωσ), which finally leads to the VSS given by

VSS = EEV − RP. For our particular instance, we have VSS = 53.68, or 94 % of the
EEV.

To compute the EVPI, we have to compute the so-called wait-and-see solution
(WS). If Oσ for σ = 1, . . . , S denote the solutions to the many problems

min {J(O, ωσ) : O ∈ Uad} , σ = 1, . . . , S

(and there are as many of those as scenarios), then WS is defined to be WS :=
∑S
σ=1

πσJ(Oσ, ωσ), and EVPI := RP − WS. For our instance, we obtained EVPI = 0.24.
Finally, we directly compared in Table 4.1 the values of the cost functional on the
two different optimal shapes computed by our algorithm shown in Figures 4.3 and 4.4
for both stochastic load scenarios. Even though the shapes visually do not differ too
much, a clear preference is demonstrated for the shape optimized with respect to a
particular stochastic load configuration.

4.4. 3D cantilever. Finally, we consider a 3D cantilever as a generalization of
the problem considered in the first example in 2D. On one side, a disk-shaped plate
is fixed on a wall prescribing zero Dirichlet conditions. On the other side, a small
rectangular plate opposite to the center of the disk is considered as Neumann boundary
loaded with different deterministic and stochastic boundary forces. Figure 4.9 shows
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Fig. 4.9. From left to right the optimal shapes in the deterministic approach and the stochastic
optimization approach for one, four, and eight scenarios are shown. The arrows represent the
different involved loads g(ωσ) for varying scenario indices σ. On the right the energy decay is shown
for the eight scenario configuration. Again the upper curve represents the total value of the objective
functional, the middle one the enclosed volume term, and the lower one the compliance functional.

Fig. 4.10. The optimal design in the case of stochastic shape optimization for the cantilever
problem with eight scenerios is depicted. From left to right four scenerios are color coded with
the von Mises stress in a consecutive clockwise ordering with respect to the sketch of the loads in
Figure 4.9. The upper and the lower row show the shape geometry under different perspectives.

the optimal designs in the case of a single deterministic load and for four and eight
stochastic loading scenarios. Furthermore, the energy decay during the numerical
relaxation of the shape functional is depicted. As the initial shape we have considered
a 3D version of the initial 2D shape shown in Figure 4.1. Figure 4.10 displays a color
coding of the von Mises stress distribution on the optimal shape in the stochastic
setting with eight equally probable and equally distributed load scenarios.

Here, we choose η = 1 for the volume penalization parameter, and the elastic
behavior is described by the Lame coefficients λ = 40 and μ = 40 for a structure
diameter of the order 1. The parameters involved in the Armijo step control are the
same as those in the 2D applications. The underlying grid is a regular grid with 1283

nodes. The shape optimization is first performed on a 643 grid. Then the level set
function is prolongated to the next finer grid level. Before the gradient descent of
the shape functional is released a morphological smoothing operator D(s)E(2s)D(s)
is applied. Here, as in the 2D case D(s) and E(s) represent discrete dilation and
erosion operators, implemented based in a fast marching algorithm in 3D. As the
width parameter we select s = 0.45h. The filter parameter in the regularized gradient
descent is ρ = 2.5h. A multigrid method for the numerical solution of the discrete
primal and dual problem is applied.
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Fig. 4.11. The optimal shape for a cantilever problem with deterministic loading is computed
based on a combined level-set and topogical derivative approach. A relaxation step with respect to
the topological derivative is considered in every 15th step of a general shape gradient descent method
(left). Furthermore, the corresponding energies, i.e., the total value of the objective function, the
enclosed volume, and the compliance functional are plotted on the right.

Outlook. Our approach of using two-stage stochastic optimization with the
Lamé equation as a variational problem does not link only stochastic shape opti-
mization to two-stage stochastic programming. Indeed, it offers the flexibility to go
beyond expected value optimization and addresses risk aversion. To this end, the
expectation in (2.1) is replaced by suitable risk measures such as expected excess and
excess probability. The resulting optimal shapes will significantly depend on the cho-
sen risk measure. Furthermore, we included results on a combination of level-set and
topological shape optimization which can be extended to the case of uncertain loadings
(cf. Figure 4.11). For a detailed discussion of these issues we refer to a forthcoming
publication [20].
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tational Mechanics, S. Idelsohn, E. Oñate, and E. Dvorkin, eds., Buenos Aires, Argentina,
1998, CIME, Barcelona, Spain, 1998.

[24] Q. Du and D. Wang, Tetrahedral mesh generation and optimization based on centroidal Voroni
tesselations, Internat. J. Numer. Methods Engrg., 56 (2003), pp. 1355–1373.

[25] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), pp. 603–611.
[26] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical

Society, Providence, RI, 1998.
[27] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer,

New York, 1975.
[28] J. Gomes and O. Faugeras, Reconciling distance functions and level sets, in Scale-Space

Theories in Computer Vision, Second International Conference Proceedings, Scale-Space
‘99, Corfu, Greece, 1999, Lecture Notes in Comput. Sci. 1682, M. Nielsen, P. Johansen,
O. F. Olsen, and J. Weickert, eds., Springer, Berlin, 1999, pp. 70–81.

[29] J. M. Guedes, H. C. Rodrigues, and M. P. Bendsøe, A material optimization model to
approximate energy bounds for cellular materials under multiload conditions, Struct. Mul-
tidiscip. Optim., 25 (2003), pp. 446–452.

[30] W. Hackbusch, Multi-grid Methods and Applications, Springer Ser. Comput. Math. 4,
Springer, New York, 1985.

[31] W. Hackbusch and S. Sauter, Composite finite elements for the approximation of PDEs on
domains with complicated micro-structures, Numer. Math., 75 (1997), pp. 447–472.

[32] W. Hackbusch and S. A. Sauter, Composite Finite Elements for Problems with Complicated
Boundary. Part III: Essential Boundary Conditions, Technical report, Universität Kiel,
Kiel, Germany, 1997.

[33] P. Kall and S. W. Wallace, Stochastic Programming, Wiley, Chichester, 1994.
[34] C.-Y. Kao, S. Osher, and Y.-H. Tsai, Fast sweeping methods for static Hamilton–Jacobi

equations, SIAM J. Numer. Anal., 42 (2005), pp. 2612–2632.
[35] F. Liehr, T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen, Composite finite elements

for 3D image based computing, Comput. Vis. Sci.. submitted.
[36] Z. Liu, J. G. Korvink, and R. Huang, Structure topology optimization: Fully coupled level

set method via femlab, Struct. Multidiscip. Optim., 29 (2005), pp. 407–417.
[37] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface construction

algorithm, Computer Graph., 21 (1987), p. 163.
[38] R. Malladi and J. A. Sethian, An O(N log N) algorithm for shape modeling, in Proc. Natl.

Acad. Sci. USA 93 (1996), pp. 9389–9392.
[39] J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice–Hall,

Englewood Cliffs, NJ, 1983.
[40] K. Marti, Stochastic Optimization Methods, Springer, Berlin, 2005.
[41] R. E. Melchers, Optimality-criteria-based probabilistic structural design, Struct. Multidiscip.

Optim., 23 (2001), pp. 34–39.
[42] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Appl. Math. Sci.

153, Springer, New York, 2003.
[43] S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms

based on Hamilton–Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49.



1632 CONTI, HELD, PACH, RUMPF, AND SCHULTZ

[44] S. J. Owen, A survey of unstructured mesh generation technology, in Proceedings of the 7th
International Meshing Roundtable, Dearborn, MI, Sandia National Laboratories, 1998,
pp. 239–267.

[45] M. Pach, Levelsetverfahren in der Shapeoptimierung, Diploma thesis, University Duisburg,
Duisburg, Germany, 2005.

[46] T. Pennanen, Epi-convergent discretizations of multistage stochastic programs, Math. Oper.
Res., 30 (2005), pp. 245–256.
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ERROR BOUNDS FOR CONVEX POLYNOMIALS∗

W. H. YANG†

Abstract. The purpose of this paper is to investigate error bounds for convex polynomials.
We prove that for a convex polynomial f in n variables which is not everywhere positive and which
is not constant on any affine subspace, either f is a sum of a convex polynomial in fewer variables
and a linear form with negative coefficients or the negativity set of f is compact. As an applica-
tion, we deduce various types of error bounds for unconstrained and polyhedral-constrained convex
polynomials.
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1. Introduction. Multivariate polynomial minimization has received much at-
tention over the years thanks to its application in engineering and economics. It has
been studied extensively, and there are many works devoted to this subject. The
reader is referred to [6, 7, 11, 15, 17] and also the references therein. A popular
method for solving the polynomial minimization problem is the sum-of-squares (SOS)
method, which was first introduced by Shor [17] and further developed by Nesterov
[11], Lasserre [7], and Parrilo [14]. The SOS method is based on semidefinite program-
ming, for which efficient algorithms are now available. Another important approach
for polynomial minimization is based on tensor analysis, which involves various com-
putational topics of higher-order tensors, such as tensor decomposition, computation
of tensor rank, computation of tensor eigenvalues, and so on. For the interested
reader, see [15] for a survey on the state-of-the-art knowledge on this topic.

In this paper, we will study the properties of convex multivariate polynomials
(convex polynomials for short), since it is the simplest type of nonlinear and non-
quadratic polynomial. As far as we know, Belousov was the first one who used convex
analysis to study polynomial minimization. In 1977, Belousov derived some basic
properties of convex polynomials in his book [5]. Following a way similar to that pro-
posed by Belousov, Bank and Mandel [1] extended the results in [5] to quasi-convex
polynomials. In [4], Belousov and Klatte generalized the Frank–Wolfe-type theorem
to convex polynomial systems. The impetus of this manuscript came from Lemmas 1
and 2 in [4]. We will present some further results on convex polynomials using convex
analysis. As an application, we derive various error bounds for unconstrained and
polyhedral-constrained convex polynomials.

Recently, error bounds have found important applications in various areas in
mathematical programming such as sensitivity analysis, convergence analysis of algo-
rithms, and asymptotic analysis. There is plenty of literature on this subject. The
reader is referred to the papers [13, 18, 20] and references therein for the theory and
applications of error bounds. When considering the polynomial inequality systems,
Hölderian error bounds have been demonstrated for these systems in [8, 9, 10, 12, 19].
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It is proved in this paper that for an mth-order convex polynomial f , if the negativ-
ity set of f is nonempty, then f has a linear error bound. Otherwise, f has a local
Hölderian error bound of order 1/m.

The rest of the paper is organized as follows. In section 2, we introduce some
notations and definitions on convex analysis. Some preliminary results on convex
polynomials are presented. In section 3, we show that for a convex polynomial f
which is not constant on any affine subspace, if the lower level set of f is unbounded,
then f can be represented as a sum of a convex polynomial in fewer variables and a
linear form with negative coefficients. We also investigate some properties of the kernel
of a homogeneous convex polynomial. Finally, in section 4, we identify exactly and
establish various types of error bounds for unconstrained and polyhedral-constrained
convex polynomials.

2. Definitions and preliminary results. In this section, we give the nota-
tions, definitions, and preliminary results which will be used throughout the paper.
For a positive integer n, we use [n] to denote the set {1, . . . , n}. For x ∈ R

n, xi
(i ∈ [n]) is the ith component of x as usual. The transpose of x is denoted by xT .
For a subspace L ⊂ R

n, L⊥ denotes the orthogonal complement of L in R
n. The

dimension of L is denoted by dim(L).
For a function ϕ : R

n → R, the lower level set of ϕ is defined by Sϕ := {x ∈ R
n :

ϕ(x) ≤ 0}. We say that ϕ has an error bound of order γ if there exists τ > 0 such
that

d(x, Sϕ) ≤ τ [ϕ(x)]γ+ ∀x ∈ R
n,

where [ϕ(x)]+ = max{ϕ(x), 0} and d(x, Sϕ) denotes the distance from x to Sϕ. If ϕ
has an error bound of order 1, we also say ϕ has a linear error bound. The optimal
solution set of ϕ is denoted by argminx∈Rnϕ(x).

Let C ⊂ R
n be a closed convex set. We use bd(C) to denote the boundary of C.

For x ∈ C, the normal cone of C at x is defined by

NC(x) :=
{

z ∈ R
n : zT (y − x) ≤ 0 ∀y ∈ C

}

.

Let N1
C(x) := {h ∈ NC(x) : ‖h‖ = 1} denote the set of all unit vectors in NC(x). The

recession cone C∞ [16] of C is defined by

C∞ := {d ∈ R
n : x+ td ∈ C, ∀t ≥ 0, ∀x ∈ C}.

It is easy to see that C∞ is a convex cone. For a convex function ψ, by [16, Theo-
rem 8.7], all the nonempty level sets of the form {x : ψ(x) ≤ c}, c ∈ R, have the same
recession cone, namely, the recession cone of ψ. Without loss of generality, we use the
notation S∞

ψ to denote the recession cone of ψ. Let E = S∞
ψ ∩ (−S∞

ψ ). Then E is a
subspace and is called the constancy space [16, p. 69] of ψ.

Lemma 2.1 (see [16, p. 69]). The constancy space E is the largest subspace
contained in S∞

ψ which satisfies

E = {z ∈ R
n : ψ(x+ λz) = ψ(x), ∀x ∈ R

n, ∀λ ∈ R}.

For a convex function ψ, we denote the set of subgradients of ψ at x ∈ R
n by

∂ψ(x). It is well known that the directional derivative ψ′(x;h) = limt→0+
ψ(x+th)−ψ(x)

t
always exists for x, h ∈ R

n, and one has that

ψ′(x;h) = max
{

ηTh : η ∈ ∂ψ(x)
}

.(2.1)
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Let Z
n
+ = {β = (β1, . . . , βn) : βi ∈ Z, βi ≥ 0, ∀i ∈ [n]}. For β ∈ Z

n
+, we use xβ to

denote the product xβ1
1 , . . . , xβn

n for every x ∈ R
n. Then, for an mth-order polynomial

f on R
n, we can write it as f(x) =

∑m
|β|=0 aβx

β ∀x ∈ R
n, where β ∈ Z

n
+, aβ ∈ R, and

|β| =
∑n

i=1 βi. In this paper, we always use fl, 0 ≤ l ≤ m, to denote the lth-order
homogeneous polynomial corresponding to f , that is, fl(x) =

∑

|β|=l aβx
β , and so

f =
m
∑

l=0

fl.(2.2)

Note that f0 is the constant term of f . If f(x) ≥ 0 (f(x) > 0) ∀x ∈ R
n (x 
= 0), we

say that f is a positive semidefinite (definite) polynomial. It is easy to see that if f
is a convex polynomial and m ≥ 2, then m is an even integer.

The Taylor series of an mth-order polynomial f can be written as

f(x+ y) =
m
∑

|β|=0

Dβf(x)
β!

yβ ∀x, ∀y ∈ R
n,(2.3)

where β ∈ Z
n
+, Dβf(x) := ∂β1

∂x
β1
1

, . . . , ∂
βn

∂xβn
n
f(x) and β! = β1!, . . . , βn!. Using this

notation, we have (∇f(x))T y =
∑

|β|=1(Dβf(x))T yβ , ∀x ∈ R
n, ∀y ∈ R

n.
Let h be a kth-order homogeneous polynomial (k ≥ 1). We define the kernel of h

by

Ker(h) :=
{

x ∈ R
n : Dαh(x) = 0 ∀α ∈ Z

n
+ satisfying |α| = k − 1

}

.

It is easy to see that if x ∈ Ker(h), then Dβh(x) = 0 for every β ∈ Z
n
+ satisfying

0 ≤ |β| ≤ k − 1. In particular, x ∈ Ker(h) implies h(x) = 0. Moreover, Ker(h) is a
linear space. If h is a homogeneous quadratic function, that is, h(x) = xTAx for some
matrix A, then Ker(h) = Ker(A).

The following lemma is a well-known result, and we omit the proof.
Lemma 2.2. Let f(x) =

∑m
|β|=0 aβx

β be a polynomial defined on R
n. If f(x) =

0 ∀x ∈ R
n, then aβ = 0 for every β ∈ Z

n
+ satisfying 0 ≤ |β| ≤ m.

The next two lemmas, which play an important role in this paper are due to
Belousov (see [4, Lemmas 1 and 2]).

Lemma 2.3. Let f be a convex polynomial. Let x, y, d ∈ R
n. If μ(t) = f(x+ td)

defined on R is a convex polynomial of order p, then ν(t) = f(y + td), t ∈ R, is also
a convex polynomial of order p. Further, if p ≥ 1, then the coefficient associated with
the term tp in μ(t) and ν(t) are identical.

Lemma 2.4. Let f be a convex polynomial satisfying Sf 
= ∅. For d 
= 0, d ∈ S∞
f

if and only if f(td) = f(0) + rt, ∀t ∈ R, for some r ≤ 0.
Corollary 2.1. Let h : R

n → R be a kth-order homogeneous convex polynomial,
where k ≥ 2. Then h is positive semidefinite.

Proof. Suppose that h(y) < 0 for some y. Since h(ty) = tkh(y) < 0 for
each t > 0, we have ty ∈ Sh ∀t ≥ 0. From [16, Theorem 8.3], it follows that
y ∈ S∞

h . By Lemma 2.4, we have that h(ty) = βt for some β ≤ 0, which contradicts
h(ty) = tkh(y).

Note that a positive semidefinite homogeneous polynomial is not necessarily a
convex polynomial. Let g : R

2 → R be defined by g(x1, x2) = (x2
1 − x2

2)2. It is easy
to see that g is positive semidefinite but not convex.
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Lemma 2.5. Let h be a kth-order homogeneous polynomial (k ≥ 1), and let
K ⊂ R

n be a subspace. Then h(x + y) = h(x), ∀x ∈ R
n, ∀y ∈ K, if and only if

K ⊂ Ker(h).
Proof. Note that h(x+y) =

∑k
|β|=0

Dβh(y)
β! xβ and h(x) =

∑

|β|=k
Dβh(0)
β! xβ ∀x, y ∈

R
n. By Lemma 2.2, h(x + y) = h(x), ∀x ∈ R

n, ∀y ∈ K ⇐⇒ Dβh(y) = 0, ∀y ∈ K,
for each β satisfying |β| ≤ k − 1. Thus, the claim holds.

Lemma 2.6. Let h be a kth-order homogeneous convex polynomial. Then Ker(h) =
{x : h(x) = 0}, and h is positive definite on (Ker(h))⊥.

Proof. Let H = {x : h(x) = 0}. We need only to prove H ⊆ Ker(h). For y ∈ H ,
we have g(ty) = 0 = g(0) ∀t ∈ R. From Lemma 2.3, it follows that g(x + ty) =
g(x) ∀x ∈ R

n and t ∈ R. By Lemma 2.5, one has that y ∈ Ker(h), which implies
H ⊆ Ker(h). By Corollary 2.1, h is nonnegative on R

n. Suppose h(x) = 0 for some
x ∈ (Ker(h))⊥. Then H ⊆ Ker(h) implies x ∈ Ker(h), and therefore x = 0.

The next lemma shows that if a polynomial f is constant along a subspace, then
it can be transformed into a polynomial with less variables by changing the basis.

Lemma 2.7. Let f(x) be an mth-order polynomial on R
n, and let L ⊂ R

n be a
subspace of dimension p. If f(x + y) = f(x) ∀x ∈ R

n and y ∈ L⊥, then there exists
an orthogonal matrix U such that

f(Ux) = g(x1, . . . , xp) ∀x ∈ R
n,(2.4)

for some polynomial g in p variables.
Proof. Let f =

∑m
l=0 fl. By Lemma 2.5, we have L⊥ ⊂ ∩ml=1 Ker(fl). Let U be

the matrix such that the first p columns of U are an orthonormal basis of L and the
rest of the columns are an orthonormal basis of L⊥. By (2.3) and L⊥ ⊂ ∩ml=1 Ker(fl),
it is easy to obtain (2.4).

The following result can be proved by Lemmas 2.1 and 2.7 in a straightforward
way.

Corollary 2.2. Let f be a convex polynomial on R
n, and let E = S∞

f ∩(−S∞
f ).

Assume that dim(E) = n− p. Then there exists an orthogonal matrix U such that

f(Ux) = g(x1, . . . , xp) ∀x ∈ R
n,

where g is a convex polynomial satisfying S∞
g ∩ (−S∞

g ) = {0}.

3. Properties of convex polynomials. In this section, we will prove that if
S∞
f is not a linear space, then we can simplify the form of f to the sum of a convex

polynomial in fewer variables and a linear form. In view of Corollary 2.2, we always
assume that S∞

f ∩ (−S∞
f ) = {0} for each convex polynomial f in the remainder of

the paper.
Theorem 3.1. Let f =

∑m
l=0 fl be a convex polynomial on R

n. Then

∩ml=2 Ker(fl) = S∞
f − S∞

f .(3.1)

Moreover, dim(∩ml=2 Ker(fl)) ≤ 1.
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Proof. Let z ∈ ∩ml=2 Ker(fl). Then tz ∈ ∩ml=2 Ker(fl) ∀t ∈ R, which together with
(2.3) implies that

f(x+ tz) =
m
∑

l=0

l
∑

|β|=0

Dβfl(tz)
β!

xβ

=
m
∑

l=2

∑

|β|=l

Dβfl(tz)
β!

xβ +
∑

|β|=1

Dβf1(tz)xβ + f1(tz) + f0

=
m
∑

l=2

∑

|β|=l

Dβfl(0)
β!

xβ +
∑

|β|=1

Dβf1(0)xβ + tf1(z) + f0

= f(x) + tf1(z) ∀x ∈ R
n, ∀t ∈ R.(3.2)

If f1(z) ≤ 0, then f(x + tz) ≤ f(x) ∀t ≥ 0, and so z ∈ S∞
f . Since 0 ∈ S∞

f , we have
z = z − 0 ∈ S∞

f − S∞
f . If f1(z) ≥ 0, then −z ∈ S∞

f , and so z = 0− (−z) ∈ S∞
f − S∞

f .
Thus, ∩ml=2 Ker(fl) ⊆ S∞

f − S∞
f .

For (3.1), it suffices to prove S∞
f ⊂ ∩ml=2 Ker(fl). Fix d ∈ S∞

f . By Lemmas 2.3
and 2.4, there exists δ ≤ 0 such that f(x+ td) = f(x)+δt for every t ∈ R and x ∈ R

n.
Then

f(x) + δt = f(x+ td) =
m
∑

l=0

l
∑

|β|=0

Dβfl(td)
β!

xβ =
m
∑

l=0

l
∑

|β|=0

Dβfl(d)
β!

xβtl−|β|

=
m
∑

k=0

⎛

⎝

m−k
∑

|β|=0

Dβf|β|+k(d)
β!

xβ

⎞

⎠ tk ∀t ∈ R, ∀x ∈ R
n.

Hence,
∑m−1

|β|=0
Dβf|β|+1(d)

β! xβ = δ for every x ∈ R
n. By Lemma 2.2, we have Dβf|β|+1(d)

β! =
0 for each β ∈ Z

n
+ satisfying 1 ≤ |β| ≤ m− 1, that is, d ∈ ∩ml=2 Ker(fl).

Let X∞ := ∩ml=2 Ker(fl). If dim(X∞) > 1, there exist y, z ∈ X∞ such that
y 
= λz ∀λ ∈ R. We can find real numbers μ and ν such that f1(μy + νz) = 0 and
μy + νz 
= 0. Since y, z ∈ X∞ = ∩ml=2 Ker(fl), similar to (3.2), we have

f(x+ λ(μy + νz)) = f(x) + λf1(μy + νz) = f(x) ∀x ∈ R
n, ∀λ ∈ R.

By Lemma 2.1, μy + νz ∈ S∞
f ∩ (−S∞

f ), which contradicts to S∞
f ∩ (−S∞

f )
= {0}.

Theorem 3.2. Let f be a convex polynomial as in Theorem 3.1.
(i) If S∞

f 
= {0}, then there exists an orthogonal matrix U such that

f(Ux) = g(x1, . . . , xn−1) + rxn ∀x ∈ R
n,

where g is a convex polynomial satisfying S∞
g = {0} and r < 0.

(ii) If S∞
f = {0}, then f is strictly convex, and so argminx∈Rnf(x) is a singleton

set.
Proof. (i). Since S∞

f 
= {0}, by Theorem 3.1, there exists w ∈ R
n, with ‖w‖ = 1

such that

∩ml=2 Ker(fl) = S∞
f − S∞

f = {tw : t ∈ R}.
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Since S∞
f is a cone, we can assume that S∞

f = {tw : t ≥ 0} without loss of generality.
By Lemma 2.4, there exists r ≤ 0 such that f(x+ tw) = f(x) + rt. If r = 0, it is easy
to prove w ∈ S∞

f ∩ (−S∞
f ), which is a contradiction. Thus, r < 0. Note that

f(0) + rt = f(tw) =
m
∑

l=0

l
∑

|β|=0

Dβfl(0)
β!

wβt|β| ∀t ∈ R.

By Lemma 2.2, one has that r =
∑

|β|=1
Dβf1(0)

β! wβ = (∇f1)Tw. Let F (x) = f(x) −
(∇f1)Tx ∀x ∈ R

n. Then F is a convex polynomial. We also have

F (x+ tw) = f(x+ tw) − (∇f1)T (x+ tw)
= f(x) + rt− (∇f1)Tx− t(∇f1)Tw
= F (x) ∀x ∈ R

n, ∀t ∈ R,

that is, w ∈ S∞
F ∩ (−S∞

F ). Note that for any vector v satisfying ±v 
∈ S∞
f , F is not

linear on the line {tv : t ∈ R}. Hence, S∞
F ∩ (−S∞

F ) = {tw : t ∈ R}. Let U be an
orthogonal matrix such that the last column of U is w. By Corollary 2.2, F (Ux) =
φ(x1, . . . , xn−1), where φ is a convex polynomial. Note that the last component of
vector UT (∇f1 − rw) is zero and UTw = e(n), where e(n) = (0, . . . , 0, 1). Thus,

f(Ux) = F (Ux) + (∇f1)TUx

= φ(x1, . . . , xn−1) +
[

UT (∇f1 − rw)
]T
x+ rwTUx

= g(x1, . . . , xn−1) + rxn ∀x ∈ R
n,

for some convex polynomial g. It is easy to see that S∞
g = {0}.

(ii). If f is not strictly convex, there exists x, y ∈ R
n (x 
= y) such that f is linear

on the segment S = {z : z = tx+ (1− t)y, 0 ≤ t ≤ 1}. Then, it is easy to prove that f
is linear on the line {z : z = tx+ (1− t)y, t ∈ R}, and so y− x ∈ S∞

f (or x− y ∈ S∞
f )

according to Lemma 2.4, which contradicts S∞
f = {0}.

Corollary 3.1. Let h be a kth-order homogeneous convex polynomial on R
n.

Then ∇h is a one-to-one mapping from R
n onto itself.

Proof. Note that Sh = {0}, and so S∞
h = {0}. By Theorem 3.2 (ii), h is strictly

convex. It is easy to see that limλ→∞
f(λy)
λ = +∞ for every y 
= 0. Then the claim

follows from [16, Theorem 26.6].
For a homogeneous convex polynomial h, by Lemma 2.6, it is easy to see that

Ker(h) = Sh = S∞
h . In what follows, we study the relationship between Ker(h) and

the range of ∇h. Note that we do not assume S∞
h ∩ (−S∞

h ) = {0}.
Corollary 3.2. Let h be a kth-order homogeneous convex polynomial. Then we

have Ker(h)⊥ = R(∇h), where R(∇h) = {z ∈ R
n : z = ∇h(x) for some x ∈ R

n}.
Proof. The case k = 1 is trivial. Suppose k ≥ 2. Let L be a subspace such

that L⊥ = Ker(h). We will prove R(∇h) = L. Suppose dim(L) = p. Let U =
(α(1), . . . , α(n)), where [α(1), . . . , α(p)] is an orthonormal basis for L and [α(p +
1), . . . , α(n)] is an orthonormal basis for L⊥. We define ζ(x) = h(Ux) ∀x ∈ R

n.
By Lemma 2.6, we have Ker(ζ) = {x : ζ(x) = 0} and Ker(h) = {y : h(y) = 0},
and so Ker(h) = U Ker(ζ). By the construction of U and L⊥ = Ker(h), we have
Ker(ζ) = (0,Rn−p)T . From ζ(x) = h(Ux), it follows that ∇ζ(x) = UT∇h(Ux), and
so R(∇ζ) = UTR(∇h). Hence, to show R(∇h) = L, it suffices to prove R(∇ζ) =
(Rp, 0)T . Let ψ : R

p → R be defined by ψ(y) = ζ(y, 0) ∀y ∈ R
p. Then ψ is a convex
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polynomial and Ker(ψ) = 0, which implies Sψ = {0}. By Corollary 3.1, we have
R(∇ψ) = R

p, and so R(∇ζ) = (Rp, 0)T .
The condition that h is convex cannot be removed as the next example shows.
Example 3.1. Let h : R

2 → R be defined by h(x1, x2) = (x2
1 − x2

2)2. It is easy to
verify that Ker(h) = {0}. Note that

1
4
∇h(x) =

((

x2
1 − x2

2
)

x1,−
(

x2
1 − x2

2
)

x2
)T ∀x ∈ R

2.

Next we show that R(∇h) 
= R
2. If (x2

1 − x2
2)x1 = −(x2

1 − x2
2)x2, then (x1 − x2)(x1 +

x2)2 = 0. We obtain that x1 = x2 or x1 = −x2, and so ∇h(x) = (0, 0)T . Hence,
(y1, y2)T 
∈ R(∇h) if y1 = y2 
= 0.

4. Error bounds for convex polynomials. In this section, for each convex
polynomial f , we always assume

Sf 
= ∅ and S∞
f ∩ (−S∞

f ) = {0}.(4.1)

Then, by Theorem 3.1, S∞
f is a ray or equal to {0}. The next theorem shows that if

S∞
f 
= {0}, then f has a linear error bound.

Theorem 4.1. Let f be a convex polynomial satisfying S∞
f 
= {0}. Then f is

unbounded below, and there exists τ > 0 such that

d(x, Sf ) ≤ τ [f(x)]+ ∀x ∈ R
n.(4.2)

Proof. By Theorem 3.2(i), there exists an orthogonal matrix U such that f(Ux) =
g(x1, . . . , xn−1) + rxn for some r < 0. It is obvious that f is unbounded below. Let
f̄(x) = f(Ux) ∀x ∈ R

n. Then USf̄ = Sf . Since Euclidean distance is invariant under
orthogonal transformations, we have d(Ux, Sf ) = d(x, Sf̄ ). Thus, it is equivalent to
prove that (4.2) holds for f̄ . Let x′ = x + te(n), where e(n) = (0, . . . , 0, 1). Since
∂f̄
∂xn

= r, we have that t ≤ − r
2 (f̄(x) − f̄(x′)) if t > 0 is sufficiently small. Then (4.2)

follows from [13, Lemma 2.3].
To deal with the case S∞

f = {0}, we need to study convex polynomials which
have no linear term.

Theorem 4.2. Let g =
∑m

l=k gl be a convex polynomial, where k ≥ 2. Then gk
is a convex polynomial.

Proof. If gk is not convex, by [3, Theorem 3.3.7], ∇2gk(x̄) is not positive semidef-
inite for some x̄ ∈ R

n (obviously x̄ 
= 0). Then there exists v ∈ R
n, which satisfies

vT∇2gk(x̄)v < 0. Hence, we have

vT∇2g(tx̄)v =
m
∑

l=k

vT∇2gl(tx̄)v =
m
∑

l=k

tl−2vT∇2gl(x̄)v ∀t ∈ R.

If t > 0 is small enough, from vT∇2gk(x̄)v < 0, it follows that vT∇2g(tx̄)v < 0,
which shows that ∇2g(tx̄) is not positive semidefinite. By [3, Theorem 3.3.7], g is not
convex, which is a contradiction. Thus, gk must be convex.

Stimulated by the idea of [1, p. 46], in the following we will define subspaces
Xk, k = 0, . . . , m2 , which satisfy

Xk+1 ⊆ Xk and Xm
2

= {0}.(4.3)

For a convex polynomial f =
∑m
l=2 fl, let

X0 = R
n and Xk = ∩ki=1 Ker(f2i) for k = 1, . . . ,

m

2
.(4.4)
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Lemma 4.1. For each 1 ≤ k ≤ m
2 , the following assertions hold:

(i) If 2 ≤ i ≤ 2k + 1, then Xk ⊆ Ker(fi).
(ii) f2k(x) > 0 for every x ∈ Xk−1\Xk.
Proof. We prove (i) by induction. For k = 1, we need only to prove X1 ⊆

Ker(f3). Let f̄ : X1 → R be the restriction of f on X1. Then f̄ is convex, and
f̄(x) =

∑m
i=3 fi(x) ∀x ∈ X1. By Theorem 4.2, f3 is a convex function on X1, which

implies that f3(x) = 0 ∀x ∈ X1. From Lemma 2.6, it follows that X1 ⊆ Ker(f3).
Assume that (i) holds for k = l − 1, where 2 ≤ l ≤ m

2 . Since Xl ⊆ Xl−1, we
have Xl ⊆ Ker(fi) for each 2 ≤ i ≤ 2l − 1, and Xl ⊆ Ker(f2l) by the definition of
Xl. Let f̄ : Xl → R be the restriction of f on Xl. Then f̄ is convex, and f̄(x) =
∑m

i=2l+1 fi(x) ∀x ∈ Xl. Similar to the proof of k = 1, we can prove Xl ⊆ Ker(f2l+1).
Then (i) holds for k = l.

(ii). Let g : Xk−1 → R be the restriction of f on Xk−1. Then g is convex and by
(i), g(x) =

∑m
i=2k fi(x) ∀x ∈ Xk−1. From Theorem 4.2, it follows that f2k is convex

on Xk−1. If f2k(x) = 0 for some x ∈ Xk−1, then x ∈ Ker(f2k) by Lemma 2.6, and so
x ∈ Xk. Thus, f2k is positive on Xk−1\Xk.

If d ∈ Xm
2

, then by Lemma 4.1(i), f(td) =
∑m

l=2 fl(td) = 0 ∀t ∈ R. From Lemma
2.3, it follows that f(y + td) = f(y), ∀y ∈ R

n, ∀t ∈ R, and so d ∈ S∞
f ∩ (−S∞

f ). By
(4.1), we obtain d = 0, that is, Xm

2
= {0}.

Lemma 4.2. Let f =
∑m
l=2 fl be a convex polynomial. Then argminx∈Rnf(x) =

{0}, and so S∞
f = {0}.

Proof. First, we prove f is nonnegative. Suppose there exists x̄ ∈ R
n such that

f(x̄) < 0. If we show that x̄ ∈ Xm
2

, then x̄ = 0 by (4.3), which is a contradiction.
Note that

f(tx̄) ≤ (1 − t)f(0) + tf(x̄) < 0(4.5)

for every 0 < t < 1. If f2(x̄) > 0, then f(tx̄) =
∑m

l=3 fl(x̄)tl + f2(x̄)t2 is positive for
t > 0 sufficiently small, which contradicts (4.5). Thus, f2(x̄) ≤ 0. By Theorem 4.2,
f2 is a convex polynomial, and so f2(x̄) ≥ 0. Thus f2(x̄) = 0, which implies x̄ ∈ X1.
Assume that x̄ ∈ Xk−1, where 2 ≤ k ≤ m

2 . Next we prove x̄ ∈ Xk. By Lemma
4.1 (i), we have f(tx̄) =

∑m
l=2k+1 fl(x̄)tl + f2k(x̄)t2k. If f2k(x̄) > 0, then f(tx̄) is

positive for t > 0 sufficiently small, which contradicts (4.5). Thus, f2k(x̄) ≤ 0. Note
that f(z) =

∑m
l=2k fl(z) ∀z ∈ Xk−1. By Theorem 4.2, f2k is a convex polynomial on

Xk−1, and so f2k is positive semidefinite on Xk−1. Hence, f2k(x̄) = 0, which implies
x̄ ∈ Xk−1 ∩ Ker(f2k) = Xk. By the proof above, we obtain that x̄ ∈ Xm

2
and arrive

at a contradiction. Thus, f is nonnegative.
If f(ȳ) = 0 for some ȳ 
= 0, then f(tȳ) = 0, ∀t ∈ [0, 1], from the convexity of f .

Since f is a polynomial, it is easy to see that f(tȳ) = 0 ∀t ∈ R. From Lemma 2.3, it
follows that ȳ ∈ S∞

f ∩ (−S∞
f ), which contradicts (4.1).

The claim S∞
f = {0} follows from the boundness of the set Sf = {0}.

The following result shows that a convex polynomial f =
∑m

l=2 fl has an error
bound of order 1

m locally.
Theorem 4.3. For a convex polynomial f =

∑m
l=2 fl, there exists κ > 0 such

that

‖x‖ ≤ κf(x)
1
m if ‖x‖ < 1.(4.6)

Proof. We prove the claim via a contrapositive argument. If (4.6) does not hold,
there exists a sequence {x(k)} ⊂ R

n satisfying ‖x(k)‖ < 1 and

‖x(k)‖ > kf(x(k))
1
m ∀ k ≥ 1.(4.7)
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Since {x(k)} is bounded, there exists a subsequence x(nk) such that x(nk) → y. By
(4.7), we have ‖y‖ > kf(y)

1
m ∀k ≥ 1. Then f(y) = 0, and so y = 0 according to

Lemma 4.2. Let d(k) = x(nk)
‖x(nk)‖ for each k ≥ 1. Then {d(k)} has a cluster d, with

‖d‖ = 1. Without loss of generality, assume that d = limk→∞ d(k).
Now we prove that d ∈ Xk for each k ≥ 1. For each k ≥ 1, let

σk = km
f(‖x(nk)‖d(k))

‖x(nk)‖m = km
m
∑

l=2

fl(d(k))‖x(nk)‖i−m.

Then by (4.7), σk < 1 ∀k ≥ 1. If d 
∈ X1, by Lemma 4.1(ii), we have f2(d) > 0.
Hence, f2(d(k)) > 0 for all large enough k. Since ‖d(k)‖ = 1, there exists M > 0 such
that |fi(d(k))| < M ∀k ≥ 1 and 2 ≤ i ≤ m. Then

σk ≥ km

‖x(nk)‖m−3

(

f2(d(k))
‖x(nk)‖ −M

m
∑

i=3

‖x(nk)‖i−3

)

.(4.8)

Since x(nk) → 0, the right-hand side of (4.8) is unbounded as k → ∞, which is a
contradiction. Thus, d ∈ X1. Assume that d ∈ Xk−1, where 2 ≤ k ≤ m

2 . By Lemma
4.1(i), we have

σk = km
m
∑

l=2k

fl(d(k))‖x(nk)‖l−m.

If f2k(d) > 0, similar to the proof above, we can derive a contradiction. Then d ∈ Xk.
By induction, we have d ∈ Xm

2
, and so d = 0 by (4.3), which is contradiction. The

proof is complete.
Theorem 4.4. Let f =

∑m
l=0 fl be a convex polynomial satisfying S∞

f = {0}.
(i) If there exists x̄ ∈ R

n such that f(x̄) < 0, then f has a linear error bound.
(ii) If f is nonnegative on R

n, then there exists a unique z ∈ R
n such that f(z) =

0. In particular, there exists τ > 0 such that

‖x− z‖ ≤ τ
(

f(x) + f(x)
1
m

)

∀x ∈ R
n.(4.9)

Proof. (i). Note that bd(Sf ) = {x ∈ R
n : f(x) = 0}. Then bd(Sf ) contains

none of the optimal solution set. By the fact that f is a convex function, we have
‖∇f(x)‖ > 0 ∀x ∈ bd(Sf ). Since S∞

f = {0}, Sf is bounded by [16, Theorem 8.4].
Then there exists σ > 0 such that ‖∇f(x)‖ ≥ σ for each x ∈ bd(Sf ). By [13,
Theorem 3.1(iii)], f has a linear error bound.

(ii). Note that minx∈Rn f(x) = 0. By Theorem 3.2(ii), there exists a unique
z ∈ R

n such that f(z) = 0. Let g(x) = f(x + z). Then S∞
g = {0}. Assume that

g =
∑m
l=0 gl. Since g(0) = 0, we have g0 = 0. From g(0) = minx g(x), it follows that

∇g(0) = g1 = 0. Hence, g =
∑m
l=2 gl, and so (4.6) holds for g.

To prove (4.9), it is equivalent to show that there exists τ > 0 such that

‖x‖ ≤ τ
(

g(x) + g(x)
1
m

)

∀x ∈ R
n.(4.10)

For δ > 0, let Cδ = {x : g(x) ≤ δ}. Select δ > 0 such that Cδ ⊂ {x : ‖x‖ ≤ 1
3}. Let

ḡ(x) = g(x) − δ ∀x ∈ R
n. Then Sḡ = Cδ. By Theorem 4.1, there exists τ1 > 0 such

that

d(x,Cδ) ≤ τ1[ḡ(x)]+ ≤ τ1g(x) ∀x ∈ R
n.(4.11)
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If ‖x‖ > 2
3 , ‖x‖ ≤ d(x,Cδ) + 1

3 ≤ 2d(x,Cδ). Thus, from (4.11), it follows that

‖x‖ ≤ 2d(x,Cδ) ≤ 2τ1g(x) ∀x satisfying ‖x‖ > 2
3
.(4.12)

Combining (4.6) and (4.12), it is easy to see that (4.10) holds for τ =
max{κ, 2τ1}.

Remark 4.1. By Theorems 4.1 and 4.4(i), for any convex polynomial f , if f
satisfies the Slater condition (i.e., there exists x̄ such that f(x̄) < 0), then f has a
linear error bound.

For a convex polynomial f =
∑m
l=2 fl (m ≥ 2), let

Z0 = R
n and Zi = ∩il=1 Ker(fm−2l+2) for i = 1, . . . ,

m

2
.

Lemma 4.3. For each 0 ≤ i ≤ m
2 − 1, let si(x) =

∑m
l=m−2i fl(x) ∀x ∈ R

n. Then
for each 1 ≤ i ≤ m

2 − 1, the following assertions hold:
(i) For m− 2i+ 1 ≤ l ≤ m, we have Zi ⊂ Ker(fl).
(ii) There exist τ > 0 and δ > 0 such that

si(x) ≥ τ‖x‖m−2i ∀x ∈ (Zi+1)⊥ ∩ Vδ,(4.13)

where Vδ := {x ∈ R
n : ‖x‖ ≥ δ}.

Proof. We prove the assertions by induction. Let i = 1. For (i), by the definition
of Z1, it suffices to prove Z1 ⊂ Ker(fm−1). Let f̄ : Z1 → R be the restriction of f on
Z1. Then f̄(x) =

∑m−1
l=2 fl(x) ∀x ∈ Z1, and f̄ is a convex polynomial on Z1. By [1,

p. 40 Lemma 1], fm−1 is a convex polynomial on Z1. Since m− 1 is odd, fm−1 must
vanish on Z1. From Lemma 2.6, it follows that Z1 ⊂ Ker(fm−1).

(ii). We use a contrapositive argument. If (4.13) does not hold, then there exists
a sequence {x(k)} ⊂ (Z2)⊥ satisfying ‖x(k)‖ ≥ k such that

s1(x(k)) = fm(x(k)) + fm−1(x(k)) + fm−2(x(k)) <
1
k
‖x(k)‖m−2.(4.14)

Let d(k) = x(k)
‖x(k)‖ ∈ (Z2)⊥ for each k ≥ 1. Then {d(k)} has a cluster d ∈ (Z2)⊥

satisfying ‖d‖ = 1. Without loss of generality, assume that d = limk→∞ d(k). Dividing
(4.14) by ‖x(k)‖m and letting k → ∞, we obtain fm(d) ≤ 0. By [1, p. 40 Lemma 1],
fm is a convex polynomial, which together with Corollary 2.1 implies that fm(d) = 0,
that is, d ∈ Z1. Let f̄ : Z1 → R be the restriction of f on Z1. Then f̄ is a convex
polynomial on Z1, and f̄(x) =

∑m−2
l=2 fl(x) ∀x ∈ Z1. By [1, p. 40 Lemma 1], fm−2 is

a convex polynomial on Z1. According to Corollary 2.1, fm−2 is nonnegative on Z1.
If we prove fm−2(d) ≤ 0, then fm−2(d) = 0, and so d ∈ Ker(fm−2) by Lemma 2.6.
Hence, d ∈ Z1 ∩ Ker(fm−2) = Z2. We obtain a contradiction, and so (ii) holds for
i = 1.

Now we prove fm−2(d) ≤ 0. For x ∈ R
n, we use xu (xv) to denote the projection

of x on Z1 ((Z1)⊥). By Z1 = Ker(fm) ⊂ Ker(fm−1) and Lemma 2.5,

fm(x(k)) + fm−1(x(k)) = fm(xv(k)) + fm−1(xv(k)).(4.15)

Since fm is a convex polynomial, by Lemma 2.6, fm is positive on (Z1)⊥. Then
there exists ρ > 0 such that fm(x) + fm−1(x) > 0 ∀x ∈ (Z1)⊥ ∩ Vρ. If xv(k) ∈ Vρ
for infinitely k, then the left-hand side of (4.15) is nonnegative for such k, which
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together with (4.14) implies that fm−2(x(k)) < 1
k‖x(k)‖m−2, that is, fm−2(d(k)) < 1

k .
Letting k → ∞, we obtain fm−2(d) ≤ 0. If ‖xv(k)‖ ≤ ρ for k sufficiently large, then
fm(x(k))+fm−1(x(k)) is bounded. Dividing (4.14) by ‖x(k)‖m−2 and letting k → ∞,
we obtain fm−2(d) ≤ 0 also.

Assume the assertions hold for i = j − 1, where 2 ≤ j ≤ m
2 . Now we prove (i) for

i = j. We need only to prove Zj ⊂ Ker(fm−2j+1). Let f̄ : Zj → R be the restriction
of f on Zj . Then f̄ is a convex polynomial on Zj . By the inductive hypothesis and
Zj ⊂ Ker(fm−2j+2), we have f̄(x) =

∑m−2j+1
l=2 fl(x) ∀x ∈ Zj . By [1, p. 40 Lemma 1],

fm−2j+1 is a convex polynomial on Zj . Since m− 2j+ 1 is odd, fm−2j+1 must vanish
on Zj . From Lemma 2.6, it follows that Zj ⊂ Ker(fm−2j+1).

For (ii), if (4.13) does not hold, then there exists a sequence {x(k)} ⊂ (Zj+1)⊥

satisfying ‖x(k)‖ ≥ k such that

sj(x(k)) = sj−1(x(k)) + fm−2j+1(x(k)) + fm−2j(x(k)) <
1
k
‖x(k)‖m−2j .(4.16)

Let d(k) = x(k)
‖x(k)‖ ∈ (Zj+1)⊥ for each k ≥ 1. As above, we assume that d =

limk→∞ d(k). Then d ∈ (Zj+1)⊥, and ‖d‖ = 1. For x ∈ R
n, let xu (xv) be the

projection of x on Zj ((Zj)⊥). By Zj ⊂ Ker(fm−2j+1) and the definition of Zj , we
have

sj−1(x(k)) + fm−2j+1(x(k)) = sj−1(xv(k)) + fm−2j+1(xv(k)).(4.17)

If {xv(k)} is bounded, then d = limk→∞ xu(k)/‖x(k)‖ ∈ Zj . If {xv(k)} is unbounded,
by the inductive hypothesis, (4.13) holds for i = j − 1, and so there exists τ > 0 such
that

sj−1(xv(k)) ≥ τ‖xv(k)‖m−2j+2(4.18)

for infinitely k. By (4.16), (4.17), and (4.18), we deduce that limk→∞
‖xv(k)‖
‖x(k)‖ = 0,

which implies d ∈ Zj also. Similar to the proof of i = 1, if we show that fm−2j(d) ≤ 0,
then we obtain d ∈ Zj ∩ Ker(fm−2j) = Zj+1, which is a contradiction.

Now we prove fm−2j(d) ≤ 0. Since (4.13) holds for i = j − 1, there exists ρ > 0
such that sj−1(x) + fm−2j+1(x) > 0 for any x ∈ (Zj)⊥ ∩ Vρ. If xv(k) ∈ Vρ for
infinitely k, by (4.16) and (4.17), we have fm−2j(x(k)) < 1

k‖x(k)‖m−2j for such k,
that is, fm−2j(d(k)) < 1

k . Letting k → ∞, we obtain fm−2j(d) ≤ 0. If ‖xv(k)‖ ≤ ρ
for k sufficiently large, then sj−1(x(k)) + fm−2j+1(x(k)) is bounded. Dividing (4.16)
by ‖x(k)‖m−2j and letting k → ∞, we obtain fm−2j(d) ≤ 0 also. The proof is
complete.

If d ∈ Zm
2

, by Lemma 4.3(i) and the definition of Zm
2

, f(td) =
∑m

l=2 fl(td) =
0 ∀t ∈ R. From Lemma 2.3, it follows that f(y + td) = f(y), ∀y ∈ R

n, t ∈ R, and so
d ∈ S∞

f ∩ (−S∞
f ). By (4.1), we obtain d = 0, that is, Zm

2
= {0}. By Lemma 4.3(ii)

and the fact Zm
2

= {0}, there exist τ > 0 and δ > 0 such that

f(x) ≥ τ‖x‖2 ∀x ∈ Vδ.(4.19)

Combining (4.19) and Lemma 4.2, it is easy to obtain the following stronger result.
Corollary 4.1. Let f =

∑m
l=2 fl be a convex polynomial. For any δ > 0, there

exists τ > 0 such that

f(x) ≥ τ‖x‖2 ∀x ∈ Vδ.



1644 W. H. YANG

Proposition 4.1. Let f =
∑m
l=2 fl be a convex polynomial. For any δ > 0, there

exists τ > 0 such that ‖∇f(x)‖ ≥ τ‖x‖ ∀x ∈ Vδ, where Vδ := {x ∈ R
n : ‖x‖ ≥ δ}.

Proof. Note that f(0) = f(x) − xT∇f(x) + 1
2x

T∇2f(ξ)x for some ξ ∈ R
n. Since

∇2f(ξ) is positive semidefinite, we have

‖x‖ · ‖∇f(x)‖ ≥ xT∇f(x) ≥ f(x) − f(0) ≥ τ‖x‖2 ∀x ∈ Vδ,

where the last inequality follows from Corollary 4.1. Thus, the claim is true.
Using the fact Zm

2
= {0} and a contrapositive argument, we can establish the

following result, which generalizes Corollary 3.1 to the nonhomogeneous convex poly-
nomials.

Proposition 4.2. Let f =
∑m

l=2 fl be a convex polynomial. Then ∇f is a
one-to-one mapping from R

n onto itself.
Proof. By Lemma 4.2, we have S∞

f = {0}, which together with Theorem 3.2(ii)
implies that f is strictly convex. If we prove limλ→∞

f(λy)
λ = +∞ for every y 
= 0,

then the claim follows from [16, Theorem 26.6]. Suppose the contrary. There exists
ȳ 
= 0 such that

lim
λ→∞

f(λȳ)
λ

= δ(4.20)

for some δ ≥ 0. We must have ȳ ∈ Z1. Otherwise, fm(ȳ) > 0, and so limλ→∞
f(λȳ)
λ =

+∞. Suppose ȳ ∈Zk−1, where 2≤ k≤ m
2 . By Lemma 4.3(i), f(λȳ) =

∑m−2k+2
l=2 fl(λȳ).

We must have ȳ ∈ Zk. Otherwise, we will obtain a contradiction to (4.20). Thus, we
arrive at ȳ ∈ Zm

2
, and so ȳ = 0, which is a contradiction.

Remark 4.2. For a convex polynomial f =
∑m

l=2 fl, if S∞
f ∩ (−S∞

f ) = {0} does
not hold, according to Lemma 4.2, S∞

f must be a linear space. Thus, by Theorem 3.1,
one has that S∞

f = ∩ml=2 Ker(fl). Moreover, using a similar argument of Corollary 3.2,
it is easy to prove (S∞

f )⊥ = R(∇f).

5. Error bounds for polyhedral-constrained convex polynomials. In this
section, we consider the error bounds of the following problem:

minf(x)(5.1)
subject to x ∈ P,

where f is an mth-order convex polynomial and P is a polyhedral set. Let P =
{x ∈ R

n : (ai)Tx ≤ bi, 1 ≤ i ≤ k}, where ai ∈ R
n, bi ∈ R for each i ∈ [k]. Let

S = Sf ∩ P 
= ∅. By Lemma 2.4, if d ∈ S∞ ∩ (−S∞), then f is constant along the
direction ±d and P + td = P ∀t ∈ R. Hence, without loss of generality, we assume
that

S∞ ∩ (−S∞) = {0}.

First, we will derive a linear error bound under the Slater condition.

There exists x∗ ∈ S such that f(x∗) < 0.(5.2)

For each x ∈ bd(S), we define the index set of x by I(x) := {i ∈ [k] : (ai)Tx = bi}.
Theorem 5.1. If there exists x∗ ∈ S such that f(x∗) < 0, then there exists τ > 0

such that

d(x, S) ≤ τ [f(x)]+ ∀x ∈ P.(5.3)
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Proof. Let F (x) = f(x) + ιP (x), ∀x ∈ R
n, where ιP (x) = 0 ∀x ∈ P and

ιP (x) = +∞ ∀x 
∈ P . Then ∂F (x) = ∇f(x) +NP (x) for each x ∈ P . Fix y ∈ bd(S),
which satisfies f(y) = 0. By (5.2) and [2, Corollary 3],

NS(y) = NSf
(y) +NP (y) =

{

λ∇f(y) +
∑

i∈I(y)
λia

i : λ ≥ 0, λi ≥ 0 ∀i ∈ I(y)

}

.

Hence, NS(y) = {θ∂F (y) : θ ≥ 0}. If h ∈ N1
S(y), then h = θ(∇f(y) +

∑

i∈I(y) μia
i)

for some θ > 0 and μi ≥ 0 ∀i ∈ I(y). By (2.1), we have

F ′(y;h) = max
{

hT ξ : ξ ∈ ∂F (y)
}

≥ θ

∥

∥

∥

∥

∥

∇f(y) +
∑

i∈I(y)
μia

i

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∇f(y) +
∑

i∈I(y)
μia

i

∥

∥

∥

∥

∥

.
(5.4)

Now we prove that for each x ∈ bd(S) satisfying f(x) = 0, the following holds:
∥

∥

∥

∥

∥

∇f(x) +
∑

i∈I(x)
λia

i

∥

∥

∥

∥

∥

≥ 1
τ

∀λi ≥ 0, i ∈ I(x).(5.5)

Then (5.3) follows from [13, Theorem 3.1(iii)], (5.4), and (5.5). Suppose the contrary.
There exist sequences of {xr} and {λr} such that xr ∈ bd(S), f(xr) = 0, λr ≥ 0, and

∇f(xr) +
∑

i∈I(xr)

λri a
i → 0.(5.6)

Since I(xr) ⊂ [k] and [k] has finite number of subsets, there is a subsequence {yr} of
{xr} such that I(yr) = I for some index set I ⊂ [k]. Without loss of generality, we
may assume that I(xr) = I. Let L = {x ∈ R

n : (ai)Tx = bi ∀i ∈ I}. Then {xr} ⊂ L.
Now we show that {xr} is unbounded. Otherwise, {xr} has a cluster, say x∞.

Then f(x∞) = 0 and (ai)Tx∞ = bi ∀i ∈ I. From (5.6), it follows that ‖
∑

i∈I(xr) λ
r
i a
i‖

is bounded. By Hoffman’s error bound we may assume, without loss of generality,
that {λri }, i ∈ I is bounded. Therefore, by passing to a subsequence if necessary,
we can assume that the sequence {λri } converges to λ∞i ≥ 0 for each i ∈ I. Then
(cf. (5.6))

∇f(x∞) +
∑

i∈I
λ∞i a

i = 0.(5.7)

Let ϕ(x) = f(x)+
∑

i∈I λ
∞
i ((ai)Tx−bi) ∀x ∈ R

n. Then ϕ(x∞) = 0 and ∇ϕ(x∞) = 0.
Since ϕ is convex, ϕ attains its global minimum, which is 0, at x∞. However, by (5.2)
and the fact x∗ ∈ P , we have ϕ(x∗) < 0, a contradiction. Hence, {xr} is unbounded.

If S∞
f is a linear space, without loss of generality, we assume that S∞

f = (0,Rn−p)T

for some p < n. For each x ∈ R
n, let xu denote the vector of the first p components

of x, that is, xu = (x1, . . . , xp). Then f(x) = g(xu), where g is a convex polynomial
on R

p satisfying S∞
g = {0}. Thus, Sg is bounded, which implies {xru} is bounded.

Therefore, {xru} has a cluster z ∈ R
p. Let x∞ = (zT , 0)T ∈ R

n. Then f(x∞) = 0.
Similar to the proof above, we can assume that the sequence {λri } converges to λ∞i ≥ 0
for each i ∈ I. Then (5.7) holds for x∞ and λ∞. By the same argument as above, we
can derive a contradiction.
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Thus, S∞
f is not a space. By Theorem 3.1 and Theorem 3.2(i), without loss of

generality, we assume that S∞
f = {x ∈ R

n : xp+1 ≥ 0, xi = 0 for i > p+ 1} for some
p ≤ n− 1 and

f(x) = g(x1, . . . , xp) + cxp+1,

where g is a convex polynomial on R
p satisfying S∞

g = {0} and c < 0. By Theo-
rem 3.2(ii), g is strictly convex. It is not hard to see that there exist r1 and r2 such
that f(x

r1+xr2

2 ) < 0. Let f̄ be the restriction of f on L. Then f̄ satisfies the Slater
condition. By coordinate transformation, if necessary, and using Remark 4.1, f̄ has a
linear error bound.

Fix q ∈ {x ∈ L : f̄(x) = 0}. Let w be the projection of ∇f(q) onto L∞. Then
w 
= 0. Otherwise, f̄ will attain its minimum at q. Note that ‖w‖ = min{‖∇f(q)+ξ‖ :
ξ ∈ (L∞)⊥}. We also have N1

Sf̄
(q)∩L∞ = {w/‖w‖}. Since f̄ has a linear error bound,

by [13, Theorem 3.1(iii)], there exists κ > 0 such that

κ < f̄

(

q;
w

‖w‖

)

=
wT∇f(q)

‖w‖ = ‖w‖ = min
{

‖∇f(q) + ξ‖ : ξ ∈ (L∞)⊥
}

,

which contradicts (5.6) since (L∞)⊥ = {
∑

i∈I λia
i : λi ∈ R}. The proof is com-

plete.
Theorem 5.2. If f is nonnegative on P , then there exists τ > 0 such that

d(x, S) ≤ τ
(

f(x) + f(x)
1
m

)

∀x ∈ P.(5.8)

Proof. It is easy to see that S is a singleton set. Assume that S = {x∗}. By KKT
condition of problem (5.1), there exist λi ≥ 0, ∀i ∈ I(x∗), such that

∇f(x∗) +
∑

i∈I(x∗)

λia
i = 0.

Let ϕ(x) = f(x) +
∑

i∈I(x∗) λi((a
i)Tx− bi) ∀x ∈ R

n. Then ϕ is a convex polynomial
and ∇ϕ(x∗) = 0, and so ϕ attains its minimum at x∗. By Theorem 4.4(ii), (5.8) holds
thanks to ϕ(x) ≤ f(x) ∀x ∈ P .
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CALMNESS FOR L-SUBSMOOTH MULTIFUNCTIONS IN
BANACH SPACES∗

XI YIN ZHENG† AND KUNG FU NG‡

Abstract. Using variational analysis techniques, we study subsmooth multifunctions in Banach
spaces. In terms of the normal cones and coderivatives, we provide some characterizations for such
multifunctions to be calm. Sharper results are obtained for Asplund spaces. We also present some
exact formulas of the modulus of the calmness. As applications, we provide some error bound results
on nonconvex inequalities, which improve and generalize the existing error bound results.

Key words. subsmoothness, calmness, metric subregularity, error bound, multifunction
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1. Introduction. As an extension of convexity, prox-regularity of a set expresses
a variational behavior of “order two” and plays an important role in variational anal-
ysis (see [5, 32, 34] and the references therein). Recently, Aussel, Daniilidis, and
Thibault [1] considered a variational behavior of “order one” of a set and introduced
subsmoothness, extending the notions of the smoothness and the prox-regularity. Mo-
tivated by their work, we consider (in section 3) a further weakened notion (called
L-subsmooth).

The calmness property plays an important role in many issues in mathematical
programming like exact penalty functions, optimality conditions, local error bounds,
weak sharp minima, and so on. Recently, many authors studied calmness (cf. [8, 11,
9, 10, 17, 34, 43, 45] and the references therein). Let Y,X be Banach spaces and
M : Y ⇒ X a multifunction. For ȳ ∈ Y and x̄ ∈M(ȳ), recall that M is calm at (ȳ, x̄)
if there exist η, δ ∈ (0, +∞) such that

(1.1) d(x,M(ȳ)) ≤ η‖y − ȳ‖ ∀y ∈ B(ȳ, δ) and x ∈M(y) ∩B(x̄, δ),

where B(x̄, δ) denotes the open ball with center x̄ and radius r. Let F (x) := {y ∈ Y :
x ∈ M(y)} for all x ∈ X . As observed by Henrion and Outrata [10], the calmness of
M at (ȳ, x̄) is equivalent to the condition that there exist η, δ ∈ (0, +∞) such that

(1.2) d(x, F−1(ȳ) ≤ ηd(ȳ, F (x)) ∀x ∈ B(x̄, δ).

Following Dontchev and Rockafellar [6], (1.2) means that the generalized equation
ȳ ∈ F (x) is metrically subregular at x̄. This property provides an estimate on how
far a candidate x can be from the solution set of the generalized equation. A stronger
property is the following: a multifunction F is said to be metrically regular at x̄ for ȳ
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if there exist τ, δ ∈ (0, +∞) such that

(1.3) d(x, F−1(y)) ≤ τd(y, F (x)) ∀(x, y) ∈ B(x̄, δ) ×B(ȳ, δ)).

Both notions (of the metric regularity and the metric subregularity) have been studied
by many authors (see [7, 6, 14, 20, 23, 24, 25, 28, 40, 43] and the references therein). In
particular, it is well known (cf. [23, 24, 25, 34]) that if X and Y are finite-dimensional,
then F is metrically regular at x̄ for ȳ if and only if D∗F (x̄, ȳ)−1(0) = {0}; moreover

(1.4) inf{τ > 0 : (1.3) holds} = ‖D∗F (x̄, ȳ)−1‖− = lim sup
(x,y)

Gr(F )−→ (x̄,ȳ)

‖D∗F (x, y)−1‖−,

where D∗F (x, y) is the coderivative of F at (x, y) and ‖D∗F (x, y)−1‖− denotes the
inner norm of D∗F (x, y)−1 (see section 2 for undefined terms and further notation).
The modulus of the calmness of M at (ȳ, x̄) is denoted by η(M ; ȳ, x̄) and defined by

(1.5) η(M ; ȳ, x̄) := inf{η ∈ (0, ∞) : (1.1) holds for some δ ∈ (0, +∞)}.

The case η(M ; ȳ, x̄) = ∞ indicates that M is not calm at (ȳ, x̄) (here and throughout
we adopt the convention that the infimum over the empty set is ∞). In terms of
the normal cone of M(ȳ), the derivative, or subdifferential, Henrion and Outrata
[9], Henrion, Jourani, and Outrata [11], and Henrion and Jourani [8] gave sufficient
conditions for η(M ; ȳ, x̄) < +∞ in some special cases. Recently, in terms of the normal
cone and coderivative, the authors [43] considered the case when M is a general closed
convex multifunction between Banach spaces and provided some characterizations for
η(M ; ȳ, x̄) < +∞. This and (1.4) motivate us to seek some formulas for η(M ; ȳ, x̄)
in terms of coderivative in the case when M is not necessarily convex. In section 4,
for L-subsmooth multifunctions, we establish some such formulas and provide several
sufficient and/or necessary conditions for the calmness. In section 5, as an application,
we consider error bounds for inequalities. In particular, we extend some existing error
bound results from the convex case to the nonconvex case.

2. Preliminaries. Let X be a Banach space. Let X∗ and BX denote the dual
space and the closed unit ball of X , respectively.

For a closed subset A of X and a ∈ A, let Tc(A, a) and T (A, a) denote, respec-
tively, the Clarke tangent cone and the contingent (Bouligand) cone of A at a; they
are defined by

Tc(A, a) := lim inf
x

A→a,t→0+

A− x

t
and T (A, a) := lim sup

t→0+

A− a

t
,

where x A→ a means that x→ a with x ∈ A. Thus, v ∈ Tc(A, a) if and only if, for each
sequence {an} in A converging to a and each sequence {tn} in (0, ∞) decreasing to
0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for all
n, while v ∈ T (A, a) if and only if there exist a sequence {vn} converging to v and a
sequence {tn} in (0, ∞) decreasing to 0 such that a+ tnvn ∈ A for all n. We denote
by Nc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ Tc(A, a)}.

For ε ≥ 0 and a ∈ A, the nonempty set

N̂ε(A, a) :=

{

x∗ ∈ X∗ : lim sup
x

A→a

〈x∗, x− a〉
‖x− a‖ ≤ ε

}
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is called the set of Fréchet ε-normals of A at a. When ε = 0, N̂ε(A, a) is a convex
cone which is called the Fréchet normal cone of A at a and is denoted by N̂(A, a).

Let N(A, a) denote the Mordukhovich normal cone (also known as the limiting
or basic normal cone) of A at a, that is,

N(A, a) = lim sup
x

A→a,ε→0+

N̂ε(A, x).

Thus, x∗ ∈ N(A, a) if and only if there exists a sequence {(xn, εn, x∗n)} in A×R+×X∗

such that (xn, εn) → (a, 0), x∗n
w∗
→ x∗ and x∗n ∈ N̂εn(A, xn) for each n ∈ N, where N

denotes the set of all natural numbers. It is known that

(2.1) N̂(A, a) ⊂ N(A, a) ⊂ Nc(A, a)

(cf. [24, 25, 26]). It is known that if A is convex, then Tc(A, a) = T (A, a) and

Nc(A, a) = N̂(A, a) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 〈x∗, a〉 ∀x ∈ A}.

Recall that a Banach space X is called an Asplund space if every continuous convex
function on X is Fréchet differentiable at each point of a dense subset of X (for
other definitions and their equivalents, see [31, Definition 1.22 and Corollary 2.35]).
It is well known (cf. [31]) that X is an Asplund space if and only if every separable
subspace of X has a separable dual space. In the case when X is an Asplund space,
Mordukhovich and Shao [26] proved that

Nc(A, a) = cl∗(co(N(A, a))) and N(A, a) = lim sup
x

A→a

N̂(A, x).

The following approximate projection result (recently established in [44]) will play
an important role in the proofs of our main results.

Lemma 2.1. Let be A a nonempty closed subset of a Banach space X and let
γ ∈ (0, 1). Then for any x ∈ A there exist a ∈ bd(A) and a∗ ∈ Nc(A, a) with
‖a∗‖ = 1 such that

γ‖x− a‖ < min{d(x,A), 〈a∗, x− a〉}.

If X is assumed to be an Asplund space, then above a∗ can be chosen from N̂(A, a).
For a multifunction F between Banach spaces X and Y , the graph of F is defined

by

Gr(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.

As usual, F is said to be closed (resp., convex) if Gr(F ) is a closed (resp., convex)
subset of X × Y . Let (x, y) ∈ Gr(F ). The Clarke tangent and contingent derivatives
DcF (x, y), DF (x, y) of F at (x, y) are defined by

Gr(DcF (x, y)) = Tc(Gr(F ), (x, y)) and Gr(DF (x, y)) = T (Gr(F ), (x, y)),

respectively. Let D̂∗F (x, y), D∗F (x, y), and D∗
cF (x, y) denote the coderivatives of F

at (x, y) associated, respectively, with the Fréchet, Mordukhovich, and Clarke normal
structures; they are defined by

D̂∗F (x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂(Gr(F ), (x, y))} ∀y∗ ∈ Y ∗,

D∗F (x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(Gr(F ), (x, y))} ∀y∗ ∈ Y ∗,
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and

D∗
cF (x, y)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ Nc(Gr(F ), (x, y))} ∀y∗ ∈ Y ∗.

The history of the coderivatives can be found in Mordukhovich’s book [24, 25].
Let G : X ⇒ Y be a positively homogeneous multifunction (i.e., Gr(G) is a cone

in X × Y ). Following Dontchev, Lewis, and Rockefeller [7], the inner norm of G is
defined by ‖G‖− := supx∈BX

infy∈Gx ‖y‖. For a cone K in X , let ‖G|K‖− be defined
by ‖G|K‖− := supx∈BX∩K infy∈Gx ‖y‖. It is not difficult to verify that

(2.2) ‖G−1|C‖− = inf{τ > 0 : C ∩BY ⊂ τG(BX)}.

3. Subsmoothness of multifunctions. Throughout the remainder of this pa-
per, X , Y , and Z denote Banach spaces. If additional conditions are imposed, they
will be explicitly specified.

Let A be a subset of X and a ∈ A. Recall (see [5, 32, 34]) that A is prox-regular
at a if there exist σ, δ ∈ (0, +∞) such that

〈x∗ − u∗, x− u〉 ≥ −σ‖x− u‖2

whenever x, u ∈ B(a, δ) ∩ A, x∗ ∈ Nc(A, x) ∩ BX∗ , and u∗ ∈ Nc(A, u) ∩ BX∗ . As
an interesting extension of the prox-regularity, Aussel, Daniilidis, and Thibault [1]
introduced and studied the following subsmoothness and semisubsmoothness: A is
said to be

(a) subsmooth at a ∈ A if for any ε > 0 there exists δ > 0 such that

〈x∗ − u∗, x− u〉 ≥ −ε‖x− u‖

whenever x, u ∈ B(a, δ) ∩A, x∗ ∈ Nc(A, x) ∩BX∗ , and u∗ ∈ Nc(A, u) ∩BX∗ ;
(b) semisubsmooth at a ∈ A if

〈x∗ − a∗, x− a〉 ≥ −ε‖x− a‖

whenever x ∈ B(a, δ) ∩A, x∗ ∈ Nc(A, x) ∩BX∗ , and a∗ ∈ Nc(A, a) ∩BX∗ .
It is easy to verify that A is subsmooth at a ∈ A if and only if for any ε > 0 there

exists δ > 0 such that

〈u∗, x− u〉 ≤ ε‖x− u‖

whenever x, u ∈ B(a, δ) ∩ A and u∗ ∈ Nc(A, u) ∩ BX∗ . In the above (b), setting
x∗ = 0, one can define a weaker notion: A satisfies condition (S) at a if for any ε > 0
there exists δ > 0 such that

〈a∗, x− a〉 ≤ ε‖x− a‖ ∀x ∈ B(a, δ) ∩A and ∀a∗ ∈ Nc(A, a) ∩BX∗ .

Clearly, if A satisfies condition (S), then Nc(A, a) ⊂ N̂(A, a) and so, by (2.1),

Nc(A, a) = N(A, a) = N̂(A, a).

It is known (and easily verified) that

convexity⇒prox-regularity⇒subsmoothness⇒semisubsmoothness⇒condition (S).
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In what follows, let F : X ⇒ Y be a closed multifunction, and let a ∈ X and
b ∈ F (a).

Definition 3.1. We say that F is subsmooth (resp., satisfies condition (S)) at
(a, b) if Gr(F ) is subsmooth (resp., satisfies condition (S)) at (a, b).

Now we introduce a few new notions which are weaker than the subsmoothness
but stronger than condition (S). They will play an important role in our analysis.

Definition 3.2. We say that
(i) F is L-subsmooth at (a, b) if for any ε > 0 there exists δ > 0 such that

(3.1) 〈u∗, x− a〉 + 〈v∗, y − v〉 ≤ ε(‖x− a‖ + ‖y − v‖)

whenever v ∈ F (a)∩B(b, δ), (u∗, v∗) ∈ Nc(Gr(F ), (a, v))∩ (BX∗ ×BY ∗), and (x, y) ∈
Gr(F ) with ‖x− a‖ + ‖y − b‖ < δ;

(i′) F is L-subsmooth at (a, b) if F−1 is L-subsmooth at (b, a);
(ii) F is weakly L-subsmooth if same as in (i) but the Clarke normal cone Nc(Gr

(F ), ·) is replaced with the Mordukhovich normal cone N(Gr(F ), ·);
(ii′) F is weakly L-subsmooth at (a, b) if F−1 is weakly L-subsmooth at (b, a).
It is clear that the subsmoothness of F at (a, b) implies both the L-subsmoothness

and the L-subsmoothness of F at (a, b) and that the L-subsmoothness implies the weak
L-subsmoothness.

Below we provide some sufficient conditions for subsmoothness of multifunctions.
Proposition 3.3. Suppose that F is defined by F (x) = g(x) + Ω for all x ∈ X,

where g : X → Y is a smooth function and Ω is a closed subset of Y . Let (a, b) ∈
Gr(F ). Then the following assertions hold.

(i) Tc(Gr(F ), (a, b)) = {(u, v) ∈ X × Y : v ∈ g′(a)(u) + Tc(Ω, b− g(a))}.
(ii) Nc(Gr(F ), (a, b)) = {(−(g′(a))∗(y∗), y∗) ∈ X∗ × Y ∗ : y∗ ∈ Nc(Ω, b− g(a))}.
(iii) If, in addition, Ω is subsmooth at b− g(a), F is subsmooth at (a, b).
Proof. (i) Let (u, v) ∈ Tc(Gr(F ), (a, b)) and take sequences ωn

Ω→ b − g(a) and

tn ↓ 0. Then (a, g(a) + ωn)
Gr(F )−→ (a, b) and hence there exists a sequence {(un, vn)}

converging to (u, v) such that for all n ∈ N,

(a, g(a) + ωn) + tn(un, vn) ∈ Gr(F ),

that is, g(a) + ωn + tnvn ∈ g(a+ tnun) + Ω. This means that

ωn + tn

(

vn − g(a+ tnun) − g(a)
tn

)

∈ Ω ∀n ∈ N.

Since vn− g(a+tnun)−g(a)
tn

→ v−g′(a)(u), we obtain that v−g′(a)(u) ∈ Tc(Ω, b−g(a)).
This shows that the set on the left-hand side of (i) is contained in the set on the right-
hand side. To prove the converse inclusion, let u ∈ X and v ∈ g′(a)(u)+Tc(Ω, b−g(a));

take arbitrary sequences (xn, yn)
Gr(F )−→ (a, b) and tn ↓ 0. Then there exists a sequence

{ωn} in Ω such that ωn = yn− g(xn) → b− g(a), and so there exists a sequence {ω̃n}
in Ω such that ω̃n−ωn

tn
→ v − g′(a)(u). By the smoothness of g, it follows that

vn :=
g(xn + tnu) − g(xn)

tn
+
ω̃n − ωn

tn
→ v.

Note that, for each n ∈ N,

yn + tnvn = g(xn) + ωn + tnvn = g(xn + tnu) + ω̃n ∈ F (xn + tnu),
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that is, (xn, yn) + tn(u, vn) ∈ Gr(F ). Therefore (u, v) ∈ Tc(Gr(F ), (a, b)). This shows
that the converse inclusion holds.

(ii) This follows easily from (i).
(iii) Let ε > 0. Since g is smooth, there exist M, r ∈ (0, +∞) such that

(3.2) ‖g(x) − g(u)‖ ≤M‖x− u‖ ∀x, u ∈ B(a, r)

and

(3.3) ‖g(x) − g(u) − g′(u)(x − u)‖ ≤ ε

2
‖x− u‖ ∀x, u ∈ B(a, r).

By the subsmoothness of Ω at b− g(a), there exists δ1 > 0 such that

(3.4) 〈z∗, y − z〉 ≤ ε

2(1 +M)
‖y − z‖

whenever y, z ∈ Ω ∩B(b − g(a), δ1) and z∗ ∈ Nc(Ω, z) ∩BY ∗ . By the continuity of g
and the definition of F , there exists δ ∈ (0, r) such that

(3.5) y − g(x) ∈ Ω ∩B(b − g(a), δ1) ∀(x, y) ∈ Gr(F ) ∩B((a, b), δ).

Let (x, y), (u, v) ∈ Gr(F )∩B((a, b), δ) and (u∗, v∗) ∈ Nc(Gr(F ), (u, v))∩(BX∗ ×BY ∗).
Then, by (ii), u∗ = −(g′(u))∗(v∗) and v∗ ∈ Nc(Ω, v − g(u)) ∩ BY ∗ . Thanks to (3.5),
one can apply (3.4) to y − g(x), v − g(u) in place of y, z and conclude that

〈v∗, y − g(x) − (v − g(u))〉 ≤ ε

2(1 +M)
‖y − g(x) − (v − g(u))‖;

it follows from (3.3) and (3.2) that

〈(u∗, v∗), (x, y) − (u, v)〉 = 〈v∗,−g′(u)(x− u) + y − v〉

≤ 〈v∗,−(g(x) − g(u)) + y − v〉 +
ε‖x− u‖

2

≤ ε

2(1 + M)
‖y − v − g(x) + g(u)‖ +

ε

2
‖x− u‖

≤ ε

2(1 + M)
‖y − v‖ +

(

εM

2(M + 1)
+
ε

2

)

‖x− u‖

≤ ε(‖x− u‖ + ‖y − v‖).

This shows that F is subsmooth at (a, b). The proof is complete.
In the case when g′(a) is surjective, Proposition 3.3 can be strengthened as follows.
Proposition 3.4. Suppose that F : X ⇒ Y is defined by F (x) = G(g(x)) for

all x ∈ X, where g : X → Z is a smooth function and G : Z ⇒ Y is a closed
multifunction. Let (a, b) ∈ Gr(F ). Suppose that g′(a) is surjective and that G is L-
subsmooth (resp., subsmooth) at (g(a), b). Then F is L-subsmooth (resp., subsmooth)
at (a, b).

To prove Proposition 3.4, we need the following lemma, which is of some inde-
pendent interest.

Lemma 3.5. Let Θ be a closed subset of Y . Let g : X → Y be strictly differentiable
at x̄ ∈ g−1(Θ) and suppose that g′(x̄) is surjective. Then

(3.6) Tc(g−1(Θ), x̄) = (g′(x̄))−1(Tc(Θ, g(x̄)))
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and

(3.7) Nc(g−1(Θ), x̄) = g′(x̄)∗(Nc(Θ, g(x̄))).

Proof. Let h ∈ Tc(g−1(Θ), x̄) and take any sequences yn
Θ→ g(x̄) and tn ↓ 0. By

our assumptions on x̄, the Lyusternik–Graves theorem (cf. [24, Theorem 1.57]) can
be applied and so there exists μ ∈ (0, +∞) such that for all large enough n,

d(x̄, g−1(yn)) ≤ μ‖g(x̄) − yn‖.

It follows that there exists xn ∈ g−1(yn) ⊂ g−1(Θ) such that xn → x̄. Since h ∈
Tc(g−1(Θ), x̄), there exists a sequence hn → h such that xn + tnhn ∈ g−1(Θ) for all
n. On the other hand, the strict differentiability assumption implies that

(3.8) g(xn + tnhn) = yn + g′(x̄)(tnhn) + tn‖hn‖αn,

where {αn} is a sequence in Y converging to 0. Since g′(x̄) is surjective, the open
mapping theorem implies that there exists a sequence {un} in X converging to 0 such
that g′(x̄)(un) = αn. Hence g′(x̄)(hn + ‖hn‖un) → g′(x̄)(h). Noting (by (3.8)) that

yn + tng
′(x̄)(hn + ‖hn‖un) = g(xn + tnhn) ∈ Θ,

it follows that g′(x̄)(h) ∈ Tc(Θ, g(x̄)). Therefore,

Tc(g−1(Θ), x̄) ⊂ (g′(x̄))−1(Tc(Θ, g(x̄))).

Conversely, let u∈(g′(x̄))−1(Tc(Θ, g(x̄))). Then g′(x̄)(u)∈ Tc(Θ, g(x̄)). To prove (3.6),

we have to show that u ∈ Tc(g−1(Θ), x̄). To do this, let xn
g−1(Θ)−→ x̄ and tn ↘ 0. Then

g(xn) Θ→ g(x̄). Hence, there exists a sequence vn → g′(x̄)(u) such that g(xn) + tnvn ∈
Θ for all n. By the Lyusternik–Graves theorem, we assume without loss of generality
that

(3.9) d(xn + tnu, g
−1(g(xn) + tnvn)) ≤ μ‖g(xn + tnu) − g(xn) − tnvn‖

for some μ ∈ (0, +∞) and all n ∈ N. By the strict differentiability of g at x̄,

g(xn + tnu) − g(xn) = g′(x̄)(tnu) + o(tn).

This and (3.9) imply that there exists x̃n with

x̃n ∈ g−1(g(xn) + tnvn) ⊂ g−1(Θ)

such that

‖xn + tnu− x̃n‖ ≤ 2μ(tn‖g′(x̄)(u) − vn‖ + ‖o(tn)‖).

Then un := x̃n−xn

tn
→ u and xn + tnun = x̃n ∈ g−1(Θ). This shows that u ∈

Tc(g−1(Θ), x̄) as required to show. Since g′(x̄)(X) = Y , (3.7) is immediate from (3.6)
and [39, Corollary 2.8.4 (ii)] (applied to g′(x̄), X, Tc(Θ, g(x̄)) in place of A,L,M). The
proof is complete.

Remark 3.1. Our formula (3.7) was inspired by Mordukhovich [24, Corollary 1.15]
where the same relation was established but for Fréchet normal cones in place of Clarke
normal cones. In the literature, study on the calculus of the Clarke tangent cone and
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normal cone seems to be quite scarce. Nevertheless, Clarke [4, p. 108, Corollary 1] did
prove the same formula but required that g′(x̄)(X) ∩ int(Tc(Θ, g(x̄)) = ∅ and that Θ
admit a hypertangent vector at g(x̄), namely, there exist v ∈ Y and r > 0 such that

B(g(x̄), r) ∩ Θ + tB(v, r) ⊂ Θ ∀t ∈ (0, r).

For Proposition 3.4, we shall also need the following lemma.
Lemma 3.6. Let g : X → Z be smooth and a ∈ X, and suppose that g′(a) is

surjective. Then there exist l, r ∈ (0, +∞) such that

(3.10) lBZ ⊂ g′(u)(BX) and l‖z∗‖ ≤ ‖(g′(u))∗(z∗)‖ ∀u ∈ B(a, r) and ∀z∗ ∈ Z∗.

Proof. We need only show that the inclusion in (3.10) holds for some l, r ∈
(0, +∞) (the inequality then follows easily). By the surjectivity assumption and the
open mapping theorem, there exists l ∈ (0, +∞) such that 2lBZ ⊂ g′(a)(BX); by the
smoothness of g, there exists r > 0 such that ‖g′(u) − g′(a)‖ < l

2 for all u ∈ B(a, r).
Hence,

2lBZ ⊂ (g′(u) + (g′(a) − g′(u)))(BX) ⊂ g′(u)(BX) +
l

2
BZ ∀u ∈ B(a, r).

By the Radstrom cancellation lemma (cf. [42, Lemma 2.3]), this implies that

(3.11)
3l
2
BZ ⊂ cl(g′(u)(BX)) ∀u ∈ B(a, r).

Since X,Z are Banach spaces and g′(u) is a bounded linear operator from X to Z,
g′(u)(BX) and cl(g′(u)(BX)) have the same interior (by [15, p. 183, Theorem A.1]).
It follows from (3.11) that the inclusion in (3.10) holds. This completes the proof.

Proof of Proposition 3.4. We shall prove only the assertion regarding the L-
subsmoothness (the corresponding assertion regarding the subsmoothness can be
proved similarly). By the smoothness and surjectivity assumption and Lemma 3.6,
there exist M, l, r ∈ (0, +∞) such that (3.2) and (3.10) hold. Suppose that G is
L-subsmooth at (g(a), b). Let ε > 0 and σ := lε

(l+1)(M+1) . Then there exists η > 0
such that

〈w∗, z − w〉 + 〈v∗, y − b〉 ≤ σ(‖z − w‖ + ‖y − b‖)

for any w ∈ G−1(b) ∩ B(g(a), η), (w∗, v∗) ∈ Nc(Gr(G), (w, b)) ∩ (BZ∗ × BY ∗), and
(z, y) ∈ Gr(G) with ‖z − g(a)‖ + ‖y − b‖ ≤ η. On the other hand, the smoothness of
g implies that there exists δ ∈ (0, r) such that

‖g(x) − g(u) − g′(u)(x− u)‖ ≤ σ‖x− u‖ ∀x, u ∈ B(a, δ),(3.12)

g(B(a, δ)) ⊂ B(g(a), η),

and

‖x− a‖ + ‖y − b‖ < δ =⇒ ‖g(x) − g(a)‖ + ‖y − b‖ < η.

Let u ∈ F−1(b) ∩B(a, δ). Then g(u) ∈ G−1(b) ∩B(g(a), η) and hence

(3.13) 〈w∗, g(x) − g(u)〉 + 〈v∗, y − b〉 ≤ σ(‖g(x) − g(u)‖ + ‖y − b‖)
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for any (w∗, v∗) ∈ Nc(Gr(G), (g(u), b)) ∩ (BZ∗ ×BY ∗) and (x, y) ∈ Gr(F ) with ‖x−
a‖ + ‖y − b‖ < δ. Let g̃ : X × Y → Z × Y be defined by g̃(x, y) = (g(x), y) for all
(x, y) ∈ X × Y . Then g̃ is smooth and g̃′(u, b)(BX × BY ) = g′(u)(BX) × BY ; hence
g̃′(u, b) is surjective (by the first equality of (3.10)). Noting that Gr(F ) = g̃−1(Gr(G)),
it follows from Lemma 3.5 that Nc(Gr(F ), (u, b)) = (g̃′(u, b))∗(Nc(Gr(G), (g(u), b))).
This and the definition of g̃ imply that

Nc(Gr(F ), (u, b)) = {((g′(u))∗(z∗), y∗) : (z∗, y∗) ∈ Nc(Gr(G), (g(u), b))}.

Now let (u∗, y∗) ∈ Nc(Gr(F ), (u, b)) ∩ (BX∗ ×BY ∗). Then there exists z∗ ∈ Z∗ such
that u∗ = (g′(u))∗(z∗) and (z∗, y∗) ∈ Nc(Gr(G), (g(u), b)). It follows from (3.10) that
‖z∗‖ ≤ 1

l . Thus, applying (3.13) (with l
1+l (z

∗, y∗) in place of (w∗, v∗)) and making
use of (3.2), one has

〈z∗, g(x) − g(u)〉 + 〈y∗, y − b〉 ≤ σ(l + 1)
l

(‖g(x) − g(u)‖ + ‖y − b‖)(3.14)

≤ σ(l + 1)
l

(M‖x− u‖ + ‖y − b‖)

for any (x, y) ∈ Gr(F ) with ‖x− a‖ + ‖y − b‖ < δ. Moreover, (3.12) entails that for
any x ∈ B(a, δ),

−σ
l
‖x− u‖ ≤ 〈z∗, g(x) − g(u) − g′(u)(x− u)〉

= 〈z∗, g(x) − g(u)〉 − 〈u∗, x− u〉.

This and (3.14) imply that

〈u∗, x− u〉 + 〈y∗, y − b〉 ≤ σ(l + 1)(M + 1)
l

(‖x− u‖ + ‖y − b‖)

= ε(‖x− u‖ + ‖y − b‖)

for any (x, y) ∈ Gr(F ) with ‖x− a‖+ ‖y− b‖ < δ. This shows that F is L-subsmooth
at (a, b). The proof is complete.

Note that every closed convex multifunction is subsmooth at each point of its
graph. The following corollary is immediate from Proposition 3.4.

Corollary 3.7. Suppose that F is defined by F = G◦g, namely, F (x) = G(g(x))
for all x ∈ X, where g : X → Z is a smooth function and G : Z ⇒ Y is a closed
convex multifunction. Let (a, b) ∈ Gr(F ) and suppose that g′(a) is surjective. Then
F is subsmooth at (a, b).

4. Calmness for multifunctions. Throughout this section, let M : Y ⇒ X be
a closed multifunction. We also fix (arbitrary) ȳ ∈ Y and x̄ ∈M(ȳ).

It is easy to verify that M is calm at (ȳ, x̄) if and only if there exist τ, δ ∈ (0, +∞)
such that

(4.1) M(y) ∩B(x̄, δ) ⊂M(ȳ) + τ‖y − ȳ‖BX ∀ y close to ȳ.

Motivated by the notion of linear cover property (cf. [7, 23, 28]), let us say that
a multifunction Φ : X ⇒ Y has the linear cover-like property at (x̄, ȳ) if there exists
τ ∈ (0, +∞) such that for all x close to x̄ and r > 0

(4.2) ȳ ∈ Φ(x) + int(rBY ) =⇒ ȳ ∈ Φ(x + int(τrBX )).
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In terms of (4.1) and (4.2), the following proposition provides formulas for the calm-
ness modulus η(M ; ȳ, x̄) (which is defined by (1.5)); we omit its proof as it is immediate
from the related definitions.

Proposition 4.1.

η(M ; ȳ, x̄) = inf{τ > 0 : (4.1) holds for some δ > 0}

= inf{τ > 0 : (4.2) holds with Φ = M−1 ∀ r > 0 and ∀ x close to x̄}.

The remainder of this section is devoted to a study on the duality aspect of the
calmness. We divide our discussion into two subsections addressing the necessary
conditions and the sufficient conditions for calmness.

4.1. Necessary conditions for calmness. There are two results in this sub-
section: one is on the Banach space setting and the other on the Asplund spaces.

Theorem 4.2. Suppose that there exist η, δ ∈ (0, +∞) such that (1.1) holds.
Then

(4.3) N̂(M(ȳ), u) ∩BX∗ ⊂ ηD∗
cM

−1(u, ȳ)(BY ∗) ∀u ∈M(ȳ) ∩B(x̄, δ).

Proof. Let IGr(M−1) denote the indicator function of Gr(M−1). Then (1.1) can
be rewritten as

(4.4) d(x,M(ȳ)) ≤ IGr(M−1)(x, y) + η‖y − ȳ‖ ∀(x, y) ∈ B(x̄, δ) ×B(ȳ, δ).

Let u ∈M(ȳ)∩B(x̄, δ) and u∗ ∈ N̂(M(ȳ), u)∩BX∗ . Noting (cf. [24, Corollary 1.96])
that N̂(M(ȳ), u) ∩ BX∗ = ∂̂d(·,M(ȳ)))(u), it follows that for any σ > 0 there exists
r ∈ (0, δ) such that B(u, r) ⊂ B(x̄, δ) and

(4.5) 〈u∗, x− u〉 ≤ d(x,M(ȳ)) + σ‖x− u‖ ∀x ∈ B(u, r).

Hence, by (4.4),

〈u∗, x− u〉 ≤ IGr(M−1)(x, y) + η‖y − ȳ‖ + σ‖x− u‖ ∀(x, y) ∈ B(u, r) ×B(ȳ, δ),

that is, (u, ȳ) is a local minimizer of φ defined by

φ(x, y) := −〈u∗, x− u〉 + IGr(M−1)(x, y) + η‖y − ȳ‖ + σ‖x− u‖ ∀(x, y) ∈ X × Y.

Hence, (0, 0) ∈ ∂cφ(u, ȳ). It follows from [4, Theorem 2.9.8] that

(0, 0) ∈ (−u∗, 0) +Nc(Gr(M−1), (u, ȳ)) + {0} × ηBY ∗ + (σBX∗) × {0},

that is,

(u∗ + σx∗σ,−ηy∗σ) ∈ Nc(Gr(M−1), (u, ȳ))

for some x∗σ ∈ BX∗ and y∗σ ∈ BY ∗ . Since BY ∗ is weak∗ compact, without loss of

generality we can assume (u∗ + σx∗σ ,−ηy∗σ) w∗
→ (u∗,−ηv∗) for some v∗ in BY ∗ as

σ → 0+. Hence (u∗,−ηv∗) ∈ Nc(Gr(M−1), (u, ȳ)) (because Nc(Gr(M−1), (u, ȳ)) is
weak∗-closed). This implies that

u∗ ∈ D∗
cM

−1(u, ȳ)(ηv∗) ⊂ ηD∗
cM

−1(u, ȳ)(BY ∗).
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This shows that (4.3) holds. The proof is complete.
When Y,X are Asplund spaces, the conclusion in Theorem 4.2 can be strength-

ened with N̂(M(ȳ), u) and D∗
cM

−1(u, ȳ) replaced, respectively, by N(M(ȳ), u) and
D∗M−1(u, ȳ).

Theorem 4.3. Suppose that Y,X are Asplund spaces and that there exist η, δ ∈
(0, +∞) such that (1.1) holds. Then

(4.6) N(M(ȳ), u) ∩BX∗ ⊂ ηD∗M−1(u, ȳ)(BY ∗) ∀u ∈M(ȳ) ∩B(x̄, δ).

Proof. Let u ∈ M(ȳ) ∩ B(x̄, δ) and u∗ ∈ BX∗ ∩ N(M(ȳ), u). Then there exist
sequences {un} in M(ȳ) ∩B(x̄, δ) and {u∗n} in X∗ such that

un → u, u∗n
w∗
→ u∗, and u∗n ∈ N̂(M(ȳ), un) ∀n ∈ N.

Similar to the proof of (4.5), there exists r ∈ (0, δ) such that B(un, r) ⊂ B(x̄, δ) and

〈u∗n, x− un〉 ≤ d(x,M(ȳ)) +
1
n
‖x− un‖ ∀x ∈ B(un, r).

Letting

φ(x, y) := −〈u∗n, x− un〉 + IGr(M−1)(x, y) + η‖y − ȳ‖ +
1
n
‖x− un‖ ∀(x, y) ∈ X × Y,

from the corresponding part of the proof of Theorem 4.2, it follows that (un, ȳ) is a
local minimizer of φ. This and [24, Theorem 2.33] imply that there exists (wn, yn) ∈
Gr(M−1) such that ‖wn − un‖ + ‖yn − ȳ‖ < 1

n and

(0, 0) ∈ (−u∗n, 0) + N̂(Gr(M−1), (wn, yn)) + {0} × ηBY ∗ +
2
n

(BX∗ × BY ∗).

Therefore, (wn, yn) → (u, ȳ) and there exist x∗n ∈ BX∗ and y∗n, v
∗
n ∈ BY ∗ such that

(

u∗n +
2
n
x∗n,−ηy∗n − 2

n
v∗n

)

∈ N̂(Gr(M−1), (wn, yn)).

Since BY ∗ is sequentially weak∗-compact (as Y is an Asplund space), we can assume

that y∗n
w∗
→ y∗ ∈ BY ∗ as n→ ∞. It follows that (u∗,−ηy∗) ∈ N(Gr(M−1), (u, ȳ)) and

so u∗ ∈ D∗M−1(u, ȳ)(ηy∗). Therefore, (4.6) holds. The proof is complete.
Remark 4.1. In Asplund spaces, the limiting subdifferential enjoys, like the Clarke

subdifferential, the full sum rule, but, on the other hand, the Mordukhovich normal
cone is not necessarily weak∗-closed. This is why the last part of the proof of Theo-
rem 4.3 differs from that of Theorem 4.2.

4.2. Sufficient conditions for calmness of L-subsmooth multifunctions.
Under a suitable L-subsmoothness assumption, we show in the next result that a
slightly stronger condition than (4.3) turns out to be sufficient for calmness.

Theorem 4.4. Suppose that M is L-subsmooth (resp., weakly L-subsmooth) at
(ȳ, x̄) and that there exist η, δ ∈ (0, +∞) such that

Nc(M(ȳ), u) ∩BX∗ ⊂ ηD∗
cM

−1(u, ȳ)(BY ∗) ∀u ∈ bd(M(ȳ)) ∩B(x̄, δ)(4.7)

(resp., Nc(M(ȳ), u) ∩BX∗ ⊂ ηD∗M−1(u, ȳ)(BY ∗) ∀u ∈ bd(M(ȳ)) ∩B(x̄, δ)).
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Then M is calm at (ȳ, x̄) and, more precisely, for any ε ∈ (0, 1
1+η ) there exists δε > 0

such that

(4.8) d(x,M(ȳ)) ≤ η + (1 + η)ε
1 − (1 + η)ε

‖y − ȳ‖ ∀y ∈ B(ȳ, δε) and ∀x ∈M(y) ∩B(x̄, δε).

Proof. We provide only the proof for the assertion under the L-subsmoothness
assumption (the proof for the other part is similar). Let ε ∈ (0, 1

1+η ). Then, by the
L-subsmoothness assumption, there exists δε ∈ (0, δ

2 ) such that

(4.9) −〈v∗, y − ȳ〉 + 〈u∗, x− u〉 ≤ ε(‖y − ȳ‖ + ‖x− u‖)

whenever y ∈ B(ȳ, 2δε), x ∈ M(y) ∩ B(x̄, 2δε), u ∈ M(ȳ) ∩ B(x̄, 2δε), v∗ ∈ BY ∗ ,
and u∗ ∈ D∗

cM
−1(u, ȳ)(v∗) ∩ BX∗ . To verify (4.8), let y ∈ B(ȳ, δε) and x ∈ M(y) ∩

(B(x̄, δε) \M(ȳ)). Then d(x,M(ȳ)) ≤ ‖x− x̄‖ < δε. Let

γ ∈
(

max
{

d(x,M(ȳ))
δε

, (1 + η)ε,
1
2

}

, 1
)

.

By Lemma 2.1 there exist u ∈ bd(M(ȳ)) and u∗ ∈ Nc(M(ȳ), u) with ‖u∗‖ = 1 such
that

(4.10) γ‖x− u‖ ≤ min{〈u∗, x− u〉, d(x,M(ȳ))}.

Thus, ‖x− u‖ ≤ d(x,M(ȳ))
γ < δε. Hence

‖u− x̄‖ ≤ ‖u− x‖ + ‖x− x̄‖ < 2δε < δ.

By (4.7), there exists v∗ ∈ ηBY ∗ such that u∗ ∈ D∗
cM

−1(u, ȳ)(v∗). Applying (4.9)
with ( u∗

1+η ,
v∗

1+η ) in place of (u∗, v∗), it follows that

−〈v∗, y − ȳ〉 + 〈u∗, x− u〉 ≤ (1 + η)ε(‖y − ȳ‖ + ‖x− u‖)

and so

〈u∗, x− u〉 − (1 + η)ε‖x− u‖ ≤ 〈v∗, y − ȳ〉 + (1 + η)ε‖y − ȳ‖

≤ (η + (1 + η)ε)‖y − ȳ‖.

This and (4.10) imply that

(γ − (1 + η)ε)‖x− u‖ ≤ (η + (1 + η)ε)‖y − ȳ‖

and hence

d(x,M(ȳ)) ≤ η + (1 + η)ε
γ − (1 + η)ε

‖y − ȳ‖

(because u ∈M(ȳ)). Letting γ → 1, it follows that (4.8) holds. The proof is complete.
The following example shows that the L-subsmoothness assumption cannot be

dropped in Theorem 4.4.
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Example 4.5. Let X = Y = R and let

Ω1 = {(s, t) ∈ R2 : s2 + (t− 1)2 ≤ 1 and (s− 1)2 + t2 ≤ 1},
Ω2 = {(s, t) ∈ R2 : s2 + (t+ 1)2 ≤ 1 and (s− 1)2 + t2 ≤ 1},
Ω3 = {(s, t) ∈ R2 : (s+ 1)2 + t2 ≤ 1 and s2 + (t+ 1)2 ≤ 1},
Ω4 = {(s, t) ∈ R2 : (s+ 1)2 + t2 ≤ 1 and s2 + (t− 1)2 ≤ 1}.

Define the multifunction M : Y ⇒ X such that Gr(M) =
⋃4
i=1 Ωi. Then M(0) = {0}

and so Nc(M(0), 0) = X∗. It is easy to verify that Nc(Gr(M), (0, 0)) = X∗ × Y ∗.
Hence

Nc(M(0), 0) ∩BX∗ = BX∗ ⊂ τD∗
cM

−1(0, 0)(BY ∗) = X∗ ∀τ ∈ (0, +∞).

On the other hand, note that

1
n
∈M

⎛

⎜

⎝

1

n2
(

1 +
√

1 − 1
n2

)

⎞

⎟

⎠
and

d( 1
n ,M(0))

∥

∥

∥

1

n2
(

1+
√

1− 1
n2

) − 0
∥

∥

∥

→ +∞.

Hence M is not calm at (0, 0).
Recall [43] that M is strongly calm at (ȳ, x̄) if there exist η, δ ∈ (0, +∞) such

that

‖x− x̄‖ ≤ η‖y − ȳ‖ ∀y ∈ B(ȳ, δ) and x ∈M(y) ∩B(x̄, δ).

It is clear that M is strongly calm at (ȳ, x̄) if and only if x̄ is an isolated point of
M(ȳ) (i.e., M(ȳ) ∩B(x̄, r) = {x̄} for some r > 0) and M is calm at (ȳ, x̄).

Corollary 4.6. Suppose that M satisfies condition (S) at (ȳ, x̄). Then M is
strongly calm at (ȳ, x̄) if and only if

(4.11) D∗
cM

−1(x̄, ȳ)(Y ∗) = X∗.

Proof. Suppose that (4.11) holds. Since D∗
cM

−1(x̄, ȳ) is a closed convex multi-
function from Y ∗ to X∗, (4.11) and the Robinson–Ursescu theorem (cf. [33, 36]) imply
that there exists η > 1 such that

(4.12)
1
η
BX∗ ⊂ D∗

cM
−1(x̄, ȳ)(BY ∗) ∩BX∗ .

Hence, by the Hahn–Banach theorem,

(4.13)
1
η
‖u‖ ≤ max{〈u∗, u〉 : u∗ ∈ D∗

cM
−1(x̄, ȳ)(BY ∗) ∩BX∗} ∀u ∈ X.

Consider ε ∈ (0, 1
η ). The condition (S) assumption implies that there exists δ > 0

such that

〈u∗, x− x̄〉 ≤ ε‖x− x̄‖ ∀x ∈M(ȳ) ∩B(x̄, δ) and ∀u∗ ∈ D∗
cM

−1(x̄, ȳ)(BY ∗) ∩BX∗ .

It follows from (4.13) that M(ȳ)∩B(x̄, δ) = {x̄}. This entails that M is L-subsmooth
at (ȳ, x̄) and (4.7) holds (due to the condition (S) assumption and (4.12), respectively).
Therefore, Theorem 4.4 can be applied to conclude that M is calm at (ȳ, x̄).
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Conversely, suppose that M is strongly calm at (ȳ, x̄). Then M(ȳ)∩B(x̄, r) = {x̄}
for some r > 0 (so N̂(M(ȳ), x̄) = X∗), and Theorem 4.2 implies that there exist
η, δ ∈ (0, +∞) such that (4.3) holds and so does (4.11). The proof is complete.

Corollary 4.7. Suppose that Y,X are finite-dimensional and that Gr(M) is
Clarke regular at (ȳ, x̄) (i.e., Tc(Gr(M), (ȳ, x̄)) = T (Gr(M), (ȳ, x̄))). Then M is
strongly calm at (ȳ, x̄) if and only if D∗

cM
−1(x̄, ȳ)(Y ∗) = X∗.

Proof. By Corollary 4.6, we need only show that M satisfies condition (S) at (ȳ, x̄).
To do this, suppose to the contrary that there exist ε0 > 0, a sequence {(yn, xn)} in
Gr(M) \ {(ȳ, x̄)}, and a sequence {(v∗n, u

∗
n)} in Nc(Gr(M), (ȳ, x̄))∩ (BY ∗ ×BX∗) such

that (yn, xn) → (ȳ, x̄) and

〈v∗n, yn − ȳ〉 + 〈u∗n, xn − x̄〉 > ε0(‖yn − ȳ‖ + ‖xn − x̄‖) ∀n.

Since Y,X are finite-dimensional, we can assume that

(yn − ȳ, xn − x̄)
‖yn − ȳ‖ + ‖xn − x̄‖ → (v, u) and (v∗n, u

∗
n) → (v∗, u∗)

for some (v, u) ∈ Y × X and (v∗, u∗) ∈ Y ∗ × X∗. Then 〈v∗, v〉 + 〈u∗, v〉 ≥ ε0,
(v, u) ∈ T (Gr(M), (ȳ, x̄)), and (v∗, u∗) ∈ Nc(Gr(M), (ȳ, x̄)). This contradicts the
Clarke regularity assumption. The proof is complete.

When X is an Asplund space, the assumption in Theorem 4.4 can be weakened
with Nc(M(ȳ), u) replaced by N̂(M(ȳ), u).

Theorem 4.8. Suppose that X is an Asplund space and that M is L-subsmooth
(resp., weakly L-subsmooth) at (ȳ, x̄) and that there exist η, δ ∈ (0, +∞) such that

N̂(M(ȳ), u) ∩BX∗ ⊂ ηD∗
cM

−1(u, ȳ)(BY ∗) ∀u ∈M(ȳ) ∩B(x̄, δ)

(resp., N̂(M(ȳ), u) ∩BX∗ ⊂ ηD∗M−1(u, ȳ)(BY ∗) ∀u ∈M(ȳ) ∩B(x̄, δ)).

Then for any ε > 0 there exists δε > 0 such that (4.8) holds.
The proof of Theorem 4.8 is the same as that of Theorem 4.4, but with the

Asplund space version of Lemma 2.1 applied in place of the Banach space version.
Making use of (2.2) and the equivalence

x∗ ∈ (D∗
cM(ȳ, u))−1(y∗) ⇔ −x∗ ∈ D∗

cM
−1(u, ȳ)(−y∗),

it is easy from Theorem 4.2 to verify part (i) of the following corollary. Similarly,
part (ii) follows from Theorem 4.4.

Corollary 4.9. The following assertions hold.
(i) η(M ; ȳ, x̄) ≥ lim supu∈M(ȳ),u→x̄ ‖D∗

cM(ȳ, u)|−N̂(M(ȳ),u)‖−.
(ii) If M is L-subsmooth at (ȳ, x̄), then

η(M ; ȳ, x̄) ≤ lim sup
u∈M(ȳ),u→x̄

‖D∗
cM(ȳ, u)|−Nc(M(ȳ),u)‖−.

Similarly, one can use Theorems 4.3 and 4.8 to show the following corollary.
Corollary 4.10. Suppose that Y,X are Asplund spaces. Then the following

assertions hold.
(i) η(M ; ȳ, x̄) ≥ lim supu∈M(ȳ),u→x̄ ‖D∗M(ȳ, u)|−N̂(M(ȳ),u)‖−.
(ii) If M is weakly L-subsmooth at (ȳ, x̄), then the equality in (i) holds.
Note that, in the Asplund space setting, the Fréchet normal cone N̂(M(ȳ), u) is

used in Theorem 4.8. However, for the general Banach spaces, one needs to use the
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Clarke normal cone Nc(M(ȳ), u) in Theorem 4.4; we have only the inequality version
in Corollary 4.9(ii) while we have the equality version in Corollary 4.10(ii).

The following result concerns “convex-composite” multifunctions. Optimization
problems involving convex-composite functions have been extensively studied (for
details, see [16, 30, 35, 37] and the references therein).

Theorem 4.11. Suppose that M is defined by M = g−1 ◦ G, namely, M(y) =
g−1(G(y)) for all y ∈ Y , where G : Y ⇒ Z is a closed convex multifunction and
g : X → Z is a smooth function. Let (ȳ, x̄) ∈ Gr(M) and suppose that g′(x̄) is
surjective. Then the following assertions hold.

(i) η(M ; ȳ, x̄) = lim supu∈M(ȳ),u→x̄ ‖D∗M(ȳ, u)|−N(M(ȳ),u)‖−.
(ii) If there exist η, δ ∈ (0, +∞) such that

(4.14) N(M(ȳ), u) ∩BX∗ ⊂ ηD∗M−1(u, ȳ)(BY ∗) ∀u ∈M(ȳ) ∩B(x̄, δ),

then for any ε > 0 there exists δε ∈ (0, δ) such that

(4.15) d(x,M(ȳ)) ≤ η

1 − ε
‖y − ȳ‖

whenever y ∈ B(ȳ, δε) and x ∈M(y) ∩B(x̄, δε).
Proof. By Corollary 3.7, M−1 (= G−1 ◦ g) is subsmooth at (x̄, ȳ) and so is

M at (ȳ, x̄). Let g̃(y, x) := (y, g(x)) for all (y, x) ∈ Y × X . Then it follows from
the surjectivity of g′(x̄) that g̃′(ȳ, x̄) is surjective. By Lemma 3.6, take r > 0 such
that g′(u) and g̃′(y, u) are surjective for all (y, u) ∈ B(ȳ, r) × B(x̄, r). Noting that
M(ȳ) = g−1(G(ȳ)) and Gr(M) = g̃−1(Gr(G)), it follows from Lemma 3.5 and [24,
Theorem 1.17] that

(4.16) N̂(M(ȳ), u) = N(M(ȳ), u) = Nc(M(ȳ), u) ∀u ∈M(ȳ) ∩B(x̄, r)

and

N̂(Gr(M), (y, u)) = N(Gr(M), (y, u)) = Nc(Gr(M), (y, u))

for all (y, u) ∈ Gr(M) ∩ (B(ȳ, r) ×B(x̄, r)); hence

D∗M(ȳ, u) = D∗
cM(ȳ, u) ∀u ∈M(ȳ) ∩B(x̄, r).

Thus (i) follows from Corollary 4.9.
To prove (ii), let η, δ ∈ (0, +∞) satisfy (4.14). Let ε ∈ (0, 1). Then, by the

subsmoothness of M at (ȳ, x̄), there exists δε ∈ (0, r) such that

(4.17) 〈u∗, x− u〉 − 〈v∗, y − ȳ〉 ≤ ε‖x− u‖

whenever y ∈ B(ȳ, 2δε), x ∈ M(y) ∩ B(x̄, 2δε), u ∈ M(ȳ) ∩ B(x̄, 2δε), v∗ ∈ Y ∗, and
u∗ ∈ D∗M−1(u, ȳ)(v∗) ∩ BX∗ . Let y ∈ B(ȳ, δε) and x ∈ B(x̄, δε) \M(ȳ). We have
to show that (4.15) holds. To do this, let γ ∈

(

max
{d(x,M(ȳ))

δε
, 1

2

}

, 1
)

sufficiently
close to 1. By Lemma 2.1, as in the corresponding part of the proof of Theorem 4.4,
there exist u ∈ bd(M(ȳ)) ∩B(x̄, 2δε) and u∗ ∈ Nc(M(ȳ), u) with ‖u∗‖ = 1 such that
(4.10) holds. It follows from (4.14) and (4.16) that there exists v∗ ∈ ηBY ∗ such that
u∗ ∈ D∗M−1(u, ȳ)(v∗). By (4.10) and (4.17), one has

(γ − ε)‖x− u‖ ≤ 〈u∗, x− u〉 − ε‖x− u‖ ≤ 〈v∗, y − ȳ〉 ≤ η‖y − ȳ‖
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and so (γ− ε)d(x,M(ȳ)) ≤ η‖y− ȳ‖. Letting γ → 1, it follows that (4.15) holds. The
proof is complete.

Remark 4.2. Motivated by (1.4), a natural problem is whether the upper limit

lim sup
u∈M(ȳ),u→x̄

‖D∗
cM(ȳ, u)|−Nc(M(ȳ),u)‖−

in Corollaries 4.9 and 4.10 and Theorem 4.11 can be replaced with

‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖−.

The answer is negative even when M is convex and X,Y are finite-dimensional. Below
we give an example of a closed convex multifunction M between two finite-dimensional
spaces such that

‖D∗
cM(x̄, ȳ)|−Nc(M(ȳ),x̄)‖− = 0 but η(M ; ȳ, x̄) = +∞.

Let S = {(u, v) ∈ R2 : u2 + v2 ≤ 1} and C = {(u, v) ∈ R2 : v ≤ 1}. Let M : R ⇒ R2

be defined by

M(y) := {x ∈ C : d2(x, S) ≤ y} ∀y ∈ R.

Then M is a closed convex multifunction (because C and S are closed convex sets).
Take ȳ = 0 and x̄ = (0, 1). Then S = M(ȳ) and x̄ ∈M(ȳ). It is clear that

d(x,M(ȳ) = d(x, S) and x ∈M(d2(x, S)) ∀x ∈ C.

This shows that M is not calm at (ȳ, x̄), that is, η(M ; ȳ, x̄) = +∞. Next we show
that ‖D∗

cM(ȳ, x̄)|−Nc(M(ȳ),x̄))‖− = 0. It is easy from the convexity of M(ȳ) to verify
that

Nc(M(ȳ), x̄) = N(S, x̄) = N(C, x̄) = {0} ×R+.

Let t, r ∈ (0, +∞). Then, for any x ∈ C and y ∈M−1(x) = [d2(x, S), +∞), one has

〈(0, t), x〉 − r(y − ȳ) ≤ 〈(0, t), x̄〉.

This and the convexity of M imply that ((0, t),−r) ∈ Nc(Gr(M−1), (x̄, ȳ)) and so
(0, t) ∈ D∗

cM
−1(x̄, ȳ)(r). Since t and r are arbitrary in (0, +∞), Nc(M(ȳ), x̄) ⊂

D∗
cM

−1(x̄, ȳ)(r). This shows that

−Nc(M(ȳ), x̄) ⊂ (D∗
cM(ȳ, x̄))−1(−r) ⊂ (D∗

cM(ȳ, x̄))−1(rBY ∗) ∀r > 0.

It follows from (2.2) that ‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖− = 0.

Nevertheless, in the convex-composite case, ‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖− < +∞

does imply the calmness of the sublinear multifunction DcM(ȳ, x̄). First, we provide
a result in a general case.

Proposition 4.12. Suppose that

(4.18) Tc(M(ȳ), x̄) ⊂ DcM(ȳ, x̄)(0).

Then

‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖− = inf{η > 0 : d(x, Tc(M(ȳ), x̄))

≤ η‖y‖ ∀y ∈ Y and x ∈ DcM(ȳ, x̄)(y))}.
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If, in addition, ‖D∗
cM(ȳ, x̄)−Nc(M(ȳ),x̄)‖− < +∞, then

Tc(M(ȳ), x̄) = DcM(ȳ, x̄)(0)

and so η(DcM(ȳ, x̄); 0, 0) = ‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ,x̄)‖−.

Proof. Let

η∗ := inf{η > 0 : d(x, Tc(M(ȳ), x̄)) ≤ η‖y‖ ∀y ∈ Y and x ∈ DcM(ȳ, x̄)(y))}.

First, we assume that η∗ <∞. Consider any η ∈ (η∗, ∞). Then

d(x, Tc(M(ȳ, x̄)) ≤ η‖y‖ ∀y ∈ Y and x ∈ DcM(ȳ, x̄)(y).

It follows that DcM(ȳ, x̄)(0) ⊂ Tc(M(ȳ), x̄). This and (4.18) imply that

Tc(M(ȳ), x̄) = DcM(ȳ, x̄)(0).

Hence η(Dc(M(ȳ; x̄), 0, 0) = η∗. Noting that DcM(ȳ, x̄) is a closed convex multifunc-
tion, it follows from [43, Theorem 4.3] that

‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖− = ‖D∗

c (DcM(ȳ, x̄))(0, 0)|−Nc(DcM(ȳ,x̄)(0),0)‖− = η∗.

It remains to show that ‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖− = +∞ if η∗ = +∞. Suppose

that ‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖− < +∞. We need only show that η∗ < +∞. Let

x ∈ X \ Tc(M(ȳ), x̄) and γ ∈ (0, 1). By Lemma 2.1 there exist

z ∈ Tc(M(ȳ), x̄) and z∗ ∈ Nc(Tc(M(ȳ), x̄), z)

such that

(4.19) ‖z∗‖ = 1 and 〈z∗, x− z〉 ≥ γ‖x− z‖.

Noting that Tc(M(ȳ), x̄) is a convex cone, it is easy to verify that

Nc(Tc(M(ȳ), x̄), z) ⊂ Nc(Tc(M(ȳ), x̄), 0) = Nc(M(ȳ), x̄).

Therefore, z∗ ∈ Nc(M(ȳ), x̄). Let η ∈ (‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖−, ∞). Then there

exists y∗ ∈ D∗
cM(ȳ, x̄)(−z∗) such that ‖y∗‖ < η. It follows that

(y∗, z∗) ∈ Nc(Gr(M), (ȳ, x̄)) = Nc(Gr(DcM(ȳ, x̄)), (0, 0)).

Since Gr(DcM(ȳ, x̄)) is convex,

〈y∗, y − 0〉 + 〈z∗, x− 0〉 ≤ 0 ∀(y, x) ∈ Gr(DcM(ȳ, x̄)).

Noting that 〈z∗, z〉 = 0 (because z∗ ∈ Nc(Tc(M(ȳ), x̄), z) and Tc(M(ȳ), x̄) is a convex
cone), it follows from (4.19) that

γd(x, Tc(M(ȳ), x̄)) ≤ γ‖x− z‖ ≤ −〈y∗, y〉 ≤ η‖y‖ ∀(y, x) ∈ Gr(DcM(ȳ, x̄)).

Letting γ → 1, one has

d(x, Tc(M(ȳ), x̄)) ≤ η‖y‖ ∀(y, x) ∈ Gr(DcM(ȳ, x̄)).

Hence, η∗ ≤ η < +∞. The proof is complete.



CALMNESS FOR L-SUBSMOOTH MULTIFUNCTIONS 1665

Remark 4.3. If one drops the condition ‖D∗
cM(ȳ, x̄)|−Nc(M(ȳ),x̄)‖− < ∞, it is

possible that Tc(M(ȳ), x̄) = DcM(ȳ, x̄)(0). For example, let M : R ⇒ R be defined
by

Gr(M) := {(y, x) ∈ R×R : y2 + x2 ≤ 1}.

Thus, M(1) = {0} and so Tc(M(1), 0) = {0}; but Tc(Gr(M), (1, 0)) = R+ ×R. Hence
DcM(1, 0)(0) = R. This shows that Tc(M(1), 0) = DcF (1, 0)(0).

In Proposition 4.12, the assumption (4.18) is a mild one. Indeed, the corre-
sponding assertion for contingent derivative always holds: T (M(ȳ), x̄) ⊂ DM(ȳ, x̄)(0)
(which is easy to verify). Thus, (4.18) is satisfied if Gr(M) is regular at (ȳ, x̄) in the
Clarke sense. Hence, (4.18) is satisfied if M (resp., M−1) is subsmooth at (ȳ, x̄) (resp.,
(x̄, ȳ)); in particular, (4.18) is satisfied under the assumption of Theorem 4.11. Hence,
the following corollary is immediate from Corollary 3.7 and Proposition 4.12.

Corollary 4.13. Let G, g, M , and (ȳ, x̄) be as in Theorem 4.11. Then

‖D∗M(ȳ, x̄)|−N(M(ȳ),x̄)‖− = inf{η > 0 : d(x, T (M(ȳ), x̄))

≤ η‖y‖ ∀y ∈ Y and x ∈ DM(ȳ, x̄)(y))}.

If, in addition, ‖D∗M(ȳ, x̄)−N(M(ȳ),x̄)‖− < +∞, then

η(DM(ȳ, x̄); 0, 0) = ‖D∗M(ȳ, x̄)|−N(M(ȳ,x̄)‖−.

In what follows, we consider the multifunction M : Y ⇒ X defined by

(4.20) M(y) := {x ∈ X : g(x) + y ∈ Λ} ∀y ∈ Y,

where g : X → Y is a function and Λ is a closed subset of Y .
Theorem 4.14. Let M be given by (4.20) and (ȳ, x̄) ∈ Gr(M). Suppose that

g is smooth and that Λ is subsmooth at g(x̄) + ȳ. Further suppose that there exist
η, δ ∈ (0, +∞) such that

Nc(M(ȳ), u) ∩BX∗ ⊂ η(g′(u))∗(Nc(Λ, g(u) + ȳ) ∩BY ∗) ∀u ∈M(ȳ) ∩B(x̄, δ).

Then M is calm at (ȳ, x̄), and, more precisely, for any ε > 0 there exists δε > 0 such
that

d(x,M(ȳ)) ≤ η + (1 + η)ε
1 − (1 + η)ε

‖y − ȳ‖ ∀y ∈ B(ȳ, δε) and ∀x ∈M(y) ∩B(x̄, δε).

Proof. Note that M−1(x) = −g(x) + Λ for each x ∈ X . It follows from Proposi-
tion 3.3(ii) (applied to M−1,−g in place of F, g) that

D∗
cM

−1(u, ȳ)(BY ∗) = (g′(u))∗(Nc(Λ, g(u) + ȳ) ∩BY ∗) ∀u ∈M(ȳ).

Similarly, since Λ is subsmooth at g(x̄) + ȳ, Proposition 3.3(iii) implies that M−1 is
subsmooth at (x̄, ȳ) and so is M at (ȳ, x̄). Thus, the assertion of Theorem 4.14 follows
from Theorem 4.4. The proof is complete.

Let T be a compact topological space and let C(T ) denote the Banach space of
all continuous functions on T equipped with the sup-norm. Let ψ : X × T → R be a
function and consider the multifunction M : C(T ) ⇒ X defined by

(4.21) M(y) := {x ∈ X : ψ(x, t) ≤ −y(t) ∀t ∈ T } ∀y ∈ C(T );
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equivalently one can write (4.21) as

M(y) = {x ∈ X : g(x) + y ∈ Λ} ∀y ∈ C(T ),

where g(x) = ψ(x, ·) and Λ is the convex cone of all nonpositive continuous functions
on T . In the special case whenX = Rn, T ⊂ Rm, and ψ is a continuously differentiable
function on Rn × Rm such that ψ′

1(x, t) is locally Lipschitzian on Rn × Rm, where
ψ′

1(x, t) denotes the derivative of ψ(x, t) with respect the first variable x, Henrion
and Outrata [10] recently considered the calmness of M defined by (4.21) at (0, x̄) ∈
Gr(M). For x ∈M(0), let T (x) := {t ∈ T : ψ(x, s) ≤ ψ(x, t) for all s ∈ T } and let

J := {S ∈ K(T ) : ∃xi
bdM(0)\{x̄}−→ x̄ s.t. dH(S, T (xi)) → 0},

where K(T ) denotes the family of all compact subsets of T and dH denotes the Haus-
dorff distance between compact sets. Henrion and Outrata established the following
sufficient condition for calmness (see [10, Theorem 4]).

Theorem A. Consider (4.21) with X = Rn, T ⊂ Rm, and ψ being a smooth
function on Rn × Rm such that ψ′

1(x, t) is locally Lipschitzian on Rn × Rm. Let
x̄ ∈M(0) with ψ(x̄, t̄) = 0 for some t̄ ∈ T . Suppose that the following two conditions
are satisfied.

(1) T (M(0), x̄) = {h ∈ Rn : 〈ψ′
1(x̄, t), h〉 ≤ 0 for all t ∈ T (x̄)}.

(2) There exists ρ > 0 such that d(0, co{ψ′
1(x̄, t) : t ∈ S}) ≥ ρ for all S ∈ J .

Then M is calm at (0, x̄).
Recently, Zheng and Yang [45] proved that the conditions (1) and (2) in Theo-

rem A can be replaced by the following weaker condition: there exist η, δ ∈ (0, +∞)
such that

(WC) Nc(M(0), u) ∩BX∗ ⊂ [0, η]co{ψ′
1(u, t) : t ∈ T (u)} ∀u ∈M(0) ∩B(x̄, δ).

As an application of Theorem 4.14, we can improve and generalize Theorem A to the
general Banach space case. To do this, it would be convenient to recall some standard
notation. Let B(T ) denote the family of all Borel sets in T and let rca(T ) denote the
space of all regular finite real-valued Borel measures on T equipped with the total
variation norm ‖μ‖ = |μ|(T ) for any μ ∈ rca(T ). Recall that a Borel measure μ on T
is said to be supported on A ∈ B(T ) if μ(B) = 0 for all B ∈ B(T ) with B ∩ A = ∅.
Let

rca+(T ) := {μ ∈ rca(T ) : μ(B) ≥ 0 ∀B ∈ B(T )}

and

rac+
A(T ) := {μ ∈ rac+(T ) : μ is supported on A},

where rac+
A(T ) is interpreted as {0} if A = ∅. It is well known, as the Riesz represen-

tation theorem, that C(T )∗ = rca(T ) and that

μ ∈ rca(T ) and
∫

T

y(t)dμ ≥ 0 ∀y ∈ C+(T ) =⇒ μ ∈ rca+(T ),

where C+(T ) denotes the set of all nonnegative continuous functions on T . For
y ∈ C(T ), let I(y) = {t ∈ T : y(t) = 0}.
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Proposition 4.15. Let X be a general Banach space, T a compact topological
space, ψ(x, t) a continuous function on X × T such that ψ′

1(x, t) is continuous on
X×T , and g : X → C(T ) defined by g(x) := ψ(x, ·) for all x ∈ X. Let M : C(T ) ⇒ X
be defined by (4.21) and let x̄ ∈ M(0). Suppose that there exist η, δ ∈ (0, +∞) such
that for all u ∈M(0) ∩B(x̄, δ),

(4.22)

Nc(M(0), u) ∩BX∗ ⊂ [0, η]
{∫

T

ψ′
1(u, t)dμ : μ ∈ rac+

I(g(u))(T ) and μ(T ) ≤ 1
}

.

Then M is calm at (0, x̄).
Proof. By the assumption on ψ, it is easy to verify that g′(x) = ψ′

1(x, ·) for all
x ∈ X , and so

(g′(x))∗(μ) =
∫

T

ψ′
1(x, t)dμ ∀μ ∈ rac(T ) = C(T )∗.

By Theorem 4.14 (applied to Y = C(T ), Λ = −C+(T ), g(x) = ψ(x, ·) for all x ∈ X
and ȳ = 0), we need only show that

(4.23) N(−C+(T ),−y) = rac+
I(y)(T ) ∀y ∈ C+(T ).

Let y ∈ C+(T ) and μ ∈ N(−C+(T ),−y). Since −C+(T ) is a closed convex cone in
C(T ), the Riesz representation theorem implies that

∫

T

−z(t)dμ ≤
∫

T

−y(t)dμ = 0 ∀z ∈ C+(T ).

It follows that μ ∈ rac+(T ) and
∫

T y(t)dμ = 0. This shows that μ ∈ rac+
I(y)(T ).

Hence, N(−C(T ),−y) ⊂ rac+
I(y)(T ). Since the reverse inclusion is clear, (4.23) holds.

The proof is complete.
Remark 4.4. Note that in the special case when X = Rn and under the assump-

tion of Proposition 4.15,

co{ψ′
1(u, t) : t ∈ I(g(u))} = cl(co{ψ′

1(u, t) : t ∈ I(g(u))})

and so

co{ψ′
1(u, t) : t ∈ I(g(u))} =

{∫

T

ψ′
1(u, t)dμ : μ ∈ rac+

I(g(u))(T ) and μ(T ) ≤ 1
}

.

Thus, (4.22) and (WC) are the same. Hence Proposition 4.15 improves and generalizes
Theorem A by Henrion and Outrata. Moreover, Proposition 4.15 does not require that
ψ′

1(x, t) is locally Lipschitzian.

5. Application to error bounds for inequality systems. Let f : X →
R ∪ {+∞} be a proper lower semicontinuous function and consider the following
inequality system:

(5.1) f(x) ≤ 0.

Let f1, . . . , fn : X → R∪{+∞} be proper lower semicontinuous functions and f(x) =
max{fi(x) : i = 1, . . . , n}. Then (5.1) is the following system of finitely many
inequalities:

(5.2) fi(x) ≤ 0, i = 1, . . . , n.
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Recall that inequality (5.1) has a local error bound (or metric regularity) at x̄ if there
exists τ > 0 such that

(5.3) d(x, S) ≤ τ [f(x)]+ ∀x close to x̄,

where S is the solution set of (5.1) and [f(x)]+ = max{0, f(x)}.
In the case when f (resp., fi) is convex, many authors studied the error bound

issues for (5.1) (resp., (5.2)) (see [12, 13, 18, 19, 21, 38, 39, 41] and the references
therein). In particular, in the case when f is convex, it is known (cf. [12, 13, 41]) that
(5.1) has a local error bound at a point a of the solution set S if and only if there
exist τ, δ ∈ (0, +∞) such that

N(S, z) ∩BX∗ ⊂ [0, τ ]∂f(z) ∀ z ∈ bd(S) ∩B(a, δ).

Under the condition that X is finite-dimensional and each fi is convex and smooth,
Li [19] proved that inequality system (5.2) has a local error bound at a ∈ S if and
only if

N(S, z) = R+co{f ′
i(z) : i ∈ I(z)} ∀z ∈ bd(S) close to a,

where I(z) := {1 ≤ i ≤ n : fi(z) = 0}.
As applications of the main results obtained in section 4, we consider local error

bounds for (5.1) and (5.2) when f and fi are not necessarily convex. For the sake
of simplicity in presentation, let us assume, in the remainder of this section, that
f : X → R is a local Lipschitz (not necessarily convex) function.

As an extension of the convexity, Ngai, Luc, and Thera [29] introduced the ap-
proximate convexity. Recall that a function f : X → R is said to be approximately
convex at a ∈ X if for any ε > 0 there exists δ > 0 such that

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) + εt(1 − t)‖x1 − x2‖

for all x1, x2 ∈ B(a, δ) and t ∈ (0, 1). Recently, Aussel, Daniilidis, and Thibault [1]
proved that a local Lipschitz function f : X → R is approximately convex at a if and
only if for any ε > 0 there exists δ > 0 such that

(∗) f(x) − f(u) − 〈u∗, x− u〉 ≥ −ε‖x− u‖ ∀x, u ∈ B(a, δ) and ∀u∗ ∈ ∂cf(u).

Slightly weakened conditions can be introduced as follows: f is said to be L-subsmooth
(resp., weak L-subsmooth) at a ∈ X if for any ε > 0 there exists δ > 0 such that

f(x) − f(u) − 〈u∗, x− u〉 ≥ −ε‖x− u‖

whenever x ∈ B(u, δ) and u ∈ B(a, δ) with f(u) = f(a), u∗ ∈ ∂cf(u) (resp., u∗ ∈
∂f(u)).

Let M : R ⇒ X be defined by

M(y) := {x ∈ X : f(x) ≤ y} ∀y ∈ R.

Then Gr(M−1) = epi(f). Hence,

(5.4) dom(D∗
cM

−1(x, f(x))) = [0, +∞) and D∗
cM

−1(x, f(x))(r) = r∂cf(x)

for all x ∈ X and r ∈ [0, +∞). Note that Nc(Gr(M), (t, x)) = {(0, 0)} for any x ∈ X
and t > f(x) (because (x, t) ∈ int(Gr(M−1))). By the local Lipschitz property of



CALMNESS FOR L-SUBSMOOTH MULTIFUNCTIONS 1669

f , it is easy to verify that f is (weak) L-subsmooth at a if and only if M is (weak)
L-subsmooth at (f(a), a). Note that M(0) = S, and (5.1) has a local error bound at
a ∈ S if and only if M is calm at (0, a). Thus, the following result is immediate from
Theorems 4.2 and 4.4.

Theorem 5.1. The following assertions hold.
(i) If inequality (5.1) has a local error bound at a ∈ S, then there exist τ, δ ∈

(0, +∞) such that

N̂(S, x) ∩BX∗ ⊂ [0, τ ]∂cf(x) ∀x ∈ S ∩B(a, δ).

(ii) If f is L-subsmooth at a ∈ S and there exist τ, δ ∈ (0, +∞) such that

(5.5) Nc(S, x) ∩BX∗ ⊂ [0, τ ]∂cf(x) ∀x ∈ bd(S) ∩B(a, δ),

then (5.1) has a local error bound at a.
By the same argument but using Theorems 4.3 and 4.8 (in place of Theorems 4.2

and 4.4), we have the following characterization of a local error bound for inequality
(5.1) when X is an Asplund space.

Theorem 5.2. Suppose that X is an Asplund space and that f is weakly L-
subsmooth at a ∈ S. Then inequality (5.1) has a local error bound at a ∈ S if and
only if there exist τ, δ ∈ (0, +∞) such that

N̂(S, x) ∩BX∗ ⊂ [0, τ ]∂f(x) ∀x ∈ bd(S) ∩B(a, δ).

The next two theorems (Theorems 5.3 and 5.6) concern convex-composite func-
tions.

Theorem 5.3. Let φ : Z → R be a continuous convex function and g : X → Z
be a smooth function. Let f(x) = φ(g(x)) for all x ∈ X. Let a ∈ S and suppose that
g′(a) is surjective. Then (5.1) has a local error bound at a if and only if there exist
τ, δ ∈ (0, +∞) such that (5.5) holds.

Proof. Let G : R ⇒ Z and M : R ⇒ X be defined by

M(y) := {x ∈ X : f(x) ≤ y} and G(y) := {z ∈ Z : φ(z) ≤ y} ∀y ∈ R.

Then M(y) = g−1(G(y)) for all y ∈ R. It follows from Theorem 4.11 and (5.4) that
M is calm at (0, a) if and only if that there exist τ, δ ∈ (0, +∞) such that (5.5) holds.
Since M is calm at (0, a) if and only if (5.1) has a local error bound, the proof is
complete.

Theorems 5.1–5.3 can be regarded as generalizations of the main result in [41]
from the convex case to the nonconvex case. Next we consider local error bounds for
inequality system (5.2).

Proposition 5.4. Let f1, . . . , fn : X → R be smooth (not necessarily convex)
functions. Let a ∈ S := {x ∈ X : fi(x) ≤ 0, i = 1, . . . , n} and suppose that there
exists τ ∈ (0, +∞) such that

Nc(S, z) ∩BX∗ ⊂ [0, τ ]co({f ′
i(z) : i ∈ I(z)}) ∀ z ∈ bd(S) close to a.

Then (5.2) has a local error bound at a.
Proof. Let f(x) = max{fi(x) : i = 1, . . . , n} for all x ∈ X . Then, by [4,

Proposition 2.3.12], one has

∂cf(u) = co({f ′
i(u) : i ∈ I(u)}) ∀u ∈ X.
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By (ii) of Theorem 5.1, we need only show that f is L-subsmooth at a. Since each fi
is smooth on X , for any ε > 0 there exists δ > 0 such that

(5.6) fi(x1) − fi(x2) − 〈f ′
i(x2), x1 − x2〉 ≥ −ε‖x1 − x2‖ ∀x1, x2 ∈ B(a, δ).

Let x, u ∈ B(a, δ) and u∗ ∈ ∂cf(u). Then there exist ti ≥ 0 (i ∈ I(u)) such that
∑

i∈I(u) ti = 1 and u∗ =
∑

i∈I(u) tif
′
i(u). Hence, it follows from (5.6) that

f(x) − f(u) − 〈u∗, x− u〉 =
∑

i∈I(u)

ti(f(x) − fi(u) − 〈f ′
i(u), x− u〉)

≥ −ε‖x− u‖.

This shows that f is approximately convex (and thus L-subsmooth) at a. The proof
is complete.

Now we extend Li’s result on local error bounds (i.e., the metric regularity) for
a system of smooth and convex inequalities to the nonconvex case. First we prove a
lemma.

Lemma 5.5. Let f1, . . . , fn : X → R be smooth functions. Let a ∈ bd(S) be such
that for any J ⊂ I(a),

(5.7) 0 ∈ co{f ′
i(a) : i ∈ J} ⇒ a is a local minimizer of max{fi(x) : i ∈ J}.

Then there exists τ ∈ (0, +∞) such that

(5.8) Nc(S, z) ∩BX∗ ⊂ [0, τ ]co{f ′
i(z) : i ∈ I(z)} ∀z ∈ bd(S) close to a

if and only if

(5.9) Nc(S, z) = R+co({f ′
i(z) : i ∈ I(z)}) ∀z ∈ bd(S) close to a.

The corresponding result also holds if Nc(S, z) is replaced with N̂(S, z) in (5.8) and
(5.9).

Proof. We prove only the first assertion (the proof for the last assertion is similar).
Since each fi is smooth, it is easy to verify that

R+co({f ′
i(z) : i ∈ I(z)}) ⊂ Nc(S, z) ∀z ∈ bd(S).

We need only show that (5.9) implies that there exists τ ∈ (0, +∞) such that (5.8)
holds. To do this, suppose to the contrary that there exist a sequence {zk} in bd(S)
and a sequence {z∗k} in X∗ such that

(5.10) zk → a and z∗k ∈ Nc(S, zk) ∩BX∗ \ [0, k]co{f ′
i(zk) : i ∈ I(zk)}.

By the continuity of fi and by considering k large if necessary, we assume without loss
of generality that I(zk) ⊂ I(a) for each k. Similarly, by (5.9), we may assume that for
each k there exist tk(i) > 0 (i ∈ I(zk)) such that z∗k =

∑

i∈I(zk) tk(i)f ′
i(zk). It follows

from the Carathéodory theorem (cf. [3, p. 25]) that there exist Jk ⊂ I(zk) and rk(i) >
0 such that {f ′

i(zk) : i ∈ Jk} is linearly independent and z∗k =
∑

i∈Jk
rk(i)f ′

i(zk).
This and (5.10) imply that

∑

i∈Jk
rk(i) > k. Noting that Jk ⊂ {1, . . . , n}, without

loss of generality we can assume that Jk = J for each k and

rk(i)
∑

j∈J rk(j)
→ ri, as k → ∞ and i ∈ J
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(passing to a subsequence if necessary). Then J ⊂ I(zk) ⊂ I(a) and
∑

i∈J ri = 1.
Since z∗k ∈ BX∗ , it follows that

0 = lim
k→∞

z∗k
∑

j∈J rk(j)
= lim

k→∞

∑

i∈J rk(i)f ′
i(zk)

∑

j∈J rk(j)
=
∑

i∈J
rif

′
i(a) ∈ co{f ′

i(a) : i ∈ J}.

This and (5.7) imply that a is a local minimizer of fJ defined by fJ(x) := max{fi(x) :
i ∈ J}. Thus there exists an open neighborhood U of a such that fJ (x) ≥ fJ(a) for
all x ∈ U . Noting that fJ(a) = fJ(zk) (as I(zk) ⊂ I(a)), it follows from (5.10) that
zk is also a local minimizer of fJ for each k large enough. Thus, for each k large
enough, 0 ∈ co{f ′

i(zk) : i ∈ J}, contradicting the fact that {f ′
i(zk) : i ∈ J} is linearly

independent.
The following theorem clearly improves and extends Li’s result (from the convex

and finite-dimensional case to the nonconvex and infinite-dimensional case).
Theorem 5.6. Let fi(x) = φi(g(x)) for all x ∈ X (i = 1, . . . , n), where g : X →

Z is a smooth mapping, φi : Z → R is a smooth convex function, and Z is another
Banach space. Let a ∈ bd(S). Suppose that g′(a) is surjective. Then (5.2) has a local
error bound at a if and only if

Nc(S, z) = R+co({f ′
i(z) : i ∈ I(z)}) for z ∈ bd(S) close to a.

Proof. Note that (5.2) has a local error bound at a if and only if (5.1) also does
with f(x) = max{fi(x) : i = 1, . . . , n} for all x ∈ X , and also note that

∂cf(x) = co({f ′
i(x) : i ∈ I(x)}) ∀x ∈ X.

By Theorem 5.3 and Lemma 5.5, we need only show that (5.7) holds. To do this, let
J ⊂ I(a) and 0 ∈ co{f ′

i(a) : i ∈ J}. Then there exist λi ≥ 0 with
∑

i∈J λi = 1 such
that

0 =
∑

i∈J
λif

′
i(a) =

∑

i∈J
λi[g′(a)]∗(φ′i(g(a))) = [g′(a)]∗

(

∑

i∈J
λiφ

′
i(g(a))

)

.

Noting that [g′(a)]∗ is injective (because g′(a) is surjective), it follows that

(5.11) 0 =
∑

i∈J
λiφ

′
i(g(a)).

Let φ(u) := max{φi(u) : i ∈ J} for all u ∈ Z. Then φ is a continuous convex function
and, by J ⊂ I(a), φ(g(a)) = φi(g(a)) for all i ∈ J . This and (5.11) imply that g(a) is
a global minimizer of φ. It follows that a is a global minimizer of max{fi(x) : i ∈ J}.
This shows that (5.7) holds.
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Abstract. This paper considers strategies for selecting the barrier parameter at every iteration
of an interior-point method for nonlinear programming. Numerical experiments suggest that heuristic
adaptive choices, such as Mehrotra’s probing procedure, outperform monotone strategies that hold
the barrier parameter fixed until a barrier optimality test is satisfied. A new adaptive strategy is
proposed based on the minimization of a quality function. The paper also proposes a globalization
framework that ensures the convergence of adaptive interior methods, and examines convergence
failures of the Mehrotra predictor-corrector algorithm. The barrier update strategies proposed in
this paper are applicable to a wide class of interior methods and are tested in the two distinct
algorithmic frameworks provided by the ipopt and knitro software packages.
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1. Introduction. In this paper we describe interior methods for nonlinear pro-
gramming that update the barrier parameter adaptively, as the iteration progresses.
The goal is to design algorithms that are both efficient in practice and that enjoy
global convergence guarantees. The adaptive strategies studied in this paper allow
the barrier parameter to increase or decrease at every iteration and provide an alter-
native to the so-called Fiacco–McCormick approach that fixes the barrier parameter
until an approximate solution of the barrier problem is computed. Our motivation for
this work stems from our belief that robust interior methods for nonlinear program-
ming must be able to react swiftly to changes of scale in the problem and to correct
overly aggressive decreases in the barrier parameter.

Adaptive barrier update strategies are well established in interior methods for
linear and convex quadratic programming. The most popular approach of this type is
Mehrotra’s predictor-corrector (MPC) method [22]. It computes, at every iteration, a
probing (affine scaling) step that determines a target value of the barrier parameter,
and then takes a primal-dual step using this target value. A corrector step is added
to better follow the trajectory of the central path to the solution. Mehrotra’s method
has proved to be very effective for linear and convex quadratic programming, but is
not supported by global convergence guarantees. Indeed, as we show in section 7, its
reliability is heavily dependent upon an appropriate choice of the starting point.

When solving nonlinear nonconvex programming problems, much caution must
be exercised to prevent the iteration from failing. Nonminimizing stationary points
can attract the iteration, and aggressive decreases in the barrier parameter can lead
to failure. Our numerical experience shows that the direct extension of Mehrotra’s
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predictor-corrector method to nonlinear programming does not result in a robust
method. As we discuss below, the main source of instability is the corrector step.
Further adaptive barrier update strategies designed specifically for nonlinear pro-
gramming include [2, 11, 15, 23, 24, 25].

The global convergence properties of interior methods for nonlinear programming
have recently received much attention [4, 8, 11, 17, 20, 23, 24, 26, 32]. Some of
these studies focus on the effects of merit functions or filters, and on regularization
techniques. With the exception of [11, 23, 24], however, these papers do not consider
the numerical or theoretical properties of adaptive barrier update techniques.

The organization of this paper is as follows. After stating the basic nonlinear
interior method in section 2, we start our exploration of adaptive barrier updates by
examining several established techniques in section 3. In this initial investigation, we
do not impose a rigorous globalization scheme on the methods, but simply compare
their practical behavior on a standard test set. Motivated by the initial observations
of these experiments, we then

• propose (in section 4) a new strategy for choosing the barrier parameter that,
in contrast to previously proposed update rules, is not based on heuristics but
follows a clear-cut objective, namely, the minimization of a “quality function”;

• present two simple frameworks that ensure global convergence for interior
methods that use any update rule for the barrier parameter (section 5);

• explore the numerical performance of the proposed strategy on standard test
sets (section 6); and

• discuss the shortcomings of the Mehrotra corrector step (which can be ob-
served even in the linear case) and propose a remedy (section 7).

To show the generality of our quality function approach, we implement it in the
two different algorithmic contexts provided by the ipopt [27] and knitro [6, 28]
software packages.

Notation. For any vector z, we denote by Z the diagonal matrix whose diagonal
entries are given by z. We let e denote the vector of ones, of appropriate dimension,
that is, e = (1, 1, . . . , 1)T .

2. Primal-dual nonlinear interior methods. The problem under considera-
tion will be written as

min
x

f(x),(2.1a)

s.t. c(x) = 0,(2.1b)
x ≥ 0,(2.1c)

where f : R
n → R and c : R

n → R
m are twice continuously differentiable functions.

For conciseness we will refer to interior-point methods for nonlinear programming as
“nonlinear interior methods.” A variety of these methods have been proposed in the
last 10 years; they differ mainly in some aspects of the step computation and in the
globalization scheme. Most of the nonlinear interior methods are related to the simple
primal-dual iteration described next; our discussion of barrier parameter choices will
be phrased in the context of this iteration.

We associate with the nonlinear program (2.1) the barrier problem

min
x

ϕμ(x) ≡ f(x) − μ
n
∑

i=1

lnx(i),(2.2a)

s.t. c(x) = 0,(2.2b)
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where μ > 0 is the barrier parameter. As is well known, the KKT conditions of the
barrier problem (2.2) can be written as

∇f(x) −A(x)T y − z = 0,(2.3a)
Xz − μe = 0,(2.3b)

c(x) = 0,(2.3c)

where A(x) denotes the Jacobian matrix of the constraint function c(x). Condition
(2.3b), the positivity of μ, and the requirement that the log function be well-defined
in (2.2a) implicitly requires that

x > 0, z > 0.(2.4)

Applying Newton’s method to (2.3), in the variables (x, y, z), gives the primal-dual
system

⎡

⎣

∇2
xxL −A(x)T −I
Z 0 X

A(x) 0 0

⎤

⎦

⎡

⎣

Δx
Δy
Δz

⎤

⎦ = −

⎡

⎣

∇f(x) −A(x)T y − z
Xz − μe
c(x)

⎤

⎦ ,(2.5)

where L denotes the Lagrangian of the nonlinear program, that is,

L(x, y, z) = f(x) − yT c(x) − zTx.(2.6)

After the step Δ = (Δx,Δy,Δz) has been determined, we compute primal and dual
steplengths, αp and αd, and define the new iterate (x+, y+, z+) as

x+ = x+ αpΔx, y+ = y + αdΔy, z+ = z + αdΔz.(2.7)

The steplengths are computed in two stages. First we compute

αmax
x = max{α ∈ (0, 1] : x+ αΔx ≥ (1 − τ)x},(2.8a)
αmax
z = max{α ∈ (0, 1] : z + αΔz ≥ (1 − τ)z},(2.8b)

with τ ∈ (0, 1) (e.g., τ = 0.995). Next, we perform a backtracking line search to
compute the final steplengths

αp ∈ (0, αmax
x ], αd ∈ (0, αmax

z ],(2.9)

which provide sufficient decrease of a merit function or ensure acceptability by a filter.
The other major ingredient in this simple primal-dual iteration is the procedure

for choosing the barrier parameter μ. Two types of barrier update strategies have been
studied in the literature: adaptive and monotone. Adaptive strategies [11, 15, 24, 25]
allow changes in the barrier parameter at every iteration, and are often efficient in
practice, but as already mentioned, they generally do not enjoy global convergence
properties. (The analyses presented in [11, 24] provide certain convergence results to
stationary points, but these methods do not explicitly aim to decrease the objective
function—they only enforce reduction of a measure of stationarity.)

The most important monotone strategy is the so-called Fiacco–McCormick ap-
proach that fixes the barrier parameter until an approximate solution of the barrier
problem is computed. It has been employed in various nonlinear interior algorithms
[3, 5, 14, 16, 27, 29, 31] and has been implemented, for example, in the ipopt and
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knitro software packages. The Fiacco–McCormick strategy provides a framework for
establishing global convergence [4, 26], but suffers from important limitations. It can
be very sensitive to the choice of the initial point, the initial value of the barrier pa-
rameter, and the scaling of the problem, and it is often unable to recover quickly when
the iterates approach the boundary of the feasible region prematurely. The numeri-
cal experience with ipopt and knitro reported below suggests that more dynamic
update strategies are needed to improve the efficiency of nonlinear interior methods.

The algorithms considered in this paper guarantee only convergence to first-order
stationary points; enforcing convergence to second-order points would require an esti-
mation of the smallest eigenvalue of the reduced Hessian, which is too expensive in the
large-scale case. However, the algorithms presented here generate steps that promote
convergence to minimizers by ensuring descent properties for the barrier problem.

3. Choosing the barrier parameter. In this section we discuss two adap-
tive barrier strategies proposed in the literature and compare them numerically with
the monotone Fiacco–McCormick approach. These numerical results motivate the
techniques presented in the following sections.

Given an iterate (x, y, z), consider an interior method that computes primal-
dual search directions by (2.5). The most common approach for choosing the barrier
parameter μ is to make it proportional to the current complementarity value, that is,

μ = σ
xT z

n
,(3.1)

where σ > 0 is a centering parameter and n denotes the number of variables. Mehro-
tra’s predictor-corrector (MPC) method [22] for linear programming determines the
value of σ using a preliminary step computation (an affine scaling step). We now
describe a direct extension of Mehrotra’s strategy to the nonlinear programming case.

First, we calculate an affine scaling step

(

Δxaff ,Δyaff ,Δzaff
)

(3.2)

by setting μ = 0 in (2.5), that is,

⎡

⎣

∇2
xxL −A(x)T −I
Z 0 X

A(x) 0 0

⎤

⎦

⎡

⎣

Δxaff

Δyaff

Δzaff

⎤

⎦ = −

⎡

⎣

∇f(x) −A(x)T y − z
Xz
c(x)

⎤

⎦ .(3.3)

We then compute αaff
x and αaff

z to be the largest steplengths in (0, 1] that can be taken
along the direction (3.2) before violating the nonnegativity conditions (x, z) ≥ 0.
Explicit formulae for these values are given by (2.8) with τ = 1.

Next, we define μaff to be the value of complementarity that would be obtained
by a full step to the boundary, that is,

μaff =
(

x+ αaff
x Δxaff

)T (
z + αaff

z Δzaff
)

/n,(3.4)

and set the centering parameter to be

σ =
(

μaff

xT z/n

)3

.(3.5)
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This heuristic choice of σ is based on experimentation with linear programming
problems and has proved to be effective for convex quadratic programming as well.
Note that when good progress is made along the affine scaling direction, we have
μaff � xT z/n, so the σ obtained from this formula is small. In other cases, σ may be
chosen to be greater than 1.

Mehrotra’s algorithm also computes a corrector step, but we take the view that
the corrector is not part of the selection of the barrier parameter, and is simply a
mechanism for improving the quality of the step. In section 7 we study the complete
MPC algorithm including the corrector step.

Other adaptive procedures of the form (3.1) have been proposed specifically for
nonlinear interior methods [11, 15, 24, 25]. The strategy employed in the loqo

software package [25] is particularly noteworthy because of its success in practice. It
defines σ as

σ = 0.1 min
(

0.05
1 − ξ

ξ
, 2
)3

, where ξ =
mini

{

x(i)z(i)
}

xT z/n
.(3.6)

Note that ξ measures the deviation of the smallest complementarity product x(i)z(i)

from the average. When ξ = 1 (all individual products are equal to the average) we
have that σ = 0 and the algorithm takes an aggressive step. The rule (3.6) always
chooses σ ≤ 0.8, so that even though the value of μ may increase from one iteration
to the next, it will never be chosen to be larger than the current complementarity
value xT z/n.

Our first set of numerical experiments compares the effectiveness of the two adap-
tive strategies mentioned above with the monotone Fiacco–McCormick approach. For
these experiments, we use the ipopt and knitro software packages, which have a
globalization mechanism for the monotone variant but none for adaptive barrier pa-
rameter choices. These codes implement significantly different variations of the simple
primal-dual iteration (2.5).

The experiments with knitro were done using the default Interior/Direct option
(we will refer to this version as knitro-direct henceforth), which implements a line
search approach that is occasionally safeguarded by a trust region iteration [29]. The
trust-region safeguard is needed, for example, to handle negative curvature directions.
A merit function is used to promote global convergence, and when an adaptive barrier
update rule is used, the penalty parameter associated with the merit function is reset
at every iteration.

In our experiments with ipopt, we go a step further and disable the line search
within each iteration and always accept the full fraction-to-the-boundary step with
step sizes from (2.8). In this way, we can examine the performance of pure primal-dual
steps generated with the adaptive barrier schemes.

The barrier parameter strategies tested in our first set of experiments are as
follows:

• loqo rule. The barrier parameter is chosen by (3.1) and (3.6).
• Mehrotra probing. At every iteration, the barrier parameter μ is given by

(3.1) and (3.5). Since this requires the computation of the affine scaling
step (3.2), this strategy is more expensive than the loqo rule. For knitro-

direct, in the iterations in which the safeguarding trust region algorithm is
invoked (e.g., when the reduced Hessian is not positive definite), the barrier
parameter is computed by the loqo rule instead of Mehrotra probing. This is
done because Mehrotra probing is expensive to implement in the trust region
algorithm, which uses a conjugate gradient iteration.
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Fig. 1. Results for four barrier parameter updating strategies.

• MPC. The complete Mehrotra predictor-corrector algorithm as described
later in section 7. As in the Mehrotra probing rule, when knitro-direct

falls back on the safeguarded trust region algorithm, the barrier parameter is
computed using the loqo rule for efficiency, and no corrector step is used.

• Monotone. (Also known as the Fiacco–McCormick approach.) The barrier
parameter is fixed, and a series of primal-dual steps is computed, until the
optimality conditions for the barrier problem are satisfied to some accuracy.
At this point the barrier parameter is decreased. ipopt and knitro imple-
ment somewhat different variations of this monotone approach; see [27, 29]
for details about the initial value of μ, the rule for decreasing μ, and the form
of the barrier stop tests.

For the numerical comparison, we select all the nonlinear programming problems
in the CUTEr test set from January 2005 that contain at least one general inequality
or bound constraint. We exclude those problems that seem infeasible, unbounded, or
are given with initial points at which the model functions cannot be evaluated; see
[27]. This gives a total of 599 problems. For all scalable models we use default sizes.
Figure 1 reports the number of function evaluations for ipopt and knitro, comparing
the performance of the four barrier strategies. All the plots in the paper use the
logarithmic performance profiles proposed by Dolan and Moré [10]. To account for
the fact that different local solutions might be computed, problems with significantly
different final objective function values for successful runs were excluded (for example,
for the results in Figure 1, 37 problems we excluded for ipopt, and 54 for knitro).

The results given in Figure 1 indicate that the adaptive strategies outperform
the monotone variant, and in particular that Mehrotra probing appears to be the
most successful in terms of function evaluations, both in the knitro experiment (us-
ing steplength control) and in the ipopt experiment (with no steplength control).
Furthermore, the results obtained with ipopt show that the quality of the pure (un-
globalized) steps is good enough to promote convergence in most problems. This ob-
servation suggests that the globalization scheme that we propose in section 5 should
interfere minimally with the iteration; it should be active only when the algorithms
appear to be making no progress.

We also note from Figure 1 that the complete MPC algorithm is very fast on
some problems, but is not sufficiently robust. The latter can be seen most clearly in
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Figure 1(b) where full MPC steps are taken at every iteration. The reason for the
lack of robustness of the MPC strategy will be discussed in section 7, together with a
globalization safeguarding procedure.

4. Quality functions. The Mehrotra and loqo rules rely on the heuristic pa-
rameters (3.5) and (3.6). We now consider an approach in which μ is selected using
a clear-cut objective, formulated in terms of a quality function to be minimized. As
before, we assume that μ = σ x

T z
n , where the centering parameter σ ≥ 0 is to be

determined, and define Δ(σ) to be the solution of the primal-dual equations (2.5) as
a function of σ. We also let αmax

x (σ), αmax
z (σ) denote the steplengths satisfying the

fraction to the boundary rule (2.8) for the step Δ = Δ(σ), and we define the probing
points

x(σ) = x+ αmax
x (σ)Δx(σ),

y(σ) = y + αmax
z (σ)Δy(σ), z(σ) = z + αmax

z (σ)Δz(σ).

Our goal is to choose the value of σ that provides significant improvement toward
the solution of the nonlinear program (2.1). For example, we could choose σ so as to
minimize the following nonlinear quality function based on the KKT error:

qN(σ) =
∥

∥∇f(x(σ)) −A(x(σ))T y(σ) − z(σ)
∥

∥

2
+ ‖c(x(σ))‖2

+ ‖Z(σ)X(σ)e‖2.(4.1)

The evaluation of qN is, however, expensive since it requires the evaluation of the
problem functions and derivatives for every value of σ. We can avoid this expense by
using a linear quality function. If we assume that f and c are linear functions, we
have that (4.1) can be expressed as

qL(σ) = (1 − αmax
z (σ))2

∥

∥∇f(x) −A(x)T y − z
∥

∥

2
+ (1 − αmax

x (σ))2‖c(x)‖2

+ ‖(X + αmax
x (σ)ΔX(σ))(Z + αmax

z (σ)ΔZ(σ))e‖2,(4.2)

where ΔX(σ) is the diagonal matrix with Δx(σ) on the diagonal, and similarly for
ΔZ(σ). We point out that by design the function qL measures the KKT error exactly
at the probing points (x(σ), y(σ), z(σ)) for linear programming problems.

Note that Δ(σ) = Δ(0) + σ(Δ(1) − Δ(0)). Therefore, Δ(σ) can be computed
easily for any value of σ once the linear system (2.5) has been solved twice to obtain
Δ(0) and Δ(1). Having computed Δ(σ), the dominant cost in the evaluation of qL lies
in the computation of the maximal steplengths αmax

x (σ), αmax
z (σ) and the last term

in (4.2), which requires a few vector operations.
We have defined the quality function qL using squared norms to severely penalize

any large components in the KKT error. Note that qL(σ) is not a convex function
of σ, in general. Moreover, due to the complicated dependence of the steplengths
αmax
x (σ), αmax

z (σ) on the parameter σ, it does not seem possible to obtain an analytic
expression for the minimizers of qL. Nevertheless, we have observed that, in practice,
this function is usually unimodal.

Therefore, we implement a one-dimensional search scheme to compute an ap-
proximate minimizer of qL. It uses a golden trisection procedure (see, e.g., [21]),
and ignores the fact that qL may not necessarily be unimodal. We first choose
σmin and σmax, which define a minimum and maximum limit on the σ value, and
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define the two intervals [σmin, 1] and [1, σmax]. In our implementation, the value
σmin = max(γ, μminn/xT z), where μmin (= 10−9 in our implementation) defines a
minimal permissible value of the barrier parameter, γ is some small number (say,
10−6 or 10−8), and σmax = 1000. We first evaluate the quality function for σ = 1
and for some σ value slightly less than 1 (say 0.99). If qL(0.99) ≤ qL(1), then we
perform our golden trisection procedure in the interval [σmin, 1], otherwise we search
in the interval [1, σmax]. (It is important that σ be allowed to take on values greater
than one so that the algorithm can recover from overly aggressive reductions of the
barrier parameter.) Our trisection procedure terminates if either 12 evaluations of the
quality functions are performed, or if the search interval [a, b] becomes smaller than
b× 10−2.

The expected advantages of the quality function approach are twofold. First, we
have defined a procedure that ties the choice of the barrier parameter to a measurable
and achievable decrease in the (linearized) KKT error. Therefore, we expect this ap-
proach to converge in fewer iterations compared with previously proposed approaches
based on heuristic formulas. Second, our choice of the barrier parameter takes into
account the fraction to the boundary steplengths (2.8) (the functions (4.1) and (4.2)
are based on the steps after applying the fraction to the boundary rule). Thus the
implicit constraints (2.4) are taken into account in choosing μ. This is similar to
the Mehrotra update formulas and should discourage choices of the barrier parameter
that generate steps which quickly violate the bounds (2.4) and need to be truncated.

More implementation details are given in section 6. Before presenting our numeri-
cal results with the quality function, we study how to guarantee the global convergence
of nonlinear interior methods that choose the barrier parameter adaptively.

5. A globalization framework. The adaptive strategies described in section 3
can be seen from the numerical results in that section to be quite robust, even without
a rigorous globalization scheme. (We show in the next section this is also the case
with the quality function approach.) Yet, since the barrier parameter is allowed to
change at every iteration in these algorithms, there is no mechanism that indeed
enforces global convergence of the iterates in all cases. In contrast, the monotone
barrier strategy employed in the Fiacco–McCormick approach allows us to establish
global convergence results by combining two mechanisms. First, the algorithms that
minimize a given barrier problem (2.2) use a line search or trust region to enforce
a decrease in a merit function (as in knitro) or to guarantee acceptability by a
filter (as in ipopt). This ensures that an optimality test for the barrier function
is eventually satisfied to some tolerance ε. Second, by repeating this minimization
process for decreasing values of μ and ε that converge to zero, one can establish global
convergence results [4, 12] to stationary points of the nonlinear programming problem
(2.1).

We now propose two globalization frameworks that monitor the performance of
the iterations in reference to a mechanism that enforces global convergence. As long
as the adaptive primal-dual steps make sufficient progress towards the solution, the
algorithm is free to choose a new value for the barrier parameter at every iteration;
here, the barrier parameter can be chosen by any desired rule. We call this the free
mode. However, if the iteration fails to maintain progress, then the algorithm reverts
to a monotone mode, in which a Fiacco–McCormick strategy is applied. Here, the
value of the barrier parameter remains fixed, and a robust globalization technique
(e.g., based on a merit function or a filter) is employed to ensure progress for the
corresponding barrier problem. Once the barrier problem is approximately minimized,
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the barrier parameter is decreased. The monotone mode continues until an iterate is
generated that makes sufficient progress for the original problem, at which point the
free mode resumes.

We stress that also in the free mode we might want to choose steplengths αp, αd
that are shorter than the maximal step sizes αmax

x , αmax
z , in order to promote con-

vergence to minimizers. In our implementations, we make sure that the steps have
descent properties with respect to the barrier problem (2.2) corresponding to the cur-
rent value of μ, and we perform a line search to enforce progress in a merit function
or a filter (without history), both of which are defined with respect to this barrier
problem. In this way, we force the algorithm to consider the objective function when
determining a new trial point, and not only the norm of the optimality conditions, so
that convergence to stationary points that are not minimizers is less likely.

There are various ways to measure whether steps in the free mode make sustained
progress toward the solution of the nonlinear program (2.1). We have developed two
mechanisms, one based on a measure of KKT error, and the other using a filter
based on the value of the objective (2.1a) and a measure of the constraint violation.
Both aim to interfere with adaptive steps as little as possible so as not to slow down
convergence.

5.1. Nonmonotone decrease of the KKT error. In our first globalization
framework, we monitor the KKT error of the original nonlinear program,

Φ(x, y, z) =
∥

∥∇f(x) −A(x)T y − z
∥

∥

2
+ ‖c(x)‖2 + ‖ZXe‖2.(5.1)

We require that this measure be reduced by a factor of κ ∈ (0, 1) over at most a fixed
number lmax of iterations, when the algorithm is in the free mode.

Algorithm A: KKT-Error-Based Globalization Framework
Given (x0, y0, z0) with (x0, z0) > 0, a constant κ ∈ (0, 1) and an integer lmax ≥ 0.
Set k ← 0.
Repeat

Choose a target value of the barrier parameter μk, based on any rule.
Compute the primal dual search direction Δ from (2.5).
Determine step sizes αp ∈ (0, αmax

x ] and αd ∈ (0, αmax
z ].

Compute the new trial iterate (x̃k+1, ỹk+1, z̃k+1) from (2.7).
Compute the KKT error Φ̃k+1 ≡ Φ(x̃k+1, ỹk+1, z̃k+1).
Set Mk = max{Φk−l,Φk−l+1, . . . ,Φk} with l = min{k, lmax}.
If Φ̃k+1 ≤ κMk

Accept (x̃k+1, ỹk+1, z̃k+1) as the new iterate, and set Φk+1 ← Φ̃k+1.
Set k ← k + 1 and return to the beginning of the loop.

else
Start Monotone Mode:
Starting from (x̃k+1, ỹk+1, z̃k+1), and for an initial value μ̄, solve a
sequence of barrier problems with a monotonically decreasing
sequence of barrier parameters to obtain a new iterate
(xk+1, yk+1, zk+1) such that

Φk+1 ≡ Φ(xk+1, yk+1, zk+1) ≤ κMk.
Set k ← k + 1 and resume the free mode at the beginning of the loop.

end if
End (repeat).
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In the monotone mode, it is not required to solve each barrier problem to the
specified tolerance before checking whether the method can revert to the free mode.
Instead, we compute the optimality error Φ(x, y, z) for all intermediate iterates in the
monotone mode, and return to the free mode, as soon as Φ(x, y, z) ≤ κMk.

Typical values for the algorithmic parameters are κ = 0.9999 and lmax = 5.
An important issue when switching to the monotone mode is the initialization of
the barrier parameter μ̄. This can be chosen, for example, to be some fraction of
the current complementarity value. The rule used in our implementations is μ̄ =
0.8(xTk zk)/n.

5.2. Two-dimensional filter. In the second globalization method, we make
use of a filter that accepts a trial point if it provides sufficient progress in terms of
the constraint violation θ(x) = ‖c(x)‖ or the objective function f(x), compared to
the previous iterates generated in the free mode. We let Fk ⊆ {(f, θ) ∈ R

2 : θ ≥ 0}
denote the (f, θ) pairs that are not acceptable at the current iteration k. The concept
of acceptability by the filter is made precise below.

Algorithm B: Filter-Based Globalization Framework
Given (x0, y0, z0) with (x0, z0) > 0, and constants κ1, κ2 > 0; initialize the filter

F0 = ∅.
Set k ← 0.
Repeat

Choose a target value of the barrier parameter μk, based on any rule.
Compute the primal dual search direction Δ from (2.5).
Determine step sizes αp ∈ (0, αmax

x ] and αd ∈ (0, αmax
z ].

Compute the new trial iterate (x̃k+1, ỹk+1, z̃k+1) from (2.7).
Compute the filter margin δk = κ1 min{κ2,Φ(xk, yk, zk)}.
If (f(x̃k+1) + δk, ‖c(x̃k+1)‖ + δk) ∈ Fk

Accept (x̃k+1, ỹk+1, z̃k+1) as the new iterate.
Update the filter Fk+1 = Fk ∪ {(f, θ) : f ≥ f(x̃k+1) and θ ≥ ‖c(x̃k+1)‖}.
Set k ← k + 1 and return to the beginning of the loop.

else
Start Monotone Mode:
Starting from (x̃k+1, ỹk+1, z̃k+1), and for an initial value μ̄, solve a
sequence of barrier problems with a monotonically decreasing
sequence of barrier parameters to obtain a new iterate
(xk+1, yk+1, zk+1) such that

(f(xk+1) + δk, ‖c(xk+1)‖ + δk) ∈ Fk.
Augment the filter:

Fk+1 = Fk ∪ {(f, θ) : f ≥ f(xk+1) and θ ≥ ‖c(xk+1)‖}.
Set k ← k + 1 and resume the free mode at the beginning of the loop.

end if
End (repeat).

Similar to the KKT-error based globalization framework, the monotone mode is
terminated as soon as an iterate is encountered that is acceptable to the filter.

We have tested the KKT and filter globalization approaches using ipopt and
knitro, and found both to be effective in practice. For the sake of brevity, we
report results only for the filter globalization framework in the next section. We set
κ1 = 10−5 and κ2 = 1 for these tests, and we choose μ̄ = 0.8(xTk zk)/n for the barrier
parameter when entering the monotone mode.
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5.3. Global convergence results. In the following we summarize the theoret-
ical convergence guarantees for the two globalization frameworks presented above.

Theorem 5.1. Let {(xk, yk, zk)} be the sequence generated by either Algorithm A
or Algorithm B, and assume that the monotone mode always terminates successfully.
For Algorithm B, further assume that {f(xk)} is bounded below and that {‖c(xk)‖} is
bounded above. Then, the KKT error Φ(xk, yk, zk) converges to zero.

Proof. Algorithm A: Since this framework ensures that the optimality measure
Φk = Φ(xk, ykzk) is reduced by a factor of κ ∈ (0, 1) in at most every lmax iterations,
it is clear that Φk → 0.

Algorithm B: The proof is by contradiction and is similar to the proof of Lemma
3.3 in [13]. Suppose that there is a subsequence {kj} of iterations in which δkj−1 ≥
ε > 0. Then f(xkj ) has to be bounded above, say by fU , since otherwise we could find
a subsequence {kjl} of {kj} with f(xkjl

) ≤ f(xkjl+1
) and f(xkjl

) → ∞ so that the
filter update rule would yield ‖c(xkjl+1

)‖ < ‖c(xkjl
)‖− δkjl

−1 ≤ ‖c(xkjl
)‖− ε→ −∞.

Therefore, for each kj , the area of the region Fkj \ Fkj−1 added to Fkj−1 includes a
square of size δ2kj−1 ≥ ε2 within the set F̄ = {(f, θ) : fL ≤ f ≤ fU and 0 ≤ θ ≤ θU}.
Here, fL denotes a lower bound of {f(xk)} and θU an upper bound of {‖c(xk)‖},
which exist by assumption. Because of the monotonicity Fk ⊆ Fk+1 of the filter, this
leads to a contradiction, since F̄ is finite.

The above result pertains to the cases where the algorithm does not eventually
stay in the monotone mode. If it does, the iteration inherits the convergence proper-
ties from the underlying Fiacco–McCormick algorithm. In particular, if the nonlinear
program (2.1) is infeasible the KKT error cannot converge to zero, and therefore The-
orem 5.1 shows that both algorithms must eventually remain in the monotone mode.
In that mode, there will be a value of the barrier parameter, say μ̄, for which the
corresponding barrier problem is infeasible and cannot be solved to the required con-
vergence tolerance. For knitro, it has been shown that the algorithm then generates
an infeasible limit point that is a stationary point for the �2-norm of the constraint
violation [4]. For ipopt, the filter line-search algorithm for that barrier problem
will eventually stay in the restoration phase [26]; the current implementation of the
restoration phase then minimizes the �1-norm of the constraint violation. Therefore, if
the nonlinear program is infeasible, both algorithms will generate a message indicating
that the problem is locally infeasible.

6. Numerical results. We first discuss the choice of norms in the quality func-
tion (4.2) and in the optimality measure (5.1). (For consistency, we use the same
norms and scaling factors for the individual terms in (4.2) and (5.1).) In ipopt we
use the 2-norm, and each of the three terms is divided by the number of elements in
the vectors whose norms are being computed. In knitro, we choose the norm and
scaling factors to be similar to the terms used in the knitro termination test: The
first two terms in (4.2) and (5.1) use the infinity-norm, the complementarity term
uses the 1-norm divided by n, and we scale these terms using the factors described in
[29].

The tests involving ipopt were run on a Dual-Pentium III, 1GHz machine running
Linux. The knitro tests were run on a machine with an AMD Athlon XP 3200+
2.2GHz processor running Linux. For both codes, the maximum number of iterations
was set to 3000 and the time limit was set to 1800 CPU seconds. The tests were run
using the development versions of ipopt and knitro as of October 2005.

The first results we present are for the linear programming problems in the
NETLIB collection, as specified in the CUTEr test set [18]. No preprocessing was
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Fig. 2. Function evaluation comparison for the NETLIB test set.
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Fig. 3. CPU time comparison for the NETLIB test set.

performed, and no initial point strategy was employed (i.e., the default starting point
x0 = (0, . . . , 0) was used). Figure 2 compares the performance of the quality function
approach, in terms of function evaluation count, with two of the strategies described
in section 3, namely, the monotone method and the Mehrotra probing heuristic. Fig-
ure 3 compares the algorithms in terms of CPU time. Since we are primarily interested
in methods with globally convergent frameworks we use the filter based globalization
framework described in section 5 for both the Mehrotra probing approach and the
quality function approach. The monotone approach is globally convergent on its own.
Even though our focus is on nonlinear optimization, linear programming problems are
of interest since they allow us to assess the effectiveness of the quality function in a
context in which it exactly predicts the KKT error. It is apparent from Figure 2 that
the quality function approach is very effective on the NETLIB test set.

The performance (in terms of function evaluations) of the three barrier update
strategies on nonlinear programming problems with at least one inequality or bound
constraint from the CUTEr collection is reported in Figure 4. The quality func-
tion approach again performs significantly better than the monotone method; it also
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Fig. 4. Function evaluation comparison for CUTEr test set.
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Fig. 5. CPU time comparison for the CUTEr test set.

outperforms the Mehrotra probing strategy, which had given the best results in the
experiments reported in section 3. The improvements are less pronounced when com-
paring CPU performance; see Figure 5.

To give more insight into the behavior of the quality function approach, we present
in Table 1 data about the value of the centering parameter σk chosen by the quality
function approach, together with statistics about the globalization strategy employed.
The data was collected from the results produced by ipopt. We compare the probing
and quality function approaches. The third column gives the percentage of iterations
spent in the monotone mode. The rest of the columns report the percentage of itera-
tions in which σk lie in the intervals [σmax, 10], (10, 1], (1, 10−1], etc. The percentage
numbers in Table 1 were obtained by computing the average of the percentages for
each successfully solved problem.

As we can see, only a small percentage of iterations is spent in the monotone
mode, showing that the adaptive mode is the main driving force. Note also that
the quality function strategy tends to produce larger values of σk than the probing
approach.
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Table 1

Average percentage of iterations in monotone and free mode, producing σk in certain ranges.

Method Testset %mono free mode, with σk in range

mode ≥ 10 ≥ 1 ≥ 10−1 ≥ 10−2 ≥ 10−3 ≥ 10−4 ≥ 10−5 < 10−5

Probing NETLIB 4.77% 0.00 2.15 72.35 10.18 3.29 1.33 1.44 4.50
Qual. fctn. NETLIB 3.70% 4.90 11.39 53.41 14.69 3.56 0.63 0.65 7.07
Probing CUTEr 6.92% 0.49 2.25 26.59 19.99 12.08 5.90 4.27 21.50
Qual. fctn. CUTEr 8.39% 4.53 6.98 32.89 22.50 10.57 2.08 2.46 9.59

The performance profiles in Figures 4 and 5 indicate that there are a number of
problems that cannot be solved by the quality function approach. We now make some
observations about the behavior of the two codes on these problems.

Considering both the NETLIB and CUTEr test sets, there were 38 failures for the
knitro implementation of the globalized quality function adaptive barrier rule. Of
these, 18 problems were solved when the default time or iteration limits were increased;
5 problems (BRANDY, PALMER2, PALMER7A, SAWPATH, SINEALI) terminated
at near optimal approximate solutions, but knitro could not get enough accuracy in
the dual feasibility measure; 2 problems (CRESC132, QCNEW) terminated because
of evaluation errors resulting from IEEE exceptions (NaN) in the function evaluation;
and 1 problem (HS110) terminated with a message of unboundedness at a feasible
point with a very large negative value of the objective function. The optimal objec-
tive for HS110 is −9.960e + 39,1 whereas by default knitro declares unboundedness
for a feasible objective value less than the cutoff limit value −1.0e + 20. When this
limit is changed, knitro solves the problem in 4 iterations. In addition, the prob-
lem KTMODEL was discovered to have incorrect gradients which caused knitro

to terminate at an infeasible point. The remaining 11 problems (COSHFUN, DIT-
TERT, DRUGDISE, GREENBEA, GREENBEB, MANNE, NUFFIELD, PILOT-JA,
TENBARS2, TENBARS3, ZIGZAG) constitute unresolved failures.

We give some more information about these 11 problems. GREENBEA, GREEN-
BEB, PILOT-JA, NUFFIELD, and ZIGZAG were not solved even when the time
limit was increased to three hours. The problems GREENBEA, GREENBEB, and
PILOT-JA are linear programs for which knitro experiences numerical difficulties
(from rank-deficient Jacobians) that cause it to often fallback on steepest descent
like steps and converge slowly. knitro appears to be very close to the solution in
PILOT-JA when it reaches the time limit. The problems COSHFUN, DRUGDISE,
TENBARS2, and TENBARS3 were not solved even when the iteration limit was
raised to 100,000 (although it appears in all cases that slow progress is still being
made when the iteration limit is reached). For the problem DITTERT, knitro ter-
minates at an infeasible point but the code is unable to verify whether or not it is an
infeasible stationary point. Finally, for the problem MANNE, knitro terminated at
a feasible point but with a large dual feasibility error.

For the ipopt code, there were 39 failures for the globalized quality function adap-
tive barrier rule. Of these, 13 problems were solved if more iterations (100,000) or CPU
time (3 hours) were allowed. In 6 problems (A2NNDNIL, A5NNDNIL, CRESC100,
EG3, POLAK3, SPIRAL), ipopt terminated at a point satisfying the local infeasibil-
ity criterion; in 2 problems (A2NSDSIL, BRAINPC9) it failed during the restoration
phase. For COSHFUN, the memory requirement in the linear solver was exceeded in
iteration 10681, and the problems EQC and ROBOT terminated because the search

1This is true for problem size N=200 which was the default size for this SIF model at the time
of testing.
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direction became too small, but in both cases the problem was almost solved. For
problem LIN, the objective function value at the (modified) starting point resulted in
an IEEE exception (NaN).

In the remaining failures, the maximum iteration count or CPU time were ex-
ceeded. Problems AVION2, PALMER5E, YORKNET terminated after 100,000 it-
erations; ipopt appeared to be cycling with small primal and dual feasibility errors
for two of these problems (AVION2 and PALMER5E). For problem PALMER7E,
ipopt still made very small progress after 100,000 iterations, while for problem KT-
MODEL the code seemed to diverge (as a result of incorrect gradient information).
Finally, the time limit was exceeded for the linear program QAP15 from NETLIB, and
for the CUTEr models A5NSDSIL, CRESC132, GAUSSELM, GLIDER, MANNE,
NUFFIELD, ORTHREGE, READING8.

7. Corrector steps. The numerical results of section 3 indicate that, when
solving nonlinear problems, including the corrector step in Mehrotra’s method (the
MPC method) is often not beneficial. This is in stark contrast with the experience
in linear programming and convex quadratic programming, where the corrector step
is known to accelerate the interior-point iteration without degrading its robustness.
In this section we study the effect of the corrector step and find that it can also
be harmful in the linear programming and quadratic programming cases if an initial
point strategy is not used. These observations are relevant because in nonlinear
programming it is much more difficult to find a good starting point.

Let us begin by considering the linear programming case. There are several ways
of viewing the MPC method in this context. One is to consider the step computation
as taking place in three stages (see, e.g., [30]). First, the algorithm computes the affine
scaling step (3.2) and uses it to determine the target value of the barrier parameter
μ = σ x

T z
n , where σ is given by (3.5). Next, the algorithm computes a primal-dual

step, say Δpd, from (2.5) using that value of μ. Finally, a corrector step Δcorr is
computed by solving (2.5) with the right-hand side given by

−
(

0,ΔXaffΔZaffe, 0
)T
,(7.1)

where ΔXaff is the diagonal matrix with diagonal entries given by Δxaff , and similarly
for ΔZaff . The complete MPC step is the sum of the primal-dual and corrector steps.
We can compute it by adding the right-hand sides and solving the following system:

⎡

⎣

∇2
xxL −AT (x) −I
Z 0 X

A(x) 0 0

⎤

⎦

⎡

⎣

Δxmpc

Δympc

Δzmpc

⎤

⎦ = −

⎡

⎣

∇f(x) −AT (x)y − z
Xz − μe+ ΔXaffΔZaffe

c(x)

⎤

⎦ .(7.2)

The new iterate (x+, y+, z+) of the MPC method is given by (2.7)–(2.8) with
Δ = (Δxmpc,Δympc,Δzmpc).

Alternative views of the MPC method are possible by the linearity of the step
computation: We can group the right-hand side in (7.2) in different ways and thereby
interpret the step as the sum of different components. Yet all these views point out
the following inconsistency in the MPC approach.

In the linear programming case, primal and dual feasibility are linear functions
and hence vanish at the full affine scaling point, defined by

(x, y, z) +
(

Δxaff ,Δyaff ,Δzaff
)

.(7.3)

The complementarity term takes on the value
(

X + ΔXaff
) (

Z + ΔZaff
)

= ΔXaffΔZaff .
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Fig. 6. An unfavorable corrector step.

Table 2

Output for NETLIB problem Forplan for default PCx with bad starting point.

Iter Primal Obj Dual Obj PriInf DualInf αmax
x αmax

z log
(

xT z
n

)

‖Δaff‖ ‖Δmpc‖
0 9.0515e + 01 −4.8813e + 06 1.0e − 00 1.9e + 00 0.0e + 00 0.0e + 00 0.00 0.0e + 00 0.0e + 00
1 9.0216e + 01 −1.3664e + 08 1.0e − 00 1.9e + 00 8.6e − 13 5.0e − 12 0.08 5.6e + 06 1.2e + 13
2 9.0403e + 01 −3.3916e + 08 1.0e − 00 1.9e + 00 7.3e − 13 4.8e − 13 0.16 9.1e + 07 1.9e + 14
3 9.0769e + 01 −1.1343e + 10 1.0e − 00 1.9e + 00 4.0e − 12 1.2e − 11 1.18 2.2e + 08 3.9e + 14
4 9.0860e + 01 −1.8010e + 11 1.0e − 00 1.9e + 00 1.5e − 12 5.0e − 12 2.35 8.0e + 09 1.4e + 16
5 9.1312e + 01 −2.9307e + 12 1.0e − 00 1.9e + 00 4.3e − 12 5.1e − 12 3.56 1.3e + 11 2.2e + 17
6 9.1710e + 01 −8.2787e + 13 1.0e − 00 1.9e + 00 6.0e − 12 9.1e − 12 5.01 2.1e + 12 3.6e + 18
7 9.2036e + 01 −1.5505e + 15 1.0e − 00 1.9e + 00 7.5e − 12 6.0e − 12 6.28 5.9e + 13 1.0e + 20
8 9.2282e + 01 −6.8149e + 16 1.0e − 00 1.9e + 00 7.0e − 12 1.4e − 11 7.93 1.1e + 15 1.9e + 21
9 9.2279e + 01 −4.4155e + 18 1.0e − 00 1.9e + 00 9.2e − 12 2.1e − 11 9.74 4.8e + 16 8.3e + 22

10 9.2244e + 01 −2.8697e + 20 1.0e − 00 1.9e + 00 6.8e − 12 2.1e − 11 11.55 3.1e + 18 5.4e + 24
11 9.2381e + 01 −3.1118e + 22 1.0e − 00 1.9e + 00 1.1e − 11 3.6e − 11 13.58 2.0e + 20 3.5e + 26
12 9.2462e + 01 −7.0471e + 24 1.0e − 00 2.2e + 01 6.2e − 12 7.6e − 11 15.94 2.2e + 22 3.8e + 28
13 9.2523e + 01 −9.9820e + 26 1.0e − 00 2.8e + 03 1.4e − 11 4.7e − 11 18.09 5.0e + 24 8.6e + 30
14 9.2605e + 01 −1.1959e + 30 1.0e − 00 2.2e + 01 2.1e − 11 4.0e − 10 21.17 7.1e + 26 1.2e + 33

Therefore the value of the right-hand side vector in (2.5) at the full affine scaling step
(7.3) is given by (7.1). Thus the corrector step can be viewed as a modified Newton
step taken from the point (7.3) and using the primal-dual matrix evaluated at the
current iterate (x, y, z).

The inconsistency in the MPC approach arises because the corrector step, which is
designed to improve the full affine scaling step, is applied at the primal-dual point; see
Figure 6. In some circumstances, this mismatch can cause poor steps. In particular,
we have observed that if the affine scaling step is very long, in the sense that the
steplengths (2.8) are very small, and if the corrector step is even larger, then the
addition of the corrector step to the primal-dual step (2.7) can significantly increase
the complementarity value xT z. This behavior can be sustained and lead to very slow
convergence or failure, as shown in Table 2. The results in this table were obtained
using PCx [9], an interior-point code for linear programming that implements the
MPC method, applied to problem Forplan from the NETLIB collection. Practical
implementations of the MPC use a procedure for choosing a favorable starting point
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Fig. 7. Results on the NETLIB test set for three corrector step strategies implemented in PCx.
The initial point was set to x = e, z = e.

described by Mehrotra [22]. We disabled this initial point strategy for PCx and set the
initial point to x = e, z = e. Note from Table 2 that the affine scaling and corrector
steps appear to grow without bound, and examination of the results shows that the
dual variables diverge.

To provide further support to the claim that the corrector step can be harmful, we
ran the complete set of test problems (94 in all) in the NETLIB collection. Using the
default settings, which includes a strategy for computing a good starting point, PCx
solved 90 problems, and terminated very close to the solution in the remaining 4 cases.
Next we disabled the initial point strategy and set the initial point to x = e, z = e.
PCx was now able to solve only 28 problems (and in only 3 additional cases terminated
very close to the solution).

We repeated the experiment, using the initial point x = e, z = e, but this time
removing the corrector step; this corresponds to the algorithm called Mehrotra probing
in section 3. We also tested a variant that we call conditional MPC in which the
corrector step is employed in the MPC method only if it does not result in an increase
of complementarity by a factor larger than 2. The results, in terms of iterations, are
reported in Figure 7. Note the dramatic increase in robustness of both strategies,
compared with the MPC algorithm. The conditional MPC strategy is motivated by
the observation that harmful effects of the corrector steps manifest themselves in
a significant increase in complementarity. The failure of convergence of the MPC
method has also been analyzed by Cartis [7].

Finally we compare the monotone and quality function approaches described in
section 3 with the conditional MPC approach on the nonlinear programming problems
used in that section. The conditional MPC method is now implemented so as to
reject corrector steps that increase complementarity (this more conservative approach
appears to be more suitable in the nonlinear case). Furthermore, if the conditional
MPC step does not pass the merit function or filter acceptance test for the current
barrier problem, the corrector step is also rejected, and the backtracking line search
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Fig. 8. Results for safeguarded corrector steps.

for the regular primal-dual step is executed. Finally, no corrector step is computed
while the algorithm is in the monotone mode. The results, given in Figure 8, indicate
that this conditional MPC method requires fewer function evaluations, and is not less
robust, than the other strategies.

8. Conclusion. We have seen in this paper that, both for linear and nonlinear
programming, classical barrier update strategies with global convergence guarantees
are overly conservative, while strategies that are often fastest in practice are based
on heuristic formulas and are not globally convergent. We have presented a new
update strategy and shown that it is efficient in practice. Instead of basing the
update on a heuristic formula, our approach follows a clearly defined objective, namely,
the minimization of a quality function. We further proposed a simple globalization
framework that makes use of any nonmonotone barrier parameter strategy.

We have also presented results that show the corrector steps employed in MPC
can have harmful effects, even in the linear and quadratic programming cases. These
observations were unexpected since the MPC method has become widely used in linear
and quadratic programming; our tests show that the reliability of the MPC method
depends crucially on heuristics, such as the choice of the initial point. We have shown,
however, that the selective use of corrector steps can have beneficial effects in interior
point methods.

A question we have not addressed is whether the approach presented in this pa-
per enjoys fast local convergence. We have not specifically introduced features that
guarantee superlinear convergence. This could be done by using various techniques
proposed in the literature for controlling the asymptotic behavior of the barrier pa-
rameter; see, e.g., [19] and the references therein. In particular, we could implement
the strategies recently proposed by Armand et al. [1, 2] in conjunction with the quality
function approach.

We have not done so because the asymptotic behavior of the method proposed
in this paper has proved to be acceptable in practice. In fact, the quality function
approach promotes fast local convergence because it chooses the barrier parameter so
as to (approximately) minimize the quality function in the region defined by (2.8). One
can design a superlinearly convergent algorithm by choosing the barrier parameter so
that a step to the region defined by (2.8) decreases the KKT error superlinearly.



1692 J. NOCEDAL, A. WÄCHTER, AND R. A. WALTZ

Since the quality function is an approximation to the KKT error, and it attempts to
minimize it, it is not surprising that the quality function approach tends to yield fast
local convergence.
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Abstract. This paper presents a new method for the numerical solution of nonlinear multi-
objective optimization problems with an arbitrary partial ordering in the objective space induced
by a closed pointed convex cone. This algorithm is based on the well-known scalarization approach
by Pascoletti and Serafini and adaptively controls the scalarization parameters using new sensitivity
results. The computed image points give a nearly equidistant approximation of the whole Pareto
surface. The effectiveness of this new method is demonstrated with various test problems and an
applied problem from medicine.
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1. Introduction. The optimization problems arising nowadays in application
areas like engineering, economics, or the sciences are often multiobjective; i.e., several
competing objective functions have to be minimized all at once. Those optimization
problems have in general not only one best solution but the solution set is very large.

In the last decades the main focus was on finding one minimal solution, e.g., by in-
teractive methods, whereas objective numerical calculations alternate with subjective
decisions done by a so-called decision maker (d.m.). Based on much better computer
performance it is now possible to represent the whole efficient set. Having an ap-
proximation of the whole efficient set available, the d.m. gets a useful insight in the
problem structure. Especially in engineering tasks it is interesting to have all design
alternatives available [28]. So in this paper we aim to generate an approximation of
the efficient set as it is done in many other works, e.g., in [9, 18, 19, 24, 42, 48].

However, the information provided by this approximation depends mainly on the
quality of the approximation. Many points are related to a high numerical effort and
to too many points which have to be interpreted by the d.m. A sparse approxima-
tion neglects large parts of the efficient set. According to different quality criteria as
discussed in [47], an approximation is good in the sense of a stinted but representa-
tive presentation if the approximation points are evenly spread with equal distances
over the whole image of the solution set (see also [19]). Thus our aim is to gener-
ate equidistant points in the value space. For this we use a parameter dependent
scalarization approach by Pascoletti and Serafini [45] and control the choice of the
parameters adaptively.

A common concept for minimality in the multiobjective context is Edgeworth–
Pareto- (EP-) minimality based on the natural ordering defined by the ordering cone
Rm

+ := {x ∈ Rm | xi ≥ 0, i = 1, . . . ,m}. Using arbitrary partial orderings minimality
is defined similarly (see, e.g., [4, 29, 31, 49, 58]). Allowing this, preference structures
can be mapped which cannot be formulated explicitly as an objective function; see [55,
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Example 4.1]. In decision theory and in economics, arbitrary partial orderings are a
well-known tool to model the relative importance of several criteria or to incorporate
groups of decision makers, as promoted, for instance, by Wiecek [56]. For example,
cones being a superset of the positive orthant can be defined by allowable trade-offs
between the objectives or by grouping objectives according to their importance. This
provides a more useful representation of the decision makers’ preferences than the
standard cone because the set of efficient points is reduced by undesired solutions.

For example, in [26, 27] convex polyhedral cones are used for modeling the pref-
erences of a d.m. based on trade-off information facilitating multicriteria decision
making. In portfolio optimization [2] polyhedral cones as well as nonfinitely gener-
ated cones are considered. Besides, orderings, other than the natural ordering, are
important in [20] where a scalar bilevel optimization problem is reformulated as a mul-
tiobjective problem. There a nonconvex cone that is the union of two convex cones
is used. In [13] a multiobjective optimization problem w.r.t. a cone K = Rm

+ × {0n}
is considered for solving multiobjective bilevel optimization problems. Helbig [24]
constructs various cones as a tool for finding EP-minimal points; see also [37, 51]. In
addition to that, Wu [57] considers convex cones for a solution concept in fuzzy multi-
objective optimization. Hence, multiobjective optimization problems w.r.t. arbitrary
partial orderings are essential in decision making and are further an important tool
in other areas. Therefore we develop our results w.r.t. more general partial orderings
defined by closed pointed convex cones.

In the remainder we proceed as follows: in section 2 we recall the basic concepts
in multiobjective optimization. In section 3 we discuss the well-known scalarization
approach by Pascoletti and Serafini and we give some properties of this approach.
We choose this scalarization because it is very general in the sense that many other
scalarizations can be seen as a special case of it; see section 7 and [15]. In section 4
we present our main sensitivity theorem on which we base our new adaptive method
in section 5. In section 6 this is applied to some test problems and to a problem in
intensity modulated radiotherapy in medicine. We conclude with some remarks on
the presented scalarization approach and on the transferability of the given procedure
to other scalarization approaches in section 7.

2. Basic notations and concepts. We consider multiobjective optimization
problems formally defined by

(2.1)
minK f(x) = (f1(x), . . . , fm(x))�

subject to the constraint
x ∈ Ω ⊂ Rn.

Here, K represents the considered partial ordering defined later.
We assume the following:
Assumption 1. Let C be a closed convex cone in Rp, Ŝ ⊂ Rn a nonempty open

subset, and S ⊂ Ŝ closed and convex. Let the functions f : Ŝ → Rm, g : Ŝ → Rp,
and h : Ŝ → Rq (m,n ∈ N , p, q ∈ N0, m ≥ 2) be continuously differentiable on Ŝ.
Let the set Ω ⊂ Rn, given by Ω = {x ∈ S | g(x) ∈ C, h(x) = 0q}, be compact.

A convex cone C ⊂ Rp is a subset of Rp with the property λ(x + y) ∈ C for all
λ ≥ 0, x, y ∈ C. For defining minimality we need a partial ordering “≤” in the image
space Rm. Here we mean by a partial ordering a binary relation which is reflexive,
transitive, and compatible with addition and with nonnegative scalar multiplication.
Any partial ordering ≤ defines a convex cone K by K := {x ∈ Rm | 0m ≤ x} and
any convex cone K ⊂ Rm, then called ordering cone, defines a partial ordering by
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Fig. 2.1. Illustration of Definition 2.1 for m = 2. The thick part of the boundary of f(Ω)
denotes the set E(f(Ω), K).

≤K := {(x, y) ∈ Rm ×Rm | y− x ∈ K}. For example, the natural ordering is defined
by the cone Rm

+ . The partial ordering is antisymmetric if the related ordering cone
is pointed, i.e., K ∩ (−K) = {0m}. Here we consider only partial orderings defined by
closed pointed convex cones.

Assumption 2. Let Assumption 1 hold. In addition let K ⊂ Rm be a closed
pointed convex cone.

Minimality is then defined by (see, among others, [29, 31, 49, 58]):
Definition 2.1. Let K be a closed pointed convex cone. A point x̄ ∈ Ω is called

K-minimal of (2.1) if (f(x̄) − K) ∩ f(Ω) = {f(x̄)}. Additionally for int(K) �= ∅ a
point x̄ ∈ Ω is called weakly K-minimal of (2.1) if (f(x̄) − int(K)) ∩ f(Ω) = ∅.

For an illustration of this definition see Figure 2.1.
We denote the set of all K-minimal points by M(f(Ω),K) and the set of all

weakly K-minimal points by Mw(f(Ω),K). The set E(f(Ω),K) := {f(x) ∈ Rm |
x ∈ M(f(Ω),K)} is called efficient set (see Figure 2.1) and the set Ew(f(Ω),K) :=
{f(x) ∈ Rm | x ∈ Mw(f(Ω),K)} weakly efficient set. For K = Rm

+ the K-minimal
points are denoted as Edgeworth–Pareto (EP)-minimal points, too.

Later on we need that in the bicriteria case (m = 2) every ordering cone is finitely
generated. This is stated in the following lemma. The proof is omitted here and the
interested reader is referred to [13]. For the definition of a finitely generated cone (or
polyhedral cone) see [46, Definition 2.17, 2.18].

Lemma 2.2. Let K ⊂ R2 be a closed pointed convex cone with K �= {02}. Then
K is polyhedral and there is either a k ∈ R2 \ {02} with K = {λk | λ ≥ 0} or there
are l1, l2 ∈ R2 \ {02}, l1, l2 linearly independent, and l̃1, l̃2 ∈ R2 \ {02}, l̃1, l̃2 linearly
independent, with

(2.2)
K =

{

y ∈ R2 | l1�y ≥ 0, l2�y ≥ 0
}

=
{

y ∈ R2 | y = λ1 l̃1 + λ2 l̃2, λ1, λ2 ≥ 0
}

.

In general, Lemma 2.2 is not true for m ≥ 3. This is illustrated by the ice-cream cone
{(x1, x2, x3) ∈ R3 | x1 ≥

√

x2
2 + x2

3} which is not polyhedral.

3. Scalarization approach. For determining minimal solutions of the multi-
objective optimization problem (2.1) a common approach is the scalarization of the
problem. We examine the scalarization problem by Pascoletti and Serafini [45] named
(SP(a, r)) which is defined by

(SP(a, r))

min t
subject to the constraints

a+ t r − f(x) ∈ K,
x ∈ Ω, t ∈ R
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for parameters a, r ∈ Rm. Properties of this scalarization approach can be found in
[13, 45]. Here we concentrate on some major results only.

Theorem 3.1.

(a) Let x̄ be a K-minimal point of (2.1), then (0, x̄) is a global minimal solution
of (SP(a, r)) with a = f(x̄), r ∈ K \ {0m}.

(b) Let (t̄, x̄) be a global minimal solution of (SP(a, r)), then x̄ is a weakly K-
minimal solution of (2.1).

Theorem 3.1 is given for global minimal solutions, but the statements can easily
be adapted to local minimal solutions (for a continuous function f) too; see [13, 45].
Theorem 3.1 (a) yields that any K-minimal solution of the multiobjective optimiza-
tion problem can be found by solving the scalar problem (SP(a, r)) for appropriate
parameters, even for nonconvex problems. This is not the case for any scalarization
approach as, e.g., the weighted sum method [59] shows. In the following Theorems 3.2,
3.3, and 3.5 we even see that it is sufficient to consider only variations of the param-
eter a in (a subset of) a hyperplane for a fixed chosen parameter r ∈ K \ {0m}. Then
it is still possible that any minimal solution of the multiobjective optimization can be
recovered.

Theorem 3.2. Let x̄ ∈ M(f(Ω),K) and r ∈ K be given. We define a hyperplane
H by H = {y ∈ Rm | b�y = β} with b ∈ Rm \ {0m}, b�r �= 0, β ∈ R. Then there is
a parameter a ∈ H and some t̄ ∈ R so that (t̄, x̄) is a minimal solution of (SP(a, r)).

Proof. We set t̄ = (b�f(x̄)−β)/(b�r) and a = f(x̄)− t̄ r. Then a ∈ H and (t̄, x̄) is
feasible for (SP(a, r)). We assume (t̄, x̄) is not a minimal solution of (SP(a, r)). Then
there are t′ ∈ R, t′ < t̄, x′ ∈ Ω, and k′ ∈ K so that a+ t′ r − f(x′) = k′. Using the
definition of the parameter a, this results in f(x̄) = f(x′) + k′ + (t̄− t′)r. Since K is
a pointed convex cone, r ∈ K \ {0m} and t̄− t′ > 0 we have f(x̄) ∈ f(x′) +K \ {0m}
for x′ ∈ Ω which is a contradiction to x̄ K-minimal.

We can restrict the parameter set even further. First we consider the bicriteria
case (m = 2). Then, according to Lemma 2.2, every closed pointed convex cone is
finitely generated. We suppose the cone K is given by (2.2). (The more trivial case
K = {λk | λ ≥ 0} for some k ∈ R2 \ {02} can be handled similarly, but we will not
consider this less interesting case here. For more details see [13, pp. 73f]). Next we
solve the scalar optimization problems

(3.1) min
x∈Ω

li�f(x), i = 1, 2,

with minimal solutions x̄i, i = 1, 2. Then the points x̄i, i = 1, 2, are weakly K-
minimal and we can easily show that for every K-minimal point x of (2.1) we have

(3.2) l1�f
(

x̄1
)

≤ l1�f(x) ≤ l1�f
(

x̄2
)

and l2�f
(

x̄2
)

≤ l2�f(x) ≤ l2�f
(

x̄1
)

.

Using (3.2), l1�f(x̄1) = l1�f(x̄2) implies l1�f(x) = l1�f(x̄2) and, consequently,
f(x) ∈ f(x̄2) + K for all x ∈ M(f(Ω),K) resulting in E(f(Ω),K) = {f(x̄2)}. The
same, l2�f(x̄2) = l2�f(x̄1), leads to E(f(Ω),K) = {f(x̄1)}. Thus, assuming the
efficient set does not consist of one point only, we have

(3.3) l1�f
(

x̄1
)

< l1�f
(

x̄2
)

and l2�f
(

x̄2
)

< l2�f
(

x̄1
)

.

If we define the points āi, i = 1, 2, by a projection of the points f(x̄i), i = 1, 2,
in direction r ∈ K on the hyperplane H , then we get

(3.4) āi := f
(

x̄i
)

− t̄i r ∈ H with t̄i :=
b�f

(

x̄i
)

− β

b�r
, i = 1, 2.
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In the next theorem we see that we can restrict ourselves to the set Ha := {y ∈ R2 |
y = λā1 + (1 − λ)ā2, λ ∈ [0, 1]} for choosing the parameter a.

Theorem 3.3. We consider the multiobjective optimization problem (2.1) with
m = 2 and K as in (2.2). Further let āi, i = 1, 2, be defined as in (3.4) with x̄i,
i = 1, 2, minimal solutions of (3.1) and assume x̄ ∈ M(f(Ω),K). Then there is
a parameter a ∈ Ha ⊂ H and some t̄ ∈ R so that (t̄, x̄) is a minimal solution of
(SP(a, r)).

Proof. Notice that ā1, ā2 ∈ H and, hence, Ha ⊂ H . According to Theorem 3.2
we have for any x̄ ∈ M(f(Ω),K) a parameter a ∈ H and some t̄ ∈ R so that (t̄, x̄)
is a minimal solution of (SP(a, r)). This is achieved by t̄ = (b�f(x̄) − β)/(b�r) and
a = f(x̄) − t̄ r. Hence, it suffices to show a = λā1 + (1 − λ)ā2 for some λ ∈ [0, 1].
Using the definitions of a, ā1, and ā2, this equation can be written as

(3.5) f(x̄) − t̄ r = λ
(

f
(

x̄1
)

− t̄1 r
)

+ (1 − λ)
(

f
(

x̄2
)

− t̄2 r
)

.

If the efficient set consists of one point only (and then this point is f(x̄1) or f(x̄2))
(3.5) is fulfilled for λ = 1 or λ = 0. Otherwise, the strict inequalities (3.3) hold.
Equation (3.5) can further be written as

(3.6) f(x̄) = λ f
(

x̄1
)

+ (1 − λ) f
(

x̄2
)

+
(

t̄− λ t̄1 − (1 − λ) t̄2
)

r,

and we differentiate the following two cases: (t̄ − λ t̄1 − (1 − λ) t̄2) = 1
b�r

(b�(f(x̄) −
λ f(x̄1) − (1 − λ) f(x̄2)) ≥ 0 and (t̄− λ t̄1 − (1 − λ) t̄2) < 0.

For t̄− λ t̄1 − (1 − λ) t̄2 ≥ 0 we suppose (3.6) is satisfied for λ < 0. Applying the
linear map l1 on (3.6) results, together with r ∈ K and (3.3), in the following:

l1�f(x̄) = λ l1�f
(

x̄1
)

+ (1 − λ) l1�f
(

x̄2
)

+
(

t̄− λ t̄1 − (1 − λ) t̄2
)

︸ ︷︷ ︸

≥0

l1�r
︸︷︷︸

≥0

≥ λ
︸︷︷︸

<0

l1�f
(

x̄1
)

︸ ︷︷ ︸

<l1�f(x̄2)

+(1 − λ)l1�f
(

x̄2
)

> λ l1�f
(

x̄2
)

+ (1 − λ) l1�f
(

x̄2
)

= l1�f
(

x̄2
)

,

which is a contradiction to (3.2).
Instead, assuming (3.6) is satisfied for λ > 1, we get by applying l2 on (3.6)

together with (3.3)

l2�f(x̄) ≥ λ l2�f
(

x̄1
)

+ (1 − λ)
︸ ︷︷ ︸

<0

l2�f
(

x̄2
)

︸ ︷︷ ︸

<l2�f(x̄1)

> l2�f
(

x̄1
)

in contradiction to (3.2). Hence, we have λ ∈ [0, 1] for t̄− λ t̄1 − (1 − λ) t̄2 ≥ 0.
In the same way we show λ ∈ [0, 1] for t̄ − λ t̄1 − (1 − λ) t̄2 < 0, too, and the

assertion of the theorem is proven.
A generalization to the case m ≥ 3 is not possible because then a cone need not

be finitely generated as we have seen. Even if the cone is finitely generated, even if it
is the positive orthant, the previous results are not true in general for more than two
objectives as the following example shows.

Example 3.4. We consider the function f : R3 → R3 with f(x) = x for all
x ∈ R3 and the set Ω = {x ∈ R3 | x2

1 + x2
2 + x2

3 ≤ 1} representing the unit ball in
R3. Let the ordering cone be the natural ordering cone K = R3

+ finitely generated
by l1 = (1, 0, 0)�, l2 = (0, 1, 0)�, and l3 = (0, 0, 1)�. The multiobjective optimiz-
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ation problem minx∈Ω f(x) has the minimal solution set M(f(Ω),R3
+) = {x ∈

R3 | x2
1 + x2

2 + x2
3 = 1, xi ≤ 0, i = 1, 2, 3}. By solving the scalar optimization

problems minx∈Ω l
i�f(x), i = 1, 2, 3 (compare (3.1)), we get the minimal solutions

x̄1 = (−1, 0, 0)�, x̄2 = (0,−1, 0)�, and x̄3 = (0, 0,−1)�. If we consider now the
hyperplane H = {y ∈ R3 | (−1,−1,−1) · y = 1} we have f(x̄i) = x̄i ∈ H for
i = 1, 2, 3.

Choosing r = (1, 1, 1)� and determining the points āi ∈ H , i = 1, 2, 3, as in (3.4)
results in ā1 = (−1, 0, 0)�, ā2 = (0,−1, 0)�, ā3 = (0, 0,−1)� and, hence, in the set
Ha consisting of all convex combinations of the points āi, i = 1, 2, 3. In this example
the point x̄ = (−1/

√
2,−1/

√
2, 0)� is EP-minimal, but there is no parameter ā ∈ Ha

such that x̄ is a minimal solution of (SP(ā, r)). For ā = −1/(3
√

2) · (1 +
√

2, 1 +√
2,
√

2 − 2)� and t̄ = (1 −
√

2)/3 the point (t̄, x̄) is a minimal solution of (SP(ā, r))
but it is ā �∈ Ha.

Similar considerations have been done in [9, pp. 635f] in connection with the
normal boundary intersection method. Nevertheless we want to restrain the set H
from which we choose the parameters a for the case of more than two objectives. For
this aim we project the set f(Ω) in the direction r into the set H and determine the
set H̃ := {y ∈ H | y + t r = f(x), t ∈ R, x ∈ Ω} ⊂ H . Of course we would get a
stricter limitation by projecting the set E(f(Ω),K) instead of f(Ω), but in general the
efficient set is not known in advance. Because the set H̃ ⊂ H has usually an irregular
shape, which complicates a methodic procedure, we embed the set H̃ in the image of
an (m − 1)-dimensional hyperplane under a linear transformation H0 ⊂ Rm, which
we attempt to choose minimally. For doing this we first determine m− 1 orthogonal
vectors v1, . . . , vm−1 spanning the hyperplane H with H̃ ⊂ H . Hence, we have

(3.7) H =

{

y ∈ Rm | y =
m−1
∑

i=1

siv
i, s ∈ Rm−1

}

.

Next we solve the following 2(m− 1) scalar optimization problems

(3.8)

min sj
subject to the constraints
m−1
∑

i=1

siv
i + t r = f(x),

t ∈ R, x ∈ Ω, s ∈ Rm−1,

and

min−sj
subject to the constraints
m−1
∑

i=1

siv
i + t r = f(x),

t ∈ R, x ∈ Ω, s ∈ Rm−1

for j ∈ {1, . . . ,m− 1} with minimal solutions (tmin,j , xmin,j , smin,j) and minimal val-
ues smin,j

j and (tmax,j , xmax,j , smax,j) and minimal values −smax,j
j , respectively. These

optimization problems are generally nonconvex even if the related multiobjective op-
timization problem is convex. However, note that it suffices to provide lower bounds
for the optimal function values for the following results. Then we obtain the set H0

by H0 := {y ∈ Rm | y =
∑m−1

i=1 siv
i, si ∈ [smin,i

i , smax,i
i ], i = 1, . . . ,m− 1}. The set

H0 includes the set H̃ and is calculated numerically as small as possible.
Theorem 3.5. Let x̄ ∈ M(f(Ω),K). Then there is a parameter ā ∈ H0 and

some t̄ ∈ R so that (t̄, x̄) is a minimal solution of (SP(ā, r)).
Proof. According to the proof of Theorem 3.2 we have for t̄ = (b�f(x̄)−β)/(b�r)

and ā = f(x̄)− t̄ r that (t̄, x̄) is a minimal solution of (SP(ā, r)) with ā ∈ H . Because
H0 ⊂ H it suffices to show ā ∈ H0. Because ā ∈ H there is, according to the
representation in (3.7), a vector s̄ ∈ Rm−1 with ā =

∑m−1
i=1 s̄iv

i. Because of ā+ t̄ r =
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Fig. 3.1. (a) Visualization of Theorem 3.6. (b) Choosing the new parameter in the case
a0 + t0 r − f(x0) �= 02 and ã0

1 < a0
1.

f(x̄), the point (t̄, x̄, s̄) is feasible for the optimization problems (3.8) and thus we
have smin,i

i ≤ s̄i ≤ smax,i
i for i = 1, . . . ,m− 1. Hence, it follows ā ∈ H0.

Thus, it is sufficient to consider only parameters a ∈ H0 for a fixed r ∈ K \ {0m}
to find all K-minimal solutions of the multiobjective optimization problem (2.1).

For our considerations in the next section it will be important that in the minimal
solution (t̄, x̄) the constraint a + t r − f(x) ∈ K is active; i.e., a + t̄ r − f(x̄) = 0m.
If this is not the case for the choice of a parameter a, we can easily define a new
parameter a′ for which this property is satisfied (see Figure 3.1(a)).

Theorem 3.6. Let the hyperplane H = {y ∈ Rm | b�y = β} with b ∈ Rm\{0m},
β ∈ R be given. Suppose (t̄, x̄) is a minimal solution of (SP(a, r)) for a ∈ H, r ∈ K,
b�r �= 0. Then there is a k̄ ∈ K with a + t̄ r − f(x̄) = k̄. However, then there is a
point a′ ∈ H and some t′ ∈ R so that (t′, x̄) is also a minimal solution of (SP(a′, r))
with a′ + t′ r − f(x̄) = 0m.

Proof. We set t′ := (b�f(x̄) − β)/(b�r) and a′ := a+ (t̄− t′) r − k̄ = f(x̄) − t′ r.
Then a′ ∈ H and a′ + t′ r − f(x̄) = 0m. Next we show that (t′, x̄) is a minimal
solution of (SP(a′, r)). Otherwise there is a feasible point (t̂, x̂) ∈ R × Ω with t̂ < t′

and there is a k̂ ∈ K with a′ + t̂ r − f(x̂) = k̂. Together with the definition of a′

this leads to a + (t̄ − t′ + t̂) r − f(x̂) = k̂ + k̄ ∈ K. However, then (t̄ − t′ + t̂, x̂) is
feasible for (SP(a, r)) with t̄− t′ + t̂ < t̄ in contradiction to (t̄, x̄) a minimal solution of
(SP(a, r)).

It can also be shown that there is no K-minimal point x̃ for which ã = a +
λ (a′ − a) for some λ ∈]0, 1[ with ã := f(x̃) − t̃ r and t̃ := (b�f(x̃) − β)/(b�r) [13,
Theorem 4.2.12]. Thus the section on the hyperplane H between the parameters a
and a′ can be neglected. According to Theorem 3.6 we have for the parameter a′ not
only a′ ∈ H but also a′ + t′ r = f(x̄). Hence, for the set H0 as in Theorem 3.5, it
holds a′ ∈ H0.

Under the Assumption 2 it can be shown that if a minimal solution (t̄, x̄) of
(SP(a, r)) has Lagrange multipliers (μ, ν, ξ) ∈ K∗ × C∗ × Rq, then these are also
Lagrange multipliers to the point (t′, x̄) for (SP(a′, r)) under the transformation of
Theorem 3.6. For the definition of the Lagrange function and the Lagrange multipliers
see, for instance, [32, p. 115]. Here, μ ∈ K∗ is the Lagrange multiplier to the constraint
a+ t r − f(x) ∈ K (and thus also to a′ + t r − f(x) ∈ K), ν ∈ C∗ corresponds to the
constraint g(x) ∈ C, and ξ ∈ Rq to the equality constraint h(x) = 0q.

4. Sensitivity results. The main point of our adaptive parameter control for
the parameter dependent scalarization approach (SP(a, r)) is a sensitivity theorem
based on theorems by Alt [3, Theorem 5.3, 6.1]. For two reasons we apply these
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theorems on a modified version of problem (SP(a, r)) called (SP(a, r)):

(SP(a, r))

min t
subject to the constraints
a+ t r − f(x) = 0m,

t ∈ R, x ∈ Ω

with the constraint set Σ(a, r) := {(t, x) ∈ R × Rn | a+ t r − f(x) = 0m, x ∈ Ω}.
First, by getting sensitivity results for the minimal value t = t(a, r) of the problem

(SP(a, r)) we can at once conclude how a variation of the parameters influences the
generated points f(x(a, r)) by using the equality constraint a+ t(a, r) r−f(x(a, r)) =
0m. Second, for applying the sensitivity theorems by Alt directly to the problem
(SP(a, r)), for the Hessian of the Lagrange function L(t, x, μ, ν, ξ, a, r) = t − μ�(a +
t r − f(x)) − ν�g(x) − ξ�h(x) w.r.t. the variables (t, x)

∇2
(t,x)L(t, x, μ, ν, ξ, a, r) =

(

0 0
0 W (x, μ, ν, ξ)

)

with W (x, μ, ν, ξ) =
∑m
i=1 μi∇2fi(x) −

∑p
j=1 νj∇2gj(x) −

∑q
k=1 ξk∇2hk(x) the as-

sumption

(

t, x�
)

∇2
(t,x)L(t, x, μ, ν, ξ, a, r)

(

t
x

)

≥ α

∥

∥

∥

∥

(

t
x

)∥

∥

∥

∥

2

has to be satisfied for some constant α > 0 for all (t, x) ∈ Rn+1 with ∇h(x)x = 0q.
This is always contradicted by the points (t, x) = (t, 0n) with t �= 0.

Problem (SP(a, r)) is in general nonconvex, even if the original multiobjective
optimization problem is convex. However, note that the problem (SP(a, r)) is never
actually solved. We solve only the problems (SP(a, r)) (which are convex if the original
multiobjective optimization problem is convex) and we use the problem (SP(a, r))
only for approximating the minimal value and the points f(x(a, r)) of the problem
(SP(a, r)).

We obtain the connection between the problems (SP(a, r)) and (SP(a, r)) by
Theorem 3.6: if we solve the problem (SP(a, r)) with a minimal solution (t̄, x̄) and
with a+ t̄ r − f(x̄) = k̄ ∈ K, then there always exists a parameter a′ and some t′ so
that (t′, x̄) is minimal for (SP(a′, r)) with a′ + t′ r − f(x̄) = 0m and then (t′, x̄) is a
minimal solution of (SP(a′, r)) too. We examine now the dependence of the minimal
values of the problem (SP(a′, r)) on the parameter a′ (in Theorem 4.2) and from that
we conclude on the (approximated) dependence of the minimal value of the problem
(SP(a′, r)) on the parameter a′ (in section 5.1). Before we come to the main sensitivity
result we need the following assumption and the following lemma.

Assumption 3. Let Assumption 2 hold. In addition let the functions f , g, and h
be twice continuously differentiable on Ŝ.

Lemma 4.1. Let Assumption 3 hold. Let (t0, x0) be a local minimal solution of
(SP(a0, r0)) with Lagrange multipliers (μ0, ν0, ξ0) ∈ Rm × C∗ × Rq. Assume there
exists some constant α̃ > 0 such that for the matrix W (x0, μ0, ν0, ξ0) = μ0�∇2f(x0)−
ν0�∇2g(x0) − ξ0�∇2h(x0) we have

(4.1) x�W
(

x0, μ0, ν0, ξ0
)

x ≥ α̃ ‖x‖2

for all x ∈ {x ∈ Rn | ∇h(x0)x = 0q, ∇f(x0)x = r0 t for a t ∈ R}. Then there exists
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some constant α > 0 such that for the Lagrange function L to (SP(a, r)) we have

(4.2)
(

t, x�
)

∇2
(t,x)L

(

t0, x0, μ0, ν0, ξ0, a0, r0
)

(

t
x

)

≥ α

∥

∥

∥

∥

(

t
x

)∥

∥

∥

∥

2

for all (t, x) ∈ {(t, x) ∈ R × Rn | ∇h(x0)x = 0q, ∇f(x0)x = r0 t}.
Proof. Because (t0, x0) is a local minimal solution of (SP(a0, r0)) with Lagrange

multipliers (μ0, ν0, ξ0) we have for the associated Lagrange function

(4.3) ∇(t,x)L
(

t0, x0, μ0, ν0, ξ0, a0, r0
)�
(

t− t0

x− x0

)

≥ 0 for all t ∈ R, x ∈ S.

With ∂L(t0,x0,μ0,ν0,ξ0,a0,r0)
∂t = 1 − μ0�r0 and because (4.3) has to be fulfilled for all

t ∈ R we have

(4.4) μ0�r0 = 1

and, therefore, μ0 �= 0m, r0 �= 0m. Because in Rn and Rm, respectively, all norms
are equivalent, there exist positive constants M l, Mu ∈ R+ and M̃ l, M̃u ∈ R+,
respectively, with M l‖x‖2 ≤ ‖x‖ ≤Mu‖x‖2 and

M̃ l

∥

∥

∥

∥

(

t
x

)∥

∥

∥

∥

2

≤
∥

∥

∥

∥

(

t
x

)∥

∥

∥

∥

≤ M̃u

∥

∥

∥

∥

(

t
x

)∥

∥

∥

∥

2

for all (t, x) ∈ R × Rn. For all (t, x) ∈ R × Rn with ∇f(x0)x = r0 t we have
together with (4.4) the equation μ0�∇f(x0)x = t and then we get the estimation
|t|2 = |μ0�∇f(x0)x|2 ≤ ‖μ0‖2

2 ‖∇f(x0)‖2
2 ‖x‖2

2. If we set now

α :=
α̃
(

M l
)2

(

M̃u
)2

(1 + ‖μ0‖2
2 ‖∇f (x0) ‖2

2)
> 0,

we conclude from (4.1) for all (t, x) ∈ {(t, x) ∈ R × Rn | ∇h(x0)x = 0q, ∇f(x0)x =
r0 t}

x�W
(

x0, μ0, ν0, ξ0
)

x ≥ α̃ ‖x‖2 ≥ ã
(

M l
)2 ‖x‖2

2

= α
(

M̃u
)2
(

1 + ‖μ0‖2
2 ‖∇f(x0)‖2

2

)

‖x‖2
2

≥ α
(

M̃u
)2
(

‖x‖2
2 + |t|2

)

= α
(

M̃u
)2
∥

∥

∥

∥

(

t
x

)∥

∥

∥

∥

2

2

≥ α

∥

∥

∥

∥

(

t
x

)∥

∥

∥

∥

2

.

With

∇2
(t,x)L

(

t0, x0, μ0, ν0, ξ0, a0, r0
)

=
(

0 0
0 W

(

x0, μ0, ν0, ξ0
)

)

the assertion is proven.
The condition (4.2) for all (t, x) of the given set is called strict second-order suf-

ficient condition. If this condition is fulfilled for a regular point, then this is sufficient
for strict local minimality of the considered point [41, Theorem 5.2].
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Theorem 4.2. Let Assumption 3 and the assumptions of Lemma 4.1 hold. We
consider the parametric optimization problem (SP(a, r)) with the constraint set Σ(a, r)
starting with a reference problem (SP(a0, r0)) with a local minimal solution (t0, x0)
and with Lagrange multipliers (μ0, ν0, ξ0) ∈ Rm × C∗ × Rq.

(i) Suppose the point (t0, x0) is regular for the set Σ(a0, r0), i.e., we have

0m+p+q ∈ int

⎧

⎨

⎩

⎛

⎝

r0
(

t− t0
)

− ∇f
(

x0
) (

x− x0
)

g
(

x0
)

+ ∇g
(

x0
) (

x− x0
)

− c
∇h
(

x0
) (

x− x0
)

⎞

⎠

∣

∣

∣

∣

∣

∣

c ∈ C,
x ∈ S,
t ∈ R

⎫

⎬

⎭

.

(ii) Assume there exists some ζ > 0 such that the following holds for all p1, p2 ∈
ζB̃ (with B̃ the closed unit ball in R1+n+m+p+q) with pi = (t∗i, x∗i, ui, vi, wi),
i = 1, 2: if (t1, x1) and (t2, x2), respectively, are solutions of the quadratic
optimization problem

min J
(

t, x, pi
)

subject to the constraints
r0
(

t− t0
)

−∇f
(

x0
) (

x− x0
)

− ui = 0m,
g
(

x0
)

+ ∇g
(

x0
) (

x− x0
)

− vi ∈ C,
∇h
(

x0
) (

x− x0
)

− wi = 0q,
t ∈ R, x ∈ S,

(i = 1, 2) with J(t, x, pi) := 1
2 (x− x0)�W (x0, μ0, ν0, ξ0) (x− x0) + (t− t0) −

t∗i (t − t0) − (x∗i)�(x − x0), then the Lagrange multipliers (μiq, ν
i
q, ξ

i
q) to the

solutions (ti, xi), i = 1, 2, are uniquely determined and
∥

∥

(

μ1
q, ν

1
q , ξ

1
q

)

−
(

μ2
q, ν

2
q , ξ

2
q

)∥

∥ ≤ cM
(∥

∥

(

t1, x1
)

−
(

t2, x2
)∥

∥+
∥

∥p1 − p2
∥

∥

)

with some constant cM .
Then there exists some δ > 0 and a neighborhood N(a0, r0) of (a0, r0) so that

the local minimal value function τ δ(a, r) := inf{t | (t, x) ∈ Σ(a, r) ∩ Bδ(t0, x0)} is
differentiable on N(a0, r0) with the derivative

∇(a,r)τ
δ(a, r) = ∇(a,r)L (t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r) .

Here (t̄(a, r), x̄(a, r)) denotes the strict local minimal solution of (SP(a, r)) for (a, r) ∈
N(a0, r0) with the unique Lagrange multipliers (μ(a, r),ν(a, r),ξ(a, r)). In addition
to that the mapping φ : N(a0, r0) → Bδ(t0, x0) × Bδ(μ0, ν0, ξ0) defined by φ(a, r) =
(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r)) is Lipschitzian on N(a0, r0).

Proof. By using Lemma 4.1 it can easily be shown that all premises for applying
the Theorems 5.3 and 6.1 by Alt [3] are met.

Remark 4.3. The condition (ii) of the preceding theorem is always satisfied if we
have only equality constraints [3, Theorem 7.1] or, in the case of the natural ordering
C = Rn

+, if the gradients of the active constraints are linearly independent; compare
[16, Theorem 2.1] and [35, Theorem 2].

Lemma 4.4. Let the assumptions of Theorem 4.2 be satisfied with S = Rn.
Then there is some δ > 0 and a neighborhood N(a0, r0) of (a0, r0) so that for all
(a, r) ∈ N(a0, r0) the derivatives of the local minimal value function are given by

∇aτ
δ(a, r) = −μ(a, r) −∇aν(a, r)�g(x̄(a, r))

and ∇rτ
δ(a, r) = −t̄(a, r)μ(a, r) −∇rν(a, r)�g(x̄(a, r)).
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Proof. According to Theorem 4.2 there is a neighborhoodN(a0, r0) of (a0, r0) such
that for all (a, r) ∈ N(a0, r0) there is a strict minimal solution (t̄(a, r), x̄(a, r)) with
unique Lagrange multipliers (μ(a, r), ν(a, r), ξ(a, r)). Because of S = Rn we have for
the derivative of the Lagrangian ∇(t,x)L(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r) =
0n+1. Then it follows

0m = ∇a

(

t̄(a, r)
x̄(a, r)

)�
∇(t,x)L(t̄(a, r), x̄(a, r), μ(a, r), ν(a, r), ξ(a, r), a, r)

= ∇at̄(a, r) −
m
∑

i=1

μi(a, r)
(

∇at̄(a, r) ri −∇ax̄(a, r)�∇xfi(x̄(a, r))
)

(4.5)

−
p
∑

j=1

νj(a, r)∇ax̄(a, r)�∇xgj(x̄(a, r)) −
q
∑

k=1

ξk(a, r)∇ax̄(a, r)�∇xhk(x̄(a, r)).

According to Theorem 4.2 there exists some δ > 0 so that the derivative of the local
minimal value function is given by ∇(a,r)τ

δ(a, r) = ∇(a,r)L(t̄(a, r), x̄(a, r), μ(a, r),
ν(a, r), ξ(a, r), a, r). Applying standard rules of differentiation and together with (4.5)
we conclude

∇aτ
δ(a, r) = ∇at̄(a, r) −

m
∑

i=1

μi(a, r)
(

ei + ∇at̄(a, r)ri − ∇ax̄(a, r)�∇xfi(x̄(a, r))
)

−
m
∑

i=1

∇aμi(a, r) (ai + t̄(a, r) ri − fi(x̄(a, r)))
︸ ︷︷ ︸

=0

−
p
∑

j=1

νj(a, r)∇ax̄(a, r)�∇xgj(x̄(a, r)) −
p
∑

j=1

∇aνj(a, r)gj(x̄(a, r))

−
q
∑

k=1

ξk(a, r)∇ax̄(a, r)�∇xhk(x̄(a, r)) −
q
∑

k=1

∇aξk(a, r)hk(x̄(a, r))
︸ ︷︷ ︸

=0

= −μ(a, r) −∇aν(a, r)�g(x̄(a, r)).

The same for ∇rτ
δ(a, r).

We can use that inactive constraints remain inactive for small parameter changes
and then in the case C = Rp

+ we conclude (using the arguments in [17, Theorem 3.2.2,
Proof of Theorem 3.4.1]) ∇(a,r)ν(a0, r0)�g(x̄(a0, r0)) = 02m. This results in the
following.

Corollary 4.5. Under the assumptions of Lemma 4.4 and with C = Rp
+ it

follows

∇(a,r)τ
δ
(

a0, r0
)

= −
(

μ0

t0 μ0

)

.

Hence, we get in this special case the derivative information via the Lagrange multipli-
ers without additional effort just by solving the problems (SP(a, r)). Otherwise, the
derivative of the local minimal value function, being equivalent to the derivative of the
Lagrange function, has to be approximated. Under some special additional assump-
tions as C = Rp

+, K = Rm
+ , Ŝ = S = Rn, and nondegeneracy the second-order infor-

mation ∇2
aτ
δ(a0, r0) = −∇aμ(a0, r0) and ∇2

rτ
δ(a0, r0) = t0μ0(μ0)� − t0∇rμ(a0, r0)

is available [13, Theorem 3.2.4], too.



ADAPTIVE SCALARIZATION METHOD 1705

5. Parameter control and algorithm. In the literature several quality criteria
have been discussed for approximations of the efficient set (see [7, 12, 39, 47, 54], and
others). Most of them have been developed for evaluating evolutionary algorithms,
as, e.g., the quality criteria of measuring the distance of the approximation set to the
efficient set. As our approximation points are determined by solving the problems
(SP(a, r)) they are at least weakly K-minimal. Here we suppose that a numerical
solver is at our disposal which allows us to find global minimal solutions of the con-
sidered scalar optimization problems. However, generally numerical methods generate
only approximations of a minimal solution if not even only local minimal solutions.
Then the distance to the efficient set depends on the numerical solvers used and not
on the adaptive parameter control in which we are interested here. Therefore, quality
criteria as the distance to the efficient set are not considered in this context.

The most interesting criteria, in the case of scalarization approaches, are the
three proposed by Sayin [47] called coverage error, uniformity, and cardinality. In our
opinion and with respect to these targets, an approximation possesses a high quality
in the sense of a concise but representative approximation if it consists of almost
equidistant approximation points.

We want to use the sensitivity results from section 4 to reach the aim of an
equidistant approximation, at least locally. We first apply these results for developing
a method for determining the parameters a such that we can control the distance
between the generated approximation points. This will be used in section 5.2 for
locally refining coarse approximations of the efficient set with equidistant points. In
section 5.3 we specialize our results to the bicriteria case (m = 2), because for two
objective functions we do not have to determine a coarse approximation first which is
then refined. Instead we can adaptively control the parameter a from the beginning
to generate an equidistant approximation of the whole efficient set.

5.1. Parameter control. We start by assuming that we have already solved a
so-called reference problem (SP(a0, r)) with minimal solution (t0, x0) with Lagrange
multipliers (μ0, ν0, ξ0) and with a0 + t0 r − f(x0) = 0m. (Otherwise, for a0 + t0 r −
f(x0) = k �= 0m, we can apply Theorem 3.6 and determine a scalar t′ and a parameter
a′ with a′ + t′ r − f(x0) = 0m. Then we take the problem (SP(a′, r)) as reference
problem.) Then (t0, x0) is a minimal solution of the modified problem (SP(a0, r)).
We further assume that the derivative ∇aτ

δ(a0, r) of the local minimal value function
is known as a consequence of Theorem 4.2.

We will concentrate on a variation of the parameter a. We use the derivative
information for a first-order Taylor series approximation (assuming this is possible)
of the minimal value t of problem (SP(a, r)) depending on the parameter a given
by t̄(a, r) ≈ t0 + ∇aτ

δ(a0, r)�(a − a0). Using the equality constraint f(x̄(a, r)) =
a+ t̄(a, r) r of problem (SP(a, r)) we get, together with f(x0) = a0 + t0 r,

f(x̄(a, r)) ≈ a0 +
(

a− a0
)

+
(

t0 + ∇aτ
δ
(

a0, r
)� (

a− a0
)

)

r

= f
(

x0
)

+
(

a− a0
)

+
(

∇aτ
δ
(

a0, r
)� (

a− a0
)

)

r.

We now use (t̄(a, r), x̄(a, r)) (the minimal solution of (SP(a, r))) as an approximation
of the minimal solution (t(a, r), x(a, r)) of (SP(a, r)). We have at least t(a, r) ≤
t̄(a, r) and (t̄(a, r), x̄(a, r)) feasible for (SP(a, r)). Hence, we get the following local
approximation of the generated weakly efficient points of (2.1) depending on the
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parameter a:

(5.1) f(x(a, r)) ≈ f
(

x0
)

+
(

a− a0
)

+
(

∇aτ
δ
(

a0, r
)� (

a− a0
)

)

r.

Our goal is to compute equidistant approximation points and for a predefined
distance of α > 0 we want to find a new parameter a1 such that

(5.2)
∥

∥f
(

x
(

a0, r
))

− f
(

x
(

a1, r
))∥

∥ = α

with f(x(a0, r)) = f(x0), i.e., such that the new approximation point has a distance
of α to the former. In Theorem 3.2 we have seen that it is sufficient to consider
parameters a in a hyperplane H . Assuming a0 ∈ H = {y ∈ Rm | b�y = β}, we
choose a direction v ∈ Rm with b�v = 0 such that a0 + s v ∈ H for all s ∈ R.
Because we want a1 ∈ H we set a1 = a0 + s1 v, s1 ∈ R, and together with (5.2) and
(5.1) this results in

α =
∥

∥f
(

x
(

a0, r
))

− f
(

x
(

a1, r
))∥

∥

≈
∥

∥

∥f
(

x0
)

−
(

f
(

x0
)

+ s1 v + s1
(

∇aτ
δ
(

a0, r
)�

v
)

r
)∥

∥

∥

=
∣

∣s1
∣

∣

∥

∥

∥v +
(

∇aτ
δ
(

a0, r
)�
v
)

r
∥

∥

∥ .

Hence, we choose

(5.3) s1 :=
α

∥

∥

∥
v +
(

∇aτ
δ (a0, r)� v

)

r
∥

∥

∥

.

For the new parameter a1 := a0 + s1 v (or a1 := a0 − s1 v) we now solve the problem
(SP(a1, r)) with minimal solution (t1, x1), and if the quality of our approximations
have been good this results in ‖f(x0) − f(x1)‖ ≈ α.

5.2. General multiobjective case. For the general multiobjective case (m ≥
2) we have seen in Theorem 3.5 that it is sufficient to vary the parameter a in the
subset H0 for being able to detect all K-minimal points of the multiobjective opti-
mization problem. We use this information for determining in a first step a coarse
approximation of the efficient set. Then, in a second step, this approximation is
refined locally with (almost) equidistant points.

The coarse approximation is done using equidistant parameters only. The d.m.
can, for instance, define the desired number of points N i in each direction vi, i =
1, . . . ,m−1, spanning the hyperplane H (see (3.7)). With a distance of Li := (smax,i

i −
smin,i
i )/N i this leads to

∏m−1
i=1 N i equidistant discretization points. For any of these

parameters a ∈ H0 and for r ∈ K constant we solve the scalar optimization problem
(SP(a, r)) with minimal solution (ta, xa) (if one exists) and Lagrange multiplier μa to
the constraint a+ t r − f(x) ∈ K.

Based on this coarse approximation the d.m. gets a first overview over the effi-
cient set and can now choose which areas or points are of special interest for doing a
refinement now using the results of section 5.1. Let f(x0) be such a chosen approx-
imation point (with a0 + t0 r − f(x0) = 0m) and assume a refinement with n̄ ∈ N
additional points in every direction should be done. Thus, we search for parameters a
with ‖f(x(a))− f(x0)‖ = α for a distance α > 0. As the hyperplane H is spanned by
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the m− 1 vectors vk, k = 1, . . . ,m− 1, we set for the new parameters a = a0 + s · vk,
k ∈ {1, . . . ,m− 1}, for some s ∈ R. This leads, according to (5.3), to

sk :=
α

∥

∥

∥v +
(

∇aτ
δ (a0, r)� vk

)

r
∥

∥

∥

.

Hence, we get the 2(m− 1) new parameters a := a0 ± sk vk, k ∈ {1, . . . ,m− 1}.
We extend this to a consideration of all (2n̄ + 1)2 − 1 parameters a with a =

a0 +
∑m−1

k=1 lk s
k vk for lk ∈ {−n̄, . . . , n̄} ⊂ Z, k = 1, . . . ,m− 1, l := (l1, . . . , lm−1) �=

0m−1, for getting n̄ new parameters in every direction. Solving (SP(a, r)) for all these
parameters results in a refined approximation with locally equidistant points (around
f(x0)).

For the calculation of the values sk we need the derivative of the local minimal
value function which is given in Theorem 4.2. For that, the derivative of the Lagrange
function has to be approximated. In the case of S = R

n this is reduced to an approx-
imation of the derivative of the function ν w.r.t. a. According to Corollary 4.5, in
the case of C = R

p
+ the derivative is even immediately given by ∇aτ

δ(a0, r) = −μ0.
Choosing additionally K = R

n
+ and the hyperplane H = {y ∈ Rm | ym = 0}, i.e.,

b = em, with em the mth unit vector in Rm, β = 0, and r = em, then solving the
problem (SP(a, r)) for parameters a = (a1, . . . , am−1, 0) ∈ H is equivalent to solve
the problem

min fm(x)
subject to the constraints

fi(x) ≤ ai, i = 1, . . . ,m− 1,
x ∈ Ω.

This problem is well known as ε-constraint scalarization [21]. Choosing for vi the
unit vectors the problems (3.8) then reduce to minx∈Ω fi(x) and maxx∈Ω fi(x) for
i = 1, . . . ,m− 1, and thus the calculation of the set H0 (Step 1) is facilitated. Also,
the points a′, t′ to a minimal solution x̄ as in Theorem 3.6 are just given by t′ = fm(x̄)
and a′ = (f1(x̄), . . . , fm−1(x̄), 0). Hence, we assume for the given algorithm:

Assumption 4. Let Assumption 3 hold with S = Rn, K = R
m
+ , and C = R

p
+.

To any choice of parameters (a, r) for which we consider the optimization problem
(SP(a, r)) or (SP(a, r)) let there exist a minimal solution (t̄, x̄) with Lagrange multi-
pliers (μ̄, ν̄, ξ̄) ∈ Rm × Rp

+ × Rq and let the assumptions of Theorem 4.2 in (t̄, x̄) be
satisfied.

This simplifies the algorithm considerably and allows a short representation. For
multiobjective optimization problems with arbitrary ordering cones, the ε-constraint
reformulation instead of (SP(a, r)) is generally not possible and the determination of
the set H0 is more laborious. Also the calculation of the derivatives ∇aτ

δ(a, r) is
more costly if C is not the natural ordering and if S does not equal the whole space
(see Lemma 4.4). As the formulation of the general algorithm goes straightforward
we restrain here to this common special case.

Algorithm 5.1 (Algorithm for an adaptive parameter control).
Input: Set r = em, b = em, β = 0. Choose desired number of discretization

points N i in direction vi = ei for i = 1, . . . ,m− 1.
Step 1: Solve problem minx∈Ω fi(x) with minimal solution xmin,i and minimal

value f(xmin,i) =: amin
i for i = 1, . . . ,m−1, and problem maxx∈Ω fi(x)

with maximal solution xmax,i and maximal value f(xmax,i) =: amax
i for

i = 1, . . . ,m− 1.
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Step 2: Set Li := (amax
i −amin

i )/N i for i = 1, . . . ,m−1 and solve (SP(a, r)) for
all a ∈ E with E := {a = (a1, . . . , am−1, 0) ∈ Rm | ai = amin

i +Li/2 +
li · Li for li = 0, . . . , N i − 1, i = 1, . . . ,m− 1} with minimal solution
xa and Lagrange multiplier μa to the constraint a+ t r−f(x) ∈ Rm

+ .
Determine the set A := {xa | xa minimal solution of (SP(a,r)) for a ∈
E}.

Step 3: Determine the set D := {f(x) | x ∈ A} and set l = 0.
Input: Choose y ∈ D with y = f(xa) and associated Lagrange multiplier μa

and set a = (f1(xa), . . . , fm−1(xa), 0). If y is a sufficient good solution,
then stop. Otherwise, if additional points in the neighborhood of y are
desired, then define a distance α ∈ R, α > 0, and the number nl ∈ N
of additional points for each direction and go to step 4.

Step 4: For all ῑ = (i1, . . . , im−1) ∈ {(i1, . . . , im−1) ∈ Zm−1\{(0, . . . , 0)}
∣

∣ij =
−nl, . . . , nl, for j = 1, . . . ,m− 1} set

aῑ := a+
m−1
∑

j=1

ij ·
α

√

1 + (μaj )2
· ej

and solve (SP(aῑ, r)). If there exists a solution xῑ with Lagrange
multiplier μῑ set A := A ∪ {xῑ}. Set l := l + 1 and go to Step 3.

Output: The set D is an approximation of the set of weakly efficient points.
Note that some of the problems considered in Step 2 and Step 4 may be infeasible.

Thus in general not all parameters result in approximation points of the efficient set;
see also test problem 4 in section 6.1. In [5, 23] conditions are given under which
there exist minimal solutions of the problems (SP(a, r)). In detail, we have that
for K = Rm

+ and a nonempty efficient set there always exists a minimal solution
for a ∈ Rm, r ∈ int(Rm

+ ). However, here we have chosen r = em �∈ int(Rm
+ ) for

simplicity.
For solving the scalar optimization problems in Steps 1, 2, and 4, an appropriate

numerical method has to be used as, e.g., the SQP method. However, using just a
local solver can lead to only local minimal solutions of the scalar problems and thus
to only locally weakly EP-minimal points of (2.1). As a starting point for a numerical
method for solving problem (SP(aῑ, r)) in Step 4 the point (f(xa), xa) can be used.

In Steps 2 and 3 a coarse approximation of the efficient set is calculated and
in Step 4 around the special chosen points the refinement is done. Based on this
algorithm it is possible to generate local equidistant approximations. With the coarse
approximation in Step 2 it is ensured that all parts of the efficient set are covered
and that the d.m. gets a survey of the efficient set. Then the method changes to an
interactive part where the d.m. has to choose the areas in which a refinement is done.

5.3. Biobjective case. Now we come to the bicriteria case, i.e., m = 2. Of
course the general Algorithm 5.1 presented in the previous section can be applied for
m = 2, too. However, in the biobjective case we can use some special properties which
do not hold generally for m ≥ 3. This allows us not only to refine a coarse approxi-
mation locally but to determine equidistant approximations of the whole efficient set.

For m = 2 we can restrict the parameter set to a line segment Ha (Theorem 3.3).
On this line segment we can easily define a total ordering, for instance increasing
order w.r.t. the first coordinate. Then, points in the set Ha that are neighbors to
each other are neighbors w.r.t. this order, too. This is no longer possible for the set H0
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for m ≥ 3. As we have to know which points are neighbors to a point already found
for using sensitivity information and for controlling the distance between the points,
we start with a coarse approximation in the general case (section 5.2). However, since
we are considering the biobjective case, we can use the special structure of Ha for
adaptively determining the parameter a from the beginning without a previous coarse
approximation. The result is an (almost) equidistant approximation of the efficient
curve.

In the following we choose the parameters a in increasing order w.r.t. the first
coordinate i.e., a0

1 ≤ a1
1 ≤ · · · ≤ al1 ≤ al+1

1 ≤ · · · assuming we have b2 �= 0 for the
hyperplane H . We choose v ∈ R2 with b�v = 0 such that we have a0 + s v ∈ H for
s ∈ R and for a0 ∈ H . Further, let v1 > 0. We assume again we have already solved a
reference problem (SP(a0, r)) with a minimal solution (t0, x0). For a0 + t0 r−f(x0) =
02 we choose the next parameter a1 by a1 = a0 + s1 v with s1 > 0 as in (5.3). Then,
we have a1

1 > a0
1. For the case a0 + t0 r−f(x0) = k0 �= 02 we calculate ã0 as described

in the proof of Theorem 3.6 by ã0 = f(x0) − t̃0 r and t̃0 = (b�f(x0) − β)/(b�r).
Then ã0 + t̃0 r − f(x0) = 02.

In the case of ã0
1 ≥ a0

1 we set a1 := ã0 + s1 v (i.e., a1
1 > a0

1). For the ordering cone
K = R2

+ we can show by an easy calculation using the fact that a0 + t0 r − f(x0) =
k0 with k0 ∈ ∂R2

+ \ {02} (see [45], but it is also a direct conclusion of the proof
of Theorem 3.1 (b)) that ã0

1 ≥ a0
1 if and only if

(

k0
1 = 0, k0

2 > 0 and r1b2
b�r

> 0
)

or
(k0

1 > 0, k0
2 = 0 and r2b2

b�r
< 0).

For the case ã0
1 < a0

1 special considerations have to be made as it is not desirable
to continue with the parameter ã0 instead of a0 as we are looking for parameters with
increasing first coordinate. In that case we still use the parameter a0 for determining
a1. We can no longer assume f(x(a, r)) = a+t(a, r) r as we have f(x0) = a0+t0 r−k0

with k0 �= 02. However, we can presume that the constraint a+t r−f(x) ∈ K remains
inactive and thus in view of a0 + t0 r = f(x0)+k0 we set a+ t r = f(x0)+k0 +s k0 for
some s > 0. For s := α/‖k0‖ we have a distance of α > 0 between the points a+ t r
and a0 + t0 r, see Figure 3.1(b). Thus, we set the new parameter as

(5.4) a1 := f
(

x0
)

+ (1 + s) k0 − t r

with s = α/‖k0‖ and with some t ∈ R. As we still demand a ∈ H we choose

t =
b�(f(x0)+(1+s) k0)−β

b�r . Using the definition of ã0 we get a1 = ã0+(1+s)(k0− b�k0

b�r r).
Because we have b�a1 = β, the vector a1 is actually an element of the hyperplane H .
Again by an easy calculation, we can show that a1

1 ≥ a0
1 for a1 as in (5.4) and s ≥ 0;

i.e., the next parameter is chosen with increasing first coordinate.
By repeating the described steps for finding the next parameters a2, a3, . . . we

can adaptively determine an almost equidistant approximation f(x0), f(x1), . . . of
the efficient set of (2.1). However, it can happen that ‖f(xl) − f(xl−1)‖ � α or
‖f(xl)− f(xl−1)‖ � α. This can be due to a strong varying curvature of the efficient
set (see, e.g., [10, test problem CTP2]), especially if the distance α is not chosen
appropriately small. It can also be due to gaps in the efficient set, i.e., nonconnected
parts, see test problem 3 in section 6.1. In practice the efficient set of the examined
multiobjective optimization problems is very often smooth (see, e.g., the application
problem given in section 6.2 or in [6, 30, 36]). Nevertheless, if the distance between
consecutive points is too large a refinement strategy as in Step 4 in Algorithm 5.1
can be applied subsequently. Too small distances can be eliminated afterwards just
by reducing the approximation set.
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Fig. 6.1. (a) Efficient set and approximation points of test problem 1 with weighted sum method
and (b) with adaptive parameter control. (c) Efficient set and approximation points of test problem
2. (d) Image set and approximation points of test problem 3.

6. Numerical results. In the following we apply the proposed methods on some
test problems and on an application in intensity modulated radiotherapy.

6.1. Test problems. We start by considering some test problems which demon-
strate the main properties of the proposed methods. It is shown that equidistant
approximations are generated and that nonconvex problems as well as problems with
a nonconnected efficient set or more than two objectives are covered.

Test problem 1: Comparison with the weighted sum method. The fol-
lowing test problem is chosen to show the advantage of the new method compared to
the well-known habitual weighted sum method with which by a variation of the weights
approximations of the efficient set can also be generated. For the bicriteria case the
scalarization minx∈Ωw1f1(x) + w2f2(x) with weights w1, w2 ∈ [0, 1], w1 + w2 = 1, is
considered. Applying this scalarization to the test problem

minR2
+

( √

1 + x2
1

x2
1 − 4x1 + x2 + 5

)

subject to the constraints

x2
1 − 4x1 + x2 + 5 ≤ 3.5,

x1 ≥ 0, x2 ≥ 0,

choosing uniformly distributed weights leads to the approximation shown in Fig-
ure 6.1(a). This approximation has an uneven distribution and thus a low uniformity
and a high coverage error. A much better result again with 15 points is gained by
applying the procedure of section 5.3 with a hyperplane H = {y ∈ R2 | (1, 1)y = 2.5},
r = (1, 0)�, and a predefined distance of α = 0.2 between the approximation points,
see Figure 6.1(b).

Test problem 2: Nonconvex set. The following example by van Veldhuizen
[54, p. 545], see also [11, 33], has a nonconvex image. Letting n ∈ N be a parameter
the problem is defined as follows:

minR2
+

⎛

⎜

⎜

⎝

1 − exp
(

−
n
∑

i=1

(

xi − 1√
n

)2
)

1 − exp
(

−
n
∑

i=1

(

xi + 1√
n

)2
)

⎞

⎟

⎟

⎠

subject to the constraints
xi ∈ [−4, 4] for all i = 1, . . . , n.
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Fig. 6.2. Test problem 4: (a) coarse approximation, (b) refined approximation, and (c) param-
eter set.

We observe that by using the weighted sum method not all EP-minimal points can
be found. For n = 40 we get with r = (1, 1)�, b = (1, 0)�, β = 1.2, α = 0.15, and the
procedure of section 5.3 the approximation shown in Figure 6.1(c). The connected
line shows the efficient set of test problem 2 denoted as f(M) := f(M(f(Ω),R2

+)).

Test problem 3: Nonconnected efficient set. In the following problem by
Tanaka [52] the image set f(Ω) is nonconvex, too, and additionally the efficient set is
nonconnected (in a topological meaning):

minR2
+

(

x1

x2

)

subject to the constraints

x2
1 + x2

2 − 1 − 0.1 cos
(

16 arctan
(

x1
x2

))

≥ 0,

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5,
x1, x2 ∈ [0, π].

We have f(Ω) = Ω. By choosing r = (1, 2)�, b = (1, 1)�, β = 0.5, α = 0.08, and
with the procedure of section 5.3 we get the approximation of Figure 6.1(d). Here the
difficulty is that by solving the scalar optimization problems (SP(a, r)) global solutions
have to be found and thus, by using only a local method as the SQP method only
local EP-minimal points instead of global solutions of (2.1) are guaranteed.

Test problem 4: Three objectives. This test problem with a nonconvex
image set is a modified version of a problem in [38]. For the ordering cone K = R3

+

we consider

minR3
+

⎛

⎝

−x1

−x2

−x2
3

⎞

⎠

subject to the constraints
− cos(x1) − exp(−x2) + x3 ≤ 0,
0 ≤ x1 ≤ π, x2 ≥ 0, x3 ≥ 1.2.

We use Algorithm 5.1 with N1 = N2 = 8 for a coarse approximation. The result after
Steps 1–3 is given in Figure 6.2(a). Note that the negative of the objective function
values is drawn and that the approximation points are connected with lines.

In the input step of the algorithm we choose the three points y ∈ D for which y1 ≤
−0.4 and −0.6 ≤ y2 ≤ −0.4 holds. We do a refinement with n1 = 2 and α = 0.06. This
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Fig. 6.3. Test problem 5: (a) image set in dark color and efficient set in grey, (b) coarse
approximation with the approximation points connected with lines, and (c) refined approximation.

results in the refined approximation of the efficient set of Figure 6.2(b). In the course
of the algorithm several scalar optimization problems (SP(a, r)) to parameters a =
(a1, a2, 0) are solved. These parameters are plotted as points (a1, a2) in Figure 6.2(c)
as dots. To the parameters represented by the smallest dots, no minimal solution of
the problem (SP(a, r)) exists. Around three parameters one can see the parameters of
the refinement step (Step 4 of the algorithm), and it can well be seen that the distance
between the refinement parameters differs depending on the sensitivity information
delivered by the Lagrange multipliers (corresponding to the steepness of the efficient
set).

Test problem 5: Comet problem. This problem [11, p. 9]

minR3
+

⎛

⎜

⎜

⎝

(1 + x3)
(

x3
1x

2
2 − 10x1 − 4x2

)

(1 + x3)
(

x3
1x

2
2 − 10x1 + 4x2

)

3(1 + x3)x2
1

⎞

⎟

⎟

⎠

subject to the constraints

1 ≤ x1 ≤ 3.5, −2 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 1

with the set of K-minimal points M(f(Ω),R3
+) = {x ∈ R3 | 1 ≤ x1 ≤ 3.5, −2 ≤

x3
1x2 ≤ 2, x3 = 0} has its name because of the image of the efficient set with a

short broad and a long small area (see Figure 6.3(a)). A first coarse approximation
for N1 = N2 = 12 delivers only a few approximation points (Figure 6.3(b)), but by
doing a refinement according to Step 4 of Algorithm 5.1 with n1 = 3, α = 4 for all
points with no other point with a distance of less than 5 in the neighborhood, an
approximation with a high quality is finally achieved (Figure 6.3(c)).

6.2. Application in IMRT. We have also examined a problem in intensity
modulated radiotherapy (IMRT) in medical engineering. Here, a patient with, e.g.,
a prostate tumor has to be irradiated to destroy the tumor. An optimal irradiation
plan which is represented by an optimal intensity profile x ∈ R

400 to 400 separate
controllable beamlets Bi, i = 1, . . . , 400 has to be found. We assume the beam
geometry to be fixed. The problem is that the healthy surrounding organs should be
damaged as little as possible while in each cell of the tumor a minimal curative dose
has to be reached [1, 8, 40, 43].

Hence, this problem is a multiobjective optimization problem which has formerly
been solved by just summing up the objective functions to one single scalar-valued
objective using a weighted sum approach. Thereby, the difficulty is that the weights
have no medical interpretation and that the physician has to find a good irradia-
tion plan by a laborious trial and error process [40]. Using instead a multiobjective
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Fig. 6.4. (a) Schematic axial body cut. (b) Coronar and axial CT-cut.1

optimization approach with an approximation of the whole efficient set [22, 40, 43]
simplifies this procedure and improves the results significantly and is, therefore, now
actually applied. Thereby, a high quality approximation with equidistant points is
demanded [40].

The number of objective functions depends on the number of different healthy
tissues surrounding the tumor. In our example, the treatment planning for a prostate
tumor, one is especially concerned about the bladder (V6) and the rectum (V2), while
it has to be ensured that the doses in the remaining tissues as left (V3) and right (V4)
hip bone and surrounding unspecified tissue (V5) remain below an upper level (for the
location of the organs see Figure 6.4(a)).

For evaluating and comparing the radiation stress in the several organs the con-
cept of the equivalent uniform dose by Niemierko [44] based on p-norms is used. There-
fore, the relevant part of the patient’s body is mapped with the help of a computer
tomography (CT), see Figure 6.4(b), and according to the thickness of the slices dis-
sected in cubes, the so-called voxels. Then, using a clustering method [40, 50], whereas
voxels with equal radiation exposure are collected, the high number of 435 501 voxels
is reduced to 11 877 clusters cj , j = 1, . . . , 11 877, which are allocated to the seven
volumes V0, . . . , V6 by a physician.

Volumes V0 and V1 describe the tumor (the so-called target-tissue) while V1 is the
boost-tissue, which is tumor tissue that has to be irradiated especially high. Thus,
depending on the volume Vk, the number of voxels N(Vk) in this organ, the number
of voxels N(cj) in cluster cj , and the dose limit Uk, the radiation stress is evaluated
by

EUDk(x) :=
1
Uk

⎛

⎝

1
N(Vk)

∑

{j|cj∈Vk}
N(cj) · (Pjx)pk

⎞

⎠

1
pk

− 1, k = 2, . . . , 6.

The vector Pj denotes the jth row of the matrix P = (Pji)j=1,...,11 877,i=1,...,400 which
describes the emission by the beamlet Bi (i = 1, . . . , 400) in the cluster cj (j =
1, . . . , 11 877) at one radiation unit.2 For the intensity profile x ∈ R400, Pjx denotes
the irradiation dose in the cluster cj caused by the beamlets Bi, i = 1, . . . , 400. The
parameter pk ∈ [1,∞[, which represents the physiology of the organ, is determined
statistically and is given, like the other parameters, in Table 6.1.

The irradiation stress should remain below a critical value which results in the
constraints Uk(EUDk(x) + 1) ≤ Qk, k = 2, . . . , 6, which can be restated as

∑

{j|cj∈Vk}
N(cj)(Pjx)pk ≤ Qpk

k N(Vk), k = 2, . . . , 6.

1By courtesy of Dr. R. Janka, Institute of Diagnostic Radiology, Univ. Erlangen-Nürnberg.
2The data are available on request by sending an email to the author.
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Table 6.1

Critical values for the organs at risk.

number of organ (k) pk Uk Qk N(Vk)
rectum 2 3.0 30 36 6 459
left hip-bone 3 2.0 35 42 3 749
right hip-bone 4 2.0 35 42 4 177
remaining tissue 5 1.1 25 35 400 291
bladder 6 3.0 35 42 4 901

Table 6.2

Critical values for the tumor tissues.

number of organ (k) Lk δk εk

target-tissue 0 67 0.11 0.11
boost-tissue 1 72 0.07 0.07

The radiation stress in the tumor tissues V0 and V1 is considered w.r.t. each single
cluster, as it is important to destroy each single cancer cell. For homogeneity reasons
this results in the constraints

L0(1 − ε0) ≤ Pjx ≤ L0(1 + δ0), ∀j with cj ∈ V0

and L1(1 − ε1) ≤ Pjx ≤ L1(1 + δ1), ∀j with cj ∈ V1,

with constants L0, L1, ε0, ε1, δ0 and δ1 given in Table 6.2. Volume V0 consists of
8 593 clusters while V1 has 302 clusters. Including nonnegativity constraints for the
beamlet intensity, this results in the feasible set

Ω = {x ∈ R
400
+ | Uk(EUDk(x) + 1) ≤ Qk, k = 2, . . . , 6,

L0(1 − ε0) ≤ Pjx ≤ L0(1 + δ0), ∀j with cj ∈ V0,
L1(1 − ε1) ≤ Pjx ≤ L1(1 + δ1), ∀j with cj ∈ V1}

with 17 795 constraints.
The objectives are a minimization of the dose stress in the rectum (V2) and in the

bladder (V6) as these two healthy organs always have the highest irradiation stress
and a stress reduction for the rectum deteriorates the level for the bladder and vice
versa. This leads to the biobjective optimization problem

minR2
+

(

f1(x)
f2(x)

)

=
(

EUD6(x)
EUD2(x)

)

subject to the constraint
x ∈ Ω.

We apply the procedure of section 5.3 with r = (1, 1)�, α = 0.04, and H =
{y ∈ R2 | y1 = 0}, and we get that only parameters a ∈ Ha with Ha = {y ∈ R2 |
y1 = 0, y2 = λ · 0.1841 + (1 − λ) · (−0.2197), λ ∈ [0, 1]} have to be considered.
The approximation given in Figure 6.5(a) with 10 approximation points (connected
with lines) is generated. These points as well as the distances δi between consecutive
approximation points are listed in Table 6.3.

Based on these results the physician can choose a treatment plan by weighting
the damage to the bladder and the rectum against each other. Besides he can choose
an interesting plan and refine around it by using the strategy as in Step 4 of Algo-
rithm 5.1. Further he can choose a point y determined by interpolation between the
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Fig. 6.5. IMRT problem: (a) efficient set and approximation points of the bicriteria problem,
(b) refined approximation of the tricriteria problem, and (c) parameter set of the tricriteria problem.

Table 6.3

Approximation points and distances δi between them for α = 0.04.

approximation point i = 1 i = 2 i = 3 i = 4 i = 5

EUD2

(

x̄i
)

0.2000 0.1625 0.1197 0.0819 0.0515
EUD6

(

x̄i
)

0.0159 0.0184 0.0187 0.0278 0.0374
δi − 0.0375 0.0429 0.0389 0.0319

approximation point i = 6 i = 7 i = 8 i = 9 i = 10

EUD2

(

x̄i
)

0.0228 0.0012 −0.0126 −0.0197 −0.0197
EUD6

(

x̄i
)

0.0615 0.0964 0.1376 0.1796 0.2000
δi 0.0375 0.0411 0.0434 0.0426 0.0204

approximation points and solve problem (SP(a, r)) to the correspondent parameters,
see [53], to get a new approximation point.

As it turned out that the treatment success depends also on the irradiation homo-
geneity, this objective can be added to the former two objective functions. Thereby
the homogeneity of the irradiation is measured by

H(x) :=

√

√

√

√

∑

{j|cj∈V0}
N(cj) (Pjx− L0)2 +

∑

{j|cj∈V1}
N(cj) (Pjx− L1)2

N(V0) +N(V1)

with N(V0) = 13 238 and N(V1) = 2686. This results in the multiobjective optimiza-
tion problem

minR3
+

⎛

⎝

f1(x)
f2(x)
f3(x)

⎞

⎠ =

⎛

⎝

EUD6(x)
EUD2(x)
H(x)

⎞

⎠

subject to the constraint
x ∈ Ω.

We have solved this problem using Algorithm 5.1 with N1 = N2 = 3. In Step 1
we get amin

1 = 0.0158, amax
1 = 0.2000, amin

2 = −0.0141, and amax
2 = 0.2000. This

results in L1 = 0.0614, L2 = 0.0714 and thus in the parameter set E := {a ∈ R
3 |

a1 ∈ {0.0465, 0.1079, 0.1693}, a2 ∈ {0.0216, 0.0929, 0.1643}, a3 = 0}. For solving
the related scalar optimization problems we use the SQP procedure implemented in
Matlab with 600 iterations and a restart after 150 iteration steps. We do not get a
solution for the parameter a = (0.0465, 0.0216, 0). We assume a physician chooses
certain points and we do a refinement around these points with n1 = 1 and α = 0.07.
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This results in the refined approximation shown in Figure 6.5(b). The determined
parameters a = (a1, a2, 0) according to Steps 2 and 4 are shown in Figure 6.5(c) as
points (a1, a2).

If we choose, e.g., the approximation point (0.0465, 0.1643, 0.2294) of the efficient
set and calculate the distances between that point and the surrounding refinement
points, we get the following 12 distances: 0.0697, 0.0801, 0.0795, 0.0814, 0.0880, 0.0679,
0.0736, 0.0624, 0.0663, 0.0687, 0.0640, and 0.0712 with a rounded average value of
0.0727.

A more detailed and more technical description of this problem can be found in
[13, 14, 40].

7. Outlook. Here we have developed an adaptive parameter control for the
Pascoletti–Serafini scalarization. We have chosen this scalarization because it is not
only suitable also for finding K-minimal points with K �= Rm

+ , but it is also a very
general method. Many other scalarization approaches such as the weighted Chebyshev
norm, the ε-constraint method (see p. 1707 and [14]), the Polak method [34], or the
normal boundary intersection (NBI) method [9] can be seen as a special case of this
method (see [15]), and thus the presented results can be applied there too.

Acknowledgments. The author wishes to thank Prof. Dr. J. Jahn for his su-
pervision, comments, and suggestions. Further, the author is grateful to PD Dr. K.-
H. Küfer for providing the medical example and to the referees for their valuable
comments and suggestions.
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[40] K.-H. Küfer, A. Scherrer, M. Monz, F. Alonso, H. Trinkaus, T. Bortfeld, and

C. Thieke, Intensity-modulated radiotherapy - a large scale multi-criteria programming
problem, OR Spectrum, 25 (2003), pp. 223–249.

[41] H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions
for infinite-dimensional programming problems, Math. Program., 16 (1979), pp. 98–110.

[42] A. Messac and C. A. Mattson, Normal constraint method with guarantee of even represen-
tation of complete Pareto frontier, AIAA Journal, 42 (2004), pp. 2101–2111.

[43] M. Monz, Pareto Navigation: Interactive multiobjective optimisation and its application in
radiotherapy planning, Ph.D. thesis, University of Kaiserslautern, Germany, 2006.

[44] A. Niemierko, Reposting and analysing dose distributions: A concept of equivalent uniform
dose, Medical Physics, 24 (1997), pp. 103–110.

[45] A. Pascoletti and P. Serafini, Scalarizing vector optimization problems, J. Optim. Theory
Appl., 42 (1984), pp. 499–524.

[46] Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Aca-
demic Press, London, 1985.

[47] S. Sayin, Measuring the quality of discrete representations of efficient sets in multiple objective
mathematical programming, Math. Program., 87 A (2000), pp. 543–560.

[48] B. Schandl, K. Klamroth, and M. M. Wiecek, Norm-based approximation in bicriteria
programming, Comput. Optim. Appl., 20 (2001), pp. 23–42.

[49] Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Aca-
demic Press, London, 1985.
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Abstract. Motivated by the numerical resolution of stochastic optimization problems subject
to measurability constraints, we focus upon the issue of discretization. There exist indeed two
components to be discretized for such problems, namely, the random variable modelling uncertainties
(noise) and the σ-field modelling the knowledge (information) according to which decisions are taken.
There is no reason to bind these two discretizations, which are a priori unrelated. In this setting,
we present conditions under which the discretized problems converge to the original one. The focus
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1. Introduction. Let
(
Ω,A,P

)
be a probability space, and let

(
Ξ,BΞ

)
and(

U,BU
)

be R
n and R

p, respectively, with their associated Borel σ-fields. Given a
random variable ξ with values in Ξ and a subfield F of A, which, respectively, rep-
resent the noise and the observation, we are concerned with the following stochastic
optimization problem:

(1.1a) V
(
ξ,F

)
:= min

u∈L2(Ω,A,P;U)
E
[
j(u, ξ)

]
(1.1b) subject to u is F -measurable .

Here j : U × Ξ → R (technical assumptions given later), and E is the mathematical
expectation under probability P. The random variables, defined over

(
Ω,A,P

)
, will

be denoted using bold characters (e.g., ξ ∈ L2(Ω,A,P; Ξ)), whereas their realizations
will be denoted using normal characters (e.g., ξ ∈ Ξ).

Remark. Problem (1.1) can be easily extended to the sequential control case with
direct observation of the noises. Then u = (u0, . . . ,uT−1), each ut being measurable
with respect to a subfield Ft of σ

(
ξ0, . . . , ξt

)
, which is the σ-field generated by the

noises prior to t. Practical instances are multistage stochastic programming problems:

(1.2a) min
(u,x)

E

[
T−1∑
t=0

Lt+1

(
xt,ut, ξt+1

)
+K

(
xT
)]

subject to
{

x0 = f0
(
ξ0

)
,

xt+1 = ft+1

(
xt,ut, ξt+1

)
,

(1.2b)

ut is Ft-measurable.(1.2c)
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Formulation (1.1) has the advantage to clearly distinguish the respective roles of
the noise ξ and of the information F . However, in practical situations, the subfield F
is often generated by an observation function h which depends on the noise

F = σ
(
h(ξ)

)
so that the distinction is not always obvious.

Two polar cases are worth mentioning.
• The full information case corresponds to F = A. In this case, under tech-

nical assumptions ensuring the interchange of minimization and expectation
(see [15, Theorem 14.60]), problem (1.1) becomes

E
[

min
u∈U

j(u, ξ)
]
.

Once the noise ξ is discretized by a random variable ξn, the approximate
solution is given by minu∈U j(u, ξn), which returns a ξn-measurable solution
and thus an A-measurable one.

• The open-loop case arises when F = {∅,Ω}. In this case, the problem is
of deterministic nature provided that E

[
j(u, ξ)

]
and its gradient are read-

ily available for each u ∈ U . Otherwise, a standard way to get around the
difficulty of computing an expectation is to use samples of ξ. A first ap-
proach, known as sample average approximation (SAA), consists of replacing
the expectation to be minimized by a Monte Carlo approximation (see [8]).
Another possibility is to use the stochastic gradient method (see [14]).

In the last two cases, one has to deal with only one stochastic approximation.
However, in the general case, two different components of the problem have to be
taken into account in order to discretize problem (1.1):

1. The σ-field F in (1.1b) must be approximated by a finite object Fn in order
to deal with tractable constraints.

2. The expectation in (1.1a) must be approximated in order to be computable,
the noise ξ being thus replaced with a finitely valued random variable ξn.

As already mentioned, the subfield F is often, e.g., in the stochastic programming
framework, given by F = σ

(
h(ξ)

)
so that most discretization schemes aim at deducing

the discretization of F from the discretization of ξ. In this way, the discretization ξn
of ξ induces a discretization Fn = σ

(
h(ξn)

)
. This last discretization scheme may fail

to satisfactorily approximate problem (1.1) so that additional conditions have to be
added in order to overcome the difficulty (see Pennanen’s approach in section 4 for
further details). Nevertheless, in the general framework of problem (1.1), we observe
that the discretizations of the noise and the information are a priori unrelated in the
sense that there is no reason for one of these approximations to be deduced from the
other. We will follow this way of proceeding in this paper, thus obtaining different
perspectives both from the theoretical and the practical point of view.

The noise discretization—related to the convergence of measures and random
variables—is somewhat “traditional” in probability theory, whereas the information
discretization is not so well-known. Let us recall some results about the space A� of the
subfields of A (see [11] and [7] for further details). The strong convergence1 topology

1Although being termed as “strong,” this topology actually corresponds to a pointwise conver-
gence notion. We follow here the terminology given by Kudo [11]. Note that there exist “stronger”
convergence notions for σ-fields, such as the uniform convergence topology given by Boylan [5].
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on A� is the coarsest topology such that the conditional expectation is continuous
with respect to the σ-field:

Fn
strong−−−−−→
n→+∞

F ⇐⇒ ∀f ∈L1(Ω,A,P; R), lim
n→+∞

‖E [f | Fn] − E [f | F ]‖L1 = 0.

Note that this definition depends on the probability P. The main properties of A�

equipped with the strong convergence topology are the following.
P1 The strong convergence topology on A� is metrizable.
P2 The set of σ-fields generated by finite partitions of Ω is dense in A�.
P3 If yn −→ y in probability and σ

(
yn
)
⊂ σ

(
y
)
, then σ

(
yn
)

strongly converges
to σ

(
y
)
.

According to [13, Theorem 2.3.1], the notion of strong convergence of σ-fields, given
using L1(Ω,A,P; R), can be equivalently defined using Lr(Ω,F ,P;U) for r ∈ [1,+∞).

Proposition 1.1. Let r ∈ [1,+∞). The two following statements are equivalent.
• Fn

strong−−−−−→n→+∞ F.
• ∀f ∈ Lr(Ω,A,P;U), limn→+∞ ‖E [f | Fn] − E [f | F ]‖Lr = 0.

In this paper, we present in section 2 a convergence result for approximations
of problem (1.1). Contrary to the two polar cases of full or null information, the
functional J

(
u, ξ

)
:= E

[
j(u, ξ)

]
now plays a central role. The continuity of J turns

out to be crucial for convergence, and we enlighten the importance of the convergence
notions related to the discretization of both the observation and the noise that are
used in the approximation. In section 3, we illustrate by an example in what relaxing
these notions may lead to failures. Ultimately, we review in section 4 the convergence
results obtained in [17], [3], [12], and [10] about the same problem.

2. Convergence theorem. We go back to the initial problem (1.1). The frame-
work of the study is the following.

• The underlying probability space is
(
Ω,A,P

)
, and we consider F a subfield

of A.
• The control variable u belongs to the subset Δ

(
F
)

of the F -measurable
random variables and is moreover subject to pointwise constraints

Δ(F) :=
{
u ∈ Lr(Ω,A,P;U), u is F -measurable and u(ω) ∈ Uad

P a.s.
}
,

Uad being a closed convex subset of U . Here 1 ≤ r < +∞ and Lr(Ω,A,P;U)
is equipped with the topology induced by the norm.

• The random variable ξ belongs to Lq(Ω,A,P; Ξ), where 1 ≤ q < +∞,
equipped with the topology induced by the norm.

• The cost function J , defined on Lr(Ω,A,P;U) × Lq(Ω,A,P; Ξ), is given by

J
(
u, ξ

)
:= E

[
j(u, ξ)

]
.

Here j is a normal integrand on U × Ξ, J being the associated integral func-
tional (see [15, Chapter 14]).

Using these notations, we want to compute the optimal value V
(
ξ,F

)
of problem (1.1):

(2.1) V
(
ξ,F

)
:= min

u∈Δ(F)
J
(
u, ξ

)
.

Remark. There is no additional difficulty in incorporating in Δ(F) more general
pointwise constraints such as u(ω) ∈ Uad(ω) P a.s., Uad being a measurable set-valued
mapping whose values are closed and convex.
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To approximate problem (2.1), we choose a sequence {Fn}n∈N
of subfields of A

and a sequence {ξn}n∈N
of random variables in Lq(Ω,A,P; Ξ), and we consider the

following approximated problem:

(2.2) V
(
ξn,Fn

)
:= min

u∈Δ(Fn)
J
(
u, ξn

)
.

The next theorem emphasizes the role of adequate convergence notions, with
rather strong assumptions (H3) on the criterion (weaker assumptions may be found
in a companion paper [6]).

Theorem 2.1. Under the assumptions
H1 the sequence {Fn}n∈N

strongly converges to F , and Fn ⊂ F ;
H2 the sequence {ξn}n∈N

converges in norm to ξ in Lq(Ω,A,P; Ξ);
H3 the normal integrand j is such that

∀(u, u′) ∈ U2 ∀(ξ, ξ′) ∈ Ξ2, |j(u, ξ) − j(u′, ξ′)| ≤ α ‖u− u′‖rU + β ‖ξ − ξ′‖qΞ ,

the convergence of the approximated optimal costs holds true:

(2.3) lim
n→+∞

V
(
ξn,Fn

)
= V

(
ξ,F

)
.

Proof.
Step 1 (lim supn→+∞ V

(
ξn,Fn

)
≤ V

(
ξ,F

)
).

For any u ∈ Δ(F), we define un = E [u | Fn]. Note that u = E [u | F ] P almost
surely. Using assumption H1 and Proposition 1.1, we obtain the convergence of the
sequence {un}n∈N

to u in Lr(Ω,A,P;U). This implies that the set-valued mapping Δ
is lower semicontinuous (see [2, Definition 1.4.2]). From assumption H3, we then de-
duce that the integral functional J is continuous and therefore upper semicontinuous.
Using [2, Theorem 1.4.16], we conclude that the marginal function V is also upper
semicontinuous:

(2.4) lim sup
n→+∞

V (ξn,Fn) ≤ V (ξ,F).

Step 2 (lim infn→+∞ V
(
ξn,Fn

)
≥ V

(
ξ,F

)
).

Starting from

J(u, ξn) = J(u, ξ) +
(
J(u, ξn) − J(u, ξ)

)
,

we obtain by minimization over Δ(Fn)

min
u∈Δ(Fn)

J(u, ξn) ≥ min
u∈Δ(Fn)

J(u, ξ) + min
u∈Δ(Fn)

(
J(u, ξn) − J(u, ξ)

)
≥ min

u∈Δ(F)
J(u, ξ) + min

u∈Δ(F)

(
J(u, ξn) − J(u, ξ)

)
,

the last inequality being true because Fn ⊂ F implies Δ(Fn) ⊂ Δ(F). We thus
obtain

(2.5) V (ξn,Fn) ≥ V (ξ,F) + min
u∈Δ(F)

(
J(u, ξn) − J(u, ξ)

)
.

From assumptions H2 and H3, the last term in (2.5) converges to 0 as n goes to
infinity, which proves that V is lower semicontinuous:

(2.6) lim inf
n→+∞

V (ξn,Fn) ≥ V (ξ,F).

Gathering (2.4) and (2.6) leads to the result.
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From the numerical point of view, problem (2.2) is a tractable approximation of
problem (2.1) provided that the range of ξn is finite and that Fn is generated by a
finite partition of Ω. Indeed, let

•
(
Ω(1)
n , . . . ,Ω(n)

n

)
be a partition of Ω generating the σ-field Fn, u(i)

n denoting
the (constant) value of an Fn-measurable control u on the subset Ω(i)

n ,
•
(
�

(1)
n , . . . ,�

(n)
n

)
be a partition of Ω generated by ξn, ξ(l)n denoting the (con-

stant) value of the random variable ξn on the subset �
(l)
n .

Problem (2.2) is then equivalent to

(2.7) min
(u

(1)
n ,...,u

(n)
n )∈Uad×···×Uad

n∑
i=1

n∑
l=1

P
(
Ω(i)
n ∩ �

(l)
n

)
j
(
u(i)
n , ξ(l)n

)
,

whose numerical solution is obtained using classical optimization techniques.
Let us now comment on the assumptions made in Theorem 2.1.
• First of all, the uniform continuity assumption H3 made on j is a very strong

technical one, which allows for an elementary proof. It can be alleviated
using the tools of epi-convergence. We do not elaborate on that particular
point (see [6] for a comprehensive report) and concentrate on assumptions
concerning the convergence notions used in the problem approximation.

• Assumption H1 appears as a reasonable trade-off between two requirements.
On the one hand, the strong convergence topology is the coarsest topology
such that the conditional expectation is continuous. This is a minimal require-
ment for approximating E

[
j(u, ξ) | F

]
, so that it seems that the topology

cannot be weakened. On the other hand, the subset of σ-fields generated by
a finite partition of Ω is dense in the space A� for the strong convergence
topology. This is a desirable feature as far as numerical approximation is
concerned, which is no longer verified for more sophisticated topologies as,
for instance, the uniform convergence topology defined by Boylan in [5] (see
also [3] for a comparison between strong and uniform convergence topolo-
gies). Note moreover that Fn ⊂ F is not obvious: When F = σ

(
h(ξ)

)
, the

last inclusion is not automatically satisfied for Fn = σ
(
h(ξn)

)
.

• Assumption H2 is again a bit strong because the convergence in probability
of the sequence {ξn}n∈N

is in fact sufficient to prove the theorem (see [6]).
But the key point here is that the convergence in distribution is insufficient to
ensure the result. Indeed, a continuity property on J with respect to ξ cannot
be obtained by the convergence in distribution, as shown by the following
example:

–
(
Ω,A,P

)
=
(
[−1, 1],B[−1,1], μ

)
, μ is the uniform distribution on [−1, 1]

and U = Ξ = Ω.
– j(u, ξ) = uξ.

– ξn(ω) =
{

(−1)n if ω ≥ 0,
(−1)n+1 otherwise, u(ω) =

{
+1 if ω ≥ 0,
−1 otherwise.

– Being stationary in distribution, the sequence {ξn}n∈N is converging in
distribution, whereas J

(
u, ξn

)
= (−1)n.

The discretization process thus requires a stronger convergence notion than
Monte Carlo. It is a major difference with the open-loop case, for which it
is well-known that the SAA method requires only a notion of convergence in
distribution (see, e.g., [8] and [16]).
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In the next section, we focus on that particular point and illustrate, on the one
hand, in what relaxing assumption H2 may alter the optimal solution and, on the
other hand, in what deducing the discretization of F from the discretization of ξ may
conflict with assumption H1.

3. Counterexample. We present here an example illustrating how convergence
notions matter in order to accurately discretize problem (1.1). The example, originally
designed by Systems & Optimization Working Group (SOWG),2 has already been
used several times, for instance, in [3] to illustrate why using a naive Monte Carlo
fails to provide the optimal solution or in [19] (see also [18]) to show that even a
sophisticated tool as the Fortet–Mourier metric between probability measures cannot
by itself control the error when discretizing a stochastic optimal control problem.
Although based on the same example,3 the purpose is here different: We lower only
the convergence requirement made on the approximations of ξ in Theorem 2.1, which
leads to suboptimality.

3.1. Formulation and exact solution. We consider a dynamical system in-
corporating two time steps and only one decision variable. The initial state x is a
random variable on [−1, 1] with uniform distribution. The final state of the system is
defined as

(3.1a) z := x + u + w,

w being another uniformly distributed random variable on [−1, 1] independent of x
and the control u being a random variable measurable with respect to the initial
state x. Let ε > 0, and consider the following problem:

(3.1b) min
u is σ(x)-measurable

E
[
εu2 + z2

]
.

The probability space associated with problem (3.1) is
(
[−1, 1]2,B[−1,1]2, μ

)
, where

B[−1,1]2 is the Borel σ-field on [−1, 1]2 and μ is the product of two independent
uniform probability distributions on [−1, 1]. The random variables x and w are the
two components of the identity application Id[−1,1]2 on [−1, 1]2, the real-valued control
variable u being defined on [−1, 1]2. Here j(u, ξ) = εu2 +(x+u+w)2 with ξ = (x,w),
and problem (3.1) is equivalent to

(3.2) min
u is σ(x)-measurable

∫
[−1,1]2

(
ε
(
u(x,w)

)2 +
(
x+ u(x,w) + w

)2)
μ
(
dxdw

)
.

This problem is a Markovian stochastic optimal control problem which can be
solved using dynamic programming. Introducing the Bellman functions

V1(z) := z2 , V0(x) := min
u∈R

E
[
εu2 + V1(x+ u+ w)

]
,

we obtain the optimal feedback law u� and the associated optimal cost J� := E [V0(x)]:

(3.3) u�(x) = − x

1 + ε
, J� =

1
3

(
1 +

ε

1 + ε

)
.

2See Acknowledgments.
3Which thus provides the same conclusions.
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Fig. 3.1. Partition of [−1, 1]2 and associated sample.

3.2. Monte Carlo sampling fails.

3.2.1. Discretization. Let {ζn}n∈N∗ be a deterministic sequence of elements in
[−1, 1]2, with ζn =

(
ζn,1, ζn,2

)
, and let μn be the empirical probability distribution

associated with (ζ1, . . . , ζn):

μn :=
1
n

n∑
k=1

δζk
,

where δ denotes the Dirac measure. We assume that the sequence {μn}n∈N∗ of empir-
ical probability distributions weakly converges to the probability measure μ (see [4]).

Remark. Such a sequence {ζn}n∈N∗ is usually obtained as the realization of an
infinite Monte carlo sample {ζn}n∈N∗ of i.i.d. random variables on [−1, 1]2 with dis-
tribution μ. The weak convergence assumption is then, almost surely, a consequence
of the Glivenko–Cantelli theorem.

Let n ∈ N
� ; for any k ∈ {1, . . . , n}, we define

(3.4)
(
x(k)
n , w(k)

n

)
:=
(

2k − 1
n

− 1 +
ζk,1
n
, ζk,2

)
and

(3.5) I(k)
n :=

(
2k − 2
n

− 1,
2k
n

− 1
]

, F (k)
n := I(k)

n × [−1, 1].

By construction,
(
F

(1)
n , . . . , F

(n)
n

)
is a partition of [−1, 1]2, made of vertical stripes as

in Figure 3.1, and
(
x

(k)
n , w

(k)
n

)
∈ F

(k)
n ∀k ∈ {1, . . . , n}.

We are now ready to discretize problem (3.2).
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Random variables. Let qn : [−1, 1]2 → [−1, 1]2 be the function defined by

qn
(
x,w

)
:=

n∑
k=1

(
x(k)
n , w(k)

n

)
I
F

(k)
n

(
x,w

)
;

that is, qn
(
x,w

)
=
(
x

(k)
n , w

(k)
n

)
if
(
x,w

)
∈ F

(k)
n . We define the sequence {xn,wn}n∈N∗

of random variables by

(3.6)
(
xn,wn

)
:= qn

(
x,w

)
.

According to this definition, the discretized random variable
(
xn,wn

)
is constant over

each subset F (k)
n .

Lemma 3.1. The sequence {xn,wn}n∈N∗ converges in distribution to
(
x,w

)
as n→ +∞.

Proof. Consider the empirical distribution function Fn of
(
xn,wn

)
:

Fn
(
x,w

)
=

1
n

n∑
k=1

I[−1,x]×[−1,w]

(
x(k)
n , w(k)

n

)
.

For a given x ∈ [−1, 1] and n ∈ N
∗, let k0 be the index such that x ∈ I

(k0)
n (see (3.5))

and let ν0 be equal to 0 if x ≤ x
(k0)
n and equal to 1 otherwise. Then

Fn
(
x,w

)
=

1
n

k0−1∑
k=1

I[−1,w]

(
w(k)
n

)
+
ν0
n

I[−1,w]

(
w(k0)
n

)
=
k0 − 1
n

(
1

k0 − 1

k0−1∑
k=1

I[−1,w]

(
w(k)
n

))
+
ν0
n

I[−1,w]

(
w(k0)
n

)
.

The index k0 goes to infinity as n goes to infinity (for any x > −1). We thus conclude
that Fn

(
x,w

)
converges to F

(
x,w

)
= (1+x)(1+w)

4 , the distribution function of μ, the
uniform probability on the square [−1, 1]2.

Remark. Carrying on the previous remark, {xn,wn}n∈N∗ is usually a sequence
of random variables based on the realization {ζn}n∈N∗ of an i.i.d. sample. From
Lemma 3.1, the sequence of associated probability distributions converges to μ: This is
precisely the condition required in [8] in order to ensure convergence when discretizing
an open-loop stochastic optimization problem.

Information. Since x is the first component of Id[−1,1]2 , the subfield σ(x)
of B[−1,1]2 generated by the random variable x is

F = B[−1,1] ⊗ {∅, [−1, 1]} .

For a given n ∈ N
�, we approximate F by the σ-field Fn generated by the partition(

F
(1)
n , . . . , F

(n)
n

)
:

(3.7) Fn = σ
(
F (1)
n , . . . , F (n)

n

)
.

From the definition of the subsets F (k)
n , the inclusion Fn ⊂ F holds. Note that

the approximated information constraint “u is Fn-measurable” is equivalent to “u is
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constant over each subset F (k)
n ,” that is, constant on each vertical stripe of Figure 3.1.

Such a control variable u is thus parameterized by the values u(k)
n taken on each

subset F (k)
n :

u
(
x,w

)
=

n∑
k=1

u(k)
n I

F
(k)
n

(
x,w

)
.

Notice that I
F

(k)
n

(
x,w

)
does not depend upon w, and therefore u

(
x,w

)
depends only

upon x.
Lemma 3.2. The sequence {Fn}n∈N∗ strongly converges to F as n→ +∞.
Proof. Since the values x(k)

n , k = 1, . . . , n, defined by (3.4) and taken by the ran-
dom variable xn are two-by-two distinct, then Fn = σ

(
xn
)
. Following property P3,

it is sufficient to show that xn −→ x in probability. This last convergence is obvious
from the definition of x(k)

n .

3.2.2. Approximated solution. Approximating problem (3.2) consists in re-
placing F and

(
x,w

)
by their discretized versions Fn and

(
xn,wn

)
, respectively.

The resulting function to be minimized is constant over each F kn so that the general
form (2.7) for the approximated problem specializes in

(3.8) min(
u
(1)
n ,...,u

(n)
n

)
∈Rn

n∑
k=1

P
(
F (k)
n

) (
ε
(
u(k)
n

)2 +
(
x(k)
n + u(k)

n + w(k)
n

)2)
.

This optimization problem is of a deterministic nature and can be handled using stan-
dard optimization procedures. Since P

(
F

(k)
n

)
> 0 (indeed equal to 1

n ), problem (3.8)
splits into n independent subproblems shaped as

min
u
(k)
n ∈R

ε
(
u(k)
n

)2 +
(
x(k)
n + u(k)

n + w(k)
n

)2
.

The optimal solution of this quadratic minimization problem is

(3.9) û(k)
n = −x

(k)
n + w

(k)
n

1 + ε
,

and the associated optimal control variable ûn is

ûn

(
x,w

)
= −

n∑
k=1

x
(k)
n + w

(k)
n

1 + ε
I
F

(k)
n

(
x,w

)
.

By construction the approximated feedback law ûn is Fn-measurable. From Fn ⊂ F ,
we deduce that ûn, as well as u�, satisfies the measurability constraint of prob-
lem (3.2). We can compare the cost Ĵn induced by ûn, namely,

(3.10) Ĵn := E

[
εûn

2 + (x + ûn + w)2
]
,

to the true optimal cost J� in order to evaluate the quality of the approximation, that
is, the optimality loss induced by ûn with respect to u�.

Lemma 3.3. The sequence
{
Ĵn
}
n∈N

is such that limn→+∞ Ĵn = 2
3 .
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Proof. We have

Ĵn =
∫

[−1,1]2

(
ε
(
ûn(x,w)

)2 +
(
x+ ûn(x,w) + w

)2)
μ
(
dxdw

)
=

n∑
k=1

∫
F

(k)
n

⎛⎝ε(x(k)
n + w

(k)
n

1 + ε

)2

+

(
x+ w − x

(k)
n + w

(k)
n

1 + ε

)2
⎞⎠μ

(
dxdw

)
.

Developing the last quadratic term in the previous expression leads to4

Ĵn =
2
3

+
1
n

n∑
k=1

(
x

(k)
n + w

(k)
n

)2
1 + ε

− 2
n∑
k=1

(
x

(k)
n + w

(k)
n

1 + ε

)∫
F

(k)
n

(
x+ w

)
μ
(
dxdw

)
=

2
3

+
1
n

n∑
k=1

(
x

(k)
n + w

(k)
n

)2
1 + ε

− 2
n

n∑
k=1

(
2k − 1
n

− 1
)(

x
(k)
n + w

(k)
n

1 + ε

)
.

Using the convergence in distribution of
(
xn,wn

)
n∈N∗ to

(
x,w

)
as n → +∞ (see

Lemma 3.1) and the inequalities
∣∣∣x(k)
n −

(
2k−1
n − 1

)∣∣∣ ≤ 1
n for every k, we obtain that

the sum of the last two terms in the previous equality goes to zero as n goes to infinity
and hence the result.

From the expression (3.3) of the true optimal cost J�, we deduce that the following
inequality holds true for any ε > 0:

lim
n→+∞

Ĵn > J�.

We thus conclude that the proposed discretization scheme fails to asymptotically give
the optimal solution of the problem.

Remark. It is easy to verify that the optimal cost J̃n of problem (3.8) is such that

lim
n→+∞

J̃n =
2
3

(
ε

1 + ε

)
.

Once again, this limit is different from J� and goes to zero as ε goes to zero. This is
another illustration that problem (3.8) is not a valid approximation of problem (3.2).
Although the criterion in (3.8) looks like a good approximation of the one in (3.2), the
two corresponding optimization problems are definitely different. As a matter of fact,
the “min” operator in (3.8) leads to solutions û(k)

n = −x(k)
n +w(k)

n

1+ε depending on both
x

(k)
n and w(k)

n . The computation of J̃n therefore corresponds to the numerical integra-
tion of (3.2) using the feedback law ũ(x,w) = −x+w

1+ε which is not σ(x)-measurable
and hence the gap with J�.

3.2.3. What has gone wrong. The discretization scheme we have devised in
the above example is such that each subproblem derived from (3.8) is optimized
using a unique sample of the random variable. The kth optimal control value û(k)

n

depends on the corresponding first step noise value x(k)
n (which is in adequation with

the constraint “u is σ(x)-measurable”) and also depends on the second step noise

4Remember that P
(
F

(k)
n

)
= 1

n
.
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value w(k)
n (so that the control law is in some sense anticipative). In the following

equivalent form of problem (3.1)

E

[
min
u∈R

E
[
εu2 + (x + u+ w)2

∣∣ x]],
our discretization scheme is close to approximating the inner conditional expectation
using a single sample of w, namely, a really poor way to compute such an expectation.

Let us revisit the assumptions of Theorem 2.1 in view of our example.
• Assumption H1 about the σ-fields is fulfilled.
• Assumption H3 is not exactly satisfied by the cost function j, but it is easy to

check that the continuity properties of J required inside the proof are satisfied
provided that the control remains bounded.

• Assumption H2 is not fulfilled because the convergence notion available in
the example is significantly weaker than the one required by the theorem.
More precisely, in our example, the convergence of the sequence {xn,wn}n∈N∗

towards
(
x,w

)
does not hold in probability. Indeed, let τ > 0 be given.

Consider the norm ‖(x,w)‖ = sup {|x| , |w|} on [−1, 1]2, and let An be the
subset of [−1, 1]2 defined by

An :=
{

(x,w) ∈ [−1, 1]2,
∥∥(xn,wn

)
(x,w) −

(
x,w

)
(x,w)

∥∥ ≤ τ
}
.

Since (x,w) = Id[−1,1]2 and since (xn,wn) is constant over each F
(k)
n , the

subset An can be expressed as the disjoint union of n subsets A(k)
n , with

A(k)
n := An ∩ F (k)

n =
{

(x,w) ∈ F (k)
n , sup

{∣∣∣x(k)
n − x

∣∣∣ , ∣∣∣w(k)
n − w

∣∣∣} ≤ τ
}
.

From the definition of F (k)
n and An, the subset A(k)

n is included in a 2
n × 2τ

rectangle. We thus obtain μ
(
A

(k)
n

)
≤ τ

n and then μ
(
An
)
≤ τ by summation.

This demonstrates that

μ
(∥∥(xn,wn

)
−
(
x,w

)∥∥ > τ
)
≥ 1 − τ.

What has gone wrong in our example is now clear: Although the discretizations of
the noise and the information are a priori unrelated, we have chosen to bind them in
a very specific way; however, with this particular binding, one of the assumptions of
the theorem, namely, H2, is not fulfilled.

Remark. Note, however, that the convergence notions used in the example may
lead to a positive convergence result if the approximations of F and ξ are implemented
in a nested manner (see Barty’s approach in section 4).

3.2.4. A better discretization scheme. We ultimately illustrate in what a
direct application of Theorem 2.1, and thus the use of a stronger convergence notion
for the noise, leads to a positive result for our example. The information discretization
previously chosen remains unchanged since it satisfies assumption H1 and leads to
the vertical stripes F (k)

n . In order to discretize the noise ξ, we appeal to the theory of
quantization (see, e.g., [9]) and introduce the Voronoi cells C(k)

n around the centroids
(x(k)
n , w

(k)
n ) (see Figure 3.2). The discretized random variable

(
xn,wn

)
is accordingly

defined by

(
xn,wn

)
(x,w) :=

n∑
k=1

(
x(k)
n , w(k)

n

)
I
C

(k)
n

(x,w).
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Fig. 3.2. Noise discretization induced by Voronoi tessellation.

The optimal Voronoi tessellation is based on the L2 norm. We suppose that the
diameter of the cells goes to zero as n goes to infinity so that assumption H2 is
fulfilled. The approximated problem (2.7) to be solved again splits into n open-
loop subproblems. Denoting by πk,l = P(F (k)

n ∩ C(l)
n ) the probability weight of the

subset F (k)
n ∩ C(l)

n , the kth subproblem writes

(3.11) min
u
(k)
n ∈R

n∑
l=1

πk,l

(
ε
(
u(k)
n

)2 +
(
x(l)
n + u(k)

n + w(l)
n

)2)
.

It is clear that for a fixed k the number of nonempty subsets F (k)
n ∩ C

(l)
n goes to

infinity with n so that each optimal value û
(k)
n is computed using a large (in fact

asymptotically infinite) number of samples (x(l)
n , w

(l)
n ). This drastic difference with

the approximation scheme given in section 3.2.1, where each optimal value û
(k)
n is

computed using one sample, explains the success of the last approximation.
Remark. A distinctive feature of the last discretization scheme is that a sample

(x(l)
n , w

(l)
n ) may enter the computation of several control values û(k)

n .

3.3. Fn = σ
(
h(ξn)

)
fails. In the example given in section 3.1, the information

subfield F is generated by a function h depending on the noise ξ = (x,w), namely,

F = σ
(
h(ξ)

)
,

with h(x,w) = x. As already explained in section 1, it is possible in this case to
deduce a discretization F̃n of F from the discretization ξn of ξ by

F̃n = σ
(
h(ξn)

)
.
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Going back to the discretization scheme of section 3.2.1, it is easy to figure out
that the information discretization based on the vertical stripes F (k)

n , that is,

Fn = σ
(
F (1)
n , . . . , F (n)

n

)
,

is such that Fn = F̃n. In this case, the noise discretization induces a discretization
of the information such that assumption H1 is satisfied: The pitfall is definitely the
convergence notion used for approximating the noise.

Considering now the discretization scheme given in section 3.2.4, the approxi-
mated subfield Fn is the same as in section 3.2.1. The subfield F̃n deduced from the
noise discretization (xn,wn) is such that

F̃n ⊂ σ
(
C(1)
n , . . . , C(n)

n

)
.

Assuming that the first coordinates of the centroids (x(k)
n , w

(k)
n ) are distinct one from

each other,5 the previous inclusion is in fact an equality. Then F̃n � F . Moreover
we have F̃n

strong−−−−−→ A rather than F . The subfield F̃n deduced from the noise
discretization is thus not a good candidate for approximating problem (3.2), unless
additional conditions are specified as in Pennanen’s approach (see section 4 for further
details).

4. Discussion about related works. We have proposed an approximation
scheme in which the discretization of the noise and the discretization of the infor-
mation are done separately. It is interesting to compare this approach with others
also taking into account the whole discretization process (noise and information) for
stochastic optimal control problems.

Barty’s approach. In his Ph.D. thesis (in French), K. Barty proves the con-
vergence of a discretization scheme for problem (1.1). The result he gives (see [3,
Theorem IV.28]) makes use of the same notions of convergence as those used in sec-
tion 3 for the counterexample, both for the σ-field and the random variable. Its
approach involves two consecutive steps.

(i) The σ-field F is approximated by a σ-field Fk ⊂ F which is generated by a
finite partition Pk = {Ω1, . . . ,Ωk} of Ω, and problem (1.1) is replaced by

(4.1) V
(
ξ,Fk

)
= min

u is Fk-measurable
E
[
j(u, ξ)

]
.

The optimal value V
(
ξ,Fk

)
of (4.1) converges with k towards the optimal

value V
(
ξ,F

)
of (1.1) as Fk strongly converges to F (see [3, Theorem IV.21]).

Note that an Fk-measurable random variable u is constant over each subset
Ωl constituting Pk: Such a random variable u is characterized by a vector(
u1, . . . , uk

)
∈ Uk, and the minimization in (see 4.1) is thus performed over

a finite dimensional space.
(ii) For a given index k, the random variable ξ is approximated by a finitely

valued random variable ξn and problem (4.1) is replaced by

(4.2) V
(
ξn,Fk

)
= min

u is Fk-measurable
E
[
j(u, ξn)

]
.

5A property which does not conflict with the L2 convergence.
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The optimal value V
(
ξn,Fk

)
of (4.2) converges with n toward the optimal

value V
(
ξ,Fk

)
of (4.1) as ξn converges in distribution toward ξ (see [3, The-

orem IV.26]). Note that this step involves only open-loop problems, which
are approximated using the traditional Monte Carlo approach.

In this approach, the global discretization error
∣∣V (ξ,F)− V

(
ξn,Fk

)∣∣ is bounded
from above by the sum of two terms:

•
∣∣V (ξ,F)− V

(
ξ,Fk

)∣∣. Information structure discretization error,
•
∣∣V (ξ,Fk)− V

(
ξn,Fk

)∣∣. Mean computation discretization error.
Apart from the convergence result itself, this approach enlightens the fact that it is
not sufficient to properly deal with the last term (Monte Carlo) in order to obtain a
“good” approximation of problem (1.1).

The main difference is thus that problem (1.1) is approximated in a nested man-
ner in Barty’s approach, whereas we simultaneously approximate the σ-field and the
random variable.

Pennanen’s approach. In [12], Pennanen adresses a stochastic optimization
problem very similar to problem (1.1). He assumes that the observation y is a func-
tion6 of the noise ξ:

y = h
(
ξ
)
.

Then the problem can be formulated on the probability space
(
Ξ,BΞ, μ

)
, μ being the

probability distribution of ξ, rather than on the probability space
(
Ω,A,P

)
. Pennanen

chooses a quantification operator qn on Ξ, leading to an approximated random variable
ξn,

ξn = qn
(
ξ
)
,

and then deduces the information quantization from the noise quantization by setting

yn = h
(
ξn
)

= h ◦ qn
(
ξ
)
.

Now there is no reason for the quantified observation yn to be measurable with respect
to the initial observation y. In order to overcome the difficulty, Pennanen assumes
that, in terms of subfields of BΞ, the following inclusion holds:

(4.3) σ
(
h ◦ qn

)
⊂ σ

(
h
)
.

Note that condition (4.3) means that if two samples ξ and ξ′ of ξ lead to identical
observations, so do the quantified noises qn

(
ξ
)

and qn
(
ξ′
)
. In the dynamic framework

of problem (1.2), this assumption implies that the sampled trajectories of the noise
are organized in a scenario tree.

The main difference is thus that the approximation of the σ-field is intimately
related to the approximation of the random variable in Pennanen’s approach, requir-
ing the additional assumption (4.3), whereas these two approximations are designed
separately in our approach.7

6An assumption which can be made without loss of generality.
7Note, however, that Pennanen’s approach is also designed to handle extended-real-valued func-

tions.
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Heitsch’s approach. In [10], Heitsch, Römisch and Strugarek address a lin-
ear multistage stochastic optimization problem subject to nonanticipative constraints.
Denoting, respectively, by ξ =

(
ξ1, . . . , ξT

)
∈ Lq(Ω,A,P; Ξ) and by u =

(
u1, . . . ,uT

)
∈

Lr(Ω,A,P;U) the noise and the decision stochastic processes, the nonanticipativity
constraints “ut is σ(ξ1, . . . , ξt)-measurable” are summarized in the compact form
u ∈ U(ξ) so that the optimization problem writes

v(ξ) := min
u∈U(ξ)

J(u, ξ).

The main result [10, Theorem 2.1] states that, under technical assumptions, there
exist positive constants L, α, and δ such that the following majoration

(4.4)
∣∣v(ξ) − v(ξ

′
)
∣∣ ≤ L

(∥∥ξ − ξ
′∥∥
Lq +Dα

(
ξ, ξ

′))
holds for all noise processes ξ

′
such that ‖ξ − ξ

′
‖Lq ≤ δ. Here Dα is a given function

measuring the distance between the filtrations of ξ and its approximation ξ
′
.

The last result seems to be very similar to the one given in section 2. It, however,
differs significantly on the two following points.

• Only one discretization is considered in [10], namely, the noise discretization.
The consequence of this discretization is then measured (using function Dα)
in terms of information. General conditions ensuring that the term Dα(ξ, ξ

′
)

is close to zero are, however, not given in the main theorem of [10].
• According to the authors, the filtration distance Dα is related to the uniform

convergence topology on σ-fields. Such a distance allows for a Lipschitz-like
result (4.4) which makes sense8 but presents the drawback that finite parti-
tions are not dense in the space A� equipped with the uniform convergence
topology. Approximating information does not appear to be the main purpose
in [10], as illustrated by the example in [10, Example 2.7], where the distance
Dα is used to reduce an existing scenario tree rather than to approximate a
σ-field.

The main difference is thus that [10] essentially presents a stability result, whereas
we are concerned with a convergence result.

5. Conclusion. Approximating a stochastic optimization problem somewhat
naturally leads to discretizing the underlying noise or its probability distribution.
This procedure has been examined by various authors who have given appropriate
conditions for convergence (see [8], [16], and [1]).

In our present work, we provide a framework to deal with the approximation of
stochastic optimization problems subject to measurability constraints. By means of
a simple example, we show how the standard Monte Carlo approximation may fail,
although it is generally adapted to the situation without measurability constraints.
We also point out that deducing an information discretization uncautiously from the
noise discretization may also lead to wrong results. Our main contribution consists in
treating separately noise and information discretization, providing appropriate sepa-
rate sufficient conditions to obtain convergence.

8Whereas the distance associated with the strong convergence topology is in fact arbitrary and
thus not well-suited for a Lipschitz property.
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STRONG DUALITY FOR THE CDT SUBPROBLEM: A NECESSARY
AND SUFFICIENT CONDITION∗

WENBAO AI† AND SHUZHONG ZHANG‡

Abstract. In this paper, we consider the problem of minimizing a nonconvex quadratic function,
subject to two quadratic inequality constraints. As an application, such a quadratic program plays
an important role in the trust region method for nonlinear optimization; such a problem is known as
the Celis, Dennis, and Tapia (CDT) subproblem in the literature. The Lagrangian dual of the CDT
subproblem is a semidefinite program (SDP), hence convex and solvable. However, a positive duality
gap may exist between the CDT subproblem and its Lagrangian dual because the CDT subproblem
itself is nonconvex. In this paper, we present a necessary and sufficient condition to characterize
when the CDT subproblem and its Lagrangian dual admits no duality gap (i.e., the strong duality
holds). This necessary and sufficient condition is easy verifiable and involves only one (any) optimal
solution of the SDP relaxation for the CDT subproblem. Moreover, the condition reveals that it is
actually rare to render a positive duality gap for the CDT subproblems in general. Moreover, if the
strong duality holds, then an optimal solution for the CDT problem can be retrieved from an optimal
solution of the SDP relaxation, by means of a matrix rank-one decomposition procedure. The same
analysis is extended to the framework where the necessary and sufficient condition is presented in
terms of the Lagrangian multipliers at a KKT point. Furthermore, we show that the condition is
numerically easy to work with approximatively.

Key words. quadratically constrained quadratic programming, strong Lagrangian duality,
Celis, Dennis, and Tapia subproblem, semidefinite program relaxation
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1. Introduction. In this paper, we consider the following nonconvex quadratic
optimization problem:

(QP ) minimize q0(x) = xTQ0x− 2bT0 x

subject to qi(x) = xTQix− 2bTi x+ ci ≤ 0, i = 1, . . . ,m.

In case m = 1 and Q1 � 0, the problem is known as the trust region subproblem,
since in the trust region approach to unconstrained optimization, such problems need
to be solved repeatedly. In this context, the problem has been thoroughly studied.
(For general information on the trust region method, see [6]). It is known that the
trust region subproblem can be easily solved. A connection between the solution
methods for the trust region subproblem and semidefinite programming (SDP) was
established by Sturm and Zhang in [11]. By using a matrix rank-one decomposition
procedure, Sturm and Zhang [11] showed that if m = 1, then the SDP relaxation of
(QP ) is tight, and an optimal solution for (QP ) can be obtained from an optimal
solution of its SDP relaxation. Furthermore, Ye and Zhang [13] showed that if m = 2
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and certain additional conditions are satisfied, then the SDP relaxation for (QP )
can still be tight in many cases. In fact, the quadratic program (QP ) with m = 2
has its own history as an extended trust region subproblem. In 1985, Celis, Dennis
and Tapia (CDT) [3] proposed a trust region method for constrained optimization, in
which (QP ) with m = 2 plays the role as a model for validating a trust region step. In
this particular context, Q1 � 0 and Q2 � 0, and the extended trust region subproblem
is also referred to as the CDT subproblem. A number of papers have been devoted
to studying the structure and the solution algorithms for the CDT subproblem; see,
e.g., [4, 5, 9, 10, 11, 13, 14, 15, 16].

A remarkable property which makes the CDT subproblem interesting and in-
triguing is that at a global optimal solution, the Hessian matrix of the Lagrangian
function may not necessarily be positive semidefinite; however, it can have at most
one negative eigenvalue (see Yuan [14]). In fact, it is quite rare to encounter examples
where the Hessian of the Lagrangian function indeed has a negative eigenvalue at
optimum. In 1991, Yuan [15] suggested an algorithm for the CDT subproblem under
the assumption that the objective function is convex, and, in 1992, Zhang [16] pro-
posed an algorithm for the CDT subproblem under the assumption that the optimal
Lagranian Hessian matrix is positive semidefinite. Chen and Yuan [5] presented a suf-
ficient condition (termed as Property J in [5]) under which the Lagrangian function
of the CDT subproblem will have a positive semidefinite Hessian at optimal point.
Recently, Beck and Eldar [1] used the complex valued SDP (thus relaxed) approach
to come up with a similar sufficient condition to guarantee the nonnegativity of the
Hessian matrix of the Lagrangian function at optimum. Beck and Eldar [1] reported
that in their experiments on randomly generated instances, their sufficient condition
was satisfied for an overwhelming majority of the random instances.

The current paper is concerned with the CDT-type quadratic programs. In par-
ticular, we shall present a verifiable condition which indicates whether or not the SDP
relaxation for the quadratic program is tight. Since the Lagrangian dual of a general
quadratically constrained quadratic program is the dual of its SDP relaxation (see
Chapter 13 of [12]), our result is equivalent to a necessary and sufficient condition
for the strong duality to hold for this class of nonconvex quadratic programs. Our
condition involves only the information of an optimal SDP solution, or alternatively,
the information of a given KKT point. The paper is organized as follows. In section 2,
we shall formally establish the equivalence between the nonnegativity of the Hessian
matrix of the Lagrangian function (of (QP )) at an arbitrary optimal solution and the
fact that the SDP relaxation is tight. Section 3 is devoted to a specific problem re-
lated to the rank-one decomposition of a positive semidefinite matrix. This technical
result is interesting in its own right, and it is used in section 4 to derive a necessary
and sufficient condition to check whether or not the SDP relaxation is indeed tight.
Because the dual of the SDP relaxation coincides with the Lagrangian dual of (QP ), a
tight SDP relaxation manifests that the strong duality holds for (QP ). Our necessary
and sufficient condition is different from the other two sufficient conditions previously
studied in [5] and [1]. In nonlinear programming, it is customary to use terminologies
such as the Lagrangian multipliers or the KKT conditions. For this reason, we shall
present our results in section 5 both as an easy verifiable condition based on an optimal
solution of the SDP relaxation or, alternatively, as an easy verifiable condition based
on a KKT point in terms of the Lagrangian function and multipliers. An example is
given in section 6 to show that the information carried by the KKT solutions may not
be useful for the optimal solution of the CDT problem when the strong duality fails.
In section 7, we propose a numerical implementation of the necessary and sufficient
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condition. Our simulation results show that the condition is indeed numerically stable
and easy to work with.

Throughout the paper, Sn×n denotes the set of real n × n symmetric matrices;
Sn×n+ denotes the set of real n × n positive semidefinite matrices; Sn×n++ denotes the
set of real n× n positive definite matrices; for A,B ∈ Sn×n, A •B := trAB denotes
the matrix inner-product between A and B.

2. Convex Lagrangian function and the strong duality. In the literature,
there are mainly two ways to solve a general quadratically constrained quadratic
program (QP ): Either use the Lagrangian function with some appropriately chosen
multipliers or base the solution method on the SDP relaxation. In the latter case, the
method works well if the SDP relaxation is tight, while, in the former case, the method
works well if the Hessian of the Lagrangian function is positive semidefinite. It is
therefore natural to believe that these two properties must be essentially identical. In
this section, we shall formally prove this point. The result is useful for our subsequent
analysis.

First of all, following [11], we use the notation

M(q0) :=
[

0 −bT0
−b0 Q0

]

, M(qi) :=
[

ci −bTi
−bi Qi

]

, for i = 1, . . . ,m.

Then, (QP ) is equivalently written as

(QP ) minimize M(q0) •
[

t
x

][

t
x

]T

= xTQ0x− 2bT0 xt

subject to M(qi) •
[

t
x

][

t
x

]T

= xTQix− 2bTi xt+ cit
2 ≤ 0, i = 1, . . . ,m

t2 = 1.

The so-called SDP relaxation of (QP ) is

(SP ) minimize M(q0) •X
subject to M(qi) •X ≤ 0, i = 1, . . . ,m

I00 •X = 1
X � 0,

where I00 =
[

1 0
0 0

]

∈ S(n+1)×(n+1). The dual problem of (SP ) is

(SD) maximize y0
subject to Z = M(q0) − y0I00 +

∑m
i=1 yiM(qi) � 0

yi ≥ 0, i = 1, . . . ,m.

Note that (SD) is also the Lagrangian dual problem for (QP ) (see [12]). The fol-
lowing well-known facts regarding the relationship between (SP ) and (SD) are either
straightforward or well known:

(1) (SP ) satisfies the Slater condition if the original problem (QP ) satisfies the
Slater condition.

(2) (SD) satisfies the Slater condition if at least one of the matrices Qi’s, i =
0, 1, . . . ,m, is positive definite.

(3) If both (SP ) and (SD) satisfy the Slater condition, then (SP ) and (SD) have
attainable optimal solutions. Moreover, a primal-dual feasible pair X and
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(Z, y0, y1, . . . , ym) are optimal if and only if they satisfy the complementary
conditions:

XZ = 0, yiM(qi) •X = 0, i = 1, . . . ,m.

Throughout this paper, we assume that Q1 � 0 and that (QP ) satisfied the
Slater condition. Hence, (QP ), (SP ), and (SD) all have optimal solutions, which we
shall denote, respectively, by x∗, X̂, and (Ẑ, ŷ0, ŷ1, . . . , ŷm), and their optimal values,
respectively, by v(QP ), v(SP ), and v(SD).

Clearly, v(SP ) ≤ v(QP ) since (SP ) is a relaxation of (QP ), and v(SP ) = v(SD)
since both (SP ) and (SD) satisfy the Slater condition. Therefore, the strong duality
holds for (QP ) if and only if the SDP relaxation for (QP ) is tight; i.e., v(SP ) = v(QP ).
It is helpful to keep in mind that Ẑ can also be rewritten as

Ẑ =

⎡

⎢

⎢

⎢

⎢

⎣

−ŷ0 +
m
∑

i=1

ŷici −bT0 −
m
∑

i=1

ŷib
T
i

−b0 −
m
∑

i=1

ŷibi Q0 +
m
∑

i=1

ŷiQi

⎤

⎥

⎥

⎥

⎥

⎦

.

On the other hand, the Lagrangian function for (QP ), with yi being the multiplier
for the constraint qi(x) ≤ 0, i = 1, . . . ,m, is given as

L(x; y) := q0(x) +
m
∑

i=1

yiqi(x).

Clearly, since the function is quadratic in x for any fixed multiplier y, its Hessian
matrix is ∇2

xxL(x; y) = Q0 +
∑m

i=1 yiQi.
Theorem 2.1. v(SP ) = v(QP ) ⇐⇒ ∇2

xxL(x; y) = Q0 +
∑m

i=1 yiQi � 0, where
y is the Lagrangian multiplier for an optimal solution of (QP ).

Proof. “=⇒”: For any minimizer x∗ of the original problem (QP ), the matrix
X∗ :=

[

1
x∗

][

1
x∗

]T
is also an optimal solution for (SP ). So the primal-dual optimal pair

X∗ and (Ẑ, ŷ) satisfy complementary conditions, where (Ẑ, ŷ) is optimal to (SD), i.e.,

ẐX∗ = 0, ŷiM(qi) •X∗ = 0, i = 1, . . . ,m.(2.1)

Since Ẑ � 0, the relation ẐX∗ = 0 is equivalent to Ẑ
[

1
x∗

]

= 0, which implies that
(

Q0 +
m
∑

i=1

ŷiQi

)

x∗ = b0 +
m
∑

i=1

ŷibi.

Also, since qi(x∗) = M(qi) •X∗, it follows from (2.1) that ŷiqi(x∗) = 0, i = 1, . . . ,m.
Therefore, x∗ and ŷ satisfy the KKT condition, and ŷ is the corresponding Lagrangian
multiplier with the Hessian matrix being

∇2
xx

(

q0(x) +
m
∑

i=1

ŷiqi(x)

)∣

∣

∣

∣

∣

x=x∗

= Q0 +
m
∑

i=1

ŷiQi = Ẑ � 0.

“⇐=”: Suppose that the original problem (QP ) has an optimal solution x∗, with
a positive semidefinite Lagrangian Hessian matrix Q0 +

∑m
i=1 y

∗
iQi. Then x∗ and
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y∗1 , . . . , y
∗
m satisfy the following KKT condition:

(

Q0 +
m
∑

i=1

y∗iQi

)

x∗ = b0 +
m
∑

i=1

y∗i bi, y∗i qi(x
∗) = 0, y∗i ≥ 0, i = 1, . . . ,m.

Let
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

X∗ :=
[

1
x∗

] [

1
x∗

]T

, y∗0 := q0(x∗),

and Z∗ := M(q0) − y∗0I00 +
m
∑

i=1

y∗iM(qi).
(2.2)

Next, we aim to show that X∗ and (y∗, Z∗) are, in fact, optimal to (SP ) and (SD).
To this end, we need only to verify that Z∗ � 0 and Z∗X∗ = 0.

Let the Lagrangian function be

L(x; y∗) = q0(x) +
m
∑

i=1

y∗i qi(x).(2.3)

By the Taylor expansion at x∗ and the KKT optimality condition, we have

L(x; y∗) = L(x∗; y∗) + (x− x∗)T
(

Q0 +
m
∑

i=1

y∗iQi

)

(x− x∗)

≥ L(x∗; y∗) = q0(x∗) = y∗0(2.4)

for any x, which implies that x∗ is a global minimizer of L(x; y∗). Consider any
(n + 1)-dimensional vector

[

t
x

]

. If t 
= 0, then it follows from (2.2), (2.3), and (2.4)
that

[

t
x

]T

Z∗
[

t
x

]

=

(

M(q0) − y∗0I00 +
m
∑

i=1

y∗iM(qi)

)

•
[

t
x

] [

t
x

]T

= t2

(

q0(x/t) +
m
∑

i=1

y∗i qi(x/t) − y∗0

)

= t2 (L(x/t; y∗) − y∗0) ≥ 0.

If t = 0, then

[

t
x

]T

Z∗
[

t
x

]

= xT

(

Q0 +
m
∑

i=1

y∗iQi

)

x ≥ 0.

Therefore, Z∗ � 0. Moreover,

Z∗ •X∗ =
[

1
x∗

]T

Z∗
[

1
x∗

]

= L(x∗; y∗) − y∗0 = 0,

which, together with Z∗ � 0 and X∗ � 0, implies that Z∗X∗ = 0.
Theorem 2.1 implies that once an optimal solution for (QP ) admits a Lagrangian

multiplier (vector) with nonnegative Hessian matrix, then v(QP ) = v(SP ), which in
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turn implies that every optimal solution admits a Lagrangian multiplier with nonneg-
ative Hessian matrix. We formalize the statement as follows.

Corollary 2.2. If at one optimal solution of (QP ) there is a Lagrangian multi-
plier with a nonnegative Hessian matrix, then it follows that at any optimal solution
of (QP ), there is a Lagrangian multiplier with a nonnegative Hessian matrix.

We note that Theorem 2.1 can actually be used to bridge an easy provable fact to
a less obvious one. For instance, it is relatively easy to show that if m = 1, then the
Hessian of the Lagrangian function is nonnegative (e.g., Theorem 7.2.1 in [6]). Hence
we can conclude v(QP ) = v(SP ) = v(SD) in this case, simply using Theorem 2.1.
On the other hand, if m = 2 and (QP ) is homogeneous (i.e., b0 = b1 = b2 = 0), then
Ye and Zhang (section 2.2 of [13]) showed that v(QP ) = v(SP ). A less obvious fact
is that the Lagrangian function always has a nonnegative Hessian matrix in this case.

3. A new matrix rank-one decomposition procedure. Sturm and Zhang
[11] proposed a simple (polynomial-time) procedure to compute the following matrix
rank-one decomposition problem: Given X ∈ Sn×n+ and A ∈ Sn×n, find xj ∈ �n,
j = 1, . . . , r, where r = rank(A) such that X =

∑r
j=1 xjx

T
j and xTj Axj = A •X/r,

j = 1, . . . , r. Huang and Zhang [8] extended the result to the case where the matrices
in questions are all Hermitian.

The aim of this section is to study a further extension of such rank-one decompo-
sition in the real symmetric case. Our result will then be applied in the next section to
enable a method for (QP ) when m = 2. Let x1 ∈ �n and X ∈ Sn×n+ . As a convention,
we shall call matrix X to be rank-one decomposable at x1 if there exist other r − 1
vectors x2, . . . , xr such that X = x1x

T
1 + x2x

T
2 + · · · + xrx

T
r , where r = rank(X). To

find out when X is a matrix rank-one decomposable at a given vector, we first note
the following lemma.

Lemma 3.1. Suppose that X ∈ Sn×n+ , with rank(X) = r and X = x1x
T
1 +x2x

T
2 +

· · · + xrx
T
r . Let Xr = [x1, . . . , xr]. Then, X = y1y

T
1 + y2y

T
2 + · · · + yry

T
r holds if

and only if there exists an orthonormal matrix P ∈ �r×r such that Yr = XrP where
Yr = [y1, . . . , yr] .

Proof. The sufficiency is obvious. To show the necessity of the condition, let us
suppose X = XrX

T
r = YrY

T
r and consider P = XT

r Yr(Y
T
r Yr)

−1. Clearly,

PTP = (Y Tr Yr)
−1Y Tr XrX

T
r Yr(Y

T
r Yr)

−1 = (Y Tr Yr)
−1Y Tr YrY

T
r Yr(Y

T
r Yr)

−1 = Ir.

Hence P is an orthonormal matrix. At the same time,

XrP = XrX
T
r Yr(Y

T
r Yr)

−1 = YrY
T
r Yr(Y

T
r Yr)

−1 = Yr.

Since for any given unit vector one can always construct an orthonormal matrix
with this unit vector as the first column, this leads to the following characterization
of the rank-one decomposability at a given vector.

Proposition 3.2. Suppose that X ∈ Sn×n+ , with rank(X) = r and X = x1x
T
1 +

x2x
T
2 + · · · + xrx

T
r . Let Xr = [x1, . . . , xr]. Then, X is rank-one decomposable at

y ∈ �n if and only if there is u ∈ �r, with ‖u‖ = 1 and y = Xru.
The next result plays an important role in this paper.
Lemma 3.3. Let A1, A2 ∈ Sn×n. Suppose that X = x1x

T
1 + x2x

T
2 + · · · + xrx

T
r ,

where r ≥ 3. If

A1 • x1x
T
1 = A1 • x2x

T
2 = δ1,

(A2 • x1x
T
1 − δ2)(A2 • x2x

T
2 − δ2) < 0,(3.1)
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then in the real-number computation sense (viz. the computational model of Blum,
Shub, and Smale [2], which we shall abbreviate as the BBS model hereafter), one can
find in polynomial-time a vector y ∈ �n such that X is rank-one decomposable at y
and

A1 • yyT = δ1,
A2 • yyT = δ2.

(3.2)

Proof. Without loss of generality, we assume that

A2 • x1x
T
1 − δ2 > 0 and A2 • x2x

T
2 − δ2 < 0.(3.3)

For given real values αi, i = 1, 2, 3, with (α1, α2, α3) 
= 0, define

y =
α1x1 + α2x2 + α3x3
√

α2
1 + α2

2 + α2
3

.(3.4)

By Proposition 3.2, X is rank-one decomposable at y. Let us substitute (3.4) into
(3.2) and consider the following system of equations with respect to the unknown real
variables α1, α2, and α3:

0 = α2
3(A1 • x3x

T
3 − δ1) + 2α1α2A1 • x1x

T
2

+ 2α1α3A1 • x1x
T
3 + 2α2α3A1 • x2x

T
3 ,(3.5)

0 = α2
1(A2 • x1x

T
1 − δ2) + α2

2(A2 • x2x
T
2 − δ2) + α2

3(A2 • x3x
T
3 − δ2)

+ 2α1α2A2 • x1x
T
2 + 2α1α3A2 • x1x

T
3 + 2α2α3A2 • x2x

T
3 .(3.6)

In fact, it follows from Finsler’s lemma [7] that (3.5) and (3.6) admit a real-valued
solution (α1, α2, α3). However, Finsler’s lemma is a pure existence result. Below we
shall construct such solutions. We proceed by considering two cases.

Case 1. A1 • x1x
T
2 = 0.

We choose α1 = 1 and α3 = 0. Then (3.5) is trivially satisfied for any values of
α2, and (3.6) can be rewritten as follows:

(A2 • x1x
T
1 − δ2) + α2

2(A2 • x2x
T
2 − δ2) + 2α2A2 • x1x

T
2 = 0,

which is a quadratic equation in α2 and must have two distinct real roots because
of (3.3); one is positive, and another is negative. Let ᾱ2 be one of the roots. Then
(α1, α2, α3) = (1, ᾱ2, 0) is a solution for (3.5) and (3.6).

Case 2. A1 • x1x
T
2 
= 0.

We choose α3 = 1. Then (3.5) and (3.6) become

0 = 2α2

(

α1A1 • x1x
T
2 +A1 • x2x

T
3

)

+ 2α1A1 • x1x
T
3 + (A1 • x3x

T
3 − δ1),(3.7)

0 = α2
1(A2 • x1x

T
1 − δ2) + α2

2(A2 • x2x
T
2 − δ2) + 2α1α2A2 • x1x

T
2

+ 2α1A2 • x1x
T
3 + 2α2A2 • x2x

T
3 + (A2 • x3x

T
3 − δ2).(3.8)

Solving (3.7) yields

α2 = −2α1A1 • x1x
T
3 + (A1 • x3x

T
3 − δ1)

2(α1A1 • x1xT2 +A1 • x2xT3 )
�
= p(α1).(3.9)

Moreover, let us denote

g(α1, α2) := α2
1(A2 • x1x

T
1 − δ2) + α2

2(A2 • x2x
T
2 − δ2) + 2α1α2A2 • x1x

T
2

+ 2α1A2 • x1x
T
3 + 2α2A2 • x2x

T
3 + (A2 • x3x

T
3 − δ2)(3.10)
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and define

t1 := −A1 • x2x
T
3

A1 • x1xT2
.

We consider the following two possible subcases.

Case 2.1. det
[

2A1 • x1x
T
3 A1 • x3x

T
3 − δ1

A1 • x1x
T
2 A1 • x2x

T
3

]


= 0.

Since
(

2α1A1 • x1x
T
3 + (A1 • x3x

T
3 − δ1)

)∣

∣

α1=t1

= − det
[

2A1 • x1x
T
3 A1 • x3x

T
3 − δ1

A1 • x1x
T
2 A1 • x2x

T
3

]/

A1 • x1x
T
2 
= 0,

the function p(α1) has the properties that

lim
α1→t1

p(α1) = ∞(3.11)

and

lim
α1→∞

p(α1) = −A1 • x1x
T
3

A1 • x1xT2
.(3.12)

Substituting (3.9) into (3.10), we obtain an equation in α1:

g(α1, p(α1)) := α2
1(A2 • x1x

T
1 − δ2) + p(α1)2(A2 • x2x

T
2 − δ2) + 2α1p(α1)A2 • x1x

T
2

+2α1A2 • x1x
T
3 + 2p(α1)A2 • x2x

T
3 + (A2 • x3x

T
3 − δ2)

= 0,

which is essentially a quartic polynomial equation in α1. Since

lim
α1→t1

g(α1, p(α1)) = −∞

and

lim
α1→∞

g(α1, p(α1)) = +∞

due to (3.3), (3.11), and (3.12), it follows that g(α1, p(α1)) has at least one real root
ᾱ1 in the interval (t1,+∞). Moreover, such root can be found by solving a quartic
polynomial equation with the standard root-finding formula, which can be regarded as
a constant operation in the BSS computational model. Substituting back, we derive
(ᾱ1, p1(ᾱ1), 1) as a solution for (3.5) and (3.6).

Case 2.2. det
[

2A1 • x1x
T
3 A1 • x3x

T
3 − δ1

A1 • x1x
T
2 A1 • x2x

T
3

]

= 0.

The above implies that there exists k such that

(2A1 • x1x
T
3 , A1 • x3x

T
3 − δ1) = k(A1 • x1x

T
2 , A1 • x2x

T
3 ).

Thus (3.7) becomes

(α1A1 • x1x
T
2 +A1 • x2x

T
3 )(2α2 + k) = 0,
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for which the roots are

α1 = −A1 • x2x
T
3

A1 • x1xT2
=: t1, α2 arbitrary

and

α2 = −k/2 =: t2, α1 arbitrary.

Substituting them back into (3.8), it suffices to solve either g(t1, α2) = 0 or g(α1, t2) =
0, which are quadratic equations in α2 and α1, respectively. If g(t1, α2) has a real
root ᾱ2, then (t1, ᾱ2, 1) is a solution to (3.5) and (3.6); otherwise, we have

g(t1, α2) < 0 for all α2

as limα2→+∞ g(t1, α2) = −∞ due to (3.3). In particular,

g(t1, t2) < 0.

Thus g(α1, t2) has a real root ᾱ1 for α1 on the interval (t1,+∞) as limα1→+∞ g(α1, t2)
= +∞ due to (3.3). Then (ᾱ1, t2, 1) is a solution to (3.5) and (3.6).

Remark that in Lemma 3.3, we require that r = 3. This condition cannot be
removed. Consider the following example:

A1 =
[

−1 0
0 1

]

, A2 =
[

−1 1
1 1

]

, X = x1x
T
1 +x2x

T
2 =

[

1
−1

]

[1,−1]+
[

1
1

]

[1, 1].

Clearly,

A1 • x1x
T
1 = A1 • x2x

T
2 = 0,

A2 • x1x
T
1 = −2 < 0, A2 • x2x

T
2 = 2 > 0.

However, for any nonzero x ∈ �2, A1 • xxT = 0 if and only if x is either parallel to
x1 or to x2, which implies that there is no nontrivial x satisfying both A1 • xxT = 0
and A2 • xxT = 0 simultaneously.

Using the above lemma, we now show the following theorem.
Theorem 3.4. Let A1, A2 ∈ Sn×n and X ∈ Sn×n+ , with

A1 •X = δ1, A2 •X = δ2.

If r := rank(X) ≥ 3, then in polynomial-time (real-number computation), one finds a
rank-one decomposition for X:

X = x1x
T
1 + x2x

T
2 + · · · + xrx

T
r

such that

A1 • xixTi = δ1/r for i = 1, . . . , r,

A2 • xixTi = δ2/r for i = 1, . . . , r − 2.

Proof. We shall achieve the desired decomposition by the following steps. Ini-
tially, we set X0 := ∅ and X1 := X . By Lemma 2.2 of [13], one finds a rank-one
decomposition for X1:

X1 = x1x
T
1 + x2x

T
2 + · · · + xrx

T
r
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such that A1 • xixTi = δ1/r for i = 1, . . . , r. Introduce an index set

I0 := {i | A2 • xixTi = δ2/r, i = 1, . . . , r}

and then update X0 and X1 by setting

X0 := X0 +
∑

i∈I0

xix
T
i , X1 := X1 −

∑

i∈I0

xix
T
i .

If rank(X1) < 3, then the procedure is completed; otherwise, i.e., rank(X1) ≥ 3, using
Lemma 3.3, we find y for which X1 is rank-one decomposable at y such that

A1 • yyT = δ1/r, A2 • yyT = δ2/r.

Update X0 and X1 by letting

X0 := X0 + yyT , X1 := X1 − yyT .

In this case, rank(X1) is reduced by 1. Repeat the above procedure until rank(X1)
< 3.

4. Strong duality: A necessary and sufficient condition. In this section,
we consider (QP ) with m = 2, which shall be denoted (QP )2 hereafter. Without loss
of generality, we assume q1(x) = xTx− 1; i.e.,

(QP )2 minimize q0(x) = xTQ0x− 2bT0 x
subject to q1(x) = xTx− 1 ≤ 0

q2(x) = xTQ2x− 2bT2 x+ c2 ≤ 0.

The above problem is slightly more general than the CDT subproblem in that Q2

above can be indefinite. The central issue to be considered here is when the cor-
responding SDP relaxation for (QP )2 is tight, which is shown in section 2 to be
equivalent to a strong Lagrangian duality (alternatively, it is also equivalent to the
fact that the Lagrangian function has a positive semidefinite Hessian matrix at opti-
mum due to Theorem 2.1). As before, we assume throughout the discussion that the
Slater condition is satisfied by (QP )2.

Let (SP )2 be the SDP relxation for (QP )2 and (SD)2 be the dual of (SP )2; that
is,

(SP )2 minimize M(q0) •X
subject to M(q1) •X ≤ 0

M(q2) •X ≤ 0
I00 •X = 1
X � 0,

where

M(q0) :=
[

0 −bT0
−b0 Q0

]

, M(q1) :=
[

−1 0
0 In

]

,

M(q2) :=
[

c2 −bT2
−b2 Q2

]

, I00 :=
[

1 0
0 On

]

.
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As we observed earlier, (SD)2 is also the Lagrangian dual of (QP )2. Let X̂ and
(Ẑ, ŷ0, ŷ1, ŷ2) be a pair of optimal solutions to (SP )2 and to (SD)2, respectively. It
turns out that the following property of X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) is important, which we
shall call Property I for ease of reference.

Definition 4.1. For X̂ and (Ẑ, ŷ0, ŷ1, ŷ2), a given pair of optimal solutions for
(SP )2 and (SD)2, respectively, we say that this pair has Property I if:

(1) ŷ1ŷ2 
= 0;
(2) rank(Ẑ) = n− 1;
(3) rank(X̂) = 2, and there is a rank-one decomposition of X̂, X̂ = x̂1x̂

T
1 + x̂2x̂

T
2 ,

such that M(q1) • x̂ix̂Ti = 0, i = 1, 2, and (M(q2) • x̂1x̂
T
1 )(M(q2) • x̂2x̂

T
2 ) < 0.

We remark here that it is easy to verify Property I, once (SP )2 and (SD)2 are
solved. The first two conditions being straightforward, the last one, due to Proposi-
tion 3.2, can be reduced to verifying the condition on a single parameter satisfying a
quadratic equation (any 2-by-2 orthonormal matrix can be completely characterized
by polar coordinates in a single parameter).

Theorem 4.2. Consider (QP )2 where the Slater condition is satisfied. Suppose
that X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) are a pair of optimal solutions for its SDP relaxation problem
(SP )2 and the dual (SD)2, respectively. Then, v((SP )2) < v((QP )2) holds if and only
if the pair X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) has Property I.

Proof. We shall complete the proof in two parts. They are, Part 1: If Property
I does not hold, then the SDP relaxation is tight; and Part 2: If Property I holds,
then the relaxation must not be tight.

In Part 1, we enumerate four exhaustive (but not mutually exclusive) possibilities,
to be denoted by Part 1.i, with i = 1, 2, 3, 4.

Part 1.1. ŷ1ŷ2 = 0.
The proof that the SDP relaxation is tight in this case can be found in Ye and

Zhang [13].
Part 1.2. ŷ1ŷ2 
= 0 and rank(X̂) 
= 2.
ŷ1ŷ2 
= 0 implies by the complementary conditions that

ẐX̂ = 0, M(q1) • X̂ = 0, M(q2) • X̂ = 0.

Let r := rank(X̂). Obviously, r > 0 since I00 • X̂ = 1, and if r = 1, then the theorem
is already true. Therefore, we need only to consider the nontrivial case r ≥ 3. By
Theorem 3.4, there is a rank-one decomposition of X̂ satisfying

X = x1x
T
1 + x2x

T
2 + · · · + xrx

T
r

M(q1) • xixTi = 0, for i = 1, . . . , r
M(q2) • xixTi = 0, for i = 1, . . . , r − 2.

Thus x1x
T
1 /t

2
1 satisfies the complementary conditions hence optimal to (SP )2. This

implies that x1/t1 is a homogenized optimal solution to (QP ), where t1 denotes the
first element of x1, which must be nonzero because M(q1) • x1x

T
1 = 0, x1 
= 0, and

Q1 � 0.
Part 1.3. ŷ1ŷ2 
= 0 and rank(X̂) = 2, and M(q2) • x̂1x̂

T
1 = M(q2) • x̂2x̂

T
2 = 0.

In this case, both x̂1x̂
T
1 /t̂

2
1 and x̂2x̂

T
2 /t̂

2
2 are optimal to (SP )2. Thus both x̂1/t̂1

and x̂2/t̂2 are optimal solutions for (QP )2, where t̂1 and t̂2 are the first elements of
x̂1 and x̂2, respectively, which are both nonzero as argued before.

Part 1.4. ŷ1ŷ2 
= 0 and rank(X̂) = 2,
(

M(q2) • x̂1x̂
T
1

) (

M(q2) • x̂2x̂
T
2

)

< 0, and
rank(Ẑ) 
= n− 1.
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Since rank(Ẑ)+rank(X̂) ≤ n+1 and rank(X̂) = 2, it follows that rank(Ẑ) ≤ n−1,
and therefore, in this particular case, rank(Ẑ) < n−1. Now X̂+Ẑ is singular and both
X̂ and Ẑ are positive semidefinite, so there must be a nontrivial y in the intersection
of the null spaces of X̂ and Ẑ. Let

X := X̂ + yyT = x̂1x̂
T
1 + x̂2x̂

T
2 + yyT .

Obviously, rank(X) = 3 and ẐX = 0. Since

M(q1) • x̂1x̂
T
1 = M(q1) • x̂1x̂

T
1 = 0,(4.1)

(M(q2) • x̂1x̂
T
1 )(M(q2) • x̂1x̂

T
1 ) < 0.(4.2)

By applying Lemma 3.3, we obtain x such that X is rank-one decomposable at x and
that

M(q1) • xxT = 0, M(q2) • xxT = 0.

Since x is in the range space of X , it must be in the null space of Ẑ. That is,
Ẑ • xxT = 0, implying that xxT /t2 is an optimal solution to (SP )2 and x/t is an
optimal solution to (QP )2, where t is the first component of x (which must be nonzero
as argued before).

This concludes Part 1.
Next we proceed to Part 2, in which we shall prove that if Property I holds, then

there is definitely a gap between (QP )2 and (SP )2, i.e., v((SP )2) < v((QP )2). To see
why this is true, we use a contradiction argument. Suppose that Property I holds,
while v((SP )2) = v((QP )2). Let x∗ be an optimal solution of (QP )2 (we extend
the dimension of x∗ to be (n + 1)-dimensional by putting 1 in the first component).
Then, since v((SP )2) = v((QP )2), x∗(x∗)T must be an optimal solution to (SP )2.
Consequently, x∗(x∗)T and (Ẑ, ŷ0, ŷ1, ŷ2) must satisfy the complementarity condition;
i.e.,

Ẑx∗(x∗)T = 0, M(q1) • x∗(x∗)T = 0, M(q2) • x∗(x∗)T = 0.(4.3)

This implies that x∗ must be in the null space of Ẑ, which is two-dimensional in this
case. In other words, it must be a linear combination of x̂1 and x̂2. Let us assume
that there are two numbers α and β such that

x∗ = αx̂1 + βx̂2.(4.4)

Substituting (4.4) into the equations M(q1) • x∗(x∗)T = 0 and M(q2) • x∗(x∗)T = 0
and noting (4.1) and (4.2), we obtain

αβx̂T1 M(q1)x̂2 = 0,(4.5)
α2M(q2) • x̂1x̂

T
1 + 2αβM(q2) • x̂1x̂

T
2 + β2M(q2) • x̂2x̂

T
2 = 0.(4.6)

Due to (4.2), neither α nor β can be zero. (For example, if α = 0, then by (4.6)
and (4.2), it necessarily follows that β = 0 and vice versa). Thus, from (4.5), it
follows that x̂T1 M(q1)x̂2 = 0. Let x̂1 = (t1, uT )T and x̂2 = (t2, vT )T , where u, v ∈ �n.
We have 0 = M(q1) • x̂1x̂

T
1 = t21 − ‖u‖2 and 0 = M(q1) • x̂2x̂

T
2 = t22 − ‖v‖2. Now,

x̂T1 M(q1)x̂2 = 0 leads to 0 = t1t2 − uT v, and so (uT v)2 = ‖u‖2‖v‖2. By the Cauchy–
Schwartz inequality, this is only possible when u is a multiple of v. Consequently, x̂1

and x̂2 must be linearly dependent, a contradiction to the fact that 2 = rank(X̂) =
x̂1x̂

T
1 + x̂2x̂

T
2 .
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5. The Lagrangian function and the KKT condition. It is intuitively clear
that the Lagrangian function must be related to the SDP relaxation, as Theorem 2.1
has already indicated, primarily due to the fact that the Lagrangian dual of quadrat-
ically constrained quadratic program (QP ) is identical to the dual of its SDP relax-
ation. It is, however, useful to translate Property I using the terms of the Lagrangian
function and the KKT conditions explicitly due to its relevance in the nonlinear pro-
gramming community.

First, let us formally introduce an analog of Property I in the context of La-
grangian multipliers.

Definition 5.1. For given Lagrangian multipliers λ and μ for the quadratic
program (QP )2, we say that they have Property I ′ if

(1) λ > 0 and μ > 0;
(2) H(λ, μ) = Q0 + λI + μQ2 � 0 and rank(H(λ, μ)) = n− 1;
(3) The system of linear equations H(λ, μ)x = b0 + μb2 has two solutions x1 and

x2 satisfying xTi xi = 1, i = 1, 2, and q2(x1)q2(x2) < 0.
Theorem 5.2. Suppose that (QP )2 satisfies the Slater condition. Then, (QP )2

has no strong duality if and only if there exist multipliers λ and μ such that Property
I ′ holds.

Proof. The Slater condition for (QP )2 implies v((SP )2) = v((SD)2) = v((QD)2),
where (QD)2 denotes the dual problem of (QP )2. Therefore, “(QP )2 has no strong
duality” is equivalent to “v((SP )2) < v((QP )2).” By Theorem 4.2, it is again equiv-
alent to “Property I holds.” What remains to show is that Property I holds if and
only if the above Property I′ holds. To put things in perspective, we restate Prop-
erty I as follows: There exist three numbers y0, λ, μ and two linearly independent
(n+ 1)-dimensional vectors x̂1 = [t1, xT1 ]T and x̂2 = [t2, xT2 ]T such that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xT1 x1 − t21 = xT2 x2 − t22 = 0,

M(q2) • x̂1x̂
T
1 +M(q2) • x̂2x̂

T
2 = 0,

(M(q2) • x̂1x̂
T
1 )(M(q2) • x̂2x̂

T
2 ) < 0,

t21 + t22 = 1,

(λ, μ) > 0,

Z := M(q0) − y0I00 + λM(q1) + μM(q2) � 0,

rank(Z) = n− 1,
Zx̂1 = Zx̂2 = 0.

(5.1)

“Property I =⇒ Property I′”.
First we note that from the sixth equation in (5.1), we may write Z as

Z =
[

−y0 + λ+ μc2 −bT0 − μbT2
−b0 − μb2 Q0 + λI + μQ2

]

.(5.2)

By xT1 x1 − t21 = xT2 x2 − t22 = 0 and the linear independence of x̂1 and x̂2, we have
t1t2 
= 0. Let

x̄1 := x1/t1, x̄2 := x2/t2.
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By (5.1), it immediately follows that x̄1 and x̄2 must satisfy the following:

‖x̄1‖ = ‖x̄2‖ = 1,
q2(x̄1)q2(x̄2) < 0,
(λ, μ) > 0,
Q0 + λI + μQ2 � 0,
(Q0 + λI + μQ2)x̄i = b0 + μb2, i = 1, 2,
x̄1, x̄2 are linearly indepedent.

It now remains only to check if rank(Q0 + λI + μQ2) = n− 1. By using Zx̂1=0 and
(5.2), we have

[

−y0 + λ+ μc2
−b0 − μb2

]

= −
[

−bT0 − μbT2
Q0 + λI + μQ2

]

x̄1,

which implies that

n− 1 = rank(Z) = rank
([

−y0 + λ+ μc2 −bT0 − μbT2
−b0 − μb2 Q0 + λI + μQ2

])

= rank
([

−bT0 − μbT2
Q0 + λI + μQ2

])

= rank(Q0 + λI + μQ2).

“Property I ′ =⇒ Property I”.
Let us assume, without loss of generality, that q2(x1) < 0, q2(x2) > 0, and let us

define

y0 := q0(x1) + λq1(x1) + μq2(x1),

t1 :=

√

−q2(x2)
q2(x1) − q2(x2)

,

t2 :=

√

q2(x1)
q2(x1) − q2(x2)

,

x̂1 := t1

[

1
x1

]

,

x̂2 := t2

[

1
x2

]

,

Z := M(q0) − y0I00 + λM(q1) + μM(q2).

Then, it can be straightforwardly checked that

M(q1) • x̂1x̂
T
1 = M(q1) • x̂2x̂

T
2 = 0,

M(q2) • x̂1x̂
T
1 +M(q2) • x̂2x̂

T
2 = 0,

M(q2) • x̂1x̂
T
1 < 0, M(q2) • x̂2x̂

T
2 > 0,

t21 + t22 = 1,

(λ, μ) > 0.

To complete the proof, one needs only to show that Z � 0, Zx̂1 = Zx̂2 = 0, and
rank(Z) = n− 1.
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Consider the Lagrangian function

L(x;λ, μ) := q0(x) + λq1(x) + μq2(x),

whose Hessian matrix H(λ, μ) = Q0 +λI+μQ2 is semidefinite, due to (2) of Property
I ′. This implies that L(x;λ, μ) is a convex quadratic function in x. Furthermore, (2)
and (3) of Property I ′ imply that the minimizers of L(x;λ, μ) consist of all the points
on the straight line connecting x1 and x2. Consequently,

y0 = L(x1;λ, μ) = L(x2;λ, μ) = min
x∈	n

L(x;λ, μ).

Consider any (n+ 1)-dimensional vector (t, xT )T , where t ∈ �1 and x ∈ �n. If t = 0,
then

[

t
x

]T

Z

[

t
x

]

=
[

0
x

]T [ −y0 + λ+ μc2 −bT0 − μbT2
−b0 − μb2 Q0 + λI + μQ2

] [

0
x

]

= xT (Q0 + λI + μQ2)x ≥ 0.

Otherwise, if t 
= 0, then
[

t
x

]T

Z

[

t
x

]

=
[

t
x

]T

(M(q0) − y0I00 + λM(q1) + μM(q2))
[

t
x

]

= t2q0(x/t) − t2y0 + λt2q1(x/t) + μt2q2(x/t) = t2(L(x/t;λ, μ) − y0)
≥ t2(L(x1;λ, μ) − L(x1;λ, μ)) = 0.

Moreover, x̂T1 Zx̂1 = t21(L(x1;λ, μ) − y0) = 0 and x̂T2 Zx̂2 = t22(L(x2;λ, μ) − y0) =
t22(L(x2;λ, μ) − L(x1;λ, μ)) = 0. Therefore, Zx̂1 = 0 and Zx̂2 = 0 because Z � 0.
Since x̂1 and x̂2 are linearly independent, it follows that rank(Z) ≤ n − 1. On the
other hand, rank(Z) ≥ rank(H(λ, μ)) = n− 1, leading to rank(Z) = n− 1.

Property I ′ is closely related to Property J studied in Chen and Yuan [5] for the
CDT subproblem. Since Chen and Yuan [5] considered the CDT subproblem, they
considered problem (QP )2 with an additional condition that Q2 � 0. To put things
in perspective, their Property J can be stated as follows.

Definition 5.3. For given Lagrangian multipliers λ and μ for the quadratic
program (QP )2, we say that they have Property J if

(1) λ > 0 and μ > 0;
(2) H(λ, μ) = Q0 + λI + μQ2 � 0 and rank(H(λ, μ)) = n− 1;
(3) The following “surrogate” problem

(P ) λ
λ+μ

minimize q0(x)

subject to
λ

λ+ μ
q1(x) +

μ

λ+ μ
q2(x) ≤ 0

has two solutions x1 and x2 satisfying

H(λ, μ)x = b0 + μb2,

and xT1 x1 < 1 and xT2 x2 > 1.
The above Property J (see [5]) is based on the idea of surrogate representation

of the constraints, hence different from ours. Moreover, Chen and Yuan in (see [5])
proved just only that if (QP )2 with Q2 � 0 has no strong duality, then Property J
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holds, in other words, the converse proposition cannot be proved so far. However,
the appearances of Property J and Property I ′ are quite similar indeed. Despite the
similar appearances, below we shall show that they are not identical in all circum-
stances. Before our discussion, we shall first remark that the existence of multipliers
satisfying Property J cannot be directly verified, while Property I can be checked in
polynomial-time by solving a pair of SDP problems.

Proposition 5.4. If Q2 � 0, then Property J is equivalent to Property I ′. If
Q2 
� 0, then Property J is not identical to Property I ′, the latter being a necessary
and sufficient condition for (QP )2 to admit a gap with its SDP relaxation.

Proof. First consider the situation when Q2 � 0. We shall prove in this case that
Property J leads to Property I ′.

Restricting the quadratic function λ
λ+μq1(x) + μ

λ+μq2(x) on the line connecting
x1 and x2, we obtain a univariate function

g(t) :=
λ

λ+ μ
q1((1 − t)x1 + tx2) +

μ

λ+ μ
q2((1 − t)x1 + tx2), t ∈ �.

Since λ
λ+μq1(x) + μ

λ+μq2(x) is strictly convex and quadratic, we have

g(t)

⎧

⎨

⎩

= 0, if t = 0 and 1;
< 0, if 0 < t < 1;
> 0, else.

(5.3)

Similarly, h(t) := q1((1 − t)x1 + tx2) = ‖(1 − t)x1 + tx2‖2 is also a strictly convex
quadratic function of t. Therefore, h(0) < 0 and h(1) > 0 lead to the existence of
two numbers t1 ∈ (−∞, 0) and t2 ∈ (0, 1) such that h(t1) = h(t2) = 0. Denote
x3 = (1 − t1)x1 + t1x2 and x4 = (1 − t2)x1 + t2x2. Based on (5.3), we have

q1(x3) = q1(x4) = 0, q2(x3) > 0, q2(x4) < 0,

which means that Property I ′ holds.
Now consider the case whereQ2 
� 0. We shall prove our assertion by the following

example:

minimize q0(x) = x2
1 − 3x1

subject to q1(x) = x2
1 + x2

2 − 1 ≤ 0,

q2(x) = −x2
1 − x2

2 + 2x1 ≤ 0,

where x = (x1, x2)T . It is easy to see that the two circles q1(x) = 0 and q2(x) = 0
intersect at two points: P1 with coordinates (1

2 ,
√

3
2 ) and P2 with coordinates (1

2 ,−
√

3
2 ).

It is easy to see that P1 and P2 are two unique optimal solutions for this problem, for
which the corresponding multipliers are λ = μ = 1, with the corresponding Hessian
matrix of the Lagrangian function being

H(λ, μ) = Q0 + λQ1 + μQ2 =
[

1 0
0 0

]

,

which is positive semidefinite with rank n− 1 (n = 2). So, this problem has optimal
solutions with positive semidefinite Lagrangian Hessian matrices. The KKT points
satisfy

{

1x1 = 1
2 ,

0x2 = 0,



STRONG DUALITY FOR A NONCONVEX QUADRATIC PROGRAM 1751

which lie on the line connecting P1 and P2. In this case, however, by Theorem 5.2
we know that Property I ′ is violated. We shall see below that Property J still holds
nevertheless. Choose, for instance, x(1) = (1

2 , 0)T , x(2) = (1
2 , 1)T , and λ = μ = 1.

We have λ
λ+μq1(x) + μ

λ+μq2(x) = 0 for x = x(1) and x = x(2), and ‖x(1)‖ < 1 and
‖x(2)‖ > 1. After checking the conditions, we see that Property J is indeed satisfied
in this case; however, Property I ′ is violated as we have observed.

Another related result is due to Beck and Eldar [1]. Their approach is based on a
comparison between the real and the complex valued SDP relaxations. They showed
that if the dimension of the null space of H(λ, μ) is not equal to 1, or equivalently,
rank(H(λ, μ)) 
= n−1, then the SDP relaxation is tight. In the context of Theorem 5.2,
this is clear, since this sufficient condition guarantees that Property I′ does not hold,
and hence the SDP relaxation must be tight.

Since, in Property I ′ of Theorem 5.2, the constraint q2(x) ≤ 0 plays a role only
in the last part, the following corollary is immediate.

Consider

(Q(ρ))2 minimize q0(x) = xTQ0x− 2bT0 x
subject to q1(x) = xTx− 1 ≤ 0

q2(x) − ρ ≤ 0,

where ρ is a parameter.
Corollary 5.5. Suppose that Property I ′ holds for (QP )2 with x1 and x2 being

the two solutions in (3) of Property I′ satisfying q2(x1) < 0 < q2(x2). Then for any
ρ ∈ (q2(x1), q2(x2)), problem (Q(ρ))2 will not have a positive semidefinite Hessian for
its Lagrangian function at any optimal solution.

6. The optimal line of the dual problem. As shown in the previous sections,
if Property I ′ holds for a CDT subproblem, then there exists a gap between the
optimal values of the primal and the dual problems. In the case of Property I′, we
obtain two dual optimal solutions x1 and x2, one of which is feasible for the primal
problem, say, x1. It can be easily proved that each point of the entire line connecting
x1 and x2 is also an optimal solution to the dual problem. Let us call this line the
optimal line of the dual problem. Naturally, we may wish to minimize the original
quadratic function along this line to obtain a better approximate solution than x1

for the primal problem. It is tempting to conjecture that this will always lead to an
improvement. However, below we shall give an example to show that this approach
may not yield a solution with any quality assurance.

Example 6.1.

minimize q0(x1, x2) = x1(p− x1)

subject to q1(x1, x2) = x2
1 + x2

2 ≤ 17
16
p2,

q2(x1, x2) = (x1 − 2p)2 + (x2 − p)2 ≤ 73
16
p2,

where p is a positive parameter. The global optimal solution for this problem is
x∗ ≈

[−0.1359p
1.0218p

]

, which is one of two intersection points of the circles q1(x1, x2) = 0
and q2(x1, x2) = 0, and the corresponding optimal value is v∗ ≈ −0.1544p2. The
system (Q0 + λQ1 + μQ2)x = b0 + μb2 is in this case

(−2 + 2λ+ 2μ)x1 = (4μ− 1)p
(2λ+ 2μ)x2 = 2μp.
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Fig. 6.1. The graph of z = x1(1 − x1) (on the left) and the feasible domain (on the right) at
p = 1.

One easily verifies that Property I ′ holds at (λ, μ) = (0.75, 0.25), and the solutions
“x1” and “x2” in (3) of Property I ′ are

[

p
0.25p

]

and
[ −p
0.25p

]

, respectively (see Figure
6.1). The optimal value of the SDP relaxation (SP )2 is y0 = −0.75p2, and the gap
between y0 and v∗ is v∗ − y0 ≈ 0.5926p2. The line segment that connects “x1” and
“x2” and is contained in the feasible domain can be expressed by

{[

tp
0.25p

] ∣

∣

∣

∣

0 ≤ t ≤ 1
}

.

On this line segment, the optimal value of q0(x1, x2) is identically 0 for any p, which
can be attained at the point “x2.” This shows that there cannot be any bound, in
neither absolute nor relative sense of error measurements, regarding the quality of
the solution obtained by the heuristic method of searching along the line segment. It
remains to be a challenge to solve (QP )2 efficiently, if, after solving its SDP relaxation,
it turns out that Property I indeed holds, although numerical experiments in [1]
suggest that this is highly unlikely for randomly generated instances.

7. Testing Property I numerically. In its direct form, Property I requires
the knowledge of an exact solution for the SDP relaxation. As is well known, in gen-
eral, it is impossible to solve an SDP problem exactly. It is therefore natural to test its
predictive power if one uses the necessary and sufficient condition involving Property
I in an approximative sense. In other words, if we use an ε1-approximation solution
of the SDP relaxation, then a similarly relaxed Property I can be verified, leading
to the conclusion whether or not the original CDT subproblem satisfies the strong
duality within an ε2 error tolerance. The question is, How does the approximation
work in practice?

First, we need to relax the requirement on the optimal solution. Applying an
SDP solver (such as SeDuMi) to solve the SDP relaxation will return with a solution
X̄ � 0 and a dual solution (Z̄, ȳ0, ȳ1, ȳ2), with Z̄ � 0. Of course, these solutions might,
however, violate the equality and inequality constraints of the primal-dual feasibility
requirements, say, by an amount no more than ε1. Then, to purify the ranks of X̄
and Z̄, we may operate a spectral decomposition on X̄ and Z̄: X̄ = QT1 Λ1Q1 and
Z̄ = QT2 Λ2Q2, where Qi is orthonormal and Λi = diag(λi1, . . . , λin), with λij ≥ 0,
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j = 1, . . . , n, i = 1, 2. Introduce

λ̂ij :=
{

λij , if λij ≥ ε2,
0, if λij < ε2,

for j = 1, . . . , n, i = 1, 2, and let us purify the solutions by using

X̂ := QT1 diag(λ̂11, . . . , λ̂1n)Q1 and Ẑ := QT2 diag(λ̂21, . . . , λ̂2n)Q2

instead of X̄ and Z̄, while keeping ŷi := ȳi, i = 0, 1, 2. We call X̂ and (Ẑ, ŷ0, ŷ1, ŷ2)
to be a pair of purified (ε1, ε2)-approximate optimal solutions.

Definition 7.1. Suppose that X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) are a pair of purified (ε1, ε2)-
approximate optimal solutions for (SP )2 and (SD)2, respectively. We say this pair
has Property I(ε2) if

(1) ŷ1 > ε2 and ŷ2 > ε2;
(2) rank(Ẑ) = n− 1;
(3) rank(X̂) = 2, and there is a rank-one decomposition of X̂, X̂ = x̂1x̂

T
1 + x̂2x̂

T
2 ,

such that M(q1) • x̂ix̂Ti = M(q1) • X̂/2, i = 1, 2, and M(q2) • x̂1x̂
T
1 < −ε2

and M(q2) • x̂2x̂
T
2 > ε2.

Below we shall introduce a polynomial-time procedure to test the strong duality
for the CDT problem, based on the ε1-optimal SDP relaxation solution Property I(ε2)
and the matrix decomposition technique.

Algorithm 7.2. Input ε2, M(q0), M(q1), and M(q2).
Step 1. Let X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) be the purified (ε1, ε2)-approximate solutions for

(SP )2 and its dual.
Step 2. Test whether or not Property I(ε2) is satisfied by checking Definition 7.1,

which runs in polynomial-time.
Step 3. If Property I(ε2) is violated, then use the matrix decomposition technique

presented in the previous sections to obtain an approximate solution to the
original CDT problem; otherwise, get an approximate solution by searching
along the optimal line of the dual problem.

We now use SeDuMi to test this procedure by numerical simulations. Throughout
our tests, we let ε2 = 10−4 and ε1 be set as the default precision of SeDuMi. For
a given positive integer n, our MATLAB code would generate two (n + 1) × (n + 1)
matrices M(q0) and M(q2), of which the upper triangular part (including diagonal)
of the entries are uniformly generated random numbers on the interval [−50, 50] (the
lower part takes the values by symmetry). In order to guarantee that (SP )2 have an
interior feasible solution, we first solve

minimize M(q2) •X
subject to M(q1) •X ≤ 0,

I00 •X = 1,
X � 0.

Let f∗ denote its optimal value. If f∗ > −10−4, we decrease the first entry (the (1,1)th
position) of M(q2) by the amount f∗+10−4. This ensures that the Slater condition is
satisfied. We apply Algorithm 7.2 on 90 randomly generated instances. The numerical
results are summarized in Tables 1, 2, and 3, where “n” denotes the dimension of the
CDT problem, “Value 1” is equal to M(q0) • X̄, i.e., the ε1-optimal value of the SDP
relaxation solution returned by SeDuMi, “Value 2” denotes the objective value of
the feasible solution for the CDT problem generated by Algorithm 7.2, and “Gap”



1754 WENBAO AI AND SHUZHONG ZHANG

Table 1

Numerical results.

n Value 1 Value 2 Gap Rank I(ε2)

1 31.8310 31.8310 −1.9315e− 008 1 V
2 −61.6350 −61.6350 1.0267e− 007 1 V
3 −92.6195 −92.6195 1.5046e− 008 1 V
4 −64.3479 −64.3479 6.3392e− 009 1 V
5 −76.0429 −76.0429 1.2039e− 007 1 V
6 −148.3942 −148.3942 8.4647e− 008 1 V
7 −149.2147 −149.2147 1.3788e− 007 1 V
8 −165.2366 −165.2366 2.2856e− 007 1 V
9 −146.7020 −146.7020 6.5012e− 010 1 V

10 −193.3607 −193.3607 1.0247e− 007 1 V
11 −194.9409 −194.9409 4.3410e− 006 1 V
12 −131.2606 −131.2606 3.4186e− 009 1 V
13 −174.0891 −174.0891 4.6756e− 008 1 V
14 −215.5152 −215.5152 2.8498e− 008 1 V
15 −232.2548 −232.2548 1.1953e− 007 1 V
16 −288.2241 −288.2241 8.9968e− 008 1 V
17 −180.2632 −180.2632 1.5133e− 007 1 V
18 −257.0321 −257.0321 1.1875e− 007 1 V
19 −307.8921 −307.8921 7.1101e− 008 1 V
20 −250.2240 −250.2240 2.4064e− 008 1 V
21 −216.6837 −216.6837 1.5005e− 007 1 V
22 −285.2257 −285.2257 1.1723e− 006 1 V
23 −305.7068 −305.7068 1.1012e− 007 1 V
24 −273.7716 −273.7716 2.2697e− 008 1 V
25 −305.1200 −305.1200 2.6449e− 010 1 V
26 −311.0972 −311.0972 9.3392e− 008 1 V
27 −269.2598 −269.2598 1.5854e− 008 1 V
28 −349.2378 −349.2378 1.3295e− 009 1 V
29 −280.3103 −280.3103 7.1443e− 007 1 V
30 −322.0861 −322.0861 1.9794e− 008 1 V

Table 2

Numerical results for n = 5.

Instance Value 1 Value 2 Gap Rank I(ε2)

1 −72.2487 −72.2487 −9.0962e− 010 1 V
2 −78.8733 −78.8733 3.1875e− 007 1 V
3 −129.3945 −129.3945 2.4719e− 009 1 V
4 −78.6061 −78.6061 3.1858e− 007 1 V
5 −87.7781 −87.7781 4.0048e− 009 1 V
6 −162.4757 −162.4757 3.2261e− 009 1 V
7 −181.4192 −181.4192 1.2105e− 006 1 V
8 −148.9920 −131.6450 17.3470 2 H
9 −84.6160 −84.6160 1.2004e− 007 1 V

10 −106.1400 −106.1400 2.6063e− 007 1 V
11 −80.2952 −80.2952 8.1327e− 010 1 V
12 −93.9455 −37.5482 56.3973 2 H
13 −182.7852 −182.7852 7.6042e− 008 1 V
14 −47.4945 −47.4945 3.5781e− 008 1 V
15 −107.2132 −107.2132 7.4877e− 008 1 V
16 −195.9235 −195.9235 4.2069e− 008 1 V
17 −91.5627 −91.5627 1.7774e− 009 1 V
18 −149.4562 −149.4562 2.0514e− 007 1 V
19 −199.7809 −199.7809 4.9602e− 010 1 V
20 −96.7141 −96.7141 2.0592e− 006 1 V
21 −193.2582 −193.2582 1.0298e− 006 1 V
22 −121.9034 −121.9034 1.3054e− 009 1 V
23 −132.7388 −132.7388 5.9610e− 008 1 V
24 −221.9654 −221.9654 −7.9771e− 010 1 V
25 −69.0899 −69.0899 9.3646e− 006 1 V
26 −48.9339 −38.6602 10.2737 2 H
27 −204.1014 −204.1014 1.4712e− 007 1 V
28 −50.4021 −50.4021 1.8484e− 006 1 V
29 −95.7052 −95.7052 4.4413e− 008 1 V
30 −162.5680 −162.5680 6.1157e− 009 1 V
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Table 3

Numerical results for n = 50.

Instance Value 1 Value 2 Gap Rank I(ε2)

1 −329.1350 −329.1350 1.3564e− 008 1 V
2 −418.0411 −418.0411 1.3500e− 010 1 V
3 −334.9108 −334.9108 8.4879e− 010 1 V
4 −314.3538 −314.3538 4.0116e− 007 1 V
5 −406.6970 −406.6970 1.8738e− 008 1 V
6 −376.4849 −376.4849 6.9003e− 009 1 V
7 −436.8686 −436.8686 1.1316e− 009 1 V
8 −456.1419 −456.1419 1.0745e− 009 1 V
9 −420.0406 −420.0406 2.3637e− 009 1 V

10 −443.0921 −443.0921 2.8577e− 009 1 V
11 −398.1299 −398.1299 1.2683e− 008 1 V
12 −381.3000 −381.3000 2.2239e− 009 1 V
13 −400.2680 −400.2680 1.5546e− 007 1 V
14 −337.3982 −337.3982 4.3128e− 008 1 V
15 −433.0168 −433.0168 1.5800e− 007 1 V
16 −353.2036 −353.2036 1.1395e− 007 1 V
17 −422.6912 −422.6912 1.7024e− 007 1 V
18 −373.7865 −373.7865 5.1733e− 010 1 V
19 −356.4418 −356.4418 4.0084e− 007 1 V
20 −449.4164 −449.4164 1.8588e− 010 1 V
21 −363.3087 −363.3087 6.4648e− 010 1 V
22 −422.4459 −422.4459 3.0531e− 009 1 V
23 −376.0524 −376.0524 1.4611e− 007 1 V
24 −399.0962 −399.0962 3.5397e− 007 1 V
25 −428.4575 −428.4575 1.6672e− 010 1 V
26 −422.2624 −422.2624 2.8901e− 009 1 V
27 −422.8571 −422.8571 5.3685e− 009 1 V
28 −344.5267 −344.5267 7.2918e− 007 1 V
29 −448.3855 −448.3855 1.4571e− 008 1 V
30 −403.9283 −403.9283 4.7542e− 009 1 V

indicates the difference between “Value 1” and “Value 2” (Gap = Value 2 − Value 1),
which reflects the eventual performance of Algorithm 7.2. Finally, “Rank” indicates
the rank of X̂, and at the column “I(ε2),” the symbol “V” denotes that Property
I(ε2) is violated and “H” signifies that Property I(ε2) holds.

Among 90 runs summarized in Tables 1 through 3, there are 87 instances violating
Property I(ε2) and only 3 cases holding Property I(ε2). For all these 87 instances,
the gaps between “Value 1” and “Value 2” are far less than the tolerance ε2, which
show that Algorithm 7.2 is indeed effective. Furthermore, the rank of the purified
solution X̂ for the 87 instances are all actually one, meaning that the eigenvector of
X̂ is the approximate optimal solution for the original CDT problem. We also made
a test for two different values of the dimension: n = 5 and n = 50. Tables 2 and 3
show that it is less likely for Property I(ε2) to hold for the larger n.
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Abstract. In this paper, we study methods for generating approximate primal solutions as
a byproduct of subgradient methods applied to the Lagrangian dual of a primal convex (possibly
nondifferentiable) constrained optimization problem. Our work is motivated by constrained primal
problems with a favorable dual problem structure that leads to efficient implementation of dual
subgradient methods, such as the recent resource allocation problems in large-scale networks. For
such problems, we propose and analyze dual subgradient methods that use averaging schemes to
generate approximate primal optimal solutions. These algorithms use a constant stepsize in view
of its simplicity and practical significance. We provide estimates on the primal infeasibility and
primal suboptimality of the generated approximate primal solutions. These estimates are given per
iteration, thus providing a basis for analyzing the trade-offs between the desired level of error and
the selection of the stepsize value. Our analysis relies on the Slater condition and the inherited
boundedness properties of the dual problem under this condition. It also relies on the boundedness
of subgradients, which is ensured by assuming the compactness of the constraint set.

Key words. subgradient methods, averaging, approximate primal solutions, convergence rate
estimates
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1. Introduction. Lagrangian relaxation and duality have been effective tools
for solving large-scale convex optimization problems and for systematically providing
lower bounds on the optimal value of nonconvex (continuous and discrete) optimiza-
tion problems. Subgradient methods have played a key role in this framework provid-
ing computationally efficient means to obtain near-optimal dual solutions and bounds
on the optimal value of the original optimization problem. Most remarkably, in net-
working applications, over the last few years, subgradient methods have been used
with great success in developing decentralized cross-layer resource allocation mech-
anisms (see Low and Lapsley [18], Shakkottai and Srikant [30], and Srikant [33] for
more on this subject).

Subgradient methods for solving nondifferentiable problems have been studied
extensively starting with Polyak [26] and Ermoliev [9]. Their convergence properties
under various stepsize rules have been established, for example, in Shor [32], De-
myanov and Vasilyev [8], Polyak [27], Hiriart-Urruty and Lemaréchal [10], Bertsekas
[4], and Bertsekas, Nedić, and Ozdaglar [5]. Nonasymptotic convergence rate esti-
mates have been provided in the seminal work of Nemirovskii and Yudin [23], [24],
and more recently in Ben-Tal, Margalit, and Nemirovski [2], Ben-Tal and Nemirovski
[3], and Nesterov [25]. Numerous extensions and implementations including parallel
and incremental versions have been proposed and analyzed (for example, see Ben-Tal,
Margalit, and Nemirovski [2], Ben-Tal and Nemirovski [3], Kiwiel and Lindberg [13],
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Zhao, Luh, and Wang [35], Nedić and Bertsekas [20], [21], and Nedić, Bertsekas, and
Borkar [22]).

Our development in this paper is motivated by problems with a favorable dual
structure, so that solving the problem using dual subgradient methods leads to ef-
ficient implementations.1 For such problems, we develop methods that exploit the
subgradient information generated in the dual space directly to construct approxi-
mate primal solutions with explicit error estimates. Our methods use an averaging
scheme that constructs primal solutions by forming running averages of the primal
iterates generated when evaluating the subgradient of the dual function. We provide
convergence rate estimates for the infeasibility and error estimates on suboptimality
of the generated approximate primal solutions.

Averaging schemes for generating primal solutions have been studied in a number
of earlier works. Primal-averaging was first proposed and analyzed within a primal-
dual subgradient method by Nemirovskii and Yudin [23]. Subsequently, a related
primal-averaging scheme based on subgradient information generated by a dual sub-
gradient method has been proposed for linear (primal) optimization problems by Shor
[32] and applied to a scheduling problem by Zhurbenko et al. [36]. Shor’s ideas have
been further developed and computationally tested by Larsson and Liu [14]. Sherali
and Choi [31] have extended these results to allow for more general averaging schemes
(i.e., more general choices of the weights for convex combinations) and a wider class of
stepsize choices. More recently, Larsson, Patriksson, and Strömberg generalized these
results in a series of papers (see [15], [16], [17]) to convex constrained optimization
problems and demonstrated promising applications of these schemes in the context
of traffic equilibrium and road pricing. Sen and Sherali [29] have studied a more
complex scheme combining a subgradient method and an auxiliary penalty problem
to recover primal solutions. A dual subgradient method producing primal solutions,
the volume algorithm, for linear problems has been proposed by Barahona and Anbil
[1]. They have reported experimental results for several problems including set parti-
tioning, set covering, and max-cut, but have not analyzed the convergence properties
of the algorithm. Kiwiel, Larsson, and Lindberg [12] have studied the convergence
of primal-averaging in dual subgradient methods using a target-level based stepsize.
Recently, Nesterov [25] has proposed a subgradient algorithm using averaging and
provided convergence rate estimates assuming the availability of a bound on the Eu-
clidean norm of an optimal solution. Nesterov’s algorithm generates a solution to a
convex minimization problem, and it is not a primal-recovery scheme. More recently,
Ruszczyński [28] has proposed a new subgradient method that uses averaging to iden-
tify both an optimal solution of a convex minimization problem and a subgradient
that appears in the optimality condition.

Among the papers cited above, our work is most closely related to the primal-
recovery algorithms of Shor [32], Sherali and Choi [31], Larsson, Patriksson, and
Strömberg [15], [16], [17], and Kiwiel, Larsson, and Lindberg [12]. The focus of
these works is on exact recovery methods for primal solutions and the convergence
properties for diminishing stepsize rules (with divergent sum).2 In contrast, our fo-
cus in this paper is on methods generating approximate primal solutions for general

1Section 2.2 illustrates a motivating example of a network resource allocation problem, where the
use of dual subgradient methods leads to decentralized resource allocation policies for communication
networks.

2The exception is the paper [12], where a target-level based stepsize (i.e., a modification of
Polyak’s stepsize [26]) has been considered.
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(possibly nondifferentiable) convex constrained optimization problems and providing
convergence rate guarantees. We consider subgradient methods that use a constant
stepsize, mainly because of its practical importance and simplicity for implementa-
tions. We provide convergence rate estimates for the approximate solutions under
the Slater constraint qualification, including estimates for the amount of feasibility
violation, and upper and lower bounds for the primal objective function. Moreover,
our estimates are per iteration and illustrate the trade-offs between the approximate
solution error and the stepsize value.

This paper is organized as follows: In section 2, we define the primal and dual
problems, and provide an explicit bound on the level sets of the dual function un-
der Slater condition. In section 3, we consider a subgradient method with a constant
stepsize and study its properties under Slater. In section 4, we introduce approximate
primal solutions generated through averaging and provide bounds on their feasibility
violation and primal cost values. In section 5, we consider an alternative to the basic
subgradient method based on the boundedness properties of the dual optimal solution
set under the Slater condition, and we provide error estimates for the generated ap-
proximate primal solutions. We conclude in section 6 by summarizing our work and
providing some comments.

2. Primal and dual problems. In this section, we formulate the primal and
dual problems of interest. We provide a motivating example for the use of dual
subgradient methods and give some preliminary results that we use in the subsequent
development. We start by introducing the notation and the basic terminology that
we use throughout this paper.

2.1. Notation and terminology. We consider the n-dimensional vector space
R
n and the m-dimensional vector space R

m. We view a vector as a column vector,
and we denote by x′y the inner product of two vectors x and y. We use ‖y‖ to denote
the standard Euclidean norm, ‖y‖ =

√
y′y. Occasionally, we also use the standard

1-norm and ∞-norm denoted, respectively, by ‖y‖1 and ‖y‖∞, i.e., ‖y‖1 =
∑

i |yi|
and ‖y‖∞ = maxi |yi|. We write dist(ȳ, Y ) to denote the standard Euclidean distance
of a vector ȳ from a set Y , i.e.,

dist(ȳ, Y ) = inf
y∈Y

‖ȳ − y‖.

For a vector u ∈ R
m, we write u+ to denote the projection of u on the nonnegative

orthant in R
m; i.e., u+ is the componentwise maximum of the vector u and the zero

vector:

u+ = (max{0, u1}, . . . ,max{0, um})′ for u = (u1, . . . , um)′.

For a concave function q : R
m → [−∞,∞], we denote the domain of q by dom(q),

where

dom(q) = {μ ∈ R
m | q(μ) > −∞}.

We use the notion of a subgradient of a concave function q(μ). In particular, a
subgradient sμ̄ of a concave function q(μ) at a given vector μ̄ ∈ dom(q) provides
a linear overestimate of the function q(μ) for all μ ∈ dom(q). We use this as the
subgradient defining property: sμ̄ ∈ R

m is a subgradient of a concave function q(μ)
at a given vector μ̄ ∈ dom(q) if the following relation holds:

(1) q(μ̄) + s′μ̄(μ− μ̄) ≥ q(μ) for all μ ∈ dom(q).

The set of all subgradients of q at μ̄ is denoted by ∂q(μ̄).
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In this paper, we focus on the following constrained optimization problem:

minimize f(x)
subject to g(x) ≤ 0,

x ∈ X,(2)

where f : R
n → R is a convex function, g = (g1, . . . , gm)′ and each gj : R

n → R is a
convex function, and X ⊂ R

n is a nonempty closed convex set. We refer to this as
the primal problem. We denote the primal optimal value by f∗, and throughout this
paper, we assume that the value f∗ is finite.

To generate approximate solutions to the primal problem in (2), we consider
solving its dual using subgradient methods. Here, the dual problem is the one arising
from the Lagrangian relaxation of the inequality constraints g(x) ≤ 0, and it is given
by

maximize q(μ)
subject to μ ≥ 0,

μ ∈ R
m,(3)

where q is the dual function defined by

(4) q(μ) = inf
x∈X

{f(x) + μ′g(x)}.

We often refer to a vector μ ∈ R
m with μ ≥ 0 as a multiplier. We denote the dual

optimal value by q∗ and the dual optimal set by M∗. We say that there is zero duality
gap if the optimal values of the primal and the dual problems are equal, i.e., f∗ = q∗.

We assume that the minimization problem associated with the evaluation of the
dual function q(μ) has a solution for every μ ≥ 0. This is the case, for instance, when
the set X is compact (since f and g′js are continuous due to being convex over R

n).
Furthermore, we assume that the minimization problem in (4) is simple enough so
that it either has a closed form solution or can be solved efficiently. For example,
this is the case when the functions f and gj’s are affine or affine plus norm-square
term (i.e., c‖x‖2 + a′x + b), and the set X is a nonnegative orthant or a box in R

n.
Many practical problems of interest, such as those arising in network optimization
(see section 2.2), often have this structure.

In our subsequent development, we consider subgradient methods as applied to
the dual problem given by (3) and (4). Due to the form of the dual function q, the
subgradients of q at a vector μ are related to the primal vectors xμ attaining the
minimum in (4). Specifically, the set ∂q(μ) of subgradients of q at a given μ ≥ 0 is
given by
(5)
∂q(μ) = conv ({g(xμ) | xμ ∈ Xμ}) , Xμ = {xμ ∈ X | q(μ) = f(xμ) + μ′g(xμ)},

where conv(Y ) denotes the convex hull of a set Y .
Before proceeding with our analysis, we discuss an example that motivates the

subsequent development of dual subgradient methods.

2.2. Motivating example. Here, we describe the canonical utility-based net-
work resource allocation problem and briefly discuss how dual subgradient methods
lead to decentralized policies that can be used over a network. This approach was
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proposed in the seminal work of Kelly, Maulloo, and Tan [11] and further developed
by Low and Lapsley [18], Shakkottai and Srikant [30], and Srikant [33].

Consider a network that consists of a set S = {1, . . . , S} of sources and a set
L = {1, . . . , L} of undirected links, where a link l has capacity cl. Let L(i) ⊂ L
denote the set of links used by source i. The application requirements of source i are
represented by a concave increasing utility function ui : [0,∞) → [0,∞); i.e., each
source i gains a utility ui(xi) when it sends data at a rate xi. We further assume that
rate xi is constrained to lie in the interval Ii = [0,Mi] for all i ∈ S, where the scalar
Mi denotes the maximum allowed rate for source i. Let S(l) = {i ∈ S | l ∈ L(i)}
denote the set of sources that use link l. The goal of the network utility maximization
problem is to allocate the source rates as the optimal solution of the problem

maximize
∑

i∈S
ui(xi)(6)

subject to
∑

i∈S(l)

xi ≤ cl for all l ∈ L,

xi ∈ Ii for all i ∈ S.(7)

Solving problem (6) directly by applying existing subgradient methods requires
coordination among sources and therefore may be impractical for real networks. This
is because in real networks, such as the Internet, there is no central entity that has
access to both the source utility functions and the capacity of all the links in the
network. The utility function ui(xi) is known only by source i, while the link capacities
may be known only by “network providers.” At the same time, in view of the separable
structure of the objective and constraint functions, the dual problem can be evaluated
exactly while using decentralized information. In particular, the dual problem of (6)
is given by (3), where the dual function takes the form

q(μ) = max
xi∈Ii, i∈S

∑

i∈S
ui(xi) −

∑

l∈L
μl

⎛

⎝

∑

i∈S(l)

xi − cl

⎞

⎠

= max
xi∈Ii, i∈S

∑

i∈S

⎛

⎝ui(xi) − xi
∑

l∈L(i)

μl

⎞

⎠+
∑

l∈L
μlcl.

Since the optimization problem on the right-hand side of the preceding relation is
separable in the variables xi, the problem decomposes into subproblems for each
source i. Letting μi =

∑

l∈L(i) μl for each i (i.e., μi is the sum of the multipliers
corresponding to the links used by source i), we can write the dual function as

q(μ) =
∑

i∈S
max
xi∈Ii

{ui(xi) − xiμi} +
∑

l∈L
μlcl.

Hence, to evaluate the dual function, each source i needs to solve the one-dimensional
optimization problem maxxi∈Ii{ui(xi) − xiμi}. This involves only its own utility
function ui and the value μi, which is available to source i in practical networks
(through a direct feedback mechanism from its destination).

This favorable structure of the dual problem has motivated much interest in
using dual subgradient methods to solve the network utility maximization problem
in an iterative decentralized manner (see Chiang et al. [6]). Other problems where
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the dual problem has a structure that allows exact evaluation of the dual function
using local information include the problem of processor speed control considered by
Mutapcic et al. [19], and the traffic equilibrium and road pricing problems considered
by Larsson, Patriksson, and Strömberg [15], [16], [17].

2.3. Slater condition and boundedness of the multiplier sets. In this
section, we consider sets of the form {μ ≥ 0 | q(μ) ≥ q(μ̄)} for a fixed μ̄ ≥ 0, which
are obtained by intersecting the nonnegative orthant in R

m and (upper) level sets of
the concave dual function q. We show that these sets are bounded when the primal
problem satisfies the standard Slater constraint qualification, formally given in the
following.

Assumption 1 (Slater condition). There exists a vector x̄ ∈ X such that

gj(x̄) < 0 for all j = 1, . . . ,m.

We refer to a vector x̄ satisfying the Slater condition as a Slater vector.
Under the assumption that f∗ is finite, it is well known that the Slater condition

is sufficient for a zero duality gap as well as for the existence of a dual optimal solution
(see, for example, Bertsekas [4] or Bertsekas, Nedić, and Ozdaglar [5]). Furthermore,
the dual optimal set is bounded (see Hiriart-Urruty and Lemaréchal [10]). This prop-
erty of the dual optimal set under the Slater condition has been observed and used
as early as in Uzawa’s analysis of the Arrow–Hurwicz gradient method in [34]. This
property will be key in our subsequent development and analysis.

The following proposition extends the result on the optimal dual set boundedness
under the Slater condition. In particular, it shows that the Slater condition also
guarantees the boundedness of the (level) sets {μ ≥ 0 | q(μ) ≥ q(μ̄)}.

Lemma 1. Let the Slater condition hold (cf. Assumption 1). Then, the set Qμ̄ is
bounded and, in particular, we have

max
μ∈Qµ̄

‖μ‖ ≤ 1
γ

(f(x̄) − q(μ̄)) ,

where γ = min1≤j≤m{−gj(x̄)} and x̄ is a Slater vector.
Proof. We have, for any μ ∈ Qμ̄,

q(μ̄) ≤ q(μ) = inf
x∈X

{f(x) + μ′g(x)} ≤ f(x̄) + μ′g(x̄) = f(x̄) +
m
∑

j=1

μjgj(x̄),

implying that

−
m
∑

j=1

μjgj(x̄) ≤ f(x̄) − q(μ̄).

Because gj(x̄) < 0 and μj ≥ 0 for all j, it follows that

min
1≤j≤m

{−gj(x̄)}
m
∑

j=1

μj ≤ −
m
∑

j=1

μjgj(x̄) ≤ f(x̄) − q(μ̄).

Therefore,
m
∑

j=1

μj ≤
f(x̄) − q(μ̄)

min1≤j≤m {−gj(x̄)} .

Since μ ≥ 0, we have ‖μ‖ ≤
∑m

j=1 μj and the estimate follows.
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It follows from the preceding lemma that under the Slater condition, the dual
optimal set M∗ is nonempty. In particular, by noting that M∗ = {μ ≥ 0 | q(μ) ≥ q∗}
and by using Lemma 1, we see that

(8) max
μ∗∈M∗

‖μ∗‖ ≤ 1
γ

(f(x̄) − q∗) ,

with γ = min1≤j≤m{−gj(x̄)}.
In practice, the dual optimal value q∗ is not readily available. However, having a

dual function value q(μ̃) for some μ̃ ≥ 0, we can still provide a bound on the norm of
the dual optimal solutions. In particular, since q∗ ≥ q(μ̃), from relation (8) we obtain
the following bound:

max
μ∗∈M∗

‖μ∗‖ ≤ 1
γ

(f(x̄) − q(μ̃)) .

Furthermore, having any multiplier sequence {μk}, we can use the dual function
values q(μk) to generate a sequence of (possibly improving) upper bounds on the dual
optimal solution norms ‖μ∗‖. Formally, since q∗ ≥ max0≤i≤k q(μi), from relation (8)
we have

max
μ∗∈M∗

‖μ∗‖ ≤ 1
γ

(

f(x̄) − max
0≤i≤k

q(μi)
)

for all k ≥ 0.

Note that these bounds are nonincreasing in k. These bounds have important impli-
cations in the development and analysis of subgradient methods since they allow us
to “locate dual optimal solutions” by using only a Slater vector x̄ and a multiplier
sequence {μk} generated by a subgradient method.

Such bounds play a key role in our subsequent development. In particular, we
use these bounds to provide error estimates of our approximate solutions as well as to
design a dual algorithm that projects on a set containing the dual optimal solution.

3. Subgradient method. To solve the dual problem, we consider the classical
subgradient algorithm with a constant stepsize:

(9) μk+1 = [μk + αgk]+ for k = 0, 1, . . . ,

where the vector μ0 ≥ 0 is an initial iterate and the scalar α > 0 is a stepsize. The
vector gk is a subgradient of q at μk given by

(10) gk = g(xk), xk ∈ argmin
x∈X

{f(x) + μ′
kg(x)} for all k ≥ 0;

see (5).
Our choice of the constant stepsize is primarily motivated by its practical impor-

tance and, in particular, because in practice the stepsize typically stays bounded away
from zero. Furthermore, the error estimates for this stepsize can be explicitly written
in terms of the problem parameters that are often available. Also, when implementing
a subgradient method with a constant stepsize rule, the stepsize length α is the only
parameter that a user has to select, which is often preferred to more complex step-
size choices involving several stepsize parameters without a good guidance on their
selection.
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3.1. Basic relations. In this section, we establish some basic relations that hold
for a sequence {μk} obtained by the subgradient algorithm of (9). These properties
are important in our construction of approximate primal solutions and, in particular,
in our analysis of the error estimates of these solutions.

We start with a lemma providing some basic relations that hold under minimal
assumptions. The relations given in this lemma have been known and used in various
ways to analyze subgradient approaches (for example, see Shor [32], Polyak [27],
Demyanov and Vasilyev [8], Correa and Lemaréchal [7], Nedić and Bertsekas [20],
[21]). The proofs are provided here for completeness.

Lemma 2 (basic iterate relation). Let the sequence {μk} be generated by the
subgradient algorithm (9). We then have the following:

(a) For any μ ≥ 0,

‖μk+1 − μ‖2 ≤ ‖μk − μ‖2 − 2α (q(μ) − q(μk)) + α2‖gk‖2 for all k ≥ 0.

(b) When the optimal solution set M∗ is nonempty, there holds

dist2(μk+1,M
∗) ≤ dist2(μk,M∗)−2α (q∗ − q(μk))+α2‖gk‖2 for all k ≥ 0,

where dist(y, Y ) denotes the Euclidean distance from a vector y to a set Y .
Proof. (a) By using the nonexpansive property of the projection operation, from

relation (9) we obtain, for any μ ≥ 0 and all k,

‖μk+1 − μ‖2 =
∥

∥[μk + αgk]+ − μ
∥

∥

2 ≤ ‖μk + αgk − μ‖2
.

Therefore,

‖μk+1 − μ‖2 ≤ ‖μk − μ‖2 + 2αg′k(μk − μ) + α2‖gk‖2 for all k.

Since gk is a subgradient of q at μk (cf. (1)), we have

g′k(μ− μk) ≥ q(μ) − q(μk),

implying that

g′k(μk − μ) ≤ − (q(μ) − q(μk)) .

Hence, for any μ ≥ 0,

‖μk+1 − μ‖2 ≤ ‖μk − μ‖2 − 2α (q(μ) − q(μk)) + α2‖gk‖2 for all k.

(b) By using the preceding relation with μ = μ∗ for any optimal solution μ∗, we
obtain

‖μk+1 − μ∗‖2 ≤ ‖μk − μ∗‖2 − 2α (q∗ − q(μk)) + α2‖gk‖2 for all k ≥ 0.

The desired relation follows by taking the infimum over all μ∗ ∈ M∗ in both sides of
the preceding relation.
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3.2. Bounded multipliers. Here, we show that the multiplier sequence {μk}
produced by the subgradient algorithm is bounded under the Slater condition and
the bounded subgradient assumption. We formally state the latter requirement in the
following assumption.

Assumption 2 (bounded set X). The constraint set X in problem (2) is bounded.
Under this assumption, due to the convexity of the constraint functions gj over

R
n, each gj is continuous over R

n. Thus, maxx∈X ‖g(x)‖ is finite and provides an
upper bound on the norms of the subgradients gk, i.e.,

‖gk‖ ≤ L for all k ≥ 0, with L = max
x∈X

‖g(x)‖.

In the following lemma, we establish the boundedness of the multiplier sequence.
In this, we use the boundedness of the dual sets {μ ≥ 0 | q(μ) ≥ q(μ̄)} (cf. Lemma 1)
and the basic relation for the sequence {μk} of Lemma 2(a).

Lemma 3 (bounded multipliers). Let the multiplier sequence {μk} be generated
by the subgradient algorithm of (9). Also, let the Slater condition and the bounded set
assumption hold (cf. Assumptions 1 and 2). Then, the sequence {μk} is bounded and,
in particular, we have

‖μk‖ ≤ 2
γ

(f(x̄) − q∗) + max
{

‖μ0‖,
1
γ

(f(x̄) − q∗) +
αL2

2γ
+ αL

}

,

where γ = min1≤j≤m{−gj(x̄)}, x̄ is a Slater vector, L is the subgradient norm bound,
and α > 0 is the stepsize.

Proof. Under the Slater condition the optimal dual set M∗ is nonempty. Consider
the set Qα defined by

Qα =
{

μ ≥ 0 | q(μ) ≥ q∗ − αL2

2

}

,

which is nonempty in view of M∗ ⊂ Qα. We fix an arbitrary μ∗ ∈ M∗, and we first
prove that, for all k ≥ 0,

(11) ‖μk − μ∗‖ ≤ max
{

‖μ0 − μ∗‖, 1
γ

(f(x̄) − q∗) +
αL2

2γ
+ ‖μ∗‖ + αL

}

,

where γ = min1≤j≤m{−gj(x̄)} and L is the bound on the subgradient norms ‖gk‖.
Then, we use Lemma 1 to prove the desired estimate.

We show that relation (11) holds by induction on k. Note that the relation holds
for k = 0. Assume now that it holds for some k > 0, i.e.,
(12)

‖μk − μ∗‖ ≤ max
{

‖μ0 − μ∗‖, 1
γ

(f(x̄) − q∗) +
αL2

2γ
+ ‖μ∗‖ + αL

}

for some k > 0.

We now consider two cases: q(μk) ≥ q∗ − αL2/2 and q(μk) < q∗ − αL2/2.
Case 1. q(μk) ≥ q∗ − αL2/2. By using the definition of the iterate μk+1 in (9)

and the subgradient boundedness, we obtain

‖μk+1 − μ∗‖ ≤ ‖μk + αgk − μ∗‖ ≤ ‖μk‖ + ‖μ∗‖ + αL.



1766 ANGELIA NEDIĆ AND ASUMAN OZDAGLAR

Since q(μk) ≥ q∗−αL2/2, it follows that μk ∈ Qα. According to Lemma 1, the set Qα
is bounded and, in particular, ‖μ‖ ≤ 1

γ

(

f(x̄) − q∗ + αL2/2
)

for all μ ∈ Qα. Therefore

‖μk‖ ≤ 1
γ

(f(x̄) − q∗) +
αL2

2γ
.

By combining the preceding two relations, we obtain

‖μk+1 − μ∗‖ ≤ 1
γ

(f(x̄) − q∗) +
αL2

2γ
+ ‖μ∗‖ + αL,

thus showing that the estimate in (11) holds for k + 1.
Case 2. q(μk) < q∗ − αL2/2. By using Lemma 2(a) with μ = μ∗, we obtain

‖μk+1 − μ∗‖2 ≤ ‖μk − μ∗‖2 − 2α (q∗ − q(μk)) + α2‖gk‖2.

By using the subgradient boundedness, we further obtain

‖μk+1 − μ∗‖2 ≤ ‖μk − μ∗‖2 − 2α
(

q∗ − q(μk) − αL2

2

)

.

Since q(μk) < q∗−αL2/2, it follows that q∗−q(μk)−αL2/2 > 0, which when combined
with the preceding relation yields

‖μk+1 − μ∗‖ < ‖μk − μ∗‖.

By the induction hypothesis (cf. (12)), it follows that the estimate in (11) holds for
k + 1 as well. Hence, the estimate in (11) holds for all k ≥ 0.

From (11) we obtain, for all k ≥ 0,

‖μk‖ ≤ ‖μk−μ∗‖+‖μ∗‖ ≤ max
{

‖μ0 − μ∗‖, 1
γ

(f(x̄) − q∗) +
αL2

2γ
+ ‖μ∗‖ + αL

}

+‖μ∗‖.

By using ‖μ0 − μ∗‖ ≤ ‖μ0‖ + ‖μ∗‖, we further have, for all k ≥ 0,

‖μk‖ ≤ max
{

‖μ0‖ + ‖μ∗‖, 1
γ

(f(x̄) − q∗) +
αL2

2γ
+ ‖μ∗‖ + αL

}

+ ‖μ∗‖

= 2‖μ∗‖ + max
{

‖μ0‖,
1
γ

(f(x̄) − q∗) +
αL2

2γ
+ αL

}

.

Since M∗ = {μ ≥ 0 | q(μ) ≥ q∗}, according to Lemma 1 we have the following bound
on the dual optimal solutions:

max
μ∗∈M∗

‖μ∗‖ ≤ 1
γ

(f(x̄) − q∗) ,

implying that, for all k ≥ 0,

‖μk‖ ≤ 2
γ

(f(x̄) − q∗) + max
{

‖μ0‖,
1
γ

(f(x̄) − q∗) +
αL2

2γ
+ αL

}

.

The error estimate of Lemma 3 depends explicitly on the dual optimal value q∗. In
practice, the value q∗ is not readily available. However, since q∗ ≥ q(μ0), by replacing
q∗ with q(μ0), we have obtain the following norm bound for the multiplier sequence:

‖μk‖ ≤ 2
γ

(f(x̄) − q(μ0)) + max
{

‖μ0‖,
1
γ

(f(x̄) − q(μ0)) +
αL2

2γ
+ αL

}

,
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where γ = min1≤j≤m{−gj(x̄)}. Note that this bound depends on the algorithm
parameters and problem data only. Specifically, it involves the initial iterate μ0 of
the subgradient method, the stepsize α, the vector x̄ satisfying the Slater condition,
and the subgradient norm bound L. In some practical applications, such as those in
network optimization, such data is readily available. One may think of optimizing
this bound with respect to the Slater vector x̄. This might be an interesting and
challenging problem on its own. However, this is outside the scope of our paper.

4. Approximate primal solutions. In this section, we provide approximate
primal solutions by considering the running averages of the primal sequence {xk}
generated as a byproduct of the subgradient method (cf. (10)). Intuitively, one would
expect that, by averaging, the primal cost and the amount of constraint violation
of primal infeasible vectors can be reduced due to the convexity of the cost and the
constraint functions. It turns out that the benefits of averaging are far more reaching
than merely cost and infeasibility reduction. We show here that under the Slater
condition, we can also provide upper bounds for the number of subgradient iterations
needed to generate a primal solution within a given level of constraint violation. We
also derive upper and lower bounds on the gap from the optimal primal value. These
bounds depend on some assumptions and prior information such as a Slater vector
and a bound on subgradient norms.

We now introduce the notation that we use in our averaging scheme throughout
the rest of this paper. We consider the multiplier sequence {μk} generated by the
subgradient algorithm of (9), and the corresponding sequence of primal vectors {xk} ⊂
X that provide the subgradients gk in the algorithm, i.e.,

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + μ′
kg(x)} for all k ≥ 0

(cf. (10)). We define x̂k as the average of the vectors x0, . . . , xk−1, i.e.,

(13) x̂k =
1
k

k−1
∑

i=0

xi for all k ≥ 1.

The average vectors x̂k lie in the set X because X is convex and xi ∈ X for all i.
However, these vectors need not satisfy the primal inequality constraints gj(x) ≤ 0,
j = 1, . . . ,m, and therefore, they can be primal infeasible.

In the rest of this section, we study some basic properties of the average vectors
x̂k. Using these properties and the Slater condition, we provide estimates for the
primal optimal value and the feasibility violation at each iteration of the subgradient
method.

4.1. Basic properties of the averaged primal sequence. In this section,
we provide upper and lower bounds on the primal cost of the running averages x̂k.
We also provide an upper and a lower bound on the amount of feasibility violation of
these vectors. These bounds are given per iteration, as seen in the following.

Proposition 1. Let the multiplier sequence {μk} be generated by the subgradient
method of (9). Let the vectors x̂k for k ≥ 1 be the averages given by (13). Then, for
all k ≥ 1, the following hold:

(a) An upper bound on the amount of constraint violation of the vector x̂k is given
by

∥

∥g(x̂k)+
∥

∥ ≤ ‖μk‖
kα

.
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(b) An upper bound on the primal cost of the vector x̂k is given by

f(x̂k) ≤ q∗ +
‖μ0‖2

2kα
+

α

2k

k−1
∑

i=0

‖g(xi)‖2.

(c) A lower bound on the primal cost of the vector x̂k is given by

f(x̂k) ≥ q∗ − ‖μ∗‖‖g(x̂k)+‖,

where μ∗ is a dual optimal solution.
Proof. (a) By using the definition of the iterate μk+1 in (9), we obtain

μk + αgk ≤ [μk + αgk]+ = μk+1 for all k ≥ 0.

Since gk = g(xk) with xk ∈ X , it follows that

αg(xk) ≤ μk+1 − μk for all k ≥ 0.

Therefore,

k−1
∑

i=0

αg(xi) ≤ μk − μ0 ≤ μk for all k ≥ 1,

where the last inequality in the preceding relation follows from μ0 ≥ 0. Since xk ∈ X
for all k, by the convexity of X , we have x̂k ∈ X for all k. Hence, by the convexity of
each of the functions gj , it follows that

g(x̂k) ≤ 1
k

k−1
∑

i=0

g(xi) =
1
kα

k−1
∑

i=0

αg(xi) ≤
μk
kα

for all k ≥ 1.

Because μk ≥ 0 for all k, we have g(x̂k)+ ≤ μk/(kα) for all k ≥ 1, and, therefore,

∥

∥g(x̂k)+
∥

∥ ≤ ‖μk‖
kα

for all k ≥ 1.

(b) By the convexity of the primal cost f(x) and the definition of xk as a mini-
mizer of the Lagrangian function f(x) + μ′

kg(x) over x ∈ X (cf. (10)), we have

f(x̂k) ≤ 1
k

k−1
∑

i=0

f(xi) =
1
k

k−1
∑

i=0

{f(xi) + μ′
ig(xi)} −

1
k

k−1
∑

i=0

μ′
ig(xi).

Since q(μi) = f(xi) + μ′
ig(xi) and q(μi) ≤ q∗ for all i, it follows that, for all k ≥ 1,

(14) f(x̂k) ≤ 1
k

k−1
∑

i=0

q(μi) −
1
k

k−1
∑

i=0

μ′
ig(xi) ≤ q∗ − 1

k

k−1
∑

i=0

μ′
ig(xi).

From the definition of the algorithm in (9), by using the nonexpansive property of
the projection, and the facts 0 ∈ {μ ∈ R

m | μ ≥ 0} and gi = g(xi), we obtain

‖μi+1‖2 ≤ ‖μi‖2 + 2αμ′
ig(xi) + α2‖g(xi)‖2 for all i ≥ 0,
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implying that

−μ′
ig(xi) ≤

‖μi‖2 − ‖μi+1‖2 + α2‖g(xi)‖2

2α
for all i ≥ 0.

By summing over i = 0, . . . , k − 1 for k ≥ 1, we have

−1
k

k−1
∑

i=0

μ′
ig(xi) ≤

‖μ0‖2 − ‖μk‖2

2kα
+

α

2k

k−1
∑

i=0

‖g(xi)‖2 for all k ≥ 1.

Combining the preceding relation and (14), we further have

f(x̂k) ≤ q∗ +
‖μ0‖2 − ‖μk‖2

2kα
+

α

2k

k−1
∑

i=0

‖g(xi)‖2 for all k ≥ 1,

implying the desired estimate.

(c) Given a dual optimal solution μ∗, we have

f(x̂k) = f(x̂k) + (μ∗)′g(x̂k) − (μ∗)′g(x̂k) ≥ q(μ∗) − (μ∗)′g(x̂k).

Because μ∗ ≥ 0 and g(x̂k)+ ≥ g(x̂k), we further have

−(μ∗)′g(x̂k) ≥ −(μ∗)′g(x̂k)+ ≥ −‖μ∗‖‖g(x̂k)+‖.

From the preceding two relations and the fact q(μ∗) = q∗, it follows that

f(x̂k) ≥ q∗ − ‖μ∗‖‖g(x̂k)+‖.

An immediate consequence of Proposition 1(a) is that the maximum violation
‖g(x̂k)+‖∞ of constraints gj(x), j = 1, . . . ,m, at x = x̂k is bounded by the same
bound. In particular, we have

max
1≤j≤m

gj(x̂k)+ ≤ ‖μk‖
kα

for all k ≥ 1,

which follows from the proposition in view of the relation ‖y‖∞ ≤ ‖y‖ for any y.
We note that the results of Proposition 1 in parts (a) and (c) show how the amount

of feasibility violation ‖g(x̂k)+‖ affects the lower estimate of f(x̂k). Furthermore, we
note that the results of Proposition 1 indicate that the bounds on the feasibility
violation and the primal value f(x̂k) are readily available provided that we have
bounds on the multiplier norms ‖μk‖, optimal solution norms ‖μ∗‖, and subgradient
norms ‖g(xk)‖. This is precisely what we use in the next section to establish our
estimates.

Let us also note that the bounds on the primal cost of Proposition 1 in parts
(b) and (c) hold for a more general subgradient algorithm than the algorithm of (9).
In particular, the result in part (c) is independent of the algorithm that is used to
generate the multiplier sequence {μk}. The proof of the result in part (c) relies on the
nonexpansive property of the projection operation and the fact that the zero vector
belongs to the projection set {μ ∈ R

m | μ ≥ 0}. Therefore, the results in parts (b)
and (c) hold when we use a more general subgradient algorithm of the following form:

μk+1 = PD[μk + αgk] for k ≥ 1,
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where D ⊆ {μ ∈ R
m | μ ≥ 0} is a closed convex set containing the zero vector. We

study a subgradient algorithm of this form in section 5 and establish similar error
estimates.

Finally, bounds similar to those of Proposition 1 can be established for a multiplier
sequence {μk} generated by a subgradient algorithm that uses a general (nonequal)
stepsize sequence. In particular, given a stepsize sequence {αk} and an initial iterate
μ0 ≥ 0, consider the subgradient method

(15) μk+1 = [μk + αkgk]+ for k = 0, 1, . . . ,

where gk is given by

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + μ′
kg(x)} for all k ≥ 0.

Define x̃k as the convex combination of the vectors x0, . . . , xk−1 with weights α0, . . . αk−1,

(16) x̃k =
∑k−1

i=0 αixi
∑k−1

i=0 αi
.

Following a similar analysis to that of Proposition 1, we establish the following esti-
mates for the weighted-average vectors x̃k.

Proposition 2. Let the multiplier sequence {μk} be generated by the subgradient
method of (15). Let the vectors x̃k for k ≥ 1 be the averages given by (16). Then, for
all k ≥ 1, the following hold:

(a) An upper bound on the amount of constraint violation of the vector x̃k is given
by

∥

∥g(x̃k)+
∥

∥ ≤ ‖μk‖
∑k−1
i=0 αi

.

(b) An upper bound on the primal cost of the vector x̃k is given by

f(x̃k) ≤ q∗ +
‖μ0‖2

2
∑k−1
i=0 αi

+
∑k−1
i=0 α

2
i ‖g(xi)‖2

2
∑k−1
i=0 αi

.

(c) A lower bound on the primal cost of the vector x̃k is given by

f(x̃k) ≥ q∗ − ‖μ∗‖‖g(x̃k)+‖,

where μ∗ is a dual optimal solution.

4.2. Properties of the averaged primal sequence under Slater. Here, we
strengthen the relations of Proposition 1 under the Slater condition and the bound-
edness of the set X . Our main result is given in the following proposition.

Proposition 3. Let the sequence {μk} be generated by the subgradient algorithm
(9). Let the Slater condition and the bounded set assumption hold (cf. Assumptions 1
and 2). Also, let

(17) B∗ =
2
γ

(f(x̄) − q∗) + max
{

‖μ0‖,
1
γ

(f(x̄) − q∗) +
αL2

2γ
+ αL

}

.

Let the vectors x̂k for k ≥ 1 be the averages given by (13). Then, the following hold
for all k ≥ 1:
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(a) An upper bound on the amount of constraint violation of the vector x̂k is given
by

‖g(x̂k)+‖ ≤ B∗

kα
.

(b) An upper bound on the primal cost of the vector x̂k is given by

f(x̂k) ≤ f∗ +
‖μ0‖2

2kα
+
αL2

2
.

(c) A lower bound on the primal cost of the vector x̂k is given by

f(x̂k) ≥ f∗ − 1
γ

[ f(x̄) − q∗ ] ‖g(x̂k)+‖.

Proof. (a) Under the assumptions, by Lemma 3 we have

‖μk‖ ≤ 2
γ

(f(x̄) − q∗) + max
{

‖μ0‖,
1
γ

(f(x̄) − q∗) +
αL2

2γ
+ αL

}

for all k ≥ 0.

By the definition of B∗ in (17), the preceding relation is equivalent to

(18) ‖μk‖ ≤ B∗ for all k ≥ 0.

By using Proposition 1(a), we obtain

‖g(x̂k)+‖ ≤ ‖μk‖
kα

≤ B∗

kα
for all k ≥ 1.

(b) From Proposition 1(b), we obtain

f(x̂k) ≤ q∗ +
‖μ0‖2

2kα
+

α

2k

k−1
∑

i=0

‖g(xi)‖2 for all k ≥ 1.

Under the Slater condition, there is zero duality gap, i.e., q∗ = f∗. Furthermore, the
subgradients are bounded by a scalar L (cf. Assumption 2), so that

f(x̂k) ≤ f∗ +
‖μ0‖2

2kα
+
αL2

2
for all k ≥ 1.

(c) Under the Slater condition, a dual optimal solution exists and there is zero duality
gap, i.e., q∗ = f∗. Thus, by Proposition 1(c), for any dual solution μ∗ we have

f(x̂k) ≥ f∗ − ‖μ∗‖‖g(x̂k)+‖ for all k ≥ 1.

By using Lemma 1 with μ̄ = μ∗, we see that the dual set is bounded and, in particular,
‖μ∗‖ ≤ 1

γ (f(x̄) − q∗) for all dual optimal vectors μ∗. Hence,

f(x̂k) ≥ f∗ − 1
γ

[ f(x̄) − q∗ ] ‖g(x̂k)+‖ for all k ≥ 1.

It seems reasonable to choose the initial iterate as μ0 = 0, as suggested by the
upper bound for f(x̂k) in part (b) of Proposition 3. In this case, the bound B∗ in
part (a) of Proposition 3, with q∗ = f∗, reduces to

(19) B∗ =
3
γ

[f(x̄) − f∗] +
αL2

2γ
+ αL for k ≥ 1,
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while the estimate in part (b) reduces to

(20) f(x̂k) ≤ f∗ +
αL2

2
for all k ≥ 1.

Using the preceding two relations, one can estimate the order of the number of it-
erations needed to achieve an ε-feasible and ε-optimal solution.3 In particular, to
achieve the ε-optimality, from (20) the stepsize should satisfy α ≤ 2ε/L2. Assuming
for the sake of simplicity that the term 1

γ [f(x̄) − f∗] is dominant in (19), to obtain

ε-feasibility, the number of iterations k should satisfy k ≥ [f(x̄)−f∗]L2

cγε2 , where c is
some constant independent of ε. Thus, to achieve ε-feasible and ε-optimal solution,
the number of iterations is of the order 1/ε2, which is typical for subgradient methods.

The results can alternatively be interpreted for a fixed stepsize value α. In this
case, by Proposition 3(a), the amount of feasibility violation ‖g(x̂k)+‖ of the vector x̂k
diminishes to zero as the number of subgradient iterations k increases. By combining
the results in (a)–(c), we see that the limits of the function values f(x̂k), as k → ∞,
are within the range

[

f∗, f∗ + αL2/2
]

.
Finally, we note that a more practical bound than the bound B∗ in Proposition

3 can be obtained by using max0≤i≤k q(μi) as an approximation of the optimal value
f∗ = q∗.

5. Modified subgradient method under Slater. In this section, we consider
a modified version of the subgradient method under the Slater assumption. The
motivation is coming from the fact that under the Slater assumption, the set of dual
optimal solutions is bounded (cf. Lemma 1). Therefore, it is of interest to consider
a subgradient method in which dual iterates are projected onto a bounded superset
of the dual optimal solution set. We consider such algorithms and generate primal
solutions using averaging as described in section 4. Also, we provide estimates for
the amount of constraint violation and cost of the average primal sequence. Our goal
is to compare these estimates with the error estimates obtained for the “ordinary”
subgradient method in section 4.

Formally, we consider subgradient methods of the following form:

(21) μk+1 = PD [μk + αgk],

where the set D is a compact convex set containing the set of dual optimal solutions
(to be discussed shortly) and PD denotes the projection on the set D. The vector
μ0 ∈ D is an arbitrary initial iterate and the scalar α > 0 is a constant stepsize. The
vector gk is a subgradient of q at μk given by

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + μ′
kg(x)} for all k ≥ 0

(see (5)).
Under the Slater condition, the dual optimal set M∗ is nonempty and bounded,

and a bound on the norms of the dual optimal solutions is given by

m
∑

j=1

μ∗
j ≤

1
γ

(f(x̄) − q∗) for all μ∗ ∈M∗,

3We thank an anonymous referee for this insight.
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Fig. 1. The dual optimal set M∗ and the set D, which is considered in the modified subgradient
method.

with γ = min1≤j≤m{−gj(x̄)} (cf. Lemma 1). Thus, having the dual value q̃ = q(μ̃)
for some μ̃ ≥ 0, since q∗ ≥ q̃, we obtain

(22)
m
∑

j=1

μ∗
j ≤

1
γ

(f(x̄) − q̃) for all μ∗ ∈M∗.

This motivates the following choice for the set D:

(23) D =
{

μ ≥ 0
∣

∣

∣ ‖μ‖ ≤ f(x̄) − q̃

γ
+ r

}

,

with a scalar r > 0. Clearly, the set D is compact and convex, and it contains the
set of dual optimal solutions in view of relation (22) and the fact ‖y‖ ≤ ‖y‖1 for any
vector y (the illustration of the set D is provided in Figure 1).

Similar to section 4, we provide near-feasible and near-optimal primal vectors
by averaging the vectors from the sequence {xk}. In particular, we define x̂k as the
average of the vectors x0, . . . , xk−1, i.e.,

(24) x̂k =
1
k

k−1
∑

i=0

xi for all k ≥ 1.

In the next proposition, we provide per-iterate bounds for the constraint violation
and primal cost values of the average vectors x̂k.

Proposition 4. Let the Slater condition and the bounded set assumption hold
(cf. Assumptions 1 and 2). Let the dual sequence {μk} be generated by the modified
subgradient method of (21). Let {x̂k} be the average sequence defined in (24). Then,
for all k ≥ 1, we have the following:

(a) An upper bound on the amount of constraint violation of the vector x̂k is given
by

‖g(x̂k)+‖ ≤ 2
kαr

(

f(x̄) − q̃

γ
+ r

)2

+
αL2

2r
.
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(b) An upper bound on the primal cost of the vector x̂k is given by

f(x̂k) ≤ f∗ +
‖μ0‖2

2kα
+
αL2

2
.

(c) A lower bound on the primal cost of the vector x̂k is given by

f(x̂k) ≥ f∗ −
(

f(x̄) − q̃

γ

)

‖g(x̂k)+‖.

Here, the scalars r > 0 and q̃ with q̃ ≤ q∗ are those from the definition of the set D
in (23).

Proof. (a) Using the definition of the iterate μk+1 in (21) and the nonexpansive
property of projection on a closed convex set, we obtain, for all μ ∈ D and all i ≥ 0,

‖μi+1 − μ‖2 = ‖PD [μi + αgi] − μ‖2

≤ ‖μi + αgi − μ‖2

≤ ‖μi − μ‖2 + 2αg′i(μi − μ) + α2‖gi‖2

≤ ‖μi − μ‖2 + 2αg′i(μi − μ) + α2L2.

Therefore, for any μ ∈ D,

(25) g′i(μ− μi) ≤
‖μi − μ‖2 − ‖μi+1 − μ‖2

2α
+
αL2

2
for all i ≥ 0.

Since gi is a subgradient of the dual function q at μi, using the subgradient inequality
(cf. (1)), we obtain, for any dual optimal solution μ∗,

g′i(μi − μ∗) ≤ q(μi) − q(μ∗) ≤ 0 for all i ≥ 0,

where the last inequality follows from the optimality of μ∗ and the feasibility of each
μi ∈ D (i.e., μi ≥ 0). We then have, for all μ ∈ D and all i ≥ 0,

g′i(μ− μ∗) = g′i(μ− μ∗ − μi + μi) = g′i(μ− μi) + g′i(μi − μ∗) ≤ g′i(μ− μi).

From the preceding relation and (25), we obtain, for any μ ∈ D,

g′i(μ− μ∗) ≤ ‖μi − μ‖2 − ‖μi+1 − μ‖2

2α
+
αL2

2
for all i ≥ 0.

Summing over i = 0, . . . , k − 1 for k ≥ 1, we obtain, for any μ ∈ D and k ≥ 1,

k−1
∑

i=0

g′i(μ− μ∗) ≤ ‖μ0 − μ‖2 − ‖μk − μ‖2

2α
+
αkL2

2
≤ ‖μ0 − μ‖2

2α
+
αkL2

2
.

Therefore, for any k ≥ 1,

(26) max
μ∈D

{

k−1
∑

i=0

g′i(μ− μ∗)

}

≤ 1
2α

max
μ∈D

‖μ0 − μ‖2 +
αkL2

2
.
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We now provide a lower estimate on the left-hand side of the preceding relation. Let
k ≥ 1 be arbitrary and, for simplicity, we suppress the explicit dependence on k by
letting

(27) s =
k−1
∑

i=0

gi.

Let s+ be the componentwise maximum of s and the zero vector; i.e., the jth entry
of the vector s+ is given by s+j = max{sj, 0}. If s+ = 0, then the bound in part (a)
of this proposition trivially holds. Thus, assume that s+ �= 0 and define a vector μ̄ as
follows:

μ̄ = μ∗ + r
s+

‖s+‖ .

Note that μ̄ ≥ 0 since μ∗ ≥ 0, s+ ≥ 0, and r > 0. By Lemma 1, the dual optimal
solution set is bounded and, in particular, ‖μ∗‖ ≤ f(x̄)−q∗

γ . Furthermore, since q̃ ≤ q∗,

it follows that ‖μ∗‖ ≤ f(x̄)−q̃
γ for any dual solution μ∗. Therefore, by the definition of

the vector μ̄, we have

(28) ‖μ̄‖ ≤ ‖μ∗‖ + r ≤ f(x̄) − q̃

γ
+ r,

implying that μ̄ ∈ D. Using the definition of the vector s in (27) and relation (26),
we obtain

s′(μ̄− μ∗) =
k−1
∑

i=0

g′i(μ̄− μ∗) ≤ max
μ∈D

{

k−1
∑

i=0

g′i(μ− μ∗)

}

≤ 1
2α

max
μ∈D

‖μ0 − μ‖2 +
αkL2

2
.

Since μ̄ − μ∗ = r s+

‖s+‖ , we have s′(μ̄ − μ∗) = r‖s+‖. Thus, by the definition of s in
(27) and the fact gi = g(xi), we have

s′(μ̄− μ∗) = r

∥

∥

∥

∥

∥

∥

[

k−1
∑

i=0

g(xi)

]+
∥

∥

∥

∥

∥

∥

.

Combining the preceding two relations, it follows that
∥

∥

∥

∥

∥

∥

[

k−1
∑

i=0

g(xi)

]+
∥

∥

∥

∥

∥

∥

≤ 1
2αr

max
μ∈D

‖μ0 − μ‖2 +
αkL2

2r
.

Dividing both sides of this relation by k, and using the convexity of the functions gj
in g = (g1, . . . , gm) and the definition of the average primal vector x̂k, we obtain

(29) ‖g(x̂k)+‖ ≤ 1
k

∥

∥

∥

∥

∥

∥

[

k−1
∑

i=0

g(xi)

]+
∥

∥

∥

∥

∥

∥

≤ 1
2kαr

max
μ∈D

‖μ0 − μ‖2 +
αL2

2r
.

Since μ0 ∈ D, we have

max
μ∈D

‖μ0 − μ‖2 ≤ max
μ∈D

(‖μ0‖ + ‖μ‖)2 ≤ 4 max
μ∈D

‖μ‖2.
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By using the definition of the set D of (23), we have

max
μ∈D

‖μ‖ ≤ f(x̄) − q̃

γ
+ r.

By substituting the preceding two estimates in relation (29), we obtain

‖g(x̂k)+‖ ≤ 2
kαr

(

f(x̄) − q̃

γ
+ r

)2

+
αL2

2r
.

(b) The proof follows from an identical argument to that used in the proof of
Proposition 1(b), and therefore is omitted.

(c) The result follows from an identical argument to that used in the proof of
Proposition 1(c) and the bound on the dual optimal solution set that follows in view
of the Slater condition (cf. Assumption 1 and Lemma 1 with μ̄ = μ∗).

We note here that the subgradient method of (21) with the set D given in (23)
couples the computation of multipliers. In some applications, it might be desirable
to accommodate distributed computation models whereby the multiplier components
μ∗
j are processed in a distributed manner among a set of processors or agents. To

accommodate such computations, one may modify the subgradient method of (21) by
replacing the set D of (23) with the following set:

D∞ =
{

μ ≥ 0
∣

∣

∣ ‖μ‖∞ ≤ f(x̄) − q̃

γ
+ r

}

.

It can be seen that the results of Proposition 4 also hold for this choice of the projection
set. In particular, this can be seen by following the same line of argument as in the
proof of Proposition 4 and by using the following relation:

‖μ̄‖∞ ≤ ‖μ∗‖ + r ≤ f(x̄) − q̃

γ
+ r

(cf. (28) and the fact ‖y‖∞ ≤ ‖y‖ for any vector y).
We next consider selecting the parameter r, which is used in the definition of

the set D, such that the right-hand side of the bound in part (a) of Proposition 4 is
minimized at each iteration k. Given some k ≥ 1, we choose r as the optimal solution
of the problem

min
r>0

{

2
kαr

(

f(x̄) − q̃

γ
+ r

)2

+
αL2

2r

}

.

It can be seen that the optimal solution of the preceding problem, denoted by r∗(k),
is given by

(30) r∗(k) =

√

(

f(x̄) − q̃

γ

)2

+
α2L2k

4
for k ≥ 1.

Consider now an algorithm where the dual iterates are obtained by

μi+1 = PDk
[μi + αgk] for each i ≥ 0,
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with μ0 ∈ D0 and the set Dk given by

Dk =
{

μ ≥ 0 | ‖μ‖ ≤ f(x̄) − q̃

γ
+ r∗(k)

}

,

where r∗(k) is given by (30). Hence, at each iteration i, the algorithm projects onto
the set Dk, which contains the set of dual optimal solutions M∗.

Substituting r∗(k) in the bound of Proposition 4(a), we can see that

‖g(x̂k)+‖ ≤ 4
kα

⎛

⎝

f(x̄) − q̃

γ
+

√

(

f(x̄) − q̃

γ

)2

+
α2L2k

4

⎞

⎠

≤ 4
kα

(

2(f(x̄) − q̃)
γ

+
αL

√
k

2

)

=
8
kα

(

f(x̄) − q̃

γ

)

+
2L√
k
.

The preceding discussion combined with Proposition 4(a) immediately yields the
following result.

Proposition 5. Let the Slater condition and the bounded set assumption hold
(cf. Assumptions 1 and 2). Given some k ≥ 1, define the set Dk as

(31) Dk =

⎧

⎨

⎩

μ ≥ 0
∣

∣

∣ ‖μ‖2 ≤ f(x̄) − q̃

γ
+

√

(

f(x̄) − q̃

γ

)2

+
α2L2k

4

⎫

⎬

⎭

.

Let the dual sequence {μi} be generated by the following modified subgradient method:
let μ0 ∈ Dk, and for each i ≥ 0 the dual iterate μi is obtained by

μi+1 = PDk
[μi + αgi].

Then, an upper bound on the amount of feasibility violation of the vector x̂k is given
by

(32) ‖g(x̂k)+‖ ≤ 8
kα

(

f(x̄) − q̃

γ

)

+
2L√
k
.

This result shows that at a given k, the error estimate provided in (32) can be
achieved if we use a modified subgradient method where each dual iterate is projected
on the set Dk defined in (31). Given a prespecified accuracy for the amount of
feasibility violation, this bound can be used to select the stepsize value and the set Dk.
Furthermore, using the estimate (32) in Proposition 4(c), we can obtain a lower bound
on the cost f(x̂k).

We now compare the feasibility violation bound of Proposition 3(a) for the ordi-
nary subgradient method with the result of Proposition 5 for the modified subgradient
method. As we will see, depending on the values of γ, L, and the estimate q̃, each of
these bounds can be better or worse than the other one. For the sake of comparison,
let us assume that q̃ is the same in both bounds. Then, by Proposition 5(a) and by
using q∗ ≥ q̃ in the definition of the bound B∗ in (17), we obtain, for all k ≥ 1,

(33) ‖g(x̂k)+‖ ≤ 2
kαγ

(f(x̄) − q̃) +
1
kα

max
{

‖μ0‖,
1
γ

(f(x̄) − q̃) +
αL2

2γ
+ αL

}

.
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This bound, as compared to that of Proposition 5, is better when k is very large,
since the feasibility violation decreases in the order of 1/k, while in Proposition 5, it
decreases in the order of 1/

√
k. However, initially, the feasibility violation in (33) for

the ordinary subgradient method can be worse because it depends on the initial iterate
μ0. Suppose that the initial iterate is μ0 = 0. Then, the bound in (33) reduces to

‖g(x̂k)+‖ ≤ 3
kαγ

[ f(x̄) − q̃ ] +
1
k

(

L2

2γ
+ L

)

.

Even in this case, initially, this bound can be worse than that of Proposition 5
because the bound depends inversely on γ which can be very small (recall γ =
min1≤j≤m{−gj(x̄)} with a Slater vector x̄). To complement our theoretical analy-
sis, we need to perform some numerical experiments to further study and compare
these algorithms.

6. Conclusions. In this paper, we have studied the application of dual subgradi-
ent algorithms for generating primal near-feasible and near-optimal optimal solutions.
We have proposed and analyzed two such algorithms under Slater condition. Both of
the proposed algorithms use projections to generate a dual sequence and an averag-
ing scheme to produce approximate primal vectors. The algorithms employ the same
averaging scheme in the primal space. However, they operate on different sets when
projecting in the dual space. One algorithm uses the projections on the nonnegative
orthant, while the other algorithm uses the projections on nested compact convex
sets that change with each iteration but always contain the dual optimal solutions.
Nevertheless, both algorithms produce primal vectors whose infeasibility diminishes
to zero and function values in the limit stay within the interval [f∗, f∗ + αL/2].

Let us note that, in general, one may consider solving the dual problem to gen-
erate a good approximate “dual solution” (with a method more efficient than the
subgradient method with a constant step), and then proceed with our algorithm with
averaging. This can be advantageous since x(μk) for μk far from an optimum can be
less informative than those closer to an optimum.4

Our comparison of the two methods is purely based on our theoretical analysis,
which need not reflect the real behavior of these algorithms for practical implemen-
tations. Our future goal is to numerically test and evaluate these algorithms in order
to gain deeper insights into their behavior.
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ON MULTIVARIATE DISCRETE MOMENT PROBLEMS:
GENERALIZATION OF THE BIVARIATE MIN ALGORITHM FOR

HIGHER DIMENSIONS∗

GERGELY MÁDI-NAGY†

Abstract. The objective of the multivariate discrete moment problem (MDMP) is to find the
minimum and/or maximum of the expected value of a function of a random vector with a discrete
finite support where the probability distribution is unknown, but some of the moments are given.
The moments may be binomial, power, or of a more general type. The MDMP can be formulated as
a linear programming problem with a very ill-conditioned coefficient matrix. Hence, the LP problem
can be solved with difficulty or cannot be solved at all. The central results of the field of the MDMP
concern the structure of the dual feasible bases. These bases, on one hand, provide us with bounds
without any numerical difficulties. On the other hand, they can be used as an initial basis of the
dual simplex method. That results in shorter running time and better numerical stability because
the first phase can be skipped. This paper introduces a new type of MDMP, where the bivariate
moments up to a certain order m consisting of the first variable and further univariate moments
up to the order mj , j = 1, . . . , s, are given. Then we generalize the bivariate Min Algorithm of
Mádi-Nagy and Prékopa [Math. Oper. Res., 29 (2004), pp. 229–258] for higher dimensions, which
gives numerous dual feasible bases of the MDMP. By the aid of this, on one hand, we can give useful
bounds for MDMPs with higher dimensional random vectors even if the usual solvers cannot give
acceptable results. On the other hand, applying our algorithm for the binomial MDMP, we can give
better bounds for probabilities of Boolean functions of event sequences than the recent bounds in
the literature. These results are illustrated by numerical examples.

Key words. discrete moment problem, multivariate Lagrange interpolation, linear program-
ming, expectation bounds, probability bounds
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1. Introduction.

1.1. Moment problems. The classical moment problem was introduced in
1894–1895 by Stieltjes [38] (see Kjeldsen [18]). The problem is about trying to invert
the mapping that takes a measure P on I ⊂ R to the sequences of moments μk,
k = 1, 2, 3, . . ., where the kth, so-called power, moments are defined as

μk =
∫

I

zkdP.

In what follows, we will use the notation μ0 for k = 0, but we know μ0 = 1. More
general moments than the power moments can be defined if we consider the sequence
of functions uk(z), k = 0, 1, 2, . . ., which are assumed to be measurable and integrable
functions on I. Then the generalized moment sequence with respect to {uk(z)} is

∫

I

uk(z)dP, k = 0, 1, . . . .
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Sometimes the moment problem is based on these general moments, but typically
power moments are used. The questions of the classical moment problem can be the
following. Given a sequence of numbers μk, k = 1, 2, 3, . . .,

(a) does there exist a probability measure on I with the moments μk, k =
1, 2, 3, . . .?

(b) is this probability measure uniquely determined by the moments μk, k =
1, 2, 3, . . .?

(c) how can one describe all probability measures on I with the moments μk,
k = 1, 2, 3, . . .?

Depending on the set I, classical results can be found in Hamburger [12], [13], Haus-
dorff [14], [15], and Riesz [36]. Akhiezer [1] gives a comprehensive survey of that
field.

The truncated variation of the classical moment problem studies the properties
of measures with fixed first k moments (for a finite k) or with finite set of moments.
Beside the classical questions (existence, uniqueness of the measure P ) the following
bounding problem arises. Given the moments μk, k = 1, . . . ,m, or any finite collection
of the moments, what are the possible lower and upper bounds for

∫

I

f(z)dP,

where f is a given real function on I and P is unknown, but P has to have the given
moments? Let X be a random variable with support I. Assume that the expected
values of Xk, k = 1, . . . ,m, are given finite values, but the distribution of X is not
known. Then the bounding moment problem can be formulated as

inf(sup) E[f(X)] =
∫

I

f(z)dP

subject to

E[Xk] =
∫

I

zkdP = μk, k = 0, 1, . . . ,m,

(1.1)

where the probability measure P is unknown, and I, f , μk, k = 0, 1, . . . ,m, are given.
Bounding problems related to moments were first considered by Bienaymé [2], Cheby-
shev [6], [7], and Markov [23]. The bounding moment problem frequently appears in
the literature as Chebyshev-type inequalities. A good summary of these results can
be found in Krein and Nudelman [19]. For historical background, see Kjeldsen [18]
and Prékopa and Alexe [33].

At the end of the 1980s, Prékopa [25], [26], [27] and Samuels and Studden [37] in-
dependently introduced and studied the univariate discrete moment problem (DMP),
where I = {z0, z1, . . . , zn} is a discrete finite set. Samuels and Studden use the classi-
cal approach and determine the solutions in closed form whenever possible; however,
their method is applicable only to small size problems. Prékopa invented a linear
programming methodology, presented briefly below. It turns out that in the special
case of the DMP, linear programming techniques provide us with more general and
simpler algorithmic solutions than the classical ones. Moreover, it allows for an effi-
cient solution of large size moment problems as well as for finding closed form sharp
bounds.

The DMP has (at least) three useful properties. The first one is that it uses the
discrete property of the support I beside the moment information. Hence, it can
give tighter bounds than the classical moment problems. The second one is that the
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DMP can be formulated as a linear programming (LP) problem. Let us designate the
(unknown) probability distribution of X in the following way:

pi = P (X = zi), i = 0, 1, . . . , n,

and let f(zi) = fi. Then

E[f(X)] = f0p0 + f1p1 + · · · + fnpn

and

E[Xk] = zk0p0 + zk1p1 + · · · + zknpn, k = 0, 1, . . . ,m.

The LP corresponding to the DMP is

min(max) f0p0 +f1p1 + · · · +fnpn
subject to

p0 +p1 + · · · +pn = μ0(= 1),
z0p0 +z1p1 + · · · +znpn = μ1,
z2
0p0 +z2

1p1 + · · · +z2
npn = μ2,

...
zm0 p0 +zm1 p1 + · · · +zmn pn = μm,
p0, p1, . . . pn ≥ 0,

(1.2)

where the unknown variables are pi, i = 0, 1, . . . , n. The support I = {z0, z1, . . . , zn},
the values of the function f(z), z ∈ I, and the moments μk, k = 0, 1, . . . ,m, are
given. Since the coefficient matrix of (1.2) is an ill-conditioned Vandermonde matrix,
the problem usually cannot be solved by general solution methods. However, under
some conditions of the function f , Prékopa [27] developed a numerically stable dual
method for the solution. This method is based on theorems which give the subscript
structures of columns of all dual feasible bases. By the aid of the known dual feasible
bases, closed form bounds in terms of the moments can also be given; see Boros and
Prékopa [3].

The third useful property is that the optimal solution of the so-called binomial mo-
ment problem can give sharp Bonferroni-type bounds and other probability bounds,
as well. The kth binomial moment of a random variable X with the support I ⊂ N is
defined as

E

[(

X

k

)]

.

Let A1, A2, . . . , An be arbitrary events. Let the random variable X with the support
{0, 1, . . . , n} be the number of those events which occur. Then the binomial moments
of X equals the following (see, e.g., Prékopa [29, p. 182]):

E

[(

X

k

)]

= Sk =
∑

0≤i1<i2<···<ik≤n
P (Ai1 ∩Ai2 ∩ · · · ∩Aik ),(1.3)

k = 1, 2, . . ., and also E[
(

X
0

)

] = S0 = 1. The binomial moment problem has the
following form:
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min(max) f0p0 +f1p1 + · · · +fnpn
subject to

p0 +p1 + · · · +pn = S0(= 1),
(0
1

)

p0 +
(1
1

)

p1 + · · · +
(

n
1

)

pn = S1,
(0
2

)

p0 +
(1
2

)

p1 + · · · +
(

n
2

)

pn = S2,
...

( 0
m

)

p0 +
( 1
m

)

p1 + · · · +
(

n
m

)

pn = Sm,
p0, p1, . . . pn ≥ 0.

(1.4)

If we would like to give bounds for the probability of the union or intersection of all
the n events, then we have to consider

f(z) =
{

0 if z = 0,
1 otherwise or f(z) =

{

1 if z = s,
0 otherwise,(1.5)

respectively. If in problem (1.2) we assume that {z0, z1, . . . , zn} = {0, 1, . . . n}, then
problems (1.2) and (1.4) can be transformed into each other by simple nonsingular
transformations (see Prékopa [25]). This means that the matrices of the equality
constraints can be transformed into each other by a nonsingular square matrix and
its inverse, respectively. This fact implies that a basis in problem (1.2) is dual feasible
if and only if it is dual feasible in (1.4). Hence, the dual method of Prékopa [27] can
be applied as well as closed form bounds can be given for the binomial DMP, too.
If we consider the first function in (1.5), then sharp Bonferroni-type bounds can be
given for the union of events in terms of S0, S1, . . . , Sm; see Prékopa [26], [28], [29]
and Boros and Prékopa [3].

1.2. The multivariate discrete moment problem. The multivariate discrete
moment problem (MDMP) has been introduced by Prékopa [28] and also discussed in
papers by Prékopa [30], [32], Mádi-Nagy and Prékopa [21], and Mádi-Nagy [20]. The
MDMP can be formulated as follows. Let X = (X1, . . . , Xs) be a random vector and
assume that the support of Xj is a known finite set Zj = {zj0, . . . , zjnj}, consisting
of distinct elements, j = 1, . . . , s. A certain set of the following moments will be
considered.

Definition 1.1. The (α1, . . . , αs)-order power moment of the random vector
(X1, . . . , Xs) is defined as

μα1...αs = E [Xα1
1 · · ·Xαs

s ] ,

where α1, . . . , αs are nonnegative integers. The sum α1 + · · · + αs will be called the
total order of the moment.

We use the following notation for the (unknown) distribution of X:

pi1...is = P (X1 = z1i1 , . . . , Xs = zsis), 0 ≤ ij ≤ nj , j = 1, . . . , s.(1.6)

Then the moments can be written in the form

μα1...αs =
n1
∑

i1=0

· · ·
ns
∑

is=0

zα1
1i1 · · · z

αs

sis
pi1...is .

Let Z = Z1 × · · · × Zs and f(z), z ∈ Z, be a function. Let

fi1...is = f(z1i1 , . . . , zsis).
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The (power) MDMP is to give bounds for

E[f(X1, . . . , Xs)],

where distribution of X (i.e., (1.6)) is unknown, but known are the moments

μα1...αs for (α1 . . . αs) ∈ H.

We can formulate the problem by the following LP:

min(max)
n1
∑

i1=0

· · ·
ns
∑

is=0

fi1...ispi1...is

subject to
n1
∑

i1=0

· · ·
ns
∑

is=0

zα1
1i1 · · · z

αs

sis
pi1...is = μα1...αs

for (α1 . . . αs) ∈ H,
pi1...is ≥ 0 for all i1, . . . , is.

(1.7)

In problem (1.7) pi1...is , 0 ≤ ij ≤ nj, j = 1, . . . , s, are the unknown variables; all
other parameters (i.e., the function f and the moments) are given. Regarding the set
H , in the literature the following are considered. In Prékopa [30], [32]

H = {(α1, . . . , αs)| 0 ≤ αj , αj integer, α1 + · · · + αs ≤ m, j = 1, . . . , s} ,(1.8)

where m is a given nonnegative integer, and

H = {(α1 . . . αs)| 0 ≤ αj ≤ mj , αj integer, j = 1, . . . , s} ,(1.9)

wheremj , j = 1, . . . , s, are given nonnegative integers. In Mádi-Nagy and Prékopa [21]
and Mádi-Nagy [20]

H = {(α1, . . . , αs)| 0 ≤ αj , αj integer, α1 + · · · + αs ≤ m, j = 1, . . . , s;
or αj = 0, j = 1, . . . , k − 1, k + 1, . . . , s, m ≤ αk ≤ mk, k = 1, . . . , s}(1.10)

was considered.
The MDMP, beside arising in a natural way, can be applied in several other fields,

e.g., bounding expected utilities (Prékopa and Mádi-Nagy [35]), solving generalized
s-dimensional transportation problems (Hou and Prékopa [16]) and approximating
values of multivariate generating functions (Mádi-Nagy and Prékopa [22]). One of the
most popular applications is to bound probabilities of Boolean functions of events.
These results are based on the binomial MDMP. Let us introduce the notion of cross-
binomial moments.

Definition 1.2. The (α1, . . . , αs)-order cross-binomial moment of the random
vector (X1, . . . , Xs), with the support Z ⊂ N

s, is defined as

Sα1...αs = E

[(

X1

α1

)

· · ·
(

Xs

αs

)]

,

where α1, . . . , αs are nonnegative integers. The sum α1 + · · · + αs will be called the
total order of the moment.

Assume that we have n arbitrary events. We can subdivide them into s sub-
sequences. Let the jth subsequence be designated as Aj1, . . . , Ajnj , j = 1, . . . , s.
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Certainly, n1 + · · · + ns = n. Let the random variable Xj with the support Zj =
{0, 1, . . . , nj} be the number of events that occur in the jth sequence, j = 1, . . . , s. In
case of event sequences

E

[(

X1

α1

)

· · ·
(

Xs

αs

)]

=
∑

1≤ij1<···<ijαj
≤nj ,

j=1,...,s

P [A1i11∩· · ·∩A1i1α1
∩· · ·∩Asis1∩· · ·∩Asisαs

],

in accordance with the notation Sα1...αs of Definition 1.2. The binomial MDMP can
be formulated by the following LP:

min(max)
n1
∑

i1=0

· · ·
ns
∑

is=0

fi1...ispi1...is

subject to
n1
∑

i1=0

· · ·
ns
∑

is=0

(

i1
α1

)

· · ·
(

is
αs

)

pi1...is = Sα1...αs

for (α1 . . . αs) ∈ H,
pi1...is ≥ 0 for all i1, . . . , is.

(1.11)

If we would like to give bounds for the probability of the union or intersection of all
the n events, then we have to consider

f(z1, . . . , zs) =
{

0 if (z1, . . . , zs) = (0, . . . , 0),
1 otherwise(1.12)

or

f(z1, . . . , zs) =
{

1 if (z1, . . . , zs) = (n1, . . . , nj),
0 otherwise,(1.13)

respectively. If we assume in problem (1.7) that Zj = {0, 1, . . . , nj}, j = 1, . . . , s,
then in the case of the set H (1.10) and (1.8), problems (1.7) and (1.11) can be
transformed into each other by simple nonsingular transformations, similar to in the
univariate case. Hence, the dual feasible basis columns in the binomial MDMP and in
its transformed power MDMP pair are the same. The binomial MDMP gives a useful
tool to approximate the unknown probabilities, e.g., in network reliability calculation
(Habib and Szántai [11]) as well as in probabilistic constrained stochastic program-
ming models (Prékopa [31], Fábián and Szőke [8]). It can also be a good alternative
to the bounding techniques of Bukszár and Prékopa [4] and Bukszár and Szántai [5].
This type of probability bound is also useful in developing variance reduction Monte-
Carlo simulation algorithms for estimating the exact probability values (Szántai [39],
[40]).

Unfortunately, in case of the MDMP we cannot give all the dual feasible structures
under any assumption on the function f ; hence, we cannot generalize the numerically
stable dual method of DMP for the multivariate case. However, under some circum-
stances, we can give some dual feasible bases which can be used as an initial basis
in the dual method. This means, on one hand, that we can skip the first phase in
the execution of the dual algorithm, which results in shorter running time and better
numerical stability. On the other hand, the objective function value corresponding
to a dual feasible basic solution yields a bound for the optimum value of problem
(1.7). Hence, if we know a large variety of dual feasible bases, then the best bounds
corresponding to those bases can give a good approximation to the optimum value
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without any numerical difficulties. In case of (1.9) we know enough dual feasible bases
for the approximation, but in the case of (1.10) (and (1.8)) a large number of dual
feasible bases are known only in the bivariate case (i.e., s = 2).

The main result of this paper is that we generalize the dual feasible basis structures
corresponding to the bivariate case of the set H (1.10), for higher dimensions. We
follow a similar way as in the Min and Max Algorithms of Mádi-Nagy and Prékopa [21],
but we define a new set of H :

H = {(α1, 0, . . . , 0, αj , 0, . . . , 0)| 0 ≤ α1, αj , α1, αj integer, α1 + αj ≤ m,
j = 2, . . . , s; }
∪{(0, . . . , 0, αj , 0, . . . , 0)| m+ 1 ≤ αj ≤ mj, αj integer, j = 1, . . . , s}.

(1.14)

It is easy to see that, in the bivariate case, set (1.14) and set (1.10) are the same.
The choice of (1.14) allows us to give a large variety of dual feasible bases of higher
dimensional MDMPs under some assumptions on the function f . In case of H (1.14)
the power and the binomial MDMP can be transformed into each other by simple
nonsingular transformations, which means that the given dual feasible bases can be
used in the binomial MDMP, too. The advantage of a large set of directly given dual
feasible bases is twofold. On one hand, we can give good bounds without numerical
difficulties even if regular solvers cannot give any useful results. On the other hand, in
case of the binomial MDMP, we can take binomial moments (i.e., sums of probabilities
of intersections of events) of many subsets of the events into account. Hence, the dual
feasible bases of the binomial MDMP can yield better bounds than the bounding
methods based on the information of the individual probabilities of the intersection
of events, e.g., the method of Bukszár and Prékopa [4]. These advantages will be
illustrated by numerical examples.

Our bounding technique of the MDMP is based on multivariate Lagrange in-
terpolation. In section 3 we give a multivariate Lagrange polynomial with pre-
scribed degrees of the variables that approximates the function values of f(z1, . . . , zs),
(z1, . . . , zs) ∈ Z from below or above under some assumptions on the function f .

This paper is organized as follows. In section 2 we present the connection between
the MDMP and the multivariate Lagrange interpolation; in section 3 we prove a
theorem on multivariate Lagrange interpolation corresponding to our new MDMP. In
section 4 we give several dual feasible bases as well as bounds of the MDMP with the
set H (1.14). In section 5 numerical examples are presented.

2. The MDMP and the multivariate Lagrange interpolation. In case of
univariate Lagrange interpolation concerning arbitrary distinct points z0, . . . , zn ∈ R

a unique interpolation polynomial of degree n can be given. The multivariate case is
much more difficult. On one hand, it is difficult to identify the geometric distribution
of the interpolation points for which we can give a (unique) multivariate Lagrange
polynomial with prescribed degrees of the variables. On the other hand, it is also
difficult to give an appropriate reminder formula.

Regarding the degrees of the Lagrange polynomial we give the following definition.
Definition 2.1. Let H = {(α1, . . . , αs)} be a finite set of s-tuples of nonnegative

integers (α1, . . . , αs), and z = (z1, . . . zs) ∈ R
s. We say that p(z) is an H-type

polynomial if its variables have the degrees from the set H, i.e.,

p(z) =
∑

(α1,...,αs)∈H
cα1···αsz

α1
1 · · · zαs

s ,(2.1)

where all cα1···αs are real.
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On the geometric distributions of the interpolation points we can give the follow-
ing definition.

Definition 2.2. Let U = {u1, . . . ,uM} be a set of distinct points in R
s and

H = {(α1, . . . , αs)} a finite set of s-tuples of nonnegative integers (α1, . . . , αs). We
say that the set U admits an H-type Lagrange interpolation if for any real function
f(z), z ∈ U , there exists an H-type polynomial p(z), such that

p(ui) = f(ui), i = 1, . . . ,M.(2.2)

In the literature of multivariate Lagrange interpolation the notion of poised set
of points is usual; see, e.g., Definition 1.1 in Gasca and Sauer [9]. Regarding this,
Definition 2.2 is equivalent to the notion that the set of points U is poised in the linear
space of H-type Lagrange polynomials. However, in this paper our definition is more
appropriate because, in contrast with other papers on interpolation, we do not deal
explicitly with the linear space of polynomials.

The problem of H-type Lagrange interpolation in case of set H (1.8) and (1.9)
was discussed in several papers. A good survey on this topic with results can be
found in Gasca and Sauer [9]; an earlier historical background is presented in Gasca
and Sauer [10]. The case of the set H (1.10) was first investigated in Mádi-Nagy and
Prékopa [21]. The results of our case (1.14) will be presented in the following section.

Regarding the connection between the MDMP and the multivariate Lagrange
interpolation we should consider the following. Let us use the following notation for
the compact matrix form of (1.7), for a given set H :

min(max) fT p
subject to

Ap = b,
p ≥ 0.

(2.3)

Definition 2.3. Let b(z1, . . . , zs) be defined in a similar way as b, but we remove
the expectation and replace zj for Xj, j = 1, . . . , s; i.e., if we consider a component
of the vector b, which can be written as μα1···αs = E[Xα1

1 · · ·Xαs
s ] ((α1, . . . αs) ∈ H),

then the corresponding component of the vector b(z1, . . . , zs) will be zα1
1 · · · zαs

s .
Theorem 2.1. Let us consider a basis B of problem (2.3). Note that the term

“basis” as well as the symbol B mean a matrix and, at the same time, the collection
of its column vectors. Let I be the set of subscripts corresponding to the columns of
B, i.e.,

I = {(i1, . . . , is)| ai1···is ∈ B},(2.4)

where ai1···is indicates the column of the coefficient matrix A corresponding to the
point (z1i1 , . . . , zsis). If we consider the set of distinct points in R

s

U = {(z1i1 , . . . , zsis)| (i1, . . . , is) ∈ I},(2.5)

then

LI(z1, . . . , zs) = fT

BB
−1b(z1, . . . , zs)(2.6)

is the unique H-type Lagrange polynomial corresponding to the set U .
Proof. The proof of fitting the interpolation points is yielded by substitution.

The uniqueness follows from the fact that if the vector c consists of the corresponding
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coefficients of an H-type Lagrange polynomial fitting the set U , then it should be the
solution of

cTB = fT

B.(2.7)

Indeed, the only solution of (2.7) is cT = fT

BB
−1.

Theorem 2.2. Let Vmin (Vmax) designate the minimum (maximum) value in
problem (2.3). Further let B1 (B2) designate a dual feasible basis, i.e.,

fTB1
B1

−1ai1···is ≤ fi1···is for all (zi1 , . . . , zis) ∈ Z,

(fTB2
B2

−1ai1···is ≥ fi1···is for all (zi1 , . . . , zis) ∈ Z),
(2.8)

for the minimization (maximization) problem. Relation (2.8) is called the condition
of optimality of the minimization (maximization) problem (2.3). Then

fT

B1
pB1

≤ Vmin ≤ E [f(X1, . . . , Xs)] ≤ Vmax ≤ fT

B2
pB2

.(2.9)

If B1 (B2) is an optimal basis in the minimization (maximization) problem, then the
first (last) inequality holds with equality sign. We say that Vmin and Vmax are the
sharp lower and upper bounds, respectively, for the expectation of f(X1, . . . , Xs).

Proof. The theorem follows from the basic results of linear programming theory.
By the aid of dual feasible bases we can give a special multivariate Lagrange in-

terpolation that approximates the function values of f(z1, . . . , zs) from below (above)
in case of the min (max) problem of (2.3).

Theorem 2.3. If the basis B is dual feasible in the minimization (maximization)
problem and the subscript set I is defined as in (2.4), then

f(z1, . . . , zs) ≥ LI(z1, . . . , zs) for all (z1, . . . , zs) ∈ Z,
(f(z1, . . . , zs) ≤ LI(z1, . . . , zs) for all (z1, . . . , zs) ∈ Z),(2.10)

where equality holds in case of (z1, . . . , zs) ∈ U of (2.5). Regarding E[f(X1, . . . , Xs)]
we have the following bound:

E[f(X1, . . . , Xs)] ≥ E[LI(X1, . . . , Xs)],
(E[f(X1, . . . , Xs)] ≤ E[LI(X1, . . . , Xs)]).

(2.11)

If the basis is also primal feasible, then it is optimal and, thus, the obtained bound is
sharp.

Proof. The inequality (2.10) follows from (2.6) and (2.8). The bound (2.11) can
be obtained if we replace (X1, . . . , Xs) for (z1, . . . , zs) and take the expectations in
(2.10).

Theorem 2.4. Assume that LI(z) is an H-type Lagrange polynomial correspond-
ing to the points ZI and inequality (2.10) is satisfied. If the columns in the min (max)
problem (2.3) corresponding to the interpolation points ZI are linearly independent,
then they form a dual feasible basis.

Proof. Let B1 (B2) be the matrix that consists of the columns corresponding
to the points of ZI . Since B1 (B2) is basis, (2.10) is equivalent to the condition of
optimality (2.8). Thus, B1 (B2) is dual feasible in the min (max) problem (2.3).

In the following section we give a formula of an H-type Lagrange polynomial and
its remainder, where the set H is the type of (1.14). We fix only the subscript set I
of the interpolation points, which means that we can get several sets

ZI = {(z1i1 , . . . , zsis)| (i1, . . . , is) ∈ I}(2.12)
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that admit an H-type Lagrange interpolation. Indeed, if we change the order of the
elements in the sequence {zj0, . . . , zjnj} (or, equivalently, we change the subscripts of
the elements within the sets Zj), j = 1, . . . , s, then the set of interpolation points ZI
will be different.

The coefficients of the Lagrange polynomial will be given in terms of the multi-
variate divided differences of the function f . Hence, we give the following definition.

Definition 2.4. Let f(z), z ∈ {z0, . . . , zn}, be a univariate discrete function,
where z0, . . . , zn are distinct real numbers,

[zi; f ] := f(zi), where zi ∈ {z0, . . . , zn}.

The kth order (univariate) divided differences (k ≥ 1) are defined recursively:

[zi, . . . , zi+k; f ] =
[zi+1, . . . , zi+k; f ] − [zi, . . . , zi+k−1; f ]

zi+k − zi
, where zi ∈ {z0, . . . , zn}.

Definition 2.5. Let f(z), z ∈ Z = Z1 × · · · × Zs, be a multivariate discrete
function and take the subset

ZI1...Is = {z1i, i ∈ I1} × · · · × {zsi, i ∈ Is}
= Z1I1 × · · · × ZsIs ,

(2.13)

where |Ij | = kj + 1, j = 1, . . . , s. Then we can define the (k1, . . . , ks)-order (multi-
variate) divided difference of f on the set (2.13) in an iterative way. First we take
the k1th divided difference with respect to the first variable, then the k2th divided dif-
ference with respect to the second variable, etc. These operations can be executed in
any order even in a mixed manner, the result always being the same. Let

[z1i, i ∈ I1; · · · ; zsi, i ∈ Is; f ](2.14)

designate the (k1, . . . , ks)-order divided difference. The sum k1 + · · ·+ ks is called the
total order of the divided difference.

In order to make the definition easier to understand we present the following
example.

Example 2.1.

[z10, z11; z20, z21; f ] =
[

z20, z21;
f(z11, z2) − f(z10, z2)

z11 − z10

]

=
f(z11,z21)−f(z10,z21)

z11−z10 − f(z11,z20)−f(z10,z20)
z11−z10

z21 − z20
.

3. A theorem on multivariate Lagrange interpolation. Let f(z), z ∈ Z =
Z1 × · · · ×Zs, where Zj = {zj0, . . . , zjnj} consists of distinct real values, j = 1, . . . , s.
In this section we present an H-type Lagrange polynomial and its remainder on the
interpolation points ZI = {(z1i1 , . . . , zsis)| (i1, . . . , is) ∈ I}, where the set H is defined
by (1.14) and

I =

⎛

⎝

s
⋃

j=1

Ij

⎞

⎠ ∪

⎛

⎝

s
⋃

j=1

Jj

⎞

⎠ ,(3.1)
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where

I1 = {(i1, 0, . . . , 0)| 0 ≤ i1 ≤ m− 1, integers} ,(3.2)

Ij = {(i1, 0, . . . , 0, ij, 0, . . . , 0)| 0 ≤ i1, 1 ≤ ij ≤ m− 1, integers, i1 + ij ≤ m} ,
j = 2, . . . , s,

and

Jj = {(0, . . . , 0, ij, 0, . . . , 0)| ij ∈ Kj},
Kj = {k(1)

j , . . . , k
(|Kj |)
j } ⊂ {m,m+ 1, . . . , nj},

|Kj | = mj + 1 −m, j = 1, . . . , s.
(3.3)

In what follows we will use the notations

Zji = {zj0, . . . , zji},
Z ′
ji = {zj0, . . . , zji, zj},

i = 0, . . . , nj, j = 1, . . . , s,

and

Kji = {k(1)
j , . . . , k

(i)
j },

ZjKji = {z
jk

(1)
j

, . . . , z
jk

(i)
j

},

i = 1, . . . , |Kj |, j = 1, . . . , s,
ZjKj = ZjKj|Kj | , j = 1, . . . , s.

We assign the Lagrange polynomial, given by its Newton form

LI (z1, . . . , zs)

=
m−1
∑

i1=0

[Z1i1 ;Z20; · · · ;Zs0; f ]
i1−1
∏

k=0

(z1 − z1k)

+
s
∑

j=2

∑

i1+ij≤m
1≤ij≤m−1

[

Z1i1 ;Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0;Zs0; f
]

×
i1−1
∏

k=0

(z1 − z1k)
ij−1
∏

k=0

(zj − zjk)

+
s
∑

j=1

|Kj|
∑

i=1

[

Z10; · · · ;Z(j−1)0;Zj(m−1) ∪ ZjKji ;Z(j+1)0; · · · ;Zs0; f
]

×
∏

k∈{0,...,m−1}∪Kj(i−1)

(zj − zjk) ,

where, by definition,
ij−1
∏

k=0

(zj − zjk) = 1, for ij = 0, and Kj0 = ∅.

(3.4)

In (3.4) the function f is not necessarily restricted to the set Z as its domain of
definition; it may be defined on any subset of R

s that contains Z.
Next, we define the residual function:

RI(z1, . . . , zs) = R1I(z1, . . . , zs) +R2I(z1, . . . , zs) +R3I(z1, . . . , zs),(3.5)
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where

R1I(z1, . . . , zs)

=
s
∑

j=1

[

z10; · · · ; z(j−1)0;Zj(m−1) ∪ ZjKj ∪ {zj}; z(j+1)0; · · · ; zs0; f
]

×
∏

k∈{0,...,m−1}∪Kj

(zj − zjk)

(3.6)

and

R2I(z1, . . . , zs)

=
s
∑

j=2

⎛

⎜

⎜

⎝

∑

i1+ij=m
0≤i1,ij≤m−1

[

Z ′
1i1 ;Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0; · · · ;Zs0; f

]

×
i1
∏

l=0

(z1 − z1l)
ij−1
∏

k=0

(zj − zjk)

+[Z ′
10;Z20; · · · ;Z(j−1)0;Z ′

j(m−1);Z(j+1)0; · · · ;Zs0; f ]

× (z1 − z10)
m−1
∏

k=0

(zj − zjk)

)

(3.7)

and

R3I(z1, . . . , zs)

=
s−1
∑

h=2

s
∑

j=h+1

[

z1; · · · ; zh−1;Z ′
h0;Z(h+1)0; · · · ;Z(j−1)0;Z ′

j0;Z(j+1)0; · · · ;Zs0; f
]

× (zh − zh0) (zj − zj0) .

(3.8)

We prove the following theorem.
Theorem 3.1. Consider the H-type Lagrange polynomial (3.4), corresponding to

the points ZI . For any z = (z1, . . . , zs) for which the function f is defined, we have
the equality

LI(z1, . . . , zs) +RI(z1, . . . , zs) = f(z1, . . . , zs).(3.9)

Proof. For the sake of simplicity we assume that mj ≤ nj , j = 1, . . . , s. The proof
of the general case needs only slight modification. Now we consider the following
lemma.

Lemma 3.2. We have the equality

LI(z1, . . . , zs) + R1I(z1, . . . , zs)

=
m−1
∑

i1=0

[Z1i1 ;Z20; · · · ;Zs0; f ]
i1−1
∏

k=0

(z1 − z1k)

+
s
∑

j=2

∑

i1+ij≤m
1≤ij≤m−1

[

Z1i1 ;Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0;Zs0; f
]

×
i1−1
∏

l=0

(z1 − z1l)
ij−1
∏

k=0

(zj − zjk)

+
s
∑

j=1

[Z10; · · · ;Z(j−1)0;Z ′
j(m−1);Z(j+1)0; · · · ;Zs0; f ]

m−1
∏

k=0

(zj − zjk) .

(3.10)
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Proof of Lemma 3.2. The proof is the same as that of Lemma 3.2 in Mádi-Nagy
and Prékopa [21].

Lemma 3.3.

LI(z1, . . . , zs) +R1I(z1, . . . , zs) +R2I(z1, . . . , zs)
= [z1;Z20; · · · ;Zs0; f ]

+
s
∑

j=2

[

z1;Z20; · · · ;Z(j−1)0;Z ′
j0;Z(j+1)0; · · · ;Zs0; f

]

(zj − zj0) .
(3.11)

Proof of Lemma 3.3. Let us look at the terms of (3.7) and (3.11) as univariate
functions of z1. Adding up the first term of (3.10) and the case of j = 1 in the third
term of (3.10) we get the first term of (3.11); i.e.,

m−1
∑

i1=0

[Z1i1 ;Z20; · · · ;Zs0; f ]
i1−1
∏

k=0

(z1 − z1k) + [Z ′
1(m−1);Z20; · · · ;Zs0; f ]

m−1
∏

k=0

(z1 − z1k)

= [z1;Z20; · · · ;Zs0; f ] .(3.12)

Let us consider the terms of the second sum of (3.10) for a given value of j and ij .
Adding them to the terms of the first part of the sum of (3.7) with the same value of
j and ij we have

∑

i1≤m−ij

[

Z1i1 ;Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0;Zs0; f
]

ij−1
∏

k=0

(zj − zjk)
i1−1
∏

l=0

(z1 − z1l)

+[Z ′
1(m−ij);Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0; · · · ;Zs0; f ]

ij−1
∏

k=0

(zj − zjk)
m−ij
∏

l=0

(z1 − z1l)

=
[

z1;Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0; · · · ;Zs0; f
]

ij−1
∏

k=0

(zj − zjk) .(3.13)

Adding up all terms of (3.10) and (3.7) corresponding to a given 2 ≤ j ≤ s, by the
use of the result (3.13) we have

m−1
∑

ij=1

[

z1;Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0; · · · ;Zs0; f
]

ij−1
∏

k=0

(zj − zjk)

+[Z10; · · · ;Z(j−1)0;Z ′
j(m−1);Z(j+1)0; · · · ;Zs0; f ]

m−1
∏

k=0

(zj − zjk)

+[Z ′
10;Z20; · · · ;Z(j−1)0;Z ′

j(m−1);Z(j+1)0; · · · ;Zs0; f ] (z1 − z10)
m−1
∏

k=0

(zj − zjk)
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=
m−1
∑

ij=1

[

z1;Z20; · · · ;Z(j−1)0;Zjij ;Z(j+1)0; · · · ;Zs0; f
]

ij−1
∏

k=0

(zj − zjk)

+[z1;Z20; · · · ;Z(j−1)0;Z ′
j(m−1);Z(j+1)0; · · · ;Zs0; f ]

m−1
∏

k=0

(zj − zjk) .

(3.14)

Considering (3.14) as a function of zj we get that this sum equals
[

z1;Z20; · · · ;Z(j−1)0;Z ′
j0;Z(j+1)0; · · · ;Zs0; f

]

(zj − zj0) .(3.15)

Adding up (3.12) and the terms (3.15) for j = 2, . . . , s we get (3.11). Thus, the lemma
is proven.

Proof of Theorem 3.1. We prove that

(LI(z1, . . . , zs) +R1I(z1, . . . , zs) +R2I(z1, . . . , zs)) +R3I(z1, . . . , zs)

= f(z1, . . . , zs),

where the brackets emphasize that we will use (3.11). Let us choose the h = 2 case
in the sum of (3.8) and add it to (3.11). Considering them as univariate functions of
z2 the result is

s
∑

j=3

[

z1;Z ′
20;Z30; · · · ;Z(j−1)0;Z ′

j0;Z(j+1)0; · · · ;Zs0; f
]

(z2 − z20) (zj − zj0)

+ [z1;Z20; · · · ;Zs0; f ] +
s
∑

j=2

[

z1;Z20; · · · ;Z(j−1)0;Z ′
j0;Z(j+1)0; · · · ;Zs0; f

]

(zj − zj0)

= ([z1;Z20; · · · ;Zs0; f ] + [z1;Z ′
20;Z30; · · · ;Zs0; f ] (z2 − z20))

+

⎛

⎝

s
∑

j=3

[

z1;Z20; · · · ;Z(j−1)0;Z ′
j0;Z(j+1)0; · · · ;Zs0; f

]

(zj − zj0)

+
s
∑

j=3

[

z1;Z ′
20;Z30; · · · ;Z(j−1)0;Z ′

j0;Z(j+1)0; · · · ;Zs0; f
]

(z2 − z20) (zj − zj0)

⎞

⎠

= [z1; z2;Z30; · · · ;Zs0; f ]

+
s
∑

j=3

[

z1; z2;Z30; · · · ;Z(j−1)0;Z ′
j0;Z(j+1)0; · · · ;Zs0; f

]

(zj − zj0) .(3.16)

Adding the h = 3 case in the sum of (3.8) to (3.16) we get a similar formula with z3 in
the places of the third variable. Finally, after choosing all the cases h = 2, 3, . . . , s−1
in (3.8) and adding them in this order to (3.16) we have

[z1; z2; · · · , zs−1;Zs0; f ] +
s
∑

j=s

[z1; z2; · · · ; zs−1;Z ′
s0; f ] (zj − zj0) .
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Considering this as the function of zs, the result is

[z1; z2; · · · , zs−1; zs; f ] = f(z1, . . . , zs).

Thus, the theorem is proven.
Theorem 3.4. The H-type Lagrange polynomial (3.4) of the function f cor-

responding to the points ZI is unique (for a given set Z). Furthermore, the set of
columns B of A in problem (2.3), corresponding to the subscript set I, forms a basis
of A.

Proof. The formula (3.4) gives a Lagrange polynomial on ZI for any function f
on the set Z. This means that we can obtain the coefficients of the H-type Lagrange
polynomial in case of any function f(z), z ∈ Z. Let the matrix B consist of the
columns corresponding to the points of ZI . The coefficient vector cf of the Lagrange
polynomial corresponding to the function f is the solution of the equation

cT

fB = fT

B.(3.17)

Since we have Lagrange interpolation for any f , (3.17) has a solution cf in case of
any vector fB . From this follows that the square matrix B is nonsingular, hence the
columns corresponding to the points of ZI form a basis. Thus, the second assertion is
proven. Then the uniqueness is the corollary of Theorem 2.1.

4. Bounds for the MDMP with the set H (1.14). The problem in the title
of this section is the following LP:

min(max)
n1
∑

i1=0

· · ·
ns
∑

is=0

fi1...ispi1...is

subject to
n1
∑

i1=0

· · ·
ns
∑

is=0

zα1
1i1z

αj

jij
pi1...is = μα10...0αj0...0

for α1, αj ≥ 0, α1 + αj ≤ m, j = 2, . . . , s;
n1
∑

i1=0

· · ·
ns
∑

is=0

z
αj

jij
pi1...is = μ0...0αj0...0

for m+ 1 ≤ αj ≤ mj , j = 1, . . . , s;
pi1...is ≥ 0 for all i1, . . . , is.

(4.1)

In the following theorems let us designate the coefficient matrix of (4.1) by A, the
right-hand side vector by b, and the coefficient vector of the objective function by f ,
in agreement with (2.3).

We present several dual feasible bases for the min problem of (4.1), which give
lower bounds for the objective function. As at the numerical examples we shall see,
the best bounds, among the given ones, are usually close to the values of the sharp
bounds. This means that we can give good bounds without using LP solvers, which
work numerically unstably because of the Vandermonde systems in the coefficient
matrix.

First of all, we should introduce some assumptions. They are as follows.
Assumption 1. The function f(z), z ∈ Z,
(a) has nonnegative univariate divided differences of order mj + 1 regarding zj ,

j = 1, . . . , s,
(b) has nonnegative bivariate divided differences of order m+ 1,
(c) has nonnegative mixed second order divided differences.
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If f(z), z ∈ Z, is derived from a function f(z) defined in Z = [z10, z1n1 ] ×
· · · × [zs0, zsns ] by taking f(z) = f(z), z ∈ Z, and f(z) has continuous, nonnegative
derivatives of order (k1, . . . , ks) in the interior of Z, then all divided differences of
f(z), z ∈ Z, of order (k1, . . . , ks) are nonnegative. For further results in this re-
spect, see Popoviciu [24]. This fact helps one find out whether a function satisfies
Assumption 4. If in the assumption we require nonpositivity, then we shall see that
the following bases will be dual feasible for the max problem and will give upper
bounds for (4.1).

We introduce four different structures for Kj, defined in (3.4), as follows:

|Kj| even |Kj| odd
min u(j), u(j) + 1, . . . , v(j), v(j) + 1 m,u(j), u(j) + 1, . . . , v(j), v(j) + 1
max m,u(j), u(j) + 1, . . . , v(j), v(j) + 1, nj u(j), u(j) + 1, . . . , v(j), v(j) + 1, nj;

(4.2)
i.e., Kj (consists of distinct elements of the subset of {m, . . . , nj}) is a set of pairs of
consecutive elements completed by m and nj depending on its parity and its (min or
max) type.

As regards the ordering of the elements in the sets Z1, . . . , Zs, we mention sepa-
rately in each theorem of this section what our assumption is about.

Theorem 4.1. Let zj0 < zj1 < · · · < zjnj , j = 1, . . . , s. Suppose that Kj follows
the min structure of (4.2), j = 1, . . . , s.

Under Assumption 4, LI(z1, . . . , zs), defined by (3.4), is a unique H-type Lagrange
polynomial on ZI and satisfies the relations

f(z1, . . . , zs) ≥ LI(z1, . . . , zs), (z1, . . . , zs) ∈ Z.(4.3)

The set of columns B of A in problem (4.1), with the subscript set I, is a dual feasible
basis in the minimization problem (4.1), and

E[f(X1, . . . , Xs)] ≥ E[LI(X1, . . . , Xs)].(4.4)

If B is also a primal feasible basis in problem (4.1), then the inequality (4.4) is sharp.
Proof. We have only to prove (4.3). The proof of the other parts of the theorem

is straightforward from Theorems 3.4, 2.4, and 2.3.
In order to prove (4.3) it is sufficient to show that

RI(z1, . . . , zs) ≥ 0 for all (z1, . . . , zs) ∈ Z.(4.5)

In fact, we show that all terms in the sum RI(z1, . . . , zs) are nonnegative. Considering
any term in R1I(z1, . . . , zs) the first factor of the product is a divided difference, which
is nonnegative because of Assumption 4, while the last part is

∏

k∈{0,...,m−1}∪Kj

(zj − zjk) > 0 for zj 	∈ {zj0, . . . , zj(m−1)} ∪ ZjKj(4.6)

because there are even numbers of negative factors, due to the special structure of
Kj. If zj ∈ {zj0, . . . , zj(m−1)} ∪ ZjKj , the above product is 0. This means that any
term of R1I(z1, . . . , zs) is nonnegative. Considering a term of the sum R2I(z1, . . . , zs)
or R3I(z1, . . . , zs) the first factor of the product is a divided difference, which is
nonnegative because of Assumption 4. In the other part of the product at least
one of the factors is zero or all factors are positive because of the ordering of Zj ’s.
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10

z

(a) (b)

Fig. 1. Assume Zj = {0, . . . , 10}, j = 1, 2, 3, m = 4, m1 = 7, m2 = 8, m3 = 6. (a): Dual
feasible basis corresponding to Theorem 4.1, where K1 = {4, 6, 7}, K2 = {5, 6, 8, 9}, K3 = {7, 8}. (b):
Dual feasible basis of the Min Algorithm, where (z10, z11, z12, z13) = (0, 1, 10, 2), (zj0, zj1, zj2, zj3) =
(10, 0, 9, 1), j = 2, 3, K1 = {6, 7, 10} (Z1K1 = {5, 6, 9}), K2 = {6, 7, 9, 10} (Z2K2 = {4, 5, 7, 8}),
K3 = {8, 9} (Z3K3 = {6, 7}). Elements of

⋃s
j=1 Ij are colored by gray while elements of

⋃s
j=1 Jj’s

are black.

This means that all factors of the product are nonnegative and hence the term is
nonnegative as well. All terms of RI(z1, . . . , zs) are nonnegative, hence the sum of
them, i.e., RI(z1, . . . , zs), is also nonnegative on Z. Thus, the theorem is proven.

The basis of Theorem 4.1 is illustrated in Figure 1(a).
In the following algorithm we will consider more orders of the elements of the set

Zj in the sequence (zj0, . . . , zjnj ), j = 1, . . . , s, for which all terms of RI(z1, . . . , zs)
are nonnegative. Note that transposing the elements of the sequence (zj0, . . . , zjnj ) is
equivalent to exchanging subscripts of the elements; however, the proof of the validity
of the algorithm is based on the orders of the elements. At each order of the elements,
the set of interpolation points ZI as well as the corresponding dual feasible basis are
different, which means that we can give more lower bounds on (4.1) by the objective
function value of the dual feasible basis corresponding to ZI .

Min Algorithm.
At first we assume, without loss of generality, that Zj = {0, 1, . . . , nj}, j =

1, . . . , s.

Step 0. Let

z20 = z30 = · · · = zs0 = 0(4.7)

or

z20 = n2, z30 = n3, . . . , zs0 = ns.(4.8)

If (4.7) holds, then let 0 ≤ q1 ≤ m be an even number, else (if (4.8) holds) let 0 ≤ q1 ≤
m be an odd number. L := (0, 1, . . . , (m−1)−q1), U := (n1, n1−1, . . . , n1−(q1−1)),
V 0 := {arbitrary merger of the sequences L,U} = (v0, v1, . . . , vm−1).

(z10, . . . , z1(m−1)) := V 0.

Let j = 2. Goto Step 1.
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Step 1. Initialize t = 0. If (4.7) holds, then let l0 = 1 and u0 = nj, else let l0 = 0
and u0 = nj − 1. Goto Step 2.

Step 2. Let V t = {v0, v1, . . . , vm−1−t}, Ht = {h1, . . . , ht}. If vm−1−t ∈ L, then
let ht+1 = lt, lt+1 = lt + 1, ut+1 = ut, and if vm−1−t ∈ U , then let ht+1 = ut,
ut+1 = ut− 1, lt+1 = lt. Set t← t+ 1. If t = m, then goto Step 3, else repeat Step 2.

Step 3. Let

(zj1, . . . , zj(m−1)) = Hm−1.

Set j ← j + 1. If j = s+ 1, then goto Step 4, else goto Step 1.
Step 4. Let 0, 1, . . . , rj , nj , . . . , nj− (m−rj−2) be the numbers used to construct

zj0, zj1, . . . , zj(m−1). Then let

(zjm, zj(m+1), . . . , zjnj ) = (rj + 1, rj + 2, . . . , nj − (m− rj − 1))(4.9)

as ordered sets, j = 1, . . . , s. Note that these subsets of the sets Zj , j = 1, . . . , s,
remain intact. If m − rj − 1 is even, then Kj should follow a minimum structure in
(4.2), and if m − rj − 1 is odd, then Kj should follow a maximum structure. Stop,
we have completed the construction of the dual feasible basis related to the subscript
set I.

In the general case, where Zj is not necessarily {0, 1, . . . , nj}, j = 1, . . . , s, we do
the following. First we order the elements in each Zj in increasing order. Then we
establish one-to-one correspondences between the elements of Zj and the elements of
the ordered set (0, 1, . . . , nj). After that, we carry out the Min Algorithm to find a
dual feasible basis, using the sets {0, 1, . . . , nj}, j = 1, . . . , s. Finally, we create the
set ZI , by the use of the above mentioned one-to-one correspondences.

Theorem 4.2. Let the elements of the sequence (zj0, . . . , zjnj ), j = 1, . . . , s,
be in one of the orders of the Min Algorithm, and also let Kj follow the min (max)
structure if m− rj − 1 is even (odd) in the Min Algorithm, j = 1, . . . , s.

Under Assumption 4, LI(z1, . . . , zs), defined by (3.4), is a unique H-type Lagrange
polynomial on ZI and satisfies the relations

f(z1, . . . , zs) ≥ LI(z1, . . . , zs), (z1, . . . , zs) ∈ Z.(4.10)

The set of columns B of A in problem (4.1), with the subscript set I, is a dual feasible
basis in the minimization problem (4.1), and

E[f(X1, . . . , Xs)] ≥ E[LI(X1, . . . , Xs)].(4.11)

If B is also a primal feasible basis in problem (4.1), then the inequality (4.11) is sharp.
Proof. We have only to prove that RI(z1, . . . , zs) ≥ 0 for all (z1, . . . , zs) ∈ Z and

then we can follow the proof of Theorem 4.1. We can restrict ourselves to the case
Zj = {0, 1, . . . , nj}, j = 1, . . . , s, because in the following inequalities only the orders
of the elements play a role.

First, let us consider R3I(z1, . . . , zs) of (3.8). All divided differences are nonneg-
ative, and the set of the second parts of the products equals

(zh − zh0)(zj − zj0), 2 ≤ h < j ≤ s.(4.12)

These products can be nonnegative if and only if both factors are nonnegative or both
factors are nonpositive. Because we have pairs for all 2 ≤ h < j ≤ s this means that
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either all factors (zj−zj0), 2 ≤ j ≤ s, are nonnegative, or all of them are nonpositive.
The first case is provided by (4.7) while the second by (4.8). Hence, R3I(z) ≥ 0,
z ∈ Z.

If we consider R2I(z1, . . . , zs) of (3.7), we will see that the factors of products
after the nonnegative divided differences are associated with the following arrays:

z10 z11 z12 · · · z1(m−2) z1(m−1) zj0
z10 z11 z12 · · · z1(m−2) zj0 zj1

...
z10 z11 zj0 · · · zj(m−4) zj(m−3) zj(m−2)
z10 zj0 zj1 · · · zj(m−3) zj(m−2) zj(m−1)

(4.13)

j = 2, . . . , s.

A sufficient condition for the nonnegativity of all products in (3.7) is that

|{i| 0 ≤ i ≤ i1, z1i > z1}| + |{i| 0 ≤ i ≤ ij, zji > zj}| = even number(4.14)

for every 0 ≤ ij ≤ m−1 integers satisfying i1+ij = m−1, and for all (z1, zj) ∈ Z1×Zj,
j = 2, . . . , s. The first m elements of the first row in (4.13) are the elements of V 0;
the m+ 1st element of the same row is zj0. In Step 0 the parity of q1 provides that
(4.14) is satisfied for the product of (3.7) corresponding to the first row of (4.13).
The elements of V t, zj0, Ht, in that order, constitute the tth row of tableau (4.13). In
Steps 1 and 2 we define the following element ht+1 such that (4.14) is still satisfied
for the product of (3.7) corresponding to the t+ 1st row of (4.13). From this follows
that R2I(z) ≥ 0, z ∈ Z.

RegardingR1I(z1, . . . , zs) the divided differences are nonnegative in terms of (3.6).
Hence, after the assignments (4.9) we have only to choose the subscript sets Kj such
that

∏

k∈{0,...,m−1}∪Kj

(zj − zjk) ≥ 0, z ∈ Z,

for j = 1, . . . , s. For each j the products

m−1
∏

k=0

(zj − zjk), (z1, . . . , zs) ∈ Z(4.15)

are nonnegative (nonpositive) if m− rj − 1 is even (odd). (Note that r2 = · · · = rs by
construction.) Then the choice of Kj (with assignment (4.9)), j = 1, . . . , s, provides
that R1I(z) ≥ 0 for all z ∈ Z.

Thus, RI(z) = R1I(z) +R2I(z) +R3I(z) ≥ 0 for all z ∈ Z.
The basis of the algorithm is illustrated in Figure 1(b).
The above algorithm allows for the construction of a variety of dual feasible bases.

However, we do not have a simple criterion, like in the dual method, to decide which
of the bases, that we can obtain by the above Min Algorithm, would improve on
the bound (on the value of the objective function). Hence, in order to give the best
bound for E[f(X1, . . . , Xs)] we have to calculate the objective function values for all
dual feasible bases yielded by the Min Algorithm and then choose the highest value
from among them. For a given order of (zj0, . . . , zjs), j = 1, . . . , s, we can find the
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best sets Kj , j = 1, . . . , s, independently. The argument of this can be found in
Mádi-Nagy [20].

Numerical experiments show that this method produces very good results much
faster than the execution of the dual algorithm. Its other main advantage is that it is
not sensitive to the numerical difficulties that arise from the bad numerical property
of the matrix A.

5. Numerical examples. In the following we consider three numerical exam-
ples. In the first one we give bounds for the expected value of a three-variate utility
function by the aid of the Min Algorithm of section 4 and we also give the sharp
bounds calculated by the LP solver CPLEX (www.ilog.com). The method of the Min
Algorithm is written in Wolfram’s Mathematica (www.wolfram.com). This means
that its running times are not really comparable with the running times of the dual
method of CPLEX; however, we give these results, too. Because of the numerical
instability of the MDMP, CPLEX sometimes cannot give appropriate results (it re-
ports infeasibility; however, the problem is feasible by construction). These cases are
indicated by “−” sign in the tables. We can conclude that our Min Algorithm yields
useful bounds without numerical difficulties even if the CPLEX cannot give the right
answer.

In the last two examples we give bounds for the union of events by the application
of the Min Algorithm for the binomial MDMP (1.11). Comparing the results to the
cherry tree bounds of Bukszár and Prékopa [4] and the bounds of univariate and
bivariate MDMPs, the bounds of our Min Algorithm turn out to be the best.

Example 5.1. In this example we solve a problem similar to Example 4.2 in
Prékopa and Mádi-Nagy [35]. Consider the utility function

u(z1, z2, z3) = log
[

(eα1z1+a1 − 1)(eα2z2+a2 − 1)(eα3z3+a3 − 1) − 1
]

,
(z1, z2, z3) ∈ Z,

(5.1)

where Z is specialized as follows:

Z = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)× (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)× (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

Let the parameters be α1 = 1.75, α2 = 1.25, α3 = 0.75, a1 = 3, a2 = 2, a3 = 1.
In the cited paper it was proven that the even (odd) order derivatives of the function
are nonpositive (nonnegative). We use our Min Algorithm for the MDMP (1.7) with
set H (1.14) to give an upper bound for the expected utility

E[u(X1, X2, X3)].(5.2)

Since the even order divided differences of the function −u(z1, z2, z3) on Z are nonneg-
ative, we can apply the Min Algorithm to give a lower bound for E[−u(X1, X2, X3)]
that yields, indeed, an upper bound for (5.2).

Regarding the moments taken into account they are generated from the distribu-
tion of (X1, X2, X3), defined by

X1 = min (X + Y1, 9) ,

X2 = min (X + Y2, 9) ,

X3 = min (X + Y3, 9) ,
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whereX,Y1, Y2, Y3 have independent Poisson distributions with parameters 1, 2, 2.5, 3,
respectively. Note that X1, X2, X3 are stochastically dependent.

We calculate the bounds for several values of the parameters m,m1,m2,m3 of the
set H (1.14). We also give the sharp upper bounds calculated by the dual method
of CPLEX (where it is possible). In order to see the closeness of our (not sharp)
upper bounds we also calculate the minimum of the objective function value. That
gives the possibility to compare the difference between our upper bound and the dual
maximum to the gap between the sharp upper and lower bounds. The results are
summarized below.

m m1 m2 m3 Upper bound CPU Dual max CPU Dual min CPU

3 3 3 3 18.586715186 0.14 18.557668477 0.08 18.510511279 0.11
3 5 5 5 18.549493662 0.41 18.546562878 0.05 18.539798360 0.40
3 7 7 7 18.543584031 0.69 18.543580944 0.11 18.542882716 0.69
3 9 9 9 18.543304428 0.36 − − − −

m m1 m2 m3 Upper bound CPU Dual max CPU Dual min CPU

5 5 5 5 18.562168728 1.50 18.546562667 0.14 18.539911300 0.65
5 7 7 7 18.543588614 2.61 18.543580474 0.44 18.542921460 1.16
5 9 9 9 18.543304428 2.31 − − − −

We can see that our bounds are very close to the sharp bounds except cases
m = m1 = · · · = m3 = 3 and m = m1 = · · · = m3 = 5. On the other hand, we
can give better approximation taking the marginal moments up to the order 9 into
account, despite the fact that CPLEX cannot solve the MDMP.

We also check whether we do not lose too much information using the set H (1.14)
instead of the set H (1.10) (set H (1.14) is a subset of H (1.10)). The sharp bounds
for set H (1.10) are summarized below.

m m1 m2 m3 Dual max CPU Dual min CPU

3 3 3 3 18.557668337 0.28 1.8510552138 0.12
3 5 5 5 18.546562783 0.53 1.8539798515 0.42
3 7 7 7 18.543580810 1.54 1.8542882927 0.11
3 9 9 9 − − − −

m m1 m2 m3 Dual max CPU Dual min CPU

5 5 5 5 18.546560902 2.13 1.8539941923 1.52
5 7 7 7 18.543579438 6.62 1.8542948216 3.69
5 9 9 9 − − − −

We can conclude that these bounds are not significantly better. Hence, we do not lose
as much as we can gain on the structure of the set H (1.14), which makes the Min
Algorithm applicable for higher dimensions.

Example 5.2. In this example we shall give upper bounds for the probability
of the union of events of the following two systems. In both systems there are 12
events A1, A2, . . . , A12, and 16 outcomes, x1, x2, . . . x16 with probabilities
P (x1), P (x2), . . . , P (x16), respectively. The events of System I are defined by the
matrix RI = (rIij), where rIij = 1, if xi ∈ Aj ; otherwise rIij = 0. The events of System
II are defined by the matrix RII , similarly. (The matrices RI and RII were randomly
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generated with different densities.)

RI =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 1 0 0 0 1
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0
1 0 0 0 0 1 0 0 1 1 0 1
0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 1 0 1 1 0 0 0 0 1
0 1 0 0 0 1 1 0 0 1 1 0
1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, RII =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 1 1 1 0 1 1 1 1 0
0 1 1 0 1 1 0 0 1 0 1 0
1 0 1 1 0 1 1 1 1 1 1 0
1 1 1 0 1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1 0 1
1 1 0 1 0 1 0 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(5.3)
It is easy to see that at least one event occurs at each outcome except x16. From this

P (∪Ai) = 1 − P (x16).

Regarding the probability of the outcomes we consider the following three cases.

P (x1) P (x2) P (x3) P (x4) P (x5) P (x6) P (x7) P (x8)
Case 1: 0.023 0.034 0.045 0.056 0.067 0.078 0.067 0.056
Case 2: 0.012 0.022 0.023 0.033 0.034 0.044 0.045 0.055
Case 3: 0.0329 0.1076 0.0599 0.1108 0.042 0.0055 0.0508 0.1142

P (x9) P (x10) P (x11) P (x12) P (x13) P (x14) P (x15) P (x16)
Case 1: 0.045 0.038 0.011 0.022 0.033 0.044 0.055 0.326
Case 2: 0.056 0.066 0.067 0.077 0.078 0.088 0.089 0.211
Case 3: 0.048 0.0235 0.0676 0.0295 0.0441 0.1265 0.1058 0.0313

(5.4)

We use several bounding techniques depending on the known information about
the systems. On one hand, we give the (sharp) upper bounds of the univariate bi-
nomial moment problem of (1.4) with the first function f in (1.5), based on the
information on S1, S2, S3. We use the dual method of Prékopa [27].

On the other hand, we subdivide the sequence of {A1, A2, . . . , A12} into subse-
quences

{A1, A2, . . . , A6}, {A7, A8, . . . , A12}(5.5)

and then into subsequences

{A1, A2, A3, A4}, {A5, A6, A7, A8}, {A9, A10, A11, A12}(5.6)

and then into

{A1, A2, A3}, {A4, A5, A6}, {A7, A8, A9}, {A10, A11, A12}.(5.7)

We consider the multivariate binomial moment problem (1.11) with the function f in
(1.12) with the appropriate sets H (1.14), respectively. Prékopa [30] has shown that
the even (odd) order divided differences of f in (1.12) are nonpositive (nonnegative).
This means that in cases where m+1 and mj +1, j = 1, . . . , s (where s is the number
of subsequences), are even we can give upper bounds by the application of the Min
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Table 1

Results of System I.

Univariate (5.5) m = 3, (5.6) m = 3, (5.7) m = 3, Cherry tree
S1, S2, S3 m1 = 3, m1 = 3, m1 = m2 = 3, bound

m2 = 3 m2 = 3, m3 = m4 = 3
m3 = 3

Case 1: 0.7412 1 0.969 0.697 0.785
Case 2: 0.8595 1 1 0.801 0.900
Case 3: 1 1 1 1 1

Table 2

Results of System II.

Univariate (5.5) m = 3, (5.6) m = 3, (5.7) m = 3, Cherry tree
S1, S2, S3 m1 = 3, m1 = 3, m1 = m2 = 3, bound

m2 = 3 m2 = 3, m3 = m4 = 3
m3 = 3

Case 1: 0.781345 0.749467 0.702333 0.674 0.685
Case 2: 0.921273 0.873867 0.807333 0.789 0.789
Case 3: 1 1 1 0.9687 0.9687

Algorithm for −f(z). In this example we use the Min Algorithm with parameters
m = 3, mj = 3, j = 1, . . . , s.

Finally, we give the so-called cherry tree bounds of Bukszár and Prékopa [4].
These bounds are based on the knowledge of the individual probabilities of the occur-
rences of the events, of the intersections of pairs of events, and of the intersections of
three events. These bounds are always at least as good as the Hunter–Worsley second
order bounds (see Hunter [17]).

The results for System I and System II are summarized in Tables 1 and 2, respec-
tively. Comparing the bounds, we can see that we get the best bound in case of the
subsequences (5.7).

Regarding the order of the columns in Tables 1 and 2, we took more and more in-
formation on the system into account; i.e., in case of the univariate binomial moments
we just considered the sums of probabilities of events, intersections of pairs of events,
and triples of events. In the case of multivariate binomial moments we considered
the sums of those probabilities of smaller groups of the events; i.e., we separated the
sums of the univariate moments into subsums. Finally, in the case of cherry trees we
used individual probabilities. This would imply that we should get better and better
bounds. However, the bounds of our paper as well as the cherry tree bounds are not
sharp; that is why it could happen that the Min Algorithm gave better bounds, using
less information, than the cherry tree bounds of Bukszár and Prékopa [4].

The numerical results confirm that our method yields a new effective tool for
bounding the probability of the union of events based on the knowledge of probabilities
of the intersection up to three events. On the other hand, we can see that the bivariate
bounds corresponding to the subsequences (5.5) are much weaker than the bounds
corresponding to the binomial MDMPs of higher dimensions. Since our generalization
of the bivariate Min Algorithm gives the possibility of taking more detailed information
into account, it can give substantially better bounds.
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Example 5.3. We shall also give upper bounds for the probability of the union
of events. There are 20 events A1, A2, . . . , A20, and 16 outcomes, x1, x2, . . . , x16 with
probabilities P (x1), P (x2), . . . , P (x16), respectively. The events of the system are
defined by the matrix R = (rij), where rij = 1, if xi ∈ Aj ; otherwise rij = 0.

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1
1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.(5.8)

The matrix R is taken from System 1 of Example 2 in Prékopa and Gao [34], but we
use the probabilities of outcomes of (5.4) instead of their probabilities because in their
system the probability of the union is nearly 1. We consider the univariate binomial
DMP for S1, S2, S3 and for S1, . . . , S5. We also give the results of the multivariate
binomial DMP (1.11) with the function f in (1.12) with the appropriate sets H (1.14).
We consider the subdivisions

{A1, . . . , A7}, {A8, . . . , A14}, {A15, . . . , A20},(5.9)

with m = mj = 5 (j = 1, 2, 3), and

{A1, . . . , A5}, {A6, . . . , A10}, {A11, . . . , A15}, {A16, . . . , A20},(5.10)

with m = mj = 5 (j = 1, 2, 3, 4). (The MDMPs with third order binomial moments
yield trivial bounds.) We also give the cherry tree bounds. The results are summarized
in Table 3. Among the third order bounds once the univariate binomial DMP bound,
once the cherry tree bound was the best, however, none of them were useful. However,
using moments up to the order 5 our binomial MDMP, with subdivision (5.10), yields
the best (in these cases the sharp) bounds.

Table 3

Results of the system of Example 5.3.

Univariate Cherry tree Univariate (5.9) m = 5, (5.10) m = 5,
S1, S2, S3 bound S1, . . . , S5 mj = 5 mj = 5

Case 1: 0.794036 0.823 0.6882 0.96691 0.674
Case 2: 0.960964 0.901 0.810878 1 0.789
Case 3: 1 1 0.99522 1 0.9687



ON MULTIVARIATE DISCRETE MOMENT PROBLEMS 1805

REFERENCES

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis,
Hafner Publishing, New York, 1965.
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[3] E. Boros and A. Prékopa, Closed form two-sided bounds for probabilities that at least r and
exactly r out of n events occur, Math. Oper. Res., 14 (1989), pp. 317–342.
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[22] G. Mádi-Nagy and A. Prékopa, Bounding Expectations of Functions of Random Vectors with

Given Marginals and Some Moments: Applications of the Multivariate Discrete Moment
Problem, RUTCOR Research Report, 11–2007, Piscataway, NJ, 2007.

[23] A. Markov, On Certain Applications of Algebraic Continued Fractions, Ph.D. thesis, St.
Petersburg, Russia, 1884.

[24] T. Popoviciu, Les Fonctions Convexes, Actualités Scientifiques et Industrielles 992, Hermann
et Cie, Paris, 1944.
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Abstract. In this paper we first study a smooth optimization approach for solving a class of
nonsmooth strictly concave maximization problems whose objective functions admit smooth con-
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ε) iteration complexity for finding an ε-optimal solution

to both primal and dual problems. We then discuss the application of this approach to sparse covari-
ance selection that is approximately solved as an l1-norm penalized maximum likelihood estimation
problem, and also propose a variant of this approach which has substantially outperformed the latter
one in our computational experiments. We finally compare the performance of these approaches
with other first-order methods, namely, Nesterov’s O(1/ε) smooth approximation scheme and block-
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1. Introduction. In [19, 21], Nesterov proposed an efficient smooth optimiza-
tion method for solving convex programming problems of the form

(1) min{f(u) : u ∈ U},

where f is a convex function with Lipschitz continuous gradient, and U is a closed con-
vex set. It is shown that his method has O(1/

√
ε) iteration complexity bound, where

ε > 0 is the absolute precision of the final objective function value. A proximal-point-
type algorithm for (1) having the same complexity as above has also been proposed
more recently by Auslender and Teboulle [2].

Motivated by [10], we are particularly interested in studying the use of a smooth
optimization approach for solving a class of nonsmooth strictly concave maximization
problems whose objective functions admit smooth convex minimization reformulations
in this paper. Our key idea is to apply Nesterov’s smooth optimization technique
[19, 21] to their dual counterparts that are smooth convex problems. It is shown that
the resulting approach has O(1/

√
ε) iteration complexity for finding an ε-optimal

solution to both primal and dual problems.
One interesting application of the above approach is for sparse covariance se-

lection. Given a set of random variables with Gaussian distribution for which the
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true covariance matrix is unknown, covariance selection is a procedure used to esti-
mate true covariance from a sample covariance matrix by maximizing its likelihood
while imposing a certain sparsity on the inverse of the covariance estimation (e.g., see
[11]). Therefore, it can be applied to determine a robust estimate of the true vari-
ance matrix, and simultaneously to discover the sparse structure in the underlying
model. Despite its popularity in numerous real-world applications (e.g., see [3, 10, 25]
and the references therein), sparse covariance selection itself is a challenging NP-hard
combinatorial optimization problem. By an argument that is often used in regres-
sion techniques such as LASSO [23], Yuan and Lin [25] and d’Aspremont et al. [10]
(see also [3]) showed that it can be approximately solved as an l1-norm penalized
maximum likelihood estimation problem. Moreover, the authors of [10] studied two
efficient first-order methods for solving this problem, that is, Nesterov’s smooth ap-
proximation scheme and block-coordinate descent method. It was shown in [10] that
their first method has O(1/ε) iteration complexity for finding an ε-optimal solution.
For their second method, each iterate requires solving a box constrained quadratic
programming, and it has a local linear convergence rate. However, its global iteration
complexity for finding an ε-optimal solution is theoretically unknown. After the first
release of our paper, Friedman, Hastie, and Tibshirani [16] studied a slight variant
of the block-coordinate descent method proposed in [10]. At each iteration of their
method, a coordinate descent approach is applied to solve a lasso (l1-regularized)
least-squares problem, which is the dual of the box constrained quadratic program-
ming appearing in the block-coordinate descent method [10]. In contrast with these
methods, the smooth optimization approach proposed in this paper has a more at-
tractive iteration complexity that is O(1/

√
ε) for finding an ε-optimal solution. In

addition, we propose a variant of the smooth optimization approach which has sub-
stantially outperformed the latter one in our computational experiments. We also
compare the performance of our approaches with their methods for sparse covariance
selection on a set of randomly generated instances. It shows that our smooth opti-
mization approach substantially outperforms their first method above (i.e., Nesterov’s
smooth approximation scheme) and, moreover, its variant substantially outperforms
their methods [10, 16] mentioned above.

The paper is organized as follows. In section 2, we introduce a class of nonsmooth
concave maximization problems in which we are interested and propose a smooth op-
timization approach to them. In section 3, we briefly introduce sparse covariance
selection and show that it can be approximately solved as an l1-norm penalized max-
imum likelihood estimation problem. We also discuss the application of the smooth
optimization approach for solving this problem and propose a variant of this approach.
In section 4, we compare the performance of our smooth optimization approach and
its variant with two other first-order methods studied in [10, 16] for sparse covari-
ance selection on a set of randomly generated instances. Finally, we present some
concluding remarks in section 5.

1.1. Notation. In this paper, all vector spaces are assumed to be finite-dimen-
sional. The space of symmetric n × n matrices will be denoted by Sn. If X ∈ Sn is
positive semidefinite, we write X � 0. Also, we write X � Y to mean Y − X � 0.
The cone of positive semidefinite (resp., definite) matrices is denoted by Sn

+ (resp.,
Sn

++). Given matrices X and Y in �p×q, the standard inner product is defined
by 〈X,Y 〉 := Tr(XY T ), where Tr(·) denotes the trace of a matrix. ‖ · ‖ denotes
the Euclidean norm and its associated operator norm unless it is explicitly stated
otherwise. The Frobenius norm of a real matrix X is defined as ‖X‖F :=

√
Tr(XXT ).
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We denote by e the vector of all ones, and by I the identity matrix. Their dimensions
should be clear from the context. For a real matrix X, we denote by Card(X) the
cardinality of X, that is, the number of nonzero entries of X, and denote by |X|
the absolute value of X, that is, |X|ij = |Xij | for all i, j. The determinant and
the minimal (resp., maximal) eigenvalue of a real symmetric matrix X are denoted
by detX and λmin(X) (resp., λmax(X)), respectively. For an n-dimensional vector w,
diag(w) denotes the diagonal matrix whose ith diagonal element is wi for i = 1, . . . , n.
We denote by Z+ the set of all nonnegative integers.

Let the space F be endowed with an arbitrary norm ‖ · ‖. The dual space of F ,
denoted by F∗, is the normed real vector space consisting of all linear functionals of
s : F → �, endowed with the dual norm ‖ · ‖∗ defined as

‖s‖∗ := max
u

{〈s, u〉 : ‖u‖ ≤ 1} ∀s ∈ F∗,

where 〈s, u〉 := s(u) is the value of the linear functional s at u. Finally, given an
operator A : F → F∗, we define

A[H,H] := 〈AH,H〉

for any H ∈ F .

2. Smooth optimization approach. In this section, we consider a class of
concave nonsmooth maximization problems:

(2) max
x∈X

{g(x) := min
u∈U

φ(x, u)},

where X and U are nonempty convex compact sets in finite-dimensional real vector
spaces E and F , respectively, and φ(x, u) : X×U → � is a continuous function which
is strictly concave in x ∈ X for every fixed u ∈ U , and convex differentiable in u ∈ U
for every fixed x ∈ X. Therefore, for any u ∈ U , the function

(3) f(u) := max
x∈X

φ(x, u)

is well-defined. We also easily conclude that f(u) is convex differentiable on U , and
its gradient is given by

(4) ∇f(u) = ∇uφ(x(u), u) ∀u ∈ U,

where x(u) denotes the unique solution of (3).
Let the space F be endowed with an arbitrary norm ‖ · ‖. We further assume

that ∇f(u) is Lipschitz continuous on U with respect to ‖ · ‖, i.e., there exists some
L > 0 such that

‖∇f(u) −∇f(ũ)‖∗ ≤ L‖u− ũ‖ ∀u, ũ ∈ U.

Under the above assumptions, we easily observe that (i) problem (2) and its dual,
that is,

(5) min
u

{f(u) : u ∈ U},

are both solvable and have the same optimal value; and (ii) the dual problem (5) can
be suitably solved by Nesterov’s smooth minimization approach [19, 21].
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Denote by d(u) a prox-function of the set U . We assume that d(u) is continuous
and strongly convex on U with modulus σ > 0. Let u0 be the center of the set U
defined as

(6) u0 = arg min{d(u) : u ∈ U}.

Without loss of generality assume that d(u0) = 0. We now describe Nesterov’s smooth
minimization approach [19, 21] for solving the dual problem (5), and we will show
that it simultaneously solves the nonsmooth concave maximization problem (2).

Smooth minimization algorithm.

Let u0 ∈ U be given in (6). Set x−1 = 0 and k = 0.
(1) Compute ∇f(uk) and x(uk). Set xk = k

k+2xk−1 + 2
k+2x(uk).

(2) Find usd
k ∈ Argmin

{
〈∇f(uk), u− uk〉 + L

2 ‖u− uk‖2 : u ∈ U
}
.

(3) Find uag
k = argmin

{
L
σ d(u) +

∑k
i=0

i+1
2 [f(ui) + 〈∇f(ui), u− ui〉] : u ∈ U

}
.

(4) Set uk+1 = 2
k+3u

ag
k + k+1

k+3u
sd
k .

(5) Set k ← k + 1 and go to step 1.
end
The following property of the above algorithm is established in Theorem 2 of

Nesterov [21].
Theorem 2.1. Let the sequence {(uk, u

sd
k )}∞k=0 ⊆ U × U be generated by the

smooth minimization algorithm. Then for any k ≥ 0 we have
(7)

(k + 1)(k + 2)

4
f(usd

k ) ≤ min

{
L

σ
d(u) +

k∑
i=0

i + 1

2
[f(ui) + 〈∇f(ui), u− ui〉] : u ∈ U

}
.

We are ready to establish the main convergence result of the smooth minimization
algorithm for solving the nonsmooth concave maximization problem (2) and its dual
(5). Its proof is a generalization of the one given in a more special context in [21].

Theorem 2.2. After k iterations, the smooth minimization algorithm generates
a pair of approximate solutions (usd

k , xk) to problem (2) and its dual (5), respectively,
which satisfy the following inequality:

(8) 0 ≤ f(usd
k ) − g(xk) ≤

4LD

σ(k + 1)(k + 2)
.

Thus if the termination criterion f(usd
k ) − g(xk) ≤ ε is applied, the iteration com-

plexity of finding an ε-optimal solution to problem (2) and its dual (5) by the smooth
minimization algorithm does not exceed 2

√
LD/(σε), where

(9) D = max{d(u) : u ∈ U}.

Proof. In view of (3), (4), and the notation x(u), we have

(10) f(ui) + 〈∇f(ui), u− ui〉 = φ(x(ui), ui) + 〈∇uφ(x(ui), ui), u− ui〉.

Invoking the fact that the function φ(x, ·) is convex on U for every fixed x ∈ X, we
obtain

φ(x(ui), ui) + 〈∇uφ(x(ui), ui), u− ui〉 ≤ φ(x(ui), u).(11)
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Notice that x−1 = 0, and xk = k
k+2xk−1 + 2

k+2x(uk) for any k ≥ 0, which imply

(12) xk =

k∑
i=0

2(i + 1)

(k + 1)(k + 2)
x(ui).

Using (10), (11), (12), and the fact that the function φ(·, u) is concave on X for every
fixed u ∈ U , we have

k∑
i=0

(i + 1)[f(ui) + 〈∇f(ui), u− ui〉] ≤
k∑

i=0

(i + 1)φ(x(ui), u)

≤ 1

2
(k + 1)(k + 2)φ(xk, u)

for all u ∈ U . It follows from this relation, (7), (9), and (2) that

f(usd
k ) ≤ 4LD

σ(k + 1)(k + 2)

+ min
u

{
k∑

i=0

2(i + 1)

(k + 1)(k + 2)
[f(ui) + 〈∇f(ui), u− ui〉] : u ∈ U

}

≤ 4LD

σ(k + 1)(k + 2)
+ min

u∈U
φ(xk, u) =

4LD

σ(k + 1)(k + 2)
+ g(xk),

and hence the inequality (8) holds. The remaining conclusion directly follows from
(8).

Remark. We shall mention that Nesterov [20] developed the excessive gap tech-
nique for solving problem (2) and its dual (5) in a special context, which enjoys the
same iteration complexity as the smooth minimization algorithm described above.
In addition, it is not hard to observe that the technique proposed in [20] can be ex-
tended to solve problem (2) and its dual (5) in the aforementioned general framework,
provided that the subproblem

(13) min
u∈U

φ(x, u) + μd(u)

can be suitably solved for any given μ > 0 and x ∈ X. The computation of each iterate
of Nesterov’s excessive gap technique [20] is similar to that of the smooth minimization
algorithm except that the former method requires solving a prox subproblem in the
form of (13), but the latter one needs to solve the prox subproblem described in
step 3 above. When the function φ(x, ·) is affine for every fixed x ∈ X, these two
prox subproblems have the same form, and thus the computational cost of Nesterov’s
excessive gap technique [20] is almost the same as that of the smooth minimization
algorithm; however, for a more general function φ(·, ·), the computational cost of the
former method can be more expensive than that of the latter method.

The following results will be used to develop a variant of the smooth minimization
algorithm for sparse covariance selection in subsection 3.4.

Lemma 2.3. Problem (2) has a unique optimal solution, denoted by x∗. Moreover,
for any u∗ ∈ Argmin{f(u) : u ∈ U}, we have

(14) x∗ = arg max
x∈X

φ(x, u∗).
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Proof. We clearly know that problem (2) has an optimal solution. To prove its
uniqueness, it suffices to show that g(x) is strictly concave on X. Indeed, since X×U
is a convex compact set and φ(x, u) is continuous on X × U , it follows that for any
t ∈ (0, 1), x1 �= x2 ∈ X, there exist some ũ ∈ U such that

φ(tx1 + (1 − t)x2, ũ) = min
u∈U

φ(tx1 + (1 − t)x2, u).

Recall that φ(·, u) is strictly concave on X for every fixed u ∈ U . Therefore, we have

φ(tx1 + (1 − t)x2, ũ) > tφ(x1, ũ) + (1 − t)φ(x2, ũ),

≥ tminu∈U φ(x1, u) + (1 − t) minu∈U φ(x2, u),

which together with (2) implies that

g(tx1 + (1 − t)x2) > tg(x1) + (1 − t)g(x2)

for any t ∈ (0, 1), x1 �= x2 ∈ X, and hence g(x) is strictly concave on X as desired.
Note that x∗ is the optimal solution of problem (2). We clearly know that for any

u∗ ∈ Argmin{f(u) : u ∈ U}, (u∗, x∗) is a saddle point for problem (2), that is,

φ(x∗, u) ≥ φ(x∗, u∗) ≥ φ(x, u∗) ∀(x, u) ∈ X × U,

and hence we have

x∗ ∈ Arg max
x∈X

φ(x, u∗).

This, together with the fact that φ(·, u∗) is strictly concave on X, immediately yields
(14).

Theorem 2.4. Let x∗ be the unique optimal solution of (2), and let f∗ be the opti-
mal value of problems (2) and (5). Assume that the sequences {uk}∞k=0 and {x(uk)}∞k=0

are generated by the smooth minimization algorithm. Then the following statements
hold:

(1) f(uk) → f∗, x(uk) → x∗ as k → ∞;
(2) f(uk) − g(x(uk)) → 0 as k → ∞.
Proof. Recall from the smooth minimization algorithm that

uk+1 =
(
2uag

k + (k + 1)usd
k

)
/(k + 3) ∀k ≥ 0.

Since usd
k , uag

k ∈ U for all k ≥ 0, and U is a compact set, we have uk+1 − usd
k → 0

as k → ∞. Notice that f(u) is continuous on the compact set U , and hence it is
uniformly continuous on U . Then we further have f(uk+1) − f(usd

k ) → 0 as k → ∞.
Also, it follows from Theorem 2.2 that f(usd

k ) → f∗ as k → ∞. Therefore, we conclude
that f(uk) → f∗ as k → ∞.

Note that X is a compact set, and x(uk) ⊆ X for all k ≥ 0. To prove that
x(uk) → x∗ as k → ∞, it suffices to show that every convergent subsequence of
{x(uk)}∞k=0 converges to x∗ as k → ∞. Indeed, assume that {x(unk

)}∞k=0 is an
arbitrary convergent subsequence, and x(unk

) → x̃∗ as k → ∞ for some x̃∗ ∈ X.
Without loss of generality, assume that the sequence {unk

}∞k=0 → ũ∗ as k → ∞ for
some ũ∗ ∈ U (otherwise, one can consider any convergent subsequence of {unk

}∞k=0).
Using the result that f(uk) → f∗, we obtain that

φ (x(unk
), unk

) = f(unk
) → f∗ as k → ∞.
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Upon letting k → ∞ and using the continuity of φ(·, ·), we have φ(x̃∗, ũ∗) = f(ũ∗) =
f∗. Hence, it follows that

ũ∗ ∈ Arg min
u∈U

f(u), x̃∗ = arg max
x∈X

φ(x, ũ∗),

which together with Lemma 2.3 implies that x̃∗ = x∗. Hence, as desired, x(unk
) → x∗

as k → ∞.
As shown in Lemma 2.3, the function g(x) is continuous on X. This result,

together with statement 1, immediately implies that statement 2 holds.

3. Sparse covariance selection. In this section, we discuss the application of
the smooth optimization approach proposed in section 2 to sparse covariance selection.
More specifically, we briefly introduce sparse covariance selection in subsection 3.1
and show that it can be approximately solved as an l1-norm penalized maximum
likelihood estimation problem in subsection 3.2. In subsection 3.3, we address some
implementation details of the smooth optimization approach for solving this problem
and propose a variant of this approach in subsection 3.4.

3.1. Introduction of sparse covariance selection. In this subsection, we bri-
efly introduce sparse covariance selection. For more details, see d’Aspremont, Banerjee,
and El Ghaoui [10] and the references therein.

Given n variables with a Gaussian distribution N (0, C) for which the true covari-
ance matrix C is unknown, we are interested in estimating C from a sample covariance
matrix Σ by maximizing its likelihood while imposing a certain number of components
in the inverse of the estimation of C to zero. This problem is commonly known as
sparse covariance selection (see [11]). Since zeros in the inverse of covariance matrix
correspond to conditional independence in the model, sparse covariance selection can
be used to determine a robust estimate of the covariance matrix, and simultaneously
discover the sparse structure in the underlying graphical model.

Several approaches have been proposed for sparse covariance selection in litera-
ture. For example, Bilmes [4] proposed a method based on choosing statistical depen-
dencies according to conditional mutual information computed from training data.
The recent works [18, 12] involve identifying the Gaussian graphical models that are
best supported by the data and any available prior information on the covariance
matrix. Given a sample covariance matrix Σ ∈ Sn

+, d’Aspremont et al. [10] recently
formulated sparse covariance selection as the following estimation problem:

(15)
maxX log detX − 〈Σ, X〉 − ρCard(X)

s.t. α̃I � X � β̃I,

where ρ > 0 is a parameter controlling the trade-off between likelihood and cardinality,
and 0 ≤ α̃ < β̃ ≤ ∞ are the fixed bounds on the eigenvalues of the solution. For some
specific choices of ρ, the formulation (15) has been used for model selection in [1, 5],
and applied to speech recognition and gene network analysis (see [4, 13]).

Note that the estimation problem (15) itself is an NP-hard combinatorial problem
because of the penalty term Card(X). To overcome the computational difficulty,
d’Aspremont et al. [10] used an argument that is often used in regression techniques
(e.g., see [23, 6, 14]), where sparsity of the solution is concerned, to relax Card(X) to
eT |X|e, and obtained the following l1-norm penalized maximum likelihood estimation
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problem:

(16)
maxX log detX − 〈Σ, X〉 − ρeT |X|e

s.t. α̃I � X � β̃I.

Recently, Yuan and Lin [25] proposed a similar estimation problem for sparse covari-
ance selection given as follows:

(17)

maxX log detX − 〈Σ, X〉 − ρ
∑
i �=j

|Xij |

s.t. α̃I � X � β̃I,

with α̃ = 0 and β̃ = ∞. They showed that problem (17) can be suitably solved
by the interior point algorithm developed in Vandenberghe, Boyd, and Wu [24]. A
few other approaches have also been studied for sparse covariance selection by solving
some related maximum likelihood estimation problems in the literature. For example,
Huang, Liu, and Pourahmadi [17] proposed an iterative (heuristic) algorithm to min-
imize a nonconvex penalized likelihood. Dahl et al. [8, 7] applied Newton’s method,
the coordinate steepest descent method, and the conjugate gradient method for the
problems for which the conditional independence structure is partially known.

As shown in d’Aspremont et al. [10] (see also [3]) and Yuan and Lin [25], the l1-
norm penalized maximum likelihood estimation problems (16) and (17) are capable of
discovering effectively the sparse structure or, equivalently, the conditional indepen-
dence in the underlying graphical model. Also, it is not hard to see that the estimation
problem (17) becomes a special case of problem (16) if replacing Σ by Σ + ρI in (17).
For these reasons, in the remainder of this paper we focus on problem (16) only.

3.2. Nonsmooth strictly concave maximization reformulation. In this
subsection, we show that problem (16) can be reformulated as a nonsmooth strictly
concave maximization problem of the form (2).

Recall from subsection 3.1 that Σ ∈ Sn
+, and keep in mind that the notation | · |,

‖ · ‖, and ‖ · ‖F is defined in subsection 1.1. We first provide some tighter bounds on
the optimal solution of problem (16) for the case where α̃ = 0 and β̃ = ∞.

Proposition 3.1. Assume that α̃ = 0 and β̃ = ∞. Let X∗ ∈ Sn
++ be the unique

optimal solution of problem (16). Then we have αI � X∗ � βI, where

(18) α =
1

‖Σ‖ + nρ
, β = min

{
n− αTr(Σ)

ρ
, η

}

with

η =

{
min

{
eT |Σ−1|e, (n− ρ

√
nα)‖Σ−1‖ − (n− 1)α

}
if Σ is invertible;

2eT |(Σ + ρ
2I)

−1|e− Tr((Σ + ρ
2I)

−1) otherwise.

Proof. Let

(19) U := {U ∈ Sn : |Uij | ≤ 1 ∀ij}

and

(20) L(X,U) = log detX − 〈Σ + ρU,X〉 ∀(X,U) ∈ Sn
++ × U .
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Note that X∗ ∈ Sn
++ is the optimal solution of problem (16). It can be easily shown

that there exist some U∗ ∈ U such that (X∗, U∗) is a saddle point of L(·, ·) on Sn
++×U ,

that is,

X∗ = arg min
X∈Sn

++

L(X,U∗), U∗ ∈ Arg min
U∈U

L(X∗, U).

The above relations along with (19) and (20) immediately yield

(21) X∗(Σ + ρU∗) = I, 〈X∗, U∗〉 = eT |X∗|e.

Hence, we have

X∗ = (Σ + ρU∗)−1 � 1

‖Σ‖ + ρ‖U∗‖I,

which together with (19) and the fact U∗ ∈ U implies that X∗ � 1
‖Σ‖+nρI. Thus, as

desired, X∗ � αI, where α is given in (18).
We next bound X∗ from above. In view of (21), we have

(22) 〈X∗,Σ〉 + ρeT |X∗|e = n,

which together with the relation X∗ � αI implies that

(23) eT |X∗|e ≤ n− αTr(Σ)

ρ
.

Now let X(t) := (Σ + tρI)−1 for t ∈ (0, 1). By concavity of log det(·), one can easily
see that X(t) maximizes the function log det(·) − 〈Σ + tρI, ·〉 over Sn

++. Using this
observation and the definition of X∗, we can have

log detX∗ − 〈Σ + tρI,X∗〉 ≤ log detX(t) − 〈Σ + tρI,X(t)〉,

log detX(t) − 〈Σ, X(t)〉 − ρeT |X(t)|e ≤ log detX∗ − 〈Σ, X∗〉 − ρeT |X∗|e.

Adding the above two inequalities upon some algebraic simplification, we obtain that

eT |X∗|e− tTr(X∗) ≤ eT |X(t)|e− tTr(X(t)),

and hence

(24) eT |X∗|e ≤ eT |X(t)|e− tTr(X(t))

1 − t
∀t ∈ (0, 1).

If Σ is invertible, upon letting t ↓ 0 on both sides of (24), we have

eT |X∗|e ≤ eT |Σ−1|e.

Otherwise, letting t = 1/2 in (24), we obtain

eT |X∗|e ≤ 2eT
∣∣∣∣(Σ +

ρ

2
I
)−1

∣∣∣∣ e− Tr

((
Σ +

ρ

2
I
)−1

)
.

Combining the above two inequalities and (23), we have

(25) ‖X∗‖ ≤ ‖X∗‖F ≤ eT |X∗|e ≤ min

{
n− αTr(Σ)

ρ
, γ

}
,
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where

γ =

{
eT |Σ−1|e if Σ is invertible;

2eT |(Σ + ρ
2I)

−1|e− Tr((Σ + ρ
2I)

−1) otherwise.

Further, using the relation X∗ � αI, we obtain that

eT |X∗|e ≥ ‖X∗‖F ≥
√
nα,

which together with (22) implies that

Tr(X∗Σ) ≤ n− ρ
√
nα.

This inequality, along with the relation X∗ � αI, yields

λmin(Σ)((n− 1)α + ‖X∗‖) ≤ Tr(X∗Σ) ≤ n− ρ
√
nα.

Hence if Σ is invertible, we further have

‖X∗‖ ≤ (n− ρ
√
nα)‖Σ−1‖ − (n− 1)α.

This together with (25) implies that X∗ � βI, where β is given in (18).
Remark. Some bounds on X∗ were also derived in d’Aspremont, Banerjee, and

El Ghaoui [10]. In contrast with their bounds, our bounds given in (18) are tighter.
Moreover, our approach for deriving the above bounds can be generalized to handle
the case where α̃ > 0 and β̃ = ∞, but their approach cannot. Indeed, if α̃ > 0 and
β̃ = ∞, we can set α = α̃ and replace the above X(t) by the optimal solution of

maxX log detX − 〈Σ + ρI,X〉

s.t. α̃I � X,

which has a closed-form expression. By following a similar derivation as above, one
can obtain a positive scalar β such that X∗ � βI. In addition, for the case where
α̃ = 0 and 0 < β̃ < ∞, one can set β = β̃ and easily show that X∗ ≥ αI, where
α = βe−β(Tr(Σ)+nρ).

From the above discussion, we conclude that problem (16) is equivalent to the
following problem:

(26)
maxX log detX − 〈Σ, X〉 − ρeT |X|e

s.t. αI � X � βI

for some 0 < α < β < ∞.
We further observe that problem (26) can be rewritten as

(27) max
X∈X

min
U∈U

log detX − 〈Σ + ρU,X〉,

where U is defined in (19), and X is defined as follows:

(28) X := {X ∈ Sn : αI � X � βI}.

Therefore, we conclude that problem (16) is equivalent to (27). For the remainder of
the paper, we will focus on problem (27) only.
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3.3. Smooth optimization method for sparse covariance selection. In
this subsection, we describe the implementation details of the smooth minimization
algorithm proposed in section 2 for solving problem (27). We also compare the com-
plexity of this algorithm with interior point methods, and two other first-order meth-
ods studied in d’Aspremont et al. [10], that is, Nesterov’s smooth approximation
scheme and block-coordinate descent method.

We first observe that the sets X and U both lie in the space Sn, where X and
U are defined in (28) and (19), respectively. Let Sn be endowed with the Frobenius
norm, and let d̃(X) = log detX for X ∈ X . Then for any X ∈ X , we have

∇2d̃(X)[H,H] = −Tr(X−1HX−1H) ≤ −β−2‖H‖2
F

for all H ∈ Sn, and hence, d̃(X) is strongly concave on X with modulus β−2. Using
this result and Theorem 1 of [21], we immediately conclude that ∇f(U) is Lipschitz
continuous with constant L = ρ2β2 on U , where

(29) f(U) := max
X∈X

log detX − 〈Σ + ρU,X〉 ∀U ∈ U .

Denote the unique optimal solution of problem (29) by X(U). For any U ∈ U , we can
compute X(U), f(U), and ∇f(U) as follows.

Let Σ + ρU = Qdiag(γ)QT be an eigenvalue decomposition of Σ + ρU such that
QQT = I. For i = 1, . . . , n, let

λi =

{
min{max{1/γi, α}, β} if γi > 0;

β otherwise.

It is not hard to show that

(30) X(U) = Qdiag(λ)QT , f(U) = −γTλ +

n∑
i=1

log λi, ∇f(U) = −ρX(U).

From the above discussion, we see that problem (27) has exactly the same form
as (2) and also satisfies all assumptions imposed on problem (2). Therefore, it can
be suitably solved by the smooth minimization algorithm proposed in section 2. The
implementation details of this algorithm for problem (27) are described as follows.

Given U0 ∈ U , let d(U) = ‖U − U0‖2
F /2 be the proximal function on U , which is

strongly convex function with modulus σ = 1. For our specific choice of the norm and
d(U), we clearly see that steps 2 and 3 of the smooth minimization algorithm can be
solved as a problem of the form

V = arg min
U∈U

〈G,U〉 + ‖U‖2
F /2

for some G ∈ Sn. In view of (19), we see that

Vij = max{min{−Gij , 1},−1}, i, j = 1, . . . , n.

In addition, for any X ∈ X , we define

(31) g(X) := log detX − 〈Σ, X〉 − ρeT |X|e.

For the ease of comparison with its latter variant, we now present a complete
version of the aforementioned smooth minimization algorithm for solving problem
(27) and its dual.
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Smooth minimization algorithm for covariance selection (SMACS).

Let ε > 0 and U0 ∈ U be given. Set X−1 = 0, L = ρ2β2, σ = 1, and k = 0.
(1) Compute ∇f(Uk) and X(Uk). Set Xk = k

k+2Xk−1 + 2
k+2X(Uk).

(2) Find Usd
k = argmin

{
〈∇f(Uk), U − Uk〉 + L

2 ‖U − Uk‖2
F : U ∈ U

}
.

(3) Find Uag
k = argmin{ L

2σ‖U − U0‖2
F +

∑k
i=0

i+1
2 [f(Ui) + 〈∇f(Ui), U − Ui〉] :

U ∈ U}.
(4) Set Uk+1 = 2

k+3U
ag
k + k+1

k+3U
sd
k .

(5) Set k ← k + 1. Go to step 1 until f(Usd
k ) − g(Xk) ≤ ε.

end
The iteration complexity of the above algorithm for solving problem (27) is es-

tablished in the following theorem.
Theorem 3.2. The iteration complexity performed by the algorithm SMACS

for finding an ε-optimal solution to problem (27) and its dual does not exceed
√

2ρβ
maxU∈U ‖U − U0‖F /

√
ε, and moreover, if U0 = 0, it does not exceed

√
2ρβn/

√
ε.

Proof. From the above discussion, we know that L = ρ2β2, D = maxU∈U ‖U −
U0‖2

F /2, and σ = 1, which together with Theorem 2.2 immediately implies that the
first part of the statement holds. Further, if U0 = 0, we easily obtain from (19) that
D = maxU∈U ‖U‖2

F /2 = n2/2. The second part of the statement directly follows from
this result and Theorem 2.2.

Remark. By the definition of U (see (19)), we can easily show that minU0∈U
maxU∈U ‖U − U0‖F has a unique minimizer U0 = 0. This result together with The-
orem 3.2 implies that the initial point U0 = 0 gives the optimal worst-case iteration
complexity for the algorithm SMACS.

Alternatively, d’Aspremont et al. [10] applied Nesterov’s smooth approximation
scheme [21] to solve problem (27). More specifically, let ε > 0 be the desired accuracy,
and let

d̂(U) = ‖U‖2
F /2, D̂ = max

U∈U
d̂(U) = n2/2.

As shown in [21], the nonsmooth function g(X) defined in (31) is uniformly approxi-
mated by the smooth function

gε(X) = min
U∈U

log detX − 〈Σ + ρU,X〉 − ε

2D̂
d̂(U)

on X with the error at most by ε/2, and, moreover, the function gε(X) has a Lipschitz
continuous gradient on X with some constant L(ε) > 0. Nesterov’s smooth optimiza-
tion technique [19, 21] is then applied to solve the perturbed problem maxX∈X gε(X),
and problem (27) is accordingly solved. It was shown in [10] that the iteration com-
plexity of this approach for finding an ε-optimal solution to problem (27) does not
exceed

(32)
2
√

2ρβn1.5 log κ

ε
+ κ

√
n log κ

ε
,

where κ := β/α.
In view of (32) and Theorem 3.2, we conclude that the smooth optimization

approach improves upon Nesterov’s smooth approximation scheme at least by a factor
of O(

√
n log κ/

√
ε) in terms of the iteration complexity for solving problem (27).

Moreover, the computational cost per iteration of the former approach is at least as
cheap as that of the latter one.
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d’Aspremont et al. [10] also studied a block-coordinate descent method for solving
problem (16) with α̃ = 0 and β̃ = ∞. Each iterate of this method requires computing
the inverse of an (n − 1) × (n − 1) matrix and solving a box constrained quadratic
programming with n−1 variables. As mentioned in section 3 of [10], this method has
a local linear convergence rate. However, its global iteration complexity for finding
an ε-optimal solution is theoretically unknown. Moreover, this method is not suitable
for solving problem (16) with α̃ > 0 or β̃ < ∞.

In addition, we observe that problem (26) (also (16)) can be reformulated as a
constrained smooth convex problem that has an explicit O(n2)-logarithmically homo-
geneous self-concordant barrier function. Thus, it can be suitably solved by interior
point methods (see Nesterov and Nemirovskii [22] and Vandenberghe, Boyd, and Wu
[24]). The worst-case iteration complexity of interior point methods for finding an
ε-optimal solution to (26) is O(n log(ε0/ε)), where ε0 is an initial gap. Each iterate
of interior point methods requires O(n6) arithmetic cost for assembling and solving
a typically dense Newton system with O(n2) variables. Thus, the total worst-case
arithmetic cost of interior point methods for finding an ε-optimal solution to (26) is
O(n7 log(ε0/ε)). In contrast to interior point methods, the algorithm SMACS requires
O(n3) arithmetic cost per iteration dominated by eigenvalue decomposition and ma-
trix multiplication of n × n matrices. Based on this observation and Theorem 3.2,
we conclude that the overall worst-case arithmetic cost of the algorithm SMACS for
finding an ε-optimal solution to (26) is O(ρβn4/

√
ε), which is substantially superior

to that of interior point methods, provided that ρβ is not too large and ε is not too
small.

3.4. Variant of the smooth minimization algorithm. As discussed in sub-
section 3.3, the algorithm SMACS has a nice theoretical complexity in contrast with
interior point methods, Nesterov’s smooth approximation scheme, and the block-
coordinate descent method. However, its practical performance is still not very at-
tractive (see section 4). To enhance the computational performance, we propose a
variant of the algorithm SMACS for solving problem (27) in this subsection.

Our first concern of the algorithm SMACS is that the eigenvalue decomposition
of two n × n matrices is required per iteration. Indeed, the eigenvalue decomposi-
tion of Σ + ρUk and Σ + ρUsd

k is needed at steps 1 and 5 to compute ∇f(Uk) and
f(Usd

k ), respectively. We also know that the eigenvalue decomposition is one of major
computations for the algorithm SMACS. To reduce the computational cost, we now
propose a new termination criterion other than f(Usd

k ) − g(Xk) ≤ ε that is used in
the algorithm SMACS. In view of Theorem 2.4, we know that

f(Uk) − g(X(Uk)) → 0 as k → ∞.

Thus, f(Uk) − g(X(Uk)) ≤ ε can be used as an alternative termination criterion.
Moreover, it follows from (30) that the quantity f(Uk)−g(X(Uk)) is readily available
in step 1 of the algorithm SMACS with almost no additional cost. We easily see
that the algorithm SMACS with this new termination criterion would require only
one eigenvalue decomposition per iteration. Despite this clear advantage, we shall
mention that the iteration complexity of the resulting algorithm is unfortunately
unknown. Nevertheless, in practice we have found that the number of iterations
performed by the algorithm SMACS with the above two different termination criteria
are almost same. Thus, f(uk)−g(x(uk)) ≤ ε is a useful practical termination criterion.

For sparse covariance selection, the penalty parameter ρ is usually small, but the
parameter β can be fairly large. In view of Theorem 3.2, we know that the iteration
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complexity of the algorithm SMACS for solving problem (27) is proportional to β.
Therefore, when β is too large, the complexity and practical performance of this
algorithm become unattractive. To overcome this drawback, we will propose one
strategy to dynamically update β.

Let X∗ be the unique optimal solution of problem (27). For any β̂ ∈ [λmax(X
∗), β],

we easily observe that X∗ is also the unique optimal solution to the following problem:

(33) (Pβ̂) max
X∈Xβ̂

min
U∈U

log detX − 〈Σ + ρU,X〉,

where U is defined in (19) and Xβ̂ is given by

Xβ̂ := {X : αI � X � β̂I}.

In view of Theorem 3.2, the iteration complexity of the algorithm SMACS for problem
(33) is lower than that for problem (27), provided β̂ ∈ [λmax(X

∗), β). Hence, ideally

we set β̂ = λmax(X
∗), which would give the lowest iteration complexity, but unfor-

tunately λmax(X
∗) is unknown. However, we can generate a sequence {β̂k}∞k=0 that

asymptotically approaches λmax(X
∗) as the algorithm progresses. Indeed, in view of

Theorem 2.4, we know that X(Uk) → X∗ as k → ∞, and we obtain that

λmax(X(Uk)) → λmax(X
∗) as k → ∞.

Therefore, we see that {λmax(X(Uk))}∞k=0 can be used to generate a sequence {β̂k}∞k=0

that asymptotically approaches λmax(X
∗). We next propose a strategy to generate

such a sequence {β̂k}∞k=0.
For convenience of presentation, we introduce some new notation. Given any

U ∈ U and β̂ ∈ [α, β], we define

Xβ̂(U) := arg max
X∈Xβ̂

log detX − 〈Σ + ρU,X〉,(34)

fβ̂(U) := max
X∈Xβ̂

log detX − 〈Σ + ρU,X〉.(35)

Definition 1. Given any U ∈ U and β̂ ∈ [α, β], Xβ̂(U) is called “active” if

λmax(Xβ̂(U)) = β̂ and β̂ < β; otherwise it is called “inactive.”

Let ς1, ς2 > 1, and ς3 ∈ (0, 1) be given and fixed. Assume that Uk ∈ U and

β̂k ∈ [α, β] are given at the beginning of the kth iteration for some k ≥ 0. We now

describe the strategy for generating the next iterate Uk+1 and β̂k+1 by considering
the following three different cases:

(1) If Xβ̂k
(Uk) is active, find the smallest s ∈ Z+ such that Xβ̄(Uk) is inactive,

where β̄ = min{ςs1 β̂k, β}. Set β̂k+1 = β̄, and apply the algorithm SMACS for
problem (Pβ̂k+1

) starting with the point Uk and set its next iterate to be
Uk+1.

(2) If Xβ̂k
(Uk) is inactive and λmax(Xβ̂k

(Uk)) ≤ ς3β̂k, set β̂k+1 = max{min{ς2
λmax(Xβ̂k

(Uk)), β}, α}. Apply the algorithm SMACS for problem (Pβ̂k+1
)

starting with the point Uk, and set its next iterate to be Uk+1.
(3) If Xβ̂k

(Uk) is inactive and λmax(Xβ̂k
(Uk)) > ς3β̂k, set β̂k+1 = β̂k. Continue

the algorithm SMACS for problem (Pβ̂k
), and set its next iterate to be Uk+1.
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For the sequences {Uk}∞k=0 and {β̂k}∞k=0 recursively generated above, we observe
that the sequence {Xβ̂k+1

(Uk)}∞k=0 is always inactive. This together with (34), (35),

(29), and the fact that β̂k ≤ β for k ≥ 0 implies that

(36) f(Uk) = fβ̂k+1
(Uk), ∇f(Uk) = ∇fβ̂k+1

(Uk) ∀k ≥ 0.

Therefore, the new termination criterion f(Uk) − g(X(Uk)) ≤ ε can be replaced by

(37) fβ̂k+1
(Uk) − g(Xβ̂k+1

(Uk)) ≤ ε

accordingly.
We now incorporate into the algorithm SMACS the new termination criterion

(37) and the aforementioned strategy for generating a sequence {β̂k}∞k=0 that asymp-
totically approaches λmax(X

∗), and we obtain a variant of the algorithm SMACS for
solving problem (27). For convenience of presentation, we omit the subscript k from

β̂k.
Variant of the smooth minimization algorithm for covariance selec-

tion (VSMACS).

Let ε > 0, ς1, ς2 > 1, and ς3 ∈ (0, 1) be given. Choose a U0 ∈ U . Set β̂ = β,
L = ρ2β2, σ = 1, and k = 0.

(1) Compute Xβ̂(Uk) according to (30).

(1a) If Xβ̂(Uk) is active, find the smallest s ∈ Z+ such that Xβ̄(Uk) is inac-

tive, where β̄ = min{ςs1 β̂, β}. Set k = 0, U0 = Uk, β̂ = β̄, L = ρ2β̂2, and
go to step 2.

(1b) If Xβ̂(Uk) is inactive and λmax(Xβ̂(Uk)) ≤ ς3β̂, set k = 0, U0 = Uk,

β̂ = max{min{ς2λmax(Xβ̂(Uk)), β}, α}, and L = ρ2β̂2.

(2) If fβ̂(Uk)− g(Xβ̂(Uk)) ≤ ε, terminate. Otherwise, compute ∇fβ̂(Uk) accord-

ing to (30).
(3) Find Usd

k = argmin{〈∇fβ̂(Uk), U − Uk〉 + L
2 ‖U − Uk‖2

F : U ∈ U}.
(4) Find Uag

k = argmin{ L
2σ‖U − U0‖2

F +
∑k

i=0
i+1
2 [fβ̂(Ui) + 〈∇fβ̂(Ui), U − Ui〉] :

U ∈ U}.
(5) Set Uk+1 = 2

k+3U
ag
k + k+1

k+3U
sd
k .

(6) Set k ← k + 1, and go to step 1.
end
We next establish some preliminary convergence properties of the above algo-

rithm.
Proposition 3.3. For the algorithm VSMACS, the following properties hold:
(1) Suppose that the algorithm VSMACS terminates at some iterate (Xβ̂(Uk), Uk).

Then (Xβ̂(Uk), Uk) is an ε-optimal solution to problem (27) and its dual.

(2) Suppose that β̂ is updated only for a finite number of times. Then the algo-
rithm VSMACS terminates in a finite number of iterations and produces an
ε-optimal solution to problem (27) and its dual.

Proof. For the final iterate (Xβ̂(Uk), Uk), we clearly know that fβ̂(Uk)−g(Xβ̂(Uk))

≤ ε, and Xβ̂(Uk) is inactive. As shown in (36), f(Uk) = fβ̂(Uk). Hence, we have

f(Uk) − g(Xβ̂(Uk)) ≤ ε. We also know that Uk ∈ U , and Xβ̂(Uk) ∈ X due to

β̂ ∈ [α, β]. Thus, statement 1 immediately follows. After the last update of β̂, the
algorithm VSMACS behaves exactly like the algorithm SMACS as applied to solve
problem (Pβ̂) except with the termination criterion f(Uk) − g(Xβ̂(Uk)) ≤ ε. Thus, it
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follows from statement 1 and Theorem 2.4 that statement 2 holds. Thus, it follows
from statement 1 and Theorem 2.4 that statement 2 holds.

4. Computational results. In this section, we compare the performance of the
smooth minimization approach and its variant proposed in this paper with other first-
order methods studied in [10, 16], that is, Nesterov’s smooth approximation scheme
and block-coordinate descent method for solving problem (16) (or, equivalently, (27))
on a set of randomly generated instances.

All instances used in this section were randomly generated in the same manner
as described in d’Aspremont et al. [10]. First, we generate a sparse invertible matrix
A ∈ Sn with positive diagonal entries and a density prescribed by . We then generate
the matrix B ∈ Sn by

B = A−1 + τV,

where V ∈ Sn is an independent and identically distributed uniform random matrix,
and τ is a small positive number. Finally, we obtain the following randomly generated
sample covariance matrix:

Σ = B − min{λmin(B) − ϑ, 0}I,

where ϑ is a small positive number. In particular, we set  = 0.01, τ = 0.15, and
ϑ = 1.0e− 4 for generating all instances.

As discussed in section 3.3, our smooth minimization approach has much better
worst-case iteration complexity than Nesterov’s smooth approximation scheme studied
in d’Aspremont et al. [10] for problem (27). However, it is unknown how their practical
performance differs from each other. In the first experiment, we compare the practical
performance of our smooth minimization approach and its variant with Nesterov’s
smooth approximation scheme studied in d’Aspremont et al. [10] for problem (27)
with α = 0.1, β = 10, and ρ = 0.5. For convenience of presentation, we label these
three first-order methods as SM, VSM, and NSA, respectively. The codes for them
are written in MATLAB. More specifically, the code for NSA follows the algorithm
presented in d’Aspremont et al. [10], and the codes for SM and VSM are written in
accordance with the algorithms SMACS and VSMACS, respectively. Moreover, we
set ς1 = ς2 = 1.05 and ς3 = 0.95 for the algorithm VSMACS. These three methods
terminate once the duality gap is less than ε = 0.1. All computations are performed
on an Intel Xeon 2.66 GHz machine with Red Hat Linux version 8.

The performance of the methods NSA, SM, and VSM for the randomly generated
instances are presented in Table 1. The row size n of each sample covariance matrix Σ
is given in column one. The numbers of iterations of NSA, SM, and VSM are given in
columns two to four, the objective function values are given in columns five to seven,
and the CPU times (in seconds) are given in the last three columns, respectively.
From Table 1, we conclude that (i) the method SM, namely, the smooth minimization
approach, outperforms substantially the method NSA, that is, Nesterov’s smooth ap-
proximation scheme; and (ii) the method VSM, namely, the variant of the smooth
minimization approach, substantially outperforms the other two methods. In addi-
tion, we see from this experiment that Nesterov’s smooth minimization approach [19]
is generally more appealing than his smooth approximation scheme [21] whenever
the problem can be solved as an equivalent smooth problem. Nevertheless, we shall
mention that the latter approach has a much wider field of application (e.g., see [21]),
where the former approach cannot be applied.
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Table 1

Comparison of NSA, SM and VSM.

Problem Iter Obj Time

n nsa sm vsm nsa sm vsm nsa sm vsm

50 3657 457 20 −76.399 −76.399 −76.393 49.0 2.7 0.1

100 7629 920 27 −186.717 −186.720 −186.714 900.4 38.4 0.4

150 20358 1455 49 −318.195 −318.194 −318.184 8165.7 188.8 2.0

200 27499 2294 102 −511.246 −511.245 −511.242 26172.5 698.8 9.2

250 45122 3060 128 −3793.255 −3793.256 −3793.257 87298.9 1767.9 19.8

300 54734 3881 161 −3187.163 −3187.171 −3187.172 184798.1 3994.0 45.5

350 64641 4634 182 −2756.717 −2756.734 −2756.734 351460.7 7613.9 83.6

400 74839 5308 176 −3490.640 −3490.667 −3490.667 614237.1 13536.7 116.9

From the above experiment, we have already seen that the method VSM outper-
forms substantially two other first-order methods, namely, SM and NSA for solving
problem (27). In the second experiment, we compare the performance of the method
VSM with the block-coordinate descent methods studied in d’Aspremont et al. [10]
and Friedman, Hastie, and Tibshirani [16] on relatively large-scale instances. For con-
venience of presentation, we label these two methods BCD1 and BCD2, respectively.
The method BCD2 was developed very recently and is a slight variant of the method
BCD1. In particular, each iterate of BCD1 solves a box constrained quadratic pro-
gramming by means of interior point methods, but each iterate of BCD2 applies a
coordinate descent approach to solving a lasso (l1-regularized) least-squares problem,
which is the dual of the box constrained quadratic programming appearing in BCD1.
It is worth mentioning that the methods BCD1 and BCD2 are only applicable for
solving problem (16) with α̃ = 0 and β̃ = ∞. Thus, we only compare their per-
formance with our method VSM for problem (16) with such α̃ and β̃. As shown in
subsection 3.2, problem (16) with α̃ = 0 and β̃ = ∞ is equivalent to problem (27)
with α and β given in (18), and hence it can be solved by applying the method VSM
to the latter problem instead.

The code for the method BCD1 was written in MATLAB by d’Aspremont and
El Ghaoui [9], while the code for BCD2 was written in Fortran 90 by Friedman, Hastie,
and Tibshirani [15]. The methods BCD1 and VSM terminate once the duality gap is
less than ε = 0.1. The original code [15] for BCD2 uses the average absolute change
in the approximate solution as the termination criterion. In particular, the average
absolute change in the approximate solution is evaluated at the end of each cycle con-
sisting of n block-coordinate descent iterations, and their code terminates once it is
below a given accuracy (see [16, p. 6] for details). According to our computational ex-
perience, we found that with such a criterion BCD2 is extremely hard to terminate for
relatively large-scale instances (say n = 300) unless a maximum number of iterations
is set. Obviously, it is not easy to choose a suitable maximum number of iterations
for BCD2. Thus, to be as fair as possible to BCD1 and VSM, we simply replace their
termination criterion detailed in [15] for BCD2 by the one with the duality gap less
than ε = 0.1. In other words, the duality gap is computed at the end of each cycle
consisting of n block-coordinate descent iterations, and BCD2 terminates once it is
below ε = 0.1. It is worth remarking that the cost for computing a duality gap is
O(n3) since the inverse of an n×n symmetric matrix is needed. Thus, it is reasonable
to compute the duality gap once every n iterations rather than each iteration.
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Table 2

Comparison of BCD1, BCD2, and VSM.

Problem Iter Obj Time

n bcd1 bcd2 vsm bcd1 bcd2 vsm bcd1 bcd2 vsm

100 124 200 33 −186.522 −186.433 −186.522 22.3 0.1 0.5

200 531 600 109 −449.210 −449.179 −449.209 300.0 1.3 9.5

300 1530 1500 146 −767.615 −767.608 −767.614 2428.2 80.9 48.5

400 2259 2400 154 −1082.679 −1082.651 −1082.677 8402.4 298.7 112.3

500 3050 3500 154 −1402.503 −1402.457 −1402.502 22537.1 640.2 211.5

600 3705 4200 165 −1728.628 −1728.587 −1728.627 48950.4 1215.0 397.6

700 4492 4900 163 −2057.894 −2057.862 −2057.892 92052.7 1972.5 611.1

800 4958 5600 169 −2392.713 −2392.671 −2392.712 147778.9 2872.3 943.2

900 5697 6300 161 −2711.874 −2711.827 −2711.874 219644.3 3593.7 1268.5

1000 6536 7000 161 −3045.808 −3045.768 −3045.808 344687.8 6098.7 1710.0

Table 3

Comparison of BCD2 and VSM.

Problem Iter Obj Time

n bcd2 vsm bcd2 vsm bcd2 vsm

100 200 54 −186.433 −186.435 0.1 0.77

200 1200 239 −449.119 −449.122 2.1 21.6

300 3000 310 −767.525 −767.525 32.1 104.2

400 11778400 321 −1082.592 −1082.589 72000.0 223.3

500 6997000 309 −1402.420 −1402.413 72001.0 395.5

600 4637400 318 −1728.553 −1728.538 72004.0 765.2

700 3215100 310 −2057.823 −2057.804 72005.0 1330.0

800 2307200 309 −2392.644 −2392.623 72003.0 1789.2

900 1846800 289 −2711.806 −2711.784 72024.0 2394.0

1000 1257000 283 −3045.749 −3045.718 72051.0 3115.8

All computations are performed on an Intel Xeon 2.66 GHz machine with Red
Hat Linux version 8. The performance of the methods BCD1, BCD2, and VSM
for the randomly generated instances are presented in Table 2. The row size n of
each sample covariance matrix Σ is given in column one. The numbers of iterations
of BCD1, BCD2, and VSM are given in columns two to four, the objective func-
tion values are given in columns five to eight, and the CPU times (in seconds) are
given in the last three columns, respectively. From Table 2, we conclude that both
BCD2 and VSM substantially outperform BCD1. We also observe that our method
VSM outperforms BCD2 for almost all instances except two relatively small-scale
instances.

In the above experimentation, we compared the performance of BCD2 and VSM
for ε = 0.1. We next compare their performance on the same instances as above and
apply the same termination criterion as above except that we set ε = 0.01 and an
upper bound of 20 hours computation time (or 72,000 seconds) per instance for both
codes. The performance of the methods BCD2 and VSM is presented in Table 3. The
row size n of each sample covariance matrix Σ is given in column one. The numbers of
iterations of BCD2 and VSM are given in columns two to three, the objective function
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values are given in columns four to five, and the CPU times (in seconds) are given
in the last two columns, respectively. It shall be mentioned that BCD2 and VSM
are both feasible methods, and, moreover, (16) and (27) are maximization problems.
Therefore for these two methods, the larger the objective function value, the better.
From Table 3, we observe that up to accuracy ε = 0.01, the method BCD2 cannot
solve almost all instances within 20 hours except the first three relatively small-scale
ones, but our method VSM does solve each of these instances in less than one hour
and produces better objective function values for almost all instances except the first
three relatively small-scale ones. Also, it is interesting to observe that the number
of iterations for VSM nearly doubles as the accuracy parameter ε increases by one
digit, which is even better than the theoretical estimate, which is

√
10 according to

Theorem 3.2.

5. Concluding remarks. In this paper, we proposed a smooth optimization
approach for solving a class of nonsmooth strictly concave maximization problems.
We also discussed the application of this approach to sparse covariance selection and
proposed a variant of this approach. The computational results showed that the
variant of the smooth optimization approach substantially outperforms the latter
one, as well as two other first-order methods studied in d’Aspremont et al. [10] and
Friedman et al. [16].

As discussed in subsection 3.3, problem (27) has the same form as (2) and satisfies
all assumptions imposed on problem (2). Moreover, its associated objective function
φ(X,U) = log detX−〈Σ+ρU,X〉 is affine with respect to U for every fixed X ∈ Sn

++.
In view of these facts along with the remarks made in section 2, one can observe
that problem (27) can be suitably solved by Nesterov’s excessive gap technique [20].
Since the iterate complexity and the computational cost per iterate of this technique
is the same as those of the algorithm SMACS, we expect that the computational
performance of these two methods for solving (27) is similar. It would be interesting
to implement Nesterov’s excessive gap technique [20] and its variant (that is, the one
in a similar fashion to the algorithm VSMACS) and compare their computational
performance with SMACS and VSMACS, respectively.

Though the variant of the smooth optimization approach outperforms substan-
tially the smooth optimization approach, we are currently only able to establish some
preliminary convergence properties for it. A possible direction leading to a thorough
proof of its convergence would be to show that the updates on β̂ in the algorithm
VSMACS can occur only for a finite number of times. Given that VSMACS is
a nonmonotone algorithm, it is, however, highly challenging to analyze the behav-
ior of the sequences {Uk} and {Xβ̂(Uk)} and hence the total number of updates on

β̂. Interestingly, we observed in our implementation that when β̂ > λmax(X
∗), the

sequence {Xβ̂(Uk)} generated by the algorithm VSMACS satisfies λmax(Xβ̂(Uk)) ∈
[λmax(X

∗), β̂), where X∗ is the optimal solution of problem (27). Nevertheless, it
remains completely open whether or not this holds in general. In addition, the ideas
used in the variant of the smooth optimization approach are interesting in their own
right even when viewed as some heuristics. They could also be used to enhance
the practical performance of Nesterov’s first-order methods [19, 21] for solving some
general min-max problems.

The codes for the variant of the smooth minimization approach are written in
MATLAB and C, which are available online at www.math.sfu.ca/∼zhaosong. The
C code for this method can solve large-scale problems more efficiently, provided the
LAPACK package is suitably installed. We will plan to extend these codes for solving
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more general problems of the form

maxX log detX − 〈Σ, X〉 −
∑
ij

ωij |Xij |

s.t. α̃I � X � β̃I,

Xij = 0 ∀(i, j) ∈ Ω

for some set Ω, where ωij = ωji ≥ 0 for all i, j = 1, . . . , n, and 0 ≤ α̃ < β̃ ≤ ∞ are
some fixed bounds on the eigenvalues of the solution.
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mont for a careful discussion on the iteration complexity of Nesterov’s smooth ap-
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in debt to two anonymous referees for numerous insightful comments and suggestions,
which have greatly improved the paper.

REFERENCES

[1] J. Akaike, Information theory and an extension of the maximum likelihood principle, in Pro-
ceedings of the Second International Symposium on Information Theory, B. N. Petrov and
F. Csaki, eds., Akedemiai Kiado, Budapest, 1973, pp. 267–281.

[2] A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and
conic optimization, SIAM J. Optim., 16 (2006), pp. 697–725.

[3] O. Banerjee, L. El Ghaoui, A. d’Aspremont, and G. Natsoulis, Convex optimization
techniques for fitting sparse Gaussian graphical models, in ICML ’06: Proceedings of the
23rd International Conference on Machine Learning, ACM Press, New York, 2006, pp. 89–
96.

[4] J. A. Bilmes, Factored sparse inverse covariance matrices, in Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 2 (2000), pp. 1009–1012.

[5] K. P. Burnham and R. D. Anderson, Multimodel inference. Understanding AIC or BIC in
model selection, Sociol. Methods Res., 33 (2004), pp. 261–304.

[6] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput., 20 (1998), pp. 33–61.

[7] J. Dahl, V. Roychowdhury, and L. Vandenberghe, Maximum Likelihood Estimation of
Gaussian Graphical Models: Numerical Implementation and Topology Selection, manu-
script, University of California, Los Angeles, 2004.

[8] J. Dahl, L. Vandenberghe, and V. Roychowdhury, Covariance selection for nonchordal
graphs via chordal embedding, Optim. Methods Softw., 23 (2008), pp. 501–520.

[9] A. d’Aspremont and L. El Ghaoui, Covsel: First order methods for sparse covariance selec-
tion, ORFE Department, Princeton University, Princeton, NJ, 2006.

[10] A. d’Aspremont, O. Banerjee, and L. El Ghaoui, First-order methods for sparse covariance
selection, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 56–66.

[11] A. Dempster, Covariance selection, Biometrics, 28 (1972), pp. 157–175.
[12] A. Dobra and M. West, Bayesian Covariance Selection, ISDS working paper, Duke Univer-

sity, Durham, NC, 2004.
[13] A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West, Sparse graphical models

for exploring gene expression data, J. Multivariate Anal., 90 (2004), pp. 196–212.
[14] D. L. Donoho and J. Tanner, Sparse nonnegative solutions of underdetermined linear equa-

tions by linear programming, Proc. Natl. Acad. Sci., 102 (2005), pp. 9446–9451.
[15] J. Friedman, T. Hastie, and R. Tibshirani, Glasso: Graphical lasso for R, Department of

Statistics, Stanford University, Stanford, CA, 2007.
[16] J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the

graphical lasso, Biostatistics, 9 (2008), pp. 432–441.
[17] J. Z. Huang, N. Liu, and M. Pourahmadi, Covariance matrix selection and estimation via

penalised normal likelihood, Biometrika, 93 (2006), pp. 85–98.
[18] B. Jones, C. Carvalho, C. Dobra, A. Hans, C. Carter, and M. West, Experiments in

stochastic computation for high-dimensional graphical models, Statist. Sci., 20 (2005),
pp. 388–400.



SMOOTH OPTIMIZATION FOR SPARSE COVARIANCE SELECTION 1827

[19] Y. E. Nesterov, A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2), Dokl. Akad. Nauk SSSR, 269 (1983), pp. 543–547 (in Russian).

[20] Y. Nesterov, Excessive gap technique in nonsmooth convex minimization, SIAM J. Optim.,
16 (2005), pp. 235–249.

[21] Y. E. Nesterov, Smooth minimization of nonsmooth functions, Math. Programming, 103
(2005), pp. 127–152.

[22] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, SIAM, Philadelphia, 1994.

[23] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B,
58 (1996), pp. 267–288.

[24] L. Vandenberghe, S. Boyd, and S.-P. Wu, Determinant maximization with linear matrix
inequality constraints, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 499–533.

[25] M. Yuan and Y. Lin, Model selection and estimation in the Gaussian graphical model,
Biometrika, 94 (2007), pp. 19–35.



SIAM J. OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 19, No. 4, pp. 1828–1845

CONVERGENCE ANALYSIS OF GENERALIZED ITERATIVELY
REWEIGHTED LEAST SQUARES ALGORITHMS ON CONVEX

FUNCTION SPACES∗
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Abstract. The computation of robust regression estimates often relies on minimization of a
convex functional on a convex set. In this paper we discuss a general technique for a large class of
convex functionals to compute the minimizers iteratively, which is closely related to majorization-
minimization algorithms. Our approach is based on a quadratic approximation of the functional
to be minimized and includes the iteratively reweighted least squares algorithm as a special case.
We prove convergence on convex function spaces for general coercive and convex functionals F and
derive geometric convergence in certain unconstrained settings. The algorithm is applied to total
variation (TV) penalized quantile regression and is compared with a step size corrected Newton–
Raphson algorithm. It is found that typically in the first steps the iteratively reweighted least squares
algorithm performs significantly better, whereas the Newton type method outpaces the former only
after many iterations. Finally, in the setting of bivariate regression with unimodality constraints we
illustrate how this algorithm allows one to utilize highly efficient algorithms for special quadratic
programs in more complex settings.
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1. Introduction. The computation of robust parametric and nonparametric re-
gression estimators often requires the minimization of (convex) functionals on a set C
which is determined by a priori information on the model underlying the data. For
example, C can be a linear finite-dimensional space (linear model) or the set of iso-
tonic vectors m = (m1, . . . ,md) ∈ R

d, m1 ≤ . . . ≤ md, with d ≤ n. To this end the
functional

F (ρ)(m) =

n∑
i=1

ρ(ri(m))(1)

has to be minimized over C ⊂ R
d. Here r1, . . . , rn denote the (model-dependent)

residuals of n data pairs (Xi, Yi), 1 ≤ i ≤ n, and ρ a given loss function [17]. Taking
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†Fakultät für Mathematik, Universitätsstraße 150, Mathematik III, NA 3/70, D-44780 Bochum,

Germany (nicolai.bissantz@rub.de).
‡Institute of Mathematical Statistics and Actuarial Science, University of Bern, 3012 Bern,

Switzerland (dumbgen@stat.unibe.ch).
§Institute for Mathematical Stochastics, Georg-August-University Göttingen, 37073 Göttingen,

Germany (munk@math.uni.goettingen.de, bstrat@gmx.net).

1828



GENERALIZED ITERATIVELY REWEIGHTED LEAST SQUARES 1829

ρ(z) = z2/2 gives the ordinary least squares problem, while

ρ(z) = 2|z| ·
{

p z ≥ 0
1 − p z < 0

(2)

with 0 < p < 1 yields quantile regression [21, 30]. Other functions are Huber’s [16]
loss function

ρ(z) =

{
z2/2 |z| ≤ γ

γ|z| − γ2/2 |z| > γ

or the logistic loss function ρ(z) = γz log(cosh(z/γ)) [7] for some γ > 0. An important
extension of (1) are functionals

F (m) = F (ρ)(m) + λP (m) , λ ≥ 0,(3)

where P (m) denotes a penalizing term such as, for instance, the discrete total variation
semi-norm of m ∈ R

d,

P (m) =

d−1∑
j=1

|mj −mj+1| ;(4)

see [23, 22] or [27]. In this paper a generalization of the iteratively reweighted least
squares (IRLS) algorithm—therefore named GIRLS—is considered for minimization
of a functional F as in (3) over any convex subset C of R

d. This allows us to extend the
IRLS algorithm, for example, to situations where C is defined as the space of monotone
(or k-modal) vectors or to the problem of nonparametric regression estimates with
total variation semi-norm penalization of its discrete derivative.

The general idea of the IRLS algorithm (and variants of it) is to approximate the
functional F in a first step by smooth functionals Fδ such that Fδ → F pointwise as
δ ↘ 0. The collection (Fδ)δ>0 will be called a regularization of F (cf. Def. 1). In a
second step, for each given base point f ∈ C the functional Fδ will be approximated
by Gδ(f, .) (cf. Def. 2). Here Gδ : C × R

d → R is a functional which is chosen such
that a quick and numerically stable minimization can be performed. The resulting
minimizer will serve as an approximation for the minimizer m∗

δ of Fδ and hence for
a minimizer m∗ of F . In particular, if it is possible to choose Gδ as a polynomial of
degree two, the well-known IRLS algorithm may result [25, 28, 10].

The GIRLS algorithm can be summarized schematically as follows:
Preliminary Step: Determine a regularization (Fδ)δ>0 of F and corresponding
smooth approximations Gδ, δ > 0.

Step 1: Initialize δ > 0 and m
(0)
δ ∈ C.

Step 2: Repeat the following procedure until δ is sufficiently small: Compute

m
(k)
δ := argmin

m∈C
Gδ(m

(k−1)
δ ,m) for k = 1, 2, 3, . . .(5)

and terminate this iteration for a proper k = k(δ). Then replace (δ,m
(0)
δ ) with

(δ/2,m
(k(δ))
δ ).

Output: The final m
(k(δ))
δ is our approximate minimizer of F over C.

A more detailed description of this algorithm, including pseudocode and an ex-
plicit rule for k(δ) is provided in section 3.2.

The IRLS and related algorithms are based on the idea of majorizing functionals
by a sequence of quadratic approximations and subsequent minimization. These have
been treated extensively in the literature, e.g., [24, 19, 42, 29, 9, 18, 36, 37], and the
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references therein. However, in most cases convergence is only shown for C = R
d.

This simplifies proofs notably, since the minimizers can be represented as zeros of the
derivatives of the functional. For arbitrary convex C, however, the minimizers are
no longer represented solely by such equality constraints, instead inequalities occur.
Notable exceptions for general convex C are in [13], where however, the convergence
results are restricted to a special class of functionals, requiring, e.g., F (m) = O(‖m‖),
or [39], who show convergence on convex polyhedral sets under the assumption that
F is two times differentiable. Our findings generalize these results to the case of C
being an arbitrary convex closed set as well as to more general functionals which are
only required to be coercive and convex. This appears to be close to the weakest
possible set of assumptions required for a general proof of convergence. Our proof
adopts various arguments from convex analysis.

It is interesting to note that in the numerical literature the IRLS algorithm is
denoted as the Weiszfeld algorithm [40, 41] who suggested this algorithm to solve
the Fermat-Steiner-Weber problem [40, 41, 24, 19], which is known to the statistical
community as the computation of the spatial median (as mentioned in [5, 6, 11]).

The remainder of this paper is organized as follows. First, we motivate the GIRLS
algorithm for the special case of L1-regression in section 2. Then we present the GIRLS
algorithm in a general framework and prove various results about its convergence in
section 3. Its convergence to the minimizer m∗

δ and hence to m∗ as δ ↘ 0 will be shown
under very general assumptions (Theorem 2). Furthermore, in Theorem 5 we prove
geometric, or, more precisely, at least Q-linear convergence of the sequence (mk)k to
m∗

δ under slightly stronger conditions (cf. [39] and [3]), and guidance is provided on
the choice of the number of iterates in (5) and the regularization parameter δ. Finally,
we show in Theorem 3 that any convex and coercive functional F can be regularized
by a sequence Fδ s.t. each Fδ admits a quadratic approximation Gδ from above.

We stress that an advantage of the GIRLS approach is flexibility in the choice of Fδ

and Gδ. This choice can be driven by various aspects, such as computational efficiency
or rate of convergence (cf. Theorem 3). In this paper we emphasize the possibility to
make use of efficient algorithms already available for the minimization of Gδ, such as
the pool adjacent violators algorithm (PAVA) for isotonic weighted least squares ap-
proximation (see [33] for a comprehensive treatment). This is illustrated in section 4,
where we describe the construction of Fδ and Gδ in some specific cases explicitly. In
section 5 we discuss two numerical examples. In the first example we investigate in
detail numerical performance of the GIRLS algorithm for the case of total variation
(TV) penalized quantile regression. To this end the GIRLS algorithm is compared
with a step size corrected Newton–Raphson algorithm. It is found that typically it
outperforms the latter one in the first iteration steps significantly, in particular when
the initial value is far from the optimum. This finding coincides with other numerical
experiments, e.g., when applying the algorithms to L1-penalized Poisson regression.

In the second example we apply the GIRLS algorithm to a two-dimensional TV
minimization where we impose an additional unimodality constraint in one direction.
We show that the GIRLS algorithm allows us to include the PAVA for the univariate
unimodal subproblem, which is in general not possible for regression with two- or
higher dimensional predictor. Note also that PAVA type methods are not available
in general if an additional penalization term as in (3) is added. Again, the GIRLS
algorithm offers a possibility to include them in each updating step.

In summary, the main advantage of the GIRLS algorithm is twofold. First, it
is simple to perform and offers great flexibility for the choice of the approximating
functionals Gδ. Second, it allows us to combine various restrictions and minimization
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criteria (such as monotonicity constraints and roughness penalties). For such complex
minimization problems, simple and quick algorithms such as PAVA or Newton type
algorithms are not available in general, and more complicated and time consuming
algorithms such as quadratic programming or interior point methods become neces-
sary. Here the GIRLS algorithm represents a feasible alternative because it typically
requires in each updating step the computation of minimizers (e.g., a weighted L2

solution), which can be obtained easily. Further, our numerical experiments have
shown that a rather small number of updating steps give already satisfactory results
and the GIRLS algorithm outperfoms competitors in the first iterations, which is in
accordance with previous numerical findings (see, e.g., [39]). Hence, as a practical
rule of thumb, we find that the GIRLS algorithm is very simple to implement and
provides a quick improvement of an initial value by a few iterations. It can be im-
proved additionally by performing subsequent iterations by other, more sophisticated,
optimization algorithms.

2. L1-regression with the GIRLS algorithm. As a motivating example con-
sider the L1 linear regression problem for observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn)
in R

d×R. Assuming that Yi equals X�
i m plus a random error, the goal is to compute

m := argmin
m∈Rd

n∑
i=1

|Yi −X�
i m| = argmin

m∈Rd

F (m),(6)

an estimator of the unknown parameter vector m ∈ R
d. Iteratively reweighted least

squares is based on the idea that, in a first step, the L1-norm F , being a convex func-
tional, will be approximated (regularized) by a family of smooth convex functionals
Fδ, δ > 0, e.g.,

Fδ(m) =

n∑
i=1

hδ

(
Yi −X�

i m
)
,

where

hδ(z) = [z2 + δ]1/2.(7)

The regularization of a nonsmooth functional as in (6) by (7) is well known, of
course (see, e.g., [38]). It is supposed that minimization of Fδ is numerically bet-
ter tractable than minimization of the original functional F in in (6). Then mδ :=
argminm∈Rd Fδ(m) will be an approximation of m (cf. Theorem 1). In order to com-
pute mδ the following recursion formula is iterated:

m
(k+1)
δ = argmin

m∈Rd

n∑
i=1

(Yi −X�
i m)2

hδ(Yi −X�
i m

(k)
δ )

.(8)

Note that in each updating step the computation of m
(k+1)
δ means solving a simple

diagonally reweighted least squares minimization problem, which can easily be done by
using standard methods such as, e.g., Householder QR decomposition. As a starting

value m
(0)
δ any (reasonable) choice, e.g., the least squares estimator, may serve.

It is instructive to indicate a proof for this simple case. The basic idea is to
approximate hδ(z) from above for any given real number r by a quadratic function
gδ(r, z) = c(r) + a(r)z2/2 of z such that gδ(r, ·) ≥ hδ and gδ(r, r) = hδ(r). This can
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be achieved indeed with

gδ(r, z) = hδ(r) + hδ(r)
−1(z2 − r2)/2;(9)

see also Lemma 1 in section 4. The intrinsic reason is that hδ is an even convex
function whose second derivative h′′

δ is nonincreasing on [0,∞). Thus m
(k+1)
δ in (8) is

the minimizer of

Gδ(m
(k)
δ ,m) :=

n∑
i=1

gδ

(
Yi −X�

i m
(k)
δ , Yi −X�

i m
)

over all m ∈ R
d. Note that Fδ as well as Gδ(m

(k)
δ , ·) are convex functions such that

Fδ(m) ≤ Gδ(m
(k)
δ ,m) with equality for m = m

(k)
δ , and their gradients satisfy

∇Fδ(m
(k)
δ ) = ∇Gδ(m

(k)
δ ,m

(k)
δ ).

Here and in the following the gradient of Gδ is defined with respect to the second
argument. Thus

Fδ(m
(k+1)
δ ) ≤ Gδ(m

(k)
δ ,m

(k+1)
δ ) ≤ Gδ(m

(k)
δ ,m

(k)
δ ) = Fδ(m

(k)
δ ),

and the second inequality in the latter display is strict if, and only if, m
(k)
δ differs

from the solution mδ. Consequently, Fδ(m
(k)
δ ) is either strictly decreasing in k, or

m
(k)
δ = mδ for sufficiently large k. This fact was established by [25] for the particular

problem (6). Convergence of m
(k)
δ to mδ as k → ∞ follows from our general Theorem

2 below.

3. The GIRLS algorithm.

3.1. Main theorem and convergence analysis. Returning to the general
setting, we always assume that our target functional F : R

d → R is convex and
coercive, i.e., F (x) → ∞ as ‖x‖ → ∞. Moreover, let C ⊂ R

d be closed and convex.
This entails that the set

M∗ := argmin
m∈C

F (m)

is a nonvoid, compact, and convex subset of C. Now the first step is to approximate F
by a family of strictly convex and smooth functionals Fδ, δ > 0, converging pointwise
to F as δ ↘ 0. This is summarized in the following definition.

Definition 1. A functional Fδ : R
d → R is called regular, if Fδ is strictly

convex, continuously differentiable, and coercive. A regularization of F consists of
regular functionals Fδ, δ > 0, such that Fδ converges pointwise to F as δ ↘ 0.

Theorem 4 below shows that there exists always a regularization (Fδ)δ>0 for F .
It follows from strict convexity and coercivity of Fδ that it has a unique minimizer

m∗
δ := argmin

m∈C
Fδ(m),

which serves as an approximation to M∗. The next theorem provides an exact for-
mulation of this fact.
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Theorem 1 (approximation of M∗
). Let F : R

d → R be a convex and coercive
functional, and let (Fδ)δ>0 be a regularization of F . Then, as δ ↘ 0,

Fδ(m
∗
δ)

F (m∗
δ)

}
→ min

x∈C
F (x) and d(m∗

δ ,M
∗) := inf

y∈M∗
‖m∗

δ − y‖ → 0.

Before proving Theorem 1 we summarize some well-known facts about convex
functionals (see [34]), which we utilize in the subsequent proofs. A convex functional
on R

d is automatically continuous. If a sequence of convex functionals on R
d converges

pointwise, then the convergence is uniform on arbitrary bounded sets. Finally, if
H : R

d → R is convex and differentiable, and if C ⊂ R
d is closed and convex, then

f ∈ C minimizes H over C if, and only if,

∇H(f)�(m− f) ≥ 0 for all m ∈ C.(10)

Proof of Theorem 1. For any set S ⊂ R
d let ‖F − Fδ‖S be the supremum norm

of F − Fδ over S. Since M∗ is compact, for any fixed ε > 0, the set Bε := {m ∈
C : d(m,M∗) ≤ ε} is compact, too. Thus ‖F − Fδ‖Bε

tends to zero as δ ↘ 0. In
particular, for sufficiently small δ > 0,

min
m∈C : d(m,M∗)=ε

Fδ(m) > max
m∈M∗

Fδ(m).(11)

To verify (11), first note that it holds with F in place of Fδ, by definition of M∗. Since
Fδ → F uniformly on Bε, (11) holds for sufficiently small δ > 0. But (11) implies that
Fδ(mo) > minm∈M∗ Fδ(m) for any mo ∈ C \ Bε, and hence m∗

δ ∈ Bε. Let m∗ be the
metric projection of mo onto M∗ and write mo = m∗ + tv for some unit vector v ∈ R

d

and a scalar t > ε. Then it follows from convexity of the function t �→ Fδ(m∗ + tv)
that

Fδ(mo) − min
m∈M∗

Fδ(m) ≥ Fδ(m∗ + tv) − Fδ(m∗)

≥ (t/ε)(Fδ(m∗ + εv) − Fδ(m∗))

> 0

in case of (11). These considerations show already that d(m∗
δ ,M

∗) → 0 as δ ↘ 0.
Note also that in case of m∗

δ ∈ Bε,

|Fδ(m
∗
δ) − F (m∗

δ)| ≤ ‖F − Fδ‖Bε
,(12)

and

F (m∗
δ) − min

x∈C
F (x) ≤ max

x,y∈Bε : ‖x−y‖≤ε

∣∣F (y) − F (x)
∣∣.

Finally, the r.h.s. of the latter inequality tends to 0 as ε ↘ 0, by compactness of
M∗ and continuity of F . These findings show that both F (m∗

δ) and Fδ(m
∗
δ) tend to

minx∈C F (x) as δ ↘ 0.
The second step is to determine m∗

δ via approximations Gδ(f, ·) of Fδ for various
f ∈ C as in (5). The following definition summarizes our assumptions on Gδ.

Definition 2. Let Fδ : R
d → R be a regular functional. Another functional

Gδ : C×R
d → R is called a smooth approximation of Fδ from above, if it is continuous

in both arguments and satisfies the following additional properties for arbitrary f ∈ C:
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(i) Gδ(f, ·) is strictly convex and continuously differentiable,
(ii) Gδ(f,m) ≥ Fδ(m) for all m ∈ R

d with equality for m = f .
The functional Gδ is called a quadratic approximation of Fδ from above if, in addition,
Gδ(f, ·) is always a polynomial of order two, i.e.,

Gδ(f,m) = Fδ(f) + ∇Fδ(f)�(m− f) + 2−1(m− f)�B(f)(m− f)(13)

for some symmetric, positive definite matrix B(f) ∈ R
d×d.

The next theorem is the main result of this paper.
Theorem 2 (convergence of the GIRLS algorithm). Let C ⊂ R

d be a closed
convex set and Fδ : R

d → R be a regular functional which can be smoothly approxi-
mated from above by Gδ. Then the GIRLS algorithm, defined by (5) with an arbitrary

starting point m
(0)
δ ∈ C, yields a sequence (m

(k)
δ )∞k=0 converging to m∗

δ .

Proof. At first we prove that Fδ(m
(k)
δ ) is decreasing in k. It follows from Property

(ii) in Definition 2 that the gradients ∇Fδ(m) and ∇Gδ(m
(k)
δ ,m) (defined with respect

to the second argument) coincide for m = m
(k)
δ . Thus it follows from the characteri-

zation (10), applied to H = Gδ(m
(k)
δ , ·) and H = Fδ, respectively, that m

(k+1)
δ = m

(k)
δ

if, and only if, m
(k)
δ = m∗

δ . Otherwise the minimizer m
(k+1)
δ of Gδ(m

(k)
δ , ·) over C

differs from m
(k)
δ , whence Property (ii) in Definition 2 entails

Fδ(m
(k+1)
δ ) ≤ Gδ(m

(k)
δ ,m

(k+1)
δ ) < Gδ(m

(k)
δ ,m

(k)
δ ) = Fδ(m

(k)
δ ).

By monotonicity of (Fδ(m
(k)
δ ))k, all points m

(k)
δ lie in the set {m ∈ C : Fδ(m) ≤

Fδ(m
(0)
δ )}, which is compact by continuity and coercivity of Fδ. Hence it is sufficient

to show that any limit point mo equals m∗
δ . Now, take an arbitrary convergent

subsequence (m
(k�)
δ )� with limit mo. For any v ∈ C,

Fδ

(
m

(k�+1)
δ

)
≤ Gδ

(
m

(k�)
δ ,m

(k�+1)
δ

)
≤ Gδ

(
m

(k�)
δ , v

)
→ Gδ(mo, v) as � → ∞,

by continuity of Gδ. But

lim
�→∞

Fδ

(
m

(k�+1)
δ

)
≥ lim

�→∞
Fδ

(
m

(k�+1)
δ

)
= Fδ(mo) = Gδ(mo,mo).

Thus Gδ(mo,mo) ≤ Gδ(mo, v) for all v ∈ C; i.e., mo is the unique minimizer of
Gδ(mo, ·). As argued above, this entails that mo = m∗

δ .
The next theorem states that convex and coercive functionals F can always be

regularized and approximated quadratically from above. Hence GIRLS is, in principle,
always applicable.

Theorem 3 (regularization and approximation of F ). Let F : R
d → R be a

convex and coercive functional. Then there exists a regularization (Fδ)δ>0 of F such
that each Fδ admits a quadratic approximation Gδ from above.

In order to prove Theorem 3, we require the following result.
Theorem 4. Let F be a nonnegative, coercive, convex functional on R

d. Then
there are strictly convex and infinitely often differentiable functionals Fδ ≥ F , δ > 0,
such that Fδ → F pointwise as δ ↘ 0.
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Proof. Let K(x) := 1{‖x‖ < 1}C exp
(
−(1 − ‖x‖2)−1

)
, where C is chosen such

that K integrates to one. This is a well-known example of an infinitely differentiable,
nonnegative, even kernel function with compact support {x : ‖x‖ ≤ 1}. For δ > 0 we
define Kδ(x) := δ−1K(δ−1x) and

Fδ(x) :=

∫
F (y)Kδ(x− y) dy =

∫
F (x + δz)K(z) dz.

It is well known that Fδ is infinitely often differentiable with limit F pointwise (cf.
[35]. It is also inherits convexity from F , because for x, y ∈ R

d and λ ∈ (0, 1),

Fδ((1 − λ)x + λy) =

∫
Fδ

(
(1 − λ)(x + δz) + λ(y + δz)

)
K(z) dz

≤
∫ (

(1 − λ)F (x + δz) + λF (y + δz)
)
K(z) dz

= (1 − λ)Fδ(x) + λFδ(y).

Moreover, since K is even,

Fδ(x) =

∫
F (x + δz) + F (x− δz)

2
K(z) dz ≥

∫
F (x)K(z) dz = F (x),

again by convexity of F . Finally, if Fδ fails to be strictly convex, we may add to Fδ

the strictly convex function x �→ δ‖x‖2.
We mention that the construction of Fδ given here is mainly for theoretical pur-

poses, and may in practice be difficult to evaluate numerically due to the high dimen-
sionality of the integral.

Proof of Theorem 3. Let (Fδ)δ>0 be a regularization of F such that D2Fδ is
positive definite everywhere; cf. Theorem 4 and its proof. It may happen that
lim sup‖m‖→∞ Fδ(m)/‖m‖2 = ∞, rendering quadratic approximation of Fδ from
above impossible. Thus we modify the functions Fδ as follows: Let

cδ := max
‖m‖≤δ−1

λmax(D
2Fδ(m))

with λmax(A) denoting the largest eigenvalue of a symmetric matrix A ∈ R
d×d. Start-

ing from the representation

Fδ(m) = Fδ(0) + ∇Fδ(0)�m +

∫ 1

0

m�D2Fδ(tm)m (1 − t) dt,

we define

F̃δ(m) := Fδ(0) + ∇Fδ(0)�m +

∫ 1

0

m� min(D2Fδ(tm), cδI)m (1 − t) dt.

Here min(A, cδI) ∈ R
d×d is obtained from the spectral representation of A by replac-

ing each eigenvalue λi(A) with min(λi(A), cδ). Note that F̃δ is twice continuously
differentiable with F̃δ(0) = Fδ(0), ∇F̃δ(0) = ∇Fδ(0), and D2F̃δ = min(D2Fδ, cδI).
The Hessian matrix is positive definite with largest eigenvalue never exceeding cδ. In
addition, F̃δ = Fδ on {m : ‖m‖ ≤ δ−1}. Thus for sufficiently small δ > 0, F̃δ is
regular, and a quadratic approximation of F̃δ from above is given by

Gδ(f,m) := F̃δ(f) + ∇F̃δ(f)�(m− f) + cδ‖m− f‖2/2.
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Remark 1. In Definition 1 we assume that Fδ is strictly convex. This property
is only required for notational convenience, because it guarantees uniqueness of the
minimizer m∗

δ . A careful inspection of the proof of Theorem 1 shows, however, that
convergence continues to hold if strict convexity is replaced with convexity. Only the
assertion d(m∗

δ ,M
∗) → 0 has to be replaced by

sup
x∈M∗

δ

inf
y∈M∗

‖x− y‖ → 0,

where M∗
δ := argminm∈C Fδ(m). An analogous modification holds for Theorem 2.

We close the section with the following result, which shows under additional
regularity conditions on Fδ and C geometric, or, more precisely, at least Q-linear
convergence of the GIRLS algorithm (cf. [3, Theorem 4.1], for a related result).

Theorem 5 (geometric convergence of the GIRLS algorithm). Let Fδ : R
d → R

be coercive and twice continuously differentiable with positive definite Hessian matrix
D2F (m∗

δ) =: A. Further let Gδ : R
d × R

d be a quadratic approximation of Fδ from
above with Hessian matrix B(m∗

δ) =: B as in (13). Then the GIRLS algorithm yields

a sequence (m
(k)
δ )∞k=0 converging to m∗

δ = argminC Fδ such that

lim sup
k→∞

‖m(k+1)
δ −m∗

δ‖A
‖m(k)

δ −m∗
δ‖A

≤ 1 − λmin

(
B−1A

)
∈ [0, 1).

Here ‖v‖A := (v�Av)1/2, and λmin(B−1A) ∈ (0, 1] denotes the smallest eigenvalue of
B−1A.

Proof. According to Theorem 2, limk→∞ m
(k)
δ = m∗

δ . Since C = R
d, ∇Fδ(m

∗
δ) = 0

and

m
(k+1)
δ = m

(k)
δ −B(m

(k)
δ )−1∇Fδ(m

(k)
δ )

= m
(k)
δ −B(m

(k)
δ )−1

∫ 1

0

D2Fδ

(
(1 − t)m∗

δ + tm
(k)
δ

)
(m

(k)
δ −m∗

δ) dt

= m
(k)
δ −B−1A(m

(k)
δ −m∗

δ) + o
(
‖m(k)

δ −m∗
δ‖
)
.

Thus

‖m(k+1)
δ −m∗

δ‖A
‖m(k)

δ −m∗
δ‖A

=
‖(I −B−1A)(m

(k)
δ −m∗

δ)‖A
‖m(k)

δ −m∗
δ‖A

+ o(1),

and for any vector v ∈ R
d,

‖(I −B−1A)v‖2
A

‖v‖2
A

=
v�(I −AB−1)A(I −B−1A)v

v�Av

=
w�A−1/2(I −AB−1)A(I −B−1A)A−1/2w

‖w‖2
(with w := A1/2v)

=
w�C2w

‖w‖2
(with C := I −A1/2B−1A1/2)

≤ λmax(C
2).

It follows from property (ii) of Gδ in Definition 2 that B −A is nonnegative definite,
which implies that λi(B

−1A) = λi(A
1/2B−1A1/2) ∈ (0, 1]. This entails that C is

nonnegative definite with λmax(C
2) = λmax(C)2 = (1 − λmin(B−1A))2.
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Table 1

Generalized iteratively reweighted least squares algorithm (GIRLS).

Algorithm m� ← GIRLS(F, (Fδ , Gδ)δ>0, δo, δmin,mo, ε, kmax)
δ ← δo
m� ← mo

while δ ≥ δmin do
mnew ← argminm∈C Gδ(m�,m)
k ← 0
while F (mnew)/F (m�) < 1 − ε and k < kmax do

m� ← mnew

mnew ← argminm∈C Gδ(m�,m)
k ← k + 1

end while
δ ← δ/2

end while.

3.2. Pseudocode, proper choice of δ, and the number of iterations. In
practical applications the points m∗

δ are never calculated exactly. Instead after finitely
many, say k(δ), iterations of (5) the iteration is terminated and the regularization
parameter δ is decreased, e.g., replaced with δ/2. An obvious question is how to
choose these iteration numbers k(δ). We found empirically in most cases that for a

fixed parameter δ > 0, the values F (m
(k)
δ ) are decreasing for k ≤ ko(δ) and increasing

in k ≥ ko(δ) for some fixed ko(δ) ∈ N. Hence in case of a strictly positive target
function F we may take

k(δ) := min
({

k ∈ N0 : F (m
(k+1)
δ )/F (m

(k)
δ ) ≥ 1 − ε

}
∪ {kmax}

)
(14)

for a small constant ε > 0 and a large maximal number kmax. In the examples dis-
cussed subsequently, we found that for ε = 10−5 and kmax = 100, the number k(δ)
was never larger than 30, which seems to compensate for the fact that the sequence

m
(k)
δ converges only geometrically. This is similar to numerical findings with an im-

plementation of an algorithm by [25, section 5] for the median and various parametric
regression models.

Having determined k(δ) and m
(k(δ))
δ for one particular δ > 0, we define m

(0)
δ/2 :=

m
(k(δ))
δ and repeat the same procedure with δ/2 in place of δ, provided that k(δ) > 0.

We proceed until δ/2 would be smaller than a certain threshold δmin. Pseudocode
for this algorithm is displayed in Table 1. Input parameters are F , its regularization
(Fδ, Gδ)δ>0 augmented with smooth aproximations from above, a starting value δo > 0
and a lower threshold δmin ∈ (0, δo) for δ, a starting point mo ∈ C, and a threshold
ε > 0, as well as a maximal iteration number kmax for the inner while-loop.

4. Regularization and quadratic approximation for different types of
regression problems. In the subsequent data examples the target functional F (m)
is always of type (1) or (3), i.e.,

F (m) =

n∑
i=1

ρ(ri(m)) + λP (m)(15)

with λ ≥ 0, where each residual ri(m) is an affine linear functional of m ∈ R
d. Here

each summand of F is regularized and approximated separately. We will start with
an auxiliary result justifying the quadratic approximation (9).
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Lemma 1. Let h : R → R be even and twice differentiable such that h′′ is
nonnegative and nonincreasing on [0,∞). For r, z ∈ R define

g(r, z) := h(r) + (h′(r)/r)(z2 − r2)/2,

where h′(0)/0 := h′′(0). Then g(r, z) ≥ h(z) with equality if z = ±r.
Proof. One verifies easily that g(r, z) is even in both arguments with g(r, r) = h(r).

Thus it suffices to show that g(r, z) ≥ h(z) for any r, z ≥ 0. Now,

g(r, z) − h(z) = g(r, z) − h(r) − (h(z) − h(r))

= (h′(r)/r)(z2 − r2)/2 − h′(r)(z − r) −
∫ z

r

(h′(t) − h′(r)) dt

= (h′(r)/r)(z − r)2/2 −
∫ z

r

(h′(t) − h′(r)) dt

=

∫ z

r

(
h̃(r, 0) − h̃(r, t)

)
(t− r) dt

=

∫ max(r,z)

min(r,z)

(
h̃(r, 0) − h̃(r, t)

)
|t− r| dt,(16)

where h̃(r, t) := (h′(t)−h′(r))/(t− r) for t = r, and h̃(r, r) := h′′(r). One can deduce
easily from h′′ being nonincreasing on [0,∞) that h̃(r, ·) has the same property. Thus
the integrand of (16) is nonnegative.

Let us first describe how to approximate ρ itself in three special cases. After
this we will discuss several penalizations P in (15). Finally we comment on isotonic
regression, an example with C = R

d.
Quantile regression. Let ρ(z) be given by (2). This may be rewritten as

ρ(z) = |z| + (2p− 1)z.

Hence we utilize the functions hδ and gδ from (7) and (9), which yields the regular-
ization

z �→ hδ(z) + (2p− 1)z,

and by means of Lemma 1 the quadratic approximation

z �→ gδ(r, z) + (2p− 1)z = cδ(r) + hδ(r)
−1z2/2 + (2p− 1)z

of z �→ ρ(z), where cδ(r) is an irrelevant constant.
Lq–regression. Let ρ(z) := |z|q for some q ∈ [1,∞). If 1 ≤ q < 2, one may

generalize definitions (7) and (9) immediately as follows:

hδ(z) := (z2 + δ)q/2,

gδ(r, z) := hδ(r) + q(r2 + δ)1−q(z2 − r2)/2

= cδ(r) + q(r2 + δ)1−qz2/2.

Again it follows from Lemma 1 that gδ(r, z) ≥ hδ(z) with equality for z = ±r.
In case of q > 2, the second derivative of z �→ |z|q is increasing in |z| and un-

bounded, and hence Lemma 1 cannot be applied directly. To circumvent this problem,
one could redefine

hδ(z) :=

{
|z|q if |z| ≤ δ−1

aδ + bδ|z| + q(q − 1)δ2−qz2/2 otherwise



GENERALIZED ITERATIVELY REWEIGHTED LEAST SQUARES 1839

with constants aδ, bδ such that hδ is twice continuously differentiable, and then use
the quadratic approximation

gδ(r, z) := hδ(r) + h′
δ(r)(z − r) + q(q − 1)δ2−q(z − r)2/2.

Logistic regression. For data sets with a covariable X and a dichotomous
response Y ∈ {0, 1}, maximum likelihood estimation of M(X) := log[P (Y = 1 |X)/
P (Y = 0 |X)] involves “residuals” z = (1/2 − Y )M(X) and

ρ(z) := h(z) + z with h(z) := log[ez + e−z].

Note that h satisfies the conditions of Lemma 1 with h′(r) = tanh(r) and h′′(r) =
1 − tanh(r)2. Thus regularization is superfluous, while quadratic approximation is
straightforward. In this case, the well-known IRLS algorithm results ([28]).

Roughness penalties. Let us start with two particular examples for P (m).
For given real numbers x1 < x2 < · · · < xd let M be a function on [x1, xd] and
m := (M(xj))

d
j=1. Then let

TV(0)(m) :=

d−1∑
j=1

|mj −mj+1|,

TV(1)(m) :=

d−1∑
j=2

|Δjm| with Δjm :=
mj+1 −mj

xj+1 − xj
− mj −mj−1

xj − xj−1
.

If M is continuous and piecewise linear with knots in {x1, . . . , xd}, then TV(0)(m)

and TV(1)(m) are the total variation of M and its first derivative, respectively. One
could also think about smoother functions M and approximate the total variation of
its second or higher order derivative by suitable divided differences of m.

Generally, let P (m) be a sum of several functionals of the form

m �→ |v�m|

with a given vector v ∈ R
d \ {0}. For instance, TV(0)(m) involves

vi = v
(j)
i :=

⎧⎨
⎩

1 if i = j,
−1 if i = j + 1,
0 else

for 1 ≤ j < d, while TV(1)(m) involves

vi = v
(j)
i :=

⎧⎪⎪⎨
⎪⎪⎩

(xj − xj−1)
−1 if i = j − 1,

−(xj − xj−1)
−1 − (xj+1 − xj)

−1 if i = j,
(xj+1 − xj)

−1 if i = j + 1,
0 else,

for 1 < j < d. Now an obvious strategy is to regularize m �→ |v�m| by m �→ hδ(v
�m)

and approximate this quadratically by

m �→ gδ(v
�f, v�m) = cδ(v

�f) + hδ(v
�f)−1

(
v�m

)2
/2.
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Often it is desirable to work with quadratic approximations G(f, ·) whose Hessian
matrix B(f) is diagonal. For that purpose one can modify the quadratic term Q(m) :=(
v�m

)2
as follows:

Q(m) =
(
v�f

)2
+ 2f�vv�(m− f) +

(
v�(m− f)

)2
≤

(
v�f

)2
+ 2f�vv�(m− f) + ‖v‖2

∑
i:vi �=0

(mi − fi)
2

= c(v, f) − 2w(v, f)�m + ‖v‖2
∑

i:vi �=0

m2
i

for some irrelevant constant c(v, f) and w(v, f)i := 1vi �=0‖v‖2fi − v�fvi.
Isotonic regression. In some applications one seeks to minimize a functional

such as (15) over all vectors in C↗ := {m ∈ R
d : m1 ≤ · · · ≤ md}. In the simplest

case, d = n and ρ(ri(m)) = (Yi −mi)
q for some q ∈ [1,∞], where q = ∞ corresponds

to supremum norm of Y −m. For this special case it is well known (see [2]) that an
explicit solution exists only for q = 1, 2,∞. In general, via regularization and suitable
quadratic approximation from above, each updating step of the GIRLS algorithm
involves minimization of

Gδ(f,m) = C(f) +

d∑
i=1

wi(f)(mi − bi(f))2

over all vectors m ∈ C↗ with certain weights wi(f) > 0, an irrelevant constant C(f),
and certain numbers bi(f). This minimization problem can be solved explicitly by
means of the PAVA ([33]).

5. Numerical examples. In this section we discuss the numerical performance
of the GIRLS algorithm in practical applications. Our first example is about quantile
regression and shows that GIRLS outperforms a Newton–Raphson type algorithm, at
least in the first iterations. In the second example we consider a unimodal regression
problem. For ordinary isotonic regression in one-dimensional settings, PAVA is known
to be highly efficient (cf., e.g., [33]) in the sense of producing an exact solution in O(d)

steps. Replacing the isotonicity constraint on m with a penalty term TV(0)(m) leads
to minimization problems which can be solved efficiently with the closely related
“taut string algorithm” (cf. [8]). However, analogous problems in multidimensional

regression settings, or using TV(k)(m) with k ≥ 1, are computationally more involved.
We mention, e.g., [15] for a reformulation as a bilateral contact problem and a rather
involved solution by a two-level iterative method requiring a semi-smooth Newton
method and a primal dual active set algorithm. GIRLS offers a different strategy:
PAVA can be applied after approximating the target functional suitably by a quadratic
program; hence, we can also understand GIRLS as a linking device to apply efficient
special purpose algorithms for quadratic programs such as PAVA to corresponding
nonquadratic and/or constrained problems.

Example 1 (estimation of smooth quantile functions). We applied the GIRLS
algorithm and a competitor to a dataset containing the income (X) and the expen-
diture for food (Y ) in the year 1973 for 7125 households in Great Britain (Family
Expenditure Survey 1968–1983). This dataset has also been analyzed by [14]. In
order to enhance the visual quality, we reduced these data to a random subset of
size n = 2000. Moreover, since the empirical distributions of both variables are
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Fig. 1. Quantile curves for food expenditure data.

strongly skewed to the right, we plotted only the 1936 pairs (Xi, Yi) in the range
[0, 105] × [0, 3 · 104]. Figure 1 shows the data together with estimated p–quantile
curves Mp for p = 0.1, 0.25, 0.5, 0.75, 0.9. Here we used the functional

F (m) =

n∑
i=1

ρ(Yi −mC(i)) + λTV(1)(m)

on R
d with ρ given by (2), where x1 < x2 < · · · < xd are the d = 1945 different X–

values in the sample, mj = Mp(xj), Xi = xC(i), and F was regularized as discussed in
the last section. The tuning parameter λ was chosen to be 2·106 by visual inspection.

We now turn to the numerical performance of the GIRLS algorithm and compare
it to a Newton–Raphson algorithm (robustified with a standard step-size correction
as in [12]). In the first step we compare the performance of the two algorithms in
the particular setting of our data example; the second step will consist of a small
simulation study with artificial data. All computations were performed with Matlab
on a 1.86Ghz Pentium-processor with 1GB Ram. As starting value of the iterations
we used the polynomial regression p-quantile of order 1, and the tuning parameter
δ was selected in a data-driven way from this starting value as the smaller of the
median of its absolute residuals, and the median of its first order differences, in both
cases divided by 1000. In the first step, we compared the computational efficiency of
the GIRLS and the Newton–Raphson algorithm applied to quantile regression with
the family expenditure data. To this end we recorded the computing times and
number of iterations required for determination of the 25%-quantile curve by GIRLS
and the Newton–Raphson algorithm, where we stopped the iterations as soon as
the relative improvement of the function F (m) between two subsequent iterations
fell below a threshold parameter ε = 10−12. Whereas GIRLS required 5.0s CPU
time and 59 iterations to find the solution, the Newton–Raphson algorithm turned
out to be significantly more expensive with 46.4s CPU time and 425 iterations. We
also performed the same computations for a wide range of threshold parameters ε =
10−6 . . . 10−24, without significant change in the relative computational expense of
the two methods.
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Fig. 2. Mean performance of GIRLS and a Newton–Raphson-algorithm. The dashed and
dotted curves show the mean value of the function F (m) in dependence of the iteration number m
for the Newton–Raphson algorithm and GIRLS, respectively, and the solid curve the stepwise rate
of improvement (FGIRLS(m + 1) − FGIRLS(m)) / (FNEWTON(m + 1) − FNEWTON(m)) of F (m) by
the two methods. Here, a value larger than 1 indicates that in the mth iteration F (m) decreased
more for GIRLS than for the Newton–Raphson-algorithm.

In the second step of our analysis we performed 100 simulations of the quantile
regression problem with (artificial) regression data from the model

Yi = sin
(
Xi ·

π

2

)
+ εi, i = 1, . . . , 1000.

Here, Xi ∼ U [0, 1] are uniformly distributed, independent design variables, and εi ∼
N(0, 0.01) i.i.d. noise terms. We used both GIRLS and the Newton–Raphson method
to estimate the 25%-quantile curve of the data by determining the minimizer of the
function F (m). From visual inspection of a pilot simulation, we chose the tuning
parameter λ = 2 · 104 for the subsequent simulations.

Figure 2 compares the mean performance of the GIRLS algorithm with the per-
formance of the Newton–Raphson-method with step-size correction. The two curves
in the top show the value of the function F (m) in dependence of the iteration number
m, and the bottom curve represents the mean improvement (in the simulations) of
the solution, measured by the decrease of the target function F (m). From the figure,
we conclude that the first steps of GIRLS are significantly more efficient than for the
Newton–Raphson method, whereas the latter catches up after approximately the 8th

iteration.
In summary, in the computations with the penalized quantile regression problem,

GIRLS outperformed the Newton–Raphson method for the family expenditure data.
Moreover, in our simulation we found GIRLS to improve the solution much faster
than the Newton–Raphson method in the first ≈ 8 iterations. Only if the initial value
of the Newton algorithm has been chosen very close to the true minimizer M∗, we
found the performance of the Newton algorithm to be superior. Hence, for practical
purposes it seems be advisable to combine both algorithms such that GIRLS will be



GENERALIZED ITERATIVELY REWEIGHTED LEAST SQUARES 1843

used at least as an initial algorithm which efficiently provides a good initial value for
a subsequently performed Newton-type algorithm. Moreover, if both GIRLS and the
Newton–Raphson method are available, it may be useful to compute both a GIRLS
and a Newton step, with subsequent selection of the better one.

Example 2 (GIRLS as a device to utilize efficient algorithms for special quadratic
programs in more complex settings). In our second example we will briefly illustrate
the flexibility of the GIRLS algorithm to combine several constraints. Precisely, we
combine unimodality constraints with TV penalization. Ordinary isotonic regression
and hence unimodal regression involves the solution of a weighted least squares prob-
lem, and efficient algorithms, the PAVA in particular, are available. If we add a TV
penalty, the problem is no longer a quadratic program, and PAVA is not applicable
directly. By replacing the problem to be solved by a sequence of quadratic programs,
GIRLS makes it possible again to apply PAVA for unimodal regression with TV pe-
nalization. To this end consider a two-dimensional regression problem where Yij are
observations to be fitted by m = (mij)i,j , i = 1, . . . ,m, j = 1, . . . , n. We want to
minimize the sum F (m) of the quadratic cost functional

‖Y −m‖2 =
∑
ij

(Yij −mij)
2,

and the total variation penalty λTV(m), where λ > 0 and

TV(m) :=

m∑
i=1

n∑
j=1

|mi+1,j −mij | +
m∑
i=1

n∑
j=1

|mi,j+1 −mij |.

For the regularization Fδ and quadratic approximation Gδ(f, ·), the least squares
term is kept unchanged, while each summand |m(a) − m(b)| of TV(m) is treated as
described in section 4: First we regularize it by hδ(m(a) − m(b)). Then as a first
quadratic approximation we may use

gδ(f(a) − f(b),m(a) −m(b)) = Cδ,(a),(b)(f) +
(m(a) −m(b))

2

2hδ(f(a) − f(b))
.

For our purposes it turns out to be more suitable to replace the enumerator (m(a) −
m(b))

2 with

2
(
m(a) −

f(a) + f(b)

2

)2

+ 2
(
m(b) −

f(a) + f(b)

2

)2

,

which is never less than (m(a) − m(b))
2 with equality for m = f . The advantages

of this latter quadratic approximation are computational simplicity and feasibility
of isotonic (and hence unimodal) least squares algorithms. This allows us, e.g., to
impose in addition unimodality in vertical direction. Hence, simply in each step for
each vertical line the unimodal regression is calculated by means of some standard
variation of the PAVA.
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Abstract. In this paper we develop a practical primal interior decomposition algorithm for
two-stage stochastic programming problems. The framework of this algorithm is similar to the
framework in [S. Mehrotra and M. G. Özevin, “Decomposition based interior point methods for two-
stage stochastic convex quadratic programs with recourse,” to appear in Oper. Res.; S. Mehrotra
and M. G. Özevin, SIAM J. Optim., 18 (2007), pp. 206–222] and [G. Zhao, Math. Program., 90
(2001), pp. 507–536], however, their algorithm is altered in a simple yet fundamental way to achieve
practical performance. In particular, this new algorithm weighs the log-barrier terms in the second
stage problems differently from the theoretical algorithms analyzed in [S. Mehrotra and M. G. Özevin,
Oper. Res., to appear], [S. Mehrotra and M. G. Özevin, SIAM J. Optim., 18 (2007), pp. 206–222],
and [G. Zhao, Math. Program., 90 (2001), pp. 507–536]. We give a method for generating a suitable
starting point; a method for selecting a good starting barrier parameter; a heuristic for first stage
step-length calculation without performing line searches; and a method for adaptive addition of new
scenarios over the course of the algorithm. The decomposition algorithm is implemented to solve
two-stage stochastic conic programs with recourse whose underlying cones are Cartesian products of
linear, second order, and semidefinite cones. The performance of primal decomposition method is
studied on a set of randomly generated test problems as well as a two-stage stochastic programming
extension of the Markowitz portfolio selection model. The computational results show that an
efficient and stable implementation of the primal decomposition method is possible. These results
also show that in problems with a large number of scenarios, the adaptive addition of scenarios can
yield computational savings of up to 80%.
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1. Introduction. We consider the two-stage stochastic conic programming
(TSSCP) problem in the form

max bTx− 1
2
xTGx+ ρ(x)

s.t. Dx = d,

Ax+ s1 = c,(1.1)

s1 ∈ K1,

where

(1.2) ρ(x) :=
K∑
i=1

πiρi(x)
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and

ρi(x) := max fTi yi −
1
2
yTi Hiyi

s.t. Riyi + Uix = zi,

Wiyi + Tix+ s2,i = hi,(1.3)

s2,i ∈ K2,i.

The symmetric cones K1 and K2,i are Cartesian products of nonnegative orthant,
second order cones and the cones of positive semidefinite matrices. By K+

1 and K+
2,i

we represent the interior of these cones. The size of these cones in the first stage and
second stage problems may be different. The columns of submatrices of A, Wi, and
Ti corresponding to the semidefinite cones are vectorizations of symmetric matrices.
In other words, the cone of semidefinite matrices are considered as a set of vectors
to comply with the above standard form of TSSCP. The matrices G and Hi are
symmetric positive semidefinite.

Faybusovich [6, 7] presented a unified description of interior point algorithms for
linear, second order cones and semidefinite programming using the theory of Euclidean
Jordan algebra. We also describe our interior decomposition algorithms using the
Jordan algebra operations. For a brief introduction of Jordan algebra operations, see
[1, 27, 28].

Let us define the following feasibility sets:

F0 := {(x, s1) | Dx = d,Ax+ s1 = b, s1 ∈ K1},
F2,i(x) := {(yi, s2,i) | Riyi + Uix = zi,Wiyi + s2,i = hi − Tix, s2,i ∈ K2,i},
F1
i := {(x, s1) | F2,i(x) �= ∅},

F1 := {∩Ki=1F1
i } ∩ F0,

F := {(x, s1) × (y1, s2,1, . . . , yK , s2,K) | Dx = d,Ax + s1 = b,

s1 ∈ K1; Riyi + Uix = zi,Wiyi + s2,i = hi − Tix, s2,i ∈ K2,i}.

Here F2,i(x) is the second stage feasibility set parameterized by the first stage decision
vector x, F1 is the set of first stage feasible solutions for which all second stage
problems are also feasible, and F is the set of feasible solutions for the extensive
formulation of TSSCP.

Mehrotra and Özevin [18] presented a decomposition-based primal interior algo-
rithm for the two-stage stochastic semidefinite programming problem with recourse.
In their setting the first stage cone K1 and the second stage cones K2,i are p× p and
r × r symmetric positive semidefinite matrices, respectively. Mehrotra and Özevin
[18] show that starting from a well-centered first stage solution (starting barrier pa-
rameter μ0) a short-step path-following interior point algorithm working on the first
stage variables requires O(

√
p+ rK) ln(μ0/μ∗) first stage interior point iterations to

obtain a well-centered solution for barrier parameter μ∗, where K is the number of
scenarios. Their analysis extends the earlier results of Zhao [31] for the two-stage lin-
ear stochastic programming problems and the results of Mehrotra and Özevin [17] for
the quadratic case. The work of Zhao [31] and Mehrotra and Özevin [17, 18] provides
a framework for implementing primal interior decomposition algorithms for two-stage
stochastic programming problems. Several simplifying assumptions were made by
Zhao [31] and Mehrotra and Özevin [17, 18] while analyzing their algorithms. The
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purpose of this paper is to develop a more practical primal interior decomposition
algorithm for two-stage stochastic conic programs.

The basic steps of a primal interior decomposition algorithm are as follows.
Algorithm 1. A basic primal interior decomposition framework.

Initialization.
Let x1 be a starting point, μ1 > 0 a starting barrier parameter, and μ∗ the
desired termination value of the barrier parameter. Also, let β > 0, ζ ∈ (0, 1),
and θ > 0 be suitable scalar parameters.
Step 1.

Step 1.1. Solve all second stage centering problems for the current x and
μ.
Step 1.2. Using the second stage solutions, compute the first stage New-
ton direction.
Step 1.3. Compute the local norm δ(μ, x) of the Newton direction Δx as
a measure of distance from the current point x to the first stage μ-center.
Step 1.4. Update first stage solution as x := x+ θΔx. If δ(μ, x) ≤ β, go
to Step 2; otherwise go to Step 1.1.

Step 2. If μ ≤ μ∗ (or some other termination criterion is satisfied) stop;
otherwise reduce μ = ζμ and go to Step 1.1.

Note that a variant of Algorithm 1 that reduces μ rapidly (long-step variant)
may iterate several times in the loop Step 1.1–Step 1.4 after reducing the value of
μ in Step 2. In the short-step method this loop is executed only once, but this
method reduces μ slowly. The iterates in the loop Step 1.1–Step 1.4 are called the
inner iterations of Algorithm 1. These iterations constitute most of the work in
Algorithm 1. Theoretical values for parameters β, ζ, θ, and the choice of δ(μ, x)
are given in [31, 17, 18] in the context of proving polynomial time convergence of
short-step and long-step methods.

This paper develops a different primal interior decomposition algorithm from the
one analyzed in [31, 17, 18]. While the algorithm analyzed in [31, 17, 18] has a better
worst-case theoretical complexity than the one proposed in this paper, computational
experience suggests that the new proposed algorithm gives better performance in
practice. The proposed algorithm differs from the algorithms in [31, 17, 18] in Step 1.1.
In particular, it defines the second stage centering problems differently. We will
present this algorithm and compare it with the algorithms in [31, 17, 18] in section 2.
We have some probabilistic/heuristic justifications for the superior performance of the
proposed algorithm, which we intend to document elsewhere.

In the primal decomposition framework (for algorithms in [31, 17, 18], as well
as the new algorithm) we need to address several issues to develop practical efficient
implementations. These issues are the following:

(i) (Initialization.) We need to find a suitable feasible first stage solution and
ensure the feasibility of all second stage problems corresponding to this solution. If
TSSCP satisfies a full recourse assumption, i.e., all second stage problems are feasible
for all first stage solutions, then feasibility of second stage is not an issue. However,
this assumption may not hold in general.

(ii) (Steps 1.1, 1.2.) The assumption of the availability of exact solutions of the
second stage centering problems in [31, 17, 18] considerably simplifies the conver-
gence analysis. However, solving second stage problems exactly is not possible. The
practical implications of working with inexact solutions on first stage iterations and
algorithmic robustness are not clear.
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(iii) (Step 1.3.) It is not clear how closely the algorithm should follow the first
stage central path (value of parameter β) for it to be practical and robust. Follow-
ing the central path too closely would unnecessarily increase computational efforts,
whereas if we ignore the central path the algorithm may not converge.

(iv) (Step 1.4.) The theoretical analysis assumes taking fixed steps along the
Newton direction. This is conservative since taking larger steps give faster conver-
gence. We need to find a good way to select the first stage step-length θ without
performing line searches. Performing a line search over the barrier objective (defined
in section 2) is not practical since an evaluation of this function for a given μ and x
requires solutions of all second stage problems, which is equivalent to computing a
new first stage Newton direction.

(v) (Step 2.) A practical value of ζ.
(vi) (Adaptive addition of scenarios.) The primal decomposition interior point

methods for two-stage stochastic programming are appealing because the computa-
tion of the first stage Newton direction decomposes across second stage scenarios.
This naturally allows the possibility of increasing the number of second stage scenar-
ios as the algorithm progresses. The analysis in [31, 17, 18] is for a fixed number of
scenarios. Note that adding a significant number of new scenarios modifies the re-
course function and changes the first stage central path. A theoretical analysis of this
change is challenging. However, adding scenarios adaptively as the algorithm pro-
gresses has the potential of saving computational efforts, especially when the number
of scenarios is very large. How can adaptive addition of scenarios be implemented in
practice?

(vii) (Warm-start.) Is it possible to use solutions from previously solved second
stage problems to warm-start new related second stage problems? There are two
situations where a warm-start might be possible. The first possibility is when x
and/or μ changes in Steps 1.4 and 2 in a preexisting scenario. The second possibility
is when scenarios are added adaptively, and a centered solution of a new scenario is
desired for the current x and μ.

In stochastic programming we have the additional issue of determining the number
of scenarios (when the uncertain parameters have continuous distribution, or have a
huge finite support) required to ensure a desired quality of solution. This is achieved
through generating lower and upper bounds, and a statistical analysis around these
bounds. Methods for generating such bounds are discussed in Linderoth, Shapiro,
and Wright [12] and are beyond the scope of this paper. In this paper we will assume
that the problem has a given large number of scenarios.

Within the context of the proposed practical algorithm we provide resolution of
(i)–(vii) to various extents. We give numerical results for the proposed implementa-
tion strategies. Computational results are presented in sections 4–7. These results
are obtained on an extension of the classical Markowitz portfolio optimization prob-
lem and a set of randomly generated conic programming test problems that have
linear, second order, and semidefinite cones. The test problems are described in sec-
tion 3. Section 4 focuses on various algorithmic parameters and line search in the
primal decomposition algorithm. Section 5 presents results on various characteristics
of the algorithm exhibited by the problems we solved. Section 6 develops a methodol-
ogy for adaptive addition of scenarios, and section 7 discusses results obtained using
scenario addition and warm-start during scenario addition. The computational re-
sults were obtained using MATLAB version 6.5.1 on an IBM T42 using Pentium M
1.7 GHz with 1 GB of RAM. The entire code is written using MATLAB’s internal
libraries.
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2. Primal interior decomposition algorithms. In this section we describe
the algorithm we have found to work better in practice. We compare this algorithm
with the algorithms presented and analyzed in Zhao [31] and Mehrotra and Özevin
[17, 18]. The algorithm of [31, 17, 18] is described in section 2.1. In section 2.2 we
describe the proposed practical algorithm, and in section 2.3 we compare the two
algorithms computationally.

2.1. Zhao [31], Mehrotra and Özevin [17, 18] primal decomposition
algorithm. In [31, 17, 18] the authors redefine the recourse function in (1.2) as

ρ(x) :=
K∑
i=1

ρ̄i(x),

where

ρ̄i(x) := max f̄Ti yi −
1
2
yTi H̄iyi

s.t. (yi, s2,i) ∈ F2,i(x),(2.1)

f̄i = πifi, and H̄i = πiHi. They consider the log-barrier problem associated with
(2.1):

ρ̄i(μ, x) := max f̄Ti yi −
1
2
yTi H̄iyi + μ ln det(s2,i)

s.t.(yi, s2,i) ∈ F2,i(x).(2.2)

The first stage log-barrier problem in [31, 17, 18] is defined as

max η̄(μ, x) := bTx− 1
2
xTGx+ ρ̄(μ, x) + μ ln det(s1)

s.t. (x, s1) ∈ F1,(2.3)

where

ρ̄(μ, x) :=
K∑
i=1

ρ̄i(μ, x).

For a given x and μ, the optimality conditions for (2.2) are

Riyi + Uix = zi,

Wiyi + Tix+ s2,i = hi,

WT
i λ̄i +RTi γ̄i + H̄iyi = f̄i,(2.4)

P (λ̄1/2
i )s2,i = μι2,i,

λ̄i ∈ K+
2,i, s2,i ∈ K+

2,i.

Let x(μ) := argmax{η̄(μ, x)} for a given μ > 0. We refer to x(μ) as the
first stage μ-center and to the trajectory {x(μ), μ > 0} as the first stage central
path. We denote the unique solution of (2.4) for any given x ∈ F1

i and μ > 0 by
(yi(μ, x), s2,i(μ, x), λ̄i(μ, x), γ̄i(μ, x)), i = 1, . . . ,K, and call this solution the second
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stage μ-center. The μ-centers for different values of μ form the second stage central
path for a given x as μ decreases from ∞ to zero.

A brief summary of the key Jordan algebra operations is as follows. In (2.4) the
matrix P (λ1/2

i ) is the Jordan quadratic presentation of the vector λ1/2
i and ι2,i is the

identity solution of the cone K2,i [6, 7]. The vector λ1/2
i is the square root (in the

Jordan algebra sense) of the dual multiplier λi, that is, λ1/2
i is a unique vector such

that λi = P (λ1/2
i )ι. For any given symmetric cone K and a given λ ∈ K, the identity

solution ι of K is a unique element of K such that L(λ)ι = λ for all λ ∈ K, where L(λ)
is the multiplication by λ linear operator of the cone K. Furthermore, the vector λ−1

is the unique inverse of K+ such that P (λ)λ−1 = λ. The vector λ1/2 is the square
root of λ ∈ K such that L(λ1/2)λ1/2 = λ. The gradient and Hessian of the function
ln det(λ) has the form

∇ ln det(λ) = λ−1, λ ∈ K+,

∇2 ln det(λ) = −P (λ−1), λ ∈ K+.

The form of P (λ) in case of primitive symmetric cones as well as Cartesian products of
primitives are given in [27]. The gradient and Hessian of the barrier objective η̄(μ, x)
are calculated as follows:

∇η̄(μ, x) = b−Gx+
K∑
i=1

(T Ti λ̄i(μ, x) + UTi γ̄i(μ, x)) − μAT s−1
1 ,(2.5)

∇2η̄(μ, x) = −G+
K∑
i=1

(T Ti ∇λ̄i(μ, x) + UTi ∇γ̄i(μ, x)) − μATP (s−1
1 )A.(2.6)

The quantities ∇λ̄(·), and ∇γ̄i(·) are calculated as follows. Differentiating the
optimality conditions (2.4) with respect to x, we obtain

Ri∇yi = −Ui,
Wi∇yi + ∇s2,i = −Ti,
WT
i ∇λ̄i +RTi ∇γ̄i + H̄i∇yi = 0,(2.7)

P (λ̄1/2
i )∇s2,i + P (s1/22,i )∇λ̄i = 0.

Solving (2.7), we get

∇γ̄i = (RiZ−1
i RTi )−1(Ui −RiZ

−1
i WT

i QiTi),

∇yi = −Z−1
i (RTi ∇γ̄i +WT

i QiTi),

∇s2,i = −(Ti +Wi∇yi),(2.8)

∇λ̄i = −Qi∇s2,i,
where

Qi := (P (s1/22,i ))−1P (λ̄1/2
i ) and Zi := WT

i QiWi + H̄i.

For a fixed μ, the solution (x(μ), s1(μ); yi(μ, x(μ)), s2,i(μ, x(μ)), i = 1, . . . ,K)
of (2.2)–(2.3) is the same as the maximizer of the log-barrier function

(2.9) bTx− 1
2
xTGx+

K∑
i=1

(
f̄iyi −

1
2
yTi H̄iyi

)
+ μ ln det(s1) + μ

K∑
i=1

ln det(s2,i)

over the set F .
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In the basic primal decomposition framework (Algorithm 1) the first stage Newton
direction Δx (Step 1.2) is the optimal solution of

max∇η̄(x)TΔx+
1
2

ΔxT∇2η̄(x)Δx

s.t. DΔx = 0.(2.10)

In Step 1.3, the local norm of the Newton step calculated at x is given by

δ(μ, x) =
√
− 1
μ

ΔxT∇2η̄(μ, x)Δx.

For two-stage stochastic semidefinite programs Mehrotra and Özevin [18] show
that the log-barrier recourse function η̄(μ, x) is a strongly μ-self-concordant function
and forms a strongly self-concordant family. This is used to establish convergence for
short- and long-step path-following algorithms as discussed in the introduction.

2.2. A practical primal decomposition algorithm. We now describe a more
practical primal decomposition algorithm within the framework of Algorithm 1. In
this algorithm we work directly with the form of the second stage problem (1.3)
without scaling the second stage objectives as is done in (2.1). Let us consider the
log-barrier problem associated with (1.3):

ρi(μ, x) := max fTi yi −
1
2
yTi Hiyi + μ ln det(s2,i)

s.t. (yi, s2,i) ∈ F2,i(x).(2.11)

The first stage log-barrier problem is now defined as

max η(μ, x) := bTx− 1
2
xTGx+ μ ln det(s1) + ρ(μ, x)

s.t. x ∈ F1,(2.12)

where

(2.13) ρ(μ, x) :=
K∑
i=1

πiρi(μ, x).

We can show that for a fixed μ, the solutions (x(μ), s1(μ); yi(μ, x(μ)), s2,i(μ, x(μ)),
i = 1, . . . ,K) of (2.11)–(2.12) are the same as the maximizer of the log-barrier function

(2.14) bTx− 1
2
xTGx+

K∑
i=1

πi

(
fiyi −

1
2
yTi Hiyi

)
+ μ ln det(s1) + μ

K∑
i=1

πi ln det(s2,i)

over F .
Note that in contrast to (2.9), in (2.14) the second stage log-barrier terms are

scaled with the corresponding probabilities. Hence, when solving the second stage
problems to compute the Newton direction for a given x, solutions are computed for
a smaller value of μ (scaled by πi). We do not have an obvious analogue of the re-
sult that η̄(μ, x) is a strongly μ-self-concordant function for the function η(x, μ). An
inferior worst-case theoretical bound is proved in Mehrotra and Özevin [19]. How-
ever, a probabilistic analysis in Mehrotra [16] shows that a better convergence result
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(possibly independent of the number of scenarios) is possible under a probabilistic
self-concordance assumption.

The algebraic development of the computation of Newton direction for (2.12) is
similar to the development for (2.3). For a given x and μ, the optimality conditions
of (2.11) are

Riyi + Uix = zi,

Wiyi + Tix+ s2,i = hi,

WT
i λi +RTi γi +Hiyi = fi,(2.15)

P (λ1/2
i )s2,i = μι2,i,

λi ∈ K+
2,i, s2,i ∈ K+

2,i,

where ι2,i is defined as before. The gradient and Hessian of the barrier objective
η(μ, x) are calculated as follows:

∇η(μ, x) = b −Gx−
K∑
i=1

πi(T Ti λi(μ, x) + UTi γi(μ, x)) − μAT s−1
1 ,(2.16)

∇2η(μ, x) = −G−
K∑
i=1

πi(T Ti ∇λi(μ, x) + UTi ∇γi(μ, x)) − μATP (s−1
1 )A.(2.17)

In the basic primal decomposition framework (Algorithm 1) the first stage Newton
direction (Step 1.2) is the optimal solution of

max ∇η(x)TΔx+
1
2

ΔxT∇2η(x)Δx

s.t. DΔx = 0,(2.18)

which can be calculated by solving the KKT system associated with (2.18):

∇2η(x)Δx −DT τ = −∇η(x)

DΔx = 0.(2.19)

In Step 1.3, the local norm of the Newton step calculated at x becomes

δ(μ, x) =
√
− 1
μ

ΔxT∇2η(μ, x)Δx.

2.3. Performance comparison of basic primal decomposition algorithms.
The computations of Newton direction in sections 2.1 and 2.2 were implemented using
the same starting point, parameter settings, and subroutines. These settings are dis-
cussed in the next section in the context of the algorithm in section 2.2. We ensured
that same relative precision is achieved when solving the second stage KKT systems
(2.4) and (2.15) to compute the second stage solutions in their respective problems.
Table 1 gives results on a set of 100 scenario test problems. These problems are de-
scribed in section 3.2. Columns “Itr.” give the number of inner iterations in both
algorithms, and columns “Convergence” indicate if convergence to eight digits of ac-
curacy was achieved for these problems when the algorithms terminate. A failure to
converge to a solution with eight digits of accuracy is indicated by “No.” Various
reasons for this failure are explained in section 4.2. Superiority of the algorithm in
section 2.2 is obvious.
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Table 1

Comparison of theoretical and practical algorithms (β = 1, ν = 1, ζ = 0.1; using line search).

Section 2.1 algorithm Section 2.2 algorithm
Problem Itr. Convergence Itr. Convergence

MCR1-100 318 No 22 Yes
MCR2-100 236 No 27 Yes
MCR3-100 290 Yes 22 Yes
MCR4-100 254 No 29 Yes
MCR5-100 215 No 38 Yes
MCR6-100 323 Yes 35 Yes

3. Test problems. We studied the performance of our decomposition algorithm
on randomly generated two-stage stochastic conic programs and a specific stochastic
programming problem arising from a two-stage extension of the classical Markowitz’s
mean-variance model. We now describe the generation of these test problems.

3.1. An application from finance: Two-stage extension of Markowitz’s
mean-variance model. The seminal mean-variance model of Markowitz [14] pro-
vides a quantitative framework for establishing a balance of the risk and return char-
acteristics of various asset classes. In this model, return on the portfolio is measured
by the expected value of the portfolio return, and the associated risk is quantified by
the variance of the portfolio return.

Consider a portfolio that invests in n assets over a single period. Denote by
x ∈ R

n the portfolio vector, and by r̃ ∈ R
n the random vector of asset returns

over a given horizon. The mean-variance setting assumes that r̃ has a multivariate
normal distribution with mean r̄ and covariance Q. The corresponding mean-variance
problem is given by min{wTQw : r̄Tw ≥ ρ, eTw = 1}. By minimizing the portfolio
variance by varying the level of expected return ρ we can derive the so-called mean-
variance efficient frontier.

We formulate a two-stage extension of the static single-period Markowitz model to
address these issues. Let us first introduce some notation in preparation to formulat-
ing this model. This model can be viewed as an alternative to the robust optimization
model proposed by Goldfarb and Iyengar [9] in incorporating uncertainty in the co-
variance matrix. The current time is denoted by t1. At time t1 after having observed
the return vector r0 the investor forms a portfolio and at time t2 > t1 he can revise his
portfolio. The revised portfolio is kept until t3. The problem is to decide a portfolio
at time t1 in anticipation of its revision at time t2. The evolution of the asset return
vector and the covariance matrix is approximated with K scenarios, which we index
by i = 1, . . . ,K.

We define the following decision variables and parameters:
• w1 := vector of first stage portfolio positions,
• r1 := vector of asset returns in the first period,
• r̄1 := expected asset returns in the first period,
• r̄min1 := lower bound for the expected asset returns in the first period,
• Q1 := covariance of asset returns in the first period,
• w2,i := vector of second stage portfolio positions under scenario i,
• r2,i := vector of asset returns in the second period under scenario i,
• r̄2,i := expected asset returns in the second period under scenario i,
• r̄min2,i := minimum required return at the end of the second period under

scenario i,
• Q2,i := covariance of asset returns in the second period under scenario i.
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We have the following two-stage extension of the basic mean-variance model:

minw1
TQ1w1 +

K∑
i=1

1
K
wT2,iQ2,iw2,i

s.t. r̄T1 w1 ≥ r̄min1 ,

eTw1 = 1,

r̄T2,iw2,i ≥ r̄min2,i , i = 1, . . . ,K,

eTw2,i = 1, i = 1, . . . ,K,

‖w1 − w2,i‖ ≤ τ2,i, i = 1, . . . ,K.(3.1)

In the above model, the magnitude of the variation between first and second
stage solutions is bounded by the constraints (3.1). In practice an investor would
avoid large changes between the optimal first and second stage portfolio positions
since such changes can lead to prohibitive amounts of transaction costs. Moreover,
limiting the variation between the first and second period portfolio positions would
make first period optimal portfolio composition less sensitive to perturbations in the
problem parameters. Alternatively, the model may be viewed as a way of finding
a “centroid” solution when multiple estimates of r and Q exist. In both respects,
one may prefer our model to the single-period robust portfolio optimization model
introduced in Goldfarb and Iyengar [9], since robust models tend to be pessimistic.

For the test problems generated for this paper we use a multivariate GARCH
model to describe the return process:

rt = φ0 + φ1rt−1 + εt, εt ∼ N(0, Qt),

Qt = C +A ∗Ht−1 +B ∗Qt−1,(3.2)

where the symbol ∗ denotes the Hadamard product of two matrices and Ht = [εi,t
εj,t]i,j=1,...,n.

We randomly generated the model parameters φ0, φ1, A, C, and B, as well as the
starting asset returns vector r1 and covariance Q1. The matrices A,B, and C are
generated as symmetric positive semidefinite matrices to ensure that the forecasted
conditional covariance matrices Qt are positive semidefinite [11]. We calibrated the
probability distributions from which we sample A,B, and C such that the forecasted
asset returns in general fall into the [0.5, 1.5] range, volatilities vary around 10%, and
correlations take values between −0.5 and 0.5. These parameter ranges allow us to
generate problems that are realistic, but also have significant volatility to test the
algorithm.

We generate scenarios (r̄2,i, Q2,i) using an n-dimensional Sobol’ sequence [5, 8],
where n is the number assets in the portfolio. To obtain a set of K samples, (ε1,1, . . . ,
ε1,K), of the residual vector ε1, we start by generating the K n-dimensional Sobol’
points (S1, . . . , SK). Then we set ε1,i = Q

1/2
1 Φ−1(Si), i = 1, . . . ,K, where Φ is the

cumulative normal distribution function. Finally, we generate (r2,i, Q2,i) using the
following relationships:

r2,i = φ0 + φ1(r1 + ε1,i),

Q2,i = C +A ∗H1,i +B ∗Q1, i = 1, . . . ,K.
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To generate the minimum required expected asset returns r̄min1 and r̄min2,i we
assume that the investor wants to beat a fixed-weight strategy w̄. We randomly
generate the vector w̄ and then set r̄min1 = r1w̄ and r̄min2,i = r2,iw̄, i = 1, . . . ,K. In
this paper, we report results on instances of this model for n = 20, 30, and 40 and for
different values of τ2,i. The computational results in section 7 indicate that smaller
values of τ2,i tend to generate second stage problems with which warm-start is harder.

3.2. Generation of the random test problems. While two-stage conic ex-
tensions of Markowitz model provide an important application example, a more sys-
tematic study on the algorithmic behavior is possible on random test problems. We
generate these test problems by taking discrete approximations of the following con-
tinuous stochastic program:

max η(x) := bTx+ ρ(x)

s.t. Dx = d,

Ax+ s1 = c,(3.3)

‖x‖2 ≤ τ1

s1 ∈ K1,

where

(3.4) ρ(x) := E(ρ(x, ω̃)),

and for each realization ω ∈ Ω of the random variable ω̃

ρ(x, ω) := max fTω yω

s.t. Rωyω + Uωx = zω,

Wωyω + Tωx+ s2,ω = hω,(3.5)

‖yω‖2 ≤ τ2

s2,ω ∈ K2,ω.

In our test problems the first and second stage cones K1 and K2,i both consist of a
linear, a second order, and two semidefinite cones. The 2-norm inequality constraint
in (3.3)–(3.5) gives an additional second order cone. The data D,A, b for the first
stage problems uses a random variable with uniform distribution to generate entries
in [−L,L]. We ensure that D has full row rank and that A has full column rank. We
then set d = Dx̃ and c = Ax̃+ ι1, where x̃ is generated using a random variable with
uniform distribution over [0, L]t, and ι1 is the identity element of the cone K1. This
ensures that the first stage has a feasible interior solution. The problem data W (ω)
and T (ω) consist of 4 blocks corresponding to the 4 primitive blocks that make up
K2,ω. We assume that t entries in f(ω), R(ω), U(ω) and in each block of the second
stage problem data W (ω) and T (ω) are random. We start by randomly generating
the vector f0 and the matrices R0, U0,W 0, and T 0 whose entries are generated from
a uniform distribution over [−L,L]. The data f0, R0, U0,W 0, and T 0 are used as a
base, which is further randomized to get the second stage scenarios. This is done as
follows.

In order to generate second stage scenarios we discretize the continuous probabil-
ity distribution of ω̃ using a quasi–Monte Carlo technique. ω̃ is taken to be a uniform
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t-dimensional random vector in [−L,L]. In particular, we use a t-dimensional Sobol’
sequence to discretize ω̃ and generate scenarios as follows. Let (S1, . . . , SN ) be the
Sobol’ sequence approximating the t-dimensional uniform distribution. To construct
N second stage problems we generate N samples, ω1, . . . , ωN , of the random vector ω̃
from this Sobol’ sequence using N points. We set ωi = p% ∗L∗(1−2Si), i = 1, . . . , N.
To obtain the second stage scenario data fi, Ri, Ui,Wi, and Ti, t elements are ran-
domized in every block (each block corresponding to a cone) of f0, R0, U0,W 0, and
T 0 by adding entries of ωi. Here p% is the randomization (measured as %) of the
base data. A larger value of p% gives a greater randomization of the base data. Next,
we generate a random vector ỹ of the same size as the second stage variable yω and
set zi = Riỹ + Uix̃ and hi = Wiỹ + Tix̃+ ι2,i. We choose an appropriate value of τ1
and τ2,i to ensure that the feasible sets are bounded. This ensures the feasibility of
TSSCP. In (3.3) and (3.5) 2-norm constraints on x and yω are given separately for
clarity; however, in the rest of the paper they are considered as a second order cone
block in A,Wi, Ti and their slacks will be included as a second order cone block in s1
and s2,i, respectively.

Table 2 gives problems generated using the above-described method. For all
problems, L = 2.5 is used. This table gives information on the number of equality
constraints (Equality(F,S)), the size of linear cones (LINC(F,S)), the size of second
order cones in the first and second stage problems (SOC(F,S)), the size of semidefinite
cones (SDC), and the dimension of variables x and yi in each of the problems. The
suffix (F,S) indicates information in a column for first and second stage problems. The
cone information is given for each cone. For example, [16, 25][16, 25] in the Problem
MCR2 row indicates two semidefinite constraints in each of first and second stage
problems. The size of the first stage semidefinite cone is 4 × 4 and the size of the
second stage semidefinite cone is 5 × 5. Problems MCR1–MCR6 are generated by
taking a reasonable amount of randomness in the second stage (p% = 5%), Problems
MCL1–MCL6 are generated by taking a large amount of randomness (p% = 50%),
and Problems MCH1–MCH6 are generated by taking a huge amount of randomness
(p% = 500%). For all of these problems the size of first and second stage cones are
equal and the dimension of the Sobol’ sequence is two (t = 2). In each second stage
problems, two elements fi, Ri, Ui and two elements in each block of Wi and Ti (totaling
22 elements) are perturbed using the two elements of ωi. The 2-norm constraint is
not randomized.

Problems MCL13–MCL63 have dimensions similar to those of problems MCL1–
MCL6; however, these problems were generated using a 33-dimensional Sobol’ se-
quence (t = 33) and setting p% = 50%. Three-dimensional subvectors of the 33-
dimensional Sobol’ points (altogether 11 distinct subvectors) are used to perturb
three elements of fi, Ri, Ui and three elements in each block of Wi and Ti. Thus
these problems are expected to be random in a different way than MCL1–MCL6.

Problems MCRS1–MCRS6 have increasing size of the second stage cone and de-
cision variables yi. Here Problem MCRS1 is identical to Problem MCR2. Problems
MCRF1–MCRF6 have increasing size of the first stage cone and decision variable x.
Here Problem MCRF1 is identical to Problem MCR2. These problems were generated
using a 2-dimensional Sobol’ sequence (t = 2) and setting p% = 5%. When referring
to the randomly generated problems we use name–N , where N indicates the number
of second stage scenarios in the instance.

4. Implementing the primal interior decomposition algorithm. In this
section we discuss a practical implementation of primal interior decomposition algo-
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Table 2

Description of the random test problems.

Problem Equality(F, S) LINC(F, S) SOC(F, S) SDC(F, S) Dim(x, yi)

MCR1 3,3 2,2 [11, 5][11, 5] [16, 16][16, 16] 10,10

MCR2 3,3 3,3 [21, 10][21, 10] [16, 25][16, 25] 20,20

MCR3 3,3 5,5 [31, 15][31, 15] [16, 36][16, 36] 30,30

MCR4 3,3 5,5 [51, 25][51, 25] [36, 64][36, 64] 50,50

MCR5 3,3 10,10 [101, 50][101, 50] [100, 81][100, 81] 100,100

MCR6 3,3 15,15 [151, 75][151, 75] [100, 169][100, 169] 150,150

MCL1 3,3 2,2 [11, 5][11, 5] [16, 16][16, 16] 10,10

MCL2 3,3 3,3 [21, 10][21, 10] [16, 25][16, 25] 20,20

MCL3 3,3 5,5 [31, 15][31, 15] [16, 36][16, 36] 30,30

MCL4 3,3 5,5 [51, 25][51, 25] [36, 64][36, 64] 50,50

MCL5 3,3 10,10 [101, 50][101, 50] [100, 81][100, 81] 100,100

MCL6 3,3 15,15 [151, 75][151, 75] [100, 169][100, 169] 150,150

MCH1 3,3 2,2 [11, 5][11, 5] [16, 16][16, 16] 10,10

MCH2 3,3 3,3 [21, 10][21, 10] [16, 25][16, 25] 20,20

MCH3 3,3 5,5 [31, 15][31, 15] [16, 36][16, 36] 30,30

MCH4 3,3 5,5 [51, 25][51, 25] [36, 64][36, 64] 50,50

MCH5 3,3 10,10 [101, 50][101, 50] [100, 81][100, 81] 100,100

MCH6 3,3 15,15 [151, 75][151, 75] [100, 169][100, 169] 150,150

MCL13 3,3 2,2 [11, 5][11, 5] [16, 16][16, 16] 10,10

MCL23 3,3 3,3 [21, 10][21, 10] [16, 25][16, 25] 20,20

MCL33 3,3 5,5 [31, 15][31, 15] [16, 36][16, 36] 30,30

MCL43 3,3 5,5 [51, 25][51, 25] [36, 64][36, 64] 50,50

MCL53 3,3 10,10 [101, 50][101, 50] [100, 81][100, 81] 100,100

MCL63 3,3 15,15 [151, 75][151, 75] [100, 169][100, 169] 150,150

MCRS1 3,3 3,3 [21, 10][21, 10] [16, 25][16, 25] 20,20

MCRS2 3,3 3,5 [21, 10][31, 15] [16, 25][16, 36] 20,30

MCRS3 3,3 3,5 [21, 10][51, 25] [16, 25][16, 36] 20,30

MCRS4 3,3 3,10 [21, 10][101, 50] [16, 25][36, 64] 20,50

MCRS5 3,3 3,15 [21, 10][151, 75] [16, 25][100, 81] 20,100

MCRS6 3,3 3,25 [21, 10][251, 200] [16, 25][100, 169] 20,150

MCRF1 3,3 3,3 [21, 10][21, 10] [16, 25][16, 25] 20,20

MCRF2 3,3 5,3 [31, 15][21, 10] [16, 36][16, 25] 30,20

MCRF3 3,3 5,3 [51, 25][21, 10] [16, 36][16, 25] 30,20

MCRF4 3,3 10,3 [101, 50][21, 10] [36, 64][16, 25] 50,20

MCRF5 3,3 15,3 [151, 75][21, 10] [100, 81][16, 25] 100,20

MCRF6 3,3 25,3 [251, 200][21, 10] [100, 169][16, 25] 150,20

rithms. This implementation uses the knowledge that the underlying problem is a
stochastic program. The central idea is to estimate the properties of a large-scale
stochastic problem with the help of problems with few scenarios. This information is
used to devise implementation heuristics. In the rest of this paper we assume that
the probabilities πi (weights) in the TSSCP (1.1)–(1.3) are 1/K.

4.1. Initialization. We need an interior starting point that is feasible for the
first stage, and for which all second stage problems have feasible interior solutions.
For this purpose we consider the feasibility barrier centering problem

max
(x,s1)∈F0,s1∈K+

1

ln det(s1)
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and its KKT conditions

Dx = d,

Ax + s1 = c,

DT τ +AT υ = 0,(4.1)

P (s1/21 )υ = ι1,

s1, υ ∈ K+
1 .

Equations (4.1) are solved to a desirable accuracy. An infeasible primal-dual interior
point method based on the description in [27, 28] is used. If such a solution is not
found within a desirable accuracy, then the problem is “infeasible.” Otherwise, the
iterate at which the primal-dual algorithm terminates is taken as a solution. Some
details of this implementation are given in section 4.2. The properties of interior point
methods ensure that if an interior feasible solution is available, then the infeasible
primal-dual interior method will provide such a solution [23, 10]. The solution of
(4.1) may not provide a starting point for which all second stage problems are feasible
if the problem does not have full recourse. We use an artificial variable (yai ) for the
second stage problem to ensure a full recourse. The second stage problems with the
artificial variable take the form

max fTi yi −
1
2
yTi Hiyi −Myai

s.t. Riyi + Uix = zi,

Wiyi + Tix+ s2,i − yai ι2,i = hi,(4.2)

yai ≥ 0, s2,i ∈ K2,i,

where M is a sufficiently large constant to ensure that yai → 0, as a solution of TSSCP
is approached. It is easy to construct a feasible solution of (4.2), which is taken as a
starting point for the centering problem (2.11) defined for (4.2).

We still have the problem of identifying a proper value of M . We achieve this
in the preprocessing phase. We experiment with an approximation of the original
large-scale problem with a small number of scenarios (e.g., N = 100) with different
values of M , which is taken as a multiple of the infinite norm of the problem data. The
smallest value of M that successfully reduces yai below 10−10 for all sampled problems
is multiplied by a constant for later use. This constant is 10 for the experiments
reported in this paper. This strategy allows us to work with values of M that are not
unnecessarily large. Taking very large values of M may cause numerical difficulties.
Although this approach is heuristic it has worked successfully in all our computations.
One may think about adjusting the value of M dynamically over the course of the
algorithm.

4.1.1. Initial warm-start. When solving different small sampled problems in
the beginning, the first stage solution from the first sampled problem is used to warm-
start all subsequent problems.

4.1.2. Selection of the starting barrier parameter. Starting with a μ that
is too small may take too many inner iterations to reach the initial centered point,
whereas choosing an unnecessarily large starting μ increases the number of outer
iterations. We use information from the preprocessing phase to identify a suitable
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starting μ. When solving a sampled problem we identify the value of μ that gives
only a single digit of accuracy in this problem. Solving this problem to optimality also
gives us the magnitude of the optimal objective. Let us denote the objective identified
in this step by ô. We let μ̂1 = ô/ν̂, where ν̂ is the order of the first stage cone K1. This
value of μ̂1 is expected to correspond to a solution with zero to one digit of accuracy
in the objective value, which can be verified by building a confidence interval around
the barrier function value. Next we try different values of μ (0.1μ̂1, 10μ̂1) as the
starting μ, and record the number of inner iterations required to solve the problem.
We select a value of μ that requires the least number of inner iterations to get an
optimal solution starting from that value. The corresponding solution is used to start
the main algorithm for TSSCP.

4.2. Solution of the second stage centering problems. Each inner iteration
of our algorithm solves second stage centering problems defined after updating x
and/or μ. It is neither necessary nor possible to exactly solve second stage centering
problems. In the following, (4.3) ensures sufficient feasibility in the solution, and (4.4)
ensures proximity (controlled by the parameter ν) to the central path:

‖Riyi + Uix− zi‖ ≤ tolfeas, ‖Wiyi + Tix+ s2,i − hi‖ ≤ tolfeas,

‖WT
i λi +RTi γi +Hiyi − fi‖ ≤ tolfeas,(4.3)

‖P (λ1/2
i )s2,i − μι‖ ≤ νμ.(4.4)

We start from the solution of the second stage problem available at the end
of the previous iteration. These starting points are no longer feasible or centered.
We employ an infeasible primal-dual interior point method to solve the second stage
centering problems. The primal-dual method implements the Nesterov–Todd [22, 29]
scaling to symmetrize the KKT system and take steps along the Newton direction for
recentering. A second stage line search is performed for computing the step-length as
follows.

If a full Newton step (length 1) is feasible, we give priority to restoring primal
and dual feasibility and take this step. When a full Newton step is not feasible,
we choose a step-length that minimizes ‖ξ‖ := ‖ξfeas, ξcent‖, where (ξfeas = Riyi +
Uix − zi,Wiyi + Tix + s2,i − hi,W

T
i λi + RTi γi + Hiyi − fi) is the vector of primal

and dual infeasibilities, and ξcent = (P (λ1/2
i )s2,i − μι) is the residual vector in the

complementarity condition (4.4). The derivative of ‖ξ‖2 is a third order polynomial
in the step-length, which has one or three real roots. Let � denote the maximum
step-length that we can take without violating the conic constraints on the primal
slack s2,i and on the dual multipliers (λi) associated with the primal constraints. If
there are no real roots less than �, � is the optimal step-length. If there is only one
real root less than �, it is the optimal step-length. If all three roots are real and less
than �, either the smallest or the largest root is the optimal step-length. When � is
the optimal step-length we take a slightly shorter step (0.9*�) to ensure that primal
and dual iterates stay far away from the boundary. In the results reported in this
paper no attempts are made to take different steps along primal and dual directions,
and a predictor-corrector strategy is not used.

Table 3 gives computational results for Problem MCR3 with 100 second stage
scenarios using ζ = 0.1 and different combinations of β and ν. The first number in each
cell of this table gives the number of outer iterations required in our implementation.
The second number gives the average number of second stage Newton step calculations
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Table 3

Number of inner iterations and average iterations for recentering second stage problems for
Problem MCR3-100 using accurate (3 digits) line search.

ζ = 0.1 ν
β 0.01 0.1 1 10

(2 −
√

(3))/2 31 31 30 31
1.09 1.01 1.00 0.99

0.5 24 26 24 25
1.11 1.01 1.00 1.00

1 21 21 22 22
1.10 1.01 1.00 1.00

3 20 19 20 19
1.10 1.01 1.00 1.00

5 - - - -
- - - -

(total number of second stage Newton steps over all the scenarios/total number of
calls to the second stage problems) for each call to the second stage problem. We
use tolfeas = 10−9 in condition (4.3). Note that the average number of second stage
Newton iterations is close to one for the values of ν in the range 0.01 to 10, and
the number of outer iterations is also insensitive to the accuracy of the second stage
problem solutions. The values of β used for results in this table are chosen to ensure
closeness to the first stage central path. Larger values of β do not produce stable
performance, as seen from the results reported in Tables 3 and 4. For these results
the algorithm is terminated when the relative improvement in the objective value at
two successive major iterations is less than eight digits. It usually corresponds to
a value of μ between 10−7 to 10−8. The number of inner iterations taken by the
algorithm is given in Table 3 if a problem is successfully solved to eight digits of
accuracy. For all runs reported in Table 3 we used a relatively accurate line search to
avoid any misinterpretations. In all the runs performing a line search, the search is
terminated when we have three digits of accuracy in the step-length parameter. The
iteration counts are indicated by “–” when the implementation fails to achieve eight
digits of precision. There are several reasons for this failure. For some problems the
Cholesky factorization method in MATLAB becomes unstable. For other problems
the solution does not have eight digits of accuracy, even though the change in the
objective between two successive major iterations is less than eight digits. This may
be due to the fact that for β = 5 the neighborhood of the central path may be too
wide to correctly measure termination based on either relative improvement or the
barrier parameter value criterion.

When warm-starting from the previous solution, typically only one (occasionally
two) second stage iteration is required. Furthermore, the number of inner iterations
of the primal decomposition algorithm remain unchanged for ν in a very large range.
Computationally we observe that typically the termination conditions (4.4) are sat-
isfied for much smaller values of tolfeas since Newton steps are very effective from
a warm-start solution. Furthermore, from Table 3 we observe that the average num-
ber of iterations required to recenter the second stage grows only slightly for smaller
values of ν.

4.3. First stage centering and barrier reduction rate. Tables 4, 7, and
8 give computational results for Problem MCR3-100 for ν = 1, and using different
combinations of β and ζ with exact and inexact line search. The results in Table 4
show that the total number of inner iterations increase for large values of ζ (μ is
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Table 4

Number of inner iterations and average inner iterations per outer iteration for Problem MCR3-
100 using accurate (3 digits) line search.

ν = 1 ζ
β 0.05 0.1 0.25 0.5

(2 −
√

(3))/2 29 30 36 56
4.33 3.86 2.83 2.35

0.5 26 24 31 50
3.83 3.14 2.42 2.09

1 24 22 27 49
3.50 2.71 2.08 2.04

3 - 20 26 26
- 2.43 2.00 1.04

5 - - 25 25
- - 1.92 1.00

decreased slowly). Also when μ is reduced too aggressively the total number of inner
iterations tends to increase, indicating that recentering becomes more difficult in this
case. In our experiments the choices ζ = 0.1 and β = 1 give good results for all the
problems.

4.4. First stage step-length. The analysis of long-step primal interior point
algorithms, such as the one given in [18, 21, 31] is based on taking fixed-length steps
along the Newton direction. The choice of this step-length is given as θ = (1 + δ)−1,
where δ is the local norm of the Newton direction, as explained in sections 2.1 and 2.2.
This step-length is usually very conservative, and there is a need to develop a step-
length selection strategy that is more efficient. The strategy of taking a constant
step to the boundary, which works well for the primal-dual algorithms [13, 15], is not
always stable in the current setting. Also, in practice we cannot perform an elaborate
line search with backtracking, since each barrier function evaluation (or its derivative
evaluation) requires solution of all second stage scenarios. This is almost equal to the
cost of computing the first stage direction afresh. Hence, we need a heuristic that
avoids unnecessary barrier function evaluations while not increasing the total number
of inner iterations significantly.

The following step-length selection strategy has worked well in our computational
experiments: θ = min{α(1 + δ)−1, 1, 0.9�}, where � is the maximum step to the
boundary of the feasible set, and α is a scalar constant. We take this step and
check the value of barrier function at the new point. This evaluation of the barrier
function is combined with the computation of the new Newton direction if the step
is accepted. Hence, there is no efficiency loss in this function evaluation. We ensure
that the barrier function has reduced sufficiently at the new point, which is almost
always the case. In a few rare occasions, when the barrier function is not reduced
sufficiently, we can backtrack by aggressively reducing α. In our computations when
this happened we simply set α = 1; i.e., in this case we take θ = (1 + δ)−1. This has
always reduced the barrier function to a desirable amount. The use of the parameter
α is justified through empirical observations, which indicate that when an iterate
is close to the boundary, the optimum step-length is a multiple of (1 + δ)−1. Such
results are shown in Table 5 for problem MCR4-100. We use α = 4 in our actual
computations. The results in Table 6 show that the choice of parameter α is important
in reducing the total number of inner iterations. Note that the number of inner
iterations are slightly larger for both small and large values of α. This is because for
a small value of α the step is conservative, while for a large value of α the step is
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Table 5

Behavior of feasible and optimal first stage step-lengths for problem MCR4-100 (β = 1, ν = 1,
ζ = 0.1).

Max feasible Line search Line search step-length

Iter. # μk (1 + δ)−1 step-length step-length (1 + δ)−1

1 1.00E+00 0.02 0.07 0.07 3.50
2 1.00E+00 0.21 1.65 1.46 6.95
3 1.00E+00 0.28 1.95 1.48 5.29
4 1.00E+00 0.5 4.14 1.38 2.76
5 1.00E-01 0.08 0.22 0.22 2.75
6 1.00E-01 0.21 0.77 0.6 2.86
7 1.00E-01 0.41 2.3 1.35 3.29
8 1.00E-01 0.56 10.59 2.08 3.71
9 1.00E-02 0.04 0.1 0.09 2.25
10 1.00E-02 0.13 0.37 0.35 2.69
11 1.00E-02 0.38 2.34 1 2.63
12 1.00E-02 0.64 17.21 1.4 2.19
13 1.00E-03 0.03 0.09 0.09 3.00
14 1.00E-03 0.2 0.43 0.38 1.90
15 1.00E-03 0.47 2.54 0.9 1.91
16 1.00E-03 0.85 146.46 1.1 1.29
17 1.00E-04 0.03 0.1 0.1 3.33
18 1.00E-04 0.42 1.42 0.73 1.74
19 1.00E-04 0.82 20.69 1.04 1.27
20 1.00E-05 0.03 0.1 0.1 3.33
21 1.00E-05 0.62 3.38 0.86 1.39
22 1.00E-06 0.03 0.1 0.1 3.33
23 1.00E-06 0.61 2.55 0.81 1.33
24 1.00E-07 0.03 0.1 0.1 3.33
25 1.00E-07 0.57 1.73 0.73 1.28
26 1.00E-08 0.03 0.1 0.1 3.33
27 1.00E-08 0.51 1.13 0.6 1.18

usually so large that we take 0.9� as a step-length instead of α(1 + δ)−1. Reasons for
failure indicated in these tables are similar to those discussed before. While analyzing
100 scenario problems of different size and randomness we find that the heuristic
step-length strategy performs well, taking within 10–20% of the number of inner
iterations required by an implementation using “exact” line search. The “exact” line
search is performed using bisection method, and it is terminated when the interval of
uncertainty is reduced to 10−3. The worst offenders (about 25% worse) were problems
MCRF14–MCRF6 (see Table 10) suggesting that further refinements may provide
improvements.

5. Basic behavior of the primal decomposition algorithm.

5.1. Comparison with a direct method. Since we can formulate TSSCP as a
large conic programming problem (extensive formulation), one can use a primal-dual
interior point method for solving the extensive formulation. SeDuMi [26] is a popular
solver that can be used to directly solve the extensive formulations of the problem we
generate. Table 9 gives a comparison of the total number of iterations taken by the
primal decomposition algorithm (for α = 4, β = 1, ζ = 0.1, ν = 1) and those taken by
SeDuMi 1.05 [26] for an extensive formulation of the problem. In order to compare
the performance of primal decomposition algorithm with that of SeDuMi, it is more
appropriate to consider the number of inner iterations taken by the primal decompo-
sition algorithm with the number of iterations taken by SeDuMi to achieve the same
accuracy in the solution. SeDuMi implements Mehrotra’s predictor-corrector method.
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Table 6

Heuristic step-length selection: Number of inner iterations for problems MCR1–MCR6 for
varying values of β, (ζ = 0.1, ν = 1).

β

Problem α 2−
√

3
2

0.5 1 3 5

MCR1-100 2 37 36 35 25 -
4 35 28 31 25 -
∞ 35 32 27 31 -

line search - 26 22 20 -
MCR2-100 2 34 31 31 - -

4 34 31 30 - -
∞ 35 32 32 - -

line search - 28 27 23 22
MCR3-100 2 - 31 25 - -

4 35 31 25 - -
∞ 35 31 25 - -

line search 30 24 22 20 -
MCR4-100 2 48 40 39 29 -

4 39 37 32 - -
∞ 40 38 32 - -

line search - 32 29 - -
MCR5-100 2 62 56 54 46 -

4 52 43 40 - -
∞ 54 45 43 - -

line search 47 42 38 - -
MCR6-100 2 71 55 51 43 -

4 55 46 43 - -
∞ 57 48 45 - -

line search 49 41 35 - -

Table 7

Heuristic step-length selection: Number of inner iterations and average inner iterations per
outer iteration for Problem MCR3-100.

ν = 1, α = 4 ζ
β 0.05 0.1 0.25 0.5

(2 −
√

3)/2 35 33 58 99
5.83 4.43 4.83 4.13

0.5 30 28 46 73
5.00 3.50 3.83 3.04

1 21 24 34 51
3.50 3.14 2.83 2.13

3 - - 24 26
- - 2.00 1.08

5 - - - -
- - - -

The work required to compute one predictor step in SeDuMi is roughly equivalent to
computing a Newton direction in an inner iteration of the primal decomposition al-
gorithm. A comparison of CPU times would be misleading for a variety of reasons.
These codes are written using different linear algebra libraries (SeDuMi uses its C
code, while we depend on MATLAB). Because MATLAB is an interpreted language,
it must interpret every line in a for-loop every time it goes through it, and this makes
MATLAB very slow in handling loops. Furthermore, when solving problems we gen-
erate scenarios on the fly, while SeDuMi reads an extensive formulation, generating
and writing to a text file that is readable by SeDuMi which is memory intensive. We
were unable to feed larger problems to SeDuMi for this reason. For the problems
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Table 8

Heuristic step-length selection: Number of inner iterations and average number of second stage
Newton iterations per call for Problem MCR3-100.

ζ = 0.1, α = 4 ν
β 0.01 0.1 1 10

(2 −
√

3)/2 33 33 33 33
1.35 1.12 1.03 1.03

0.5 28 28 28 28
1.40 1.14 1.03 1.03

1 24 24 24 24
1.48 1.17 1.04 1.04

3 - - - -
- - - -

5 - - - -
- - - -

Table 9

Comparison of our implementation (ζ = 0.1, β = 1, ν = 1, and α = 4) to SeDuMi.

Our implementation SeDuMi
Problem Objective Itr. Primal obj. Dual obj. Itr.
MCR1-100 1.631426527 31 1.631426587 1.631426582 22
MCR2-100 3.384065478 30 3.384065491 3.384065487 24
MCR3-100 204.2468748 25 204.2468761 204.2468760 22
MCR4-100 21.08956769 32 21.08956771 21.08956770 25

Table 10

Number of inner iterations with increasing problem size (ζ = 0.1, β = 1, ν = 1, and α = 4).

Problem Heur. Line search Problem Heur. Line search
MCRS1-100 30 27 MCRF1-100 30 27
MCRS2-100 27 25 MCRF2-100 30 28
MCRS3-100 23 22 MCRF3-100 31 30
MCRS4-100 22 21 MCRF4-100 46 37
MCRS5-100 24 21 MCRF5-100 51 40
MCRS6-100 32 27 MCRF6-100 46 36

that were solved by both SeDuMi and the primal decomposition algorithm, results
indicate that both algorithms correctly achieve eight digits of accuracy. SeDuMi took
10–30% fewer iterations. Recall that the corrector step in the predictor-corrector
method reduces the total number of iterations by 20–50%. Hence, it appears that for
a “Newton” step–based algorithm the total number of iterations taken by the primal
decomposition algorithm is comparable.

5.2. Performance with increasing problem size. Table 10 gives the number
of iterations required by the primal decomposition method with increasing size of
cones in the problem (called problem size for short). The problems with increasing
second stage size are MCRS1–MCRS6, and those with increasing first stage size are
MCRF1–MCRF6. These results show that the number of inner iterations are not
significantly affected by the second stage problem size, whereas the number of inner
iterations show an early upward trend but become stable as the first stage problem
size grows. This indicates that the complexity of the algorithm depends on the first
stage problem size; however, the iteration growth is not very rapid, which is generally
the case with interior point methods.
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Table 11

Number of inner iterations as problem randomness increases (ζ = 0.1, β = 1, ν = 1, and
α = 4). (Results for problems MCR1-100 to MCR6-100 are given in Table 6.)

Line Line Line
Problem Heur. search Problem Heur. search Problem Heur. search
MCL1-100 27 23 MCH1-100 26 24 MCL13-100 29 24
MCL2-100 36 29 MCH2-100 31 26 MCL23-100 31 26
MCL3-100 24 22 MCH3-100 25 25 MCL33-100 26 24
MCL4-100 32 29 MCH4-100 31 29 MCL43-100 32 30
MCL5-100 40 39 MCH5-100 38 36 MCL53-100 43 38
MCL6-100 43 37 MCH6-100 39 38 MCL63-100 40 37

Table 12

Number of inner iterations as number of scenarios increases (ζ = 0.1, β = 1, ν = 1, and α = 4).

# scenarios
10 100 1,000 10,000

Line Line Line Line
Problem Heur. search Heur. search Heur. search Heur. search
MCR2 31 27 30 27 32 26 32 26
MCR3 25 21 25 22 25 22 25 22

5.3. Performance of the algorithm with increasing randomness. We gen-
erated problems with increasing amount of randomness in the problem data by vary-
ing the value of p%. Recall that for Problems MCR1–MCR6 p% = 5%, for Problems
MCL1–MCL6 p% = 50%, and for Problems MCH1–MCH6 p% = 500%. We also
generated problems MCL13–MCL63 where the dimension of the underlying random
variable is 33 and p% = 50%. Results for 100-scenario instances of these problems
are given in Table 11. When comparing the number of inner iterations for these
problems with those for problems MCR1–MCR6 (see Table 6) no significant trend is
observed with increasing randomness. From these results we infer that the number of
inner iterations required by the algorithm is not dependent on the randomness in the
problem data.

5.4. Performance of the algorithm with increasing number of scenarios.
In Table 12 we give the number of inner iterations taken when solving Problems MCR3
and MCR4 with an increasing number scenarios. Implementation details for problems
with larger than 100 scenarios are discussed in section 7. A comparison of these results
shows no increasing trend in the required number of inner iterations with increasing
number of scenarios.

6. Adaptive scenario addition heuristic. The primal decomposition algo-
rithm naturally allows adaptive addition of scenarios as the algorithm progresses. It
is important to explore this possibility since adaptive addition of scenario may lead to
significant computational savings. Recall that when the number of scenarios is fixed
(no adaptive scenario addition) we move along a fixed first stage central path as μ
is reduced. However, in the adaptive algorithm the first stage central path changes
when new scenarios are added. As the results in section 7 show, we need to be careful
while adding scenarios adaptively. This is because if a large number of scenarios are
added for a small value of the barrier parameter, the change in the primal central
path caused by this scenario addition may result in a poorly conditioned problem.
This, in turn, may require significantly more inner iterations to recenter and could
even cause numerical breakdowns.
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In this section we develop a heuristic that addresses this issue. The key idea
behind our heuristic is to add the number of scenarios in such a way that adding
scenarios and reducing the value of barrier parameter in the algorithm have a similar
impact on displacement of the first stage center. For this purpose we devise methods
for estimating the change in the barrier objective value caused by scenario addition,
and also suggest ways to measure the change in the barrier objective resulting from re-
ducing μ. The assumptions made while developing this heuristic are justified through
empirical evidence.

We add new scenarios when μ is reduced in Step 2 of Algorithm 1. Our heuristic
aims to maintain

|ηNk
(μk, xNk

(μk)) − ηNk−1(μk, xNk−1(μk))| ≈ ΔηNk
(μk),

where ηNk
(μk, xNk

(μk)) is the optimum objective of the sample-average log-barrier
problem with Nk samples for μ = μk and

(6.1) ΔηNk
(μk) := ηNk

(μk, xNk
(μk)) − ηNk

(μk, xNk
(μk−1)).

Note that the sample-average function is a random variable when scenarios are
generated randomly (Monte Carlo). We represent the corresponding random variable
by η̂N (·, ·). Every randomly generated batch ofN -samples yields a different realization
ηN (·, ·) of η̂N (·, ·).

A justification of the heuristic idea is as follows. In the adaptive implementation
of our algorithm, at the beginning of the kth outer iteration we decrease the barrier
parameter from μk−1 to μk = ζμk−1, and we simultaneously increase the number
of scenarios from Nk−1 to Nk. In general, both of these actions may increase the
distance of current point x to the central path. Decreasing μ moves away the μ-
center, whereas increasing the number of scenarios may change the central path.
Since experimentally we know that it takes only a few iterations to recenter after
decreasing μ in the case where the number of scenarios is fixed, by keeping the impact
of adding to the number of scenarios of the same order as the impact of decreasing μ,
we expect that the number of iterations required to converge to the new center with
added scenarios will be of the same order.

6.1. Confidence interval estimation. Various estimations required to build
our heuristic are motivated by the following theorem from Shapiro [25].

Theorem 6.1. Consider the stochastic program infx∈X
∫
Ω
g(x, ω)P (dω) and let

z∗ be its optimal objective. Let ẑN denote the optimal objective of the sample average
problem infx∈X N−1

∑N
i=1 g(x, ωi), where ωi are independent. Suppose X satisfies the

following conditions:
(i) g(x, ·) is measurable for all x ∈ X;
(ii) there exists some function f : Ω → R such that

∫
Ω
|f(ω)|2P (dω) <∞, and

|g(x1, ω) − g(x2, ω)| ≤ f(ω)|x1 − x2|

for all x1, x2 ∈ X;
(iii) for some x̄ ∈ X,

∫
Ω
g(x̄, ω)dP (ω) < ∞, and E{g(x, ω)} =

∫
Ω
g(x, ω)dP (ω)

has a unique minimizer x∗ ∈ X. Then
√
N(ẑN − z∗) converges in distribution to

normal distribution Φ(0,Var[g(x∗, ξ)]), where Var[g(x∗, ω)] =
∫
Ω g(x∗, ω)2dP (ω) −

E{g(x∗, ω)}2.
Recall that since the log-barrier recourse function ηN (μ, x) is concave in x, it

has a unique maximizer. Thus it satisfies the uniqueness condition in (iii) of Theo-
rem 6.1. Furthermore, since concave functions are Lipschitz continuous in the interior
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of their domain, condition (ii) of Theorem 6.1 is also satisfied. The assumption that
first and second stage problems are feasible and bounded ensures the remaining reg-
ularity conditions in Theorem 6.1. Hence, when the random variable governing the
stochastic program has a continuous distribution and the second stage problems are
generated using Monte Carlo sampling, Theorem 6.1 applies. In this case, we have
Var[η̂N (μ, xN (μ))] = σ2(μ, x(μ))/N , where σ2(μ, x(μ)) = Var[ρ(μ, x(μ), ω̃)] [8]. Here,
ρ(·, ·, ω̃) is the log-barrier counterpart of ρ(·, ω̃) in (3.4). Note also that we used the
observation that the randomness of η̂N (μ, xN (μ)) is due to the log-barrier recourse
function. Theorem 6.1 shows that

√
N(η̂N (μ, xN (μ))−η(μ, x(μ))) converges in distri-

bution to a normal random variable with a mean of zero and variance of σ2(μ, x(μ)).
For any batch of N samples, this result provides a statistical bound on |ηN

(μ, xN (μ)) − η(μ, x(μ))| that holds with a certain confidence:

|ηN (μ, xN (μ)) − η(μ, x(μ))| ≤̃ zα
sN (μ, xN (μ))√

N
.

Here s2N (μ, xN (μ)) is an N -sample approximation of the sample variance estimator of
σ2(μ, x(μ)), and the value of zα provides the level of confidence we want in the bound.
In particular, zα satisfies P{Φ(0, 1) ≤ zα} = 1 − α. The statistical and approximate
nature of this bound is indicated by using the symbol ≤̃.

We use a quasi–Monte Carlo (QMC) (Sobol’ sequence) technique instead of Monte
Carlo to generate second stage samples since it is known that better variance con-
vergence rates are possible by using QMC techniques. For example, the empirical
results in Glasserman [8] and our own experiments suggest that a Sobol’ sequence
gives much faster convergence than a Monte Carlo sampling. Unfortunately, the con-
vergence rate theory for these techniques is not yet fully developed in the stochastic
programming setting. For example, we do not know the asymptotic distribution of
η̂N (μ, xN (μ))−η(μ, x(μ)) for scenarios generated using a Sobol’ sequence, and whether
an analogue of Theorem 6.1 holds. Heuristically, we expect that when scenarios are
generated using a Sobol’ sequence,

|ηN (μ, xN (μ)) − η(μ, xN (μ))| ≤̃ zαRMSN(μ, xN (μ)),

where RMSN(μ, xN (μ)) represents the “root-mean-square” error of η̂N (μ, xN (μ)),
and zα provides a confidence interval as before. The root-mean-square error is calcu-
lated by randomizing the Sobol’ sequence as follows.

Let Si represent the Sobol’ sequence used to generate the second stage scenarios.
To generate the jth set of N scenarios we generate a random (Monte Carlo) vector Uj ,
uniformly distributed over the unit hypercube of appropriate dimension, and generate
a new sequence: S̃i

j
= (Si + Uj) mod 1, i = 1, . . . , N. The problem corresponding to

S̃i
j

is generated as described in section 3.2. This process is repeated for j = 1, . . . ,m
to generate m random problems each having N scenarios. Let ηN(j)(μ, xN(j)(μ))
denote the log-barrier objective of the jth problem for a given μ and xN(j)(μ). Now

RMSN(μ, xN (μ)) :=

√√√√ 1
m− 1

m∑
j=1

(ηN(j)(μ, xN(j)(μ)) − η̄N )2, where(6.2)

η̄N :=
1
m

m∑
j=1

ηN(j)(μ, xN(j)(μ)).
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Calculation of RMSN(μ, xN (μ)) for large N requires significant work, which is not
practical in an algorithmic setting. However, in QMC we expect RMS to decrease by
O(1/Nκ), where 1 ≥ κ > 0.5 [8, Chapter 5]. Note that for Monte Carlo κ = 0.5. The
knowledge of κ can allow us to approximate RMSN(μ, xN (μ)) for large N by scaling
RMSN ′(μ, xN ′(μ)) calculated for some small value N ′. However, even this compu-
tation may be expensive, since computation of RMSN ′(μ, x) requires several (m)
replications of problems with small sample size. With this in mind in our implemen-
tation we perform the computation of κ once off-line, while we further approximate
the computation of RMSN(μ, xN (μ)) by taking the (possibly biased) estimation

RMSN (μ, xN (μ)) ≈ σ̂N (μ, xN (μ))/Nκ,

where

(6.3)

σ̂2
N (μ, xN (μ)) :=

1
N − 1

N∑
i=1

(ρi(μ, xN (μ)) − ρ̄N )2, where ρ̄N :=
1
N

N∑
i=1

ρi(μ, xN (μ)).

Note that as a consequence of this approximation we now have

|ηN (μ, xN (μ)) − η(μ, x(μ))| ≤̃ zασ̂N (μ, xN (μ))/Nκ,

which is similar to the approximation for the Monte Carlo case except that we now
have a tighter inequality due to 1/Nκ. With the above discussion the problem of
estimating a bound on |η̂N (μ, xN (μ)) − η(μ, x(μ))| is now reduced to the problem of
estimating σ̂2

N (μ, x(μ)) and κ. The discussion in section 6.2 shows that good approx-
imations of σ̂N (μ, xN (μ)) are available cheaply because of the empirically observed
properties of the primal central path. Fortunately very accurate values of κ are not
required since the adaptive scenario generation heuristic allows a lot of flexibility. The
calculation of κ is discussed in section 6.3.

6.2. Empirical observations on the first stage central path and the vari-
ance of second stage barrier objectives. We empirically observe that σ̂N (μ, ·)
does not change significantly with μ at solutions on (or near) the first stage central
path. Furthermore, it also does not change significantly with increasing value of N .
Hence, it is sufficient to compute σ̂N (μ, ·) for a large value of μ and a small sample size
N ′ at xN ′(μ). These empirical observations are illustrated in Table 13. Results in this
table are obtained from 100, 1,000, and 10,000 scenario approximations of problem
MCR3. We solved each of these problems using the primal decomposition method. We
calculated σ̂N (μk, x̂N (μk)) as defined in (6.3) at the approximate first stage μ-center
x̂N (μk) in every outer iteration k of the primal decomposition algorithm.

In the above experiment for each outer iteration k, we also calculated the changes
in the value of ηN to observe its behavior. From the results in Table 13 we observe that
ΔηN (μk) scales proportionally to μ and does not change significantly as N increases.
This suggests that it is sufficient to solve the sample average approximation to a low
accuracy (zero or one digit) to estimate σ̂N ′(μ, ·), and ΔηN (μ) for any μ. Note that
this last property is due to the form of the objective in (2.12) (due to the weighting of
the second stage barrier term by πi), and it is not obviously shared by the objective
function in (2.3), where the “contribution” of the barrier grows as more scenarios are
added.
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Table 13

Empirical properties of the first stage central path.

N μk σ̂N (μk , x̂N (μk)) ΔηN (μk)
100 1E+0 4.998 -

1E-1 5.167 9.17E+00
1E-2 5.210 1.08E+00
1E-3 5.200 1.13E-01
1E-4 5.198 1.14E-02
1E-5 5.198 1.13E-03
1E-6 5.198 1.14E-04
1E-7 5.198 1.42E-05

1,000 1E+0 5.470 -
1E-1 5.639 9.15E+00
1E-2 5.666 1.08E+00
1E-3 5.650 1.13E-01
1E-4 5.647 1.16E-02
1E-5 5.646 1.17E-03
1E-6 5.646 1.14E-04
1E-7 5.646 1.94E-05

10,000 1E+0 5.319 -
1E-1 5.505 9.16E+00
1E-2 5.530 1.07E+00
1E-3 5.506 1.13E-01
1E-4 5.496 1.15E-02
1E-5 5.495 1.14E-03
1E-6 5.495 1.13E-04
1E-7 5.495 1.66E-05

6.3. Estimating convergence rate of the root-mean-square error. For
problem MCR3 we experimented with N = 10, 50, 250, 1,000, and 5,000 scenario
approximations of the TSSCP. We generated m = 100 batches of 5,000 samples.
We identified x̂1

10(0.001), an approximate first stage μ-center of the first 10 scenario
problem for μ = 0.001, and then solved all the second stage problems in all batches
setting x = x̂1

10(0.001) and μ = 0.001. Let i(j) be the index of the ith sample in the
jth set with N samples. For j = 1, . . . , 100 and N= 10, 50, 250, 1,000, and 5,000 we
calculated

ηN(j)(0.001, x̂10(0.001)) = bTx− 1
2
xTGx + μ ln det(s1)

+
1
N

N∑
i(j)=1

ρi(j)(μ, x)

∣∣∣∣∣∣
μ=0.001, x=x̂1

10(0.001)

.

Using these values we obtained the root-mean-square error RMSN(0.001, x̂1
100(0.001))

for N = 10, 50, 250, 1,000, and 5,000. Table 14 gives the root-mean-square errors
for Problem MCR3 calculated in this way. An average convergence rate of κ = 0.84
is observed. Note that a different choice of x may give a slightly different rate of
convergence, and also one may think about building a confidence interval for the rate
of convergence. We have not done this in our experiments, since a crude estimate is
sufficient for us. In our numerical experiments on adaptive scenario addition, we used
κ = 0.85 for all randomly generated problems, and κ = 0.7 for all Markowitz problems.
The dimension of the Sobol’ sequence used to generate Markowitz problems is greater
(20 to 40 vs. 2 or 33 in the randomly generated problems), potentially resulting in a
slower convergence rate.
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Table 14

Number of scenarios vs. RMS.

N RMSN (0.001, x̂1
10(0.001))

10 2.254958E-01
50 5.581944E-02
250 1.150173E-02
1,000 4.230485E-03
5,000 1.309438E-03

6.4. A heuristic for adaptive scenario addition. Let μ3 be the value of
barrier parameter after three major iterations in the preprocessing phase and let x̂(μ3)
be a sufficiently well-centered first stage solution for μ = μ3. From the discussion in
section 6.1 it follows that

|ηNk
(μk, x̂Nk

(μk)) − ηNk−1(μk, x̂Nk−1(μk))|

= |ηNk
(μk, x̂Nk

(μk)) − η(μk, x(μk)) + η(μk, x(μk)) − ηNk−1(μk, x̂Nk−1(μk))|

≤̃ zα

(
σ̂Nk

(μk, x̂Nk
)

Nκ
k

+
σ̂Nk−1(μk, x̂Nk−1)

Nκ
k−1

)

≤̃ zα

(
1 +

(
Nk−1

Nk

)κ)
σ̂N ′(μ3, x̂(μ3))

Nκ
k−1

≤̃ 2zα
σ̂N ′(μ3, x̂(μ3))

Nκ
k−1

.

We may now choose Nk such that

2zα
σ̂N ′(μ, ·)
Nκ
k−1

= ΔηNk
(μk).(6.4)

Note that the heuristic calculation in (6.4) gives an estimation of the number of sce-
narios at iteration (k − 1) in anticipation of the impact of reduction in the barrier
parameter. Hence, the heuristic anticipates the future and loads sufficiently many
scenarios in the current outer iteration so that the central path does not change dra-
matically when we load new scenarios in the next outer iteration. In our computations
we set N ′ = 100 and used ΔηNk

(μk) ≈ Δη100(μ3)μ
k

μ3 .

7. Computational results on adaptive scenario addition and warm-
start. After adding new scenarios we need to solve the corresponding second stage
centering problem for the current value of x and μ. In order to exploit the solutions of
the scenarios that are already in the problem, we may look for a scenario that is close
to the scenario to be added. One possibility is to look for a scenario that is close in
terms of problem data to the new scenario. A solution from the neighboring scenario
may provide a good starting point. The Sobol’ sequences that we used to generate
our scenarios do not provide this neighborhood information a priori. Therefore, for
each Sobol’ point Sk we heuristically identified a neighboring point among the points
S1, . . . , Sk−1. We then used the final iterate from this neighboring scenario for the
current value of x and μ as a starting solution for the new scenario. Let us denote
this warm-start strategy as Warm-Start-1.

Our experience with Warm-Start-1 has been mixed. For easy problems, e.g.,
when the second stage problems have only linear constraints and linear objectives, we
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observed that the strategy of using a solution from a nearby scenario works. However,
for more difficult conic problems Warm-Start-1 exacerbates the performance. For
these problems starting from a well-centered point of a near by scenario, especially at
small values of μ, Newton iterations were not able to absorb the infeasibility within
a practical number of iterations. In general, our experience is that such warm-starts
with conic and semidefinite problems are harder for the same amount of perturbation
in the problem data.

We also experimented with an alternative approach (Warm-Start-2), which was
more stable in the current setting. In this approach, once we complete the final inner
iteration of the first outer iteration, we also solve all the second stage problems that
are yet not included in the problem, for the starting μ = μ1 and the latest first stage
solution x = x(μ1). For μ = μ1, the warm-start is very efficient and each second
stage problem can be solved within a few iterations. We store all these second stage
solutions for later use. When a new scenario is added in a subsequent outer iteration
k (k > 1), we warm-start its solution from the iterate stored for this scenario in the
first outer iteration. We proceed in two steps: In the first step, we solve the new
problem for μ = μ1 and x = x(μk) and in the second step we reduce μ from μ1 to μk.

7.1. Discussion of randomly generated problems. Tables 15–20 present
computational results for problems MCR3-10,000, MCL3-10,000, MCH3-10,000, and
MCL33-10,000. Run 1 in these tables corresponds to an implementation where all
scenarios are loaded from the beginning, Run 2 uses the scenario addition heuristic of
section 6 with zα = 1.96, Run 3 delays addition of these scenarios one major iteration
forward, and Run 4 delays addition of scenarios two major iterations forward. Run 5
and Run 6 on MCR3-10,000 are identical to Run 1 and Run 2, except that the
algorithm is terminated with a larger value of μ. These runs are included because
for MCR3-10,000, using the information from σ̂N ′(μ, ·), we estimate that a 10,000-
scenario problem can produce a “statistical accuracy” (i.e., have a confidence interval
that ensures that the objective is accurate to that degree) of about four digits. This
accuracy is achieved for μ = 10−4. Although the additional major iterations solve
the optimization problem more accurately, they do not improve the quality of the
stochastic programming solution. To get an additional digit of “statistical” accuracy
in the stochastic programs, we will require between 100,000 to one million scenarios.
Solving problems of such sizes is not possible in the MATLAB environment. In
Tables 15–26 row “# inner itr” gives the number of first stage Newton direction
calculations”; row “# new sce add itr” gives the number of second stage centering
iterations needed to add new scenarios while adaptively adding scenarios; row “# 2nd
stage recenter itr” gives the total number of second stage centering iterations; row “#
2nd stage rectr calls” gives the total number of second stage calls for centering; row
“avg new sce add itr” gives the average number of second stage iterations required
to add a new scenario while adaptively adding scenarios; and row “avg recenter itrs”
gives the average number of second stage Newton iterations per call.

We make the following observations based on results in Tables 15–16 for Problem
MCR3-10,000. Table 16 gives relevant statistics on algorithm performance. First, we
observe that a well-designed heuristic is necessary for gaining efficiency for adaptive
scenario addition. Note that for Problem MCR3-10,000 Run 3 required significantly
more iterations and time than Run 2. Run 4, which was more aggressive in delaying
scenario addition, could not even solve the problems. In this run at μ = 10−4, after
additional scenarios were loaded, the algorithm failed to recenter within 50 inner
iterations and terminated. There are only four digits of accuracy in the solution at
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Table 15

Number of scenarios in different scenario addition strategies for MCR3-10,000 (p% = 5%,
σ̂100(10−3, x̂(10−3)) = 5.20).

Outer itr. μ Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7

1 1E+01 10,000 100 100 100 10,000 100 100
2 1E-01 10,000 100 100 100 10,000 100 100
3 1E-02 10,000 225 100 100 10,000 225 100
4 1E-03 10,000 3,300 225 100 10,000 3,300 225
5 1E-04 10,000 10,000 3,300 225 10,000 10,000 10,000
6 1E-05 10,000 10,000 10,000 3,300
7 1E-06 10,000 10,000 10,000 10,000
8 1E-07 10,000 10,000 10,000 10,000

Table 16

Computational performance: MCR3-10,000.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7
# inner itr 25 27 41 70 16 18 21
# new sce add itr 10,016 62,926 75,923 - 10,016 62,926 68,866
# 2nd stage recenter itr 260,000 154,675 184,971 168,016 166,400 58,388 72,045
# 2nd stage rectr calls 250,000 154,575 184,800 167,875 160,000 58,350 71,900
final objective 204.622445 204.622445 204.622444 204.671617 204.621714 204.621671 204.620192
run time 3,238 2,043 2,526 1,971 2,141 970 1,323
avg new sce add itrs 1.00 6.29 7.59 - 1.00 6.29 6.89
avg recenter iters 1.04 1.00 1.00 1.00 1.04 1.00 1.00
infeasibility 5.54E-12 5.16E-12 2.42E-10 - - - 3.37E-10

this value of μ. Second, the warm-start for the existing scenario (after an update of x
and/or μ) was effective. However, the addition of a new scenario took relatively more
iterations. The computational savings in Run 2 over Run 1 are about 40%. This is
because about half of the iterations in Run 2 are done with all the scenarios. When
comparing the CPU times of Run 5 and Run 6 we observe that the CPU time savings
are about 55%. Run 7, which aggressively delays scenario addition, performs worse
than Run 6.

When analyzing the results in Tables 17–22 for Problems MCL3-10,000 and
MCH3-10,000, we find a repeat of the above observations. Although Run 4 man-
aged to optimize Problem MCL3-10,000, it took about 60% more time compared to
Run 1. Run 4 for Problem MCH3-10,000 was just as efficient as Run 2. Note that
more scenarios are added sooner for Problems MCL3-1,000 and MCH3-10,000 since
they have larger values of σ̂N ′(μ, ·). Interestingly, for these problems delaying scenario
addition by one or two major iterations did not cause the algorithm to fail although
it increased the number of inner iterations. We think this may be because for a larger
value of μ it is easier to recover proximity to the first stage central path. However,
for a smaller value of μ the recovery to the central path is harder since in this case
the iterates are closer to the boundary of the first stage feasible set.

We observe that the average number of inner iterations taken when adding new
scenarios in Run 1 increase slightly from MCR3-10,000 to MCL3-10,000 to MCH3-
10,000. This shows that the ability to warm-start for an existing scenario depends
on the value of ˆσN ′(μ, ·). As ˆσN ′(μ, ·) decreases, for a fixed number of scenarios the
distance between a given scenario and its closest neighbor decreases. The same is true
if the number of scenarios were to increase. In both cases, the quality of final iterates
of neighboring scenarios as starting point increases.

7.2. Discussion on two-stage stochastic Markowitz problems. We solved
the two-stage Markowitz problem with 20, 30, and 40 securities setting τ2,i = 0.05 and



1874 SANJAY MEHROTRA AND M. GÖKHAM ÖZEVIN

Table 17

Number of scenarios in different scenario addition strategies for MCL3-10,000 (p% = 50%,
σ̂100(10−3, x̂(10−3)) = 16.57).

Outer itr. μ Run 1 Run 2 Run 3 Run 4

1 1E+01 10,000 100 100 100
2 1E-01 10,000 100 100 100
3 1E-02 10,000 850 100 100
4 1E-03 10,000 10,000 850 100
5 1E-04 10,000 10,000 10,000 850
6 1E-05 10,000 10,000 10,000 10,000
7 1E-06 10,000 10,000 10,000 10,000
8 1E-07 10,000 10,000 10,000 10,000

Table 18

Computational performance: MCL3-10,000.

Run 1 Run 2 Run 3 Run 4

# inner itr 25 25 26 60
# new sce add itr 10,041 53,314 65,392 76,466
# 2nd stage recenter itr 260,744 153,385 124,517 370,784
# 2nd stage rectr calls 250,000 153,250 124,400 370,650
final objective 205.620644 205.620643 205.620643 205.620643
run time 2,699 1,983 1,776 4,349
avg new sce add itrs 1.00 5.33 6.54 7.65
avg recenter iters 1.04 1.00 1.00 1.00
infeasibility 5.52E-12 5.73E-12 5.92E-12 5.52E-12

Table 19

Number of scenarios in different scenario addition strategies for MCH3-10,000 (p% = 500%,
σ̂100(10−3, x̂(10−3)) = 156.20).

Outer itr. μ Run 1 Run 2 Run 3 Run 4

1 1E+01 10,000 100 100 100
2 1E-01 10,000 900 100 100
3 1E-02 10,000 10,000 900 100
4 1E-03 10,000 10,000 10,000 900
5 1E-04 10,000 10,000 10,000 10,000
6 1E-05 10,000 10,000 10,000 10,000
7 1E-06 10,000 10,000 10,000 10,000
8 1E-07 10,000 10,000 10,000 10,000

Table 20

Computational performance: MCH3-10,000.

Run 1 Run 2 Run 3 Run 4

# inner itr 28 27 29 33
# new sce add itr 17,643 52,783 65,881 77,425
# 2nd stage recenter itr 314,253 207,982 186,794 174,610
# 2nd stage rectr calls 280,000 194,000 174,400 156,600
final objective 232.336743 232.336743 232.336743 232.336743
run time 3,223 2,490 2,373 2,321
avg new sce add itrs 1.76 5.28 6.59 7.74
avg recenter iters 1.12 1.07 1.07 1.12
infeasibility 8.73E-09 9.80E-09 9.70E-09 6.38E-09
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Table 21

Number of scenarios in different scenario addition strategies for MCL33-10,000 (p% = 50%,
σ̂100(10−3, x̂(10−3)) = 24.96).

Outer itr. μ Run 1 Run 2 Run 3 Run 4

1 1E+01 10,000 100 100 100
2 1E-01 10,000 100 100 100
3 1E-02 10,000 1,500 100 100
4 1E-03 10,000 10,000 1,500 100
5 1E-04 10,000 10,000 10,000 1,500
6 1E-05 10,000 10,000 10,000 10,000
7 1E-06 10,000 10,000 10,000 10,000
8 1E-07 10,000 10,000 10,000 10,000

Table 22

Computational performance: MCL33-10,000.

Run 1 Run 2 Run 3 Run 4

# inner itr 26 26 29 81
# new sce add itr 34,777 96,439 108,506 119,561
# 2nd stage recenter itr 280,745 165,344 157,244 495,655
# 2nd stage rectr calls 270,000 165,200 157,000 494,300
final objective 204.112473 204.112473 204.112472 204.112473
run time 3,049 2,417 2,435 5,946
avg new sce add itrs 3.48 9.64 10.85 11.96
avg recenter iters 1.04 1.00 1.00 1.00
infeasibility 5.45E-12 5.75E-12 4.18E-10 5.19E-12

a 40-security instance of the problem setting τ2,i = 0.25. Decreasing the upper bound
τ2,i on the variation of the portfolio decomposition makes the two-stage Markowitz
problem increasingly harder and eventually infeasible.

In Table 24 we report results for the τ2,i = 0.05 case. We performed two runs for
each problem. In Run 1, we loaded all scenarios from the beginning and in Run 2 we
added them adaptively following the strategies given in Table 23. For all problems,
Run 2 uses the scenario addition heuristic of section 6 with zα = 1.96. With τ2,i =
0.05, strategy Warm-Start-1 was not stable. This is similar to the experience described
in the previous section. Therefore, we performed addition of scenarios according
to strategy Warm-Start-2. Since scenario additions require about 7 second stage
iterations and the algorithm converges to optimality taking considerably fewer inner
iterations than on the randomly generated test problems, here the adaptive scenario
addition does not yield significant computational savings.

In Table 26, we report results for τ2,i = 0.25, where strategy Warm-Start-1 worked
successfully. Our experience in this case was positively different. In Run 1 we loaded
all scenarios in the first outer iteration. In Run 2 scenarios are added adaptively as
discussed in section 6 with zα = 1.96. In Runs 3, 4, and 5 we added scenarios by warm-
starting from the final iterate of a neighboring scenario at latest value of μ. Run 4
delays addition of scenarios one major iteration forward. Run 5 is very aggressive and
delays addition of scenarios to the final two outer iterations. In Run 2 computational
savings over Run 1 are about 30%. Due to more efficient addition of scenarios, savings
in Run 3 increase by about 40%. Finally, Run 5 achieves 80% computational savings
over Run 1. Also, note that even in Run 5, addition of scenarios was absorbed
without taking additional inner iterations. All runs achieved optimality after 15 inner
iterations. We estimate that with τ2,i = 0.25, a 15,000-scenario instance of the two-
stage Markowitz problem with 40 securities can produce a “statistical accuracy” of
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about four digits. So, the relative easiness of the second stage problems are not
because scenarios are closer to each other in terms of problem data. We think that
the reason lies in the geometric simplicity of the problem that allows absorption of
infeasibilities easily even when starting from neighboring scenario solutions for small
values of μ.

Recall that the objective of the two-stage Markowitz problem is a concave quadra-
tic function. We remark that our implementation successfully handled these quadratic
terms without any numerical issues.

In summary, our experience suggests that adaptive addition of scenarios can be
a very effective way of achieving computational savings, particularly when warm-
starting the second stage problems from a nearby scenario is possible. However, it is
also important to balance scenario addition with changes in the barrier function along
the central path.

8. Conclusions. We have given a practical primal decomposition algorithm that
follows the primal central path in the first stage. At each iteration, using approximate
primal and dual solutions of the second stage barrier problems, it generates gradient
and Hessian information for the first stage problem and takes a step along the Newton
direction in the primal space. Several problems inherent in the context of primal al-
gorithms were resolved using a preprocessing phase, and heuristics were developed for
line search and scenario addition. These heuristics are based on empirically observed
properties of the central path. A rigorous theoretical justification of these observed
properties is a topic of future research.

Numerical experiments were conducted on a set of randomly generated problems
and a two-stage extension of Markowitz’s basic portfolio optimization model. Nu-
merical experience suggests that we can solve the second stage centering problem ap-
proximately without compromising the performance of the decomposition algorithm.
This experience also suggests that we need to follow the primal central path closely to
develop stable implementations. Our results show that significant computational sav-
ings are possible for primal decomposition algorithms by adaptive addition of scenar-
ios. These computational savings increase if it is possible to warm-start the solution
of newly added second stage centering problems from the solution of a neighboring
problem. The possibility of using primal predictor-corrector methods and integrating
warm-starts with scenario generation may further improve the performance of primal
decomposition methods and should be explored in the future.

It is possible to conceive other ways of adding scenarios in the adaptive scenario
addition strategy. One example of such a strategy is a linear growth strategy where an
equal number of scenarios are added in each major iteration. While a linear growth
strategy is simple, and possibly useful, it is not consistent with what one would
expect from the convergence rate of quasi–Monte Carlo methods. A linear growth
strategy adds more scenarios in the early outer iterations, which is inefficient. In
fact, it is easy to argue that with the linear growth strategy the maximum amount of
computational savings cannot be more than 50% assuming that the average number of
second stage Newton iterations per call is unchanged. Our goal here is to demonstrate
that greater improvements in solution times are possible. The results on delayed
addition of scenarios are used to demonstrate the importance of developing a strategy
with a “reasonable” theoretical foundation.
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A USE OF CONJUGATE GRADIENT DIRECTION FOR THE
CONVEX OPTIMIZATION PROBLEM OVER THE FIXED POINT

SET OF A NONEXPANSIVE MAPPING∗
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Abstract. In this paper, we discuss the convex optimization problem over the fixed point set of
a nonexpansive mapping. The main objective of the paper is to accelerate the hybrid steepest descent
method for the problem. To this goal, we present a new iterative scheme that utilizes the conjugate
gradient direction. Its convergence to the solution is guaranteed under certain assumptions. In
order to demonstrate the effectiveness, performance, and convergence of our proposed algorithm, we
present numerical comparisons of the algorithm with the existing algorithm.

Key words. convex optimization problem, nonexpansive mapping, fixed point, hybrid steepest
descent method, conjugate gradient direction
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1. Introduction. Let H be a real Hilbert space with inner product 〈·, ·〉 and its
induced norm ‖ · ‖. It is well known that the standard smooth convex optimization
problem [10, 24, 33, 45], given a convex, Fréchet differentiable function f : H → R and
a closed convex subset C of H ,

find a point x∗ ∈ C such that f(x∗) = min
x∈C

f(x),(1.1)

can be formulated equivalently as the variational inequality problem [23, 24, 36, 45]
over C:

find x∗ ∈ C such that 〈v − x∗,∇f(x∗)〉 ≥ 0 for all v ∈ C,(1.2)

where ∇f : H → H is the gradient of f . The simplest iterative scheme for (1.1) is the
well-known projected gradient method [17]: x1 ∈ C and xn+1 = PC(xn − μ∇f(xn))
for every n ∈ N, where PC is the metric projection from H onto C (see section 2) and
μ is a positive real number. This method requires repetitive use of PC , although the
closed form expression of PC is not always known in many situations. To help resolve
this problem, the following hybrid steepest descent method [42, 43, 44] for (1.2) when
C is equal to the fixed point set Fix(T ) := {x ∈ H : T (x) = x} of a nonexpansive
mapping T [2, 3, 15, 16, 32, 37, 38] has been established: x1 ∈ H and

xn+1 = T (xn − μαn∇f(xn)) for every n ∈ N,(1.3)

where μ > 0, (αn)n∈N ⊂ (0, 1] is a slowly diminishing constant sequence, and ∇f : H →
H is strongly monotone and Lipschitz continuous (see section 2). By the nonexpan-
sivity of PC , the method (1.3) is the same as the projected gradient method when
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T := PC and αn := 1 (n ∈ N). The projected gradient and hybrid steepest descent
methods converge strongly to the uniquely existing solution of (1.2) when C = Fix(T )
[42, 43, 44]. Recently, the method (1.3) has been applied successfully to signal process-
ing, inverse problems, and so on [34, 35, 44]. Other algorithms for solving the problem
(1.2) have been proposed in [5] and [22]. In [5], an effective scheme for solving the
signal recovery problem has been proposed, and this method converges strongly to the
solution without using a diminishing constant sequence. In [22], the problem which
contains (1.2) and an iterative algorithm for this problem have been presented.

In the case where C = H = R
N , iterative procedures for (1.1) [1, 6, 7, 8, 11, 12, 13,

14, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 39, 40, 46] have a long history and have been
studied extensively, for example, the Newton method, the quasi-Newton methods, the
steepest descent method, and the conjugate gradient methods. These have the common
form

xn+1 = xn + αndn,(1.4)

where xn ∈ R
N is the nth approximation to the solution, αn > 0 is a step size, and

dn ∈ R
N is a search direction. The Newton method and the quasi-Newton methods

are known as fast convergent iterative methods for solving (1.1) when C = R
N . To

compute the search direction, the Newton method requires us to solve the Newton
equation ∇2f(xn)dn = −∇f(xn) (n ∈ N), that is, to invert the Hessian ∇2f(xn). If
∇2f(xn) is positive definite, then the solution dn of this equation satisfies the descent
condition, that is, 〈dn,∇f(xn)〉 < 0 (n ∈ N). Even when the objective function f
does not have its positive definite Hessian, ∇2f(xn) or ∇2f(xn)−1 is often replaced
by a simpler, positive definite matrix to define a simpler search direction. Such a
method is called the quasi-Newton method. In particular, the Davidon–Fletcher–
Powell and Broyden–Fletcher–Goldfarb–Shanno methods have been used as effective
algorithms for solving (1.1) when C = R

N . The steepest descent method does not
need any matrix inversion because this method always utilizes the steepest descent
direction dn = −∇f(xn) (n ∈ N). Acceleration of the steepest descent method
has been of great interest. Much research along this direction covers, for example,
the conjugate gradient methods [1, 7, 8, 13, 14, 19, 29, 30, 31, 46], the three-term-
recurrence method [27], and the memory gradient methods [6, 25, 26]. In particular, the
conjugate gradient methods have been used widely as an efficient accelerated version
of the most gradient methods. We define the conjugate gradient direction as follows:

dn = −∇f(xn) + βndn−1,(1.5)

where βn ∈ R. Many design schemes for βn have been developed, for example,
the Fletcher–Reeves formula βFR

n = ‖∇f(xn)‖2/‖∇f(xn−1)‖2 [13, 1, 7, 14], the
Polak–Ribière–Polyak formula βPRP

n = 〈∇f(xn), yn−1〉/‖∇f(xn−1)‖2 [29, 30, 14], the
Hestenes–Stiefel formula βHS

n = 〈∇f(xn), yn−1〉/〈dn−1, yn−1〉 [19, 14], and the Dai–
Yuan formula βDY

n = ‖∇f(xn)‖2/〈dn−1, yn−1〉 [8], where yn := ∇f(xn+1) −∇f(xn).
The FR method [1, 7, 14] and the DY method [8] determine βn in such a way that
the descent condition is satisfied.

The goal of this paper is to accelerate the hybrid steepest descent method (1.3).
To achieve this goal, we present a new iterative scheme (Algorithm 3.4) by combin-
ing two ideas: One is the hybrid steepest descent method (1.3) for the variational
inequality problem over the fixed point set of a nonexpansive mapping, and the other
is the conjugate gradient method (1.4) and (1.5) for the unconstrained optimization
problem.
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The rest of this paper is divided into four sections. In section 2, we state prelimi-
naries on fixed points, nonexpansive mapping, metric projection, convexity, continuity,
and monotone operator. In section 3, we propose an iterative algorithm (Algorithm
3.4) that utilizes a new search direction. In section 4, we apply our method to the
convex optimization problem and present convergence analysis (Theorem 4.1) un-
der some assumptions. In section 5, to demonstrate the effectiveness, performance,
and convergence of the proposed algorithm, we present numerical comparisons of the
algorithm with the hybrid steepest descent method (1.3).

2. Preliminaries.

2.1. Convexity and monotonicity. A function f : H → R is said to be convex
if for any x, y ∈ H and for any λ ∈ [0, 1], f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).
In particular, a convex function f : H → R is said to be strongly convex with α > 0
(α-strongly convex) if f(λx+ (1−λ)y) ≤ λf(x) + (1−λ)f(y)− (αλ(1−λ)/2)‖x− y‖2

for all x, y ∈ H and for all λ ∈ [0, 1]. For example, f(x) := (1/2)〈x,Q(x)〉 + 〈b, x〉
(x ∈ H) is α-strongly convex, where b ∈ H and Q : H → H is a self-adjoint, bounded,
linear operator satisfying 〈x,Q(x)〉 ≥ α‖x‖2 for some α > 0 and for all x ∈ H (for
details, see Example 3.2 of this paper). In particular, if Q is the identity mapping on
H , then f is 1-strongly convex.

An operator A : H → H is said to be monotone if 〈x − y,A(x) − A(y)〉 ≥ 0 for
all x, y ∈ H . A : H → H is called an α-strongly monotone operator if 〈x − y,A(x) −
A(y)〉 ≥ α‖x− y‖2 for all x, y ∈ H .

Suppose that f : H → R is a continuously Fréchet differentiable function. Then
f is convex if and only if the gradient ∇f is monotone [4, 20, 21]. It is also known
[20, 21] that f is α-strongly convex if and only if ∇f is α-strongly monotone. Let
f : R

N → R be a twice continuously differentiable function. Then f is convex if and
only if, for all x ∈ R

N , the Hessian ∇2f(x) is positive semidefinite on R
N [4, 20, 21].

It is also known [11, 20, 21] that f is α-strongly convex if and only if, for all x ∈ R
N ,

the matrix ∇2f(x) − αE is positive semidefinite, that is, 〈y,∇2f(x)(y)〉 ≥ α‖y‖2 for
all y ∈ R

N .

2.2. Nonexpansive mapping and fixed point. A mapping T : H → H is said
to be Lipschitz continuous with L > 0 (L-Lipschitz continuous) if ‖T (x) − T (y)‖ ≤
L‖x− y‖ for all x, y ∈ H . When T : H → H is 1-Lipschitz continuous, T is said to be
nonexpansive. It is well known that the fixed point set Fix(T ) := {x ∈ H : T (x) = x}
of a nonexpansive mapping T is closed and convex [2, 16, 38]. T : H → H is called a
firmly nonexpansive mapping if for all x, y ∈ H , ‖T (x)−T (y)‖2 ≤ 〈x−y, T (x)−T (y)〉.
Given a nonempty, closed convex subset C of H , the mapping that assigns every point
x ∈ H to its unique nearest point in C is called the metric projection onto C and is
denoted by PC , that is, ‖x − PC(x)‖ = infy∈C ‖x − y‖. The metric projection PC
is a typical example of firmly nonexpansive mapping satisfying Fix(PC) = C. Some
closed convex set C, for example, a linear variety, a closed ball, a closed cone, and
a closed polytope, is simple in the sense that the closed form expression of PC is
known, which implies that PC can be computed within a finite number of arithmetic
operations [2, 9, 41].

To prove the main theorem of this paper, we need the following lemma.
Lemma 2.1 (see [42, 44]). Let T : H → H be a nonexpansive mapping and

f : H → R a continuously Fréchet differentiable function. Suppose that ∇f : H → H is
α-strongly monotone and L-Lipschitz continuous and μ ∈ (0, 2α/L2). Define T λ(x) :=
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T (x− μλ∇f(x)) for all x ∈ H, where λ ∈ [0, 1]. Then for all x, y ∈ H,

‖T λ(x) − T λ(y)‖ ≤ (1 − λτ)‖x − y‖,

where τ := 1 −
√

1 − μ(2α− μL2) ∈ (0, 1].

3. Optimization over the fixed point set of a nonexpansive mapping.
In this paper, we consider the following constrained optimization problem.

Problem 3.1. Assume that
(A1) T : H → H is a nonexpansive mapping with Fix(T ) �= ∅;
(A2) f : H → R is continuously Fréchet differentiable;
(A3) ∇f : H → H is α-strongly monotone and L-Lipschitz continuous.

Our objective is to

find a point x∗ ∈ Fix(T ) such that f(x∗) = min
x∈Fix(T )

f(x).

Note that under the assumptions (A1), (A2), and (A3), the existence and the
uniqueness of the minimizer x∗ ∈ Fix(T ) of f over Fix(T ) is guaranteed [42]. A well-
known example of a convex function satisfying the assumptions (A2) and (A3) is the
following.

Example 3.2 (see [42]). Let b ∈ H and Q : H → H be a self-adjoint, bounded,
linear operator and strongly positive; that is, there exists α > 0 such that 〈x,Q(x)〉 ≥
α‖x‖2 for all x ∈ H . Define a quadratic function f : H → R by

f(x) :=
1
2
〈x,Q(x)〉 + 〈b, x〉 for all x ∈ H.

Then ∇f(·) = Q(·) + b is α-strongly monotone and ‖Q‖-Lipschitz continuous, where
‖Q‖ := supx �=0 |〈x,Q(x)〉|‖x‖−2.

Remark 3.3. When H is finite dimensional, the above operator Q coincides with
a positive definite matrix. Then, for all x ∈ R

N , ∇2f(x) = Q and λmin‖x‖2 ≤
〈x,Q(x)〉 ≤ λmax‖x‖2, where λmin and λmax are, respectively, the minimum and
maximum eigenvalues of Q. Hence α = λmin ≤ λmax = ‖Q‖.

For Problem 3.1, we present an algorithm using a conjugate gradient direction.
Algorithm 3.4. Let f : H → R and T : H → H satisfy the conditions (A1),

(A2), and (A3) in Problem 3.1.
Step 0. Take μ > 0. Choose x1 ∈ H and α1 ∈ (0, 1] arbitrarily, and set d1 :=

−∇f(x1) and n := 1.
Step 1. Given xn ∈ H and dn ∈ H, choose αn ∈ (0, 1] (see Theorem 4.1) and

define xn+1 ∈ H by

xn+1 := T (xn + μαndn).(3.1)

Step 2. Choose βn+1 ∈ [0,∞) (see Theorem 4.1), and update the search direction
as

(3.2) dn+1 := −∇f(xn+1) + βn+1dn.

Put n := n+ 1, and go to Step 1.
In the case where T is the identity mapping on H and μ := 1, Algorithm 3.4 coin-

cides with the conjugate gradient method for the unconstrained optimization problem.
By (3.1) and (3.2), we can see that the search direction dn is defined by combining the
ideas of the hybrid steepest descent method (1.3) and the conjugate gradient method
(1.5).
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4. Convergence theorem for the iterative algorithm. We present conver-
gence analysis on Algorithm 3.4.

Theorem 4.1. Suppose that μ ∈ (0, 2α/L2), and (αn)n∈N ⊂ (0, 1] and (βn)n≥2 ⊂
[0,∞) satisfy (i) limn→∞ αn = 0, (ii)

∑∞
n=1 αn = ∞, (iii)

∑∞
n=1 |αn+1 − αn| < ∞,

(iv) αn/αn+1 ≤ σ for some σ ≥ 1 and for every n ∈ N, and (v) limn→∞ βn = 0 (an
example of satisfying (i)–(v) is αn := 1/(n+ 1)ρ and βn+1 := 1/(n+ 1)γ (n ∈ N, ρ ∈
(0, 1], and γ > 0)). If (∇f(xn))n∈N is bounded, the sequence (xn)n∈N generated by
Algorithm 3.4 satisfies the following:

(a) (xn)n∈N and (dn)n∈N are bounded. Moreover, limn→∞ ‖xn+1 − T (xn)‖ = 0.
(b) limn→∞ ‖xn+1 − xn‖ = 0 and limn→∞ ‖xn − T (xn)‖ = 0.
(c) The sequence (xn)n∈N converges strongly to the uniquely existing solution of

Problem 3.1.
Proof. (a) We shall prove that (dn)n∈N in Algorithm 3.4 is bounded. By the

condition (v), there exists m1 ∈ N such that βn ≤ 1/2 for all n ≥ m1. Put K1 :=
sup{‖∇f(xn)‖ : n ∈ N} < ∞ and K2 := max{K1, ‖dm1‖}. It is obvious from the
definition of K2 that ‖dm1‖ ≤ 2K2. From (3.2), we have

‖dn+1‖ ≤ ‖∇f(xn+1)‖ + βn+1‖dn‖ ≤ K2 +
1
2
‖dn‖(4.1)

for all n ≥ m1. Suppose that ‖dn‖ ≤ 2K2 for some n ≥ m1. Then, by (4.1), we
get ‖dn+1‖ ≤ 2K2. By induction, we obtain ‖dn‖ ≤ 2K2 for all n ≥ m1, and hence
(dn)n∈N is bounded.

Let x∗ ∈ Fix(T ) be the solution of Problem 3.1, and let τ ∈ (0, 1] be as in Lemma
2.1. Put K3 := sup{‖βn+1dn−∇f(x∗)‖ : n ∈ N} <∞ and K := max{‖∇f(x∗)‖,K3}.
Then, by Lemma 2.1, for every n ≥ 2, we have

‖xn+1 − x∗‖ = ‖T (xn + μαndn) − T (x∗)‖
≤ ‖(xn + μαn(−∇f(xn) + βndn−1)) − x∗‖
= ‖(xn − μαn∇f(xn)) − (x∗ − μαn∇f(x∗))

+ μαn(βndn−1 −∇f(x∗))‖
≤ ‖(xn − μαn∇f(xn)) − (x∗ − μαn∇f(x∗))‖

+ μαn‖βndn−1 −∇f(x∗)‖

≤ (1 − ταn)‖xn − x∗‖ +
(
μK

τ

)
ταn.

By x2 = T (x1 − μα1∇f(x1)) and the definition of K, the inequality above holds for
n = 1. Therefore, by induction, we obtain

‖xn − x∗‖ ≤ max
{
‖x1 − x∗‖, μK

τ

}
for every n ∈ N;

that is, (xn)n∈N is bounded.
By (3.1) and the nonexpansivity of T , we have lim supn→∞ ‖xn+1 − T (xn)‖ ≤

μ lim supn→∞ αn‖dn‖. The condition (i) and the boundedness of (dn)n∈N imply

lim
n→∞

‖xn+1 − T (xn)‖ = 0.(4.2)

(b) We shall prove limn→∞ ‖xn+1 − xn‖ = 0. Put zn := xn + μαndn (n ∈ N),
M1 := sup{|〈zn − zn−1,∇f(xn−1)〉| : n ≥ 2} <∞, M2 := sup{|〈zn − zn−1, dn−1〉|/τ :
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n ≥ 2} < ∞, M3 := sup{σ|〈zn − zn−1, dn−2〉|/τ : n ≥ 3} < ∞, and M := max{M1,
M2,M3}. It follows from (3.1), (3.2), Lemma 2.1, the nonexpansivity of T , and the
condition (iv) that

‖xn+1 − xn‖2 = ‖T (xn + μαndn) − T (xn−1 + μαn−1dn−1)‖2

≤ ‖(xn + μαndn) − (xn−1 + μαn−1dn−1)‖2

= ‖(xn + μαn(−∇f(xn) + βndn−1))

− (xn−1 − μαn∇f(xn−1)) − μαn∇f(xn−1) − μαn−1dn−1‖2

= ‖(xn − μαn∇f(xn)) − (xn−1 − μαn∇f(xn−1))

+ μ(αnβndn−1 − αn∇f(xn−1) − αn−1dn−1)‖2

≤ ‖(xn − μαn∇f(xn)) − (xn−1 − μαn∇f(xn−1))‖2

+ 2μ〈αnβndn−1 − αn∇f(xn−1) − αn−1dn−1, zn − zn−1〉
≤ (1 − ταn)2‖xn − xn−1‖2 + 2μ〈αnβndn−1 − αn∇f(xn−1)

− αn−1(−∇f(xn−1) + βn−1dn−2), zn − zn−1〉
≤ (1 − ταn)‖xn − xn−1‖2 + 2μ(αn−1 − αn)〈zn − zn−1,∇f(xn−1)〉

+ 2μαnβn〈zn − zn−1, dn−1〉 + 2μαn−1βn−1〈zn − zn−1,−dn−2〉
≤ (1 − ταn)‖xn − xn−1‖2 + 2μM |αn−1 − αn|

+ 2μMταnβn + 2μMτ
αn−1

σ
βn−1

≤ (1 − ταn)‖xn − xn−1‖2 + 2μM |αn−1 − αn|
+ 2μMταnβn + 2μMταnβn−1

for every n ≥ 3. By the condition (v), for any ε > 0, there exists n1 ∈ N such that
βn ≤ ε/4 for all n ≥ n1. For all n ≥ n1 + 1, we have

‖xn+1 − xn‖2 ≤ (1 − ταn)‖xn − xn−1‖2 + 2μM |αn−1 − αn|
+ μMε(1 − (1 − ταn)).

So, we obtain that for all n,m ≥ n1,

‖xn+m+1 − xn+m‖2 ≤ (1 − ταn+m)‖xn+m − xn+m−1‖2 + 2μM |αn+m − αn+m−1|
+ μMε(1 − (1 − ταn+m))

≤ (1 − ταn+m){(1 − ταn+m−1)‖xn+m−1 − xn+m−2‖2

+ 2μM |αn+m−1 − αn+m−2| + μMε(1 − (1 − ταn+m−1))}
+ 2μM |αn+m − αn+m−1| + μMε(1 − (1 − ταn+m))

≤ (1 − ταn+m)(1 − ταn+m−1)‖xn+m−1 − xn+m−2‖2

+ 2μM(|αn+m − αn+m−1| + |αn+m−1 − αn+m−2|)
+ μMε{1 − (1 − ταn+m)(1 − ταn+m−1)}

≤
n+m−1∏
k=m

(1 − ταk+1)‖xm+1 − xm‖2 + 2μM
n+m−1∑
k=m

|αk+1 − αk|

+ μMε

(
1 −

n+m−1∏
k=m

(1 − ταk+1)

)
.
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Since the condition (ii) implies
∏∞
k=m(1 − ταk+1) = 0, we have

lim sup
n→∞

‖xn+1 − xn‖2 = lim sup
n→∞

‖xn+m+1 − xn+m‖2

≤ 2μM lim sup
n→∞

n+m−1∑
k=m

|αk+1 − αk| + μMε

for every m ≥ n1. From the condition (iii), we obtain lim supn→∞ ‖xn+1 − xn‖2 ≤
μMε for arbitrarily small ε > 0, and hence

lim
n→∞

‖xn+1 − xn‖ = 0.(4.3)

Now, by (4.2) and (4.3), we have

lim
n→∞

‖xn − T (xn)‖ = 0.(4.4)

(c) The first step is to show lim supn→∞〈x∗ − xn,∇f(x∗)〉 ≤ 0. Choose a subse-
quence (xni )i∈N of (xn)n∈N such that

lim sup
n→∞

〈x∗ − xn,∇f(x∗)〉 = lim
i→∞

〈x∗ − xni ,∇f(x∗)〉.

Boundedness of (xni)i∈N implies the existences of a subsequence (xnij
)j∈N of (xni)i∈N

and a point x̂ ∈ H such that limj→∞〈xnij
, w〉 = 〈x̂, w〉 (w ∈ H). We may assume

without loss of generality that limi→∞〈xni , w〉 = 〈x̂, w〉 (w ∈ H). Assume x̂ �= T (x̂).
By (4.4) and the nonexpansivity of T , we have a contradiction:

lim inf
i→∞

‖xni − x̂‖ < lim inf
i→∞

‖xni − T (x̂)‖ = lim inf
i→∞

‖xni − T (xni) + T (xni) − T (x̂)‖

= lim inf
i→∞

‖T (xni) − T (x̂)‖ ≤ lim inf
i→∞

‖xni − x̂‖.

This implies x̂ ∈ Fix(T ). Since x∗ ∈ Fix(T ) satisfies 〈v−x∗,∇f(x∗)〉 ≥ 0 (v ∈ Fix(T )),
we get

lim sup
n→∞

〈x∗ − xn,∇f(x∗)〉 = lim
i→∞

〈x∗ − xni ,∇f(x∗)〉

= 〈x∗ − x̂,∇f(x∗)〉 ≤ 0.

Moreover, by the condition (v) and the boundedness of (zn)n∈N and (dn)n∈N, we have

lim sup
n→∞

βn〈zn − x∗, dn−1〉 ≤ lim sup
n→∞

βn‖zn − x∗‖‖dn−1‖ ≤ 0.

These facts and the condition (i) guarantee that, for any ε > 0, there exists m0 ∈ N

such that

μ2αn
τ

〈dn,−∇f(x∗)〉 ≤ ε

6
,
μ

τ
〈x∗ − xn,∇f(x∗)〉 ≤ ε

6
and

μβn
τ

〈zn − x∗, dn−1〉 ≤
ε

6

(4.5)

for all n ≥ m0.
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Finally, we shall prove that (xn)n∈N converges strongly to the solution x∗. It
holds from (3.1), (3.2), the nonexpansivity of T , and Lemma 2.1 that

‖xn+1 − x∗‖2 = ‖T (xn + μαndn) − T (x∗)‖2

≤ ‖xn + μαn(−∇f(xn) + βndn−1) − x∗‖2

= ‖(xn − μαn∇f(xn)) − (x∗ − μαn∇f(x∗))

+ μαnβndn−1 − μαn∇f(x∗)‖2

≤ ‖(xn − μαn∇f(xn)) − (x∗ − μαn∇f(x∗))‖2

+ 2αn〈(xn + μαndn) − x∗, μβndn−1 − μ∇f(x∗)〉

≤ (1 − ταn)‖xn − x∗‖2 + 2ταn

{
μβn
τ

〈zn − x∗, dn−1〉

+
μ

τ
〈x∗ − xn,∇f(x∗)〉 +

μ2αn
τ

〈dn,−∇f(x∗)〉
}

for every n ≥ 2. So, by (4.5), we have

‖xn+1 − x∗‖2 ≤ (1 − ταn)‖xn − x∗‖2 + εταn

for all n ≥ m0. By induction, we get

‖xn+1 − x∗‖2 ≤
n∏

k=m0

(1 − ταk)‖xm0 − x∗‖2 + ε

(
1 −

n∏
k=m0

(1 − ταk)

)

for all n ≥ m0. Thus, it follows from the condition (ii) that

lim sup
n→∞

‖xn+1 − x∗‖2 ≤ ε.

Since ε > 0 is arbitrary, we obtain lim supn→∞ ‖xn+1 − x∗‖2 ≤ 0 and hence limn→∞
‖xn+1 − x∗‖2 = 0. This implies that the sequence (xn)n∈N converges strongly to the
uniquely existing solution x∗.

Remark 4.2. In convergence analysis [1, 7, 8, 14, 31, 46] for the conjugate gradient
methods for unconstrained optimization problems, it is commonly assumed that the
step size αn satisfies the following well-known Wolfe conditions [39, 40]: f(xn) −
f(xn + αndn) ≥ −δ1αn〈dn,∇f(xn)〉, 〈dn,∇f(xn + αndn)〉 ≥ δ2〈dn,∇f(xn)〉, where
0 < δ1 < δ2 < 1. In Theorem 4.1 on Algorithm 3.4 for Problem 3.1, the conditions
(i)–(v) are assumed.

5. Numerical examples. In order to demonstrate the effectiveness, perfor-
mance, and convergence of Algorithm 3.4, we first discuss Problem 3.1 for Exam-
ple 3.2, where Q ∈ R

64×64 is a positive definite matrix which is given in [18] and
b := (−1,−2, . . . ,−64)T ∈ R

64.
Problem 5.1. Consider the following optimization problem:

minimize f(x) :=
1
2
〈x,Q(x)〉 + 〈b, x〉 subject to x ∈ C := C1 ∩C2,

where C1 := {x ∈ R
64 : ‖x‖2 ≤ 1} and C2 := {x ∈ R

64 : ‖x− (1, 1, 0, . . . , 0)T ‖2 ≤ 1}.
The matrix Q has λmin ≈ 8.5539 × 10−2 and λmax ≈ 9.9251 × 10. The global

minimizer −Q−1(b) ≈ (24.4697,−23.8379, . . . , 620.9782)T ∈ R
64 of f is not in C, and
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the exact solution of Problem 5.1 cannot be described because of the definitions of Q
[18] and C := C1 ∩C2. We use x1 := (−0.5,−0.5, . . . ,−0.5)T ∈ R

64, αn := 1/
√
n+ 1,

and βn+1 := 1/(n + 1)a (n ∈ N, a > 0). From the definition of Ci (i = 1, 2),
we note that the exact computation of PC1∩C2 is not necessarily easy, while the
computations of PC1 and PC2 are tractable. So, we define a mapping T : R

64 → R
64

by T (x) := (1/2)PC1(x) + (1/2)PC2(x) for all x ∈ R
64. Then T is a nonexpansive

mapping with Fix(T ) = C := C1 ∩C2 �= ∅ and the computation of T is not hard [42].
Algorithm 3.4 requires us to choose μ ∈ (0, 2λmin/λ

2
max) by Theorem 4.1. Even

if μ ≥ 2λmin/λ
2
max, by αn := 1/

√
n+ 1 (n ∈ N), there exists k1 ∈ N such that

μαn < 2λmin/λ
2
max for all n ≥ k1. Moreover, Theorem 4.1 guarantees that Algorithm

3.4 with an initial point xk1 ∈ R
64 converges to the solution of Problem 5.1. Since

the approximations of λmin and λmax are given, we have 2λmin/λ
2
max ≈ 1.7367×10−5,

and hence μ := 10−5. Then the required iterations of Algorithm 3.4 versus the hybrid
steepest descent method (HSDM) [42, 43, 44] are presented in Figure 1. Figure
1 shows that the values ‖xn − T (xn)‖ (n ∈ N) generated by Algorithm 3.4 when
a = 0.1, 0.01, 0.001 and HSDM converge to 0; that is, the proposed method and
HSDM converge to a point in Fix(T ) = C. At the same time, it can be observed
from Figure 1 that, as compared with HSDM, Algorithm 3.4 succeeds in reducing
the value of f , and Algorithm 3.4 has faster convergence than HSDM. It is also seen
from Figure 1 that HSDM and Algorithm 3.4 when a = 0.001 converge to the same
point. When a sequence (βn+1)n∈N is a very slowly diminishing constant sequence
(a = 0.01, 0.001), Algorithm 3.4 has fast convergence. Figure 2 shows the behavior of
‖xn − T (xn)‖ and f(xn) (n = 1, 2, . . . , 1000) for the methods when μ := 1. It is seen
from Figure 2 that by a large μ, f(xn) (n = 1, 2, . . . , 10) is severely decreasing, and
f(xn) and ‖xn − T (xn)‖ (n = 11, 12, . . . , 1000) stay about the same. The case when
μ := 10−2 is presented in Figure 3. Figure 3 shows that, as compared with Figure 1
(μ := 10−5), HSDM and Algorithm 3.4 when a = 0.1 have faster convergence than the
methods when a = 0.01, 0.001. By the discussions above, if we use μ ∈ (0, 2λmin/λ

2
max)

(see Lemma 2.1 and Theorem 4.1), then Algorithm 3.4 with a small a > 0 has fast
convergence.

Next, we consider the case where Q is the identity matrix E and b := (−1,−2, . . . ,
−64)T ∈ R

64: Minimize f(x) := (1/2)‖x‖2 + 〈b, x〉 subject to x ∈ C := C1 ∩ C2. In
this case, the global minimizer of f is −b = (1, 2, . . . , 64)T /∈ C. We use μ := 10−3

and suppose that (αn)n∈N and (βn+1)n∈N are the same as in the discussion above.
Convergence to the solution in Problem 5.1 and the required iterations of the methods
are provided in Figure 4. It can be observed from Figure 4 that HSDM has faster
convergence than the proposed algorithm. In particular, for a small a > 0, the
required iterations are large. In general, a use of the conjugate gradient method for
the unconstrained optimization problem is the most effective when the ratio of the
minimum and maximum eigenvalues of Q is small. In the case where Q = E, that is,
the ratio λmin/λmax = 1, HSDM is very effective as compared with other methods.
From Figure 4, we note that HSDM and Algorithm 3.4 when a = 0.01 converge to
the same point.

Finally, we discuss the case where Q is a diagonal matrix which has eigenvalues
1, 2, . . . , 64 and b := (0, 0, . . . , 0)T ∈ R

64 and consider the following: Minimize f(x) :=
(1/2)〈x,Q(x)〉 subject to x ∈ C := C3 ∩ C4, where C3 := {x ∈ R

64 : ‖x‖2 ≤ 4} and
C4 := {x ∈ R

64 : ‖x − (2, 0, 0, . . . , 0)T ‖2 ≤ 1}. In this case, x∗ := (1, 0, 0, . . . , 0)T ∈
{x ∈ C : f(x) = miny∈C f(y)}. Define T (x) := (1/2)PC3(x) + (1/2)PC4(x) (x ∈ R

64).
We use μ := 10−4 < 2λmin/λ

2
max and suppose that (αn)n∈N and (βn+1)n∈N are the
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Fig. 1. Convergence for the methods to the solution when Q is a positive definite matrix which
is given in [18], βn+1 := 1/(n + 1)a (a = 0, 1, 0.01, 0.001), and μ := 10−5.
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Fig. 2. Behavior of the methods when Q is a positive definite matrix which is given in [18],
βn+1 := 1/(n + 1)a (a = 0, 1, 0.01, 0.001), and μ := 1.
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Fig. 3. Behavior of the methods when Q is a positive definite matrix which is given in [18],
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Fig. 4. Convergence for the methods to the solution when Q is the identity matrix, βn+1 :=
1/(n + 1)a (a = 0, 1, 0.01, 0.001), and μ := 10−3.
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same as in the first discussion. The required iterations of the proposed method versus
HSDM and the behavior of Dn := ‖xn − x∗‖2 (n ∈ N) are presented in Figure 5.
From Figure 5, our method has faster convergence than HSDM and, in particular,
Algorithm 3.4 when a = 0.001 succeeds in reducing severely the value Dn (n ∈ N).
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[21] J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms

II, Springer, New York, 1993.
[22] S. A. Hirstoaga, Iterative selection methods for common fixed point problems, J. Math. Anal.

Appl., 324 (2006), pp. 1020–1035.
[23] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their

Applications, Academic Press, New York, 1980.
[24] Z. Q. Luo, J. S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints,

Cambridge University Press, New York, 1996.
[25] A. Miele and J. W. Cantrell, Study on a memory gradient method for the minimization of

functions, J. Optim. Theory Appl., 3 (1969), pp. 459–470.
[26] Y. Narushima and H. Yabe, Global convergence of a memory gradient method for uncon-

strained optimization, Comput. Optim. Appl., 35 (2006), pp. 325–346.
[27] J. L. Nazareth, A conjugate direction algorithm without line searches, J. Optim. Theory

Appl., 23 (1977), pp. 373–387.
[28] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Ser. Oper. Res., Springer,

New York, 1999.
[29] E. Polak and G. Ribière, Note sur la convergence de directions conjugées, Rev. Francaise

Informat Recherche Opertionelle, 3e année, 16 (1969), pp. 35–43.
[30] B. T. Polyak, The conjugate gradient method in extremal problems, USSR Comp. Math. Math.

Phys., 9 (1969), pp. 94–112.
[31] M. J. D. Powell, Nonconvex minimization calculations and the conjugate gradient method,

in Numerical Analysis, Lecture Notes in Math. 1066, Springer, Berlin, 1984, pp. 122–141.



A USE OF CONJUGATE GRADIENT DIRECTION 1893

[32] S. Reich, Some problems and results in fixed point theory, Contemp. Math., 21 (1983), pp. 179–
187.

[33] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[34] K. Slavakis, I. Yamada, and K. Sakaniwa, Computation of symmetric positive definite

Toeplitz matrices by the hybrid steepest descent method, Signal Process., 83 (2003),
pp. 1135–1140.

[35] K. Slavakis and I. Yamada, Robust wideband beamforming by the hybrid steepest descent
method, IEEE Trans. Signal Process., 55 (2007), pp. 4511–4522.
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Abstract. The word “tame” is used in the title in the same context as in expressions like “con-
vex optimization,” “nonsmooth optimization,” etc.—as a reference to the class of objects involved
in the formulation of optimization problems. Definable and tame functions and mappings associated
with various o-minimal structures (e.g. semilinear, semialgebraic, globally subanalytic, and others)
have a number of remarkable properties which make them an attractive domain for various appli-
cations. This relates both to the power of results that can be obtained and the power of available
analytic techniques. The paper surveys certain ideas and recent results, some new, which have been
or (hopefully) can be productively used in studies relating to variational analysis and nonsmooth
optimization.
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1. Introduction. The progress in variational analysis in the last quarter of the
20th century resulted in a complete reshaping of some chapters of analysis and op-
timization theory. I first of all mean the nonsmooth analysis per se, the theory of
nonconvex subdifferentials that extended all rules of differential and convex subdiffer-
ential calculus as far as to lower semicontinuous functions and set-valued mappings.

However, it was recognized from the outset that the classes of all lower semi-
continuous and even all (locally) Lipschitz functions are often unnecessarily broad
and the general theory does not give any answer for which functions and sets one or
another result indeed gives useful information. As a most striking example, I shall
mention that the limiting subdifferential of a generic Lipschitz function with Lipschitz
constant one is identically equal to the unit ball [6], so for a typical Lipschitz function
no useful information of its behavior can be obtained from its subdifferential mapping.

Therefore, a search for suitable classes of functions that can be effectively used in
one or another context has been one of the leading themes in variational analysis since
the very beginning. It is enough to mention semismooth functions [12], prox-regular
functions [28], composite and amenable functions [28], etc. More recently, an under-
standing that sets, functions, and mappings that usually appear in applications have
some distinctive structural features which, taken into consideration, may substantially
facilitate analysis has been gradually becoming a driving idea. The successful use of
convex semialgebraic sets associated with linear matrix inequalities in numerical con-
vex optimization [26] is probably the most impressive demonstration of this trend.
Recent concepts of active sets, U-Lagrangians, and some others [24, 22] reviving at a
very new technical level an old heuristic idea of the “ravine method” of Gelfand and
Zetlin [13] is another important example.

The results presented in the paper suggest that the classes of tame and, espe-
cially, definable functions may offer an appropriate domain on which the machinery
of variational analysis works with full efficiency. The boundaries of the class have
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not been yet fully established, but what is already known shows that it encompasses
an enormous variety of functions, sets, and mappings. Functions of this class are
uniquely defined by their subdifferential mappings (up to an additive constant for
each connected component of the graph). In a nutshell they can be characterized as
“pathology free” objects. The meaning of this expression will be gradually clarified
in the course of our discussions. We shall just give here a few illuminating examples.

A tame function need not be continuous. But the discontinuities it may have
can only be of the “first” type with unilateral limits (perhaps infinite) along tame
bounded curves always existing. A tame set need not be a manifold, but it can
always be decomposed into a locally finite collection of manifolds which fit each other
in a nice way. A tame set-valued mapping has tame selections without any additional
topological assumptions. And, what is especially valuable—the class is closed with
respect to practically all operations used in variational analysis: Boolean, topological,
linear, structural, and most analytical (as composition or differentiation of mappings),
including, e.g., partial minimization—a feature especially important for optimization.
Finally, elements of the class have distinctive and recognizable structural properties
which tremendously facilitate working with them.

Definable and tame sets, functions, and mappings are a product of model theory
and algebraic geometry; they are the main concepts of the theory of so-called “o-
minimal structures” that has been actively developing during last 20–25 years [8, 10].
Many results of the theory cannot be proved by means of analysis. This, however, is
not a real obstacle for using them which is often (if not typically) simple and extremely
convenient. The paper is a sort of a survey of some very recent results relating to
optimization theory and heavily relying on o-minimality. However, it also contains
some new results and proofs.

To the best of my knowledge, the first study in which o-minimality was directly
applied to optimization is the 2002 paper by Graña Drammond and Peterzil [14].
They showed that under certain assumptions (of which analyticity of the data was
the key, opening the possibility to apply o-minimality) central path trajectories in
problems of semidefinite programming converge. We shall briefly describe their result
in the next section in which we give definitions of o-minimal structures and tame and
definable objects (sets, functions, and mappings) they generate and talk about them
in some detail. For more substantial information we can refer to [8, 10, 32]. In the
third section we show that the main maps of variational analysis, such as various
subdifferentials, slopes, and moduli of metric regularity and surjection (as functions
of a point of the graph) are definable or tame, provided so is the original mapping.
These two sections can be viewed as an extended introduction. The main content of
the paper is sections 4–10.

In the fourth section we present an extension of Sard’s theorem to (as far as) tame
set-valued mappings, recently proved in [18]. Sard (or Morse–Sard) theorem is among
the very central (and technically difficult) results of analysis playing an important part
in differential topology, dynamical systems, and singularity theory. It says that the set
of critical values of a sufficiently smooth mapping between finite dimensional spaces
has Lebesgue measure zero. It might have valuable applications also in optimization
theory (especially in stability and sensitivity analysis). There were indeed a few
(see, e.g., [29]), but, basically, this has not happened, mainly because of the strong
smoothness requirements of the Sard theorem which are known to be sharp. It turns
out that, with a natural extension of the concept of critical value based on the metric
regularity/openness-at-a-linear-rate dichotomy of variational analysis, the extension
of Sard theorem to tame set-valued mappings is possible. In the fifth section we
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apply the Sard theorem of section 4 to get some good properties of mathematical
programming problems with definable or tame data (normality of the feasible set for a
typical right-hand side, finiteness of the number of critical values in a normal problem).

In the sixth section we prove a set-valued extension of the famous �Lojasiewicz
inequality describing a behavior of a real analytic function near a critical point. In
1998 Kurdyka extended �Lojasiewicz’s theorem to continuously differentiable defin-
able functions [21] and recently a further extension to lower semicontinuous definable
functions in terms of Clarke’s generalized gradients was obtained by Bolte-Daniilidis-
Lewis in [4]. The non-smooth extension of the Sard theorem plays a central part in
our proof and actually leads to its noticeable simplification.

In the seventh section we apply the result of section 6 to get a nonsmooth extension
of another famous theorem of �Lojasiewicz [23] saying that bounded trajectories of
gradient descent of a real analytic function have bounded length. Earlier extensions
of this theorem were obtained in [21] for C1 definable functions and in [3] for definable
lower C2 functions. We consider arbitrary lower semicontinuous definable functions
and prove that bounded curves of maximal slope (a concept introduced in 1980 by
DeGiorgi–Marino–Tosques [9] as an appropriate extension of trajectories of gradient
descent) have bounded length. Again an application of the set-valued Sard theorem
is an important element of the argument.

Then in the eighth section we give a simplified proof of a recent result of [5] about
semismoothness of locally Lipschitz definable functions. Recall that semismoothness
is the property that guarantees superlinear convergence of the Newton method. The
problem with this concept was that no sufficiently universal sufficient criteria were
known that made the problem of recognizing semismoothness rather complicated. The
theorem of [5] basically fills the gap.

In the ninth section we prove a certain “definable” extension of Lyapunov’s theo-
rem on vector measures. Namely, it is shown that the integral of a set-valued mapping
(that is the collection of integrals of its summable selections) coincides with the “defin-
able” integral (the collection of integrals of tame selections), provided the set-valued
mapping is tame.

Finally, in the tenth section we apply the obtained definable extension of Lya-
punov’s theorem to a class of optimal control problems which contains in particular
optimal control of systems guided by linear (nonstationary) equations. This class of
problems plays also an important part in mathematical economics (e.g., the famous
Aumann–Perles problem [1] belongs to this class). The main result we present here
shows that if the data of the problem (e.g., the integrand) are definable, then the
problem contains a piecewise continuous optimal control (a very desirable property),
provided a certain optimal control exists.

2. Definable and tame functions and sets. There is a sort of hierarchy of
classes of tame sets, functions, and maps. In each case it is usually sufficient to
describe the collection of sets and then define a corresponding class of functions and
mappings by their graphs being elements of the class of sets. The simplest class is
formed by so-called semilinear sets (functions, mappings). A semilinear set in R

n is
defined as a finite union of open polyhedra. An open polyhedron is the intersection
of a finite number of affine sets and open half-spaces:

P = {x ∈ R
n : ai · x = αi, i = 1, . . . , k; 〈ai, x〉 < αi, i = k + 1, . . . ,m}.

The dimension of (a nonempty polyhedron) P is n− rank(a1, . . . , ak). A closed poly-
hedron is clearly a semilinear set (union of all its open faces), so a closed semilinear
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set can be defined as a finite union of closed polyhedra. One can easily check that the
collection of semilinear sets in R

n is closed under Boolean operations (union, inter-
section, complement) and the image and preimage of a semilinear set under a linear
(or affine) mapping is also a semilinear set.

A function or a map is called semilinear (sometimes piecewise linear) if its graph
is a semilinear set. Another easily verifiable property of a semilinear mapping is that
its domain can be decomposed in a finite union of polyhedra such that the restriction
of the mapping to each of them is an affine mapping. The latter can be viewed as
another definition of semilinear mappings and functions.

The class of semilinear sets, functions, and mappings is of course sufficiently
narrow. A much richer collection of tame objects is provided by semialgebraic sets,
mappings, and functions. A set in R

n is semialgebraic if it is a finite union of sets of
the form

(2.1) {x ∈ R
n : pi(x) = 0, i = 1, . . . , k; pi(x) < 0, i = k + 1, . . . ,m},

where all pi are polynomials. An important for optimization class of convex semial-
gebraic sets are sets of solutions of a linear-matrix inequalities

n
∑

i=1

xiAi � 0,

where Ai are square (symmetric) matrices and � means positive semidefiniteness.
Semialgebraic functions and sets, as their semilinear counterparts, enjoy a number of
remarkable properties:

(i) the class of semialgebraic sets is closed with respect to Boolean operators; a
Cartesian product of semialgebraic sets is a semialgebraic set;

(ii) the closure and the interior of a semialgebraic set is a semialgebraic set;
(iii) semialgebraic subsets of R are precisely finite unions of points and open in-

tervals (hence the same as semilinear);
(iv) the projection of a semialgebraic subset of R

n onto R
n−1,e.g.,

(x1, . . . , xn) → (x1, . . . , xn−1)

is a semialgebraic set.
The last of these statements, unlike in the semilinear case, is a deep fact known

as the Tarski–Seidenberg theorem. The proofs of the other three are much simpler
(although the closedness property in (ii) is a consequence of Tarski–Seidenberg theo-
rem).

The key question behind the further developments is whether there are broader
classes of functions and sets for which these (and some other related properties) hold.
It turns out that the answer is positive. It is given in terms of so-called o-minimal
structures.1

The latter is a system S = {Sn}, with Sn being a collection of subsets of R
n

containing all semialgebraic subsets, satisfying (i)–(iv) if we replace there “semialge-
braic” by “elements of S.” The o-minimal structure of semialgebraic sets is usually

1To be more precise we talk here about what is formally defined as an o-minimal structure over
(R, +, ·). This means that we consider the subsets of Rn and make full use of the ring structure of
reals. O-minimal structures over other rings can also be considered. On the other hand, semilinear
sets are an o-minimal structure which makes no use of the multiplicative structure of reals.
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denoted Salg. If we add level and sublevel sets of restrictions of analytic functions to
balls, we get the structure San of so-called globally subanalytic sets, etc. We refer to
[8, 10] for details.

If we have an o-minimal structure, its elements are called definable sets (with a
reference to the o-minimal structure if necessary). Functions and mappings whose
graphs are definable sets are also called definable.

Given an o-minimal structure, we can be sure that
(a) if f(x, y) is a definable function, then so is ϕ(x) = infy f(x, y);
(b) a composition of definable mappings is a definable mapping;
(c) the image and preimage of a definable set under a definable mapping are

definable sets.
The three properties we have just stated heavily rely on (iv), the definable coun-

terpart of the Tarski–Seidenberg theorem. To better understand ramifications of the
latter, we notice that as an immediate implication of (iv), we get definability of any
set {x ∈ P : ∃y ∈ Q, (x, y) ∈ S}, provided P , Q, and S are definable sets in
the corresponding spaces. It follows that also {x ∈ P : ∀y ∈ Q, (x, y) ∈ S} is
a definable set as its complement is the union of the complement of P and the set
{x ∈ P : ∃y ∈ Q, (x, y) �∈ S}. Thus, if we have a finite collection of definable sets,
then any set obtained from them with the help of a finite chain of quantifiers is also
definable.

A consequence of (a)–(c) very useful in any optimization context is that
(d) if Q is a definable set, then the distance function d(x,Q) is also definable.
Indeed, the function ϕ(x, u) = ‖u − x‖ is semialgebraic, and hence definable as

well as δQ(x), the indicator of Q; hence d(x,Q) = infu(‖x−u‖+ δQ(u)) is a definable
function by (a),(b).

In case we are interested only in local results and what happens near the infinity
is of a limited interest, the following formal definition of tameness is justified: a set
is called tame (with respect to a certain o-minimal structure) if its intersection with
any ball is definable. A function or (set-valued) mapping is tame if its graph is tame.

Thus, for instance, the function sin t, not definable in any o-minimal structure
(since the nonempty preimage of a point is a countable set), is a tame function with
respect to the o-minimal structure San of globally subanalytic sets. However, the
function sin t−1 is not tame on (0, 1).

It is appropriate to note here that a projection of a tame set may fail to be tame
as well as composition of tame mappings unless the external map is coercive (that
is such that preimages of bounded sets are bounded). In particular, the sum of two
tame functions may fail to be tame.2

Here are some fundamental properties of definable objects.
Theorem 2.1 (monotonicity theorem). Let f be a definable function on a real

interval (a, b), where −∞ ≤ a < b ≤ ∞. Then there is a finite number of points
a = t0 < t1 < . . . < tk < b = tk+1 such that on every interval (ti, ti+1) f is continuous
and either strictly monotone or constant.

As an immediate consequence of this theorem we get that a bounded definable
trajectory in R

n defined on an open interval (0, T ) converges when, e.g., t → 0. We

2An alternative definition void of this inconvenience would be, e.g., a mapping is tame if its
restriction to any ball is definable. However, such a definition would also be problematic because
in this case (a) the inverse to a tame mapping may not be tame and (b) there would be less tame
mappings. Hopefully, future developments will clarify which localization of definability is more
convenient, at least for the needs of optimization theory.
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shall have a couple of chances to see the power of this seemingly simple result. In
particular, this is the key argument in the proof of convergence of the central path in
nonlinear semidefinite programming in the quoted paper [14].

We shall briefly explain the idea of the proof in a somewhat more general situation
of the problem

minimize f(x), s.t. g(x, u) ≤ 0, ∀u ∈ U,

where x ∈ R
n and U ⊂ R

m is a compact set. The functions f and g(·, u) are assumed
convex continuous. Continuation methods for solving such problems (under the strict
feasibility, or Slater assumption that there is an x such that supu∈U g(x, u) < 0)
consist in solving auxiliary problems

minimize f(x) + μβ(x),

where β(x) is a barrier function (finite for strictly feasible x and equal to ∞ otherwise)
and studying the behavior of its solution x(μ) as μ → 0. The barrier function is
usually strictly convex, so there may be only one solution x(μ) for every μ. Theory of
convex programming provides conditions that guarantee that x(μ) (the central path)
is well-defined and bounded. The question is when x(μ) converges as μ→ 0. It turns
out that, even for problems of linear programming, the proof of convergence needs
methods of algebraic geometry [16]. Monotonicity theorem allows one to easily solve
the problem under tameness/definability assumptions. Namely, if U is a definable
set, the functions f and g are tame, and β is definable, all in the same o-minimal
structure, then the central path (if it is defined for small μ and bounded) converges.3

Theorem 2.2 (definable selection theorem). Let F : R
n ⇒ R

m be a set-valued
mapping with a definable graph. Let dom F = {x : F (x) �= ∅} stand for the domain
of F . Then there is a single-valued definable mapping ϕ from R

n into R
m, defined at

least on dom F , such that ϕ(t) ∈ F (t) for all t ∈ dom F .
Again it is worth paying attention to how easily the selection problem (very

painful in many situations) is solved in the realm of definable objects.
Theorem 2.3 (stratification theorem [11]). (a) Let Q ∈ R

n be a definable set.
Then Q admits a Ck-Whitney stratification for any k: there is a finite partition4 of
Q into Ck manifolds Mi such that

• if Mj ∩ clMi �= ∅, then Mj ⊂ clMi\Mi;
• if x ∈ Mj and xk ∈ Mi converge to x as k → ∞, then TxMj, the tangent

space to Mj at x, is contained in the lower limit of Txk
Mi.

(b) If F is a definable mapping from R
n into R

m, then for any k there is a Ck-
Whitney stratification (Mi) of dom F such that the restriction of F to every Mi is k
times continuously differentiable.

This is the most fundamental structural characterization of definable sets. Of
course a set which admits even a C∞ stratification may not be definable. So the
important element of the theorem is the possibility to get strata that are both definable
and having the desirable order of smoothness.

3. Variational analysis and tameness. Let us consider first an extended-
real-valued function f on R

n. The set dom f = {x : |f(x)| < ∞} is the domain
of f and the set epi f = {(x, α) ∈ R

n × R : α ≥ f(x)} is the epigraph of f . The

3In [14] this argument was actually applied to the structure San exp and real analytic f and g.
4Note that the standard definition of Whitney stratification involves locally finite partitions.
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function is lower semicontinuous if its epigraph is closed. The function f̄ defined by
epi f̄ = cl(epi f) is called the lower closure of f . If f is definable (tame), then so is f̄ .

Recall that the proximal and the Fréchet subdifferentials of f at x are defined,
respectively, by

∂pf(x) = {y : lim inf
‖h‖→0

‖h‖−2
(

f(x+ h) − f(x) − 〈y, h〉
)

> −∞},

and

∂F f(x) = {y : lim inf
‖h‖→0

‖h‖−1
(

f(x+ h) − f(x) − 〈y, h〉
)

≥ 0}

for sufficiently small h.
Along with the two subdifferential set-valued mappings x �→ ∂pf(x) and x �→

∂F f(x), we can also consider the corresponding subjets which are the sets

[∂pf ] = {(x, α, y) : y ∈ ∂pf(x), α = f(x)}

and

[∂F f ] = {(x, α, y) : y ∈ ∂F f(x), α = f(x)}.

A remarkable fact is that the closures of the two subjets coincide. The limiting
subdifferential ∂f(x) is the set-valued mapping defined by the condition: y ∈ ∂f(x)
if and only if (x, f(x), y) belongs to the closure of the just defined subjets. Finally, if
f satisfies the Lipschitz condition, then ∂cf(x) = conv ∂f(x) is the Clarke subdiffer-
ential (or generalized gradient) of f at x. The limiting and Clarke subjets are defined
in the same way as the subjets for the first two subdifferentials.

Observe that for a continuously differentiable function, the Fréchet, limiting, and
Clarke subgradients coincide and contain a unique element—the derivative of the
function. If, in addition, the function is twice differentiable at the point, then the
proximal subdifferential coincides with the other three. Likewise, if f is a convex
function, all four subdifferentials coincide and are equal to the subdifferential of the
function in the sense of convex analysis. We refer to [28] for the basic facts concerning
finite dimensional subdifferential calculi.

Another important characteristic of a local behavior of a function (which actually
makes sense even for functions on arbitrary metric spaces) is the slope of f at x:

|∇f |(x) = lim sup
h→0, h �=0

‖h‖−1(f(x) − f(x+ h))+

(where α+ = max{α, 0}) which is the maximal “speed” of decrease of function from
x. The connection between slopes and subdifferentials is determined by the following
inequalities:

inf{‖y‖ : y ∈ ∂F f(x)} ≥ |∇f |(x) ≥ inf{‖y‖ : y ∈ ∂f(x)}

(see [17] for details). In particular, if f is differentiable at x, then |∇f |(x) is equal
to the norm of the gradient of f at x; if f is convex, then the slope is equal to the
distance from ∂f(x) to zero.

Proposition 3.1. (a) If F is a definable mapping R
n → R

m, then its Fréchet
derivative is a definable mapping (into the space of linear operators);
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(b) If f is a definable function, then so are the four subdifferential mappings and
the slope function |∇f |;

(c) If f is a tame function, then each of the four subjets is a tame set.
(For the case of the generalized gradient we assume that f is locally Lipschitz.5)

Proof. We first observe the following: let ϕ(x, h) be a definable function of two
variables (of different dimensions in general). Then the function

ψ(x) = lim inf
h→0
h�=0

ϕ(x, h)

is also definable since

ψ(x) = sup
ε>0

inf
0<‖h‖<ε

ϕ(x, h).

Clearly, the same is true also for

lim sup
h→0
h�=0

ϕ(x, h).

Now to prove (a) we take

ϕ(x,A, h) = ‖h‖−1‖F (x+ h) − F (x) −Ah‖

and notice that the graph of F ′ is the zero level set of the function ρ(x, y) equal to
the upper limit of ϕ(x, y, h) when 0 �= h→ 0.

Likewise to prove (b), we take

ϕr(x, y, h) = ‖h‖−r(f(x+ h) − f(x) − 〈y, h〉)

with r = 2 for proximal subdifferentials and r = 1 for Fréchet subdifferentials and

ϕ(x, h) = ‖h‖−1(f(x) − f(x+ h))+

for slopes. If now

ψr(x, y) = lim inf
h→0
h�=0

ϕr(x, y, h),

then

Graph ∂pf = {(x, y) : ψ2(x, y) > −∞}; Graph ∂F f = {(x, y) : ψ1(x, y) > −∞}

and, of course,

|∇f |(x) = lim sup
h→0
h�=0

ϕ(x, h).

As long as we know that ∂pf and ∂f are definable maps, it is an easy matter to
show that the corresponding subjets are definable sets. Consider, for instance, the
case of the Fréchet subdifferential. Set

Q = {(x, α, z, y) : α = f(x), y ∈ ∂F f(z)} = (Graph f) × (Graph (∂F f)).

5Although the result is valid without the assumption if we use Rockafellar’s representation for-
mula for the generalized gradient.
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Then [∂F f ] is the projection of the set Q ∩ {(x, α, z, y) : z = x} to the space of
(x, α, y).

Finally, the graph of ∂f is by definition {(x, y) : (x, f(x), y) ∈ cl[∂F f ]}, that is to
say, the preimage of the definable set cl[∂F f ] under the definable mapping (x, y) →
(x, f(x), y)}, hence a definable set.

To prove (c), we first consider the case of a bounded f . Then the restriction of f to
any open ball is a definable function (as the graph of the restriction is the intersection
of the graph of f with a bounded definable set). Hence the subdifferentials and the
corresponding subjets of the restriction are definable, so the subjets of the function
are tame sets.

Let now f be an arbitrary lower semicontinuous tame function. For any N set

BN = {(x, α, y) : max{‖x‖, |α|, ‖y‖} ≤ N}, fK(x) = min{K,max{f(x),−K}}.

Then, e.g., [∂F f2N ] ∩ BN = [∂F f ] ∩ BN (as is easy to verify) and the same equal-
ity holds for the proximal subdifferential. This completes the proof of the prop-
osition.

Remarks. 1. The derivative or subdifferential of a tame function may not be a
tame mapping: consider for instance the function f(x) = x−1 − sinx−1 on (0,∞).

2. We do not need in this paper coderivatives and derivatives of set-valued map-
pings as well as tangent and normal cones, all playing an important role in variational
analysis. Similar properties (definability or tameness) can be also established for
them.

We shall next consider the property of metric regularity, one of the central in
variational analysis. Recall that F is called metrically regular near (x̄, ȳ) ∈ Graph F
if there is a positive K such that

d(x, F−1(y)) ≤ Kd(y, F (x))

for all (x, y) sufficiently close to (x̄, ȳ). The lower bound regF (x|y) of such K is called
modulus of metric regularity of F near (x̄, ȳ). F is called open at a linear rate near
(x̄, ȳ) if there is an r > 0 such that

B(y, rt) ⊂ F (B(x, t))

if (x, y) ∈ Graph F are sufficiently close to (x̄, ȳ) and t > 0 is sufficiently small. The
upper bound surF (x|y) of such r is called the modulus of surjection of F near (x̄, ȳ).
A well-known and important fact is that

(3.1) surF (x|y) · regF (x|y) = 1.

If we agree to set 0 ·∞ = 1, the property is valid unconditionally. Another useful and
rather elementary fact is that

(3.2) sur(F ◦H)(x|z) ≤ ‖H ′(x)‖surF (H(x)|z)

if H : R
k → R

n is continuously differentiable at x.
Finally, we give two formulas that allow to compute the modulus of surjection

(metric regularity) for a set-valued mapping F : R
n ⇒ R

m with closed graph (hence
upper semicontinuous). The first (which is in principle valid in arbitrary Banach
spaces) is given in terms of slopes:

(3.3) surF (x|y) = lim inf
(x,y)→F (x,y)

y �∈F (x)

|∇d(y, F (·)|(x)
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(see [17], Theorem 2.2b). Here (x, y) →F (x, y) means that x → x, y → y, and
d(y, F (x)) → 0.

The second formula, often more convenient for practical calculation, is finite di-
mensional:

(3.4) surF (x, y) = inf{‖x∗‖ : x∗ ∈ D∗F (x̄, ȳ)(y∗), ‖y∗‖ = 1}

(see, e.g., [28], Theorem 9.43). Here D∗F (x, y) is the limiting coderivative of F at
(x, y).6

Proposition 3.2. If F is definable (tame) set-valued mapping, then so are the
functions (x, y) → regF (x|y) and (x, y) → surF (x, y).

Proof. We shall prove only the “definable” part of the proposition. The “tame”
part will then be immediate as the definitions of the moduli deal with bounded por-
tions of the graph. On the other hand, as long as we consider only definable mappings,
it is sufficient, according to (3.1), to establish the definability property only for one
of the moduli. So we shall talk about modulus of metric regularity of a definable
set-valued mapping.

For such a mapping the function ϕ(x, y) = d(x, F−1(y)) is definable as its epigraph
is the closure of the projection onto the (x, y, α)-space of the set

{(x, y, u, α) : α ≥ ‖x− u‖, (u, y) ∈ Graph F}.

Similar argument shows that also the function d(y, F (x)) is definable.
Setting

ϕ(u, v) =

⎧

⎨

⎩

d(u, F−1(v))
d(v, F (u))

, if v �∈ F (u);

0, if v ∈ F (u)

and

ψ(x, y, u, v, ε) =
{

0, if ‖x− u‖ < ε, ‖y − v‖ < ε,
−∞ otherwise,

we see that

regF (x|y) = lim
ε→0

sup
u,v

(ϕ(u, v) + ψ(x, y, u, v, ε))

is a definable function.
Remark. If F is single valued, we usually write surF (x) and regF (x) rather than

surF (x|F (x)) and regF (x|F (x)). The functions x → surF (x) and x → regF (x) are
definable if so is F . However if F is only tame, the functions may not be tame:
tameness is preserved only by the sets {(x, y, α) : y = F (x), α = surF (x)} and
{(x, y, α) : y = F (x), α = regF (x)}.

4. A nonsmooth extension of the Sard theorem. Let F : R
n ⇒ R

m, and
let y ∈ F (x). We say that (x, y) is a critical point of F if surF (x|y) = 0. If F
is single-valued and continuously differentiable at x, this definition reduces to the

6This is the set-valued mapping which with every y∗ associates the set of x∗ such that (x∗,−y∗)
belongs to the limiting normal cone for the graph of F at (x, y). The latter is the limiting subdiffer-
ential of the indicator of Graph F (which is the function equal to zero on Graph F and +∞ outside
of Graph F ). We shall not use the formula in the sequel.
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standard concept of a critical (or singular) point: x is critical if F ′(x) maps R
n not to

the whole of R
m. We say that y ∈ R

m is a critical value of F if there is an x ∈ R
n such

that (x, y) is a critical point of F . The famous Sard theorem (see, e.g., [15]) says that
the collection of critical values of a Ck-mapping F : R

n → R
m has Lebesgue measure

zero, provided k > max{n−m, 0}. The theorem basically says that only for a very
meager collection of right-hand side vectors y, the set of solutions of the equation
F (x) = y may sharply react to small changes of y. We refer to [32] for applications
of the Sard theorem and discussions of some recent developments.

Sard’s theorem is a sharp result. The first counterexample of a continuously
differentiable function on R

2 whose set of critical values contains an open interval was
suggested by Whitney [31] even before the Sard theorem was proved in 1942. The
final results due to Bates [2] and Norton [27] say that the conclusion of the theorem
is still valid for Cn−m,1 mappings (having Lipschitz continuous (n−m)th derivative)
but not for mappings of the Hölder classes Cn−m,α with α < 1.

The following general result, however, holds true [18].
Theorem 4.1. Let F : R

n ⇒ R
m (n ≥ m) be a set-valued mapping whose

graph is locally closed. Assume that Graph F admits a Ck-Whitney stratification with
k > dim(Graph F )−m.7 Then the collection of critical values of F has m-dimensional
Lebesgue measure zero. In particular, if the graph of F is a definable set in a certain
o-minimal structure, then the set of critical values of F is also a definable subset of
R
m whose dimension is strictly smaller than m.

The proof of the theorem relies on the Sard theorem and is relatively simple. We
omit it mainly because it requires introducing rather many technical details involving
manifolds. The basic idea of the proof is to show that every critical point of the
mapping (in the sense of variational analysis, just defined) is a critical point (in the
classical sense) of the restriction of the mapping to the stratum (of the Whitney
stratification) to which the point belongs and then to use the Sard theorem. It is
worth noting that the inclusion can be strict: Consider for instance the set-valued
mapping R ⇒ R whose graph is the set {(x, y) : |x| = |y|}. Then zero is a regular
value of it in the sense of variational analysis but, for any stratification, a critical
value of the union of the restrictions of the projection (x, y) → y to the strata.

5. Typical normality of optimization problems. Consider the standard
minimization problem with finite number of equality and inequality constraints:

P(a)
minimize f0(x)
subject to fi(x) ≤ αi, i = 1, . . . , k;

fi(x) = αi, i = k + 1, . . . ,m.

⎫

⎬

⎭

Here x ∈ R
n and a = (α1, . . . , αm) ∈ R

m. We denote by F(a) the set of feasi-
ble vectors for P(a). A vector x ∈ F(a) is called normal for P(a) if the following
condition is satisfied: For no nonzero vector l = (λ1, . . . , λm) such that λi ≥ 0 for
i = 1, . . . , k and λi(fi(x) − αi) = 0 for all indices i = 1, . . . ,m, zero belongs to
∂(λ1f1 + · · ·+λmfm)(x). (In the case when all fi are continuously differentiable, this
is the famous Mangasarian–Fromowitz condition.) An x ∈ F(a) that is not normal is
called abnormal.

We say that P(a) is a normal problem if every feasible x ∈ F(a) is a normal vector
for P(a).

7It is natural to define dim(Graph F ) as the maximal dimension of the strata. Clearly, this does
not depend on the specific stratification.
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Theorem 5.1. Assume that all functions fi are locally Lipschitz and definable in
a certain o-minimal structure. Then the collection of the right-hand side vectors a for
which the problem P(a) is not normal is a definable set of dimesion strictly smaller
than m.

Proof. We view F as a set-valued mapping from R
m into R

n. This is obviously
a definable set-valued mapping and so is its inverse F−1 which associates with every
x ∈ R

n the collection of a ∈ R
m such that x ∈ F(a). By the definable Sard theorem

(Theorem 4.1), the set of critical values of F−1 is a definable set of dimension strictly
smaller than m. So to prove the theorem we need to verify that a is a critical value
if and only if P(a) is not a normal problem.

Set F (x) = (f1(x), . . . , fm(x)). Set further

K = {y = (η1, . . . , ηm) ∈ R
m : ηi ≥ 0, i = 1, . . . , k; ηi = 0, i = k + 1, . . . ,m}.

Then F−1(x) = F (x) +K. We have for any a ∈ R
m

(5.1)

d(y, F (x) +K) = inf{‖y − F (x) − w‖ : w ∈ K}
= inf{ sup

‖l‖≤1

〈l, y − F (x) − w〉 : w ∈ K}

= sup
‖l‖≤1

inf{〈l, y − F (x) − w〉 : w ∈ K}

= sup{〈l, y − F (x)〉 : ‖l‖ ≤ 1, l ∈ K◦}.

Here K◦ = {l : 〈l, y〉 ≤ 0, ∀ y ∈ K} is the polar of K.
By definition a is a critical value of F−1 if and only if there is an x ∈ F(a) such

that surF−1(x|a) = 0. By (3.3) this means that for any ε > 0 there is a pair (x, a)
arbitrarily close to (x, a) and with a �∈ F (x)+K such that |∇d(a, F (·)+K)|(x) < ε/2.

Let l(x, y) be the l for which the last supremum in (5.1), for the given x and y,
is attained. As a �= F (x), we have ‖l(x, a)‖ = 1 and, clearly 〈l(x, a), y − F (x)〉 ≥ 0.
Furthermore, for any u sufficiently close to x

ε ≥ |∇d(a, F (·) +K)|(x) ≥ 〈l(x, a), F (x) − F (u)〉
‖x− u‖ .

It follows that the function u→ 〈l(x, a), F (u)〉+ ε‖u−x‖ attains a local minimum at
x. Hence

(5.2) 0 ∈ ∂(l(x, a) ◦ F )(x) + εB.

We may assume that l(x, a) converges to some l as we choose ever smaller ε and
(x, a) closer to (x, a). Clearly ‖l‖ = 1, l ∈ K◦, and 〈l, F (x)−a〉 ≥ 0. As a−F (x) ∈ K,
the latter two relations imply that 〈l, F (x) − a〉 = 0. Finally, from (5.2) taking into
account that F is Lipschitz near x we get that 0 ∈ ∂(l ◦ F )(x).

Theorem 5.1 applies rather to the constraints of the problem. In [19] a similar
problem will be considered in a more general context of constraint systems. The
second result, also from [19], deals with critical values of the problem itself. Recall
that the first order necessary optimality conditions in P(a) at x ∈ F(a) is the existence
of a nonzero set of multipliers λ0, λ1, . . . , λn satisfying

(5.3) λi ≥ 0, λi(fi(x) − αi) = 0, i = 0, 1, . . . , k; 0 ∈ ∂(λ0f0 + λ1f1 + · · · + λnfn).

We shall say that x is a critical point of P(a) if (5.3) holds for some nonzero set of
multipliers. We shall further say that α is a critical value of P(a) if f0(x) = α for
some critical point x of P(a). The following theorem will be proved in [19].
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Theorem 5.2. Assume that the functions f0, f1, . . . , fn are locally Lipschitz and
definable in a certain o-minimal structure. Assume further that P(a) is a normal
problem. Then the set of critical values of P(a) is finite.

Of course, if P(a) is normal and (5.1) holds, then λ0 > 0.

6. A set-valued �Lojasiewicz inequality. In 1965 �Lojasiewicz proved that a
bounded trajectory of the gradient dynamic system

ẋ = −∇f(x)

is finite and converges to a critical point of f if f is a real analytic function. The
proof was based on the inequality obtained by �Lojasiewicz for real analytic functions
a few years earlier: If f is a real analytic function and x is a critical point of f , then
there is an α ∈ (0, 1) such that in a neighborhood of x

‖∇f(u)‖ ≥ |f(u) − f(x)|α.

(The inequality is of course trivial if x is not a critical point.)
In 1998 Kurdyka [21] extended the �Lojasiewicz inequality to continuously differ-

entiable functions definable in an o-minimal structure. Kurdyka’s result is stated as
follows. Let f be a C1 function on a bounded open set U ⊂ R

n which is definable in
some o-minimal structure. Suppose that f(x) > 0 = infU f for all x ∈ U . Then there
is a ρ > 0 and a strictly increasing definable function ψ on (0,∞) such that for all
x ∈ U with f(x) < ρ we have8

(6.1) ‖∇(ψ ◦ f)(x)‖ ≥ 1.

Finally, very recently Bolte–Daniilidis–Lewis–Shiota [4] extended the last theorem
to arbitrary lower semicontinuous definable functions by proving that a more general
version of (6.1) with ψ′(f(x))‖y‖ in the left-hand side, where y stands for an arbitrary
element of ∂cf(x).

The theorem below is a Kurdyka-type result for set-valued mappings into R.
Theorem 6.1. Let F : R

n ⇒ R be a tame set-valued mapping with closed
graph, and let U be a bounded open definable set. Take a τ ∈ R and assume that
(τ, τ+δ)∩F (U) �= ∅ for any δ > 0. Then there are ρ > 0 and a nonnegative continuous
function ψ(t) defined at least on [τ, τ + ρ) which is continuously differentiable and
strictly increasing on (τ, τ + ρ) and such that the inequality

sur(ψ ◦ F )(x|ψ(τ + h)) ≥ 1

holds for all x ∈ U and all h ∈ (0, ρ) such that τ + h ∈ F (x).
Proof. Fix a certain T > 0. The intersection of the graph of F with U × (0, T ) is

a definable set by definition of tameness. Let

ϕ(t) = inf{surF (x|t) : x ∈ U, t ∈ F (x)}, t ∈ (0, T ).

It follows from Proposition 3.2 that ϕ is a definable function. By the monotonicity
theorem (Theorem 2.1) the limit r = limt→0 ϕ(t) exists.

8The proof that (6.1) implies the �Lojasiewicz inequality for real-analytic functions is based on
a highly nontrivial property of subanalytic functions, the so-called Puiseux expansion. We refer to
[21] for explanations.
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If r > 0, then ψ(t) = kt with k > r−1 is the desired function. So we assume that
r = 0 in the rest of the proof.

By the monotonicity theorem (Theorem 2.1), there is a δ > 0 such that either
ϕ(t) ≡ 0 on (0, δ) or ϕ is a strictly increasing, positive, and continuously differentiable
function. In the first case, we would have that for any t ∈ (0, δ) there is an x in
the closure of U such that surF (x|t) = 0. This would mean that every t ∈ (0, δ)
is a critical value of F . But the latter contradicts to Theorem 4.1. Thus ϕ is a
continuously differentiable positive and strictly increasing function on (0, δ) going to
zero as t→ 0.

To prove the theorem it is enough to verify that η(t) = [ϕ(t)]−1 is summable on
(0, ρ) for some positive ρ. Indeed, in this case

ψ(t) =
∫ t

0

1
ϕ(ξ)

dξ

satisfies ψ′(t)ϕ(t) ≡ 1 on some interval (0, ρ) and sur(ψ ◦F )(x|t)) = ψ′(t)surF (x|t) ≥
ψ′(t)ϕ(t) ≥ 1 which is immediate from the definition of the modulus of surjection.

Consider the set-valued mapping Φ : (0, δ) �→ R
n defined by

t �→ {x : x ∈ U, t ∈ F (x), 2ϕ(t) ≥ surF (x|t)}.

This is a definable mapping with nonempty values. By the definable choice theorem
(Theorem 2.2) there is a definable selection x(t) for Φ. Applying the monotonic-
ity theorem (and taking again a smaller δ if necessary) we can be sure that x(t) is
continuously differentiable on (0, δ).

As U is a bounded set, it follows from the monotonicity theorem (applied to each
component of x(t)) that x(t) has a finite length. Set H(t) = F (x(t)). We also have
t ∈ H(t) for all positive t close to zero. This means that surH(t|t) ≥ 1 for such t.

On the other hand, as x(t) is continuously differentiable,

surH(t|t) ≤ ‖ẋ(t)‖surF (x(t)|t) ≤ 2ϕ(t)‖ẋ(t)‖

(see (3.2)), so that

∫ δ

0

1
ϕ(t)

dt ≤ 2
∫ δ

0

‖ẋ(t)‖dt <∞

as desired.
Corollary 6.2. Let f be a lower semicontinuous function on R

n, and let U
be an open bounded subset of R

n. If f is tame in some o-minimal structure and U
is a definable set in the same structure, then for any τ ∈ R there are ρ > 0 and a
nonnegative continuous function ψ(t) defined at least on [τ, τ+ρ) which is continuously
differentiable and strictly increasing on (τ, τ + ρ) and such that the inequality

|∇(ψ ◦ f)|(x) ≥ 1

holds for all x ∈ U such that 0 < f(x) − τ < ρ.
Proof. Consider the set-valued mapping F (x) = {α ∈ R : α ≥ f(x)}, that is, the

mapping whose graph is epi f . As f is lower semicontinuous, the graph of F is closed
and we can apply the theorem. Fix a certain x ∈ dom f and let y = f(x) ∈ F (x).
If y �∈ F (x), then the distance from y to F (x) for all x sufficiently close to x is
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f(x) − y. Therefore by (3.3) surF (x|y) ≤ |∇f |(x). This inequality holds for all
(x̄, ȳ) ∈ Graph F , so the application of the theorem proves the claim.

The corollary also follows from the mentioned result of [4]; moreover, we do
not claim that the function ψ is definable. The advantage of Theorem 6.1 and the
corollary is simplicity of the proof which does not rely either on the results of [21]9

or any advanced results on definable functions, beyond those quoted in section 3. We
shall apply the corollary in the next section to extend �Lojasiewicz’s gradient descent
theorem to slopes of lower semicontinuous definable functions.

7. Curves of maximal slope. As we mentioned in the beginning of the pre-
vious section, one of the most important applications of the �Lojasiewicz inequality
was his proof that bounded trajectories of gradient descent of real analytic functions
have bounded length. Kurdyka showed in [21] that the same is true for continuously
differentiable definable functions, and recently Bolte–Daniilidis–Lewis [3] established
that a similar property is shared by trajectories of subgradient descent of definable
“lower C2-functions.”10

Here we show that the property can be further extended to arbitrary lower semi-
continuous functions. The key to this extension is the concept of a curve of maximal
slope introduced by DeGiorgi–Marino–Tosques in [9]. Namely, given an extended-
real-valued function f on R

n (the original definition actually applies to functions on
metric spaces), a curve γ in R

n is called a curve of maximal slope for f if there is a
parameterization u(t) for γ such that

(i) u(0) ∈ dom f and (f ◦ u)(t) does not increase with t;
(ii) u(t) is absolutely continuous and ‖u′(t)‖ = |∇f |(u(t)) for almost every t ∈

(0, T );
(iii) f ◦ u is absolutely continuous and (f ◦ u)′(t) = −[|∇f |(u(t)]2 almost every-

where on (0, T ).
We leave aside the question about the existence of curves of maximal slope and

refer to [9, 25] for the basic existence theorems. In the nutshell, curves exist for
any initial u(0), provided the slope function |∇f |(x) behaves sufficiently well. In
particular, if f is a continuously differentiable function, then curves of maximal slope
for f are precisely trajectories of the antigradient equation ẋ = −∇f(x); if f is
a convex or, more generally, lower C1 function, then curves of maximal slope are
precisely trajectories of the antisubgradient inclusion ẋ ∈ −∂f(x) (see, e.g., [25],
Theorem 1.11).

Our purpose is to prove the following theorem.
Theorem 7.1. Let f be a definable lower semicontinuous function on R

n, and
let U be an open and bounded subset of R

n. Then there is a number N such that the
length of any curve of maximal slope for f lying in U does not exceed N .

Proof. The proof below is basically a readjustment of that of [21] for our more
general setting.

1. To begin with, we observe the following. Let γ be a curve of maximal slope for
f , and let ϕ be a strictly increasing continuously differentiable function on a certain
interval containing the values of f(x) for x ∈ γ. Then γ is a curve of maximal slope

9The idea to study the mapping Φ has been borrowed from [21] but the method of the subsequent
analysis is different here.

10A lower Ck, k ≥ 1, function is defined as a function that can be locally represented by difference
of a convex and Ck function. We observe that for lower Ck functions the four subdifferentials
mentioned in section 3 are identically equal if k ≥ 2, and for k = 1 the same is true for Fréchet,
limiting and Clarke subdifferentials.
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for ϕ ◦ f . Indeed, let u(t) be a parameterization of γ satisfying (i)–(iii). Then, as

|∇(ϕ ◦ f)|(x) = ϕ′(t)|∇f |(x),

the function v(τ) = u(t(τ)) with τ(t) defined by

dτ

dt
=
(

ϕ′(f(u(t))
)−1

is a parameterization of γ showing that (i)–(iii) holds for ϕ ◦ f ; that is, γ is also a
curve of maximal slope for ϕ ◦ f .

As the first consequence of this observation, we may assume that f is bounded
on U : Otherwise we can replace f by, say, ϕ ◦ f , where ϕ(t) = t/

√
1 + t2.

2. Set

ϕ(s) = inf{|∇f |(x) : x ∈ U, f(x) = s}.

Again we see that ϕ is a definable function. So the monotonicity theorem implies
that, up to a finite number of points, the domain of ϕ is the union of finitely many,
say k open intervals (αi, βi) such that ϕ is continuous and either strictly monotone
or constant on each of them. Let ci be the lower bound of ϕ on the ith interval. We
observe that ϕ(f(s)) is strictly positive on each interval. This is obvious if ci > 0. But
if ci = 0 for some i, then ϕ cannot be constant on the interval because of Theorem
4.1 (as in the proof of Theorem 5.1).

3. Let now γ be a curve of maximal slope and u(t) a corresponding parameteriza-
tion of γ. Then f(u(t)) does not increase with t. In principle, f(u(t)) can be constant
on finitely many intervals on which it is equal to a critical value of f (that is to s
such that ϕ(s) = 0) and u(t) is constant. But we can eliminate such intervals by
reparameterizing γ in an obvious way and assume that f(u(t)) is strictly decreasing.
Define ξi and ηi by f(u(ξi)) = βi, f(u(ηi)) = αi, and let li stand for the length of the
piece of γ between u(ξi) and u(ηi). We have

li =
∫ ηi

ξi

‖u′(t)‖dt =
∫ ηi

ξi

|∇f |(u(t))dt ≤
(

(ηi − ξi)
∫ ηi

ξi

|∇f |(u(t))2dt
)1/2

.

We also have (in view of (iii))
∫ ηi

ξi

|∇f |(u(t))2dt = f(u(ξi)) − f(u(ηi)) = βi − αi.

If ci > 0, then li ≥ ci(ηi − ξi) which, combined with the two inequalities above
gives

li ≤
βi − αi
ci

.

4. If, on the other hand ci = 0, then by Corollary 6.2 (assuming, to be certain,
that ϕ is strictly increasing on (αi, βi)) we shall find a function ψi(s) which is defined
and continuous on [αi, αi + ρ) for some ρ > 0 continuously differentiable and strictly
increasing on (αi, αi + ρ) and such that |∇(ψi ◦ f)|(u(t)) ≥ 1 if x ∈ U and 0 <
f(x)−αi < ρ. As ϕ(s) is strictly increasing on (αi, βi), so that |∇f |(x) ≥ ϕ(αi+ρ) > 0
if βi > f(x) ≥ αi+ρ, we can extend ψi to a continuous function on the entire segment
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[αi, βi] continuously differentiable and strictly increasing in the interior of the segment
with the inequality |∇(ψ ◦ f)|(x) ≥ 1 being valid for all x ∈ U with αi < f(x) < βi.

Then, as we have seen in the beginning of the proof, the piece of γ corresponding
to the values of u(t) for t ∈ (ξi, ηi) is a curve of maximal slope for ψi ◦ f . As the slope
of the function is not smaller than one for all values of f between αi and βi, we get
as above that li ≤ ψi(βi) − ψi(αi).

If we now denote by I the collection of indices for which ci > 0, then we conclude
that the length of the curve does not exceed

N =
∑

i∈I

βi − αi
ci

+
∑

i∈{1,...,k}\I
(ψi(βi) − ψi(αi)),

which completes the proof as αi, βi, ci, and ψi are determined by f and do not depend
on the choice of γ.

8. Semismoothness of tame mappings. A mapping F : R
n → R

m is called
semismooth near x if it satisfies the Lipschitz condition near x and for each x of the
neighborhood it is differentiable along every direction and

‖F ′(x+ h;h) − F ′(x;h)‖ = o(‖h‖).

The latter amounts to

r(t) = t−1 max
d∈Sn−1

‖F ′(x + td; d) − F ′(x; d)‖ → 0

as t→ 0.
The role of the semismoothness property introduced in 1977 by Mifflin is deter-

mined by the fact that it guarantees superlinear convergence of the Newton method.
We refer to [12] for details.

Theorem 8.1 ([5]). A locally Lipschitz tame mapping F : R
n → R

m is semi-
smooth near every point of its domain.

Lemma 8.2. Let ϕ(t) and ψ(t) be defined on a certain interval (0, T ) and have
the following properties:

(a) ϕ(0) = ψ(0) = 0;
(b) both functions are definable in a certain o-minimal structure;
(c) ψ′(t) > 0 for t > 0 sufficiently close to zero. Then

lim
t→0

ϕ(t)
ψ(t)

= r ⇒ lim
t→0

ϕ′(t)
ψ′(t)

= r.

Proof. Fix a δ > 0 and consider the functions η∓(t) = ϕ(t)− (r± δ)ψ(t). Clearly
η±(0) = 0 and there is an ε > 0 such that η−(t) < 0 and η+(t) > 0 for t ∈ (0, ε). It
follows that any neighborhood of zero must contain points at which η′−(t) < 0 and
points at which η′+(t) > 0. Applying the monotonicity lemma to η′± and taking a
smaller ε , if necessary, we can be sure that the inequalities hold for all t ∈ (0, ε) and,
consequently,

∣

∣

∣

ϕ′(t)
ψ′(t)

− r
∣

∣

∣ ≤ δ, ∀ t ∈ (0, ε),

and the lemma follows.
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Proof of the theorem. Fix an h ∈ Sn−1. The mapping t → F (x + th) − F (x)
is definable and Lipschitz in a neighborhood of zero, so applying the monotonicity
lemma to each of its components, we conclude that the directional derivative F ′(x;h)
exists for all x of the domain of F and all h ∈ Sn−1.

To prove the theorem we have to show that, given an x in the domain of F , the
quantity F ′(x+th;h)−F ′(x;h) → 0 uniformly for h ∈ Sn−1 as t→ +0. Assuming the
contrary, we shall find, using the definable choice theorem, an ε > 0 and a definable
mapping h : (0, ε) �→ Sn−1 such that

(8.1) ‖F ′(x + th(t);h(t)) − F ′(x;h(t))‖ ≥ α > 0

for all sufficiently small t. Then h(t) converge to some h ∈ Sn−1 as t → 0, so that
th(t) = th+ ξ(t), where ‖ξ(t)‖ = o(t) and ξ(t) is obviously a definable mapping. By
Lemma 8.2, ξ′(t) → 0 as t→ 0.

The mapping t→ F (x+th(t)) is definable as a composition of definable mappings.
We can therefore assume (taking a smaller ε, if necessary) that it is differentiable for
all t ∈ (0, ε) We claim that

(8.2) lim
t→0

d

dt
F (x+ th(t)) = F ′(x;h)

Indeed, let K be the Lipschitz constant of F in a neighborhood of x. Then

t−1‖F (x+ th(t)) − F (x+ th)‖ ≤ Kt−1‖ξ(t)‖ → 0

as t→ 0, so that

lim
t→0

t−1(F (x+ th(t)) − F (x)) = F ′(x;h),

which, together with the lemma implies (8.2).
On the other hand, for t ∈ (0, ε) we have

d

dt
F (x+ th(t)) = F ′(x + th(t);h+ ξ′(t)).

As F (z; ·) is Lipschitz continuous with constant K for all z of a neighborhood of x, it
follows that ‖F ′(x, h(t)) − F ′(x;h)‖ → 0 and

F ′(x+ th(t);h+ ξ′(t)) − F ′(x+ th(t);h(t)) → 0

as t→ 0 which together with (8.2) leads to a contradiction with (8.1).

9. Definable Lyapunov theorem. The famous Lyapunov theorem on vector
measures says that the image set of a finite nonatomic R

n-valued measure is a convex
compact subset of R

n. A particular case of this theorem is the following well-known
result having important applications in optimal control theory: If F : [0, T ] ⇒ R

n is
a measurable set-valued mapping with closed values and there is a summable r(t) on
[0, T ] such that for almost every t the norm of every element of F (t) does not exceed
r(t), then the integral

∫ T

0
F (t)dt is a convex compact set. (Here as usual the integral

of a set-valued mapping is defined as a set of integrals of its summable selections.)
As a consequence of this latter result, we get that the integral of any measurable
set-valued mapping into R

n is either an empty set or a convex set.
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Now let S be a certain o-minimal structure. We denote by

(S)
∫ T

0

F (t)dt

the collection of integrals of all definable (in S) selections of F (which are piecewise
continuous, hence measurable). Let us agree to call this set the definable or S-integral
of F .

Theorem 9.1. Suppose that F : [0, T ] ⇒ R
n is a set-valued mapping with closed

values which is definable in a certain o-minimal structure S. Then

(S)
∫ T

0

F (t)dt =
∫ T

0

F (t)dt.

Proof. We first observe that the S-integral is a subset of the standard integral,
so that only the opposite inclusion needs proof. We note next that (S)

∫

F (t)dt is
nonempty if so is

∫

F (t)dt. Indeed, let the latter integral be nonempty, that is there
is a summable selection x(t) of F . The function ρ(t) = min{‖x‖ : x ∈ F (t)} is then
definable and summable, so the set-valued mapping F0(t) = {x ∈ F (t) : ‖x‖ ≤ ρ(t)}
is also definable, F0(t) �= ∅ almost everywhere and any definable selection of F0 is
summable. Finally, we can assume of course that T = 1. With these three points in
mind, we start the proof.

In what follows we set

Φ =
∫ 1

0

F (t)dt

and assume that Φ �= ∅.
1. By the Lyapunov theorem Φ is a convex set. We shall prove the theorem using

induction by the dimension of Φ. First we prove the theorem for the case dim Φ = 0.
This is immediate from the above remark that the S-integral is nonempty if so is Φ.
Indeed, if the dimension of Φ is zero, then, being a convex set, Φ must be a singleton.
This may happen only if F (t) is single-valued up to a set of measure zero and therefore
the integral of any of its definable selections must coincide with the unique element
of Φ.

2. Assume that the theorem is valid for closed-valued definable mappings into R
k

with k < n (or equivalently, for closed-valued definable mappings with dim Φ = k <
n). We claim that the theorem is true if it is true under the additional boundedness
assumption: 0 ∈ F (t) almost everywhere and there is an N > 0 such that for almost
every t the norm of any x ∈ F (t) does not exceed N .

Indeed, given F , let FN be defined by

FN (t) = (F (t) − z(t))
⋂

NB,

where z(t) is any definable and summable selection of F and B stands for the unit
ball, and let

ΨN =
∫ 1

0

FN (t)dt, Ψ =
⋃

ΨN .

Let z be the integral of z(t). By the Lyapunov theorem, (ΨN ) is a nondecreasing
sequence of convex closed bounded sets, so Ψ is convex. Clearly, Ψ ⊂ Φ − z. There
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is no loss of generality in assuming that z = 0, which we shall do in the discussion
to follow. We intend to show that Φ \ Ψ ⊂ (S)

∫

F (t)dt which is of course sufficient
to prove the claim since, according to our assumption, every element of Ψ belongs to
(S)

∫

FNdt for some N .
Suppose x ∈ Φ \ Ψ. Then x can be separated from Ψ by a nonzero vector, that

is, there is a p ∈ R
n such that 〈p, x〉 ≥ 〈p, x〉 for all x ∈ Ψ. Set Fp(t) = {x ∈ F (t) :

〈p, x〉 = mp(t)} and Φp =
∫

Fp(t)dt, where

mp(t) = sup{〈p, x〉 : x ∈ F (t)}.

Then mp(t) is a definable function and therefore Fp is a definable mapping with closed
values (which in principle can be empty). We claim that

(9.1) 〈p, x〉 =
∫ 1

0

mp(t)dt.

Clearly 〈p, x〉 ≤
∫

mp(t)dt. Assuming that 〈p, x〉 <
∫

mp(t)dt, we would be able
to find a w ∈ Φ and an ε > 0 such that 〈p, w〉 ≥ 〈p, x〉 + ε for any x ∈ Ψ. This would
mean that

∫ 1

0

mp(t) ≥
∫ 1

0

max{〈p, x〉 : x ∈ FN (t)}dt+ ε, ∀ N,

which is certainly untrue as the maximum under the integral pointwise and non-
decreasingly converges to mp(t) as N → ∞. So (9.1) indeed holds.

Let now x(t) be a selection of Φ whose integral is x. By (9.1) we necessarily
have 〈p, x(t)〉 = mp(t) almost everywhere, which means that the supremum in the
definition of mp is attained for almost every t and the projection of the graph of Fp
onto [0, 1] is a set of full measure. As Fp is definable, the projection is also a definable
set and, as it has full measure, it must coincide with [0, 1] up to finitely many points.
This means, in turn, that the supremum in the definition of mp is actually attained for
all t except for a finite number of points. Thus we have x ∈ Φp. But the dimension of
Φp must be strictly smaller than n, so by the induction assumption x ∈ (S)

∫

Fp(t)dt.
3. So we assume henceforth that there is an N > 0 such that for almost every

t we have ‖x‖ ≤ N for all x ∈ F (t). In this case by the Lyapunov theorem Φ is a
convex compact set. Repeating the induction arguments of the previous step, we can
easily conclude that every boundary point of Φ belongs to (S)

∫

F (t)dt, so we have
to show that this is true for all interior points of Φ.

So let x ∈ int Φ. Choose n + 1 affinely independent points x1, . . . , xn+1 on the
boundary of Φ such that x belongs to the interior of their convex hull and let r > 0 be
such that B(x, r) ⊂ conv {x1, . . . , xn+1}. Being boundary points, xi ∈ (S)

∫

F (t)dt,
so there are definable selections xi(t) of F whose integrals give xi. Applying the
monotonicity theorem to each component of every xi(t), we can find finitely many
points 0 = τ0 < τ1 < . . . < τm = 1 such that every xi(t) is continuous on each
interval (τj , τj+1) with each component function of every xi(t) being either constant
or strictly monotone on each interval. Adding more points, if necessary, we can be sure
that ‖xi(τj+0)−xi(τj+1−0)‖ < ε for a chosen positive ε. (Here x(τ+0) = limt↘τ x(t)
and x(τ − 0) = limt↗τ x(t).)

We denote by Σn = {a = (α1, . . . , αn+1) : αi ≥ 0,
∑

αi = 1} the standard n-
simplex and for any j ∈ {1, . . . ,m} and any a ∈ Σn split (τj , τj+1) into n consecutive
intervals Δij = Δij(a) such that |Δij | = αi|Δj | (where | · | stands for the length of an
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interval). In other words,

Δij = (τj + (α0 + · · · + αi−1)(τj+1 − τi), τj + (α0 + · · · + αi)(τj+1 − τi))

(where α0 = 0).
Finally we define ξij as the arithmetic mean of the values of xi(t) at the ends of

Δj (or to be more precise of the limits of xi(t) when t tends to the ends of Δj from
within the interval) and set

Δi(a) =
⋃

j

Δij(a); ui(t, a) =
{

xi(t), if t ∈ Δi(a) ,
0, otherwise.

We have ‖ξij − xi(t)‖ < ε/2 if t ∈ (τj , τj+1), that is

‖ξij(τj+1 − τj) −
∫ τj+1

τj

xi(t)dt‖ <
ε

2
(τj+1 − τj),

so that

‖ξij |Δij | − αi

∫ τj+1

τj

xi(t)dt‖ < αi
ε

2
(τj+1 − τj).

On the other hand,

‖ξij |Δij | −
∫

Δij

xi(t)dt‖ <
ε

2
|Δij | = αi

ε

2
(τj+1 − τj),

and by comparing the last two inequalities, we get

‖
∫ 1

0

ui(t, a)dt− αixi‖ = ‖
∫ 1

0

ui(t, a)dt− αi

∫ 1

0

xi(t)dt‖ < αiε.

As all xi(t) are continuous on every (τj , τj+1), it follows from the definition of
Δij that integrals of ui(t, a) depend continuously on a. Consider the following two
mappings from Σn into R

n:

ϕ(a) =
n
∑

i=1

αixi, ψ(a) =
n
∑

i=1

∫ 1

0

ui(t, a)dt.

The first is just a linear homeomorphism of Σn onto conv {x1, . . . , xn+1} (recall that
x1, . . . , xn+1 are affinely independent). The second mapping is continuous, and as
follows from the last inequality ‖ϕ(a) − ψ(a)‖ < ε for all a ∈ Σn. The latter can be
rewritten as ‖(ψ ◦ ϕ−1)(x) − x‖ < ε for all x ∈ conv {x1, . . . , xn+1}.

It remains to recall that ε < r/2 and B(x, r) ⊂ conv {x1, . . . , xn+1}. Now take
an w ∈ B(x, r/2) and consider the mapping x �→ Fw(x) = F (x) − w, where we set
F = ψ ◦ ϕ−1. Then for any x with ‖x− x‖ = r we have

〈x− x, Fw(x)〉 = r2 + 〈x− x, F (x) − x〉 + 〈x − x, x− w〉 > 0,

so by the Borsuk antipodal theorem there is an x ∈ B(x, r) such that F (x) = w. Thus
the ball B(x, r/2) is covered by the image of conv {x1, . . . , xn+1} under ψ ◦ ϕ−1. In
other words, there is an a ∈ Σn such that x = ψ(a). Setting ui(t) = ui(t, a) and

u(t) =
n
∑

i=1

ui(t)dt,

we easily observe that u(t) is a definable selection of F (as its graph is the union of
finitely many definable pieces of graphs of xi(t)) and the integral of u(t) over [0, 1] is
x. This completes the proof of the theorem.
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10. A class of variational problems. Most general existence theorems in
calculus of variations and optimal control, going back to Tonelli, give existence of ab-
solutely continuous solutions. Proofs of existence in “friendlier” classes of functions
usually need some additional analytic properties of the data (e.g., positive definite-
ness of certain second order derivatives). We refer to [7, 30] for details and related
discussions.

In this concluding section we apply the definable Lyapunov Theorem 9.1 to prove
the existence of piecewise smooth solutions in a class of variational problem. In the
simplest form problems of this class are stated as follows:

(10.1) minimize
∫ T

0

f(t, u(t))dt, s.t.
∫ T

0

u(t)dt = a.

The problem, with all simplicity of its formulation, represents a wide array of
variational and optimal control problems, including state-linear problems of optimal
control (see, e.g., [20]) or many variational problems arising in mathematical eco-
nomics for economies with a measure space of agents (e.g., the famous Aumann–Perles
problem [1] and its various extensions).

We shall consider the problem under the assumption that the integrand is a
definable function. The immediate gain we shall get from Theorem 9.1 is the existence
of definable (hence, piecewise smooth) solutions. Namely, Theorem 9.1 implies the
following result.

Theorem 10.1. Suppose the integrand f in (10.1) is a definable (in a certain
o-minimal structure) extended-real-valued function. Then the value of the problem
coincides with its value if we restrict the problem to the class of definable (in the same
o-minimal structure) controls u(t).

Moreover, if the problem has a solution, then it has also a definable solution.
Proof. Indeed, consider the mapping

ϕ(t, u) =
(

f(t, u)
u

)

from [0, T ] × R
n into R

n. (Strictly speaking, ϕ is a set-valued mapping which is
single-valued on its domain, defined as above when f(t, u) < ∞ and equal to ∅ if
f(t, u) = ∞.) If f is definable, then so is ϕ. So if a u(t) is such that

∫ T

0

u(t)dt = a,

∫ T

0

f(t, u(t))dt = α,

then Theorem 9.1, applied to the set-valued mapping F (t) = ϕ(t,Rn), guarantees the
existence of a definable v(t) such that

∫ T

0

v(t)dt = a,

∫ T

0

f(t, v(t))dt = α,

and the theorem follows.
Combining Theorem 10.1 with the existence theorem for (10.1) ([20], Theorem

10.3.1), we arrive at the following conclusion. Set

S∗(p) =
∫ T

0

f∗(t, p)dt,

where f∗(t, p) is the Fenchel transform of the function u→ f(t, u).
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Theorem 10.2. Assume that f is definable in a certain o-minimal structure and
lower semicontinuous in u. Set

S(x) = sup
p

(p · x− S∗(p)),

and let p̄ ∈ ∂S(a). If a ∈ ri(dom S) and p̄ ∈ int (dom S∗), then (10.1) has a definable
solution.

Thus, under the conditions of the last theorem, the problem has a piecewise
smooth optimal control.

Acknowledgments. I am thankful to A. S. Lewis and the referees for careful
reading and useful remarks.
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Abstract. In this paper we present a scaling-invariant, interior-point, predictor-corrector type
algorithm for linear programming (LP) whose iteration-complexity is polynomially bounded by the
dimension and the logarithm of a certain condition number of the LP constraint matrix. At the
predictor stage, the algorithm either takes the step along the standard affine scaling (AS) direction
or a new trust-region type direction, whose construction depends on a scaling-invariant bipartition of
the variables determined by the AS direction. This contrasts with the layered least squares direction
introduced in S. Vavasis and Y. Ye [Math. Program., 74 (1996), pp. 79–120], whose construction
depends on multiple-layered partitions of the variables that are not scaling-invariant. Moreover, it is
shown that the overall arithmetic complexity of the algorithm (weakly) depends on the right-hand
side and the cost of the LP in view of the work involved in the computation of the trust region steps.
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1. Introduction. We consider the linear programming (LP) problem

minimizex cTx
subject to Ax = b, x ≥ 0(1)

and its associated dual problem

maximize(y,s) bT y
subject to AT y + s = c, s ≥ 0,(2)

where A ∈ �m×n, c ∈ �n, and b ∈ �m are given, and the vectors x, s ∈ �n, and
y ∈ �m are the unknown variables.

Karmarkar in his seminal paper [4] proposed the first polynomially convergent
interior-point method with an O(nL) iteration-complexity bound, where L is the size
of the LP instance (1). The first path-following interior-point algorithm was proposed
by Renegar in his breakthrough paper [17]. Renegar’s method closely follows the
primal central path and exhibits an O(

√
nL) iteration-complexity bound. The first

path-following algorithm that simultaneously generates iterates in both the primal and
dual spaces has been proposed by Kojima, Mizuno, and Yoshise [5] and Tanabe [19],
based on ideas suggested by Megiddo [7]. In contrast to Renegar’s algorithm, Kojima
et al.’s algorithm has an O(nL) iteration-complexity bound. A primal-dual path-
following with an O(

√
nL) iteration-complexity bound was subsequently obtained by
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Kojima, Mizuno, and Yoshise [6] and Monteiro and Adler [11, 12] independently.
Following these developments, many other primal-dual interior-point algorithms for
linear programming have been proposed.

An outstanding open problem in optimization is whether there exists a strongly
polynomial algorithm for linear programming, that is one whose complexity is bounded
by a polynomial of m and n only. A major effort in this direction is due to Tardos
[20] who developed a polynomial-time algorithm whose complexity is bounded by a
polynomial of m, n, and LA, where LA denotes the size of A. Such an algorithm gives
a strongly polynomial method for the important class of linear programming problems
where the entries of A are either 1, −1, or 0, e.g., LP formulations of network flow
problems. Tardos’ algorithm consists of solving a sequence of “low-sized” LP prob-
lems by a standard polynomially convergent LP method and using their solutions to
obtain the solution of the original LP problem.

The development of a method which works entirely in the context of the original
LP problem and whose complexity is also bounded by a polynomial of m, n, and LA
is due to Vavasis and Ye [28]. Their method is a primal-dual, path-following, interior-
point algorithm similar to the ones mentioned above except that it uses once in a while
a crucial step, namely the least layered square (LLS) direction. They showed that
their method has an O(n3.5(log χ̄A + logn)) iteration-complexity bound, where χ̄A
is a condition number associated with A having the property that log χ̄A = O(LA).
The number χ̄A was first introduced implicitly by Dikin [2] in the study of primal
affine scaling (AS) algorithms, and was later studied by several researchers including
Vanderbei and Lagarias [27], Todd [21], and Stewart [18]. Properties of χ̄A are studied
in [3, 25, 26].

The complexity analysis of Vavasis and Ye’s algorithm is based on the notion
of crossover event, a combinatorial event concerning the central path. Intuitively, a
crossover event occurs between two variables when one of them is larger than the other
at a point in the central path and then becomes smaller asymptotically as the optimal
solution set is approached. Vavasis and Ye showed that there can be at most n(n−1)/2
crossover events and that a distinct crossover event occurs everyO(n1.5(log χ̄A+logn))
iterations, from which they deduced the overall O(n3.5(log χ̄A + logn)) iteration-
complexity bound. In [10], an LP instance is given where the number of crossover
events is Θ(n2).

One difficulty of Vavasis and Ye’s method is that it requires the explicit knowl-
edge of χ̄A in order to determine a partition of the variables into layers used in the
computation of the LLS step. This difficulty was remedied in a variant proposed by
Megiddo, Mizuno, and Tsuchiya [8] which does not require the explicit knowledge of
the number χ̄A. They observed that at most n types of partitions arise as χ̄A varies
from 1 to ∞, and that one of these can be used to compute the LLS step. Based on
this idea, they developed a variant which computes the LLS steps for all these parti-
tions and picks the one that yields the greatest duality gap reduction at the current
iteration. Another approach that also remedies the above difficulty was proposed by
Monteiro and Tsuchiya [14]. Their algorithm computes only one LLS step per itera-
tion without any explicit knowledge of χ̄A. This method is a predictor-corrector type
algorithm like the one described in [9] except that at the predictor stage it takes a
step along either the primal-dual AS step or the LLS step. In contrast to the LLS
step used in Vavasis and Ye’s algorithm, the partition of variables used for computing
the LLS step is constructed from the information provided by the AS direction and
hence does not require any knowledge on χ̄A. Both of these variants ([8], [14]) have
exactly the same overall complexity as Vavasis and Ye’s algorithm.
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Another disadvantage associated with Vavasis and Ye’s algorithm, as well as its
variants in [8] and [14], is that they are not scaling-invariant under the change of
variables (x, y, s) = (Dx̃, ỹ,D−1s̃), where D is a positive diagonal matrix. Hence,
when these algorithms are applied to the scaled pair of LP problems, the number of
iterations performed by it generally changes and is now bounded by O(n3.5 log(χ̄AD+
n)), as AD is the coefficient matrix for the scaled pair of LP problems. On the
other hand, using the notion of crossover events, LLS steps and a few other nontrivial
ideas, Monteiro and Tsuchiya [15] have shown that, for the Mizuno-Todd-Ye predictor-
corrector (MTY P-C) algorithm, the number of iterations needed to approximately
traverse the central path from μ0 to μf is bounded by O(n3.5 log(χ̄∗

A+n)+T (μ0/μf)),
where χ̄∗

A is the infimum of χ̄AD as D varies over the set of positive diagonal matrices
and T (t) ≡ min{n2 log(log t), log t} for all t > 0. The condition number χ̄∗

A is clearly
scaling-invariant and the ratio χ̄∗

A/χ̄A, as a function of A, can be arbitrarily small
(see [15]). Hence, while the iteration-complexity obtained in [15] for the MTY P-C
algorithm has the extra term T (μ0/μf ), its first term can be considerably smaller
than the bound obtained by Vavasis and Ye. Also note that, as μ0/μf grows to ∞,
the iteration-complexity bound obtained in [15] is smaller than the classical iteration-
complexity bound of O(

√
n log(μ0/μf )) established in [9] for the MTY P-C algorithm.

An interesting open problem is whether one can develop a scaling-invariant interior-
point algorithm for linear programming whose iteration-complexity and arithmetic-
complexity are bounded by a polynomial of n and log χ̄∗

A. In this paper, we par-
tially answer the above question by presenting a predictor-corrector type algorithm,
referred to as the predictor-corrector trust-region (PC-TR) algorithm, which has
O(n3.5 log(χ̄∗

A + n)) iteration-complexity bound. It is a predictor-corrector algorithm
similar to the one developed in [9] except that, at the predictor stage, it takes a step
along either the AS direction or a trust-region (TR) type step. Unlike the LLS di-
rection used in the predictor-corrector algorithm of [14], the TR direction depends
on a scaling-invariant bipartition of the variables and hence it is a scaling-invariant
direction. Its iteration can be briefly described as follows. First, the AS direction is
computed and a test involving this direction is performed to determine whether the
TR step is needed. If the TR direction is not needed, a step along the AS direction,
followed by a standard corrector step, is taken as usual. Otherwise, the AS direction
determines a scaling-invariant bipartition of the variables which allows to construct
a pair of primal and dual trust region subproblems whose optimal solutions yield the
TR direction. Then the algorithm takes a step along either the AS or the TR di-
rection whichever yields the largest duality gap reduction. Moreover, we show that
the overall arithmetic complexity of the PC-TR algorithm (weakly) depends also on
b and c due to work involved in the computation of the trust region steps.

The organization of the paper is as follows. Section 2 consists of six subsections.
In subsection 2.1, we review the notion of the primal-dual central path and its associ-
ated two norm neighborhoods. Subsection 2.2 introduces the notion of the condition
number χ̄A of a matrix A and describes the properties of χ̄A that will be useful in
our analysis. Subsection 2.3 reviews the AS step and the corrector (or centrality)
step which are the basic ingredients of several well-known, interior-point algorithms.
Subsection 2.4 motivates and formally introduces the TR step. Subsection 2.5 de-
scribes an interior-point algorithm based on these TR steps, which we refer to as the
predictor-corrector trust-region (PC-TR) algorithm, and states one of main results
of this paper which gives an upper bound on the iteration-complexity of the PC-TR
algorithm. Subsection 2.6 introduces a variant of the PC-TR algorithm with the same
iteration-complexity as the latter one and discusses a procedure for computing the TR
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steps used by this variant. It also states the other main result of this paper regard-
ing the overall arithmetic complexity of the above variant of the PC-TR algorithm.
Section 3, which consists of three subsections, introduces some basic tools which are
used in our convergence analysis. Subsection 3.1 discusses the notion of crossover
events. Subsection 3.2 introduces the LLS direction and states an approximation re-
sult that provides an estimation of the closeness between the AS direction and the
LLS direction. Subsection 3.3 reviews an important result, which basically provides
sufficient conditions for the occurrence of crossover events. Section 4 is dedicated to
the proof of the main result stated in subsection 2.5. Section 5 provides the proof
of the other main result stated in subsection 2.6 regarding the arithmetic complexity
of the variant of the PC-TR algorithm. Finally, the Appendix gives the proof of an
important lemma used in subsection 2.4 to motivate the definition of the TR step.

The following notation is used throughout our paper. We denote the vector of
all ones by e. Its dimension is always clear from the context. The symbols �n, �n+,
and �n++ denote the n-dimensional Euclidean space, the nonnegative orthant of �n,
and the positive orthant of �n, respectively. The set of all m × n matrices with real
entries is denoted by �m×n. If J is a finite index set, then |J | denotes its cardinality,
that is the number of elements of J . For J ⊆ {1, . . . , n} and w ∈ �n, we let wJ
denote the subvector [wi]i∈J ; moreover, if E is an m×n matrix, then EJ denotes the
m× |J | submatrix of E corresponding to J . For a vector w ∈ �n, we let max(w) and
min(w) denote the largest and the smallest component of w, respectively; Diag(w)
denote the diagonal matrix whose ith diagonal element is wi for i = 1, . . . , n; and for
an arbitrary α ∈ �, wα denote the vector [Diag(w)]αe whenever it is well-defined.
For two vectors u, v ∈ �n, uv denotes their Hadamard product, i.e., the vector in �n
whose ith component is uivi. The Euclidean norm, the 1-norm, and the ∞-norm are
denoted by ‖ · ‖, ‖ · ‖1, and ‖ · ‖∞, respectively. For a matrix E, Im(E) denotes the
subspace generated by the columns of E, and Ker(E) denotes the subspace orthogonal
to the rows of E. The superscript T denotes transpose.

2. The problem and algorithm. In this section we propose a predictor-
corrector, primal-dual, interior-point algorithm with trust-region steps for solving
linear programming (1) and (2). We also present the main convergence results for the
algorithm. One result establishes a polynomial iteration-complexity bound, namely,
O(n3.5 log(χ̄∗

A+n+ε−1
0 )), where ε0 is a constant and χ̄∗

A is a certain scaling-invariant
condition number associated with the constraint matrix A, and the other result es-
tablishes a polynomial arithmetic complexity bound for the algorithm.

2.1. The central path. In this subsection we introduce the pair of primal and
dual linear programs and the assumptions used in our development. We also describe
the associated primal-dual central path and its corresponding two-norm neighbor-
hoods.

Given A ∈ �m×n, c ∈ �n, and b ∈ �m, consider the pairs of linear programs (1)
and (2), where x ∈ �n and (y, s) ∈ �m × �n are their respective variables. The set
of strictly feasible solutions for these problems are

P++ ≡ {x ∈ �n : Ax = b, x > 0},
D++ ≡ {(y, s) ∈ �m×n : AT y + s = c, s > 0},

respectively. Throughout the paper we make the following assumptions on the pair
of problems (1) and (2).
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A.1 P++ and D++ are nonempty.
A.2 The rows of A are linearly independent.
Under the above assumptions, it is well known that for any ν > 0 the system,

xs = νe,(3)
Ax = b, x > 0,(4)

AT y + s = c, s > 0,(5)

has a unique solution (x, y, s), which we denote by (x(ν), y(ν), s(ν)). The central path
is the set consisting of all these solutions as ν varies in (0,∞). As ν converges to zero,
the path (x(ν), y(ν), s(ν)) converges to a primal-dual optimal solution (x∗, y∗, s∗) for
problems (1) and (2). Given a point w = (x, y, s) ∈ P++×D++, its duality gap and its
normalized duality gap are defined as xT s and μ = μ(x, s) ≡ xT s/n, respectively, and
the point (x(μ), y(μ), s(μ)) is said to be the central point associated with w. Note
that (x(μ), y(μ), s(μ)) also has normalized duality gap μ. We define the proximity
measure of a point w = (x, y, s) ∈ P++ ×D++ with respect to the central path by

η(w) ≡ ‖xs/μ− e‖.

Clearly, η(w) = 0 if and only if w = (x(μ), y(μ), s(μ)), or equivalently w coincides
with its associated central point. The two-norm neighborhood of the central path
with opening β > 0 is defined as

N (β) ≡ {w = (x, y, s) ∈ P++ ×D++ : η(w) ≤ β}.

Finally, for any point w = (x, y, s) ∈ P++ ×D++, we define

δ(w) ≡ s1/2x−1/2 ∈ �n.(6)

The following propositions provide important estimates which are used through-
out our analysis.

Proposition 2.1. For every 0 < ν1 ≤ ν2, we have

s(ν1) ≤ ns(ν2) and x(ν1) ≤ nx(ν2).(7)

Proof. Please refer to Lemma 16 of Vavasis and Ye [28].
Proposition 2.2. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) be given and

define δ ≡ δ(w). Let w(μ) = (x(μ), y(μ), s(μ)) be the central point associated with w.
Then:

1 − β

(1 + β)1/2
δ ≤ s(μ)

√
μ

≤ (1 + β)1/2

1 − β
δ.

Proof. This result is summarized in Proposition 2.1 in [14].

2.2. Condition number. In this subsection we define a certain condition num-
ber associated with the constraint matrix A and state the properties of χ̄A which will
play an important role in our analysis.

Let D denote the set of all positive definite n× n diagonal matrices and define

χ̄A ≡ sup
{

‖AT (AD̃AT )−1AD̃‖ : D̃ ∈ D
}

= sup
{

‖AT y‖
‖c‖ : y = argminỹ∈�n‖D̃1/2(AT ỹ − c)‖ for some 0 �= c∈�n and D̃ ∈ D

}

.

(8)
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The parameter χ̄A plays a fundamental role in the complexity analysis of algorithms
for linear programming and least square problems (see [28] and references therein). Its
finiteness has been firstly established by Dikin and Zorkalcev [2]. Other authors have
also given alternative derivations of the finiteness of χ̄A (see, for example, Stewart
[18], Todd [21], and Vanderbei and Lagarias [27]).

We summarize in the next proposition a few important facts about the parame-
ter χ̄A.

Proposition 2.3. Let A ∈ �m×n with full row rank be given. Then, the following
statements hold:

(a) χ̄GA = χ̄A for any nonsingular matrix G ∈ �m×m;
(b) χ̄A = max{‖G−1A‖ : G ∈ G} where G denotes the set of all m×m nonsingular

submatrices of A;
(c) if the m×m identity matrix is a submatrix of A and Ã is an r×n submatrix

of A, then ‖G̃−1Ã‖ ≤ χ̄A for every r × r nonsingular submatrix G̃ of Ã.
Proof. Statement (a) readily follows from the definition (8). The inequality

χ̄A ≥ max{‖G−1A‖ : G ∈ G} is established in Lemma 3 of [28] while the proof of the
reverse inequality is given in [21] (see also Theorem 1 of [22]). Hence, (b) holds. A
proof of (c) can be found in [14].

The condition number χ̄∗
A, defined by taking the infimum of the condition number

χ̄AD as D varies over the set of positive diagonal matrices, that is, χ̄∗
A ≡ inf{χ̄AD : D

∈ D}, also plays an important role in the convergence analysis for our algorithm.
Note that by definition, χ̄∗

A is a scaling-invariant quantity.

2.3. Predictor-corrector step. In this subsection we describe the well-known
predictor-corrector (P-C) iteration which is used by several interior-point algorithms
(see for example Mizuno et al. [9]). We also describe the properties of this iteration
which will be used in our analysis.

The P-C iteration consists of two steps, namely the predictor (or AS) step and
the corrector (or centrality) step. The search direction used by either step from a
current point in (x, y, s) ∈ P++ ×D++ is the solution of the following linear system
of equations

SΔx+XΔs = σμe− xs,

AΔx = 0,(9)
ATΔy + Δs = 0,

where μ = μ(x, s) and σ ∈ � is a prespecified parameter, commonly referred to as the
centrality parameter. When σ = 0, we denote the solution of (9) by (Δxa,Δya,Δsa)
and refer to it as the primal-dual affine scaling direction at w; it is the direction used
in the predictor step of the P-C iteration. When σ = 1, we denote the solution of (9)
by (Δxc,Δyc,Δsc) and refer to it as the corrector direction at w; it is the direction
used in the corrector step of the P-C iteration.

We are now ready to describe the entire predictor-corrector iteration. Suppose
that a constant β ∈ (0, 1/4] and a point w = (x, y, s) ∈ N (β) is given. The P-C
iteration generates another point (x+, y+, s+) ∈ N (β) as follows. It first moves along
the direction (Δxa,Δya,Δsa) until it hits the boundary of the enlarged neighbor-
hood N (2β). More specifically, it computes the point wa = (xa, ya, sa) ≡ (x, y, s) +
αa(Δxa,Δya,Δsa) where

αa ≡ sup {α ∈ [0, 1] : (x, y, s) + α(Δxa,Δya,Δsa) ∈ N (2β)}.(10)
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Next, the P-C iteration generates a point inside the smaller neighborhood N (β) by
taking a unit step along the corrector direction (Δxc,Δyc,Δsc) at the point wa; that
is, it computes the point (x+, y+, s+) ≡ (xa, ya, sa) + (Δxc,Δyc,Δsc) ∈ N (β). The
successive repetition of this iteration leads to the so-called Mizuno–Todd–Ye (MTY)
predictor-corrector algorithm (see [9]).

Our method is very similar to the algorithm of [9] except that it sometimes re-
places the AS step by the trust-region step described in the next subsection. The
insertion of the trust region step in the above MTY predictor-corrector algorithm
guarantees that the modified method has the finite termination property. The trust-
region step is taken only when it yields a point with a smaller duality gap than the
one obtained from the AS step as described above.

In the remaining part of this subsection, we discuss some properties of the P-C
iteration and the primal-dual AS direction. For a proof of the next two propositions,
we refer the reader to [9].

Proposition 2.4 (predictor step). Suppose that w = (x, y, s) ∈ N (β) for some
constant β ∈ (0, 1/2]. Let Δwa = (Δxa,Δya,Δsa) denote the affine scaling direction
at wa and let αa be the step-size computed according to (10). Then the following
statements hold:

(a) the point w+αΔwa has normalized duality gap μ(α) = (1−α)μ for all α ∈ �;
(b) αa ≥

√

β/n and hence μ(αa)/μ ≤ 1 −
√

β/n.
Proposition 2.5 (corrector step). Suppose that w = (x, y, s) ∈ N (2β) for some

constant β ∈ (0, 1/4] and let (Δxc,Δyc,Δsc) denote the corrector step at w. Then,
w+ Δwc ∈ N (β). Moreover, the (normalized) duality gap of w+ Δwc is the same as
that of w.

For the sake of future usage, we mention the following alternative characterization
of the primal-dual AS direction whose verification is straightforward:

Δxa ≡ argminp∈�n

{

‖δ(x+ p)‖2 : Ap = 0
}

,(11)

(Δya,Δsa) ≡ argmin(r,q)∈�m×�n

{

‖δ−1(s+ q)‖2 : AT r + q = 0
}

,(12)

where δ ≡ δ(w). For a search direction (Δx,Δy,Δs) at a point (x, y, s), the quantity

(Rx(w), Rs(w)) ≡
(

δ(x+ Δx)
√
μ

,
δ−1(s+ Δs)

√
μ

)

=
(

x1/2s1/2 + δΔx
√
μ

,
x1/2s1/2 + δ−1Δs

√
μ

)
(13)

appears quite often in our analysis. We refer to it as the residual of (Δx,Δy,Δs).
Note that if (Rxa(w), Rsa(w)) is the residual of (Δxa,Δya,Δsa), then

Rxa(w) = − 1
√
μ
δ−1Δsa, Rsa(w) = − 1

√
μ
δΔxa,(14)

and

Rxa(w) +Rsa(w) =
x1/2s1/2

√
μ

,(15)

due to the fact that (Δxa,Δya,Δsa) satisfies the first equation in (9) with σ = 0. The
following quantity is used in the test to determine when the trust-region step should
be used in place of the AS step:

εa∞(w) ≡ max
i

{min {|Rxa
i (w)| , |Rsai (w)|}} .(16)
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We end this section by providing some estimates involving the residual of the AS
direction.

Lemma 2.6. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Then, for
all i = 1, . . . , n, we have

max {|Rxa
i (w)|, |Rsai (w)|} ≥

√
1 − β

2
≥ 1

4
.

Proof. Assume for a contradiction that for some i ∈ {1, . . . , n}, max{|Rxa
i (w)|,

|Rsai (w)|} <
√

1 − β/2. Then, using (15), we obtain the following contradiction:

x
1/2
i s

1/2
i√
μ

= Rxa
i (w) +Rsai (w) ≤ |Rxa

i (w)| + |Rsai (w)| <
√

1 − β ≤ x
1/2
i s

1/2
i√
μ

.

2.4. Trust region step. In this subsection we introduce a new type of search
step, namely, the trust-region (TR) step, and describe some properties about it.

The definition of the TR step is motivated by the following result regarding the
duality gap reduction obtained by moving along a search direction satisfying certain
conditions. This result can be viewed as a generalization of Lemma 4.6 in [14], and
its proof is given in the Appendix.

Lemma 2.7. Let w ∈ N (β) with β ∈ (0, 1/2] and a direction Δw = (Δx,Δy,Δs)
satisfying AΔx = 0 and ATΔy + Δs = 0 be given. Then, for any positive scalar γ
satisfying

(

4
√

2 +
√

2(1 + β)
)

γ ≤ β − 2β2

1 + 2β
(17)

and for any bipartition (B,N) of {1, 2, . . . , n}, the condition

max
{

‖δBΔxB‖√
μ

,
‖δ−1
N ΔsN‖√

μ

}

≤ γ(18)

implies that

μ(w + ατΔw)
μ(w)

≤
√

1 + β + γ

2γ
max{‖RxN‖, ‖RsB‖},(19)

where ατ ≡ sup {α ∈ [0, 1] : w + αΔw ∈ N (2β)} and (Rx(w), Rs(w)) is defined in
(13).

A trivial application of Lemma 2.7 is as follows. Let (B,N) be the AS-bipartition
at w, i.e.,

B = B(w) ≡ {i : |Rsai (w)| ≤ |Rxai (w)|},
N = N(w) ≡ {i : |Rsai (w)| > |Rxai (w)|}.(20)

and let

εa2(w) := max{‖RxaN‖, ‖RsaB‖}.(21)

Then, in view of Lemma 2.7 and identity (14), the condition εa2(w) ≤ γ implies that

μ(w + αΔwa)
μ(w)

≤
√

1 + β + γ

2γ
εa2(w),
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showing that the smaller the quantity εa2(w) is, the larger the reduction of the duality
gap will be, as it moves from w along the AS direction Δwa(w).

However, a more interesting application of Lemma 2.7 is towards deriving a new
scaling-invariant search direction, which we refer to as the trust-region direction (see
the definition below). This direction is the one which minimizes the right-hand side
of (19) subject to the condition (18) when (B,N) = (B(w), N(w)). To define this
direction, set (B,N) = (B(w), N(w)) and consider the two subproblems:

minimize ‖δN (xN + ΔxN )‖
subject to ‖δBΔxB‖/

√
μ ≤ γp

AΔx = 0
(22)

and

minimize ‖δ−1
B (sB + ΔsB)‖

subject to ‖δ−1
N ΔsN‖/√μ ≤ γd

ATΔy + Δs = 0
.(23)

Definition. Given w ∈ N (β) and positive scalars γp and γd, let Δxτ (w; γp)
and (Δyτ (w; γd), Δsτ (w; γd)) denote optimal solutions of subproblems (22) and (23),
respectively. The direction Δwτ (w; γp, γd) ≡ (Δxτ (w; γp),Δyτ (w; γd),Δsτ (w; γd)) is
then referred to as a trust-region direction at w with radius pair (γp, γd).

We now make a few observations regarding the above definition. First, it can
be easily shown that both subproblems (22) and (23) must have optimal solutions
although their optimal solutions are not necessarily unique. We will refer to any pair of
optimal solutions of subproblems (22) and (23) as a trust-region step corresponding to
the triple (w; γp, γd). Second, if εa2(w) ≤ min{γp, γd}, then the quantity ετ2(w; γp, γd)
defined as

ετ2(w; γp, γd) := max {‖RxτN (w)‖ , ‖RsτB(w)‖} ,(24)

where (Rxτ (w), Rsτ (w)) denotes the residual pair for the the TR direction Δwτ (w; γp,
γd), satisfies ετ2(w; γp, γp) ≤ εa2(w). In other words, whenever the AS direction is a
reasonably good direction in the sense that εa2(w) is sufficiently small, then the TR
step is likely to be an even better direction in that it makes the right-hand side
of (19) smaller. Third, even though our definition of a TR step does not uniquely
characterize it, one can easily modify the definition to make it uniquely defined in the
following way. Without loss of generality, we consider only the primal direction, which
previously was defined as an optimal solution of (22). This clearly implies that ΔxτN
is uniquely defined. Now, minimizing the quantity ‖δBΔxB‖ under the condition that
AΔx = 0 and ΔxN = ΔxτN uniquely determines the component ΔxB , and hence the
whole primal TR step. We note, however, that our analysis does not require that the
TR step be uniquely determined and in fact works for any pair of optimal solutions
of (22) and (23).

2.5. Main algorithm and the convergence results. In this subsection, we
describe our algorithm, namely, the predictor-corrector trust-region (PC-TR) algo-
rithm, to solve the linear programming problem (1) and (2), and then state the main
result of this paper which guarantees the convergence of the method in a strong sense.
More specifically, this result states that the outer iteration-complexity bound for our
method depends only on n and the scaling-invariant condition number χ̄∗

A.
We start by stating our predictor-corrector trust-region algorithm.
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PC-TR Algorithm:

Let 0 < β ≤ 1/4 and γ > 0 satisfying (17), w0 ∈ N (β) and a scalar ε0
∈ (0, γ/3] be given.

Set μ0 ≡ μ(w0) and k = 0.

1) Set w = wk, compute the AS step Δwa at w and the residual εa2(w) as
defined in (21);

2) If εa2(w) > ε0, then set w ← w + αaΔwa, where αa is defined as in (10)
and go to 6);

3) Otherwise, compute the TR step Δwτ = Δwτ (w; γp, γd), for scalars
γp, γd ∈ [γ/2, 2γ];

4) Let wτ = w + ατ Δwτ , where ατ ≡ sup{α ∈ [0, 1] : w + αΔwτ ∈
N (2β)};

5) If μ(wτ ) < (1 − αa)μ, then set w ← wτ , or else set w ← w + αaΔwa;
6) If μ(w) = 0, then stop;
7) Compute the corrector step Δwc at w and set w ← w + Δwc;
8) Set wk+1 = w, increment k by 1 and go to 1).

End
We now make a few comments about the above algorithm. In the main body of the

algorithm, step 2 followed by step 7 is a standard predictor-corrector iteration of the
type described in subsection 2.3. This iteration is always performed in those iterations
for which εa2(w) > ε0(w). In order to save computation time, the TR step is computed
only in those iterations for which the current iterate w satisfies εa2(w) ≤ ε0. In these
iterations, the algorithm performs either a standard predictor-corrector iteration or
a TR-corrector iteration depending on which of the two iterations gives the lower
reduction of the duality gap. This test is performed in step 5 since the term (1−αa)μ
is the normalized duality gap obtained when the AS step is taken (see Proposition
2.4(a)).

For the sake of future reference, we note that (17) and the assumption that
β ∈ (0, 1/4] imply that

γ ≤ 1
20
, ε0 ≤ γ

3
≤ 1

60
.(25)

We refer to an iteration where the TR step is computed as a TR-iteration. The
following result is immediate from Lemma 2.7 and the definition of a TR-iteration.

Proposition 2.8. Let w be an iterate of the PC-TR algorithm and assume that
the next iterate w+ after w is obtained by means of a TR-iteration. Then,

μ(w+)
μ(w)

≤
√

1 + β + γ

2γ
ετ2(w; γp, γd) ≤

√
1 + β + γ

2γ
εa2(w) ≤

√
1 + β + γ

2γ
ε0 ≤ 1

4
.(26)

Proof. First note that if the iteration from w is a TR-iteration, then we have
εa2(w) ≤ ε0 ≤ γ/3 ≤ min{γp, γd}. The first three inequalities in (26) follow from
Lemma 2.7, the previous observation, and the second observation after (23). More-
over, the last inequality in (26) follows from (25) and the fact that β ≤ 1/4.

We have the following convergence result for the above algorithm.
Theorem 2.9. The PC-TR algorithm described above finds a primal-dual optimal

solution w = (x∗, s∗, y∗) of (1) and (2) in at most O(n3.5 log(χ̄∗
A+n+ε−1

0 )) iterations,
of which O(n3 log(χ̄∗

A + n+ ε−1
0 )/ log ε−1

0 ) are TR-iterations. In particular, if ε−1
0 =

O((n+ χ̄∗
A)κ) for some constant κ > 0, then the total number of iterations is bounded
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by O(n3.5 log(χ̄∗
A + n)). Also, if ε−1

0 = Ω((n + χ̄∗
A)κ) for some constant κ > 0, then

the number of TR-iterations is bounded by O(n3).
Note that the PC-TR algorithm is scaling-invariant; i.e., if the change of variables

(x, y, s) = (Dx̃, ỹ,D−1s̃) for some D ∈ D is performed on the pair of problems (1) and
(2) and the PC-TR algorithm is applied to the new dual pair of scaled problems, then
the sequence of iterates w̃k generated satisfies (xk, yk, sk) = (Dx̃k, ỹk, D−1s̃k) for all
k ≥ 1, as long as the initial iterate w̃0 ∈ N (β) in the w̃-space satisfies (x0, y0, s0) =
(Dx̃0, ỹ0, D−1s̃0). For this reason, the PC-TR algorithm should have an iteration-
complexity bound which does not depend on the scaled space where the sequence of
iterates is generated. Indeed, the iteration-complexity bound stated in Theorem 2.9
is scaling-invariant since the condition number χ̄∗

A is too. It is worth noting that
the PC-TR algorithm is also scaling-invariant with respect to a more strict notion of
scaling invariance described in Tunçel [24], which corresponds to choosing the set D
in the above defintion as the full automorphism group of Rn+. Note that the latter
set is larger than the set of positive diagonal maps since it contains the permutation
maps, and hence it leads to a stronger notion of scaling invariance.

We note also that, to prove Theorem 2.9, it suffices to show that the the num-
ber of iterations of the PC-TR algorithm applied to (1) and (2) is bounded by
O(n3.5 log(χ̄A + n + ε−1

0 )). Indeed, since in the D-scaled space, the iterates can
also be viewed as being generated by the PC-TR algorithm (started from a different
point), then its complexity is also bounded by

O(n3.5 log(χ̄AD + n+ ε−1
0 )),(27)

and hence by the infimum of (27) over all D ∈ D, that is, by O(n3.5 log(χ̄∗
A+n+ε−1

0 )).
Finally, Theorem 2.9 does not deal with the overall arithmetic complexity of the

PC-TR algorithm. This issue will be dealt with in the next subsection and section 5,
where we discuss the arithmetic complexity involved in the computation of a TR step
for a suitable variant of the PC-TR algorithm. Roughly speaking, we will derive a
bound on the number of arithmetic operations required to compute a TR step which
depends on the ratio between the current duality gap and the initial duality gap. This
implies that the overall arithmetic complexity obtained in this paper for the above
variant of the PC-TR algorithm depends (weakly) on b and c, though its number of
iterations just depends on A as shown in Theorem 2.13.

2.6. Computing the TR step. In this subsection, we present an algorithm to
compute the TR step and derive the arithmetic complexity for the PC-TR algorithm.

For the sake of simplicity, we focus our discussion on the computation of the primal
TR direction. We start by introducing a search direction that is closely related to the
optimal solution of (22). Given a scalar λ > 0 and w ∈ P++ ×D++, consider the
following direction defined as

Δx(λ) := argmin
{

‖δN (xN + ΔxN )‖2 + λ‖δBΔxB‖2 : AΔx = 0
}

,(28)

where δ ≡ δ(w) and (B,N) ≡ (B(w), N(w)). Note that this direction is well-defined
in the sense that the above optimization problem has a unique optimal solution. Now,
let ψp : �++ → �+ denote the mapping given by

ψp(λ) ≡ ‖δBΔxB(λ)‖
√
μ

,(29)

where μ ≡ μ(w).
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The following technical result can be proved regarding the functions Δx(λ) and
ψp(λ). Note that in the discussion below, we denote the derivatives of Δx(λ) and
ψp(λ) as Δx′(λ) and ψ′

p(λ), respectively.
Lemma 2.10. The following statements hold:
(a) The limits Δx(0) ≡ limλ→0+ Δx(λ) and ψp(0) ≡ limλ→0+ ψp(λ) exist and are

given by

ΔxN (0) = argmin
{

‖δN(xN + ΔxN )‖2 : ANΔxN ∈ Im(AB)
}

,(30)

ΔxB(0) = argmin
{

‖δBΔxB‖2 : ABΔxB = −ANΔxN (0)
}

,(31)

ψp(0) = ‖δBΔxB(0)‖/√μ.(32)

(b) The limit Δx′B(0) ≡ limλ→0+ Δx′B(λ) exists. Moreover, if ψp(0) �= 0, then
ψ′
p(0) ≡ limλ→0+ ψ′

p(λ) also exists;
(c) If ψp(0) �= 0, then the function ψp(·) is strictly convex, strictly decreasing,

and limλ→∞ ψp(λ) = 0; otherwise, if ψp(0) = 0, then the function ψp(·) is
identically zero.

(d) If 0 < λ1 ≤ λ2, then ψp(λ1)/ψp(λ2) ≤ λ2/λ1 (with the convention that
0/0 = 0).

We note that, in view of Lemma 2.10, the functions Δx(λ) and ψp(λ) can be
extended to λ = 0 and their extensions are continuously differentiable at λ = 0. The
following result relates the direction Δx(λ) above to the primal TR direction, i.e., the
optimal solutions of (22).

Lemma 2.11. The following statements hold:
(a) For any λ > 0, Δx(λ) is an optimal solution of (22) with γp = ψp(λ);
(b) Δx(0) is an optimal solution of (22) for any γp ≥ ψp(0).
Proof. (a) Using the fact that Δx(λ) satisfies the optimality conditions for (28),

we easily see that it also satisfies the optimality conditions, and hence is an optimal
solution, of (22) with γp = ψp(λ).

(b) In view of Lemma 2.10, we can pass the optimality conditions of (28) to the
limit as λ ↓ 0 to conclude that AΔx(0) = 0 and δ2N (xN + ΔxN (0)) ∈ Im(AT ). This
together with (29) and the assumption that γp ≥ ψp(0) imply that Δx(0) satisfies the
optimality conditions, and hence is an optimal solution, of (22).

Using the above results, the primal TR direction required by the algorithm can be
computed as follows. Recall that the goal is to find an optimal solution of (22) for some
γp ∈ [γ/2, 2γ]. We start by computing Δx(0) and then ψp(0). If ψp(0) ≤ 2γ, then by
Lemma 2.11(b), we conclude that Δx(0) is an optimal solution of (22) with γp = 2γ,
and hence can be chosen as the required TR direction. Otherwise, if ψp(0) > 2γ, we
search for some λp > 0 such that

γ/2 ≤ ψp(λp) ≤ 2γ,(33)

which always exists in view of Lemma 2.10(c) and the fact that ψp(0) > 2γ.
Now, to find some λp > 0 satisfying (33), it suffices to determine 0 < λl ≤ λu

such that

ψp(λl) ≥ γ ≥ ψp(λu),(34)
λu/λl ≤ 2.(35)

In such a case, any scalar λp ∈ [λl, λu] satisfies (33). Indeed, by Lemma 2.10(d), we
have

γ

2
≤ λl
λu
γ ≤ λl

λp
ψp(λl) ≤ ψp(λp) ≤

λu
λp
ψp(λu) ≤ λu

λl
γ ≤ 2γ.
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Assuming that initial λl and λu satisfying (34) are given, a standard bisection proce-
dure on the (log λ)-space can then be used to determine scalars λl and λu satisfying
both (34) and (35). An iteration of this bisection scheme updates λl or λu as follows.
First, compute λ̃ such that log λ̃ = (logλl + logλu)/2, that is λ̃ = (λlλu)1/2. Second,
if ψp(λ̃) > γ, λl is updated to λ̃; otherwise λu is updated to λ̃. It is clear that each it-
eration of this bisection scheme always preserves condition (34) and halves the length
of the interval [logλl, logλu]. Hence, it eventually finds a pair (λl, λu) satisfying (34)
and (35) in O(log(log(λu/λl))) bisection iterations, where λl and λu are the initial
values of these scalars at the start of the procedure.

It remains to describe how to choose initial scalars 0 < λl ≤ λu such that (34)
holds. We first focus our attention on the description of λl. Since ψp(λ) is convex,
we have ψp(λ) ≥ ψp(0) + ψ′

p(0)λ for every λ > 0. Hence, choosing λl to be the root
of the linear equation ψp(0) + ψ′

p(0)λ = γ, i.e.,

λl =
ψp(0) − γ

|ψ′
p(0)| ,

we conclude that ψp(λl) ≥ γ.
The following lemma provides the needed information to obtain a lower bound on

λl. We observe that, in spite of the notation, the quantities ψp(0) and ψ′
p(0) depend

on the point w ∈ P++ ×D++.
Lemma 2.12. Let w0 denote the initial iterate of the PC-TR algorithm and set

μ0 = μ(w0). Then, for any w ∈ N (β) such that μ := μ(w) ≤ μ0, we have

ψp(0)
|ψ′
p(0)| ≥

(1 − β)8μ2

n4(1 + β)4μ2
0 χ̄

2
Aδ−1

0

.(36)

Using the above result, a lower bound on λl can be obtained by observing that,
under the assumption that ψp(0) ≥ 2γ, we have

λl =
ψp(0) − γ

|ψ′
p(0)| ≥ ψp(0)

2 |ψ′
p(0)| ≥

(1 − β)8μ2

2n4 (1 + β)4μ2
0 χ̄

2
Aδ−1

0

.(37)

We now discuss how to choose the initial scalar λu satisfying (34). In contrast
to the choice of λl, there is no clear way of choosing λu for an arbitrary curve ψp(λ).
Fortunately, the PC-TR algorithm stated in the previous subsection can be slightly
modified so as to compute the TR step only when the condition ψp(1) ≤ γ (in addition
to the previously required condition that εa2(w) > ε0) is satisfied. Hence, we may
always choose the initial λu to be 1. In view of our discussion above, we conclude
that the computation of a TR step in this variant of the PC-TR algorithm requires
O
(

log logλ−1
l

)

bisection steps, which is bounded by

O
[

log
(

log χ̄Aδ−1
0

+ log
μ0

μ

)]

(38)

bisection steps, in view of (37).
We will now precisely discuss the variant of the PC-TR algorithm mentioned in

the previous paragraph. First, we mention that the whole discussion of this subsection
up to this point also applies to the computation of the dual TR direction, with the
dual auxiliary direction

(Δy(λ),Δs(λ)) := argmin{‖δ−1
B (sB + ΔsB)‖2

+ λ‖δ−1
N ΔsN‖2 : ATΔy + Δs = 0}(39)
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replacing Δx(λ) and the dual curve

ψd(λ) ≡ ‖δ−1
N ΔsN (λ)‖

√
μ

(40)

replacing ψp(λ). We then have the following convergence result about a certain variant
of the PC-TR algorithm.

Theorem 2.13. Consider the variant of the PC-TR algorithm where step 2) is
replaced by the following step:

2’) If εa2(w) > ε0 and max{ψp(1), ψd(1)} > γ/18, then set w ← w + αaΔwa,
where αa is defined as in (10) and go to 6);

Then, the conclusions of Theorem 2.9 also hold for the resulting variant of the PC-TR
algorithm.

We will now briefly discuss the arithmetic complexity of the above variant. We
will see later in section 4 that the bisection procedure to compute a TR step takes

T (μ;w0) ≡ O
[

n3 + n log
(

log χ̄Aδ−1
0

+ log(μ0/μ)
)]

(41)

arithmetic operations, since the procedure requires O[log(log χ̄Aδ−1
0

+log(μ0/μ))] eval-
uations of the curves ψp(λ) and ψd(λ) with the first evaluation of either curve tak-
ing O(n3) arithmetic operations and subsequent ones taking only O(n) arithmetic
operations.

The above observation together with Theorem 2.13 yields the following arithmetic
complexity result for the above PC-TR variant.

Theorem 2.14. The number of arithmetic operations performed by the variant of
the PC-TR algorithm stated in Theorem 2.13 to find an iterate w such that μ(w) ≤ μf
is bounded by

O
[

n3 log(χ̄∗
A + n+ ε−1

0 )
log ε−1

0

T (μf , w0) + n6.5 log(χ̄∗
A + n+ ε−1

0 )
]

,

where T (·, ·) is defined in (41). In particular, if ε−1
0 = Θ((n+ χ̄∗

A)κ) for some κ > 0,
the above arithmetic complexity bound reduces to

O
[

n6.5 log(χ̄∗
A + n) + n4 log

(

log χ̄Aδ−1
0

+ log(μ0/μf )
)]

.

3. Basic tools. In this section we introduce the basic tools that will be used in
the proof of Theorem 2.9. The analysis heavily relies on the notion of layered least
squares(LLS) directions and crossover events due to Vavasis and Ye [28]. Subsection
3.1 below gives the definition of a crossover event which is slightly different than the
one used in [28] and discusses some of its properties. Subsection 3.2 defines the layered
least squares directions that will be used in the complexity analysis and also states
an approximation result that provides an estimation of the closeness between the LLS
direction with respect to a partition J of {1, . . . , n} and the AS direction. Subsection
3.3 reviews from a different perspective an important result from [28], namely Lemma
17 of [28], that essentially guarantees the occurrence of crossover events. Since this
result is stated in terms of the residual of an LLS step, the use of the approximation
result of subsection 3.2 between the AS and LLS steps allows us to obtain a similar
result stated in terms of the residual of the AS direction.
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3.1. Crossover events. In this subsection we discuss the notion of crossover
event which plays a fundamental role in our convergence analysis.

Definition. For two indices i, j ∈ {1, . . . , n} and a constant C ≥ 1, a C-crossover
event for the pair (i, j) is said to occur on the interval (ν′, ν] if

there exists ν0 ∈ (ν′, ν] such that
sj(ν0)
si(ν0)

≤ C,

and,
sj(ν̃)
si(ν̃)

> C for all ν̃ ≤ ν′.
(42)

Moreover, the interval (ν′, ν] is said to contain a C-crossover event if (42) holds for
some pair (i, j).

Hence, the notion of a crossover event is independent of any algorithm and is a
property of the central path only. Note that in view of (3), condition (42) can be
reformulated into an equivalent condition involving only the primal variable. For our
purposes, we will use only (42).

We have the following simple but crucial result about crossover events.
Proposition 3.1. Let C > 0 be a given constant. There can be at most n(n−1)/2

disjoint intervals of the form (ν′, ν] containing C-crossover events.
The notion of C-crossover events can be used to define the notion of C-crossover

events between two iterates of the PC-TR algorithm as follows. We say that a C-
crossover event occurs between two iterates wk and wl, k < l, generated by the
PC-TR algorithm if the interval (μ(wl), μ(wk)] contains a C-crossover event. Note
that in view of Proposition 3.1, there can be at most n(n−1)/2 intervals of this type.
We will show in the remaining part of this paper that there exists a constant C > 0
with the following property: for any index k, there exists an index l > k such that
l− k = O(n1.5 log(χ̄A +n+ ε−1

0 )) and a C-crossover event occurs between the iterates
wk and wl of the PC-TR algorithm. Proposition 3.1 and a simple argument then
show that the PC-TR algorithm must terminate within O(n3.5 log(χ̄A + n + ε−1

0 ))
iterations.

3.2. The layered least squares step. In this subsection we describe another
type of direction, namely the layered least squares (LLS) step, which is very important
in the analysis of our algorithm. This step was first introduced by Vavasis and Ye
in [28]. We also describe two ordered partitions of the index set {1, . . . , n} that are
crucial in the definition of the LLS directions.

Let w = (x, y, s) ∈ P++ ×D++ and a partition (J1, . . . , Jp) of the index set
{1, . . . , n} be given and define δ ≡ δ(w). The primal LLS direction Δxll = (Δxll

J1
, . . . ,

Δxll
Jp

) at w with the respect to J is defined recursively according to the order
Δxll

Jp
, . . . ,Δxll

J1
as follows. Assume that the components Δxll

Jp
, . . . ,Δxll

Jk+1
have been

determined. Let ΠJk
: �n → �Jk denote the projection map defined as ΠJk

(u) = uJk

for all u ∈ �n. Then Δxll
Jk

≡ ΠJk
(Lxk) where Lxk is given by

Lxk ≡ Argminu∈�n

{

‖δJk
(xJk

+ uJk
)‖2 : u ∈ Lxk−1

}

= Argminu∈�n

{

‖δJk
(xJk

+ uJk
)‖2 : u ∈ Ker(A),

uJi = Δxll
Ji

for all i = k + 1, . . . , p
}

,

(43)

with the convention that Lx0 = Ker(A). The slack component Δsll = (ΔsllJ1
, . . . ,ΔsllJp

)
of the dual LLS direction (Δyll,Δsll) at w with the respect to J is defined recursively



A POLYNOMIAL PC-TR ALGORITHM FOR LP 1933

as follows. Assume that the components ΔsllJ1
, . . . ,ΔsllJk−1

have been determined.
Then ΔsllJk

≡ ΠJk
(Lsk) where Lsk is given by

Lsk ≡ Argminv∈�n

{

‖δ−1
Jk

(sJk
+ vJk

)‖2 : v ∈ Lsk−1

}

= Argminv∈�n

{

‖δ−1
Jk

(sJk
+ vJk

)‖2 : v ∈ Im(AT ),

vJi = ΔsllJi
for all i = 1, . . . , k − 1

}

,

(44)

with the convention that Ls0 = Im(AT ). Finally, once Δsll has been determined, the
component Δyll is determined from the relation ATΔyll + Δsll = 0.

Note that (11) and (12) imply that the AS direction is a special LLS direction,
namely the one with respect to the only partition in which p = 1. Clearly, the LLS
direction at a given w ∈ P++ ×D++ depends on the partition J = (J1, . . . , Jp) used.

A partition J = (J1, . . . , Jp) of {1, . . . , n} is said to be ordered with respect to a
fixed vector z ∈ �n++ if max(zJi) ≤ min(zJi+1) for all i = 1, . . . , p− 1. In such a case,
we define the gap of J with respect to z as

gap(z, J) := min
1≤i≤p−1

{

min(zJi+1)
max(zJi)

}

≥ 1,

with the convention that gap(z, J) = ∞ if p = 1. We say that a partition J is ordered
at w ∈ P++ ×D++ if it is ordered with respect to z = δ(w), in which case we denote
the quantity gap(δ(w), J) simply by gap(w, J). For partition J = (J1, . . . , Jp) and a
point w ∈ P++ ×D++, the spread of the layer Jk with respect to w is defined as

spr(w, Jk) ≡ max(δJk
(w))

min(δJk
(w))

, ∀k = 1, . . . , p.

We now state how the AS direction can be well approximated by suitable LLS
steps. Lemma 3.2, whose proof can be found in [14], essentially states that the larger
the gap of J is, the closer the AS direction and the LLS direction with respect to J
will be to one another.

Lemma 3.2. Let w = (x, y, s) ∈ P++ ×D++ and an ordered partition J =
(J1, . . . , Jp) at w be given. Define δ ≡ δ(w) and let Δwa = (Δxa,Δya,Δsa) and
Δwll = (Δxll,Δyll,Δsll) denote the AS direction at w and the LLS direction at w
with respect to J , respectively. If gap(w, J) ≥ 4 p χ̄A, then

max
{ ∥

∥

∥Rxa(w) −Rxll(w)
∥

∥

∥

∞
,
∥

∥

∥Rsa(w) −Rsll(w)
∥

∥

∥

∞

}

≤ 12
√
n χ̄A

gap(w, J)
,

where (Rxa(w), Rsa(w)) and (Rxll(w), Rsll(w)) denote the residual pairs for the AS
direction Δwa and the LLS direction Δwll, respectively.

In the remainder of this subsection, we describe the two important LLS directions
in the analysis of our algorithm that differs in the definition of ordered partitions. The
first ordered partition is due to Vavasis and Ye [28]. Given a point w ∈ P++ ×D++

and a parameter ḡ ≥ 1, this partition, which we refer to as the V Y partition, is defined
as follows. Let (i1, . . . , in) be an ordering of {1, . . . , n} such that δi1 ≤ . . . ≤ δin , where
δ = δ(w). For k = 2, . . . , n, let rk ≡ δik/δik−1 and define r1 ≡ ∞. Let k1 < . . . < kp
be all the indices k such that rk > ḡ. The VY ḡ-partition J is then defined as
J = (J1, . . . , Jp), where Jq ≡ {ikq , ikq+1, . . . , ikq+1−1} for all q = 1, . . . , p. More
generally, given a subset I ⊂ {1, . . . , n}, we can similarly define the VY ḡ-partition of
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I at w by taking an ordering (i1, . . . , im) of I satisfying δi1 ≤ . . . ≤ δim where m = |I|,
defining the ratios r1, . . . , rm as above, and proceeding exactly as in the construction
above to obtain the partition J = (J1, . . . , Jp) of I.

It is easy to see that the following result holds for the partition J described in
the previous paragraph.

Proposition 3.3. Given a subset I ⊆ {1, . . . , n}, a point w ∈ P++ ×D++, and
a constant ḡ ≥ 1, the VY ḡ-partition J = (J1, . . . , Jp) of I at w satisfies gap(w, J) > ḡ
and spr(w, Jq) ≤ ḡ|Jq| ≤ ḡn for all q = 1, . . . , p.

The second-ordered partition, which is used heavily in our analysis, was intro-
duced by Monteiro and Tsuchiya [14]. Given a point w ∈ P++ ×D++. First,
we compute the bipartition (B,N) of {1, . . . , n} according to (20). Next, an or-
der (i1, . . . , in) of the index variables is chosen such that δi1 ≤ . . . ≤ δin . Then,
the first block of consecutive indices in the n-tuple (i1, . . . , in) lying in the same
set B or N are placed in the first layer J1, the next block of consecutive indices
lying in the other set is placed in J2, and so on. As an example assume that
(i1, i2, i3, i4, i5, i6, i7) ∈ B×B×N×B×B×N×N . In this case, we have J1 = {i1, i2},
J2 = {i3}, J3 = {i4, i5}, and J4 = {i6, i7}. A partition obtained according to the
above construction is clearly ordered at w. We refer to it as an ordered AS-partition,
and denote it by J = J (w).

Note that an ordered AS-partition is not uniquely determined since there can be
more than one n-tuple (i1, . . . , in) satisfying δi1 ≤ . . . ≤ δin . This situation happens
exactly when there are two or more indices i with the same value for δi. If these tying
indices do not all belong to the same set B or N , then there will be more than one
way to generate an ordered AS-partition J .

We say that the bipartition (B,N) is regular if there do not exist i ∈ B and
j ∈ N such that δi = δj . Observe that there exists a unique ordered AS-partition if
and only if (B,N) is regular. When (B,N) is not regular, our algorithm avoids the
computation of an ordered AS-partition and hence of any LLS direction with respect
to such a partition.

3.3. Relation between crossover events, the AS step, and the LLS step.
In this subsection, we state some variants of Lemma 17 of Vavasis and Ye [28]. Specif-
ically, we present two estimates on the number of iterations needed to guarantee the
occurrence of a crossover event. While the first estimate essentially depends on the
size of the residual of the LLS step and the step-size at the initial iterate, the second
one depends only on the size of the residual of the AS direction at the initial iterate.
Lemma 3.4 is a restatement of Lemma 17 of of Vavasis and Ye [28]. Its proof can be
found in Lemma 3.4 of Monteiro and Tsuchiya [14].

Lemma 3.4. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) and an ordered partition
J = (J1, . . . , Jp) at w be given. Let δ ≡ δ(w), μ = μ(w), and (Rxll(w), Rsll(w)) denote
the residual of the LLS direction (Δxll,Δyll,Δsll) at w with respect to J . Then, for
any q = 1, . . . , p and any constant

Cq ≥ (1 + β) spr(w, Jq)/(1 − β)2

and for any μ′ ∈ (0, μ) such that

μ′

μ
≤

‖Rxll
Jq

(w)‖∞‖RsllJq
(w)‖∞

n3C2
q χ̄

2
A

,

the interval (μ′, μ] contains a Cq-crossover event.
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The following lemma is the immediate consequence of Lemma 3.4 and an adaption
from Lemma 3.5 of Monteiro and Tsuchiya [14].

Lemma 3.5. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4] and an ordered
partition J = (J1, . . . , Jp) at w be given. Define δ ≡ δ(w) and μ = μ(w), and
let (Rxll(w), Rsll(w)) denote the residual of the LLS direction (Δxll,Δyll,Δsll) at w
with respect to J . Then, for every q ∈ {1, . . . , p} and every

Cq ≥ (1 + β)spr(w, Jq)/(1 − β)2,(45)

the following statements hold:
(a) the PC-TR algorithm (or its variant) started from the point w will generate

an iterate ŵ with a Cq-crossover event occurring between w and ŵ in O(
√
nΦ)

iterations, where

Φ ≡ log(χ̄A + n) + log Cq + log

(

μ+/μ

‖Rxll
Jq

(w)‖∞‖RsllJq
(w)‖∞

)

(46)

and μ+ is the normalized duality gap attained immediately after the first iter-
ation. Moreover, steps 3 through 5 of the PC-TR algorithm (or its variant),
and hence computation of the TR step, is performed in only

O(Φ/ log(ε−1
0 ))(47)

of these iterations.
(b) if, in addition,

gap(w, J) ≥ max

{

4nχ̄A ,
24

√
nχ̄A

εaJq

}

(48)

where εaJq
≡ min

{

‖Rxa
Jq

(w)‖∞ , ‖RsaJq
(w)‖∞

}

, then

Φ = O
(

log(χ̄A + n) + log Cq + log(εaJq
)−1
)

.(49)

Proof. The proofs of the first part of statement (a) and the whole statement
(b) are given in Lemma 3.5 of [14]. It remains to prove the latter part of statement
(a). We refer to an iteration of the PC-TR algorithm as a TR-iteration whenever the
TR direction is computed. Let N0 be the number of TR-iterations performed before
reaching the first iterate ŵ such that a Cq-crossover event occurs between w and ŵ.
We will show that N0 is bounded by (47). Indeed, let w̃ denote the iterate obtained
immediately after the (N0−1)-th TR-iteration. Then, in view of Lemma 3.4, we have

μ(w̃)
μ(w)

>
‖Rxll

Jq
(w)‖∞‖RsllJq

(w)‖∞
n3C2

q χ̄
2
A

.(50)

Since the duality gap is reduced by a factor of μ+/μ in the first iteration, and by a
factor of at least

(

(
√

1 + β + γ)/(2γ)
)

ε0 in subsequent TR-iterations, due to relation
(26), we conclude that

log
(

μ+

μ

)

+ (N0 − 2) log
(√

1 + β + γ

2γ
ε0

)

≥ log
μ(w̃)
μ(w)

> log

[

‖Rxll
Jq

(w)‖∞‖RsllJq
(w)‖∞

n3C2
q χ̄

2
A

]

,

which clearly implies that N0 is bounded by (47).
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4. Convergence analysis of the PC-TR algorithm. In this section, we will
provide the proofs of Theorems 2.9 and 2.13.

Lemma 3.5 gives a good idea of the effort that will be undertaken in this sec-
tion, namely, to show that there exists a universal constant C = C(ε0) > 0 with
the property that, for each iterate w of the PC-TR algorithm, or its variant, there
exists an ordered partition J = (J1, . . . , Jp) and an index q = 1, . . . , p such that
C ≥ (1 + β)spr(w, Jq)/(1 − β)2 and the quantity Φ defined in (46) with Cq = C
is bounded by O(n log(χ̄A + n + ε−1

0 )). In view of Lemma 3.5(a), we would then
conclude that a C-crossover event occurs every time O(n1.5 log(χ̄A + n + ε−1

0 )) it-
erations of the PC-TR algorithm is performed. Proposition 3.1 together with the
previous fact would then imply that the PC-TR algorithm, or its variant, terminates
in O(n3.5 log(χ̄A + n+ ε−1

0 )) iterations.
We start by introducing the aforementioned constant C = C(ε0) and another

global constant used in this section. Let

ḡ(ε0) ≡ 24nχ̄A
ε0

, C(ε0) ≡ (1 + β)
(1 − β)2

[ḡ(ε0)]n.(51)

The proof of the above claim will be broken into three cases, namely: (i) εa2(w) ≥
ε0; (ii) gap(w,J ) ≤ ḡ(ε0); and (iii) gap(w,J ) ≥ ḡ(ε0) and εa2(w) ≤ ε0, where εa2(w)
is given by (21), J is the AS-partition at w, and gap(w,J ) is defined in subsection
3.2. The first result below considers the case (i).

Lemma 4.1. Suppose that w ∈ N (β) for some β ∈ (0, 1/4] and that εa2(w) ≥ ε0 for
some constant ε0 > 0. Then PC-TR algorithm, or its variant, started from the point
w will generate an iterate ŵ with a C(ε0)-crossover event occurring between w and ŵ
in O(n1.5 log(χ̄A +n+ ε−1

0 )) iterations, of which O(n log(χ̄A + n+ ε−1
0 )/ log ε−1

0 ) are
TR-iterations.

Proof. The assumption that εa2(w) ≥ ε0 implies εa∞(w) ≥ ε0/
√
n, and hence, in

view of definition (16), there exists an index i = 1, . . . , n such that min{|Rxa
i (w)|, |Rsai

(w)|} ≥ ε0/
√
n. Now let J = (J1, . . . , Jp) be a VY ḡ(ε0)-partition at w and let Jq be

the layer containing the index i above. Clearly, we have

εaJq
≡ min

{

‖Rxa
Jq

(w)‖∞, ‖RsaJq
(w)‖∞

}

≥ ε0/
√
n.(52)

Using the above inequality, the fact that gap(w, J) ≥ ḡ(ε0) and (51), we easily see that
(48) holds. Since by Proposition 3.3 the spread of every layer of a VY ḡ(ε0)-partition
at w is bounded above by ḡ(ε0)n, we conclude that spr(w, Jq) ≤ ḡn, and hence that
the constant C(ε0) defined in (51) satisfies (45) with Cq = C(ε0). We then conclude
from Lemma 3.5(b) that Φ = O(n1.5 log(χ̄A +n+ ε−1

0 )) in view of (52), (51), and the
fact that log(Cq) = O(n log ḡ(ε0)) = O(n log(χ̄A + n + ε−1

0 )). The conclusion of the
lemma now follows from the previous observation and Lemma 3.5(a).

The next result takes care of case (ii), namely the case in which gap(w,J ) ≤ ḡ(ε0).
Lemma 4.2. Suppose that w ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ(ε0) and

C(ε0) be the constants defined in (51). Let J = (J1, . . . ,Jr) be an ordered AS-
partition at w and assume that gap(w,J ) ≤ ḡ(ε0). Then, the PC-TR algorithm, or
its variant, started from the point w will generate an iterate ŵ with a C(ε0)-crossover
event occurring between w and ŵ in O(n1.5 log(χ̄A + n + ε−1

0 )) iterations, of which
O(n log(χ̄A + n+ ε−1

0 )/ log ε−1
0 ) are TR-iterations.

Proof. Assume that gap(w,J ) ≤ ḡ(ε0) and let J = (J1, . . . , Jp) be a VY ḡ(ε0)-
partition at w. Using the assumption that gap(w,J ) ≤ ḡ(ε0), it is easy to see that
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there exist two indices i, j of different types, say i ∈ B(w) and j ∈ N(w), both lying
in some layer Jq of J . By Lemma 2.6 and the definition of (B(w), N(w)) given in
(20), it follows that |Rxa

i (w)| ≥ 1/4 and |Rsaj(w)| ≥ 1/4, and hence that

εaJq
≡ min

{

‖Rxa
Jq

(w)‖∞ , ‖RsaJq
(w)‖∞

}

≥ 1
4
.(53)

Using this inequality and the fact that gap(w, J) ≥ ḡ(ε0) ≥ 96χ̄An, where the last
inequality is due to (51) and (25), we easily see that (48) holds. Since by Proposition
3.3 the spread of every layer of a VY ḡ(ε0)–partition at w is bounded above by ḡ(ε0)n,
we conclude that spr(w, Jq) ≤ ḡn, and hence that (45) holds with Cq = C(ε0) in view
of (51). The result now follows from Lemma 3.5 by noting that the quantity Φ in
(49) with Cq = C(ε0) is bounded by O(n1.5 log(χ̄A + n + ε−1

0 )) in view of (51) and
(53).

From now on, we consider case (iii), namely the case in which gap(w,J ) ≥ ḡ(ε0)
and εa2(w) ≤ ε0.

We start by stating a technical result whose proof is given in Lemma 4.3 of [14]
and holds for any ḡ(ε0) ≥ 96nχ̄A, hence for our specific choice of ḡ(ε0) given in (51),
in view of (25).

Lemma 4.3. Suppose that w ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ(ε0) and C(ε0)
be the constants defined in (51). Let J = (J1, . . . ,Jr) denote the AS-partition at w
and assume that gap(w,J ) ≥ ḡ(ε0). Let (Rxl(w), Rsl(w)) denote the residual of the
LLS direction at w with respect to J . Let

Φ̂ ≡ n log
(

χ̄A + n+ ε−1
0

)

+ log
(

μ+/μ

εl∞(w)

)

,(54)

μ+ is the normalized duality gap attained immediately after the first iteration,

εl∞(w) ≡ max
{∥

∥

∥Rxl
N (w)

∥

∥

∥

∞
,
∥

∥

∥RslB(w)
∥

∥

∥

∞

}

(55)

and (B,N) ≡ (B(w), N(w)). Then, the PC-TR algorithm started from the point w
will generate an iterate ŵ with a C(ε0)-crossover event occurring between w and ŵ in
O(

√
n Φ̂) iterations, of which O(Φ̂/ log ε−1

0 ) are TR-iterations.
Our goal now will be to estimate, under the conditions of case (iii), the second

logarithm that appears in the iteration-complexity bound (54). In this estimation
procedure, it is important to show that the first iteration from w is a TR-iteration.
This will always be the case for the PC-TR algorithm since a TR-iteration occurs in
this algorithm if and only if εa2(w) ≤ ε0 and case (iii) assumes this condition. On
the other hand, for the variant, TR-iteration occurs if and only if, in addition to
εa2(w) ≤ ε0, we also have max{ψp(1), ψd(1)} ≤ γ, where the curves ψp(·) and ψd(·)
are defined in (29) and (40). The next two results show that the latter condition also
holds under case (iii).

Given F ∈ �m×n, h ∈ �m, and a scaling vector z ∈ �n++, consider the projection
p0 ∈ �n given by

p0 ≡ argminp∈�n

{

‖h− p‖2 : FZp = 0
}

,(56)

where Z ≡ Diag(z). For a given ordered partition J = (J1, . . . , Jl), Lemma 4.4 shows
that if gap(z, J) is large, then the projection matrix onto Ker(F Diag(z)) can be well
approximated by a block diagonal matrix where each block is a projection matrix
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associated with some layer Jk of J . This fact was first established in [23] and an
alternative proof can be found in [13]. The proof of a slightly stronger version of the
variant stated below can be found in [16].

Lemma 4.4. Let F ∈ �m×n, h ∈ �m, z ∈ �n++, and an ordered partition
J = (J1, . . . , Jl) of {1, . . . , n} with respect to z be given. Define p0 ∈ �n as in (56)
and p̃0 ∈ �n as

p̃0
Jk

≡ argminp̃Jk
∈�Jk

{

‖p̃Jk
− hJk

‖2 : FJk
ZJk

p̃Jk
∈ Im(FJ̄k

)
}

,(57)

for every k = 1, . . . , l, where J̄k ≡ Jk+1 ∪ . . . ∪ Jl. Then,

‖p0 − p̃0‖∞ ≤ K(3 + 2K)‖h‖,(58)

where K ≡ χ̄F /gap(z, J).
Using this approximation result, we are now able to prove the result mentioned

just after Lemma 4.3.
Lemma 4.5. Assume that w ∈ P++ ×D++ and that gap(w,J ) ≥ ḡ(ε0) for

some ε0 ∈ (0, 12n], where J = (J1, . . . ,Jr) denotes the ordered AS-partition at
w. Then, the curves ψp(·) and ψd(·) defined in (29) and (40), respectively, satisfy
max{ψp(1), ψd(1)} ≤ ε0/6.

Proof. We will show only the inequality ψp(1) ≤ ε0/6. The proof of the inequality
ψd(1) ≤ ε0/6 is similar. Consider the projections p0 and p̃0 defined in Lemma 4.4 with
F = A, h = (hB, hN ) ≡ (0, δNxN ), z = δ−1, and J = (Jr , . . . ,J1), where δ ≡ δ(w). It
is easy to see that the constant K of Lemma 4.4 is exactly equal to χ̄A/gap(w,J ). It
then follows from relation (51) and the assumptions gap(w,J ) ≥ ḡ(ε0) and ε0 ≤ 12n
that K ≤ ε0/(24n) ≤ 1/2. Using these two inequalities, the conclusion of Lemma 4.4
and the fact that ‖h‖ ≤ ‖δx‖ =

√
xT s =

√
nμ, we then obtain

1
√
μ
‖p0
B − p̃0

B‖ ≤
√
n

√
μ
‖p0
B − p̃0

B‖∞ ≤ nK(3 + 2K) ≤ 4nK ≤ ε0/6.(59)

Moreover, definition (28) clearly implies that p0 = δΔx(1), where we recall that Δx(1)
is the optimal solution of (28) with λp = 1. Using the fact that hJk

= 0 for every
Jk ⊂ B and the definition (57), we easily see that p̃0

Jk
= 0 for every Jk ⊂ B and hence

that p̃0
B = 0. The last two observations together with (59) and (29) then imply that

ψp(1) =
1
√
μ
‖δBΔxB(1)‖ =

1
√
μ
‖p0
B‖ =

1
√
μ
‖p0
B − p̃0

B‖ ≤ ε0/6.

The following result follows an immediate consequence of Lemma 4.5.
Lemma 4.6. Assume that w is an iterate of the PC-TR variant such that εa2(w) ≤

ε0 and gap(w,J ) ≥ ḡ(ε0). Then, the iteration of the PC-TR variant from w is a TR-
iteration.

Proof. In view of Lemma 4.5 and the assumptions that gap(w,J ) ≥ ḡ(ε0) and
ε0 ≤ γ/3, we conclude that max{ψp(1), ψd(1)} ≤ γ/18. This inequality, together with
the assumption εa2(w) ≤ ε0, implies that the iteration of the PC-TR variant from w
is a TR-iteration (see the statement of Theorem 2.13).

When a TR-iteration is performed, it follows from relation (26) that the duality
gap is reduced by a factor bounded by O(ετ2(w; γp, γd)). The following result shows
that this factor is indeed O(

√
nεl∞(w)), where εl∞(w) is defined in (55), thereby giving

the necessary means to bound the second logarithm which appears in (54).
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Lemma 4.7. Suppose that w ∈ P++ ×D++ is such that εa2(w) ≤ ε0. Let Δwl =
(Δxl,Δyl,Δsl) denote the LLS direction at w with respect to the AS-partition J =
(J1, . . . ,Jr) and assume that gap(J ) ≥ ḡ(ε0). Then, we have

max

{

‖δBΔxlB‖√
μ

,
‖δ−1
N ΔslN‖
√
μ

}

≤ 3ε0
2
.(60)

Moreover, if in addition ε0 ≤ γ/3, then

ετ2(w; γp, γd) ≤
√
nεl∞(w)(61)

for any γp, γd ≥ γ/2, where εl∞(w) and ετ2(w; γp, γd) are defined in (55) and (24),
respectively.

Proof. Clearly, by definitions (9) and (43) we have AΔxl = 0. Moreover, from
the triangle inequality for norms, Theorem 3.2, relations (14), (21) and (51) and the
assumptions that gap(w,J ) ≥ ḡ(ε0) and εa2(w) ≤ ε0, we conclude that

‖δBΔxlB‖√
μ

≤ ‖δBΔxa
B‖√

μ
+

‖δB(ΔxlB − Δxa
B)‖

√
μ

≤ ‖RsaB‖ +
√
n ‖Rxl −Rxa‖∞

≤ εa2(w) +
12nχ̄A

gap(w,J )
≤ ε0 +

12nχ̄A
ḡ(ε0)

≤ ε0 +
ε0
2

≤ 3ε0
2
.

In a similar manner, we can also show that ‖δ−1
N ΔslN‖/√μ ≤ 3ε0/2, showing that

(60) holds.
Assume now that ε0 ≤ γ/3 also holds. In view of (60), it follows that ΔxlB and

ΔslN are feasible for subproblems (22) and (23), respectively, whenever γp, γd ≥ γ/2.
Hence, we conclude that ‖RxτN‖ ≤ ‖RxlN‖ and ‖RsτB‖ ≤ ‖RslB‖, from which it follows
that

ετ2(w; γp, γd) := max{‖RxτN‖, ‖RsτB‖}≤
√
nmax{‖RxlN‖∞, ‖RslB‖∞}=

√
nεl∞(w).

We are now ready to prove Theorems 2.9 and 2.13.
Proof of Theorems 2.9 and 2.13. Let C and ḡ(ε0) be the constant defined in (51).

We claim that the PC-TR algorithm started from any w ∈ N (β) generates an iterate
ŵ with a C(ε0)-crossover event occurring between w and ŵ in O(n1.5 log(χ̄A + n +
ε−1
0 )) iteration, of which O(n log(χ̄A + n+ ε−1

0 )/ log ε−1
0 ) are TR-iterations. Since by

Proposition 3.1 there can be at most n(n+ 1)/2 C(ε0)-crossover events, we conclude
that the PC-TR algorithm must ultimately terminate in O(n3.5 log(χ̄A + n + ε−1

0 ))
iterations, of which O(n3 log(χ̄A + n + ε−1

0 )/ log ε−1
0 ) are TR-iterations. Let J =

(J1, . . . ,Jr) denote an AS-partition at w. We split the proof into one of the following
three possible cases: (1) εa2(w) ≥ ε0; (2) gap(J ) ≤ ḡ(ε0); and (3) εa2(w) ≤ ε0 and
gap(J ) ≥ ḡ(ε0). The claim clearly holds for the first two cases due to Lemmas
4.1 and 4.2. Moreover, Lemma 4.3 implies that the claim also holds in the third
case as long as we can show that the quantity (μ+/μ)/εl∞(w) appearing in (54) is
O(

√
n). Indeed, assume that εa∞(w) ≤ ε0 and gap(J ) ≥ ḡ(ε0). Then, the iteration

from w for both the PC-TR algorithm and its variant is a TR-iteration in view of
Lemma 4.6. Then, it follows from Proposition 2.8 and Lemma 4.7 that (μ+/μ)/εl∞(w)
= O(

√
n).

5. Arithmetic complexity for the PC-TR variant. In this section, we will
provide the details of the several claims made on subsection 2.6 and prove the main
result stated in that subsection, namely Theorem 2.14.



1940 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

We start by noting that the results stated in subsection 2.6 remain invariant if
elementary row operations are applied to the rows of A. Indeed, the condition that
AΔx(λ) = 0 can be replaced by the condition that Δx(λ) is in the null space of A,
which remains invariant when the elementary row operations are performed on A. In
this section, we will therefore freely perform elementary row operations to bring A to
a more convenient form.

Let w ∈ P++ ×D++ be given. By placing the columns with indices in B ≡ B(w)
before the ones with indices in N ≡ N(w), it is easy to see that there exists a sequence
of elementary row operations which brings A to a matrix of the form

(

B E
0 N

)

,(62)

where B ∈ �rb×|B| and N ∈ �rn×|N | are full row rank matrices with rb ≡ rank(AB)
and rn ≡ m− rb. By performing further elementary row operations, we may assume
that A contains an m×m identity matrix, or equivalently, after permuting columns
of A if necessary, the matrices B, N , and E have the form

B = [ B̃ I ], N = [ I Ñ ], E = [ 0 Ẽ ],(63)

and hence, A has the form

A =
(

B̃ I 0 Ẽ

0 0 I Ñ

)

,(64)

where B̃ ∈ �rb×(|B|−rb), Ñ ∈ �rn×(|N |−rn), and Ẽ ∈ �rb×(|N |−rn). Note that, by
abuse of notation, we still denote the above matrix by A.

The following result, which is only used in the proof of Lemma 2.12, strongly uses
the fact that A has the form (64). We observe however that the weaker form (62) of
A is sufficient to establish the other results of subsection 2.6.

Lemma 5.1. For any positive diagonal n × n matrix D, there exists a matrix
W ∈ �|B|×|N | such that E = BW and ‖D−1

B WDN‖ ≤ χ̄AD, where B and E are given
by (63).

Proof. We first prove the result for D = I. In this case, we choose W as

W =
(

0 0
0 Ẽ

)

.

It is easy to see that E = BW and that ‖W‖ = ‖Ẽ‖ ≤ χ̄A, where the last inequality
follows as a consequence of Proposition 2.3(c).

Assume now that D is an arbitrary n × n positive diagonal matrix and let DI

denote the diagonal submatrix of D corresponding to the identity matrix of A. Also,
let Db and Dn denote the diagonal submatrices of DI corresponding to the first |B|
columns and the last |N | columns of the identity matrix of A, respectively. Then, the
matrix given by

Â ≡ D−1
I AD =

(

D−1
b BDB D−1

b EDN

0 D−1
n NDN

)

also contains an m × m identity matrix. Applying the result shown in the first
paragraph of this proof to the matrix Â, we conclude that there exists a matrix
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Ŵ such that ‖Ŵ‖ ≤ χ̄Â = χ̄AD and (D−1
b BDB)Ŵ = D−1

b EDN , or equivalently
B(DBŴD−1

N ) = E. The result now follows by letting W = DBŴD−1
N .

The following lemma establishes some technical results about the direction Δx(λ)
defined in (28). Its proof is based on techniques developed in [23].

Lemma 5.2. Let Δx(·) be the curve defined as in (28) and let Δx′(·) denote its
derivative. Then:

ΔxB(0) ≡ lim
λ→0+

ΔxB(λ) = Δ−2
B BT (BΔ−2

B BT )−1HΔNxN ;(65)

ΔxN (0) ≡ lim
λ→0+

ΔxN (λ) = −Δ−1
N PNΔ−1

N
xN ;(66)

Δx′B(0) ≡ lim
λ→0+

Δx′B(λ) = Δ−2
B BT (BΔ−2

B BT )−1HHT (BΔ−2
B BT )−1HΔNxN ;(67)

where ΔB ≡ Diag{δB}, ΔN ≡ Diag{δN}, H ≡ EΔ−1
N PNΔ−1

N
, and PNΔ−1

N
denote the

projection matrix onto the null space of NΔ−1
N .

Proof. Defining Dλ ≡ Diag{
√
λ δB, δN}, we can easily see from (28) thatDλΔx(λ)

is the projection of the vector (0, δNxN ) onto the null space of AD−1
λ . Hence, for any

λ > 0 we have

ΔxB(λ) = λ−1Δ−2
B ATB(AD−2

λ AT )−1ANxN ,(68)
ΔxN (λ) = Δ−2

N ATN (AD−2
λ AT )−1ANxN − xN .(69)

Using (62) and the definition of Dλ, we have

AD−2
λ AT =

(

B E
0 N

)(

λ−1Δ−2
B 0

0 Δ−2
N

)(

BT 0
ET NT

)

=
(

λ−1BΔ−2
B BT + EΔ−2

N ET EΔ−2
N NT

NΔ−2
N ET NΔ−2

N NT

)

=
(

λ−1RBB +REE REN
RTEN RNN

)

,

where

RBB ≡ BΔ−2
B BT , RNN ≡ NΔ−2

N NT , REE ≡ EΔ−2
N ET , REN ≡ EΔ−2

N NT .(70)

Using the standard way to compute the inverse of a 2 × 2 block matrix (see, for
example, page 71–72 of [1]), it is easy to verify that

(

AD−2
λ AT

)−1
=
(

Uλ Vλ
V Tλ Zλ

)

,

where

Uλ = (λ−1RBB +REE −RENR
−1
NNR

T
EN )−1,(71)

Vλ = −UλRENR−1
NN ,(72)

Zλ = (RNN −RTEN (λ−1RBB +REE)−1REN )−1.(73)

Note that, by (70), we have

REE −RENR
−1
NNR

T
EN = EΔ−1

N (I − Δ−1
N NT (NΔ−2

N NT )−1NΔ−1
N )Δ−1

N ET

= EΔ−1
N PNΔ−1

N
Δ−1
N ET = HHT .
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where we recall H = EΔ−1
N PNΔ−1

N
and PNΔ−1

N
denotes the projection matrix onto the

null space of NΔ−1
N . Hence, by (71), we have

Uλ = (λ−1RBB +HHT )−1 = λ(RBB + λHHT )−1.(74)

Also, by (62) and (72), we have

(

AD−2
λ AT

)−1
AN =

(

UλE + VλN
V Tλ E + ZλN

)

=
(

Uλ(E −RENR
−1
NNN)

−R−1
NNR

T
ENU

T
λ E + ZλN

)

.(75)

Hence, using relations (68), (70), (74), and (75) and the definition of H , we obtain

ΔxB(λ) = λ−1Δ−2
B BTUλ(E −RENR

−1
NNN)xN

= λ−1Δ−2
B BTUλEΔ−1

N

(

I − Δ−1
N NT (NΔ−2

N NT )−1NΔ−1
N

)

ΔNxN

= λ−1Δ−2
B BTUλEΔ−1

N PND−1
N

ΔNxN = Δ−2
B BT (RBB + λHHT )−1HΔNxN ,(76)

from which we can easily see that (65) and (67) hold. Now, using relations (74) and
(73), we easily see that

lim
λ→0+

Uλ = 0, lim
λ→0+

Zλ = R−1
NN .

Relation (66) now follows from the last conclusion and relations (69) and (75).
We need one more technical result before giving the proofs of the results of sub-

section 2.6.
Lemma 5.3. Let G ∈ �p×q and g ∈ �q be given. Then, (GGT )Gg = 0 if and

only if Gg = 0.
Proof. The assumption (GGT )Gg = 0 clearly implies that ‖GTGg‖2 = 0, and

hence that GTGg = 0. Also, the latter condition implies that ‖Gg‖2 = 0, or equiva-
lently, Gg = 0.

We are now ready to prove Lemma 2.10, Lemma 2.12, and Theorem 2.14 stated
in subsection 2.6.

Proof of Lemma 2.10. We first prove statements (a) and (b). The existence
and characterizations of the two limits Δx(0) ≡ limλ→0+ Δx(λ) and Δx′B(0) ≡
limλ→0+ Δx′B(λ) were established in Lemma 5.2. The alternative characterization
given by (30) and (31) of the limit Δx(0) ≡ limλ→0+ Δx(λ) can be easily proved by
showing that ΔxB(0) and ΔxN (0) satisfy the optimality conditions, and hence are op-
timal solutions of (30) and (31), respectively. Now, relation (32) follows immediately
from (29). Moreover, differentiating (29) with respect to λ, we conclude that

ψ′
p(λ) =

[δBΔxB(λ)]T [δBΔx′B(λ)]
√
μ‖δBΔxB(λ)‖ =

[δBΔxB(λ)]T [δBΔx′B(λ)]
μψp(λ)

.(77)

Hence, under the the condition that ψp(0) �= 0, the limit ψ′
p(0) ≡ limλ→0+ ψ′

p(λ)
exists and is equal to the right-hand side of (77) with λ = 0.

We now outline the proof of statement (c). Using definition (29) and relation (76)
we conclude that

μψp(λ)2 = xTNΔNH
T (RBB + λHHT )−1RBB(RBB + λHHT )−1HΔNxN

= xTNΔNH
TR

−1/2
BB (I + λR

−1/2
BB HHTR

−1/2
BB )−2R

−1/2
BB HΔNxN ,

= ‖(I + λH̃)−1g̃‖2,(78)
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where μ ≡ μ(w), H̃ ≡ R
−1/2
BB HHTR

−1/2
BB , and g̃ ≡ R

−1/2
BB HΔNxN . The above formula

for ψp(·) allows us to express it in terms of the eigenvalues and eigenvector of the
positive semidefinite matrix H̃, and the resulting expression easily reveals that (i)
H̃g̃ = 0 if and only if ψp(·) is identically constant, and (ii) H̃g̃ �= 0 if and only if
ψp(·) is strictly decreasing and strictly convex over the interval (0,∞). Moreover, if
case (i) occurs, it follows from Lemma 5.3 with G = R

−1/2
BB H and g = ΔNxN that

0 = Gg = R
−1/2
BB HΔNxN , and hence that HΔNxN = 0. In view of (65), this implies

that ΔxB(0) = 0, and hence that ψp(0) = 0. We have thus shown that ψp(·) is indeed
identically zero when case (i) occurs.

We now show statement d). Let 0 < λ1 ≤ λ2 be given. By (78), we have

ψ2
p(λ1)
ψ2
p(λ2)

=
g̃T (λ1H̃ + I)−2g̃

g̃T (λ2H̃ + I)−2g̃
=
uT M̃u

uTu
,

where u ≡ (λ2H̃ + I)−1g̃ and M̃ = (λ2H̃ + I)(λ1H̃ + I)−2(λ2H̃ + I). Using the
fact that 0 < λ1 ≤ λ2, we easily see that the largest eigenvalue of M̃ , and hence
ψ2
p(λ1)/ψ2

p(λ2) is bounded by (λ2/λ1)2.
Proof of Lemma 2.12. First observe that, by (29), (77), and the Cauchy–Schwarz

inequality, we have

|ψ′
p(0)|
ψp(0)

=

∣

∣[δBΔxB(0)]T [δBΔx′B(0)]
∣

∣

‖δBΔxB(0)‖2
≤ ‖δBΔx′B(0)‖

‖δBΔxB(0)‖ .(79)

We will now use the formulas developed in Lemma 5.2 to bound the above ratio from
above. Letting ΔB ≡ Diag(δB) and ΔN ≡ Diag(δN ), we have that the matrix H
defined in Lemma 5.2 can be written as

H ≡ EΔ−1
N PNΔ−1

N
= BΔ−1

B (ΔBWΔ−1
N PNΔ−1

N
) = BΔ−1

B M,

where M ≡ ΔBWΔ−1
N PNΔ−1

N
and W is a matrix as in Lemma 5.1. Using this expres-

sion for H and relations (65) and (67), we then obtain

δBΔx′B(0) = Δ−1
B BT (BΔ−2

B BT )−1HHT (BΔ−2
B BT )−1HΔNxN

= Δ−1
B BT (BΔ−2

B BT )−1
(

BΔ−1
B M

) (

MTΔ−1
B BT

)

(BΔ−2
B BT )−1HΔNxN

= [Δ−1
B BT (BΔ−2

B BT )−1BΔ−1
B ](MMT ) [δBΔxB(0)].

Using the fact that the matrix inside the first bracket in the right-hand side of the
above inequality is a projection matrix and Lemma 5.1, we then conclude that

‖δBΔx′B(0)‖
‖δBΔxB(0)‖ ≤ ‖M‖2 = ‖ΔBWΔ−1

N PND−1
N
‖2 ≤ ‖ΔBWΔ−1

N ‖2

≤ ‖δB(δ0)−1
B ‖2

∞‖(Δ0)BW (Δ0)−1
N ‖2‖δ−1

N (δ0)N‖2
∞

≤ [χ̄AΔ−1
0

]2‖δB(δ0)−1
B ‖2

∞‖δ−1
N (δ0)N‖2

∞,(80)

where δ0 ≡ δ(w0) and Δ0 ≡ Diag(δ0). Moreover, using the fact that μ ≤ μ0 together
with Propositions 2.1 and 2.2, we conclude that

‖δB(δ0)−1
B ‖∞ ≤ 1 + β

(1 − β)2

√

μ0

μ

∥

∥

∥

∥

s(μ)
s(μ0)

∥

∥

∥

∥

∞
≤ (1 + β)n

(1 − β)2

√

μ0

μ
,(81)
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‖δ−1
N (δ0)N‖∞ ≤ 1 + β

(1 − β)2

√

μ

μ0

∥

∥

∥

∥

sN (μ0)
sN (μ)

∥

∥

∥

∥

∞

≤ 1 + β

(1 − β)2

√

μ0

μ

∥

∥

∥

∥

xN (μ)
xN (μ0)

∥

∥

∥

∥

∞
≤ (1 + β)n

(1 − β)2

√

μ0

μ
.(82)

Inequality (36) now follows by combining the estimates (79), (80), (81), and (82).
Proof of Theorem 2.14. Recall that our goal is to prove that the arithmetic

complexity of computing a TR direction during a TR-iteration is bounded by (41). It
suffices to examine just the computation of the primal TR direction since the argument
for the dual TR direction is analogous. We have seen in the proof of Lemma 2.10
that ψp(λ) can be expressed as ψp(λ) = ‖(I +λH̃)−1g̃‖/√μ, where H̃ ∈ �|B|×|B| and
g̃ ∈ �|B| can be computed in O(n3) arithmetic operations. It is well known that we
can compute an orthogonal matrix Q such that the matrix T ≡ QT H̃Q is tridiagonal
in O(n3) arithmetic operations. Moreover, using the fact that orthogonal matrices
preserve vector lengths, we easily see that ψp(λ) = ‖(I +λT )−1QT g̃‖/√μ. Hence, for
any fixed λ > 0, the fact that T is tridiagonal implies that ψp(λ) can be computed in
O(n) arithmetic operations. We have thus shown that the arithmetic complexity to
compute a TR direction during a TR iteration is bounded by (41).

6. Conclusion. In this paper, we have developed a predictor-corrector, trust-
region algorithm for linear programming whose iteration-complexity just depends on
χ̄∗
A. The overall arithmetic complexity of the algorithm is not independent of b and/or
c, due to work involved in the computation of the trust region steps. An interesting
and challenging open question is whether the arithmetic complexity of the PC-TR
algorithm, or a variant of it, has an arithmetic complexity that does not depend on b
and c.

Appendix. The objective of this section is to provide a proof of Lemma 2.7.
First, we state a technical result whose proof is given in Lemma 4.4 of Monteiro

and Tsuchiya [14].
Lemma A.1. Let w = (x, y, s) ∈ P++ ×D++ be given and assume that ‖xs −

νe‖ ≤ τν for some constants τ ∈ (0, 1) and ν > 0. Then, (1 − τ/
√
n)ν ≤ μ(w) ≤

(1 + τ/
√
n)ν and w ∈ N (τ/(1 − τ)).

We are now ready to prove Lemma 2.7.
Proof of Lemma 2.7. Define v(α) ≡ (x+ αΔx)(s+ αΔs) for all α ∈ �. We claim

that

‖v(α) − (1 − α)μe‖ ≤ 2β
1 + 2β

(1 − α)μ ∀ 0 ≤ α ≤ 1 − ᾱ,(83)

where μ ≡ μ(w),

ε2(w) ≡ max{‖RxN‖, ‖RsB‖}, ᾱ ≡
√

1 + β + γ

4γ
ε2(w).(84)

Using this claim, the result can be proved as follows. By Lemma A.1 with w =
w + αΔw, ν = (1 − α)μ and τ = 2β/(1 + 2β), we conclude from the claim that for
any 0 ≤ α ≤ 1 − ᾱ, we have w + αΔw ∈ N (2β) and

μ(w + αΔw) ≤
(

1 +
2β√

n(1 + 2β)

)

(1 − α)μ ≤ 2(1 − α)μ.(85)

By the definition of ατ , we then conclude that ατ ≥ 1 − ᾱ. Setting α = 1 − ᾱ in (85)
and using the fact that ατ ≥ 1 − ᾱ and μ(w + αΔw) is a decreasing (affine) function
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of α, we obtain

μ(w + ατΔw)
μ(w)

≤
√

1 + β + γ

2γ
ε2(w),

that is, the result holds.
In the remaining part of the proof, we show that (83) holds. It is easy to see that

v(α) − (1 − α)μe = (x + αΔx)(s+ αΔs) − (1 − α)μe
= (1 − α)(xs− μe) + αh1 + α(1 − α)h2 + α2h3,(86)

where h1, h2, and h3 are vectors in �n defined as
(

h1
B

h1
N

)

≡
(

xB(sB + ΔsB)
sN (xN + ΔxN )

)

= μ

(

wBpB
wNpN

)

,(87)
(

h2
B

h2
N

)

≡
(

sBΔxB
xNΔsN

)

= μ

(

wBqB
wNqN

)

,(88)
(

h3
B

h3
N

)

≡
(

ΔxB(sB + ΔsB)
ΔsN (xN + ΔxN )

)

= μ

(

pBqB
pNqN

)

.(89)

Here, the vectors p, q, and w appearing in the second alternative expressions for h1,
h2, and h3 are defined as
(

pB
pN

)

≡
(

RsB(w)
RxN (w)

)

,

(

qB
qN

)

≡
(

ΔBΔxB/
√
μ

Δ−1
N ΔsN/

√
μ

)

, w ≡ x1/2s1/2
√
μ

.

Clearly, in view of (84), (18), and the fact that w ∈ N (β), we have

‖p‖∞ ≤ ε2(w), ‖p‖ ≤
√

2ε2(w), ‖q‖ ≤
√

2γ, ‖w‖∞ ≤
√

1 + β, ‖w‖ =
√
n.(90)

Using (87), (88), (89), and (90), we obtain

‖h1‖ ≤ μ‖w‖∞ ‖p‖ ≤ μ
√

2(1 + β)ε2(w),

‖h2‖ ≤ μ‖w‖∞ ‖q‖ ≤ μ
√

2(1 + β)γ,

‖h3‖ ≤ μ‖p‖∞ ‖q‖ ≤ μ
√

2γε2(w).

Using (86), the triangle inequality for norms, the three estimates above and relations
(84) and (17), we then obtain

‖v(α) − (1 − α)μe‖ ≤ (1 − α)‖xs− μe‖ + α‖h1‖ + α(1 − α)‖h2‖ + α2‖h3‖
≤ (1 − α)

(

‖xs− μe‖ + ‖h2‖
)

+ ‖h1‖ + ‖h3‖

≤
[

(1 − α)
(

β +
√

2(1 + β) γ
)

+
(

√

2(1 + β) +
√

2 γ
)

ε2(w)
]

μ

≤
[

(1 − α)
(

β +
√

2(1 + β) γ
)

+ 4
√

2γᾱ
]

μ

≤
[(

β +
√

2(1 + β) γ
)

+ 4
√

2γ
]

(1 − α)μ

≤ 2β
1 + 2β

(1 − α)μ,

for all 0 ≤ α ≤ 1 − ᾱ.
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[24] L. Tunçel, Primal-dual symmetry and scale invariance of interior-point algorithms for convex
optimization, Math. Oper. Res., 23 (1998), pp. 708–718.
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A NEW CLASS OF MINIMUM NORM DUALITY THEOREMS∗

ACHIYA DAX†

Abstract. In this paper we derive new duality results on the width and the length of symmetrical
convex bodies. Let K be a symmetrical convex body in Rm and let ‖ ·‖ be some (arbitrary) norm on
Rm. The width of K is obtained by searching for the smallest “sandwich” (or “slab”) that contains
K. It is shown that the dual problem has the following form: Find the largest diameter of a norm
ball that is contained in K. Indeed, the diameter of a maximal norm ball equals the width of the
smallest sandwich. Moreover, the solutions of the two problems obey certain alignment relations.
The length of K is found by searching the largest “sandwich” that contains K. The last problem is
closely related to the “maximal chord problem” whose optimal value is called the “diameter” of K.
In this case the dual problem is to find the smallest norm ball that contains K. It is proved that
the diameter of the smallest norm ball equals the diameter (the length) of K, and that primal and
dual solutions satisfy certain alignment relations. Part of the results remain valid for more general
convex sets.

Key words. minimum norm duality theorems, dual norm, alignment relations, norm balls, sym-
metrical convex bodies, depth, width, length, diameter, nearest supporting hyperplane, the smallest
sandwich problem, the largest sandwich problem
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1. Introduction. The minimum norm duality (MND) theorem considers the
distance between a point z and a closed convex set Y . It says that the shortest distance
from z to Y is equal to the maximum of the distances from z to any hyperplane
separating z and Y . (See Figure 1.) This fundamental observation gives rise to several
useful duality relations in best approximation problems, linear least norm problems,
and theorems of the alternative. As far as we know, the first statement of the MND
theorem is due to Nirenberg [21], who established this assertion in any normed linear
space by applying the Hahn–Banach theorem. The name “MND theorem” was coined
by Luenberger [19], who also derived the “alignment” relation between primal and dual
solutions.

Recently Dax [8] extended the MND theorem to consider the distance between
two convex sets. Roughly speaking the new theorem says that the shortest distance
between the two sets is equal to the maximal “separation” between the sets, where
the term “separation” refers to the distance between a pair of parallel hyperplanes
that separates the two sets. (See Figure 2.)

Another extension of the MND theorem is proposed by Briec [5], who considers
the case when z is an interior point of Y . This theorem says that the shortest distance
from z to any supporting hyperplane of Y is equal to the “depth” of z. (See Figure 4.)
The depth of z is defined as the shortest distance from z to any boundary point of Y .
In other words, the depth of z is equal to the radius of the largest norm ball that is
centered at z and contained in Y .

In this paper we establish a new class of duality theorems, one that considers the
“width” and the “length” of a convex body. Let K be a convex body in Rm. That

∗Received by the editors October 23, 2007; accepted for publication (in revised form) November 10,
2008; published electronically February 27, 2009.
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Fig. 1. The Nirenberg–Luenberger MND theorem.

is, K is a closed bounded convex set that contains interior points. Let ‖ · ‖ be some
(arbitrary) norm on Rm and let ‖ · ‖′ denote the corresponding dual norm. Then for
any nonzero vector a ∈ Rm there exists a pair of points, y1 ∈ K and y2 ∈ K, such
that

(1.1) aTy1 = inf
x∈K

aTx and aTy2 = sup
x∈K

aTx.

Consequently K is “sandwiched” between the parallel hyperplanes

(1.2) H1 =
{
x
∣∣ aTx = aTy1

}
and H2 =

{
x
∣∣ aTx = aTy2

}
.

The distance between a pair of parallel hyperplanes of this form is defined as

inf
{
‖x1 − x2‖

∣∣ x1 ∈ H1, x2 ∈ H2
}
.

Using this definition one can show that the width function

(1.3) ω(a) = (aTy2 − aTy1)
/
‖a‖′

measures the distance between the two hyperplanes in (1.2). See section 2. The set

S(a,K) =
{

x
∣∣ inf
x∈K

aTx ≤ aTx ≤ sup
x∈K

aTx
}

is said to be a “sandwich” (or “slab”) of K, and ω(a) provides the “width” of this
sandwich. The smallest sandwich of K is constructed, therefore, by a vector a for
which ω(a) attains the smallest possible value. Similarly, the largest sandwich of K
is constructed by a vector a for which ω(a) attains the largest possible value. The
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Fig. 2. Dax MND theorem.

smallest value of ω(a) is called the “width” of K. The largest value of ω(a) is called
the “length” of K.

The paper explores the duality properties that characterize the smallest and
largest sandwiches of K. The strongest duality results require K to be a symmetrical
convex body, for which there exists a point c ∈ K with the following property: For
any x ∈ K the point y = 2c − x belongs to K. The point c is called the “center of
symmetry” of K, or simply the “center” of K. The point y = 2c − x is called the
“symmetrical image” of x.

The plan of our paper is as follows. It starts with a brief overview of the basic
alignment relations on a norm ball. (See Figure 3.) These relations provide the tools
for proving our duality results. The third section considers the nearest hyperplane
problem, giving a new simple proof to the Briec theorem [5]. The “opposite” problem
is to find a supporting hyperplane of K which is the farthest away from a given point
of K. (See Figures 5 and 6.) This problem is discussed in section 4. The duality
features that characterize the smallest possible sandwich are derived in section 5.
It is shown there that the dual problem has the following form: Find the largest
norm ball that is contained in K. (See Figure 7.) The largest possible sandwich is
considered in section 6. In this case the dual problem is to find the smallest norm ball
that contains K. (See Figure 8.) The duality results that we prove require K to be
a symmetrical convex body. Yet, as section 7 shows, part of the results remain valid
without symmetry.
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2. Alignment relations on a norm ball. Here and henceforth ‖ · ‖ denotes
some (arbitrary) norm on Rm and ‖ · ‖′ denotes the corresponding dual norm. Recall
that the dual norm is defined by the rule

(2.1) ‖v‖′ = sup
u∈U

uTv,

where

(2.2) U =
{
x
∣∣ ‖x‖ ≤ 1

}
denotes the unit norm ball in Rm. Recall also that two nonzero vectors u ∈ Rm and
v ∈ Rm are aligned if they satisfy

(2.3) uTv = ‖u‖ · ‖v‖′.

In this case the supremum in (2.1) is obtained for the unit vector u∗ = u
/
‖u‖.

Moreover, since U is a compact set, there exists a vector u∗ ∈ U that solves the
problem

maximize uTv
subject to u ∈ U,

and this vector satisfies ‖u∗‖ = 1 and (u∗)Tv = ‖v‖′. That is, the vectors u∗ and v
are aligned and the hyperplane

H =
{
x
∣∣ vTx = vTu∗ }

supports U at u∗. See Figure 3.
Similar alignment relations exist on any norm ball in Rm. Let

B =
{
x
∣∣ ‖x− z‖ ≤ r

}

Fig. 3. Alignment relations on a norm ball.
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be a norm ball of radius r that is centered at some point z ∈ Rm. Then for any vector
a ∈ Rm, a �= 0, there exists a boundary point of B, say y1, such that

(2.4) aTy1 = sup
x∈B

aTx,

and

H1 =
{
x
∣∣ aTx = aTy1

}
is a supporting hyperplane of B at y1. A further consequence of (2.4) is that the
vectors u = y1 − z and a are aligned, and that ‖u‖ = r. In other words,

(2.5) uTa = ‖u‖ · ‖a‖′ = r‖a‖′.

Recall that the distance between z and H1 is defined as

d(z, H1) = inf
{
‖x− z‖

∣∣ x ∈ H1
}
.

Therefore, since H1 is a supporting hyperplane of B, this distance equals r and
satisfies

dist(z, H1) = r = aTu
/
‖a‖′ = (aTy1 − aT z)

/
‖a‖′.

The last observation can be generalized in two ways. Let

Hα =
{
x
∣∣ aTx = α

}
be a hyperplane in Rm. Then the distance between z and Hα satisfies the following
rule:

dist(z, Hα) = (α− aT z)
/
‖a‖′ when aT z ≤ α,

and

dist(z, Hα) = (aT z − α)
/
‖a‖′ when aT z ≥ α.

Moreover, let

Hβ =
{
x
∣∣ aTx = β

}
be some other hyperplane that is parallel to Hα and satisfies β > α. Then for any
point x ∈ Hβ

dist(x, Hα) = (aTx − α)
/
‖a‖′ = (β − α)

/
‖a‖′.

Consequently

(2.6) dist(Hβ , Hα) = (β − α)
/
‖a‖′,

which proves (1.3).
Another consequence that stems from (2.5) is related to the width of the sandwich

S(a, B). Using the symmetry of B with respect to z, one can verify that the point

y2 = z − u = 2z − y1,
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which is the “symmetrical image” of y1, satisfies

(−a)Ty2 = sup
x∈B

(−a)Tx.

The last equality means that the hyperplane

H2 =
{
x
∣∣ (−a)Tx = (−a)Ty2

}
=
{
x
∣∣ aTx = aTy2

}
supports B at y2, and that

aTy2 = inf
x∈B

aTx.

Therefore, since H1 and H2 are parallel hyperplanes,

dist(H1, H2) = (aTy1 − aTy2)
/
‖a‖′ = 2uTa

/
‖a‖′ = 2r,

where the last equality comes from (2.5). In other words, for any norm ball, B, and
any vector a ∈ Rm, a �= 0, the width of the sandwich S(a, B) equals the diameter
of B.

3. The nearest supporting hyperplane. Let X be a closed convex set in Rm

with nonempty interior and nonempty boundary. A hyperplane H = {x | aTx = α}
is said to be a supporting hyperplane of X if a �= 0 and α = supx∈X aTx attains a
finite value. If, in addition, there exists a boundary point y ∈ X such that

aTy = α = sup
x∈X

aTx,

then H is said to be a supporting hyperplane of X at y. Let z be a given interior point
of X . Then, as we have seen, the distance between z and H equals (α − aT z)

/
‖a‖′.

The nearest supporting hyperplane is defined, therefore, by a vector a ∈ Rm, a �= 0,
that solves the minimization problem

minimize ν(a) =
(

sup
x∈X

aTx − aT z
)/

‖a‖′,

or

(3.1)
minimize ξ(a) = sup

x∈X
aTx− aT z

subject to ‖a‖′ = 1.

Below we will show that (3.1) is closely related to the problem of calculating the
“depth” of z, which is the radius of the largest norm ball that is centered in z and
contained in X .

The formal definition of the “depth” function is

depth(z) = inf
{
‖y − z‖

∣∣ y ∈ X̃
}
,

where X̃ denotes the boundary of X . Since X is a closed set, X̃ ⊆ X and there exists
a point y∗ ∈ X̃ such that

depth(z) = ‖y∗ − z‖.
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In other words, y∗ solves the depth problem

(3.2)
minimize ρ(y) = ‖y − z‖
subject to y ∈ X̃,

and

B∗
z =

{
x
∣∣ ‖x − z‖ ≤ depth(z)

}
is the largest norm ball that is centered in z and contained in X .

Recall that for any boundary point y ∈ X̃ one can find a hyperplane H that
supports X at y; see, e.g., [8]. Thus, in particular, there exists a vector a∗ ∈ Rm,
‖a∗‖′ = 1, for which the hyperplane

H∗ =
{
x
∣∣ (a∗)Tx = (a∗)Ty∗}

supports X at y∗. That is,

(3.3) (a∗)Ty∗ = sup
x∈X

(a∗)Tx.

Observe also that H∗ is a supporting hyperplane of B∗
z at y∗. One consequence of

this observation is that the vectors u = y∗ − z and a∗ are aligned. That is,

(3.4) uTa∗ = ‖u‖ ‖a∗‖′.

A second consequence is that the distance between z and H∗ equals depth(z).
On the other hand, the distance between z and any other supporting hyperplane

of X exceeds depth(z), since B∗
z is contained in the “negative half-space” of that hy-

perplane. The last observation means that H∗ solves the nearest hyperplane problem.
Moreover, any other supporting hyperplane of X that solves this problem is forced to
be a supporting hyperplane of B∗

z at some boundary point of B∗
z . The next statement

summarizes our findings.
Theorem 1. The nearest hyperplane problem (3.1) and the depth problem (3.2)

are solvable and share the same optimal value, which is depth(z). Let y∗ solve (3.2);
then there exists a vector a∗ ∈ Rm for which the corresponding supporting hyperplane
of X satisfies (3.3)–(3.4) and solves (3.1). Conversely, let a∗ define a supporting
hyperplane H∗ of X that solves (3.1). Then H∗ is also a supporting hyperplane of B∗

z

at some boundary point, y∗, of B∗
z . Moreover, in both cases the vectors u = y∗ − z

and a∗ are aligned.
Theorem 1 is essentially the Briec theorem in Rm. The original proof in [5] uses

the Edelheit separation theorem and the Nirenberg–Luenberger MND theorem. The
current proof replaces these theorems with simple geometric arguments.

An important consequence of Theorem 1 is that searching for a point which
maximizes depth(z) is equivalent to searching for a point which is farthest from any
supporting hyperplane of X . Note also that both (3.1) and (3.2) may have more than
one solution. Yet, as we have seen, any solution of one problem is related to a certain
solution of the other problem. Methods for solving the nearest hyperplane problem
are discussed in [5], [9], and [27]. In the next section we derive analogous results for
the farthest supporting hyperplane.

4. The farthest supporting hyperplane. Here X denotes a convex body in
Rm and z is a given interior point of X . Let a be some nonzero vector in Rm, and
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Fig. 4. The nearest supporting hyperplane (Briec theorem).

Fig. 5. The farthest supporting hyperplane and the farthest point.

let H = {x | aTx = α} denote the corresponding supporting hyperplane of X . Then,
as we have seen,

α = sup
x∈X

aTx,

and the distance between z and H equals (α−aT z)/‖a‖′. The problem of calculating a
supporting hyperplane ofX whose distance from z is maximal can be posed, therefore,
as

maximize ϕ(a) =
(

sup
x∈X

aTx − aT z
)/

‖a‖′
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or

(4.1)
maximize ψ(a) = sup

x∈X
aTx − aT z

subject to ‖a‖′ = 1.

Below we will show that this problem is related to the “radius” of z, which is the
radius of the smallest norm ball that is centered at z and contains X .

The formal definition of the “radius” function is

radius(z) = sup
{
‖y − z‖

∣∣ y ∈ X
}
.

Since X is a convex body, there exists a point, ŷ ∈ X , such that

radius(z) = ‖ŷ − z‖.

In other words, ŷ solves the radius problem

(4.2)
maximize ρ(y) = ‖y − z‖
subject to y ∈ X.

It is also easy to verify that ŷ is a boundary point of X , and that

B̂z =
{
x
∣∣ ‖x− z‖ ≤ radius(z)

}
is the smallest norm ball that is centered at z and contains X . Consequently there
exists a vector â ∈ Rm, ‖â‖′ = 1, for which the hyperplane

Ĥ =
{
x
∣∣ âTx = âT ŷ

}
supports B̂z at ŷ. Therefore, since B̂z contains X ,

(4.3) âT ŷ = sup
x∈B̂z

âTx = sup
x∈X

âTx,

which means that Ĥ is also a supporting hyperplane of X at ŷ. The distance between
z and Ĥ is, clearly, radius(z). On the other hand, let H̃ be another hyperplane that
supports X at some point ỹ ∈ X . Then, since ỹ ∈ B̂z, the distance between z and H̃
does not exceed radius(z). These observations bring us to the following conclusions.

Theorem 2. The farthest hyperplane problem (4.1) and the radius problem (4.2)
are solvable and share the same optimal value, which is radius(z). Let ŷ solve (4.2);
then there exists a vector â ∈ Rm that solves (4.1) and satisfies (4.3). Conversely,
let â ∈ Rm solve (4.1); then there exists a boundary point, ŷ ∈ X, which is also a
boundary point of B̂z, that solves (4.2) and satisfies (4.3). Moreover, in both cases
the vectors u = ŷ − z and â are aligned. That is,

uT â = ‖u‖ · ‖â‖′ = ‖ŷ − z‖.

Methods for solving the farthest hyperplane problem are discussed in [9]. One
consequence of Theorem 2 is that searching for a point which minimizes radius(z) is
equivalent to searching for a point that has the smallest distance to its farthest sup-
porting hyperplane. Note also that Theorem 2 remains valid when X is an arbitrary
compact set in Rm and z is an arbitrary point of Rm. Yet in this case the objective
function of (4.1) may attain negative values and the terms “supporting hyperplane”
or “farthest hyperplane problem” are not quite appropriate.
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Fig. 6. The farthest supporting hyperplane and the farthest point.

5. The smallest sandwich problem. Let K denote a symmetrical convex
body in Rm. As mentioned in the introduction, the width function (1.3) measures
the distance between a pair of parallel supporting hyperplanes that “sandwich” K.
The smallest sandwich problem is, therefore, to find a vector a ∈ Rm, a �= 0, that
solves the problem

minimize w(a) =
(

sup
x∈K

aTx − inf
x∈K

aTx
)/

‖a‖′

or

(5.1)
minimize σ(a) = sup

x∈K
aTx − inf

x∈K
aTx

subject to ‖a‖′ = 1.

The aim of this section is to show that the dual problem of (5.1) has the form

(5.2)
maximize η(z) = 2 depth(z)
subject to z ∈ K.

Recall that

(5.3) depth(z) = inf
x∈K̃

‖x− z‖,

where K̃ denotes the boundary ofK. Thus η(z) is the diameter of the largest norm ball
that is centered at z and contained in K. Maximizing η(z) over K means, therefore,
that we search for the largest possible diameter of a norm ball that is contained in
K. (See Figure 7.)

Let z be some interior point of K. Then the width function of the norm ball

Bz =
{
x
∣∣ ‖x− z‖ ≤ depth(z)

}
has a constant value, which is η(z). In other words, for any vector a ∈ Rm, ‖a‖′ = 1,
the width of the sandwich S(a, Bz) equals η(z). On the other hand, since Bz is
contained in K, the width of S(a, Bz) is smaller than the width of S(a,K). That is,

(5.4) η(z) ≤ σ(a).
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Fig. 7. The width of the smallest sandwich equals the diameter of the largest norm ball.

The symmetry of K implies the existence of a “center point,” c, that has the
following property: For any x ∈ K the point 2c − x (the “symmetrical image” of x)
belongs to K. Thus, in particular, for any interior point z the symmetrical image of
Bz is contained in K. Now the convexity of K implies that the norm ball{

x
∣∣ ‖x − c‖ ≤ depth(z)

}
is contained in K, so

(5.5) η(z) ≤ η(c).

The last inequality means that c solves (5.2). That is, the norm ball

Bc =
{
x
∣∣ ‖x− c‖ ≤ depth(c)

}
has the largest possible radius. Yet, as Figure 9 shows, c is not necessarily the only
solution of (5.2).

Let B̃c denote the boundary of Bc. Then, as we have seen in section 3, there
exist a boundary point y∗ ∈ B̃c ∩ K̃ and a vector a∗, ‖a∗‖′ = 1, such that

(a∗)Ty∗ = sup
x∈K

(a∗)Tx,

the hyperplane H∗ = {x | (a∗)Tx = (a∗)Ty∗} supports both K and Bc at y∗, and
the vectors u = y∗ − c and a∗ are aligned. Let the vector v∗ = 2c − y∗ denote the
symmetrical image of y∗. Then, clearly, v∗ ∈ B̃c ∩ K̃ and

(a∗)Tv∗ = inf
x∈K

(a∗)Tx.
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These observations mean that S(a∗,K) = S(a∗, Bc) and σ(a∗) = η(c), while (5.4)
implies that a∗ solves (5.1).

Finally we extend the above relations to any pair of primal-dual solutions. Let
â ∈ Rm solve (5.1) and let ẑ ∈ Rm solve (5.2). Then, as we have seen,

η(ẑ) = η(c) = σ(â).

Furthermore, since the norm ball

Bẑ =
{
x
∣∣ ‖x− ẑ‖ ≤ depth(ẑ)

}
is contained in K, the sandwich S(â, Bẑ) is contained in S(â,K). Yet the optimality
of â and ẑ indicates that the two sandwiches have the same width and, therefore,
coincide. That is, S(â, Bẑ) = S(â,K). The last equality implies the existence of a
common boundary point, ŷ ∈ B̃ẑ ∩ K̃, such that

(5.6) âT ŷ = sup
x∈Bẑ

âTx = sup
x∈K

âTx,

and the vectors û = ŷ− ẑ and â are aligned. Moreover, since ẑ serves as a “center of
symmetry” for Bẑ, the point v̂ = 2ẑ − ŷ belongs to B̃ẑ ∩ K̃ and satisfies

(5.7) âT v̂ = inf
x∈Bẑ

âTx = inf
x∈K

âTx.

The next theorem summarizes our conclusions.
Theorem 3. The dual of the smallest sandwich problem (5.1) is the maximal

norm ball problem (5.2), and both problems are solvable. In particular, the center of
symmetry, c, solves (5.2). Let â and ẑ be any pair of primal-dual solutions. Then
η(ẑ) = η(c) = σ(â) and S(â, Bẑ) = S(â,K). Furthermore, there exist common
boundary points, ŷ and v̂ = 2ẑ− ŷ, that belong to B̃ẑ∩ K̃ and satisfy (5.6) and (5.7),
respectively. That is, the two points lie on opposite sides of S(â,K). The vectors
û = ẑ − ŷ and â are aligned. That is,

(5.8) ûT â = ‖û‖ · ‖â‖′ = depth(c).

The proof of Theorem 3 does not rely on the assumption that K is a bounded
set. This brings us to the following conclusion.

Corollary 4. Let X be a symmetrical closed convex set in Rm, with nonempty
interior and nonempty boundary. Then the claims of Theorem 3 remain valid when
X replaces K. (Note that X may have more than one center of symmetry.)

6. The largest sandwich problem. As beforeK denotes a symmetrical convex
body in Rm, and z denotes an arbitrary point in Rm. The radius function of K is
defined as

radius(z) = sup
x∈K

‖x − z‖,

and

Bz =
{
x
∣∣ ‖x− z‖ ≤ radius(z)

}
is the smallest norm ball that is centered in z and contains K. The smallest norm
ball that contains K can be found, therefore, by solving the problem

(6.1) minimize τ(z) = 2 radius(z),
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Fig. 8. The width of the largest sandwich equals the diameter of the smallest norm ball.

whose optimal value provides the smallest diameter of a norm ball that contains K.
In this section we prove that the dual problem of (6.1) is the largest sandwich problem

(6.2)
maximize σ(a) = sup

x∈K
aTx − inf

x∈K
aTx

subject to ‖a‖′ = 1.

Recall that σ(a) equals the width of the sandwich S(a,K), while τ(z) equals the
width of the sandwich S(a, Bz). Therefore, since K is contained in Bz, the inequality

(6.3) σ(a) ≤ τ(z)

holds for all a ∈ Rm, ‖a‖′ = 1, and z ∈ Rm. Thus to prove duality we need to find a
pair of points, a∗ and z∗ say, such that ‖a∗‖′ = 1 and

(6.4) σ(a∗) = τ(z∗).

For this purpose we consider the norm ball

(6.5) Bc =
{
x
∣∣ ‖x − c‖ ≤ radius(c)

}
,

where c denotes the center of K. Then Bc is the smallest norm ball that is centered
in c and contains K. Also, since K is a compact set, there exists a point ỹ ∈ K such
that

‖ỹ − c‖ = radius(c).
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Fig. 9. Nonuniqueness of the largest norm ball inside a convex body.

Let K̃ and B̃c denote the boundaries of K and Bc, respectively. Then, clearly, ỹ ∈
K̃ ∩ B̃c. In other words, ỹ is a boundary point of both K and Bc. Hence there exists
a vector ã ∈ Rm, ‖ã‖′ = 1, such that

ãT ỹ = sup
x∈Bc

ãTx = sup
x∈K

ãTx

and

H̃ =
{
x
∣∣ ãTx = ãT ỹ

}
is a supporting hyperplane of both Bc and K at ỹ. Moreover, define

ũ = ỹ − c;

then the vectors ũ and ã are aligned. Let the point

ŷ = c − ũ = 2c− ỹ

denote the “symmetrical image” of ỹ. Then, clearly, ŷ ∈ B̃c ∩ K̃. That is, ŷ is a
boundary point of both Bc and K. A further consequence of the symmetry of K and
Bc with respect to c is that the hyperplane

Ĥ =
{
x
∣∣ (−ã)Tx = (−ã)T ŷ

}
supports both Bc and K at ŷ. The last observation implies the relations

ãT ŷ = inf
x∈Bc

ãTx = inf
x∈K

ãTx,

S(ã,K) = S(ã, Bc),

and

σ(ã) = τ(c),

which proves (6.4). The geometric interpretation of this result is quite simple: The
width of the largest sandwich equals the diameter of the smallest norm ball that
contains K. See Figure 8. Note that the chord vector ṽ = ỹ − ŷ = 2ũ and ã are
aligned. Below we will show that any solution of (6.2) satisfies similar relations with
Bc. The nonuniqueness of the solutions is illustrated in Figures 9–11.
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Fig. 10. Nonuniqueness of the largest/smallest sandwich.

Fig. 11. Nonuniqueness of the smallest norm ball that contains a convex body.

Let a∗ ∈ Rm, ‖a∗‖′ = 1, be some other solution of (6.2). Then, clearly, S(a∗,K)
is contained in S(a∗, Bc). On the other hand, since a∗ solves (6.2), σ(a∗) = τ(c), so
the two sandwiches have the same width and, therefore, coincide. That is,

(6.6) S(a∗,K) = S(a∗, Bc).

The last equality implies the existence of a common boundary point, y∗ ∈ K̃ ∩ B̃c,
such that

(6.7) (a∗)Ty∗ = sup
x∈Bc

(a∗)Tx = sup
x∈K

(a∗)Tx.

In other words, the hyperplane
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H∗ =
{
x
∣∣ (a∗)Tx = (a∗)Ty∗ }

supports both Bc and K at y∗. Define

u∗ = y∗ − c,

and let

y∗∗ = c − u∗ = 2c− y∗

denote the symmetrical image of y∗ with respect to c. Then, as we have seen, the
vectors u∗ and a∗ are aligned, y∗∗ ∈ K̃ ∩ B̃c, and the hyperplane

H∗∗ =
{
x
∣∣ (−a∗)Tx = (−a∗)Ty∗∗ }

supports both K and Bc at y∗∗. That is,

(6.8) (a∗)Ty∗∗ = inf
x∈Bc

(a∗)Tx = inf
x∈K

(a∗)Tx.

The next theorem summarizes our conclusions.
Theorem 5. The dual of the smallest norm ball problem (6.1) is the largest

sandwich problem (6.2), and both problems are solvable. In particular, the center of
symmetry, c, solves (6.1) and Bc has the smallest possible radius of all the norm balls
that contain K. Moreover, let a∗ ∈ Rm, ‖a∗‖′ = 1, be any solution of (6.2). Then

σ(a∗) = τ(c),(6.9)

S(a∗, Bc) = S(a∗,K),(6.10)

and there exists a pair of boundary points y∗ and y∗∗ = 2c−y∗ that belong to B̃c∩K̃,
but lie on opposite sides of S(a∗,K), and satisfy (6.7)–(6.8). The vectors u∗ = y∗−c
and a∗ are aligned. That is,

(6.11) (u∗)Ta∗ = ‖u∗‖ · ‖a∗‖′.

Corollary 6. The points y∗ and y∗∗ solve the maximal chord problem

(6.12)
maximize d(x,y) = ‖x− y‖
subject to x ∈ K and y ∈ K.

Conversely, let the points x∗ and y∗ solve (6.12). Then there exists a vector a∗ ∈ Rm,
‖a∗‖′ = 1, that solves (6.2), for which the points y∗ and y∗∗ = 2c − y∗ satisfy the
relations mentioned in Theorem 5. The optimal value of (6.12) is called the diameter
of K. So the diameter of K equals the diameter of Bc.

7. Nonsymmetrical convex bodies. The duality properties revealed in Theo-
rems 3 and 5 rely on the symmetry of K. The question raised in this section is which
properties hold without the symmetry assumption. Let G be an arbitrary convex
body in Rm which is not symmetrical. Then in this section G replaces K. The dis-
cussion below is divided into two parts. The first one considers the largest sandwich
that contains G. The second part considers the smallest sandwich that contains G.
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7.1. The nonsymmetrical largest sandwich problem. We shall start by
considering the links between the smallest diameter problem

(7.1)
minimize τ(z) = 2 radius(z)
subject to z ∈ G,

the largest sandwich problem

(7.2)
maximize σ(a) = sup

x∈G
aTx − inf

x∈G
aTx

subject to ‖a‖′ = 1,

and the longest chord problem

(7.3)
maximize d(x,y) = ‖x − y‖
subject to x ∈ G and y ∈ G.

As before, for any z ∈ Rm

(7.4) radius(z) = sup
x∈G

‖x − z‖,

and

(7.5) Bz =
{
x
∣∣ ‖x− z‖ ≤ radius(z)

}
is the smallest norm ball that is centered in z and contains G. Using the compact-
ness of G and the continuity of the objective functions it is easy to verify that the
above three problems are solvable. Below we derive some useful relations between the
solutions of these problems.

Recall that for any a ∈ Rm, ‖a‖′ = 1, and any z ∈ Rm, the width of the sandwich
S(a, Bz) equals τ(z). Therefore, since S(a, G) is contained in S(a, Bz),

(7.6) σ(a) ≤ τ(z).

However, unlike the symmetrical case, here the optimal value of (7.1) can be strictly
larger than the optimal value of (7.2). Take, for example, an equilateral triangle.
This type of relation is sometimes called “weak duality.”

Since G is a compact set, there exists a pair of points in G, y1 and y2 say, such
that

(7.7) inf
x∈G

aTx = aTy1 and sup
x∈G

aTx = aTy2,

and the sandwich S(a, G) is constructed by the hyperplanes

(7.8) H1 =
{
x
∣∣ aTx = aTy1

}
and H2 =

{
x
∣∣ aTx = aTy2

}
.

Note also that the width of this sandwich satisfies

(7.9) σ(a) = inf
{
‖x1 − x2‖

∣∣ x1 ∈ H1, x2 ∈ H2
}
≤ ‖y1 − y2‖.

Let the points y∗
1 and y∗

2 solve the longest chord problem (7.3), and let

(7.10) δ = ‖y∗
2 − y∗

1‖
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Fig. 12. A longest chord touches a maximal sandwich.

denote the optimal value of this problem. Then, clearly,

σ(a) ≤ ‖y1 − y2‖ ≤ δ.

Thus any vector a∗ ∈ Rm, ‖a∗‖′ = 1, that satisfies

(7.11) σ(a∗) = δ

solves the largest sandwich problem (7.2). Furthermore, as we are about to show,
there exists a certain solution vector, a∗, that is aligned to the optimal chord

(7.12) u∗ = y∗
2 − y∗

1

and satisfies (7.11).
To prove these assertions we introduce the sets

B1 =
{
x
∣∣ ‖x− y∗

1‖ ≤ δ
}
, B2 =

{
x
∣∣ ‖x− y∗

2‖ ≤ δ
}
, and D = B1 ∩B2.

See Figure 12. Then D is a symmetrical convex body whose center of symmetry lies
at the point (y∗

1 + y∗
2)/2. Note also that D contains G, and that y∗

2 is a boundary
point of G, D, and B1. Consequently there exists a vector a∗ ∈ Rm, ‖a∗‖′ = 1, such
that

(7.13) (a∗)Ty∗
2 = sup

x∈B1

(a∗)Tx = sup
x∈D

(a∗)Tx = sup
x∈G

(a∗)Tx,

and

H∗
2 =

{
x
∣∣ (a∗)Tx = (a∗)Ty∗

2
}
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is a supporting hyperplane of the sets B1, D, and G, at the point y∗
2 . Observe also

that the vectors u∗ and a∗ are aligned:

(7.14) (u∗)T (a∗) = ‖u∗‖ · ‖a∗‖′ = ‖u∗‖.

Similarly y∗
1 is a boundary point of the sets B2, D, and G. Hence the symmetry of

D and the fact that y∗
1 is the symmetrical image of y∗

2 imply that

H∗
1 =

{
x
∣∣ (−a∗)Tx = (−a∗)Ty∗

1
}

is a supporting hyperplane of the sets B2, D, and G, at the point y∗
1 . That is,

(7.15) (−a∗)Ty∗
1 = sup

x∈B2

(−a∗)Tx = sup
x∈D

(−a∗)Tx = sup
x∈G

(−a∗)Tx

and

(7.16) (a∗)Ty∗
1 = inf

x∈G
(a∗)Tx.

Combining (7.12)–(7.16) gives

σ(a∗) = sup
x∈G

(a∗)Tx − inf
x∈G

(a∗)Tx = (a∗)Ty∗
2 − (a∗)Ty1

= (a∗)T (y∗
2 − y∗

1) = (a∗)Tu∗ = ‖u∗‖,

which proves (7.11). The next theorem summarizes our findings. See Figure 12.
Theorem 7. The dual of the smallest norm ball problem (7.1) is the largest

sandwich problem (7.2), and both problems are solvable. Yet, unlike the symmetrical
case, here the optimal primal value may exceed the optimal dual value. The longest
chord problem (7.3) is also solvable and its optimal value equals that of (7.2). In other
words, the “diameter” of G equals the “length” of G. More precisely, let the points y∗

1
and y∗

2 solve (7.3); then there exists a vector a∗ ∈ Rm, ‖a∗‖′ = 1, that solves (7.2)
and satisfies (7.11)–(7.16). Thus, in particular, the vectors u∗ = y∗

2 − y∗
1 and a∗ are

aligned.
Theorem 7 raises the question of whether the converse claim is also true. Let

â ∈ Rm, ‖â‖′ = 1, be some other solution of (7.2). Then, as we have seen, there
exists a pair of boundary points of G, ŷ1 and ŷ2 say, such that

(7.17) âT ŷ1 = inf
x∈G

âTx and âT ŷ2 = sup
x∈G

âTx.

Hence the sandwich S(â, G) is constructed by the hyperplanes

(7.18) Ĥ1 =
{

x
∣∣ âTx = âT ŷ1

}
and Ĥ2 =

{
x
∣∣ âTx = âT ŷ2

}
,

and the width of this sandwich satisfies

(7.19) σ(â) = inf
{
‖x1 − x2‖

∣∣ x1 ∈ Ĥ1, x2 ∈ Ĥ2

}
≤ ‖ŷ1 − ŷ2‖ ≤ δ.

See Figure 13. On the other hand, since â solves (7.2), σ(â) = δ. Hence the inequalities
in (7.19) imply that

(7.20) ‖ŷ1 − ŷ2‖ = δ.
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Fig. 13. A maximal sandwich touches a longest chord.

In other words, the contact points ŷ1 and ŷ2 solve (7.3). Moreover, since the hy-
perplane Ĥ2 supports the norm ball B̂1 = {x | ‖x − ŷ1‖ ≤ δ} at ŷ2, the vectors
û = ŷ2 − ŷ1 and â are aligned:

(7.21) ûT â = ‖û‖ · ‖â‖′ = ‖û‖.

This proves the following results. See Figure 13.
Theorem 8. Let the vector â ∈ Rm, ‖â‖′ = 1, solve (7.2). Then there exists a

pair of points, ŷ1 and ŷ2 say, that satisfy (7.17)–(7.21) and solve the longest chord
problem (7.3). Moreover, the vectors û = ŷ2 − ŷ1 and â are aligned.

It is also interesting to compare (7.1) with the unconstrained problem

(7.22) minimize τ(z) = 2 radius(z),

whose solution points may reside outside G. The last feature is easily seen by consid-
ering the smallest �∞ norm ball. See Figure 11. On the other hand, when using the
Euclidean norm any solution of (7.22) lies in G. These observations raise the question
of whether any solution of (7.1) also solves (7.22). Yet the answer is left beyond the
scope of this paper.

7.2. The nonsymmetrical smallest sandwich problem. The smallest sand-
wich that contains G is obtained by solving the problem

(7.23)
minimize σ(a) = sup

x∈G
aTx − inf

x∈G
aTx

subject to ‖a‖′ = 1.

The compactness of the sets G and {a | ‖a‖′ = 1} and the continuity of the objective
function ensure the existence of a vector a∗ ∈ Rm, ‖a∗‖′ = 1, that solves (7.23).
However, as Figure 10 shows, the solution is not necessarily unique. Let G̃ and G̊
denote the boundary and the interior of G, respectively. The discussion in section 5
suggests that the dual of (7.23) is the maximal norm ball problem

(7.24)
maximize η(z) = 2 depth(z)
subject to z ∈ G,

where

(7.25) depth(z) = inf
x∈G̃

‖x− z‖,
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Fig. 14. The touching conjecture: A maximal norm ball touches a minimal sandwich and vice
versa.

and

(7.26) Bz =
{
x
∣∣ ‖x− z‖ ≤ depth(z)

}
is the largest norm ball that is centered in z and contained in G. As before, the
compactness of G and the continuity of the objective function imply the existence of
an interior point, z∗ say, that solves (7.24). Yet, as Figure 9 shows, there may be
many solutions.

Recall that for any pair of vectors, z ∈ G and a ∈ Rm, ‖a‖′ = 1, the width of the
sandwich S(a, Bz) equals η(z). On the other hand, since Bz is contained in G, the
width of S(a, Bz) is smaller than the width of S(a, G). That is,

(7.27) η(z) ≤ σ(a).

The last inequality invites the question of whether the optimal values of (7.23) and
(7.24) are always equal. However, there are many examples of convex sets for which
the solution points satisfy a strict inequality of the form

(7.28) η(z∗) < σ(a∗).

Take, for example, a triangle. Thus again we see that the lack of symmetry may result
in “weak duality” relations.

It is also easy to verify that any interior point z∗ ∈ G̊ that solves the maximal
norm ball problem (7.24) has the following property: The maximal norm ball

(7.29) Bz∗ =
{
x
∣∣ ‖x− z∗‖ ≤ depth(z∗)

}
“touches” G̃ in more that one point. Let ỹ be one of the “touching points.” Then
ỹ is a boundary point of both Bz∗ and G. Moreover, as we have seen, there exists a
vector ã ∈ Rm, ‖ã‖′ = 1, such that

H̃ =
{
x
∣∣ ãTx = ãT ỹ

}
is a supporting hyperplane of both G and Bz∗ at the point ỹ, and the vectors ỹ − z∗

and ã are aligned. In other words, any “touching point,” ỹ, is related to a certain
“touching sandwich,” S(ã, G). There are many examples of convex sets in R2 and R3

in which one of the “touching sandwiches,” S(ã, G), has the smallest possible width.
See Figure 14. These empirical observations bring us to make the following “touching
conjecture”: A maximal norm ball (inside G) always touches a minimal sandwich.
Conversely, any minimal sandwich of G touches a maximal norm ball. However, the
validity of these assertions remains an open question.
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8. Concluding remarks. Recall that any unit norm ball of the form (2.2) de-
fines an “equilibrated” convex body. That is, a symmetrical convex body with center
at the origin. The converse is also true: Any equilibrated convex body defines a norm;
see [16]. Thus any symmetrical convex body is essentially a “shifted” unit norm ball
of some norm. Hence, from this point of view, Theorems 3 and 5 characterize the
duality relations between two arbitrary norms on Rm.

The new MND theorems, together with the old ones, constitute an elegant collec-
tion of geometric problems that visually illustrate the basic principles of duality. See
Figures 1–8. Being MND theorems, the new theorems have some analogy with the
old ones. However, the geometry of the new problems is quite different, and there is
no direct way to conclude the new theorems from the old ones. So the new theorems
contribute a substantial extension to the range of problems that can be handled via
the MND methodology.

The appeal of the MND methodology stems from a number of reasons. First,
as noted above, it has a simple geometric interpretation that visually illustrates the
links between the primal problem and the dual one. Second, it allows the freedom to
use any norm in Rm. Third, the alignment relations add important insight into the
nature of primal-dual problems. In particular, when using a smooth strictly convex
norm, there are explicit rules for retrieving a primal solution from a dual one, and
vice versa, e.g., [8], [10], [19]. Fourth, in spite of their simplicity, the MND theorems
apply to a large family of problems. See [8] for a recent survey of such problems.

A recent discussion in [9] considers methods for solving the related duality prob-
lems, regarding two types of polyhedral convex sets. The first one is a polyhedron,
which is defined as the intersection of n given half-spaces in Rm. The second set is
a polytope, which is defined as the convex hull of � given points in Rm. Then, as
shown in [9], the nearest hyperplane problem is easy to solve on a polyhedron and
difficult to solve on a polytope. Yet in the farthest hyperplane problem the situation
is reversed. This problem is easy to solve on a polytope and difficult to solve on a
polyhedron. A similar situation characterizes the solutions of the smallest sandwich
problem and the largest sandwich problem. The need for calculating a norm ball,
usually an ellipsoid, that lies inside (or contains) a given polyhedral convex set arises
in several applications; see, e.g., [2], [4].

The new theorems are valid in any finite dimensional real Hilbert space H , with
inner product 〈x,y〉. The modification of the current proof to handle this setting is
rather simple: Rm is replaced by H , the Euclidean inner product xTy is replaced
by 〈x,y〉, the Euclidean norm is replaced by ‖x‖ = (〈x,x〉)1/2 , and so forth. Using
the geometric Hahn–Banach theorem one can prove the Nirenberg–Luenberger MND
theorem in any real (or complex) normed linear space; see, e.g., [11], [12], [18], [19],
[21]. This observation suggests that the new MND theorems remain valid in such
setting. However, we have good reasons to keep the paper in the Rm setting. First,
the restriction to Rm simplifies the presentation and helps to focus on the main ideas.
Second, there is vast literature on properties of convex bodies, including closely related
issues such as “width,” “length,” and “diameter” of convex bodies, and most of the
discussions are carried out in Rm. See, for example, [1], [2], [4], [6], [13], [14], [17],
[20], [22], [24], [26], [27], [28], [29], and the references therein.
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PARETO SUBDIFFERENTIAL CALCULUS FOR CONVEX VECTOR
MAPPINGS AND APPLICATIONS TO VECTOR OPTIMIZATION∗
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Abstract. This paper deals with the subdifferential of convex analysis defined in the Pareto
sense, from a point of view of nonvacuity, characterizations, and calculus rules and their applications
to the vector optimization, the convex maps being vector-valued in a finite- or infinite-dimensional
ordered vector space. Subdifferentiability is characterized under conditions of Attouch–Brézis type.
Formulations by derivatives, when they exist, are provided. Concerning the calculus rules, the first
main result gives the gap between the Pareto subdifferential and the ordinary one, allowing thus
the computation of the one from the other. Next, as central results, Pareto subdifferentials of the
sum and/or composition of two convex vector mappings are developed. The formulas are obtained
under Moreau–Rockafellar or Attouch–Brézis-type conditions, revealing, strangely, the presence of
the ordinary subdifferential. These formulas actually allow the extension of the indicator function
technique to the vector case, so that Pareto optimality (efficiency) conditions are easily derived and
weakened with qualification conditions of the Attouch–Brézis kind. Finally, the gap between efficient
and optimal sets is also deduced.

Key words. vector mappings, convex analysis, subdifferential, vector optimization, efficiency
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1. Introduction. The notion of the subdifferential defined in the Pareto sense
is important for dealing with vector optimization problems (VOPs). There are glob-
ally two kinds of solutions for these problems: usual optimum and Pareto optimum,
also called efficient point. It is well known that the ordinary optimum for vector
problems does not often exist, so it is said to be a rather strongly efficient solution
in Pareto language. Thus, for vector mappings, the subdifferential defined in the
Pareto sense is naturally more required in the context of vector optimization than a
subdifferential defined in the usual sense. We agree to call them, respectively, Pareto
subdifferential and strong subdifferential. To be sometimes more precise, since among
the Pareto concepts there is the proper or weak notion, we also talk about proper or
weak subdifferential of vector mappings.

In this paper, we study several properties of the Pareto subdifferential of convex
analysis that have not been considered previously in the literature and give their first
direct applications to the constrained convex vector optimization. Only the proper
and weak concepts of Pareto are considered; the other concepts remain open issues for
future research. For a reason of enlarging the scope of this work, we assume the convex
vector mappings taking values in (partially) ordered topological vector spaces. All the
obtained results are important also in the finite-dimensional case, and the reader which
is not familiar with the infinite-dimensional spaces may consider everywhere all the
spaces as real finite-dimensional vector spaces with the range spaces all ordered by
the natural componentwise partial order. We nevertheless didn’t fail to state in this
setting, whenever it is necessary, each result or comment being able to be formulated
in simpler terms.
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Jadida, Morocco (elmaghri@yahoo.com, laghdirm@yahoo.fr).

1970



SUBDIFFERENTIALS OF VECTOR FUNCTIONS 1971

The paper is organized as follows. Section 2 describes the different notions of vec-
tor subdifferential underlining their preliminary connections with the efficient sets.
Section 3 is divided into three subsections. Subsection 3.1 presents the scalarization
of these sets straightforwardly from the well-known one of the efficient sets. Scalar-
ization principle is revealed in our investigations to be fundamental in the obtention
of the most essential properties of these vector subdifferentials. In subsection 3.2, the
Pareto subdifferentiability and the regular subdifferentiability are characterized un-
der the well-known Attouch–Brézis and Moreau–Rockafellar conditions, respectively;
the regular subdifferentiability concept due to Raffin [23] being revealed to be a key
hypothesis for the obtention of our main results. As immediate result, we obtain the
Pareto subdifferential in terms of the strong one. This relationship expresses, in fact,
the gap between the two concepts allowing their mutual computation. Subsection 3.3
concerns the formulations of these sets by means of (directional or Gâteaux) deriva-
tives when they exist. Section 4 represents the central part in this work for both
theory and application. It is devoted to calculus rules of the Pareto subdifferentials
for the sum and/or composition of two convex vector mappings. The obtained for-
mulas are original and hold under the weak conditions of the Moreau–Rockafellar or
Attouch–Brézis types. Let us point out the strange but indispensable appearance of
the strong subdifferential, otherwise the formulas would not hold in general. This
presence turns out to be rather favorable in applications: In the last section deal-
ing with the constrained vector optimization, the extension of the penalty indicator
function to the vector case is realized, in the sense that both necessary and sufficient
efficiency conditions of the Kuhn–Tucker type are easily derived under only the weak
qualification conditions of the Attouch–Brézis type; also, a certain gap between the
efficient and the optimal sets is deduced.

The first studies of the vector subdifferential seem to appear in strong form due,
respectively, to Raffin [23], Valadier [32], and Zowe [35], while the Pareto subdif-
ferential was first considered by Sawaragi and Tanino [25] and next appeared in [26].
Concerning the chain rules, the first results concerned the sum operation due to Théra
[29] for the strong subdifferential, Lin [18] and Taa [27] for the weak one. Their main
results concerning us are described in detail as soon as it is required in the text.

2. Elements of vector convex analysis. Throughout the paper, we shall work
with the following spaces and sets:

� X , Y , Z (real) topological vector spaces, with Y and Z separated;
� X∗, Y ∗, Z∗ their respective topological duals paired in duality by 〈., .〉;
� Y+ a nonempty proper1 convex cone (resp. Z+) of Y (resp. of Z), intY+ its

topological interior (resp. intZ+) sometimes will be required to be nonempty;
� l(Y+) = Y+�−Y+ (resp. l(Z+)) the lineality of Y+ (resp. Z+), when it is null,

the cone is said to be pointed;
� Y ∗

+ (resp. Z∗
+) the polar cone of Y+ (resp. Z+), which is the set of nonnegative

forms λ ∈ Y ∗, i.e., λ(Y+) ⊆ R+;
� (Y ∗

+)◦ (resp. (Z∗
+)◦) the strict polar cone of Y+ (resp. Z+), which is the

set of positive forms λ ∈ Y ∗, i.e., λ(Y+ \ l(Y+)) ⊆ R+ \ {0}, obviously,
(Y ∗

+)◦ ⊆ Y ∗
+ \ {0} since Y+ + Y+ \ l(Y+) ⊆ Y+ \ l(Y+);

� L(X,Y ) the space of linear continuous operators from X to Y ;
� L+(Y, Z) the set of nonnegative operators A ∈ L(Y, Z), i.e., A(Y+) ⊆ Z+;

1That is, not a linear subspace so that it cannot coincide with its lineality.
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� L−1(X,Y ) (resp. L−1
+ (Y, Z)) the set of invertible operators A ∈ L(X,Y )

(resp. ∈ L+(Y, Z)).
The convex cone Y+ (resp. Z+) induces in Y (resp. in Z) preorder relations:

y ≤Y+ y′ ⇐⇒ y′ ≥Y+ y ⇐⇒ y′ − y ∈ Y+,

y <Y+ y′ ⇐⇒ y′ >Y+ y ⇐⇒ y′ − y ∈ intY+,

y �Y+ y′ ⇐⇒ y′ �Y+ y ⇐⇒ y′ − y ∈ Y+ \ l(Y+).

We adjoin to Y (resp. Z) an abstract maximal element denoted +∞ so that
y ≤Y+ +∞ for all y ∈ Y �{+∞} on which we consider the operations y+(+∞) = +∞
and α · (+∞) = +∞ for all α ∈ R+ \ {0} by adopting the convention 0 · (+∞) = 0.

Let us notice the following well-known properties on some fundamental relations
between a cone and its polar.

Proposition 2.1.

(1) If Y is locally convex and Y+ is closed, then
∃y ∈ Y , ∀λ ∈ Y ∗

+ \ {0}, 〈λ, y〉 ≥ 0 =⇒ y ∈ Y+.
(2) If, in addition, Y+ is pointed, then

∃y ∈ Y , ∀λ ∈ Y ∗
+ \ {0}, 〈λ, y〉 = 0 =⇒ y = 0.

(3) If intY+ �= ∅, then
∀λ ∈ Y ∗

+ \ {0}, ∀y ∈ intY+, 〈λ, y〉 > 0.
(4) In particular,

∀λ ∈ Y ∗
+ \ {0}, ∃yλ ∈ intY+ : 〈λ, yλ〉 = 1.

We recall that property (1) is obtained via contradiction by strict separation
theorem (see [2, pp. 122] or [5, pp. 11–12], e.g.) knowing that Y+ is a nonempty
closed convex set.2 Assertion (2) is a direct consequence of assertion (1) using that
Y+ is pointed. Property (3) is an application of the well-known property that a linear
form is null if only if it is null on an open set.3 Assertion (4) is obviously deduced
from (3).

Also, we shall work with the following vector mappings:
� F : X → Y � {+∞} is said to be

– Y+-convex, if

∀x, x′ ∈ X, ∀α ∈ [0, 1], F (αx+ (1 − α)x′) ≤Y+ αF (x) + (1 − α)F (x′);

– sequentially Y+-l.s.c at x̄ ∈ X , if

∀y ≤Y+ F (x̄), ∀(xn) → x̄, ∃(yn) → y : yn ≤Y+ F (xn), ∀n ∈ N;

– proper, if its effective domain

domF = {x ∈ X : F (x) ∈ Y } �= ∅.

� G : Y → Z � {+∞} is said to be (Y+, Z+)-nondecreasing, if

y ≤Y+ y′ =⇒ G(y) ≤Z+ G(y′).

2If y �∈ Y+, we can strictly separate it from Y+, i.e., ∃λ ∈ Y ∗ \ {0}, ∃α > 0 : 〈λ, y〉 < α < 〈λ, y′〉
(∀y′ ∈ Y+). Taking successively y′ = 0 and y′ = ny′′, with n ∈ N

∗ and y′′ ∈ Y+, we obtain 〈λ, y〉 < 0
and 〈λ, y′′〉 > α

n
. Letting n ↗ +∞, we get λ ∈ Y ∗

+ \ {0} in contradiction with 〈λ, y〉 < 0.
3Let λ ∈ Y ∗ such that λ(O) = {0} for some open set O ⊂ Y . Let y0 ∈ O, then there exists

V a neighborhood of 0 such that y0 + V ⊂ O. For each y ∈ Y , the continuity at 0 of the mapping
α �→ αy implies the existence of α ∈ R, with αy ∈ V . But 〈λ, y〉 = 1

α
〈λ, y0 + αy〉 − 1

α
〈λ, y0〉 = 0.



SUBDIFFERENTIALS OF VECTOR FUNCTIONS 1973

� G ◦ F : X → Z � {+∞} the composite vector mapping is defined by

G ◦ F (x) =

{
G(F (x)) if x ∈ domF,

+∞ else.

It is immediate that
• dom(G ◦ F ) = F−1(domG) � domF .
• F is Y+-convex =⇒ domF is a convex set.
• G is (Y+, Z+)-nondecreasing Z+-convex and F is Y+-convex =⇒ G ◦ F is
Z+-convex.

We agree to denote the sets of such mappings in analogy with the scalar case:
� Γ(X,Y ) the set of proper Y+-convex mappings from X to Y � {+∞},
� Γ0(X,Y ) the set of sequentially Y+-l.s.c mappings F ∈ Γ(X,Y ),

so that Γ(X,R) reduces to Γ(X), the set of proper convex functionals. In the same way,
a functional (Y+,R+)-nondecreasing is usually said to be Y+-nondecreasing. While
Γ0(X,R) reduces to Γ0(X), the set of l.s.c functionals in Γ(X) if X is metrizable (in
particular, a Fréchet space, i.e., complete metrizable space). Indeed, the vector lower
semicontinuity concept due to Combari, Laghdir, and Thibault [11] is not other in the
setting of metrizable variable and value spaces than a sequential characterization of
the concept introduced by Penot and Théra [21]. Hence, sequential R+-l.s.c is no more
than the classical l.s.c if X is metrizable. Sequential R

r
+-l.s.c of F = (f1, . . . , fr), then,

by definition, also becomes equivalent to l.s.c of each component fi in such a space
X . In general, the sequential cone l.s.c concept easily implies that each y-sublevel set
(y ∈ Y ) and the epigraph of F , respectively, defined by

Y+-Lev(F ; y) = {x ∈ X : F (x) ≤Y+ y},
Y+-Epi F = {(x, y) ∈ X × Y : F (x) ≤Y+ y}

are closed if Y+ is closed; the converse being false, in general, even for finite-dimensional
image spaces equipped with closed order cones (see example in [11] or [21]). It has
been noted in [11] that sequential continuity (at a point in the effective domain) is
equivalent to sequential Y+-l.s.c and −Y+-l.s.c (at this point) if the preorder Y+ is
normal, i.e., if there exists a base of neighborhoods V of the origin such that the order
intervals

[a, b] = {y ∈ Y : a ≤Y+ y ≤Y+ b} ⊂ V if a, b ∈ V.

Consider now the VOP associated with the vector map F : X ⊇ S → Y � {+∞}:

VOP: Min
x∈S

F (x).

There are four kinds of solutions for VOP: a point x̄ ∈ S � domF is said to be

� optimal or strongly efficient, if ∀x ∈ S, F (x̄) ≤Y+ F (x);
� Pareto or efficient, if �x ∈ S, F (x) �Y+ F (x̄);
� weak Pareto or weakly efficient, if �x ∈ S, F (x) <Y+ F (x̄);
� proper Pareto or (Henig) properly efficient, if

∃Ŷ+ � Y a convex cone, with Y+ \ l(Y+) ⊆ int Ŷ+, �x ∈ S, F (x) �Ŷ+
F (x̄).

The weak concept obviously supposes in the image space a nonempty interior
preorder cone, while the proper concept supposes generally in counterpart a pointed
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preorder cone. The efficient set and the strongly, properly, and weakly efficient sets
for VOP will be denoted, respectively, by Ee(F, S), Es(F, S), Ep(F, S), and Ew(F, S).
To unify the presentation, we will denote by Eσ(F, S) the set of σ-efficient points
depending on the choice of σ ∈ {s, p, e, w}. By using the well-known property that
intY+ ⊆ Y+ \ l(Y+), it is immediate that

(2.1) Ep(F, S) ⊆ Ee(F, S) ⊆ Ew(F, S).

When dim Y = 1, all these sets coincide with the ordinary optimal set Es(F, S).
However, in vector optimization, i.e., dimY �= 1, it does not often happen that

Es(F, S) �= ∅.

But if this situation occurs, one can easily show that Ee(F, S) ⊆ Es(F, S). The reverse
inclusion Es(F, S) ⊆ Ee(F, S) being always satisfied, one therefore has

Es(F, S) �= ∅ ⇒ Es(F, S) = Ee(F, S).

The subdifferential of a vector mapping, when it is associated with a VOP, leads
in connection with the different efficient sets to consider four concepts, namely, the
strong, weak, efficient, and proper, defined, respectively, for F : X → Y � {+∞} and
x̄ ∈ domF as follows:

� ∂sF (x̄) = {A ∈ L(X,Y ) : ∀x ∈ X, F (x) − F (x̄) ≥Y+ A(x − x̄)}.
� ∂wF (x̄) = {A ∈ L(X,Y ) : �x ∈ X, F (x) − F (x̄) <Y+ A(x − x̄)}.
� ∂eF (x̄) = {A ∈ L(X,Y ) : �x ∈ X, F (x) − F (x̄) �Y+ A(x − x̄)}.
� ∂pF (x̄) = {A ∈ L(X,Y ) : ∃Ŷ+ � Y a convex cone that satisfies

Y+ \ l(Y+) ⊆ int Ŷ+, �x ∈ X, F (x) − F (x̄) �Ŷ+
A(x − x̄)}.

The notation ∂σF (x̄) will also be used to stand for the σ-subdifferential according
to the choice of σ ∈ {s, p, e, w}. By convention, we take ∂σF (x̄) = ∅ if x̄ �∈ domF .
The σ-subdifferential, with σ = s (resp. σ ∈ {e, w}) seems to first appear in [23]
(resp. in [25]). All these definitions are justified by the importance of the following
immediate property:

(2.2) x̄ ∈ Eσ(F,X) ⇐⇒ 0 ∈ ∂σF (x̄).

Similarly to inclusions (2.1), it is easily shown that

(2.3) ∂pF (x̄) ⊆ ∂eF (x̄) ⊆ ∂wF (x̄),

while inclusion ∂sF (x̄) ⊆ ∂eF (x̄) is straightforward. If (Y ∗
+)◦ �= ∅, we also have

∂sF (x̄) ⊆ ∂pF (x̄); see (3.3)–(3.4). But ∂sF (x̄) �= ∅ �⇒ ∂sF (x̄) = ∂eF (x̄) unlike the
efficient sets. Indeed, let X = R, Y = R

2, Y+ = R
2
+, and F (x) = (0,−x) if x ≥ 0, =

(−x,−x) if x < 0. We have (−1, 0) ∈ ∂eF (0), but (−1, 0) �∈ ∂sF (0) = [−1, 0]×{−1}.
In scalar case (Y = R, Y+ = R+), all these sets coincide with the classical

subdifferential of convex analysis (∂sF ), usually denoted by ∂F .
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3. Scalarization, σ-subdifferentiability, and relations with derivatives.

3.1. Characterization via scalarization. For λ ∈ Y ∗
+\{0}, the scalar function

λ ◦ F : X → R � {+∞} is defined by

λ ◦ F (x) =

{
〈λ, F (x)〉 if x ∈ domF,

+∞ else.

For λ = 0, we take by convention λ ◦ F = 0. Note that, ∀ λ ∈ Y ∗
+ \ {0},

• dom(λ ◦ F ) = domF .
• F is Y+-convex =⇒ λ ◦ F is convex.
• F is sequentially Y+-l.s.c =⇒ λ ◦ F is l.s.c (see [11, Proposition 3.7]).

We unify the notation of the polar cones too by putting, for instance, for Y+:

Y σ+ =

{
Y ∗

+ \ {0} if σ = w,

(Y ∗
+)◦ if σ = p.

Then, recall the fundamental VOP scalarization principle whose proof in infinite-
dimensional spaces can be found in Luc [19, pp. 91–92]. But we will give here an
improved version by Bonnel [8]. Comparatively, the proof is direct and clearly sim-
plified for the weak concept. For the proper one, the reflexivity assumption on Y , in
fact not required, has been replaced by Y separated. It also seems that the essential
assumption Y+ is pointed, is only forgotten in [19].

Theorem 3.1. Let F : X ⊇ S → Y � {+∞}. Then,

(3.1) Es(F, S) ⊆
�

λ∈Y ∗
+\{0}

argmin
x∈S

〈λ, F (x)〉,

with equality if Y is locally convex and Y+ is closed. For σ ∈ {p, w},

(3.2) Eσ(F, S) ⊇
⊔
λ∈Y σ

+

argmin
x∈S

〈λ, F (x)〉,

with equality if F is Y+-convex and S is convex, with Y+ pointed as σ = p.
Proof. The direct inclusion in (3.1) is straightforward, while the reverse one uses

only Proposition 2.1(1).
Let us show the inclusion in (3.2).
Case σ = p. Let λ ∈ Y p+ and x̄ ∈ argminx∈S〈λ, F (x)〉. The pointed convex cone

Ŷ+ = {y ∈ Y : 〈λ, y〉 > 0} � {0}

obviously satisfies Ŷ+ �= Y and Y+ \ l(Y+) ⊆ int Ŷ+. If x̄ �∈ Ep(F, S), there would
exist x ∈ S such that F (x) �Ŷ+

F (x̄), i.e., F (x̄) − F (x) ∈ Ŷ+ \ {0}, and hence,
〈λ, F (x̄) − F (x)〉 > 0 contradicting the choice of x̄.

Case σ = w. Consider the convex cone Ỹ+ = intY+ � {0}. With the property
that intY+ ⊆ Y+ \ l(Y+), we can see that Ỹ+ is pointed. Moreover, by Proposition
2.1(3), we have that Y w+ ⊆ Ỹ p+ . Inclusion (3.2) showed for σ = p, when applied to Ỹ+,
gets

⊔
λ∈Y w

+
argminx∈S〈λ, F (x)〉 ⊆ Ep(F, S, Ỹ+) the p-efficient set with respect to Ỹ+.

But in view of (2.1), Ep(F, S, Ỹ+) ⊆ Ee(F, S, Ỹ+) = Ew(F, S); the last equality being
trivially true by the fact that Ỹ+ is pointed.
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Let us show now the reverse inclusion for (3.2).
Case σ = w. Let x̄ ∈ Ew(F, S), then, by definition, (F (x̄) − intY+) � F (S) = ∅.

Using the well-known property that Y+ + intY+ ⊆ intY+, (F (x̄) − intY+) � (F (S) +
Y+) = ∅ holds too. Since F is Y+-convex and S is convex, then the set F (S) + Y+ is
convex. So, by separation theorem, there exists λ ∈ Y ∗ \ {0} such that

∀x ∈ S, ∀y ∈ Y+, ∀y′ ∈ intY+, 〈λ, F (x̄) − y′〉 ≤ 〈λ, F (x) + y〉.

Letting y′ → 0 and taking y = 0, we obtain x̄ ∈ argminx∈S〈λ, F (x)〉. Taking now
x = x̄ and y = 0, we see that 〈λ, y′〉 ≥ 0 ∀ y′ ∈ intY+. The well-known prop-
erty cl(int Y+) = clY+ (“cl” stands for the topological closure) shows that the last
inequality extends to y′ ∈ Y+, i.e., λ ∈ Y w+ .

Case σ = p. Let x̄ ∈ Ep(F, S), then there exists Ŷ+ � Y a convex cone such that
Y+ \ {0} ⊆ int Ŷ+ (Y+ is now supposed pointed) and x̄ ∈ Ee(F, S, Ŷ+). In view of
(2.1), x̄ ∈ Ew(F, S, Ŷ+) too. Moreover, F being Y+-convex and Y+ \ {0} ⊆ int Ŷ+,
obviously F remains Ŷ+-convex. So reverse inclusion (3.2) showed, for σ = w, may
be applied with Ŷ+, deducing thus λ ∈ Ŷ ∗

+ \ {0} such that x̄ ∈ argminx∈S〈λ, F (x)〉. It
remains to show that λ ∈ Y p+. If it was not the case, as Y+ \{0} ⊆ int Ŷ+, we therefore
could find y ∈ Y+ \ {0} such that 〈λ, y〉 = 0, contradicting Proposition 2.1(3).

The next result characterizes scalarly the σ-subdifferential for σ ∈ {s, p, w} and
will be crucial for the basic results of this paper.

Theorem 3.2. Let F : X → Y � {+∞}. Then, ∀x̄ ∈ X,

(3.3) ∂sF (x̄) ⊆
�

λ∈Y ∗
+\{0}

{A ∈ L(X,Y ) : λ ◦A ∈ ∂(λ ◦ F )(x̄)},

with equality if Y is locally convex and Y+ is closed. For σ ∈ {p, w}, ∀x̄ ∈ X,

(3.4) ∂σF (x̄) ⊇
⊔
λ∈Y σ

+

{A ∈ L(X,Y ) : λ ◦A ∈ ∂(λ ◦ F )(x̄)},

with equality if F is Y+-convex, with Y+ pointed as σ = p.
Proof. It is clear that, for x̄ �∈ domF , all the previous sets are empty. Hence it

suffices to consider x̄ ∈ domF and to see as in (2.2) that

(3.5) A ∈ ∂σF (x̄) ⇐⇒ A ∈ L(X,Y ) : x̄ ∈ Eσ(F −A,X)

and then to apply scalarization formulas (3.1)–(3.2).
In the finite-dimensional space Y = R

r equipped with its natural order Y+ = R
r
+,

the strong subdifferential reduces by the very definition to

(3.6) ∂s(f1, . . . , fr)(x̄) = ∂f1(x̄) × · · · × ∂fr(x̄).

The equality in (3.4) was already proved by Taa [27] for w-subdifferentials of set-
valued maps in Banach spaces using a direct scalarizing proof. It was also proved for
the e-subdifferential by Sawaragi, Nakayama, and Tanino [26] in finite-dimensional
spaces with an additional hypothesis on a Fenchel-type conjugate map of F .

3.2. σ-subdifferentiability and regular subdifferentiability. The vector
mapping F : X → Y � {+∞} is said to be at x̄ ∈ domF :
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� subdifferentiable (resp. strongly, properly, or weakly subdifferentiable) if

∂σF (x̄) �= ∅

for σ= e (resp., σ= s, p, w). In brief, σ-subdifferentiable when σ ∈ {e, s, p, w};
� regular subdifferentiable, if

∂(λ ◦ F )(x̄) = λ ◦ ∂sF (x̄) ∀λ ∈ Y ∗
+,

where it is understood that the set λ ◦ ∂sF (x̄) := {λ ◦A : A ∈ ∂sF (x̄)}.
This property, due to Raffin [23], essentially reposes upon the inclusion “⊆”, the

reverse one “⊇” being trivial. The absence of the word “strongly” in this definition will
be justified next. Afterwards, it is normal that the subdifferential regularity supposes
a priori a nonempty strong subdifferential, that is why, by definition, it includes the
value λ = 0. But, in most cases, we will just need the following weaker concepts,
depending on the choice of σ ∈ {p, w} in which the strong subdifferentiability is
anyway not necessary: F : X → Y � {+∞} will be said to be at x̄ ∈ domF

� σ-regular subdifferentiable, with σ ∈ {p, w}, if

∂(λ ◦ F )(x̄) = λ ◦ ∂sF (x̄) ∀λ ∈ Y σ+ .

From scalarization Theorem 3.2, we establish first the σ-subdifferentiability for
σ ∈ {p, e, w} under recent conditions similar to those of the scalar case.

Proposition 3.1. Let X be a Fréchet space and F ∈ Γ(X,Y ) be such that at
x̄ ∈ domF , the following Attouch–Brézis qualification condition is fulfilled:

R+[domF − x̄] is a closed vector subspace of X.

Then, for σ ∈ {p, w},

∂σF (x̄) �= ∅ iff ∃λ ∈ Y σ+ : λ ◦ F is l.s.c at x̄,

where the necessary condition demands Y+ to be pointed 4 as σ = p.
Proof. We use the following result recently established by Laghdir [15].5

Lemma 3.1. Let X be a Fréchet space and f ∈ Γ(X) be such that at x̄ ∈ dom f ,
R+[dom f − x̄] is a closed vector subspace of X. Then ∂f(x̄) �= ∅ iff f is l.s.c at x̄.

Assume that F satisfies the general hypotheses of Proposition 3.1. Then it is clear
that, for any fixed λ ∈ Y σ+ , the functional λ ◦ F also satisfies the general hypotheses
of the lemma. If λ ◦ F is l.s.c at x̄, we therefore can apply Lemma 3.1 and deduce
the existence of x∗λ ∈ ∂(λ ◦ F )(x̄). But λ ∈ Y σ+ , with σ = p (resp. σ = w) implies,
by definition (resp. by Proposition 2.1(4)), the existence of yλ ∈ Y+ \ l(Y+) (resp.
yλ ∈ intY+) such that 〈λ, yλ〉 = 1. Let Aλ : X → Y be defined by

(3.7) Aλ(x) = 〈x∗λ, x〉 yλ.

4With Y+ pointed, following the equality in (3.4) of Theorem 3.2, if Y p
+ = ∅, then ∂pF (x̄) = ∅.

5This result improves the well-known Attouch–Brézis theorem [3] about the subdifferentiability
of a scalar function, in a sense that l.s.c is not required more than at the point in question, in which
case, obviously, the condition becomes necessary and sufficient. In fact, necessity even holds in a
topological vector space and without a qualification condition in Lemma 3.1 as well as Proposition
3.1. Note also that if x̄ ∈ int dom f , then R+[dom f − x̄] = X, in particular, if f is continuous at x̄.
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Then Aλ ∈ L(X,Y ) and λ ◦ Aλ = x∗λ ∈ ∂(λ ◦ F )(x̄). It follows by Theorem 3.2(3.4)
that Aλ ∈ ∂σF (x̄), and the sufficient condition is proved. The necessary condition is
obtained easily using again Theorem 3.2 and Lemma 3.1.

While until now, strong subdifferentiability requires conditions slightly stronger.
Recently, Zălinescu [34] extended the strong subdifferentiability of F ∈ Γ(X,Y ) at
x̄ ∈ core(domF ) := {x ∈ domF : ∀x′ ∈ X, ∃α > 0, x + [−α, α]x′ ⊆ domF} (the
algebraic interior) established by Valadier [32, Theorem 6 and Remark 6] in real
linear spaces X and Y , with Y an order complete vector lattice and Y+ pointed, to
x̄ ∈ ri(domF ) := {x ∈ domF : ∀x′ ∈ domF, ∃α > 0, x + α(x − x′) ∈ domF}
(the relative interior). Well before, Zowe [35] extended some results of Valadier [32]
from order complete vector lattices to separated locally convex topological vector
spaces ordered by closed convex cones and established the strong subdifferentiability
of F ∈ Γ(X,Y ) under the three following conditions:

(H1) X is a reflexive Banach space,
(H2) F is continuous at x̄ ∈ int domF ,
(H3) intY ∗

+ �= ∅.
He also proved that if, furthermore, the following condition is realized:

(H4) all order intervals [a, b] are relatively weakly compact in Y ,
then F is even regular subdifferentiable at x̄. Moreover, he showed next that hypothe-
ses (H3) and (H4) can be replaced by the following condition:

(H5) Y is semireflexive and Y+ has a weakly compact base lying in a closed hyper-
plane not running through 0.

Recall that a nonempty convex subset B ⊆ Y+ not containing 0 is called a base of
Y+, if each y ∈ Y+ \ {0} has a unique representation y = αb, where b ∈ B and α > 0.

The (σ-)regular subdifferentiability concept will reveal to be crucial in what fol-
lows. So, we suggest making on it some commentaries surely in some special cases of
helpful interest. In the infinite-dimensional case, we have, for instance, the following
processes.

Remark 1. Hypothesis (H2) holds, for example, if F ∈ Γ0(X,Y ), where Y is a
Fréchet space equipped with a closed pointed and normal preorder Y+ (Théra [29]).
Recall that a point of continuity is trivially necessarily in the interior of the effective
domain. On the other hand, it has been observed in [35] that it is easy to construct
closed pointed convex cones Y+ satisfying (H5): Y+ =

⊔
α≥0 αB, with B a convex

weakly compact subset of a closed hyperplane in Y not containing 0.
In finite dimension, (H5) is always fulfilled, and (H2) may be weakened. Let us

see this in the two following remarks.
Remark 2. In finite dimension, a cone has a compact base iff it is closed and

pointed (see [19], e.g.). But following Peressini–Borwein (see again [19]), a base in a
vector space is always of the form

B = {y ∈ Y+ : 〈λ, y〉 = 1}
for some λ in the algebraic strict polar cone of Y+. This means that every mapping
of Γ(X,Rr) in the setting of a reflexive Banach space X and a preorder Y+ closed
pointed is, at every point of continuity, regular subdifferentiable.

Remark 3. When Y+ = R
r
+, we have Y ∗

+ = R
r
+ and (Y ∗

+)◦ = int R
r
+. So, by (3.6),

subdifferential regularity (resp. σ-regularity for σ = w, p) of F = (f1, . . . , fr) becomes
exactly a well-known chain rule of convex analysis: ∀(λ1, . . . , λr) ≥ 0 (resp. � 0, > 0),

∂

(
r∑
i=1

λifi

)
(x̄) =

r∑
i=1

λi∂fi(x̄).
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The formula holds with the respective λis under the well-known Moreau–Rockafellar
qualification condition [20, 24]:

(MR)

⎧⎪⎨⎪⎩
fi ∈ Γ(X) (i = 1 · · r), X locally convex,
(r − 1) functions fi are finite and continuous at a point of
the effective domain of the other one,

provided that all the fis are subdifferentiable at x̄ (resp. every one or none of them
is it at x̄ as σ = w and for all x̄ ∈ X as σ = p). For the latter, the formula even
holds under the following weaker qualification condition of the Attouch–Brézis kind
[11, pp. 139–140]:

(AB)

{
fi ∈ Γ0(X) (i = 1 · · r), X a Fréchet space,
R+[ΔXr −

∏r
i=1 dom fi] is a closed vector subspace of Xr,

where Xr = X × · · · ×X (r times) and ΔXr = {(x, . . . , x) ∈ Xr}. The (AB)-type
conditions have the advantage to be in some sense weaker, with those of (MR) easy
to check.

The σ-regular subdifferentiability appears first to be of great interest for finding
the gap between vector and scalar concepts, a well-known question in vector analysis.
Indeed, for the vector subdifferentials, we obtain the following relationships.

Theorem 3.3. Let F ∈ Γ(X,Y ) be σ-regular subdifferentiable at x̄, σ ∈ {p, w}
and Y+ be pointed as σ = p. Then,

(3.8) ∂σF (x̄) = ∂sF (x̄) + Zσ(X,Y ),

where Zσ(X,Y ) = {A ∈ L(X,Y ) : ∃ λ ∈ Y σ+ , λ ◦ A = 0} is the set of σ-zerolike
linear continuous operators (A ∼σ 0), which represents here the gap between ∂σF and
∂sF .

Proof. By equality in (3.4) and σ-regular subdifferentiability, we have

A ∈ ∂σF (x̄) ⇔ A ∈ L(X,Y ), ∃λ ∈ Y σ+ : λ ◦A ∈ ∂(λ ◦ F )(x̄) = λ ◦ ∂sF (x̄)
⇔ A ∈ L(X,Y ), ∃B ∈ ∂sF (x̄), ∃λ ∈ Y σ+ : λ ◦ (A−B) = 0
⇔ ∃B ∈ ∂sF (x̄) : A−B ∈ Zσ(X,Y )
⇔ A ∈ ∂sF (x̄) + Zσ(X,Y ).

As Zσ(X,Y ) = −Zσ(X,Y ), this set may be replaced in (3.8) by its opposite.
In the finite-dimensional case Y = R

r and Y+ = R
r
+, we have that Y w+ = R

r
+ \{0}

and Y p+ = int R
r
+. So, a matrix A = (A1, . . . , Ar) ∈ R

r×n is in Zw(Rn,Rr) (resp. in
Zp(Rn,Rr)) if there exists a vector λ of r nonnegative components λi not all equal
to zero (resp. all positive) such that ATλ =

∑r
i=1 λiAi = 0. The set Zp(Rn,Rr) of

p-zerolike matrices has already been evoked in [26, pp. 204], where the authors claim,
for F ∈ Γ(Rn,Rr), that6

x̄ ∈ Ep(F,Rn) ⇔ ∃A ∼p 0 : A ∈ ∂sF (x̄) ⇔ ∃A ∼p 0 : x̄ ∈ Es(F −A,Rn).

The second relation being trivial from (3.5). While in comparison with (3.8), the first
relation can be viewed by (2.2) as

0 ∈ ∂pF (x̄) ⇐⇒ 0 ∈ ∂sF (x̄) + Zp(Rn,Rr).

6We just wonder if this result does not require a certain regularity on F , since it is announced
without proof.
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Remark 4. As predicted, let us underline that, in general spaces, for instance,
Y is locally convex equipped with a closed pointed preorder Y+, we effectively can-
not talk about σ-subdifferential regularity for σ ∈ {p, e, w}. In fact, for all λ ∈ Y ∗

+,
∂(λ ◦ F )(x̄) = λ ◦ ∂σF (x̄) for σ ∈ {p, e, w} would imply in view of the equality in
(3.3) that ∂σF (x̄) ⊆ ∂sF (x̄). With the respective reverse inclusions, the subdifferen-
tials of Pareto type would coincide with the strong one, and the function would be
regular subdifferentiable too. This may be in contradiction with Theorem 3.3, and
this justifies the absence of the word “strongly” in the regular subdifferentiability
appellation.

3.3. Characterizations via derivatives. Let us recall the most popular no-
tions of derivatives for vector mappings. F : X → Y � {+∞} is said to be, at
x̄ ∈ domF ,

� directionally differentiable, in brief, D-differentiable, if ∀d ∈ X ,

lim
t↘0+

F (x̄+ td) − F (x̄)
t

= l(d) ∈ Y,

we denote F ′(x̄; d) = l(d) the directional derivative of F at x̄ in the direction
d;

� Gâteaux differentiable, in brief, G-differentiable, if ∃A∈L(X,Y ), ∀d∈X ,

F ′(x̄; d) = lim
t→0

F (x̄+ td) − F (x̄)
t

= A(d),

we denote F ′
G(x̄) = A the Gâteaux derivative of F at x̄;

� Fréchet differentiable, in brief, F-differentiable, if ∃A ∈ L(X,Y ),

lim
h→0

F (x̄ + h) − F (x̄) −A(h)
‖h‖ = 0,

we denote F ′(x̄) = A the Fréchet derivative of F at x̄; here, X being, of
course, normed.

Obviously,
• F-differentiable at x̄ =⇒ G-differentiable at x̄ =⇒ D-differentiable at x̄.
• In this case, F ′(x̄) = F ′

G(x̄) = F ′(x̄; ·).
For a finite-dimensional image space, the D-differentiability of F = (f1, . . . , fr) is,

of course, equivalent to D-differentiability of functionals fis. But, it is well known that
every proper convex functional always admits directional derivatives in all direction at
any point of subdifferentiability. So the D-differentiability of F holds under the condi-
tions of Lemma 3.1 and, in particular, at every point of int domF =

�r
i=1 int dom fi,

where F is sequentially R
r
+-l.s.c or, strongly again, at every point of the continu-

ity of F . For the case of infinite-dimensional image spaces, the D-differentiability of
F ∈ Γ(X,Y ) was established in [35] under hypotheses (H2)–(H3) and the preorder
normality assumption.

We express now the σ-subdifferentials in terms of the derivatives when they exist.
Proposition 3.2. Let Y be locally convex, Y+ be closed, pointed as σ = p, and

F ∈ Γ(X,Y ) be D-differentiable at x̄. Then,

∂sF (x̄) = {A ∈ L(X,Y ) : ∀d ∈ X, F ′(x̄; d) ≥Y+ A(d)},
∂wF (x̄) = {A ∈ L(X,Y ) : �d ∈ X, F ′(x̄; d) <Y+ A(d)},
∂pF (x̄) = {A ∈ L(X,Y ) : ∃Ŷ+ � Y a convex cone that satisfies

Y+ \ {0} ⊆ int Ŷ+, �d ∈ X, F ′(x̄; d) �Ŷ+
A(d)}.
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Proof. We shall prove that, for σ ∈ {s, p, w},

(3.9) A ∈ ∂σF (x̄) ⇐⇒ A ∈ L(X,Y ) : 0 ∈ Eσ(F ′(x̄; ·) −A,X),

which, by the very definitions of σ-efficient sets, show the proposition. To this, observe
first that, for all λ ∈ Y ∗

+, by continuity of λ, for all d ∈ X ,

(3.10) λ ◦ F ′(x̄; d) = lim
t↘0+

λ ◦ F (x̄+ td) − λ ◦ F (x̄)
t

= (λ ◦ F )′(x̄; d).

On the other hand, by Theorem 3.2, to say A ∈ ∂σF (x̄) for σ = s (resp. σ ∈ {p, w}) is
equivalent to saying that λ ◦A ∈ ∂(λ ◦F )(x̄) ∀ λ ∈ Y ∗

+ \ {0} (resp. for some λ ∈ Y σ+ ),
with A ∈ L(X,Y ). As λ ◦ F ∈ Γ(X) is D-differentiable at x̄, then we have

∂(λ ◦ F )(x̄) = {x∗ ∈ X∗ : ∀d ∈ X, (λ ◦ F )′(x̄; d) ≥ 〈x∗, d〉}.

So A ∈ ∂σF (x̄) is also equivalent to λ ◦ F ′(x̄; d) ≥ λ ◦ A(d) ∀ d ∈ X or equivalently,
0 ∈ argmind∈X〈λ, F ′(x̄; d)−A(d)〉, with the respective σs and λs. Property (3.9) thus
follows from scalarization Theorem 3.1, since for σ ∈ {p, w}, F ′(x̄; ·) is well Y+-convex.
More precisely, as shown in what follows.

Lemma 3.2. With the same hypotheses as Proposition 3.2, vector function d �→
F ′(x̄; d) is positively homogeneous Y+-subadditive, i.e., ∀α ∈ R+, ∀d1, d2 ∈ X,

F ′(x̄;αd1) = αF ′(x̄; d1),
F ′(x̄; d1 + d2) ≤Y+ F ′(x̄; d1) + F ′(x̄; d2).

Proof of Lemma 3.2. Homogeneous positivity is immediate from the definition of
F ′(x̄; d). While subadditivity, it follows from the one of (λ ◦ F )′(x̄; .), relation (3.10),
and Proposition 2.1(1).

Proposition 3.3. Let Y be locally convex, Y+ be closed pointed, and F ∈ Γ(X,Y )
be both D-differentiable, p-regular subdifferentiable, and s-subdifferentiable at x̄. Then,
∀d ∈ X,

F ′(x̄; d) = MAXs
A∈∂sF (x̄)

A(d),

F ′(x̄; d) ∈ MAXσ
A∈∂σF (x̄)

A(d) for σ ∈ {p, w},

where MAXσx∈D G(x) = G(Eσ(−G,D)) denotes the set7 of σ-maximal values of a
vector mapping G over a subset D.

Proof. For σ = s, taking into account the first result of Proposition 3.2, we have
to prove that, for any fixed d ∈ X , there exists A ∈ ∂sF (x̄) such that A(d) = F ′(x̄; d).
If we proceed by contradiction, it would mean that F ′(x̄; d) − A(d) ∈ Y+ \ {0} for
every A ∈ ∂sF (x̄). Picking λ ∈ (Y ∗

+)◦, we would have

(3.11) 〈λ, F ′(x̄; d) −A(d)〉 > 0 ∀A ∈ ∂sF (x̄).

Since λ ◦ F ∈ Γ(X) is subdifferentiable at x̄ (see (3.3)), it holds that

(λ ◦ F )′(x̄; d) = max
x∗∈∂(λ◦F )(x̄)

〈x∗, d〉.

7It is easy to see that the set of strong maximal values MAXsx∈D G(x) is a singleton if the
preorder is pointed. So, we consider it a vector instead of a set.
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Let x∗ ∈ ∂(λ◦F )(x̄) be such that (λ◦F )′(x̄; d) = 〈x∗, d〉 realizing this maximum. Let
A∗ ∈ ∂sF (x̄) be given by p-regular subdifferentiability such that x∗ = λ ◦ A∗. Then,
with (3.10), λ ◦ F ′(x̄; d) = (λ ◦ F )′(x̄; d) = λ ◦ A∗(d) so in contradiction with (3.11).
Case σ ∈ {p, w} follows easily by contradiction too, using both the previous result
and the two last formulas of Proposition 3.2.

Proposition 3.4. Let Y be locally convex, Y+ be closed, and F ∈ Γ(X,Y ).
(1) If F is G-differentiable at x̄, with Y+ pointed as σ = p, then

∂sF (x̄) = {F ′
G(x̄)},

∂σF (x̄) = {F ′
G(x̄)} + Zσ(X,Y ) for σ ∈ {p, w}.

(2) Conversely, if F is both D-differentiable and p-regular subdifferentiable at x̄,
with Y+ pointed, and ∂sF (x̄) = {A}, then F is G-differentiable at x̄ and
F ′
G(x̄) = A.

Proof. (1) Case σ = s is directly coming from G-differentiability and Proposition
3.2. For σ ∈ {p, w}, let us prove first the following lemma.

Lemma 3.3. In Y locally convex with Y+ closed, vector mapping F ∈ Γ(X,Y ),
which is G-differentiable at x̄, is regular subdifferentiable at this point.

Proof of Lemma 3.3. Similarly to (3.10), we have that (λ◦F )′G(x̄) = λ◦F ′
G(x̄) for

each λ ∈ Y ∗
+, so functional λ◦F ∈ Γ(X) is G-differentiable at x̄. Hence ∂(λ◦F )(x̄) =

{(λ ◦ F )′G(x̄)} = λ ◦ {F ′
G(x̄)} = λ ◦ ∂sF (x̄).

If F is regular subdifferentiable, then it is obviously a w-regular one. If Y p+ = ∅,
then ∂pF (x̄) and Zp(X,Y ) are empty; otherwise, F is also p-regular subdifferentiable.
The result of assertion (1) for σ ∈ {p, w} then follows from Theorem 3.3.

(2) This assertion is an immediate consequence of Proposition 3.3.
Propositions 3.2 and 3.3 were proved for σ = s by Valadier [32] in the setting of

normal order complete vector lattices with continuity hypothesis (H2), while Propo-
sition 3.4, it was again shown for σ = s by Zowe [35] in the more general setting of
ordered separated locally convex topological vector spaces using the order normality
assumption and hypotheses (H1) to (H4).

We end the section by the following corollaries.
Corollary 3.1. Let Y be locally convex, Y+ be closed, and pointed as σ = p,

F ∈ Γ(X,Y ), and σ ∈ {p, w}.
(1) If F is σ-regular subdifferentiable at x̄, then

∂σF (x̄) =
⊔

A∈∂sF (x̄)

∂σA(x) ∀x ∈ X.

(2) If F is, in particular, G-differentiable at x̄, then

∂σF (x̄) = ∂σ(F ′
G(x̄))(x) ∀x ∈ X.

(3) In particular, one has

Zσ(X,Y ) = ∂σ0(x) ∀x ∈ X.

Indeed, since a continuous linear operator A is G-differentiable and A′
G(x) =

A ∀ x ∈ X , then according to Theorem 3.3 and Proposition 3.4(1), we have that
∂σF (x̄) =

⊔
A∈∂sF (x̄){A} + Zσ(X,Y ) =

⊔
A∈∂sF (x̄) ∂

σA(x) (∀x ∈ X).

4. σ-subdifferential calculus rules. We are concerned in this section with the
subdifferential calculus of the sum and/or the composition of convex vector mappings.
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4.1. Addition. In literature, one may find some calculus rules about the sum of
two convex vector mappings. The following formula was established by Théra [29] in
the setting of a normal order complete vector topological space Y , where one of the
functions is supposed to be continuous over a separated locally convex space X :

∂s(F +G)(x̄) = ∂sF (x̄) + ∂sG(x̄).

In the more general setting of Banach spaces partially ordered, a similar result was
proved in the case σ = w by Lin [18] and Taa [27] for convex set-valued maps under
a Slater-type qualification condition:

∂w(F +G)(x̄) ⊂ ∂wF (x̄) + ∂wG(x̄).

Let us emphasize that unlike the extended scalar concept, i.e., σ = s, for which
the reverse inclusion is trivial, in fact, with Pareto concepts, this converse cannot
hold. Look at this with this simple example of very regular vector mappings: Let
F , G ∈ L(R2,R2) be defined by F (x1, x2) = (x1, 0) and G(x1, x2) = (0, x2). At
x̄ = (0, 0), F ′(0, 0) = (1

0
0
0 ), G′(0, 0) = (0

0
0
1 ), and (F + G)′(0, 0) = (1

0
0
1 ). But A =

(1
0

0
−1 ) is a matrix which verifies 〈λ,A− F ′(0, 0)〉 = 0, with λ = (1, 0) or equivalently,

by taking natural order R
2
+, A ∈ F ′(0, 0) + Zw(R2,R2) = ∂wF (0, 0) according to

Proposition 3.4(1). In a similar way, by taking λ = (0, 1), we verify that the matrix
−A ∈ ∂wG(0, 0). Hence, the matrix 0 = A − A ∈ ∂wF (0, 0) + ∂wG(0, 0). However,
0 �∈ ∂w(F + G)(0, 0), since otherwise, by the Proposition 3.4(1) again, we obtain, for
some λ ∈ R

2
+ \ {0}, contradiction 0 = 〈λ, (F +G)′(0, 0)〉 = λ. Thus

∂wF (0, 0) + ∂wG(0, 0) �⊂ ∂w(F +G)(0, 0).

In fact, the presence of the strong subdifferential establishes the desired equality.
Theorem 4.1. Let F , G : X → Y � {+∞}, and σ ∈ {p, w}. Then, ∀x̄ ∈ X,

∂σ(F +G)(x̄) ⊇ ∂σF (x̄) + ∂sG(x̄).

Assume now that G is σ-regular subdifferentiable at x̄, Y+ is pointed as σ = p, and
one of the two following qualification conditions is satisfied:

(MR)1

⎧⎪⎨⎪⎩
F, G ∈ Γ(X,Y ), X locally convex,
one of the two functions is finite and continuous
at some point of the effective domain of the other one.

(AB)1

{
F, G ∈ Γ0(X,Y ), X Fréchet space,
R+[domF − domG] is a closed vector subspace of X.

Then,

∂σ(F +G)(x̄) = ∂σF (x̄) + ∂sG(x̄).

Proof. Let us prove the first inclusion for σ = w. Let A ∈ ∂wF (x̄), B ∈ ∂sG(x̄).
We proceed by contradiction: If A+B �∈ ∂w(F +G)(x̄), we would have

F (x0) +G(x0) − F (x̄) −G(x̄) −A(x0 − x̄) −B(x0 − x̄) ∈ − intY+

for some x0 ∈ dom(F +G) = domF �domG. Then since B ∈ ∂sG(x̄), we would have

−G(x0) +G(x̄) +B(x0 − x̄) ∈ −Y+.
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Adding term by term and taking into account the fact that −Y+ − intY+ ⊆ − intY+,
we would obtain

F (x0) − F (x̄) −A(x0 − x̄) ∈ − intY+,

which would contradict A ∈ ∂wF (x̄). Case σ = p is obtained similarly by using now
the fact that − int Ŷ+ ⊆ −Ŷ+ \ l(Ŷ+) and −Ŷ+ \ l(Ŷ+) − Ŷ+ \ l(Ŷ+) ⊆ −Ŷ+ \ l(Ŷ+);
Ŷ+ being given by the p-subdifferential definition.

We show the reverse inclusion by scalarization for σ ∈ {p, w} simultaneously. So
let A ∈ ∂σ(F +G)(x̄), then, by Theorem 3.2, there exists λ ∈ Y σ+ such that

λ ◦A ∈ ∂[λ ◦ (F +G)](x̄) = ∂(λ ◦ F + λ ◦G)(x̄).

Following condition (MR)1 or (AB)1, scalar functions λ ◦ F and λ ◦ G, then satisfy
exactly the qualification hypothesis of Moreau–Rockafellar or Attouch–Brézis. Hence,
the subdifferential addition formula for functionals λ ◦F and λ ◦G applies, and, with
the σ-regular subdifferentiability assumption on G, we therefore obtain

∂(λ ◦ F + λ ◦G)(x̄) = ∂(λ ◦ F )(x̄) + ∂(λ ◦G)(x̄) = ∂(λ ◦ F )(x̄) + λ ◦ ∂sG(x̄).

Thus we deduce B ∈ ∂sG(x̄) such that λ ◦ (A−B) ∈ ∂(λ ◦ F )(x̄) which shows, again
by Theorem 3.2, that A− B ∈ ∂σF (x̄) or equivalently A ∈ ∂σF (x̄) + ∂sG(x̄).

Using Lemma 3.3 and Proposition 3.4(1), we easily obtain the following corollary.
Corollary 4.1. Let X and Y be locally convex, Y+ be closed, pointed as σ = p,

F ∈ Γ(X,Y ), A ∈ L(X,Y ), and σ ∈ {p, w}. Then, ∀x̄ ∈ X,

∂σ(F +A)(x̄) = ∂σF (x̄) +A.

In finite-dimensional image space, according to Remark 3, Theorem 4.1 becomes
the following.

Corollary 4.2. Let X be locally convex, fi, gi ∈ Γ(X) (i = 1 · · r), and consider
the following hypotheses:

(MR) (r − 1) gis are finite and continuous at a point of domain of the other one.
(AB) The gis are l.s.c, R+[ΔXr−

∏r
i=1 dom gi] is a closed vector subspace of Xr.

(MR)1 All the gis are finite and continuous at some point of
�r
i=1 dom fi.

(MR)′1 All the fis are finite and continuous at some point of
�r
i=1 dom gi.

(AB)1 The fis, gis are l.s.c, R+[
�r
i=1 dom fi−

�r
i=1 dom gi] is closed vector subspace.

If one of conditions (MR)1,
[
(MR)′1 and (MR)

]
,
[
(MR)′1 and (AB), with X Fréchet

]
,[

(AB)1 and (MR), with X Fréchet
]
, or

[
(AB)1 and (AB), with X Fréchet

]
is satis-

fied, then, ∀x̄ ∈ X,

∂p(f1 + g1, . . . , fr + gr)(x̄) = ∂p(f1, . . . , fr)(x̄) +
r∏
i=1

∂gi(x̄).

If, in addition to condition (MR)1,
[
(MR)′1 and (MR)

]
, or

[
(AB)1 and (MR), with

X Fréchet
]
, every one or none of the gis is subdifferentiable at x̄, then

∂w(f1 + g1, . . . , fr + gr)(x̄) = ∂w(f1, . . . , fr)(x̄) +
r∏
i=1

∂gi(x̄).
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4.2. Composition. We present in this subsection several results concerning the
σ-subdifferential calculus of the composite of two convex vector mappings. The main
one of them is the following.

Theorem 4.2. Let F : X → Y � {+∞}, G : Y → Z � {+∞}, and σ ∈ {p, w}.
Then, ∀x̄ ∈ X,

∂σ(G ◦ F )(x̄) ⊇
⊔

A∈∂sG(F (x̄))

∂σ(A ◦ F )(x̄).

Assume now that G is (Y+, Z+)-nondecreasing and σ-regular subdifferentiable at F (x̄),
Z+ is pointed as σ = p, and one of the two following qualification conditions is
satisfied:

(MR)2

{
F ∈ Γ(X,Y ), G ∈ Γ(Y, Z), X and Y locally convex,
G is finite and continuous at some point of ImF := F (domF ).

(AB)2

{
F ∈ Γ0(X,Y ), G ∈ Γ0(Y, Z), X and Y Fréchet spaces,
R+[domG− ImF ] is a closed vector subspace of Y.

Then,

∂σ(G ◦ F )(x̄) =
⊔

A∈∂sG(F (x̄))

∂σ(A ◦ F )(x̄).

Proof. Let us prove the first inclusion for σ = w. Let B ∈ ∂w(A ◦ F )(x̄) for some
A ∈ ∂sG(F (x̄)). We proceed by contradiction: If B �∈ ∂w(G ◦ F )(x̄), we would have

G ◦ F (x0) −G ◦ F (x̄) −B(x0 − x̄) ∈ − intZ+

for some x0 ∈ dom(G ◦F ) = F−1(domG)� domF . But A ∈ ∂sG(F (x̄)) would imply

−G ◦ F (x0) +G ◦ F (x̄) +A ◦ F (x0) −A ◦ F (x̄) ∈ −Z+.

Adding term by term, by using that −Z+ − intZ+ ⊆ − intZ+, we would obtain

A ◦ F (x0) −A ◦ F (x̄) −B(x0 − x̄) ∈ − intZ+,

which would contradict B ∈ ∂w(A ◦F )(x̄). The case of σ = p is similarly obtained by
the same arguments as for Theorem 4.1.

To show the reverse inclusion, we proceed by scalarization. To this end, we
need the following subdifferential formula of a scalar composite recently proved by
Combari, Laghdir, and Thibault [11], obtained well before by Lemaire [16] in the
setting of Banach spaces under the Moreau–Rockafellar-type hypothesis.

Lemma 4.1. Let F : X → Y � {+∞} and g : Y → R � {+∞} be a functional
Y+-nondecreasing such that one of the two following qualification conditions holds:

(MR)2

{
F ∈ Γ(X,Y ), g ∈ Γ(Y ), X and Y locally convex,
g is finite and continuous at some point of ImF.

(AB)2

{
F ∈ Γ0(X,Y ), g ∈ Γ0(Y ), X and Y Fréchet spaces,
R+[dom g − ImF ] is a closed vector subspace of Y.
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Then, ∀x̄ ∈ X,

∂(g ◦ F )(x̄) =
⊔

λ∈∂g(F (x̄))

∂(λ ◦ F )(x̄).

We come back to Theorem 4.2. Let B ∈ ∂σ(G ◦ F )(x̄), then, by Theorem 3.2,

μ ◦B ∈ ∂(μ ◦G ◦ F )(x̄) for some μ ∈ Zσ+.

It is easy to see that F and μ ◦G satisfies the conditions of Lemma 4.1. Hence,

∂(μ ◦G ◦ F )(x̄) =
⊔

λ∈∂(μ◦G)(F (x̄))

∂(λ ◦ F )(x̄).

So, by σ-regular subdifferentiability of G, we deduce the existence of A ∈ ∂sG(F (x̄))
such that μ ◦B ∈ ∂(μ ◦A ◦ F )(x̄). Let us observe that

A ∈ ∂sG(F (x̄)), G is (Y+, Z+)-nondecreasing =⇒ A ∈ L+(Y, Z),

since, in fact, A ∈ L(Y, Z) and 0 ≤Z+ G(F (x̄)) − G(F (x̄) − y) ≤Z+ A(y) ∀ y ∈ Y+.
Consequently, A ◦ F ∈ Γ(X,Z) and then, by Theorem 3.2, B ∈ ∂σ(A ◦ F )(x̄).

We continue with some specializations of Theorem 4.2.
Corollary 4.3. Let Z be locally convex, G ∈ Γ(Y, Z) be (Y+, Z+)-nondecreasing

σ-regular subdifferentiable at A(x̄), σ ∈ {p, w}, Z+ be closed, pointed as σ = p. Then,

∂σ(G ◦A)(x̄) = ∂sG(A(x̄)) ◦A+ Zσ(X,Z) ∀A ∈ L(X,Y ),
= ∂σG(A(x̄)) ◦A ∀A ∈ L−1(X,Y ),

respectively, if
(i) X,Y are locally convex and G is finite and continuous at some point of ImA,

or X, Y are Fréchet spaces, G is sequentially Z+-l.s.c and R+[domG− ImA]
is a closed vector subspace of Y ,

respectively,
(ii) X, Y are locally convex and G is finite and continuous at some point of Y ,

or X, Y are Fréchet spaces and G is sequentially Z+-l.s.c.
Proof. The first formula is obtained via Theorem 4.2 and Proposition 3.4. Indeed,

∂σ(G ◦A)(x̄) =
⊔

B∈∂sG(A(x̄))

∂σ(B ◦A)(x̄) =
⊔

B∈∂sG(A(x̄))

B ◦A+ Zσ(X,Z)

= ∂sG(A(x̄)) ◦A+ Zσ(X,Z).

The second formula requires the following relation, which may be easily obtained
by definition of the σ-zerolike sets using the fact that A is invertible:

Zσ(Y, Z) ◦A = Zσ(X,Z).

Indeed, because ImA = Y , the first formula still holds under condition (ii), so with
Theorem 3.3, ∂σ(G ◦A)(x̄) = [∂sG(A(x̄)) + Zσ(Y, Z)] ◦A = ∂σG(A(x̄)) ◦A.

The following result may be viewed as a vector extension of the subdifferential
regularity in the sense of Pareto.

Proposition 4.1. Let F ∈ Γ(X,Y ) be regular subdifferentiable at x̄, σ ∈ {p, w}
and Z+ be pointed as σ = p. Then,

∂σ(A ◦ F )(x̄) = A ◦ ∂sF (x̄) + Zσ(X,Z) ∀A ∈ L+(Y, Z),
= A ◦ ∂σF (x̄) ∀A ∈ L−1

+ (Y, Z),

where the last equality demands Y+ to be pointed as σ = p.
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Proof. We already pointed out that F ∈ Γ(X,Y ) and A ∈ L+(Y, Z) imply that
A ◦ F ∈ Γ(X,Z). On the other hand, let μ ∈ Zσ+, then λ = μ ◦ A ∈ Y ∗ and
λ(Y+) = μ(A(Y+)) ⊆ μ(Z+) ⊆ R+, i.e., λ ∈ Y ∗

+. Hence, by Theorem 3.2 and the
regular subdifferentiability assumption, we have that

B ∈ ∂σ(A ◦ F )(x̄) ⇔ B ∈ L(X,Z), ∃μ ∈ Zσ+ : μ ◦B ∈ ∂(μ ◦A ◦ F )(x̄) = λ ◦ ∂sF (x̄)
⇔ B ∈ L(X,Z), ∃C ∈ ∂sF (x̄), ∃μ ∈ Zσ+ : μ ◦ (B −A ◦ C) = 0
⇔ ∃C ∈ ∂sF (x̄) : B −A ◦ C ∈ Zσ(X,Z)
⇔ B ∈ A ◦ ∂sF (x̄) + Zσ(X,Z).

If, furthermore, A is invertible, then we easily have like for Corollary 4.3 that

A ◦ Zσ(X,Y ) = Zσ(X,Z).

The proof ends by applying Theorem 3.3.
Remark 5. We already justified in Remark 4 that σ-subdifferential regularity for

σ ∈ {p, e, w} cannot generally hold, and this does not contradict Proposition 4.1 since
any A ∈ L(Y,R) cannot be invertible except for the trivial case where Y = R too.

In finite-dimensional image space, according to Remark 3, Theorem 4.2 becomes
the following.

Corollary 4.4. Let X, Y be locally convex, F ∈ Γ(X,Y ), gi ∈ Γ(Y ) (i = 1 · · r)
be Y+-nondecreasing and consider the following hypotheses:

(MR) (r − 1) gis are finite and continuous at a point of domain of the other one.
(AB) The gis l.s.c, R+[ΔY r −

∏r
i=1 dom gi] closed vector subspace of Y r.

(MR)2 All the gis are finite and continuous at some point of ImF.

(AB)2 The gis l.s.c,F sequentially Y+-l.s.c, R+[
�r
i=1 dom gi − ImF ] closed vector

subspace.

If one of conditions (MR)2,
[
(AB)2 and (MR), with X, Y Fréchet

]
or
[
(AB)2 and

(AB), with X, Y Fréchet
]

is satisfied, then, ∀x̄ ∈ X,

∂p(g1 ◦ F, . . . , gr ◦ F )(x̄) =
⊔

λi∈∂gi(F (x̄))
i=1··r

∂p(λ1 ◦ F, . . . , λr ◦ F )(x̄).

If, in addition to condition (MR)2 or
[
(AB)2 and (MR), with X, Y Fréchet

]
, every

one or none of the gis is subdifferentiable at F (x̄), then

∂w(g1 ◦ F, . . . , gr ◦ F )(x̄) =
⊔

λi∈∂gi(F (x̄))
i=1··r

∂w(λ1 ◦ F, . . . , λr ◦ F )(x̄).

4.3. Addition/composition. In what follows, we establish a formula concern-
ing the σ-subdifferential of the sum of a vector mapping with a vector composite.

Theorem 4.3. Let F : X → Y �{+∞}, G : X → Z�{+∞}, H : Z → Y �{+∞},
and σ ∈ {p, w}. Then, ∀x̄ ∈ X,

∂σ(F +H ◦G)(x̄) ⊇
⊔

A∈∂sH(G(x̄))

∂σ(F +A ◦G)(x̄).
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Assume now that H is (Z+, Y+)-nondecreasing and σ-regular subdifferentiable at G(x̄),
Y+ is pointed as σ = p, and one of the two following qualification conditions is satis-
fied:

(MR)3

{
F ∈ Γ(X,Y ), G ∈ Γ(X,Z), H ∈ Γ(Z, Y ), X and Z locally convex,
H is finite and continuous at some point of G(domF � domG).

(AB)3

{
F ∈ Γ0(X,Y ), G ∈ Γ0(X,Z), H ∈ Γ0(Z, Y ), X and Z Fréchet spaces,
R+[domH −G(domF � domG)] is a closed vector subspace of Z.

Then,

∂σ(F +H ◦G)(x̄) =
⊔

A∈∂sH(G(x̄))

∂σ(F +A ◦G)(x̄).

The proof is obtained identically to Theorem 4.2 using, instead of Lemma 4.1,
the following result due to Combari, Laghdir, and Thibault [11].

Lemma 4.2. Let f : X → R�{+∞}, G : X → Z�{+∞}, and h : Z → R�{+∞}
be a functional Z+-nondecreasing such that one of the two following conditions holds:

(MR)3

{
f ∈ Γ(X), G ∈ Γ(X,Z), h ∈ Γ(Z), X and Z locally convex,
h is finite and continuous at some point of G(dom f � domG).

(AB)3

{
f ∈ Γ0(X), G ∈ Γ0(X,Z), h ∈ Γ0(Z), X and Z Fréchet spaces,
R+[domh−G(dom f � domG)] is a closed vector subspace of Z.

Then, ∀x̄ ∈ X,

∂(f + h ◦G)(x̄) =
⊔

μ∈∂h(G(x̄))

∂(f + μ ◦G)(x̄).

Though popular, the (MR)- and (AB)-type conditions are by their simplicity and
feasibility, there exist other weaker interior point conditions ensuring the previous
formula, as the following Azé- [4] type condition recently established in [13]:⎧⎪⎨⎪⎩

f ∈ Γ(X), G ∈ Γ(X,Z), h ∈ Γ(Z), X and Z locally convex,
for each neighborhood V of 0 in X, there exists α ∈ R such that
0 ∈ intE [Lev(h;α) −G(Lev(f ;α) � domG � αV )],

where intE stands for the topological interior in E := Vect[domh−G(dom f�domG)],
Vect(S) means vector space generated by a set S, and the symbol Lev refers to R+-
Lev. Weaker again in a sense, another class of qualification conditions, called of
closedness-type, is introduced recently by Boţ, Grad, and Wanka [9, 10]. Main among
them is⎧⎪⎨⎪⎩

f ∈ Γ0(X), h ∈ Γ0(Z), X and Z separated locally convex,
G ∈ Γ(X,Z) star Z+-l.s.c, Z+ closed, [G(dom f) + Z+] � domh �= ∅,⊔
μ∈domh∗(0, h∗(μ)) + Epi (f + μ ◦G)∗ is closed,

where h∗ stands for the Fenchel conjugate of h (idem for (f + μ ◦G)∗), Epi refers to
R+-Epi, and star Z+-l.s.c means l.s.c of μ◦G for each μ ∈ Z∗

+. Star and sequential Z+-
l.s.c was relaxed in [10] and [12], respectively, to Z+-Epi-closedness (Z+-EpiG closed),
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in another variant of the above condition and in the (AB) condition of Lemma 4.2,
respectively. The interior point conditions turn out to be globally easily extensible to
vector maps, while the closedness ones seem well to require a separate study.

We end this section by the following corollary.
Corollary 4.5. Assume, in addition to the assumptions of Theorem 4.3, that

F or G is finite and continuous at a point of the effective domain of the other one.
(1) If F is σ-regular subdifferentiable at x̄, then

∂σ(F +H ◦G)(x̄) = ∂sF (x̄) +
⊔

A∈∂sH(G(x̄))

∂σ(A ◦G)(x̄).

(2) If G is regular subdifferentiable at x̄, then

∂σ(F +H ◦G)(x̄) = ∂σF (x̄) +
⊔

A∈∂sH(G(x̄))

∂s(A ◦G)(x̄).

Proof. According to Theorem 4.3, it remains to apply the sum calculus rule for
∂σ(F +A ◦G)(x̄) knowing that A ∈ L+(Z, Y ) and A ◦G ∈ Γ(X,Y ) (see the proof of
Theorem 4.2). Indeed, Theorem 4.1 directly applies for F +A◦G, taking into account
for assertion (2) the following property.

Lemma 4.3. With G regular subdifferentiable at x̄ and A ∈ L+(Z, Y ), A ◦ G is
also regular subdifferentiable at x̄.

Proof of Lemma 4.3. By the regular subdifferentiability of G at x̄, we have that
∂(λ◦A◦G)(x̄)= λ◦A◦∂sG(x̄) for any λ ∈ Y ∗

+ and A ∈ L+(Z, Y ) since λ◦A ∈ Z∗
+. Also,

we easily prove that A◦∂sG(x̄) ⊆ ∂s(A◦G)(x̄). So ∂(λ◦A◦G)(x̄) ⊆ λ◦∂s(A◦G)(x̄).
The reverse inclusion being trivial, the lemma is therefore proved.

5. Applications to constrained VOPs.

5.1. Vector σ-efficiency conditions for convex VOPs. One main objective
in this subsection is to realize the extension of the indicator function technique to
the vector case in a way similar to the scalar case, so that necessary and sufficient
efficiency conditions under vector forms for a constrained convex VOP may easily be
derived from the subdifferential formulas previously obtained. First, the constrained
problem

VOP: Min
x∈S

F (x)

may effectively be penalized by the vector indicator function defined for the nonempty
set S ⊆ X by

δvS : X → Y � {+∞}

x �→ δvS(x) =

{
0 if x ∈ S,

+∞ else,

so that it becomes equivalent to the unconstrained vector problem

Min
x∈X

F (x) + δvS(x)

in the following senses.
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Lemma 5.1. Let F : X → Y � {+∞}. Then, for σ ∈ {s, p, e, w},
(1) Eσ(F, S) = Eσ(F + δvS , X).
(2) MINσ F (S) = MINσ(F + δvS)(X).
Proof. Case σ = s is easily proved like the scalar case and cases σ ∈ {e, p} like

σ = w. Thus, it is enough to show the lemma for σ = w.
(1) Let x̄ ∈ Ew(F, S), then by definition, x̄ ∈ S � domF = dom(F + δvS). If

x̄ �∈ Ew(F + δvS , X), then it would exist x ∈ X such that F (x) + δvS(x) <Y+ F (x̄),
which would imply x ∈ S � domF contradicting x̄ ∈ Ew(F, S). Conversely, let
x̄ ∈ Ew(F + δvS , X), then x̄ ∈ S � domF . If we suppose that x̄ �∈ Ew(F, S), then it
would exist x ∈ S such that F (x) <Y+ F (x̄), that is, F (x) + δvS(x) <Y+ F (x̄) + δvS(x̄)
contradicting x̄ ∈ Ew(F + δvS , X). Assertion (1) is therefore proved.

(2) By definition, MINσ F (S) = F (Eσ(F, S)). As Ew(F, S) ⊆ S, with (1), it
follows that F (Ew(F, S)) = (F + δvS)(Ew(F, S)) = (F + δvS)(Ew(F + δvS , X)).

The vector indicator function appears to possess properties like the scalar one.
Define for that the normal cone at x̄ ∈ S in a vector sense:

Nv
S(x̄) = {A ∈ L(X,Y ) : ∀x ∈ S, A(x− x̄) ≤Y+ 0}.

Lemma 5.2. δvS ∈ Γ0(X,Y ) if S is convex closed. Furthermore, ∀x̄ ∈ S,

∂sδvS(x̄) = Nv
S(x̄).

In particular, δv−Z+
∈ Γ0(Z, Y ) if Z+ is closed and is always (Z+, Y+)-nondecreasing.

Moreover, if Y+ is pointed, then, ∀z̄ ∈ −Z+,

∂sδv−Z+
(z̄) = {A ∈ L+(Z, Y ) : A(z̄) = 0}.

Proof. The s-subdifferential expression is immediate from the very definitions.
The properness of δvS is immediate, since dom δvS = S �= ∅. Its Y+-convexity

follows easily from the convexity of S and Y+, more precisely, from its epigraph given
by

Y+-Epi δvS = {(x, y) ∈ X × Y : δvS(x) ≤Y+ y} = S × Y+.

While comes the sequential Y+-l.s.c from the closedness of S. Indeed, let x̄ ∈ X ,
y ≤Y+ δvS(x̄), and (xn) → x̄ be given. Does (yn) → y exist such that yn ≤Y+ δvS(xn)
(∀n)? Two cases are distinguished: x̄ ∈ S and x̄ �∈ S. If x̄ ∈ S, then it suffices to
take yn = y for all n. If x̄ ∈ X \ S which is an open set, then (xn) ⊂ X \ S for all
n large enough. We therefore can take yn = y for all the n large enough and = 0 for
the other n. This proves well the sequential Y+-l.s.c of δvS .

Let us show now that δv−Z+
is (Z+, Y+)-nondecreasing. Being given z1 ≤Z+ z2, do

we have δv−Z+
(z1) ≤Y+ δv−Z+

(z2)? This amounts to showing that if z2 ∈ −Z+, then
z1 ∈ −Z+. But, z1 = z1 − z2 + z2 ∈ −Z+ − Z+ ⊆ −Z+.

Let us express now its s-subdifferential. One already has ∂sδv−Z+
(z̄) = Nv

−Z+
(z̄).

By definition, A ∈ Nv
−Z+

(z̄) is equivalent to A ∈ L(Z, Y ) and A(z − z̄) ≤Y+ 0 ∀ z ∈
−Z+. Because z̄ ∈ −Z+, by taking successively z = 0 and z = 2z̄, we get A(z̄) = 0.
Consequently, A(z) ≥Y+ 0 ∀ z ∈ Z+, i.e., A ∈ L+(Z, Y ). The reverse inclusion is
immediate, since A(z − z̄) = A(z) ≤Y+ 0 ∀ z ∈ −Z+.

The vector indicator function reveals mostly to satisfy the following important
property.
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Lemma 5.3. δvS is regular (resp. p-regular) subdifferentiable on S if intY+ �= ∅
(resp. if Y p+ �= ∅). In fact, for σ = w (resp. σ = p), ∀x̄ ∈ S,

NS(x̄) = λ ◦Nv
S(x̄) ∀λ ∈ Y σ+ ,

where NS(x̄) = {x∗ ∈ X : ∀x ∈ S, 〈x∗, x − x̄〉 ≤ 0} is the usual normal cone to S
at x̄.

Proof. Let us show first the relation between the vector normal cone and the
ordinary one. Let A ∈ Nv

S(x̄) and λ ∈ Y σ+ , then 〈λ ◦ A, x − x̄〉 = 〈λ,A(x − x̄)〉 ≤ 0
(∀x ∈ S). Thus, λ◦Nv

S(x̄) ⊆ NS(x̄). Conversely, let x∗ ∈ NS(x̄) and λ ∈ Y σ+ , then we
define, exactly as in (3.7), Aλ : X → Y by Aλ(x) = 〈x∗, x〉 yλ for some yλ ∈ intY+
if σ = w and yλ ∈ Y+ \ l(Y+) if σ = p so that Aλ ∈ L(X,Y ) and λ ◦ Aλ = x∗.
On the other hand, Aλ(x − x̄) = 〈x∗, x − x̄〉yλ ∈ −Y+ (∀x ∈ S), i.e., Aλ ∈ Nv

S(x̄).
Consequently, NS(x̄) ⊆ λ ◦Nv

S(x̄).
Let us prove now the regular (resp. p-regular) subdifferentiability of δvS over S.

Indeed, by considering the scalar indicator function δS : X → R � {+∞} defined by
δS(x) = 0 if x ∈ S and +∞ otherwise, we observe that λ ◦ δvS = δS ∀ λ ∈ Y ∗

+ \ {0}.
Hence, for all x̄ ∈ S and λ ∈ Y σ+ ,

∂(λ ◦ δvS)(x̄) = ∂δS(x̄) = NS(x̄) = λ ◦Nv
S(x̄) = λ ◦ ∂sδvS(x̄).

This proves the σ-regular subdifferentiability following the hypotheses depending on
σ ∈ {p, w}. But δvS being s-subdifferentiable on S, the above equality remains valid
for λ = 0. This means (taking σ = w) that δvS is regular subdifferentiable on S.

We are now ready to state the vector σ-efficiency conditions in terms of the
Lagrange–Kuhn–Tucker (operator) multiplier and the (vector) normal cone for the
following general convex vector mathematical programming problem:

VOP: Min F (x){
G(x) ∈ −Z+,

x ∈ C,

where feasible set S = {x ∈ X : G(x) ∈ −Z+} � C, with C a closed convex set.
The Lagrangian map associated to this VOP may be defined as vector function

L : X × L+(Z, Y ) → Y � {+∞} given by

L(x,Λ) = F (x) + Λ ◦G(x).

Theorem 5.1. Let F : X → Y � {+∞} and G : X → Z � {+∞} be such that
one of the two following qualification conditions is satisfied:

(MR)4

{
F ∈ Γ(X,Y ), G ∈ Γ(X,Z), X and Z locally convex,
δv−Z+

is finite and continuous at a point of G(C � domF � domG).

(AB)4

{
F ∈ Γ0(X,Y ), G ∈ Γ0(X,Z), Z+ closed, X and Z Fréchet spaces,
R+[Z+ +G(C � domF � domG)] is a closed vector subspace of Z.

Then, with Y+ pointed, for σ ∈ {p, w},

x̄ ∈ Eσ(F, S) ⇐⇒

⎧⎪⎨⎪⎩
G(x̄) ∈ −Z+,

∃Λ̄ ∈ L+(Z, Y ) : Λ̄(G(x̄)) = 0,
0 ∈ ∂σ(F + Λ̄ ◦G+ δvC)(x̄), i.e., x̄ ∈ Eσ(L(., Λ̄), C).
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Proof. Taking into account that δvS = δv−Z+
◦G+ δvC , by Lemma 5.1 and relation

(2.2), we can write that

x̄ is σ-efficient for VOP ⇐⇒ 0 ∈ ∂σ(F + δv−Z+
◦G+ δvC)(x̄).

Next we easily verify that all the hypotheses of Theorem 4.3 are satisfied with F +δvC ,
G, and δv−Z+

underlining that F + δvC is well sequentially Y+-l.s.c as a sum of such
maps (see [11]). With Lemmas 5.2 and 5.3 and that x̄ ∈ S � domF , we thus obtain
that

∂σ(F + δvC + δv−Z+
◦G)(x̄) =

⊔
Λ̄∈L+(Z,Y )

Λ̄(G(x̄))=0

∂σ(F + δvC + Λ̄ ◦G)(x̄).

Significance x̄ ∈ Eσ(L(., Λ̄), C) is a consequence of (2.2) and Lemma 5.1.
Remark 6. The condition in (MR)4 is not other than the Slater-type condition

“∃a ∈ C�domF �domG : G(a) ∈ − intZ+,” which, in turn, is a particular case of the
condition in (AB)4. Indeed, it easily implies that R+[Z++G(C�domF�domG)] = Z
(see [11]). However, it is, in most cases, easier to check when intZ+ �= ∅. Theorem
5.1 has been obtained under the Slater condition by several authors using different
methods; see, e.g., [17] for the (Benson) proper concept and [1, 27] for the weak one.

Corollary 5.1. If in addition to the assumptions of Theorem 5.1, F and G are
finite and continuous at some point of C, F (and resp. G) is σ-regular (resp. regular)
subdifferentiable at x̄ and σ ∈ {p, w}, then

x̄ ∈ Eσ(F, S) ⇐⇒

⎧⎪⎨⎪⎩
G(x̄) ∈ −Z+,

∃Λ̄ ∈ L+(Z, Y ) : Λ̄(G(x̄)) = 0,
0 ∈ ∂σF (x̄) + Λ̄ ◦ ∂sG(x̄) +Nv

C(x̄).

Proof. It suffices to apply to Theorem 5.1, Theorem 4.1 two times successively
followed by Proposition 4.1, and finally Theorem 3.3 and Lemma 5.2 to obtain

0 ∈ ∂σ(F + Λ̄ ◦G+ δvC)(x̄) = ∂σ(Λ̄ ◦G)(x̄) + ∂sF (x̄) + ∂sδvC(x̄)
= Λ̄ ◦ ∂sG(x̄) + Zσ(X,Y ) + ∂sF (x̄) + ∂sδvC(x̄)
= ∂σF (x̄) + Λ̄ ◦ ∂sG(x̄) +Nv

C(x̄).

Remark 7. If space Y (resp. Z) is finite-dimensional endowed with the natural
order, then the σ-regular (resp. regular) subdifferentiability assumption on F (resp. on
G) in Corollary 5.1 may be omitted, since condition (MR) of Remark 3 is satisfied, and,
as ∂σ(F + Λ̄◦G+ δvC)(x̄) �= ∅, mappings F and G are sensed to be s-subdifferentiable
at x̄, i.e., their components are subdifferentiable at this point.

5.2. Gap between weakly or properly and strongly efficient sets. We
end up the paper with another application to VOPs. We already presented the gap
between the efficient and optimal sets associated to unconstrained VOPs. In what
follows, similar results are also derived for constrained VOPs via combinations of
several basic results.

Theorem 5.2. Let S be convex closed in X locally convex, F ∈ Γ(X,Y ) be σ-
regular subdifferentiable at x̄, σ ∈ {p, w}, Y+ be pointed as σ = p, and one of the three
following conditions be satisfied:

(MR)5
{
F is finite and continuous at a point of S, or domF � intS �= ∅, or,

(AB)5

{
F sequentially Y+-l.s.c, X Fréchet space,
R+[S − domF ] is a closed vector subspace of X.
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Then,

x̄ ∈ Eσ(F, S) ⇐⇒ ∃A ∼σ 0 : x̄ ∈ Es(F −A,S).

Proof. Let us show the nontrivial direct implication. According to Lemma 5.1,
Theorem 4.1, Theorem 3.3, and finally, relation (3.5), we have that

x̄∈Eσ(F, S)=Eσ(F + δvS , X) ⇔0 ∈ ∂σ(F + δvS)(x̄)= ∂sF (x̄) + Zσ(X,Y ) + ∂sδvS(x̄)
⇔∃A ∼σ 0 : A ∈ ∂sF (x̄) + ∂sδvS(x̄) ⊆ ∂s(F + δvS)(x̄)
⇒∃A ∼σ 0 : x̄ ∈ Es(F −A+ δvS , X) = Es(F −A,S).

The reverse implication follows straightforwardly by the definition of the s-efficient
set and the σ-zerolike operator one, and, by scalarization, Theorem 3.1.

Remark 8. For the same reasons as in Remark 7, if in Theorem 5.2, the range
space is finite-dimensional endowed with the natural order and the first condition in
(MR)5 is fulfilled, then the σ-regular subdifferentiability assumption on F may be
omitted. Since, for σ = p, F becomes p-regular subdifferentiable everywhere in its
domain (see Remark 3), the result of this theorem then may rather be written in this
case as

Ep(F, S) =
⊔
A∼p0

Es(F −A,S).

Conclusion. All the well-known results, in scalar case, coincide with our results.
The unique additional assumption, namely σ-regular subdifferentiability, obviously
holds in this case: ∂(αf)(x) = α∂f(x) ∀ α ∈ R

σ
+ = R+ \ {0} = int R+.

Further research avenues may interest some other subdifferential operations such
as maximum of functions, marginal function, infimal convolution, etc., and the appli-
cations that may engender. Also, a particular attention to the Pareto concept (σ = e)
and/or the strong ordinary notion (σ = s), which certainly will contribute more in
multicriteria optimization, may be the subject of future investigations.
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[6] S. Bolintinéanu and M. El Maghri, Pénalisation dans l’optimisation sur l’ensemble faible-

ment efficient, RAIRO Oper. Res., 31 (1997), pp. 295–310.
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[9] R. I. Boţ, S.-M. Grad, and G. Wanka, Generalized Moreau–Rockafellar Results for Composed
Convex Functions, Preprint 16, Chemnitz University of Technology, Faculty of Mathemat-
ics, Chemnitz, Germany, 2007.



1994 MOUNIR EL MAGHRI AND MOHAMED LAGHDIR
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CONVEXITY IN SEMIALGEBRAIC GEOMETRY AND
POLYNOMIAL OPTIMIZATION∗

JEAN B. LASSERRE†

Abstract. We review several (and provide new) results on the theory of moments, sums of
squares, and basic semialgebraic sets when convexity is present. In particular, we show that, under
convexity, the hierarchy of semidefinite relaxations for polynomial optimization simplifies and has
finite convergence, a highly desirable feature as convex problems are in principle easier to solve. In
addition, if a basic semialgebraic set K is convex but its defining polynomials are not, we provide
two algebraic certificates of convexity which can be checked numerically. The second is simpler and
holds if a sufficient (and almost necessary) condition is satisfied; it also provides a new condition for
K to have semidefinite representation. For this we use (and extend) some of the recent results from
the author and Helton and Nie [Math. Program., to appear]. Finally, we show that, when restricting
to a certain class of convex polynomials, the celebrated Jensen’s inequality in convex analysis can be
extended to linear functionals that are not necessarily probability measures.

Key words. convex polynomials, sums of squares, basic semialgebraic sets, convex sets, Jensen
inequality, semidefinite programming

AMS subject classifications. Primary, 14P10, 90C22; Secondary, 11E25, 12D15, 90C25

DOI. 10.1137/080728214

1. Introduction.

Motivation. This paper is a contribution to the new emerging field of convex
semialgebraic geometry, and its purpose is threefold: First, we show that the mo-
ment approach for global polynomial optimization proposed in [13], and based on
semidefinite programming (SDP), is consistent as it simplifies and/or has better con-
vergence properties when solving convex problems. In other words, the SDP moment
approach somehow “recognizes” convexity, a highly desirable feature for a general
purpose method because, in principle, convex problems should be easier to solve.

We next review some recent results (and provide a new one) on the representation
of convex basic semialgebraic sets by linear matrix inequalities which show how con-
vexity permits to derive relatively simple and explicit semidefinite representations. In
doing so, we also provide a certificate of convexity for K when its defining polynomials
are not convex.

Finally, we consider the important Jensen’s inequality in convex analysis. When
restricting its application to a class of convex polynomials, we provide an extension
to a class of linear functionals that are not necessarily probability measures.

To do so, we use (and sometimes extend) some recent results of the author [16, 17]
and Helton and Nie [6]. We hope to convince the reader that convex semialgebraic
geometry is, indeed, a very specific subarea of real algebraic geometry which should
deserve more attention from both the optimization and real algebraic geometry re-
search communities.
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Background. I. Relatively recent results in the theory of moments and its dual
theory of positive polynomials have been proved useful in polynomial optimization
as they provide the basis of a specific convergent numerical approximation scheme.
Namely, one can define a hierarchy of semidefinite relaxations (in short SDP relax-
ations) of the original optimization problem whose associated monotone sequence of
optimal values converges to the global optimum. For a more detailed account of
this approach, the interested reader is referred to, e.g., Lasserre [13, 14], Parrilo [21],
Schweighofer [29], and the many references therein.

Remarkably, practice seems to reveal that convergence is often fast and even finite.
However, the size of the SDP relaxations grows rapidly with the rank in the hierarchy;
typically the rth SDP relaxation in the hierarchy hasO(n2r) variables and semidefinite
matrices of O(nr) sizes (where n is the number of variables in the original problem).
On the other hand, it is well-known that a large class of convex optimization problems
can be solved efficiently; see, e.g., Ben-Tal and Nemirovski [1]. Therefore, as the SDP-
based moment approach is dedicated to solving difficult nonconvex (most of the time
NP-hard) problems, it should have the highly desirable feature to somehow recognize
“easy” problems like convex ones. That is, when applied to such easy problems, it
should show some significant improvement or a particular nice behavior not necessarily
valid in the general case. Notice that this is not the case of the moment approach
based on linear programming (LP) described in [14, 15] for which only asymptotic
(and not finite) convergence occurs in general (and especially for convex problems), a
rather annoying feature. However, for SDP relaxations, some results of [17] already
show that, indeed, convexity helps as one provides specialized representation results
for convex polynomials that are nonnegative on a basic semialgebraic set.

II. Next, in view of the potential of semidefinite programming techniques, an im-
portant issue is the characterization of convex sets that are semidefinite representable
(in short called SDr). An SDr set K ⊂ R

n is the projection of a set defined by linear
matrix inequalities. That is,

K :=

⎧

⎨

⎩

x ∈ R
n : ∃ y ∈ R

s such that (s.t.) A0 +
n
∑

i=1

xiAi +
s
∑

j=1

yj Bj � 0

⎫

⎬

⎭

for some real symmetric matrices (Ai, Bj) (and where A � 0 stands for A is positive
semidefinite). For more details, the interested reader is referred to Ben Tal and
Nemirovski [1], Lewis, Parrilo, and Ramana [19], and Parrilo [22] and more recently,
Chua and Tuncel [2], Helton and Nie [6, 7], Henrion [8], and Lasserre [16]. For compact
basic semialgebraic sets

(1.1) K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m },

recent results of Helton and Nie [6, 7] and the author [16] provide sufficient conditions
on the defining polynomials (gj) ⊂ R[X ] for the convex hull co (K) (≡ K if K is
convex) to be SDr. Again, an interesting issue is to analyze whether convexity of K
(with or without concavity of the defining polynomials (gj)) provides some additional
insights and/or simplifications. Another interesting issue is how to detect whether
a basic semialgebraic set K is convex or, equivalently, how to obtain an algebraic
certificate of convexity of K from its defining polynomials (gj). By certificate we
mean a mathematical statement that obviously implies convexity of K, can be checked
numerically, and does not require infinitely many tests. So far, and to the best of our
knowledge, such a certificate does not exist.
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III. The celebrated Jensen’s inequality is an important result in convex analysis
which states that Eμ(f(x)) ≥ f(Eμ(x)) for a convex function f : R

n → R and a
probability measure μ with Eμ(x) < ∞. A third goal of this paper is to analyze
whether, when restricted to a certain class of convex polynomials, Jensen’s inequality
can be extended to a class of linear functionals larger than the class of probability
measures.

Contribution. Concerning issue I, we first recall two previous results proved
in [17]: (a) the cone of convex sums of squares (SOS) is dense (for the l1-norm of
coefficients) in the cone of nonnegative convex polynomials, and (b) a convex pos-
itivstellensatz holds for convex polynomials nonnegative on K (a specialization of
Putinar’s positivstellensatz). We then analyze the role of convexity for the polyno-
mial optimization problem

(1.2) P : f∗ = min
x

{ f(x) : x ∈ K },

with K as in (1.1), and show that, indeed, convexity helps and makes the SDP relax-
ations more efficient. In particular, when K is convex and Slater’s condition1 holds,
by using some recent results of Helton and Nie [6], we show the following.

(i) If the polynomials f and (−gj) are all convex and ∇2f is positive definite
(and so f is strictly convex) on K, then the hierarchy of SDP relaxations has finite
convergence.

(ii) If f and (−gj) are all SOS-convex (i.e., their Hessian is an SOS matrix polyno-
mial), then P reduces to solving a single SDP whose index in the hierarchy is readily
available.

Concerning II, under certain sufficient conditions on the (gj) (typically some
second-order positive curvature conditions) Helton and Nie [6, 7] have proved that
co (K) (or K if convex) has a semidefinite representation that uses the Schmüdgen or
Putinar SOS representation of polynomials positive on K; see [6, 17]. Yet, in general
its dimension depends on an unknown degree parameter in the Schmüdgen (or Puti-
nar) SOS representation. Our contribution is to provide a new sufficient condition
for the existence of a semidefinite representation when K is compact with nonempty
interior and its boundary satisfies some nondegeneracy assumption. It translates the
geometric property of convexity of K into an SOS Putinar representation of some
appropriate polynomial obtained from each gj. When satisfied, this representation
provides an algebraic certificate of convexity for K and it is almost necessary in the
sense that it always holds true when relaxed by an arbitrary ε > 0. It also contains as
special cases Helton and Nie [6] sufficient conditions of SOS convexity or strict convex-
ity on ∂K of the −gj’s and leads to an explicit semidefinite representation of K. We
also provide a more general algebraic certificate based on Stengle’s positivstellensatz,
but more complex and heavy to implement and so not very practical. In practice, both
certificates are obtained by solving a semidefinite program. Therefore, because of un-
avoidable numerical inaccuracies, the certificate is valid only up to machine precision.

Concerning III, we prove that, when restricting its application to the subclass of
SOS-convex polynomials, Jensen’s inequality can be extended to all linear functionals
Ly (with Ly(1) = 1) in the dual cone of SOS polynomials and, hence, not necessarily
probability measures.

Some of the results already obtained in [6, 16] and in the present paper strongly
suggest that the class of SOS-convex polynomials introduced in Helton and Nie [6] is
particularly nice and should deserve more attention.

1Slater’s condition holds for K in (1.1) if for some x0 ∈ K, gj(x0) > 0, j = 1, . . . , m.
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2. Notation, definitions, and preliminary results. Let R[X ] be the ring of
real polynomials in the variables X = (X1, . . . , Xn), and let Σ2[X ] ⊂ R[X ] be the
subset of SOS polynomials. Let R[X ]d ⊂ R[X ] be the set of polynomials of degree at
most d, which forms a vector space of dimension s(d) =

(

n+d
d

)

. If f ∈ R[X ]d, write
f(X) =

∑

α∈Nn fαX
α in the usual canonical basis (Xα), and denote by f = (fα) ∈

R
s(d) its vector of coefficients. Also, write ‖f‖1 (= ‖f‖1 :=

∑

α |fα|) the l1-norm of f .
Finally, denote by Σ2[X ]d ⊂ Σ2[X ] the subset of SOS polynomials of degree at most
2d.

We use the notation X for the variable of a polynomial X �→ f(X) and x when
x is a point of R

n as, for instance, in {x ∈ R
n : f(x) ≥ 0}.

Moment matrix. With y = (yα) being a sequence indexed in the canonical
basis (Xα) of R[X ], let Ly : R[X ] → R be the linear functional

f

(

=
∑

α

fαX
α

)

�→ Ly(f) =
∑

α

fα yα,

and let Md(y) be the symmetric matrix with rows and columns indexed in the canon-
ical basis (Xα) and defined by

Md(y)(α, β) := Ly

(

Xα+β) = yα+β, α, β ∈ N
n
d ,

with N
n
d := {α ∈ N

n : |α| (=
∑

i αi) ≤ d}.

Localizing matrix. Similarly, with y = (yα) and g ∈ R[X ] written

X �→ g(X) =
∑

γ∈Nn

gγ X
γ,

let Md(g y) be the symmetric matrix with rows and columns indexed in the canonical
basis (Xα) and defined by

Md(g y)(α, β) := Ly

(

g(X)Xα+β) =
∑

γ

gγ yα+β+γ

for every α, β ∈ N
n
d .

Putinar positivstellensatz. Let Q(g) ⊂ R[X ] be the quadratic module gener-
ated by the polynomials (gj) ⊂ R[X ], that is,

(2.1) Q(g) :=

⎧

⎨

⎩

σ0 +
m
∑

j=1

σj gj : (σj) ⊂ Σ2[X ]

⎫

⎬

⎭

.

Assumption 2.1. K ⊂ R
n is a compact basic semialgebraic set defined as in

(1.1), and the quadratic polynomial X �→M − ‖X‖2 belongs to Q(g).
Assumption 2.1 is not very restrictive. For instance, it holds if every gj is affine

(i.e., K is a convex polytope) or if the level set {x : gj(x) ≥ 0} is compact for some
j ∈ {1, . . . ,m}. In addition, if M − ‖x‖ ≥ 0 for all x ∈ K, then it suffices to add
the redundant quadratic constraint M2 − ‖x‖2 ≥ 0 to the definition (1.1) of K and
Assumption 2.1 will hold true.
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Theorem 2.2 (Putinar’s positivstellensatz [24]). Let Assumption 2.1 hold. If
f ∈ R[X ] is (strictly) positive on K, then f ∈ Q(g). That is,

(2.2) f = σ0 +
m
∑

j=1

σj gj

for some SOS polynomials (σj) ⊂ Σ2[X ].

2.1. A hierarchy of semidefinite relaxations (SDP relaxations). Let P
be the optimization problem (1.2) with K as in (1.1), and let rj = �(deg gj)/2�,
j = 1, . . . ,m. With f ∈ R[X ] and 2r ≥ max[deg f, maxj 2rj ], consider the hierarchy
of semidefinite relaxations (Qr) defined by

(2.3) Qr :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

inf
y

Ly(f)

s.t. Mr(y) � 0,
Mr−rj (gj y) � 0, j = 1, . . . ,m,
y0 = 1,

with optimal value denoted by inf Qr. One says that Qr is solvable if it has an optimal
solution (in which case one writes inf Qr = min Qr). The dual of Qr reads

(2.4) Q∗
r :

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

sup λ

s.t. f − λ = σ0 +
m
∑

j=1

σj gj ,

σj ∈ Σ2[X ], j = 0, 1, . . . ,m,
deg σ0, deg σj + deg gj ≤ 2r, j = 1, . . . ,m,

with optimal value denoted by sup Q∗
r (or max Q∗

r if the sup is attained).
By weak duality sup Q∗

r ≤ inf Qr for every r ∈ N and under Assumption 2.1,
inf Qr ↑ f∗ as r → ∞. For a more detailed account see, e.g., [13].

2.2. Convexity and SOS convexity. We first briefly recall basic facts on a
multivariate convex function. If C ⊆ R

n is a nonempty convex set, a function f :
C → R is convex on C if and only if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ∀λ ∈ (0, 1), x, y ∈ C.

Similarly, f is strictly convex on C if and only if the above inequality is strict for
every x, y ∈ C, x �= y, and all λ ∈ (0, 1).

If C ⊆ R
n is an open convex set and f is twice differentiable on C, then f is

convex on C if and only if its Hessian ∇2f is positive semidefinite on C (denoted
∇2f � 0 on C). Finally, if ∇2f is positive definite on C (denoted ∇2f � 0 on C),
then f is strictly convex on C.

SOS convexity. Helton and Nie [6] have introduced the following interesting
subclass of convex polynomials, called SOS-convex polynomials.

Definition 2.3 (Helton and Nie [6]). A polynomial f ∈ R[X ]2d is said to be
SOS-convex if ∇2f is SOS; that is, ∇2f = LLT for some real matrix polynomial
L ∈ R[X ]n×s (for some s ∈ N).

As noted in [6], an important feature of SOS convexity is that it can be checked nu-
merically by solving an SDP. They have also proved the following important property.
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Lemma 2.4 (Helton and Nie [6, Lemma 7]). If a symmetric matrix polynomial
P ∈ R[X ]r×r is SOS, then, for any u ∈ R

n, the double integral

X �→ F (X,u) :=
∫ 1

0

∫ t

0
P (u+ s(X − u)) ds dt

is also a symmetric SOS matrix polynomial in R[X ]r×r.
See also the following.
Lemma 2.5 (Helton and Nie [6, Lemma 8]). For a polynomial f ∈ R[X ] and

every x, u ∈ R
n,

f(x) = f(u) + ∇f(u)T (x − u)

+ (x− u)T
∫ 1

0

∫ t

0
∇2f(u+ s(x− u))dsdt

︸ ︷︷ ︸

F (x,u)

(x− u).

So if f is SOS-convex and f(u) = 0,∇f(u) = 0, then f is an SOS polynomial.

2.3. An extension of Jensen’s inequality. Recall that if μ is a probability
measure on R

n with Eμ(x) < ∞, Jensen’s inequality states that if f ∈ L1(μ) and f
is convex, then

Eμ(f(x)) ≥ f(Eμ(x)),

a very useful property in many applications.
We now provide an extension of Jensen’s inequality when one restricts its appli-

cation to the class of SOS-convex polynomials. Namely, we may consider the linear
functionals Ly : R[X ]2d → R in the dual cone of Σ2[X ]d, that is, vectors y = (yα)
such that Md(y) � 0 and y0 = Ly(1) = 1; hence, y is not necessarily the (truncated)
moment sequence of some probability measure μ. Crucial in the proof is Lemma 2.4
of Helton and Nie [6].

Theorem 2.6. Let f ∈ R[X ]2d be SOS-convex, and let y = (yα)α∈Nn
2d

satisfy
y0 = 1 and Md(y) � 0. Then

(2.5) Ly(f(X)) ≥ f(Ly(X)),

where Ly(X) = (Ly(X1), . . . , Ly(Xn)).
Proof. Let z ∈ R

n be fixed and arbitrary, and consider the polynomial X �→
f(X) − f(z). Then

(2.6) f(X) − f(z) = 〈∇f(z), X − z〉 + 〈(X − z), F (X)(X − z)〉,

with F : R
n → R[X ]n×n being the matrix polynomial

X �→ F (X) :=
∫ 1

0

∫ t

0
∇2f(z + s(X − z)) ds dt.

As f is SOS-convex, by Lemma 2.4, F is an SOS matrix polynomial and so the
polynomial X �→ Δ(X) := 〈(X − z), F (X)(X − z)〉 is SOS, i.e., Δ ∈ Σ2[X ]. Then
applying Ly to the polynomial X �→ f(X) − f(z) and using (2.6) yields (recall that
y0 = 1)

Ly(f(X)) − f(z) = 〈∇f(z), Ly(X) − z〉 + Ly(Δ(X))
≥ 〈∇f(z), Ly(X) − z〉 [because Ly(Δ(X)) ≥ 0].
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As z ∈ R
n was arbitrary, taking z := Ly(X) (= (Ly(X1), . . . , Ly(Xn))) yields the

desired result.
As a consequence we also get the following corollary.
Corollary 2.7. Let f be a convex univariate polynomial, g ∈ R[X ] (and so

f ◦ g ∈ R[X ]). Let d := �(deg f ◦ g)/2�, and let y = (yα)α∈Nn
2d

be such that y0 = 1
and Md(y) � 0. Then

(2.7) Ly[ f(g(X)) ] ≥ f(Ly[ g(X) ]).

Proof. Again, let z ∈ R be fixed and arbitrary, and consider the univariate poly-
nomial Y �→ f(Y ) − f(z) so that (2.6) holds. That is,

f(Y ) − f(z) = f ′(z) (Y − z) + F (Y )(Y − z)2,

with F : R → R[Y ] being the univariate polynomial

Y �→ F (Y ) :=
∫ 1

0

∫ t

0
f ′′(z + s(Y − z)) ds dt.

As f is convex, f ′′ ≥ 0, and so the univariate polynomial Y �→ F (Y )(Y − z)2 is
nonnegative and, being univariate, is SOS. Therefore, with Y := g(X),

f(g(X)) − f(z) = f ′(z) (g(X) − z) + F (g(X))(g(X) − z)2,

and so

Ly[ f(g(X))] − f(z) = f ′(z) (Ly[ g(X) ] − z) + Ly

[

F (g(X)) (g(X) − z)2
]

≥ f ′(z)(Ly[ g(X) ] − z),

and taking z := Ly[g(X)] yields the desired result.
Hence, the class of SOS-convex polynomials has the very interesting property

of extending Jensen’s inequality to some linear functionals that are not necessarily
coming from a probability measure.

3. Semidefinite relaxations in the convex case.

3.1. A convex positivstellensatz. Let K be as in (1.1), and define Qc(g) ⊂
R[X ] to be the set

(3.1) Qc(g) :=

⎧

⎨

⎩

σ0 +
m
∑

j=1

λj gj : λ ∈ R
m
+ ; σ0 ∈ Σ2[X ], σ0 convex

⎫

⎬

⎭

⊂ Q(g).

The set Qc(g) is a specialization of Q(g) in (2.1) to the convex case, in that the weights
asociated with the gj ’s are nonnegative scalars, i.e., SOS polynomials of degree 0, and
the SOS polynomial σ0 is convex. In particular, every f ∈ Qc(g) is nonnegative on
K. Let FK ⊂ R[X ] be the convex cone of convex polynomials nonnegative on K.

Theorem 3.1 (Lasserre [17]). Let K be as in (1.1), Slater’s condition hold, and
gj be concave for every j = 1, . . . ,m.

Then, with Qc(g) as in (3.1), the set Qc(g) ∩FK is dense in FK for the l1-norm
‖ · ‖1. In particular, if K = R

n (so that FRn =: F is now the set of nonnegative
convex polynomials), then Σ2[X ] ∩ F is dense in F .
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Theorem 3.1 states that if f is convex and nonnegative on K (including the case
K ≡ R

n), then one may approximate f by a sequence {fεr} ⊂ Qc(g) ∩ FK with
‖f − fεr‖1 → 0 as ε→ 0 (and r → ∞). For instance, with r0 := �(deg f)/2� + 1,

X �→ fεr(X) := f + ε(θr0(X) + θr(X)), with

X �→ θr(X) := 1 +
r
∑

k=1

n
∑

i=1

X2k
i

k!
, r ≥ rε,(3.2)

for some rε; see Lasserre [17] for details. Observe that Theorem 3.1 provides f with
a certificate of nonnegativity on K. Indeed, let x ∈ K be fixed arbitrary. Then as
fεr ∈ Qc(g) one has fεr(x) ≥ 0. Letting ε ↓ 0 yields 0 ≤ limε→0 fεr(x) = f(x). As
x ∈ K was arbitrary, f ≥ 0 on K.

Theorem 3.1 is a convex (weak) version of Theorem 2.2 (Putinar’s positivstellen-
satz) where one replaces the quadratic module Q(g) with its subset Qc(g). We call it
a weak version of Theorem 2.2 because it invokes a density result (i.e., fεr ∈ Qc(g),
whereas f might not be an element of Qc(g)). Notice that f is allowed to be non-
negative (instead of strictly positive) on K and K need not be compact; recall that
extending Theorem 2.2 to noncompact basic semialgebraic sets K and to polynomials
f nonnegative on K is hopeless in general; see Scheiderer [26].

Corollary 3.2. Let K be as in (1.1), f ∈ R[X ] with f∗ := minx{f(x) : x ∈ K},
and let d := max[�(deg f)/2�,maxj�(deg gj)/2� ]. Consider the simplified SDP relax-
ation

(3.3) ̂Q :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

inf
y

Ly(f)

s.t. Md(y) � 0,
Ly(gj) ≥ 0, j = 1, . . . ,m,
y0 = 1

and its dual

(3.4) ̂Q∗ :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

sup
γ,σ0,λ

γ

s.t. f − γ = σ0 +
m
∑

j=1

λj gj,

σ0 ∈ Σ2[X ]d; λj ≥ 0, j = 1, . . . ,m.

(a) If f − f∗ ∈ Qc(g), then the SDP relaxation ̂Q and its dual ̂Q∗ are exact.
(b) If f,−gj ∈ R[X ] are convex, j = 1, . . . ,m, and if y is an optimal solution of

̂Q which satisfies

(3.5) rankMd(y) = rankMd−1(y),

then ̂Q is exact and x∗ := (Ly(Xi)) ∈ K is a (global) minimizer of f on K.
Proof. (a) If f−f∗ ∈ Qc(g), i.e., if f−f∗ = σ0+

∑m
j=1 λjgj, with σ0 ∈ Σ2[X ]d and

λ ∈ R
m
+ , the triplet (f∗, σ0, λ) is a feasible solution of ̂Q∗ with value f∗. Therefore,

as sup ̂Q∗ ≤ inf ̂Q ≤ f∗, the SDP relaxation ̂Q and its dual ̂Q∗ are exact. In fact,
(f∗, σ0, λ) is an optimal solution of ̂Q∗.

(b) If y satisfies the rank condition (3.5), then by the flat extension theorem of
Curto and Fialkow [4], y is the (truncated) moment sequence of an atomic proba-
bility measure μ on R

n, say, μ =
∑s

k=1 λkδx(k) with s = rankMd(y), 0 < λk ≤ 1,
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∑

k λk = 1, and δx(k) being the Dirac measure at x(k) ∈ R
n, k = 1, . . . , s. Let

x∗ :=
∑

k λkx(k) = (Ly(Xi)) ∈ R
n. Then f∗ ≥ Ly(f) and by convexity of f ,

Ly(f) =
∑

k λkf(x(k)) ≥ f(
∑

k λkx(k)) = f(x∗). Similarly, by convexity of −gj,
0 ≤ Ly(gj) =

∑

k λkgj(x(k)) ≤ gj(
∑

k λkx(k)) = gj(x∗), j = 1, . . . ,m. Therefore,
x∗ ∈ K and as f(x∗) ≤ f∗, x∗ is a global minimizer of f on K.

Notice that K in Corollary 3.2 need not be compact. Also, Corollary 3.2(b) has
practical value because in general one does not know whether f −f∗ ∈ Qc(g) (despite
that, in the convex case, f − f∗ ∈ FK and Qc(g) ∩ FK is dense in FK). However,
one may still solve ̂Q and check whether the rank condition (3.5) is satisfied. If, in
solving ̂Qr, the rank condition (3.5) is not satisfied, then other sufficient conditions
can be exploited as we next see.

3.2. The SOS-convex case. Part (a) of the following result is already contained
in Lasserre [17, Corollary 2.5].

Theorem 3.3. Let K be as in (1.1) and Slater’s condition hold. Let f ∈ R[X ]
be such that f∗ := infx{f(x) : x ∈ K} = f(x∗) for some x∗ ∈ K. If f is SOS-convex
and −gj is SOS-convex for every j = 1, . . . ,m, then

(a) f − f∗ ∈ Qc(g);
(b) the simplified SDP relaxation ̂Q in (3.3) and its dual (3.4) are exact and

solvable. If y is an optimal solution of ̂Q, then x∗ := (Ly(Xi)) ∈ K is a global
minimizer of f on K.

Proof. (a) is proved in [17, Corollary 2.5]. (b) That ̂Q is exact follows from (a)
and Corollary 3.2(a). Hence, it is solvable (e.g., take y to be the moment sequence
associated with the Dirac measure at a global minimizer x∗ ∈ K). So let y be an
optimal solution of ̂Q, hence, with f∗ = Ly(f). As −gj is SOS-convex for every j,
then by Theorem 2.6, 0 ≤ Ly(gj) ≤ gj(x∗) with x∗ := (Ly(Xi)), and so x∗ ∈ K.
Similarly, as f is SOS-convex, we also have f∗ = Ly(f) ≥ f(x∗) which proves that
f(x∗) = f∗ and x∗ is a global minimizer of f on K. Finally, as by (a) f − f∗ ∈ Qc(g),
then ̂Q∗ is exact and solvable.

(Again notice that K in Theorem 3.3 need not be compact.) So the class of SOS-
convex polynomials is particularly interesting. Not only Jensen’s inequality can be
extended to some linear functionals that are not coming from a probability measure
but also one may also solve SOS-convex optimization problems P in (1.2) (i.e., with
f and K defined with SOS-convex polynomials) by solving the single semidefinite
program (3.3).

Notice that a self-concordant2 logarithmic barrier function exists for (3.3), whereas
the logarithmic barrier function with barrier parameter μ,

(3.6) x �→ φμ(x) := μ f(x) −
m
∑

j=1

ln (gj(x)),

associated with P, is not self-concordant in general. Therefore, despite the fact that
(3.3) involves additional variables (a lifting), solving (3.3) via an interior point method
might be more efficient than solving P by using the logarithmic barrier function (3.6)
with no lifting. In addition, all SOS-convex polynomials nonnegative on K, and
which attain their minimum on K belong to Qc(g), a very specific version of Putinar
positivstellensatz (as f is only nonnegative and K need not be compact).

2The self-concordance property introduced in [20] is fundamental in the design and efficiency of
interior point methods for convex programming.
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3.3. The strictly convex case. If f or some of the −gj’s are not SOS-convex
but ∇2f � 0 (so that f is strictly convex) and −gj is convex for every j = 1, . . . ,m,
then, inspired by a nice argument from Helton and Nie [6] for the existence of a
semidefinite representation of convex sets, one obtains the following result.

Theorem 3.4. Let K be as in (1.1), and let Assumption 2.1 and Slater’s con-
dition hold. Assume that f,−gj ∈ R[X ] are convex, j = 1, . . . ,m, with ∇2f � 0 on
K.

Then the hierarchy of SDP relaxations defined in (2.3) has finite convergence.
That is, f∗ = sup Q∗

r = inf Qr for some index r. In addition, Qr and Q∗
r are

solvable so that f∗ = maxQ∗ = min Qr.
Proof. Let x∗ ∈ K be a global minimizer (i.e., f∗ = f(x∗)). As Slater’s condition

holds, there exists a vector of Karush–Kuhn–Tucker (KKT) multipliers λ ∈ R
m
+ such

that the (convex) Lagrangian Lf ∈ R[X ] defined by

(3.7) X �→ Lf(X) := f(X) − f∗ −
m
∑

j=1

λj gj(X)

has a global minimum at x∗ ∈ K, i.e., ∇Lf(x∗) = 0. In addition, λjgj(x∗) = 0 for
every j = 1, . . . ,m and Lf(x∗) = 0. Then, by Lemma 2.5,

Lf(X) = 〈(X − x∗), F (X,x∗)(X − x∗)〉

with

F (X,x∗) :=
(∫ 1

0

∫ t

0
∇2Lf (x∗ + s(X − x∗)) ds dt

)

.

Next, let In be the n×n identity matrix. As ∇2f � 0 on K, continuity of the (strictly
positive) smallest eigenvalue of ∇2f and compactness of K yield that ∇2f � δIn on
K for some δ > 0. Next, as −gj is convex for every j and in view of the definition
(3.7) of Lf , ∇2Lf � ∇2f � δIn on K. Hence, for every ξ ∈ R

n, ξTF (x, x∗)ξ ≥
δ
∫ 1
0

∫ t

0 ξ
T ξdsdt = δ

2ξ
T ξ, and so F (x, x∗) � δ

2 In for every x ∈ K. Therefore, by the
matrix polynomial version of Putinar positivstellensatz,

F (X,x∗) = F0(X) +
m
∑

j=1

Fj(X) gj(X)

for some real SOS matrix polynomialsX �→ Fj(X) = Lj(X)Lj(X)T (for some apppro-
priate Lj ∈ R[X ]n×pj ), j = 0, . . . ,m. See Helton and Nie [6], Kojima and Maramatsu
[10], and Hol and Scherer [11]. But then

X �→ 〈(X − x∗), Fj(X,x∗)(X − x∗)〉 = σj(X) ∈ Σ2[X ], j = 0, . . . ,m,

and so

f(X) − f∗ = Lf(X) +
m
∑

j=1

λjgj(X)

= σ0(X) +
m
∑

j=1

(λj + σj(X)) gj(X).

Let 2s be the maximum degree of the SOS polynomials (σj). Then (f∗, {σj+λj}) is a
feasible solution of the SDP relaxation Q∗

r in (2.4) with r := s+maxj rj . Therefore, as
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sup Q∗
r ≤ inf Qr ≤ f∗, the SDP relaxations Qr and Q∗

r are exact, finite convergence
occurs, and Q∗

r is solvable. But this also implies that Qr is solvable (take y to be the
moment sequence of the Dirac measure δx∗ at any global minimizer x∗ ∈ K).

When compared to Theorem 3.3 for the SOS-convex case, in the strictly convex
case the simplified SDP relaxation ̂Q in (3.3) is not guaranteed to be exact. However,
finite convergence still occurs for the SDP relaxations (Qr) in (2.3).

Remark 3.5. It is worth emphasizing that in general the hierarchy of LP re-
laxations (as opposed to SDP relaxations) defined in [15] and based on Krivine’s
representation [12, 30] and Handelman [?] for polynomials positive on K cannot have
finite convergence, especially in the convex case! For more details, the interested
reader is referred to [14, 15]. Therefore and despite the fact that LP software pack-
ages can solve LP problems of very large size, using LP relaxations does not seem a
good idea even for solving a convex polynomial optimization problem.

4. Convexity and semidefinite representation of convex sets. We now
consider the semidefinite representation of convex sets. First, recall the following
result.

Theorem 4.1 (Lasserre [16]). Let K in (1.1) be compact with gj concave, j =
1, . . . ,m, and assume that Slater’s condition holds. If the Lagrangian polynomial
Lf in (3.7) associated with every linear polynomial f ∈ R[X ] is SOS, then, with
d := maxj�(deg gj)/2�, the set

(4.1) Ω :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x,y) ∈ R
n × R

s(2d) :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Md(y) � 0,
Ly(gj) ≥ 0, j = 1, . . . ,m,
Ly(Xi) = xi, i = 1, . . . , n,
y0 = 1

is a semidefinite representation of K.
Next, Helton and Nie [6, 7] have provided several interesting second-order positive

curvature (sufficient and necessary) conditions on the defining polynomials (gj) for K
(or its convex hull co (K)) to be an SDr set. In particular (recall that rj = �(deg gj)/2�
for every j = 1, . . . ,m), see the following theorem.

Theorem 4.2 (Helton and Nie [6]). Let K in (1.1) be convex and Asssumption 2.1
hold, and assume that Slater’s condition holds and gj is concave on K, j = 1, . . . ,m.

(a) If −gj is SOS-convex for every j = 1, . . . ,m, then, for every linear f ∈ R[X ],
the associated Lagrangian Lf (3.7) is SOS and the set Ω in (4.1) is a semidefinite
representation of K.

(b) If every −gj is either SOS-convex or satisfies −∇2gi � 0 on K ∩
{x : gj(x) = 0}, then there exists r ∈ N such that the set

(4.2) Ω :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x,y) ∈ R
n × R

s(2r) :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Mr(y) � 0
Mr−rj (gj y) � 0, j = 1, . . . ,m
Ly(Xi) = xi, i = 1, . . . , n
y0 = 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

is a semidefinite representation of K.
See [6, Theorems 6 and 9]. This follows from the fact that the Hessian ∇2Lf as-

sociated with a linear f ∈ R[X ] has a Putinar representation in terms of SOS matrix
polynomials and with degree of the weights bounded uniformly in f . In principle,
the degree parameter d in Theorem 4.2(b) may be computed by solving a hierarchy
of semidefinite programs. Some other (more technical) weaker second-order positive
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curvature sufficient conditions (merely for the existence of a semidefinite representa-
tion) are also provided in [6, 7], but the semidefinite representation is not explicit
anymore in terms of the defining polynomials (gj). Notice that if K is compact but
Assumption 2.1 does not hold, then one still obtains a semidefinite representation
for K but more complicated as it is now based on Schmüdgen’s representation [27]
instead of Putinar’s representation; see [6, Theorem 5].

We next provide a sufficient condition in the case where K is convex but its defin-
ing polynomials (−gj) are not necessarily convex. Among its distinguishing features,
it is checkable numerically, contains Theorem 4.2 as a special case, and leads to the
explicit semidefinite representation (4.2) of K.

4.1. Algebraic certificate of convexity. We first present the following char-
acterization of convexity when K is closed, satisfies a nondegeneracy assumption on
its boundary, and Slater’s condition holds.

Lemma 4.3. Let K be as in (1.1) (hence, closed), let Slater’s condition hold, and
assume that for every j = 1, . . . ,m, ∇gj(y) �= 0 if y ∈ K and gj(y) = 0. Then K is
convex if and only if for every j = 1, . . . ,m,

(4.3) 〈∇gj(y), x− y〉 ≥ 0 ∀x ∈ K and ∀ y ∈ K with gj(y) = 0.

Proof. The only if part is obvious. Indeed, if 〈∇gj(y), x− y〉 < 0 for some x ∈ K
and y ∈ K with gj(y) = 0, then there is some t > 0 such that gj(y + t(x− y)) < 0 for
all t ∈ (0, t), and so the point x′ := tx+ (1− t)y does not belong to K, which in turn
implies that K is not convex.

For the if part, (4.3) implies that at, every point of the boundary, there exists
a supporting hyperplane for K. As K is closed with nonempty interior, the result
follows from [28, Theorem 1.3.3]3.

The nondegeneracy assumption is crucial as demonstrated in the following simple
example kindly provided by an anonymous referee.

Example 4.1. Consider the nonconvex set K ⊂ R
2 defined by

K :=
{

x ∈ R
2 :

(

1 − x2
1 + x2

2
)3 ≥ 0, 10 − x2

1 − x2
2 ≥ 0

}

.

Then it is straightforward to see that (4.3) is satisfied. This is because ∇g1 vanishes
on the piece of boundary determined by g1(x) = 0.

Next, using the above characterization (4.3), we provide an algebraic certificate
of convexity.

Corollary 4.4 (algebraic certificate of convexity). Let K be as in (1.1), let
Slater’s condition hold, and assume that for every j = 1, . . . ,m, ∇gj(y) �= 0 if y ∈ K
and gj(y) = 0. Then K is convex if and only if for every j = 1, . . . ,m,

(4.4) hj(X,Y )〈∇gj(Y ), X − Y 〉 = 〈∇gj(Y ), X − Y 〉2l + θj(X,Y ) + ϕj(X,Y )gj(Y )

for some integer l ∈ N, some polynomial ϕj ∈ R[X,Y ], and some polynomials hj , θj
in the preordering4 of R[X,Y ] generated by the family of polynomials (gk(X), gp(Y )),
k, p ∈ {1, . . . ,m}, p �= j.

Proof. By Lemma 4.3, K is convex if and only if, for every j = 1, . . . ,m, the
polynomial (X,Y ) �→ 〈∇gj(Y ), X − Y 〉 is nonnegative on the set Ωj defined by

(4.5) Ωj := {(x, y) ∈ K× K : gj(y) = 0 }.

3The author is grateful to L. Tuncel for providing us with [28].
4The preordering of R[X] generated by a family (g1, . . . , gm) ⊂ R[X] is the set of polynomials

{p : p =
∑

J⊆{1,...,m} σJ (
∏

j∈J gj), with σJ ∈ Σ2[X]}.
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Equivalently, K is convex if and only if for every j = 1, . . . ,m

∅ = {(x, y) ∈ R
n : (x, y) ∈ K × K ; gj(y) = 0 ;

〈∇gj(y), x− y〉 ≤ 0 ; 〈∇gj(y), x− y〉 �= 0} .

Then (4.4) follows from Stengle’s positivstellensatz [25, Theorem 4.4.2, p. 92].
Observe that Corollary 4.4 provides an algebraic certificate of convexity when

K is closed with nonempty interior and a nondegeneracy assumption holds on its
boundary. If one fixes an a priori bound s on l ∈ N and on the degree of hj , θj, and
ϕj , then checking whether (4.4) holds reduces to solving a semidefinite program. If K
is convex, by increasing s, eventually one would obtain such a certificate if one could
solve semidefinite programs exactly. In practice and because of unavoidable numerical
inaccuracies, one obtains only a numerical approximation of the optimal value and so
a certificate valid up to machine precision only.

However, implementing such a procedure is extremely costly because one has
potentially 2× 2m unknown SOS polynomials to define hj and θj in (4.4)! Therefore,
it is highly desirable to provide a less costly certificate but with no guarantee to hold
for every K as in Corollary 4.4.

In particular, one considers only compact sets K. Indeed, if K is compact, one
has the following result (recall that g0 ≡ 1).

Lemma 4.5. Let K be convex, and let Assumption 2.1 and Slater’s condition
hold. Assume that for every j = 1, . . . ,m, ∇gj(y) �= 0 if y ∈ K and gj(y) = 0. Then
for every ε > 0 and every j = 1, . . . ,m

〈∇gj(Y ), X − Y 〉 + ε =
m
∑

k=0

σjk(X,Y ) gk(X) +
m
∑

k=0,k �=j
ψjk(X,Y ) gk(Y )

+ψj(X,Y ) gj(Y )(4.6)

for some SOS polynomials (σjk) and (ψjk)k �=j ⊂ Σ2[X,Y ] and some polynomial ψj ∈
R[X,Y ].

Proof. By Lemma 4.3, for every j = 1, . . . ,m and every x, y ∈ K such that
gj(y) = 0, (4.3) holds, and, therefore, for every j = 1, . . . ,m,

(4.7) 〈∇gj(y), x− y〉 + ε > 0 ∀(x, y) ∈ Ωj ,

where Ωj has been defined in (4.5). As K satisfies Assumption 2.1, then so does Ωj
for every j = 1, . . . ,m. Hence, (4.6) follows from (4.7) and Theorem 2.2.

Therefore, inspired by Lemma 4.5, we introduce the following condition.
Assumption 4.6 (certificate of convexity). For every j = 1, . . . ,m, (4.6) holds

with ε = 0. Then let dj ∈ N be such that 2dj is larger than the maximum degree of
the polynomials σjkgk, ψjkgk, ψjgj ∈ R[X,Y ] in (4.6), j = 1, . . . ,m.

When K is closed (and not necessarily compact), Slater’s condition holds and
the nondegeneracy assumption on the boundary holds (i.e., ∇gj(y) �= 0 if y ∈ K and
gj(y) = 0). Assumption 4.6 is, indeed, a certificate of convexity because then (4.3)
holds for every x, y ∈ K with gj(y) = 0, and, by Lemma 4.3, K is convex. It translates
the geometric property of convexity of K into an algebraic SOS Putinar representation
of the polynomial (X,Y ) �→ 〈∇gj(Y ), X − Y 〉 nonnegative on Ωj , j = 1, . . . ,m.
On the other hand, if K is convex and Assumption 2.1, Slater’s condition, and the
nondegeneracy assumption all hold, then Assumption 4.6 is almost necessary as, by
Lemma 4.5, (4.6) holds with ε > 0 arbitrary.
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With dj fixed a priori, checking whether (4.6) holds with ε = 0 can be done
numerically. (However, again it provides a certificate of convexity valid up to machine
precision only.) For instance, for every j = 1, . . . ,m, it suffices to solve the semidefinite
program (recall that rk = �(deg gk)/2�, k = 1 . . . ,m)

(4.8)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρj := min
z

Lz(〈∇gj(Y ), X − Y 〉)
s.t. Mdj (z) � 0,

Mdj−rk
(gk(X) z) � 0, k = 1, . . . ,m,

Mdj−rk
(gk(Y ) z) � 0, k = 1, . . . ,m; k �= j,

Mdj−rj (gj(Y ) z) = 0,
y0 = 1.

If ρj = 0 for every j = 1, . . . ,m, then Assumption 4.6 holds. This is in contrast to the
PP-BDR property defined in [17] that cannot be checked numerically as it involves
infinitely many linear polynomials f .

Remark 4.7. Observe that the usual rank condition (3.5) used as a stopping cri-
terion to detect whether (4.8) is exact (i.e., ρ1 = 0) cannot be satisfied in solving (4.8)
with primal dual interior point methods (as in the SDP solvers used by GloptiPoly)
because one tries to find an optimal solution z∗ in the relative interior of the feasible
set of (4.8), and this gives maximum rank to the moment matrix Mdj (z∗). Therefore,
in the context of (4.8), if, indeed, ρj = 0, then z∗ corresponds to the moment vector of
some probability measure μ supported on the set of points (x, x) ∈ K×K that satisfy
gj(x) = 0 (as, indeed, Lz∗(〈∇gj(Y ), X − Y 〉) = 0 = ρj). Therefore, ρj = 0 as dj in-
creases, but the rank of Mdj (z∗) does not stabilize because μ is not finitely supported.
In particular, a good candidate z∗ for an optimal solution is the moment vector of the
probability measure uniformly distributed on the set {(x, x) ∈ K× K : gj(x) = 0}.

Alternatively, if ρj ≈ 0 and the dual of (4.8) has an optimal solution (σjk, ψjk, ψj),
then in some cases one may check if (4.6) holds exactly after appropriate rounding of
coefficients of the solution. But in general obtaining an exact certificate (i.e., ρj = 0
in the primal or (4.6) with ε = 0 in the dual) numerically is hopeless.

Example 4.2. Consider the following simple illustrative example in R
2:

(4.9) K :=
{

x ∈ R
2 : x1x2 − 1/4 ≥ 0; 0.5 − (x1 − 0.5)2 − (x2 − 0.5)2 ≥ 0

}

.

Obviously, K is convex but its defining polynomial x �→ g1(x) := x1x2 − 1/4 is not
concave, whereas x �→ g2(x) := 0.5 − (x1 − 0.5)2 − (x2 − 0.5)2 is.

With d1 = 3, solving (4.8) using GloptiPoly 35 yields the optimal value ρ1 ≈
−4.58.10−11 which, in view of the machine precision for the SDP solvers used in
GloptiPoly, could be considered to be zero, but of course with no guarantee. However,
and according to Remark 4.7, we could check that (again up to machine precision)
for every α ∈ N

n with |α| ≤ 2dj , z∗α,α = z∗2α,0 and z∗α,0 = z∗0,α. In addition, because of
symmetry, zα,β = zα′,β′ whenever α′

1 = α2 and α′
2 = α1 (and similarly for β and β′).

Indeed, for moments of order 1 we have z∗α,β = (0.5707, 0.5707, 0.5707, 0.5707) and for
moments of order 2,

z∗α,β = (0.4090, 0.25, 0.4090, 0.25, 0.4090, 0.25, 0.4090, 0.4090, 0.25, 0.4090).

5GloptiPoly 3 (a Matlab-based public software) is an extension of GloptiPoly [9] to solve the gen-
eralized problem of moments described in [18]. For more details see www.laas.fr/∼henrion/software/.
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For j = 2 there is no test to perform because −g2 being quadratic and convex yields

(4.10) 〈∇g2(Y ), X − Y 〉 = g2(X) − g2(Y ) + (X − Y )T
(

−∇2g2(Y )
)

(X − Y )
︸ ︷︷ ︸

SOS

which is in the form (4.6) with d2 = 1.
We next show the role of Assumption 4.6 in obtaining a semidefinite representation

of K.
Theorem 4.8. Let Assumption 2.1 and Slater’s condition hold. Moreover, as-

sume that for every j = 1, . . . ,m, ∇gj(y) �= 0 whenever y ∈ K and gj(y) = 0.
If Assumption 4.6 holds, then K is convex and Ω in (4.2) with d := maxj dj is a
semidefinite representation of K.

Proof. That K is convex follows from Lemma 4.3. We next prove that the
PP-BDR property defined in Lasserre [16] holds for K. Let f ∈ R[X ] be a linear
polynomial with coefficient vector f ∈ R

n (i.e., X �→ f(X) = fTX), and consider the
optimization problem P : min {fTx : x ∈ K}. As K is compact, let x∗ ∈ K be a
global minimizer of f . The Fritz John optimality conditions state that there exists
0 �= λ ∈ R

m+1
+ such that

(4.11) λ0 f =
m
∑

j=1

λj ∇gj(x∗); λj gj(x∗) = 0 ∀j = 1, . . . ,m.

(See, e.g., [3].) We first prove by contradiction that if Slater’s condition and the
nondegeneracy assumption hold, then λ0 > 0. Suppose that λ0 = 0 and let J :=
{j ∈ {1, . . . ,m} : λj > 0}; hence, J is nonempty as λ �= 0. With x0 ∈ K such
that gj(x0) > 0 (as Slater’s condition holds, one such x0 exists), let B(x0, ρ) := {z :
‖z−x0‖ ≤ ρ}. For ρ sufficiently small, B(x0, ρ) ⊂ K and gj(z) > 0 for all z ∈ B(x0, ρ)
and every j = 1, . . . ,m. Then by (4.11) and λ0 = 0,

0 =
m
∑

j=1

λj 〈∇gj(x∗), z − x∗〉 ∀z ∈ B(x0, ρ),

which in turn implies (by nonnegativity of each term in the above sum)

〈∇gj(x∗), z − x∗〉 = 0 ∀z ∈ B(x0, ρ), j ∈ J.

But this clearly implies ∇gj(x∗) = 0 for every j ∈ J , in contradiction with the
nondegeneracy assumption. Hence, λ0 > 0 and, by homogeneity, we may and will
take λ0 = 1.

Therefore, letting Y := x∗ in (4.6), the polynomial X �→ f(X)−f∗ can be written

fTX − f∗ =
m
∑

j=1

λj [ 〈∇gj(x∗), X − x∗〉 ]

=
m
∑

j=1

λj

⎡

⎣

m
∑

k=0

σjk(X,x∗) gk(X) +
m
∑

k=0,k �=j
ψjk(X,x∗) gk(x∗)

+ψj(X,x∗) gj(x∗)

⎤

⎦ ,
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where we have used (4.6) with Y = x∗ and ε = 0. Next, observe that

X �→ σjk(X,x∗) ∈ Σ2[X ] [as σjk ∈ Σ2[X,Y ]],
X �→ ψjk(X,x∗) gk(x∗) ∈ Σ2[X ] [as ψjk ∈ Σ2[X,Y ] and gj(x∗) ≥ 0],

λjgj(x∗) = 0, j = 1, . . . ,m.

So as λ ∈ R
m
+ ,

(4.12) X �→ fTX − f∗ = Δ0(X) +
m
∑

j=1

Δj(X) gj(X)

for SOS polynomials (Δj)mj=0 ⊂ Σ2[X ] defined by

X �→ Δ0(X) =
m
∑

j=1

λj

⎛

⎝

m
∑

k=0,k �=j
ψjk(X,x∗) gk(x∗)

⎞

⎠ ,

X �→ Δj(X) =
m
∑

l=1

λl σlj(X,x∗), j = 1, . . . ,m.

Write every affine polynomial f ∈ R[X ] as fTX + f0 for some f ∈ R
n and

f0 = f(0). If f is nonnegative on K, then from (4.12),

f(X) = fTX − f∗ + f∗ + f0 = f∗ + f0 + Δ0(X) +
m
∑

j=1

Δj(X) gj(X)

= ̂Δ0(X) +
m
∑

j=1

Δj(X) gj(X) ∀X,

with ̂Δ0 ∈ Σ2[X ] (because f∗ + f0 ≥ 0), and so the PP-BDR property holds for
K with order d. By [16, Theorem 2], K is SDr with the semidefinite representation
(4.2).

We next show that the two sufficient conditions of strict convexity and SOS
convexity of Helton and Nie [6] in Theorem 4.2 both imply that Assumption 4.6
holds, and so Theorem 4.8 contains Theorem 4.2 as a special case.

Corollary 4.9. Let K in (1.1) be convex and both Assumption 2.1 and Slater’s
condition hold. Assume that either −gj is SOS-convex or −gj is convex on K and
−∇2gj � 0 on K ∩ {x : gj(x) = 0} for every j = 1, . . . ,m. Then Assumption 4.6
holds and so Theorem 4.8 applies.

Proof. By Lemma 2.5, for every j = 1, . . . ,m, write

(X,Y ) �→ gj(X) − g(Y ) − 〈∇gj(Y ), X − Y 〉

=

〈

(X − Y ),
(∫ 1

0

∫ t

0
∇2gj(Y + s(X − Y )) dsdt

)

︸ ︷︷ ︸

Fj(X,Y )

(X − Y )

〉

.

If −∇2gj � 0 on y ∈ K with gj(y) = 0, then from the proof of [6, Lemma 19],
−Fj(x, y) � 0 for all x, y ∈ K with gj(y) = 0. In other words, −Fj(x, y) � δIn on
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Ωj (defined in (4.5)) for some δ > 0. Therefore, by the matrix polynomial version of
Putinar positivstellensatz in [6, Theorem 29],

(4.13) −Fj(X,Y ) =
m
∑

k=0

σ̂jk(X,Y )gk(X)+
m
∑

k=0,k �=j

̂ψjk(X,Y )gk(Y )+ ̂ψj(X,Y )gj(Y )

for some SOS matrix polynomials (σ̂jk(X,Y )), ( ̂ψjk(X,Y )) and some matrix polyno-
mial ̂ψj(X,Y ).

On the other hand, if −gj is SOS-convex, then by Lemma 2.4, −Fj(X,Y ) is SOS
and, therefore, (4.13) also holds (take σ̂jk ≡ 0 for all k �= 0, and ̂ψjk ≡ 0 for all k and
̂ψj ≡ 0). But then

gj(X) − g(Y ) − 〈∇gj(Y ), X − Y 〉 = 〈(X − Y ), Fj(X,Y )(X − Y )〉

= −
m
∑

k=0

〈(X − Y ), σ̂jk(X,Y )(X − Y )〉 gk(X)

−
m
∑

k=0,k �=j

〈

(X − Y ), ̂ψjk(X,Y )(X − Y )
〉

gk(Y )

−
〈

(X − Y ), ̂ψj(X,Y )(X − Y )
〉

gj(Y )

= −
m
∑

k=0

σjk(X,Y ) gk(X)

−
m
∑

k=0,k �=j
ψjk(X,Y ) gk(Y ) − ψj(X,Y ) gj(Y )

for all X,Y , for some SOS polynomials σjk, ψjk ∈ R[X,Y ], and some polynomial
ψj ∈ R[X,Y ]. Equivalently,

〈∇gj(Y ), X − Y 〉 = gj(X) − gj(Y ) +
m
∑

k=0

σjk(X,Y ) gk(X)

+
m
∑

k=0,k �=j
ψjk(X,Y ) gk(Y ) + ψj(X,Y ) gj(Y )

=
m
∑

k=0

σ′
jk(X,Y ) gk(X) +

m
∑

k=0,k �=j
ψjk(X,Y ) gk(Y )

+ ψ′
j(X,Y ) gj(Y )

for some SOS polynomials σ′
jk, ψjk ∈ Σ2[X,Y ] and some polynomial ψ′

j ∈ R[X,Y ].
In other words, Assumption 4.6 holds, which concludes the proof.

Hence, if each −gj is SOS-convex or convex on K with −∇2gj � 0 on K ∩
{x : gj(x) = 0}, one obtains a numerical scheme to obtain the parameter d in The-
orem 4.8 as well as the semidefinite representation (4.2) of K. Solve the semidefinite
programs (4.8) with degree parameter dj . Eventually, ρj = 0 for every j = 1, . . . ,m.

Example 4.3. Consider the convex set K in (4.9) of Example 4.2 for which the
defining polynomial g1 of K is not concave. We have seen that Assumption 4.6 holds
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(up to ρ1 ≈ 10−11, close to machine precision) and max[d1, d2] = 3. By Theorem 4.8,
if ρ1 would be exactly 0, the set

(4.14) Ω :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(x,y) ∈ R
n × R

s(6) :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

M3(y) � 0,

M2(gj y) ≥ 0, j = 1, 2,

Ly(Xi) = xi, i = 1, 2,

y0 = 1

would be a semidefinite representation of K.
At least in practice, for every linear polynomial f ∈ R[X ], minimizing Ly(f) over

Ω yields the desired optimal value f∗ := minx∈K f(x), up to ρ1 ≈ −10−11.
Indeed, let f ∈ R[X ] be fTX for some vector f ∈ R

n. In minimizing f over K,
one has f = λ1∇g1(x∗)+λ2∇g2(x∗) for some λ ∈ R

2
+, some x∗ ∈ K with λigi(x∗) = 0,

i = 1, 2, and f∗ = λ1〈∇g1(x∗), x∗〉 + λ2〈∇g2(x∗), x∗〉 = minx∈K fTx. Let x be as in
(4.14), arbitrary. Then

fTx− f∗ = Ly(f(X) − f∗) =
2
∑

i=1

λiLy(〈∇gi(x∗), X − x∗〉).

If λ1 > 0 so that g1(x∗) = 0, use (4.12) to obtain

Ly(〈∇g1(x∗), X − x∗〉) = Ly

⎛

⎝ρ1 + Δ0(X) +
2
∑

j=1

Δj(X)gj(X)

⎞

⎠ ≥ ρ1,

because Ly(Δ0) ≥ 0 follows from M3(y) � 0, and Ly(Δjgj) ≥ 0, j = 1, 2, follows
from M2(g1y),M2(g2y) � 0. If λ2 > 0 so that g2(x∗) = 0, then from (4.10)

Ly(〈∇g2(x∗), X − x∗〉) = Ly

(

g2(X) −
〈

(X − x∗),∇2g2(x∗)(X − x∗)
〉)

≥ 0,

because Ly(g2) ≥ 0 follows from M2(g2y) � 0 whereas the second term is nonnegative
as 〈(X − x∗),−∇2g2(x∗)(X − x∗)〉 is SOS and M3(y) � 0. Hence, fTx − f∗ ≥ λ1ρ1.
On the other hand, from K ⊆ {x : (x, y) ∈ Ω}, one finally obtains the desired result

f∗ + λ1ρ1 ≤ min {fTx : (x, y) ∈ Ω} ≤ f∗.

5. Conclusion. As well-known, convexity is a highly desirable property in op-
timization. We have shown that it also has important specific consequences in poly-
nomial optimization. For instance, for polynomial optimization problems with SOS-
convex or strictly convex polynomial data, the basic SDP relaxations of the moment
approach [13] recognize convexity and finite convergence occurs. Similarly, the set
K has a semidefinite representation, explicit in terms of the defining polynomials
(gj).

The class of SOS-convex polynomials introduced in Helton and Nie [6] is par-
ticularly interesting because the semidefinite constraint to handle the semidefinite
relaxation involves only the Hankel-like moment matrix which does not depend on
the problem data! Hence, one might envision a dedicated SDP solver that would
take into account this peculiarity as Hankel-like or Toeplitz-like matrices enjoy very
specific properties. Moreover, if restricted to this class of polynomials, Jensen’s in-
equality can be extended to linear functionals in the dual cone of SOS polynomials
(hence, not necessarily probability measures).
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Therefore, a topic of further research is to evaluate how large is the subclass of
SOS-convex polynomials in the class of convex polynomials and, if possible, to also
provide simple sufficient conditions for SOS convexity.

Acknowledgments. The author wishes to thank L. Tuncel and Y. Nesterov for
helpful discussions on various characterizations of convex sets, and also two anony-
mous referees for several corrections as well as suggestions and remarks to improve a
first version of this paper.

REFERENCES

[1] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Al-
gorithms, and Engineering Applications, MPS/SIAM Ser. Optim. 2, SIAM, Philadelphia,
2001.

[2] C.B. Chua and L. Tuncel, Invariance and efficiency of convex representations, Math. Pro-
gram., 111 (2008), pp. 113–140.

[3] S.I. Birbil, J.B.G. Frenk, and G.J. Still, An elementary proof of the Fritz-John and Karush-
Kuhn-Tucker conditions in nonlinear programming, European J. Oper. Res., 180 (2007),
pp. 479–484.

[4] R.E. Curto and L.A. Fialkow, Recursiveness, positivity, and truncated moment problems,
Houston J. Math., 17 (1991), pp. 603–635.

[5] D. Handelman, Representing polynomials by positive linear functions on compact convex poly-
hedra, Pacific J. Math., 132 (1988), pp. 35–62.

[6] J.W. Helton and J. Nie, Semidefinite representation of convex sets, Math. Program., to
appear.

[7] J.W. Helton and J. Nie, Sufficient and necessary condition for semidefinite representation
of sets, SIAM J. Optim., to appear.

[8] D. Henrion, On Semidefinite Representations of Plane Quartics, Research report 08444,
LAAS-CNRS, University of Toulouse, Toulouse, France, 2008, submitted.

[9] D. Henrion and J.B. Lasserre, GloptiPoly: Global optimization over polynomials with Matlab
and SeDuMi, ACM Trans. Math. Software, 29 (2003), pp. 165–194.

[10] M. Kojima and M. Maramatsu, An extension of sums of squares relaxations to polynomial
optimization problems over symmetric cones, Math. Program., 110 (2007), pp. 315–336.

[11] C.W.J. Hol and C.W. Scherer, A sum-of-squares approach to fixed order H∞-synthesis, in
Positive Polynomials in Control, Lecture Notes in Control and Inform. Sci. 312, D. Henrion
and A. Garulli, eds., Springer-Verlag, Berlin, 2005, pp. 45–71.
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